US20050064223A1 - Polymeric marker with high radiopacity - Google Patents
Polymeric marker with high radiopacity Download PDFInfo
- Publication number
- US20050064223A1 US20050064223A1 US10/667,710 US66771003A US2005064223A1 US 20050064223 A1 US20050064223 A1 US 20050064223A1 US 66771003 A US66771003 A US 66771003A US 2005064223 A1 US2005064223 A1 US 2005064223A1
- Authority
- US
- United States
- Prior art keywords
- radiopaque
- marker
- particles
- polymer
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003550 marker Substances 0.000 title claims abstract description 66
- 239000002245 particle Substances 0.000 claims abstract description 66
- 238000000034 method Methods 0.000 claims abstract description 37
- 230000003902 lesion Effects 0.000 claims abstract description 7
- 229920000642 polymer Polymers 0.000 claims description 47
- 239000000203 mixture Substances 0.000 claims description 24
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 16
- 229910052721 tungsten Inorganic materials 0.000 claims description 14
- 239000010937 tungsten Substances 0.000 claims description 14
- 239000003963 antioxidant agent Substances 0.000 claims description 13
- 230000003078 antioxidant effect Effects 0.000 claims description 13
- 229920002614 Polyether block amide Polymers 0.000 claims description 10
- 239000000080 wetting agent Substances 0.000 claims description 10
- 239000000654 additive Substances 0.000 claims description 9
- 238000013329 compounding Methods 0.000 claims description 8
- 238000007689 inspection Methods 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 230000000996 additive effect Effects 0.000 claims description 4
- 238000000889 atomisation Methods 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 4
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 claims description 2
- 235000006708 antioxidants Nutrition 0.000 claims 6
- 238000005538 encapsulation Methods 0.000 claims 3
- 239000012798 spherical particle Substances 0.000 claims 2
- 229920001169 thermoplastic Polymers 0.000 claims 2
- 239000004416 thermosoftening plastic Substances 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 claims 1
- 238000001125 extrusion Methods 0.000 abstract description 16
- 239000000463 material Substances 0.000 abstract description 14
- 239000003795 chemical substances by application Substances 0.000 abstract description 10
- 238000009826 distribution Methods 0.000 abstract description 6
- 238000002156 mixing Methods 0.000 abstract description 5
- 239000002952 polymeric resin Substances 0.000 abstract description 5
- 229920003002 synthetic resin Polymers 0.000 abstract description 5
- 238000005453 pelletization Methods 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 125000006850 spacer group Chemical group 0.000 description 6
- 210000001367 artery Anatomy 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 210000004351 coronary vessel Anatomy 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 238000007765 extrusion coating Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 208000031481 Pathologic Constriction Diseases 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 208000037804 stenosis Diseases 0.000 description 2
- 230000036262 stenosis Effects 0.000 description 2
- 230000002966 stenotic effect Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYECOJGRJDOGPP-UHFFFAOYSA-N Ethylurea Chemical compound CCNC(N)=O RYECOJGRJDOGPP-UHFFFAOYSA-N 0.000 description 1
- -1 Hytrel Chemical compound 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- 229920002633 Kraton (polymer) Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000002302 brachial artery Anatomy 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007887 coronary angioplasty Methods 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229920003031 santoprene Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/12—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L31/125—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/107—Measuring physical dimensions, e.g. size of the entire body or parts thereof
- A61B5/1076—Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/6851—Guide wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/6852—Catheters
- A61B5/6853—Catheters with a balloon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/12—Arrangements for detecting or locating foreign bodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/485—Diagnostic techniques involving fluorescence X-ray imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/14—Materials characterised by their function or physical properties, e.g. lubricating compositions
- A61L29/18—Materials at least partially X-ray or laser opaque
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/18—Materials at least partially X-ray or laser opaque
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0009—Making of catheters or other medical or surgical tubes
- A61M25/0012—Making of catheters or other medical or surgical tubes with embedded structures, e.g. coils, braids, meshes, strands or radiopaque coils
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0108—Steering means as part of the catheter or advancing means; Markers for positioning using radio-opaque or ultrasound markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/09—Guide wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M25/1027—Making of balloon catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/16—Details of sensor housings or probes; Details of structural supports for sensors
- A61B2562/17—Comprising radiolucent components
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/958—Inflatable balloons for placing stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0096—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
- A61F2250/0098—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
- Y10T156/1089—Methods of surface bonding and/or assembly therefor of discrete laminae to single face of additional lamina
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1372—Randomly noninterengaged or randomly contacting fibers, filaments, particles, or flakes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/139—Open-ended, self-supporting conduit, cylinder, or tube-type article
Definitions
- the present invention is directed to elongated intracorporeal devices, and more particularly intraluminal devices for stent deployment, percutaneous transluminal coronary angioplasty (PTCA), and the similar procedures.
- PTCA is a widely used procedure for the treatment of coronary heart disease. In this procedure, a balloon dilatation catheter is advanced into the patient's coronary artery and the balloon on the catheter is inflated within the stenotic region of the patient's artery to open up the arterial passageway and increase the blood flow through the artery.
- a guiding catheter having a preshaped distal tip is first percutaneously introduced into the cardiovascular system of a patient by the Seldinger technique through the brachial or femoral arteries.
- the catheter is advanced therein until the preshaped distal tip of the guiding catheter is disposed within the aorta adjacent the ostium of the desired coronary artery.
- a balloon dilatation catheter may then be advanced through the guiding catheter into the patient's coronary artery until the balloon on the catheter is disposed wthin the stenotic region of the patient's artery.
- the balloon is inflated one or more times to a predetermined size with radiopaque liquid at relatively high pressures (e.g., generally 4-12 atmospheres) to dilate the stenosed region of a diseased artery. After the inflations, the balloon is finally deflated so that the dilatation catheter can be removed from the dilatated stenosis to resume blood flow.
- relatively high pressures e.g., generally 4-12 atmospheres
- balloon catheters may be used to deploy endoprosthetic devices such as stents.
- Stents are generally cylindrical shaped intravascular devices that are placed within a damaged artery to hold it open. The device can be used to prevent restenosis and to maintain the patency of blood vessel immediately after intravascular treatments.
- a compressed or otherwise reduced diameter stent is disposed about an expandable member such as a balloon on the distal end of the catheter, and the catheter and stent thereon are advanced through the patient's vascular system. Inflation of the balloon expands the stent within the blood vessel. Subsequent deflation of the balloon allows the catheter to be withdrawn, leaving the expanded stent within the blood vessel.
- the distal section of a balloon catheter or other percutaneous device will have one or more radiopaque markers in order for the operator of the device to ascertain its position and orientation under X-ray or fluoroscopy imaging.
- a band or ring of solid radiopaque metal is secured about an inner or outer shaft of a balloon catheter to serve as a radiopaque marker.
- Such configuration locally stiffens the catheter shaft and thereby imparts an undesirable discontinuity thereto as the solid metal bands are relatively inflexible compared to a polymer balloon catheter shaft.
- the metallic markers are relatively expensive to manufacture and relatively difficult to positively affix to an underlying device.
- markers may be replaced with a polymer that is filled or doped with a suitable radiopaque agent.
- a suitable radiopaque agent may be formed by blending a polymer resin with a powdered, radiographically dense material such as elemental tungsten and then extruding the composition to form a tubular structure with an appropriate inner diameter and wall thickness. The extrusion may then be cut to discrete lengths and installed onto the intended component via a melt bonding process.
- a shortcoming of such an approach has been found to be the apparent limit to which a suitable polymer can be filled with a radiographically dense material to yield a composition that can be successfully compounded, economically shaped into suitable dimensions for markers and easily assembled onto a component without unduly compromising the desirable properties of the polymer matrix.
- the fill ratio that is achievable will determine how thick a marker must be in order to achieve a particular degree of radiopacity.
- the fill ratio limit has heretofore been found to be about 80 weight percent. Such weight percentage equates to about 18 volume percent which requires the marker to be excessively thick in order to achieve adequate radiopacity.
- a polymeric marker is therefore needed having a substantially higher fill ratio than has heretofore been possible. Such marker would allow devices to be rendered highly visible without an inordinate increase in overall profile nor a compromise of the flexibility of the underlying component.
- the present invention overcomes the shortcomings of previously described polymeric radiopaque markers by enabling a polymer to be filled or doped with a considerably greater quantity of a radiopaque agent than has heretofore been achievable.
- the increased fill ratio nonetheless allows uniform pellets to be compounded and an extrusion with the appropriate wall thickness to be formed.
- the resulting marker provides an unprecedented combination of radiopacity and flexibility.
- Such marker would allow any of various intraluminal devices to be radiopaquely marked including, but not limited to, coronary, peripheral, and guiding catheters as well as guidewires.
- the marker of the present invention relies on the use of radiopaque materials with a preselected particle shape and a preselected particle size distribution as well as the inclusion of one or more additives in the polymer/radiopaque agent blend.
- a multifunctional polymeric additive is added to the composition in order to enhance the wetting, adhesive and flow properties of the individual radiopaque particles by the polymer so as to cause each particle to be encapsulated by the polymer and thereby allow the polymer to form a continuous binder.
- An antioxidant may optionally be added in order to preserve the high molecular weight of the polymer matrix as it is exposed to the high temperatures and shear stresses associated with the compounding and extrusion processes.
- Tungsten powder produced by either a “pusher” process or “atomization” process, then milled and classified has been found to provide discrete particles having a more equiaxed shape and size respectively and are therefore more ideally suited for the purposes of the present invention than powders produced employing a “rotary” process.
- the marker of the present invention is manufactured by first tumble mixing the polymer resin with a pelletized wetting agent, such as maleic anhydride graft polyolefin resin (MA-g-PO), and an antioxidant and then introducing the mixture into the primary feeder of a twin screw extruder.
- a pelletized wetting agent such as maleic anhydride graft polyolefin resin (MA-g-PO)
- MA-g-PO maleic anhydride graft polyolefin resin
- antioxidant an antioxidant
- tungsten powder is introduced into the mix at a controlled mass flow rate via a secondary feeder.
- the tungsten powder and the molten ingredients become intimately intermixed as they are conveyed downstream and discharged through a die as molten strands which are cooled in water and subsequently pelletized.
- the markers are subsequently formed by extruding the tungsten filled polymer onto a continuous beading of PTFE and drawn down to yield the desired wall thickness.
- the extrusion is then cut to the desired lengths, preferably with the beading still in place so as to provide support. Removal of the beading remnant then allows the marker to be slipped onto the medical device or component thereof to be marked and melt bonded in place. Reliance on melt bonding obviates the need for the marker to completely surround the underlying device.
- Markers can for example be longitudinally split in half to form two markers of C-shaped cross-section. Or, solid strands of extruded marker material may be melt bonded to one side to form one or more longitudinal stripes or helical patterns.
- the marker of the present invention is readily attached to for example the inner member of a balloon catheter, a guidewire, and even a guide catheter tip.
- the attachment of radiopaque markers of known dimensions to a guidewire or the attachment to a guidewire of multiple radiopaque markers with known separation distances impart a measurement capability to the catheter that allows a physician to quickly and easily measure lesions and decide on appropriate stent lengths.
- FIG. 1 is an enlarged side view of the radiopaque markers of the present invention attached to a balloon catheter;
- FIG. 2 is an enlarged side view of radiopaque markers of the present invention attached to a guidewire in a preferred configuration
- FIG. 3 is an enlarged side view of the radiopaque markers of the present invention attached to a guidewire in an alternatively preferred configuration.
- the present invention provides a radiopaque marker for use on a variety of devices that is flexible, highly radiopaque and is easily attachable to such devices by melt bonding. These properties allow markers to be of minimal thickness and thereby minimize the effect the marker has on the overall profile and stiffness of the device to which it is to be attached.
- both the particle shape and particle size of the radiopaque agent must be carefully controlled while the inclusion of a MA-g-PO in the polymer blend is critical.
- An antioxidant may additionally be included in an effort to reduce the adverse effect the high processing temperatures and shear stresses may have on polymer properties.
- the material preferably comprises a low durometer polymer in order to render the marker sufficiently flexible so as not to impair the flexibility of the underlying medical device component to which the finished marker is to be attached.
- the polymer must be compatible with the material of which the component is constructed so as to allow the marker to be melt bonded in place.
- the polymer must also impart sufficient strength and ductility to the marker compound so as to facilitate its extrusion and forming into a marker, its subsequent handling and attachment to a medical device and preservation of the marker's integrity as the medical device is flexed and manipulated during use.
- polymers examples include but are not limited to polyamide copolymers like Pebax, polyetherurethanes like Pellethane, polyester copolymers like Hytrel, olefin derived copolymers, natural and synthetic rubbers like silicone and Santoprene, thermoplastic elastomers like Kraton and specialty polymers like EVA and ionomers, etc. as well as alloys thereof.
- the preferred polymer for use in the manufacture of a marker in accordance with the present invention is polyether block polyamide copolymer. A durometer of 25 or lower is preferred.
- a number of different metals are well known to be radiographically dense and can be used in a pure or alloyed form to mark medical devices so as to render them visible under fluoroscopic inspection.
- Commonly used metals include but are not limited to platinum, gold, iridium, palladium, rhenium and rhodium.
- Less expensive radiopaque agents include tungsten, tantalum, silver and tin, of which tungsten is most preferred for use in the markers of the present invention.
- the use of larger average particle sizes results in greater spacing between filler particles at a given percentage, thus maintaining processability during compounding and especially subsequent extrusion coating.
- the upper limit of average particle size is determined by the wall thickness of the coating and the degree of non-uniformity tolerable (ie., surface defects). It has been found that a particle size distribution having an average particle size range of at least 2 microns to 10 microns and a maximum particle size of about 20 microns yields the desired fill ratio and provides for a smooth surface in the marker made therefrom.
- the control of particle shape has also been found to be of critical importance for achieving the desired ultra high fill ratios.
- Discrete particles of equiaxed shape have been found to be especially effective, as individual particles of irregular shape, including agglomerations of multiple particles, have been found to adversely impact the surface, and thus, the maximum fill ratio that is attainable.
- the process by which certain metal powders are produced has a profound effect on the shape of the individual particles.
- the powders may be formed by the reduction of powdered oxides through either “rotary”, “pusher” or “atomization” processing.
- rotary processing has been found to yield the least desirable shape and size distribution as partial sintering causes coarse agglomerates to be formed which do not break up during compounding or extrusion and thus adversely effect the marker manufactured therefrom.
- Atomized powders have been reprocessed by melting and resolidifying “rotary” or “pusher” processed powders and result in generally equiaxed, discrete particles which are suitable for use in the present invention. “Pusher” processed powders are preferred due to their low cost and discrete, uniformly shaped particles.
- additives such as surfactants and coupling agents may serve as wetting agents and adhesion promoters for polymer/metal combinations that are not naturally compatible. It has been found that additives containing maleic anhydride graft to a polyolefin backbone provide a significant benefit in this regard wherein materials commercially available as Lotader 8200 (having LLOPE Backbone) and Licomont AR504 (having PP backbone) were found to be particularly effective for use with tungsten/Pebax combinations.
- an antioxidant in the marker composition has also been found to be of benefit.
- a commercially available antioxidant such as Irganox B225 have been found to minimize degradation (i.e., reduction in molecular weight) of the polymer matrix as it is exposed to the multiple heat and shear histories associated with the compounding, extrusion, and bonding processes.
- the compound used for the manufacture of the marker of the present invention is preferably made by first blending the polymer resin and wetting agent, and optionally, an antioxidant such as by tumble mixing after which such blend is introduced into a twin-screw extruder via a primary feeder.
- the feed rate is carefully controlled in terms of mass flow rate to ensure that a precise fill ratio is achieved upon subsequent combination with the radiopaque agent.
- the heat that the materials are subjected as they are conveyed through the extruder causes the polymer to melt to thereby facilitate thorough homogenization of all of the ingredients.
- the radiopaque agent powder selected for its uniform particle shape and controlled particle size distribution as described above is subsequently introduced into the melt stream via a secondary feeder, again at a carefully controlled mass flow rate so as to achieve the target fill ratio.
- the solid powder, molten polymer and additives are homogenized as they are conveyed downstream and discharged through a die as molten strands which are cooled in water and subsequently pelletized.
- the preferred extrusion equipment employs two independent feeders as introduction of all components through a single primary feeder would require significantly higher machine torques and result in excessive screw and barrel wear.
- the powder feeder is preferentially operated in tandem with a sidefeeder device, which in turn conveys the powder through a sealed main barrel port directly into the melt stream.
- a preferred composition comprises a fill ratio of 91.3 weight percent of tungsten (H. C. Starck's Kulite HC600s, HC180s and KMP-103JP) to Pebax 40D.
- a maleic anhydride source in the form of Licomont AR504 is initially added to the polymer resin at the rate of approximately 3 pphr while an antioxidant in the form of Ciba Geigy B225 at the rate of approximately 2 pphr (parts per hundred relative to the resin).
- the temperature to which materials are subjected to in the extruder is about 221° C.
- the marker can be fabricated in suitable dimensions by an extrusion coating process. While free extrusion is possible, this method is problematic due to the high fill ratios of the polymeric materials. Extrusion onto a continuous length of beading has been found to lend the necessary support for the molten extrudate to prevent breakage.
- the support beading may take the form of a disposable, round mandrel made of PTFE, teflon coated stainless steel wire or other heat resistant material that does not readily bond to the extrudate.
- ADDR area draw down ratio
- the beading provides the added benefit of fixing the inner diameter and improving overall dimensional stability of the final tungsten/polymer coating.
- Extrusions of the 91.3 weight percent fill ratio tungsten/Pebax composition described above over 0.0215′′ diameter PTFE beading were successfully drawn down to a wall thickness of 0.0025′′ to yield a marker properly sized for attachment to for example a 0.022′′ diameter inner member of balloon catheter.
- extrusion coatings of 91% compound over 0.007′′ teflon coated stainless steel wire were successfully drawn down to single wall thicknesses of 0.002′′ to make guidewire coatings.
- the extrusion is simply cut to the desired lengths (e.g., 1 to 1.5 mm) of the individual markers, such as with the use of a razor blade and reticle, preferably with the beading still in place to provide support during cutting.
- the beading remnant is subsequently ejected and the marker is slipped onto a medical device or a particular component thereof.
- the marker is attached to the underlying substrate, preferably with the use of heat shrink tubing and a heat source (hot air, laser, etc.) wherein the heat ( ⁇ 171-210° C.) simultaneously causes the marker to melt and the heat shrink tubing to exert a compressive force on the underlying molten material.
- Heat bonding a marker onto an underlying component provides the added benefit of slightly tapering the edges of the marker to reduce the likelihood of catching an edge and either damaging the marker or the medical device during assembly or handling of the medical device.
- a marker formed as per the above described compounding, fabricating and assembling processes, having a fill ratio of 91.3 weight percent (36.4 volume percent) with a wall thickness of 0.0025′′ has been shown to have dramatically more radiopacity than commercially available 80 weight percent compounds and comparable to the radiopacity of 0.00125′′ thick conventional Platinum/10% Iridium markers.
- FIG. 1 illustrates two radiopaque markers 12 attached to the inner member 14 of a balloon catheter 16 .
- the markers attached to the inner member prior to the positioning of the inner member within the balloon 18 and attachment thereto at 20 .
- Fluoroscopic illumination of the device allows the invisible balloon to be positioned relative to a lesion by virtue of the visibility of the radiopaque markers and their known positions relative to the balloon.
- FIG. 2 illustrates a preferred embodiment of a guidewire with a measurement feature 22 wherein a series of radiopaque markers 24 are attached to the guidewire 24 at preselected separation distances 26 allow the device to be used as a type of ruler to measure the size of a lesion.
- the separation between adjacent markers may be controlled by the use of a radiotransparent tubular spacers 28 that are similarly melt bondable to the underlying guidewire.
- heat shrink tubing of sufficient length is slipped over the entire section of guidewire and heated to the appropriate temperature to cause both the markers as well as the spacers to become melt bonded to the guidewire.
- FIG. 3 illustrates an alternatively preferred embodiment of a guidewire with a measurement feature 30 wherein an equally spaced series of differently sized radiopaque markers 32 a - e are attached to a guidewire 34 to allow the device to be used to gauge the size of a lesion.
- the separation between adjacent markers may be controlled by the use of a radiotransparent tubular spacers 36 that are similarly melt bondable to the underlying guidewire.
- heat shrink tubing of sufficient length is slipped over the entire section of guidewire and heated to the appropriate temperature to cause both the markers as well as the spacers to become melt bonded to the guidewire.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Optics & Photonics (AREA)
- Hematology (AREA)
- Anesthesiology (AREA)
- Pulmonology (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Vascular Medicine (AREA)
- High Energy & Nuclear Physics (AREA)
- Radiology & Medical Imaging (AREA)
- Dentistry (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Chemical & Material Sciences (AREA)
- Child & Adolescent Psychology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
- The present invention is directed to elongated intracorporeal devices, and more particularly intraluminal devices for stent deployment, percutaneous transluminal coronary angioplasty (PTCA), and the similar procedures. PTCA is a widely used procedure for the treatment of coronary heart disease. In this procedure, a balloon dilatation catheter is advanced into the patient's coronary artery and the balloon on the catheter is inflated within the stenotic region of the patient's artery to open up the arterial passageway and increase the blood flow through the artery. To facilitate the advancement of the dilatation catheter into the patient's coronary artery, a guiding catheter having a preshaped distal tip is first percutaneously introduced into the cardiovascular system of a patient by the Seldinger technique through the brachial or femoral arteries. The catheter is advanced therein until the preshaped distal tip of the guiding catheter is disposed within the aorta adjacent the ostium of the desired coronary artery. A balloon dilatation catheter may then be advanced through the guiding catheter into the patient's coronary artery until the balloon on the catheter is disposed wthin the stenotic region of the patient's artery.
- Once properly positioned across the stenosis, the balloon is inflated one or more times to a predetermined size with radiopaque liquid at relatively high pressures (e.g., generally 4-12 atmospheres) to dilate the stenosed region of a diseased artery. After the inflations, the balloon is finally deflated so that the dilatation catheter can be removed from the dilatated stenosis to resume blood flow.
- Similarly, balloon catheters may be used to deploy endoprosthetic devices such as stents. Stents are generally cylindrical shaped intravascular devices that are placed within a damaged artery to hold it open. The device can be used to prevent restenosis and to maintain the patency of blood vessel immediately after intravascular treatments. Typically, a compressed or otherwise reduced diameter stent is disposed about an expandable member such as a balloon on the distal end of the catheter, and the catheter and stent thereon are advanced through the patient's vascular system. Inflation of the balloon expands the stent within the blood vessel. Subsequent deflation of the balloon allows the catheter to be withdrawn, leaving the expanded stent within the blood vessel.
- Typically, the distal section of a balloon catheter or other percutaneous device will have one or more radiopaque markers in order for the operator of the device to ascertain its position and orientation under X-ray or fluoroscopy imaging. Generally, a band or ring of solid radiopaque metal is secured about an inner or outer shaft of a balloon catheter to serve as a radiopaque marker. Such configuration, however, locally stiffens the catheter shaft and thereby imparts an undesirable discontinuity thereto as the solid metal bands are relatively inflexible compared to a polymer balloon catheter shaft. Additionally, the metallic markers are relatively expensive to manufacture and relatively difficult to positively affix to an underlying device.
- As is described in U.S. Pat. No. 6,540,721, which is incorporated herein by reference, many of the problems associated with the use of conventional markers may be overcome by replacing the rigid precious metal tubing with a polymer that is filled or doped with a suitable radiopaque agent. Such marker may be formed by blending a polymer resin with a powdered, radiographically dense material such as elemental tungsten and then extruding the composition to form a tubular structure with an appropriate inner diameter and wall thickness. The extrusion may then be cut to discrete lengths and installed onto the intended component via a melt bonding process.
- A shortcoming of such an approach has been found to be the apparent limit to which a suitable polymer can be filled with a radiographically dense material to yield a composition that can be successfully compounded, economically shaped into suitable dimensions for markers and easily assembled onto a component without unduly compromising the desirable properties of the polymer matrix. The fill ratio that is achievable will determine how thick a marker must be in order to achieve a particular degree of radiopacity. In the case of tungsten in a polymer such as Pebax, the fill ratio limit has heretofore been found to be about 80 weight percent. Such weight percentage equates to about 18 volume percent which requires the marker to be excessively thick in order to achieve adequate radiopacity.
- A polymeric marker is therefore needed having a substantially higher fill ratio than has heretofore been possible. Such marker would allow devices to be rendered highly visible without an inordinate increase in overall profile nor a compromise of the flexibility of the underlying component.
- The present invention overcomes the shortcomings of previously described polymeric radiopaque markers by enabling a polymer to be filled or doped with a considerably greater quantity of a radiopaque agent than has heretofore been achievable. The increased fill ratio nonetheless allows uniform pellets to be compounded and an extrusion with the appropriate wall thickness to be formed. The resulting marker provides an unprecedented combination of radiopacity and flexibility. Such marker would allow any of various intraluminal devices to be radiopaquely marked including, but not limited to, coronary, peripheral, and guiding catheters as well as guidewires.
- The marker of the present invention relies on the use of radiopaque materials with a preselected particle shape and a preselected particle size distribution as well as the inclusion of one or more additives in the polymer/radiopaque agent blend. A multifunctional polymeric additive is added to the composition in order to enhance the wetting, adhesive and flow properties of the individual radiopaque particles by the polymer so as to cause each particle to be encapsulated by the polymer and thereby allow the polymer to form a continuous binder. An antioxidant may optionally be added in order to preserve the high molecular weight of the polymer matrix as it is exposed to the high temperatures and shear stresses associated with the compounding and extrusion processes.
- While previous attempts to increase fill ratios have involved tungsten powder of relatively fine particle size, the present invention relies on the use of particles of increased size in order to achieve such end. An increase in particle size has been found to allow the polymer to more effectively function as a continuous binder and thereby increase ductility at a given fill ratio or maintain ductility at increased fill ratios. It has been found that in constraining the average particle size to at least 2 microns and limiting maximum particle size to about 20 microns provides the desired results. In the case of tungsten in Pebax, a fill ratio of about 91.3 weight percent (equivalent to 36.4 volume percent) is readily attainable. Additionally, it has been found that the process by which the tungsten powder is produced has a considerable effect on both particle size distribution as well as the shape of the individual particles. Tungsten powder produced by either a “pusher” process or “atomization” process, then milled and classified has been found to provide discrete particles having a more equiaxed shape and size respectively and are therefore more ideally suited for the purposes of the present invention than powders produced employing a “rotary” process.
- The marker of the present invention is manufactured by first tumble mixing the polymer resin with a pelletized wetting agent, such as maleic anhydride graft polyolefin resin (MA-g-PO), and an antioxidant and then introducing the mixture into the primary feeder of a twin screw extruder. The mixture is fed in at a controlled mass flow rate and conveyed down the barrel length as it is heated above its melting temperature and blended. At a point downstream, tungsten powder is introduced into the mix at a controlled mass flow rate via a secondary feeder. The tungsten powder and the molten ingredients become intimately intermixed as they are conveyed downstream and discharged through a die as molten strands which are cooled in water and subsequently pelletized. The markers are subsequently formed by extruding the tungsten filled polymer onto a continuous beading of PTFE and drawn down to yield the desired wall thickness. The extrusion is then cut to the desired lengths, preferably with the beading still in place so as to provide support. Removal of the beading remnant then allows the marker to be slipped onto the medical device or component thereof to be marked and melt bonded in place. Reliance on melt bonding obviates the need for the marker to completely surround the underlying device. Markers can for example be longitudinally split in half to form two markers of C-shaped cross-section. Or, solid strands of extruded marker material may be melt bonded to one side to form one or more longitudinal stripes or helical patterns.
- Due to its high radiopacity, flexibility and melt bondability, the marker of the present invention is readily attached to for example the inner member of a balloon catheter, a guidewire, and even a guide catheter tip. The attachment of radiopaque markers of known dimensions to a guidewire or the attachment to a guidewire of multiple radiopaque markers with known separation distances impart a measurement capability to the catheter that allows a physician to quickly and easily measure lesions and decide on appropriate stent lengths.
- These and other features of the present invention will become apparent from the following detailed description of preferred embodiments which, taken in conjunction with the accompanying drawings, illustrate by way of example the principles of the present invention.
-
FIG. 1 is an enlarged side view of the radiopaque markers of the present invention attached to a balloon catheter; -
FIG. 2 is an enlarged side view of radiopaque markers of the present invention attached to a guidewire in a preferred configuration; and -
FIG. 3 is an enlarged side view of the radiopaque markers of the present invention attached to a guidewire in an alternatively preferred configuration. - The present invention provides a radiopaque marker for use on a variety of devices that is flexible, highly radiopaque and is easily attachable to such devices by melt bonding. These properties allow markers to be of minimal thickness and thereby minimize the effect the marker has on the overall profile and stiffness of the device to which it is to be attached.
- In order to achieve the high fill ratios that are necessary to attain the desired radiopacity and in order to do so without compromising the compoundability and workability of the polymeric material nor its ultimate strength and flexibility, a number of different parameters have been found to be of importance. More specifically, both the particle shape and particle size of the radiopaque agent must be carefully controlled while the inclusion of a MA-g-PO in the polymer blend is critical. An antioxidant may additionally be included in an effort to reduce the adverse effect the high processing temperatures and shear stresses may have on polymer properties.
- A number of polymeric materials are well suited for use in the manufacture of the markers of the present invention. The material preferably comprises a low durometer polymer in order to render the marker sufficiently flexible so as not to impair the flexibility of the underlying medical device component to which the finished marker is to be attached. Additionally, the polymer must be compatible with the material of which the component is constructed so as to allow the marker to be melt bonded in place. The polymer must also impart sufficient strength and ductility to the marker compound so as to facilitate its extrusion and forming into a marker, its subsequent handling and attachment to a medical device and preservation of the marker's integrity as the medical device is flexed and manipulated during use. Examples of such polymers include but are not limited to polyamide copolymers like Pebax, polyetherurethanes like Pellethane, polyester copolymers like Hytrel, olefin derived copolymers, natural and synthetic rubbers like silicone and Santoprene, thermoplastic elastomers like Kraton and specialty polymers like EVA and ionomers, etc. as well as alloys thereof. The preferred polymer for use in the manufacture of a marker in accordance with the present invention is polyether block polyamide copolymer. A durometer of 25 or lower is preferred.
- A number of different metals are well known to be radiographically dense and can be used in a pure or alloyed form to mark medical devices so as to render them visible under fluoroscopic inspection. Commonly used metals include but are not limited to platinum, gold, iridium, palladium, rhenium and rhodium. Less expensive radiopaque agents include tungsten, tantalum, silver and tin, of which tungsten is most preferred for use in the markers of the present invention.
- The control of particle size has been found to be of critical importance for achieving the desired ultra high fill ratios While efforts to increase fill ratios have previously utilized small average particle sizes (1 micron or less) so as to minimize the ratio of particle size to as-extruded wall thickness, it has been found that higher fill percentages can be realized with the use of somewhat larger average particles sizes. It is desirable in the formulation of high fill ratio compounds to have the following attribute: 1) uniform distribution of the filler particles, and 2) continuity of the surrounding polymer matrix, and 3) sufficient spacing between filler particles so that the polymer matrix provides ductility to the bulk mixture to impart processability in both the solid and molten state.
- The use of larger average particle sizes results in greater spacing between filler particles at a given percentage, thus maintaining processability during compounding and especially subsequent extrusion coating. The upper limit of average particle size is determined by the wall thickness of the coating and the degree of non-uniformity tolerable (ie., surface defects). It has been found that a particle size distribution having an average particle size range of at least 2 microns to 10 microns and a maximum particle size of about 20 microns yields the desired fill ratio and provides for a smooth surface in the marker made therefrom.
- The control of particle shape has also been found to be of critical importance for achieving the desired ultra high fill ratios. Discrete particles of equiaxed shape have been found to be especially effective, as individual particles of irregular shape, including agglomerations of multiple particles, have been found to adversely impact the surface, and thus, the maximum fill ratio that is attainable.
- It has also been found that the process by which certain metal powders are produced has a profound effect on the shape of the individual particles. In the case of metallic tungsten, the powders may be formed by the reduction of powdered oxides through either “rotary”, “pusher” or “atomization” processing. Of these processes, “rotary” processing has been found to yield the least desirable shape and size distribution as partial sintering causes coarse agglomerates to be formed which do not break up during compounding or extrusion and thus adversely effect the marker manufactured therefrom. Atomized powders have been reprocessed by melting and resolidifying “rotary” or “pusher” processed powders and result in generally equiaxed, discrete particles which are suitable for use in the present invention. “Pusher” processed powders are preferred due to their low cost and discrete, uniformly shaped particles.
- In order for the polymer to most effectively encapsulate individual radiopaque particles, it is necessary for a low-energy interface to exist between such particles and the polymer so as to enable the polymer to “wet” the surface of the particles. Certain additives such as surfactants and coupling agents may serve as wetting agents and adhesion promoters for polymer/metal combinations that are not naturally compatible. It has been found that additives containing maleic anhydride graft to a polyolefin backbone provide a significant benefit in this regard wherein materials commercially available as Lotader 8200 (having LLOPE Backbone) and Licomont AR504 (having PP backbone) were found to be particularly effective for use with tungsten/Pebax combinations. Emerging extrusions were found to be less susceptible to breakage and the melt viscosity during compounding was lower as was manifested by a reduction in torque exerted during the extrusion process. The use of such additives allowed compounds with higher fill ratios to be successfully produced.
- The inclusion of an antioxidant in the marker composition has also been found to be of benefit. A commercially available antioxidant such as Irganox B225 have been found to minimize degradation (i.e., reduction in molecular weight) of the polymer matrix as it is exposed to the multiple heat and shear histories associated with the compounding, extrusion, and bonding processes.
- The compound used for the manufacture of the marker of the present invention is preferably made by first blending the polymer resin and wetting agent, and optionally, an antioxidant such as by tumble mixing after which such blend is introduced into a twin-screw extruder via a primary feeder. The feed rate is carefully controlled in terms of mass flow rate to ensure that a precise fill ratio is achieved upon subsequent combination with the radiopaque agent. The heat that the materials are subjected as they are conveyed through the extruder causes the polymer to melt to thereby facilitate thorough homogenization of all of the ingredients. The radiopaque agent powder, selected for its uniform particle shape and controlled particle size distribution as described above is subsequently introduced into the melt stream via a secondary feeder, again at a carefully controlled mass flow rate so as to achieve the target fill ratio. The solid powder, molten polymer and additives are homogenized as they are conveyed downstream and discharged through a die as molten strands which are cooled in water and subsequently pelletized. The preferred extrusion equipment employs two independent feeders as introduction of all components through a single primary feeder would require significantly higher machine torques and result in excessive screw and barrel wear. The powder feeder is preferentially operated in tandem with a sidefeeder device, which in turn conveys the powder through a sealed main barrel port directly into the melt stream. A preferred composition comprises a fill ratio of 91.3 weight percent of tungsten (H. C. Starck's Kulite HC600s, HC180s and KMP-103JP) to Pebax 40D. A maleic anhydride source in the form of Licomont AR504 is initially added to the polymer resin at the rate of approximately 3 pphr while an antioxidant in the form of Ciba Geigy B225 at the rate of approximately 2 pphr (parts per hundred relative to the resin). The temperature to which materials are subjected to in the extruder is about 221° C.
- Once the marker material has been compounded, the marker can be fabricated in suitable dimensions by an extrusion coating process. While free extrusion is possible, this method is problematic due to the high fill ratios of the polymeric materials. Extrusion onto a continuous length of beading has been found to lend the necessary support for the molten extrudate to prevent breakage. The support beading may take the form of a disposable, round mandrel made of PTFE, teflon coated stainless steel wire or other heat resistant material that does not readily bond to the extrudate. By additionally limiting the area draw down ratio (ADDR) to below 10:1 the tungsten-laden melt can successfully be drawn to size by an extrusion puller. The beading provides the added benefit of fixing the inner diameter and improving overall dimensional stability of the final tungsten/polymer coating. Extrusions of the 91.3 weight percent fill ratio tungsten/Pebax composition described above over 0.0215″ diameter PTFE beading were successfully drawn down to a wall thickness of 0.0025″ to yield a marker properly sized for attachment to for example a 0.022″ diameter inner member of balloon catheter. Also, extrusion coatings of 91% compound over 0.007″ teflon coated stainless steel wire were successfully drawn down to single wall thicknesses of 0.002″ to make guidewire coatings.
- Once the extrudate has cooled, the extrusion is simply cut to the desired lengths (e.g., 1 to 1.5 mm) of the individual markers, such as with the use of a razor blade and reticle, preferably with the beading still in place to provide support during cutting. The beading remnant is subsequently ejected and the marker is slipped onto a medical device or a particular component thereof. Finally, the marker is attached to the underlying substrate, preferably with the use of heat shrink tubing and a heat source (hot air, laser, etc.) wherein the heat (˜171-210° C.) simultaneously causes the marker to melt and the heat shrink tubing to exert a compressive force on the underlying molten material. Heat bonding a marker onto an underlying component provides the added benefit of slightly tapering the edges of the marker to reduce the likelihood of catching an edge and either damaging the marker or the medical device during assembly or handling of the medical device.
- A marker formed as per the above described compounding, fabricating and assembling processes, having a fill ratio of 91.3 weight percent (36.4 volume percent) with a wall thickness of 0.0025″ has been shown to have dramatically more radiopacity than commercially available 80 weight percent compounds and comparable to the radiopacity of 0.00125″ thick conventional Platinum/10% Iridium markers.
-
FIG. 1 illustrates tworadiopaque markers 12 attached to theinner member 14 of aballoon catheter 16. The markers attached to the inner member prior to the positioning of the inner member within theballoon 18 and attachment thereto at 20. Fluoroscopic illumination of the device allows the invisible balloon to be positioned relative to a lesion by virtue of the visibility of the radiopaque markers and their known positions relative to the balloon. -
FIG. 2 illustrates a preferred embodiment of a guidewire with ameasurement feature 22 wherein a series ofradiopaque markers 24 are attached to theguidewire 24 at preselected separation distances 26 allow the device to be used as a type of ruler to measure the size of a lesion. The separation between adjacent markers may be controlled by the use of a radiotransparenttubular spacers 28 that are similarly melt bondable to the underlying guidewire. Upon assembly of the radiopaque markers and the radiotransparent spacers onto the guidewire, heat shrink tubing of sufficient length is slipped over the entire section of guidewire and heated to the appropriate temperature to cause both the markers as well as the spacers to become melt bonded to the guidewire. -
FIG. 3 illustrates an alternatively preferred embodiment of a guidewire with ameasurement feature 30 wherein an equally spaced series of differently sized radiopaque markers 32 a-e are attached to aguidewire 34 to allow the device to be used to gauge the size of a lesion. The separation between adjacent markers may be controlled by the use of a radiotransparenttubular spacers 36 that are similarly melt bondable to the underlying guidewire. Upon assembly of the radiopaque markers and the radiotransparent spacers onto the guidewire, heat shrink tubing of sufficient length is slipped over the entire section of guidewire and heated to the appropriate temperature to cause both the markers as well as the spacers to become melt bonded to the guidewire. - While a particular form of the invention has been described, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention. More specifically, a variety of different polymers and radiopaque agents can be compounded using the appropriate wetting agent, markers of different shape and dimensions can be formed and the markers can be attached to any of a variety of medical devices that can benefit from being radiopaquely marked. Accordingly, it is not intended that the invention be limited except by the appended claims.
Claims (45)
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/667,710 US20050064223A1 (en) | 2003-09-22 | 2003-09-22 | Polymeric marker with high radiopacity |
US10/748,016 US20050065434A1 (en) | 2003-09-22 | 2003-12-29 | Polymeric marker with high radiopacity for use in medical devices |
JP2006528077A JP2007505721A (en) | 2003-09-22 | 2004-09-21 | Polymer for medical devices with high radiopacity |
ES04788822.7T ES2546352T3 (en) | 2003-09-22 | 2004-09-21 | Polymeric marker with high radiopacity for use in medical devices |
PCT/US2004/030526 WO2005030284A2 (en) | 2003-09-22 | 2004-09-21 | Polymeric marker with high radiopacity for use in medical devices |
US10/945,637 US7303798B2 (en) | 2003-09-22 | 2004-09-21 | Polymeric marker with high radiopacity for use in medical devices |
EP10011021A EP2263708B1 (en) | 2003-09-22 | 2004-09-21 | Polymeric marker with high radiopacity for use in medical devices |
EP15171716.2A EP2944333B1 (en) | 2003-09-22 | 2004-09-21 | Polymeric marker with high radiopacity for use in medical devices |
EP17154438.0A EP3231456A1 (en) | 2003-09-22 | 2004-09-21 | Polymeric marker with high radiopacity for use in medical devices |
EP04788822.7A EP1663335B1 (en) | 2003-09-22 | 2004-09-21 | Polymeric marker with high radiopacity for use in medical devices |
US11/148,058 US20050255317A1 (en) | 2003-09-22 | 2005-06-07 | Polymeric marker with high radiopacity for use in medical devices |
HK06113524.2A HK1091759A1 (en) | 2003-09-22 | 2006-12-07 | Polymeric marker with high radiopacity for use in medical devices |
US11/877,905 US7833597B2 (en) | 2003-09-22 | 2007-10-24 | Polymeric marker with high radiopacity for use in medical devices |
US12/945,566 US8637132B2 (en) | 2003-09-22 | 2010-11-12 | Polymeric marker with high radiopacity for use in medical devices |
US14/023,763 US20140100447A1 (en) | 2003-09-22 | 2013-09-11 | Polymeric marker with high radiopacity for use in medical devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/667,710 US20050064223A1 (en) | 2003-09-22 | 2003-09-22 | Polymeric marker with high radiopacity |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/748,016 Continuation-In-Part US20050065434A1 (en) | 2003-09-22 | 2003-12-29 | Polymeric marker with high radiopacity for use in medical devices |
US10/945,637 Continuation-In-Part US7303798B2 (en) | 2003-09-22 | 2004-09-21 | Polymeric marker with high radiopacity for use in medical devices |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050064223A1 true US20050064223A1 (en) | 2005-03-24 |
Family
ID=34313360
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/667,710 Abandoned US20050064223A1 (en) | 2003-09-22 | 2003-09-22 | Polymeric marker with high radiopacity |
US10/945,637 Expired - Lifetime US7303798B2 (en) | 2003-09-22 | 2004-09-21 | Polymeric marker with high radiopacity for use in medical devices |
US11/877,905 Expired - Fee Related US7833597B2 (en) | 2003-09-22 | 2007-10-24 | Polymeric marker with high radiopacity for use in medical devices |
US12/945,566 Expired - Fee Related US8637132B2 (en) | 2003-09-22 | 2010-11-12 | Polymeric marker with high radiopacity for use in medical devices |
US14/023,763 Abandoned US20140100447A1 (en) | 2003-09-22 | 2013-09-11 | Polymeric marker with high radiopacity for use in medical devices |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/945,637 Expired - Lifetime US7303798B2 (en) | 2003-09-22 | 2004-09-21 | Polymeric marker with high radiopacity for use in medical devices |
US11/877,905 Expired - Fee Related US7833597B2 (en) | 2003-09-22 | 2007-10-24 | Polymeric marker with high radiopacity for use in medical devices |
US12/945,566 Expired - Fee Related US8637132B2 (en) | 2003-09-22 | 2010-11-12 | Polymeric marker with high radiopacity for use in medical devices |
US14/023,763 Abandoned US20140100447A1 (en) | 2003-09-22 | 2013-09-11 | Polymeric marker with high radiopacity for use in medical devices |
Country Status (6)
Country | Link |
---|---|
US (5) | US20050064223A1 (en) |
EP (4) | EP2263708B1 (en) |
JP (1) | JP2007505721A (en) |
ES (1) | ES2546352T3 (en) |
HK (1) | HK1091759A1 (en) |
WO (1) | WO2005030284A2 (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050065434A1 (en) * | 2003-09-22 | 2005-03-24 | Bavaro Vincent P. | Polymeric marker with high radiopacity for use in medical devices |
US20050064224A1 (en) * | 2003-09-22 | 2005-03-24 | Bavaro Vincent Peter | Polymeric marker with high radiopacity |
US20050255317A1 (en) * | 2003-09-22 | 2005-11-17 | Advanced Cardiovascular Systems, Inc. | Polymeric marker with high radiopacity for use in medical devices |
US20070021811A1 (en) * | 2005-07-19 | 2007-01-25 | Cardiac Pacemakers, Inc. | Medical device including radiopaque polymer coated coil and method therefor |
US20070208155A1 (en) * | 2006-03-02 | 2007-09-06 | Boston Scientific Scimed, Inc. | Hybrid polymer materials from reactive extrusion for medical devices |
WO2008007350A1 (en) * | 2006-07-09 | 2008-01-17 | Paieon Inc. | A tool and method for optimal positioning of a device within a tubular organ |
WO2008016696A2 (en) * | 2006-08-01 | 2008-02-07 | Abbott Cardiovascular Systems Inc. | Composite polymeric and metallic stent with radiopacity |
US20080300673A1 (en) * | 2007-04-16 | 2008-12-04 | Boston Scientific Scimed, Inc. | Radiopaque compositions, stents and methods of preparation |
US20080312559A1 (en) * | 2007-06-12 | 2008-12-18 | Santilli Albert N | Method and Apparatus for Performing Gastric Bypass Surgery |
US20090171196A1 (en) * | 2007-12-31 | 2009-07-02 | Olson Eric S | Method and apparatus for encoding interventional devices |
US20090299174A1 (en) * | 2004-01-12 | 2009-12-03 | Calypso Medical Technologies, Inc. | Instruments with location markers and methods for tracking instruments through anatomical passageways |
US20090318895A1 (en) * | 2005-03-18 | 2009-12-24 | Merit Medical Systems, Inc. | Flexible and plastic radiopaque laminate composition |
US20090326560A1 (en) * | 2008-06-27 | 2009-12-31 | Lampropoulos Fred P | Catheter with radiopaque marker |
US20100072662A1 (en) * | 2008-01-22 | 2010-03-25 | Globe Composite Solutions, Ltd. | Thermosetting polymer-based composite materials |
US20100234875A1 (en) * | 2008-10-30 | 2010-09-16 | R4 Vascular, Inc. | Rupture-resistant compliant radiopaque catheter balloon and methods for use of same in an intravascular surgical procedure |
US8487029B2 (en) * | 2008-01-22 | 2013-07-16 | Globe Composite Solutions, Ltd. | Thermosetting polymer-based composite materials |
WO2014102599A1 (en) * | 2012-12-31 | 2014-07-03 | Clearstream Technologies Limited | Radiopaque guidewire to facilitate catheter alignment |
US20170258345A1 (en) * | 2016-03-11 | 2017-09-14 | Laborie Medical Technologies, Corp. | Pressure catheter device |
CN108452390A (en) * | 2017-02-22 | 2018-08-28 | 库克医学技术有限责任公司 | The tungsten of hydrophobicity package |
US10080873B2 (en) | 2012-12-31 | 2018-09-25 | Clearstream Technologies Limited | Radiopaque balloon catheter and guidewire to facilitate alignment |
US20190000405A1 (en) * | 2017-06-30 | 2019-01-03 | Surgentec Llc | Device and method for determining proper screw or implant size during orthopedic surgery |
DE102018203102B3 (en) | 2018-03-01 | 2019-05-16 | Epflex Feinwerktechnik Gmbh | Guidewire for medical MR applications |
US10531834B1 (en) | 2018-07-26 | 2020-01-14 | Laborie Medical Technologies Corp. | Pressure catheter connector |
USD880690S1 (en) | 2018-07-26 | 2020-04-07 | Laborie Medical Technologies Corp. | Pressure catheter connector |
US10893834B2 (en) | 2018-07-26 | 2021-01-19 | Laborie Medical Technologies Corp. | Charger for pressure sensing catheter |
US10918831B2 (en) | 2016-03-11 | 2021-02-16 | Laborie Medical Technologies Corp. | Pressure catheter and connector device |
CN113518634A (en) * | 2019-03-01 | 2021-10-19 | 帝斯曼知识产权资产管理有限公司 | Radiopaque medical assemblies and devices |
US11213657B2 (en) * | 2014-02-26 | 2022-01-04 | Symedrix Gmbh | Guide wire for medical devices, method of using the guidewire, and method for forming a covering on the guidewire |
US11219383B2 (en) | 2019-01-28 | 2022-01-11 | Laborie Medical Technologies Corp. | Radiofrequency detection and identification of pressure sensing catheters |
WO2022126124A1 (en) * | 2020-12-10 | 2022-06-16 | Joseph Passman | Radiopaque marking compositions and delivery thereof |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8211087B2 (en) * | 2003-07-31 | 2012-07-03 | Cook Medical Technologies Llc | Distal wire stop |
US8313524B2 (en) | 2004-08-31 | 2012-11-20 | C. R. Bard, Inc. | Self-sealing PTFE graft with kink resistance |
EP1846077A4 (en) * | 2005-02-09 | 2009-11-25 | Angiodynamics Inc | Reinforced balloon for a catheter |
US8066758B2 (en) * | 2005-06-17 | 2011-11-29 | C. R. Bard, Inc. | Vascular graft with kink resistance after clamping |
DE102005030607A1 (en) * | 2005-06-30 | 2007-01-04 | Siemens Ag | Interventional instrument with marker element |
JP5065894B2 (en) * | 2005-07-08 | 2012-11-07 | 株式会社グツドマン | Balloon catheter |
JP4707140B2 (en) * | 2005-07-15 | 2011-06-22 | 朝日インテック株式会社 | Medical treatment tool |
JP2009512521A (en) * | 2005-10-24 | 2009-03-26 | エヌエムティー メディカル, インコーポレイティッド | Radiopaque bioabsorbable occluder |
EP1945138A4 (en) | 2005-11-09 | 2010-02-10 | Bard Inc C R | Grafts and stent grafts having a radiopaque marker |
US20070191946A1 (en) * | 2006-01-31 | 2007-08-16 | Sdgi Holdings, Inc. | Intervertebral spinal implant devices and methods of use |
US20080114435A1 (en) * | 2006-03-07 | 2008-05-15 | Med Institute, Inc. | Flexible delivery system |
WO2008063780A2 (en) | 2006-10-12 | 2008-05-29 | C.R. Bard Inc. | Vascular grafts with multiple channels and methods for making |
FR2911991A1 (en) * | 2007-01-25 | 2008-08-01 | Hutchinson Sa | ELASTOMERIC MULTILAYER MATERIAL CHARGED WITH RADIATION ATTENUATING COMPOUNDS, PROCESS FOR PREPARING THE SAME AND USES THEREOF |
US8545548B2 (en) | 2007-03-30 | 2013-10-01 | DePuy Synthes Products, LLC | Radiopaque markers for implantable stents and methods for manufacturing the same |
US20140094901A1 (en) * | 2007-03-30 | 2014-04-03 | DePuy Synthes Products, LLC | Radiopaque marker for vascular devices |
US8425591B1 (en) | 2007-06-11 | 2013-04-23 | Abbott Cardiovascular Systems Inc. | Methods of forming polymer-bioceramic composite medical devices with bioceramic particles |
DE202007008722U1 (en) * | 2007-06-19 | 2008-07-31 | Renate Beck Gmbh | Color paste with markings in X-ray and radiotherapy |
US20090054760A1 (en) * | 2007-08-24 | 2009-02-26 | Burke Harry B | Catheter for Enhanced Image Location Detection |
US7806837B2 (en) * | 2007-11-07 | 2010-10-05 | William Cook Europe Aps | Guide wire for catheter |
US9101698B2 (en) | 2007-12-05 | 2015-08-11 | Abbott Cardiovascular Systems Inc. | Bioabsorbable stent with radiopaque layer and method of fabrication |
US7935143B2 (en) * | 2008-01-02 | 2011-05-03 | Abbott Cardiovascular Systems Inc. | Stent formed from polymer-bioceramic composite with radiopaque bioceramic particles |
US8282916B2 (en) * | 2008-02-21 | 2012-10-09 | New York University | Tumor therapy with replication competent sindbis viral vectors |
GB0813659D0 (en) | 2008-07-25 | 2008-09-03 | Smith & Nephew | Fracture putty |
US8257722B2 (en) | 2008-09-15 | 2012-09-04 | Cv Ingenuity Corp. | Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens |
US8128951B2 (en) | 2008-09-15 | 2012-03-06 | Cv Ingenuity Corp. | Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens |
US8114429B2 (en) | 2008-09-15 | 2012-02-14 | Cv Ingenuity Corp. | Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens |
US9198968B2 (en) | 2008-09-15 | 2015-12-01 | The Spectranetics Corporation | Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens |
JP5724382B2 (en) * | 2008-12-26 | 2015-05-27 | 住友ベークライト株式会社 | catheter |
CN107007921B (en) | 2011-05-26 | 2020-01-21 | 雅培心血管系统有限公司 | Through tip of catheter |
WO2012162651A1 (en) | 2011-05-26 | 2012-11-29 | Abbott Cardiovascular Systems Inc. | Catheter with stepped skived hypotube |
US8808235B2 (en) | 2012-01-27 | 2014-08-19 | Abbott Cardiovascular Systems Inc. | Medical device system and method for pushability |
US20130197353A1 (en) | 2012-01-27 | 2013-08-01 | Randolf Von Oepen | Radiopaque marker for a catheter |
US8998827B2 (en) | 2012-02-13 | 2015-04-07 | Intervalve, Inc. | Ellipticity measuring device |
US9233015B2 (en) | 2012-06-15 | 2016-01-12 | Trivascular, Inc. | Endovascular delivery system with an improved radiopaque marker scheme |
US9956385B2 (en) | 2012-06-28 | 2018-05-01 | The Spectranetics Corporation | Post-processing of a medical device to control morphology and mechanical properties |
US8684963B2 (en) | 2012-07-05 | 2014-04-01 | Abbott Cardiovascular Systems Inc. | Catheter with a dual lumen monolithic shaft |
BR112015001497B1 (en) * | 2012-07-24 | 2021-03-09 | Clearstream Technologies Limited | balloon catheter with improved locability |
US9901366B2 (en) * | 2013-07-27 | 2018-02-27 | Lawrence A. Colby | Systems and methods for enhancing the visibility of medical items |
US20150137416A1 (en) * | 2013-11-14 | 2015-05-21 | The Board Of Trustees Of The University Of Illinois | Advanced Thermal Processing Techniques of "Sacrificial" Polylactic Acid |
AT514812B1 (en) * | 2013-12-19 | 2015-04-15 | Univ Wien Med | Aortic catheter and resuscitation set with such an aortic catheter |
US10525171B2 (en) | 2014-01-24 | 2020-01-07 | The Spectranetics Corporation | Coatings for medical devices |
US10736691B2 (en) | 2014-06-26 | 2020-08-11 | Cook Medical Technologies Llc | Surface energy enhancement of lubricious objects |
CN205494628U (en) | 2014-09-04 | 2016-08-24 | 雅培心血管系统有限公司 | Utricule pipe |
US10426934B2 (en) | 2014-09-04 | 2019-10-01 | Abbott Cardiovascular Systems Inc. | Balloon catheter |
US20160242943A1 (en) | 2015-02-20 | 2016-08-25 | Cook Medical Technologies Llc | Duet stent deployment system and method of performing a transjugular intrahepatic portosystemic shunting procedure using same |
EP3280359A1 (en) * | 2015-04-07 | 2018-02-14 | St. Jude Medical, Cardiology Division, Inc. | System and method for intraprocedural assessment of geometry and compliance of valve annulus for trans-catheter valve implantation |
CN106166323A (en) | 2015-05-19 | 2016-11-30 | 雅培心血管系统有限公司 | Balloon catheter |
US10426933B2 (en) | 2015-05-19 | 2019-10-01 | Abbott Cardiovascular Systems Inc. | Catheter having monolithic multilayer distal outer member |
WO2017112878A1 (en) | 2015-12-22 | 2017-06-29 | Access Vascular, Inc. | High strength biomedical materials |
DE102016108783A1 (en) * | 2016-05-12 | 2017-11-16 | Biotronik Ag | Balloon catheter with radiopaque marker |
RU2662645C2 (en) * | 2016-06-10 | 2018-07-26 | Государственное бюджетное учреждение здравоохранения города Москвы Московский клинический научно-практический центр Департамента здравоохранения города Москвы | Method for intestinal transit estimation |
KR20180079726A (en) * | 2017-01-02 | 2018-07-11 | 울산대학교 산학협력단 | Biocompatible Anatomic Spacer with Super Absorbabent Polymer and Insertion Apparatus |
JP2018175127A (en) * | 2017-04-07 | 2018-11-15 | 東海電気株式会社 | Marker for body tube introduction and body tube introduction, as well as manufacturing method of them |
EP3641842A4 (en) | 2017-06-21 | 2021-03-17 | Access Vascular, Inc. | High strength porous materials incorporating water soluble polymers |
US20210212756A1 (en) * | 2017-08-25 | 2021-07-15 | Nasser Rafiee | Tissue cutting systems and methods |
WO2021072331A1 (en) | 2019-10-09 | 2021-04-15 | Nasser Rafiee | Tissue excision, cutting, and removal systems and methods |
EP3643352B1 (en) | 2018-10-01 | 2024-05-01 | Cook Medical Technologies LLC | Expandable dilation device |
CN211884905U (en) | 2019-08-22 | 2020-11-10 | 贝克顿·迪金森公司 | Balloon dilatation catheter and balloon thereof |
CN112401971A (en) | 2019-08-23 | 2021-02-26 | 贝克顿·迪金森公司 | Kit designed for percutaneous nephrolithotomy surgery |
JP2023533506A (en) | 2020-06-30 | 2023-08-03 | アクセス・バスキュラー・インコーポレイテッド | Articles containing markings and related methods |
US11337753B2 (en) * | 2020-07-03 | 2022-05-24 | Telltale Llc | Tissue cutting systems and methods |
DE102022105492A1 (en) | 2022-03-09 | 2023-09-14 | Thüringisches Institut für Textil- und Kunststoff-Forschung Rudolstadt e.V. | Laser-applied markings for improved sonographic and radiological imaging of medical devices |
Citations (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3605750A (en) * | 1969-04-07 | 1971-09-20 | David S Sheridan | X-ray tip catheter |
US3618614A (en) * | 1969-05-06 | 1971-11-09 | Scient Tube Products Inc | Nontoxic radiopaque multiwall medical-surgical tubings |
US4571240A (en) * | 1983-08-12 | 1986-02-18 | Advanced Cardiovascular Systems, Inc. | Catheter having encapsulated tip marker |
US4581390A (en) * | 1984-06-29 | 1986-04-08 | Flynn Vincent J | Catheters comprising radiopaque polyurethane-silicone network resin compositions |
US4588399A (en) * | 1980-05-14 | 1986-05-13 | Shiley Incorporated | Cannula with radiopaque tip |
US4714721A (en) * | 1984-06-07 | 1987-12-22 | Ernst Leitz Wetzlar Gmbh | Composite plastics-based material for prosthesis purposes |
US4796367A (en) * | 1987-07-28 | 1989-01-10 | Kulat Andrew C | Adjustable, manual snowplow |
US4921483A (en) * | 1985-12-19 | 1990-05-01 | Leocor, Inc. | Angioplasty catheter |
US4935019A (en) * | 1986-12-22 | 1990-06-19 | Johnson & Johnson Medical, Inc. | Radiopaque polymeric composition |
US4938220A (en) * | 1986-08-01 | 1990-07-03 | Advanced Cardiovascular Systems, Inc. | Catheter with split tip marker and method of manufacture |
US4946466A (en) * | 1989-03-03 | 1990-08-07 | Cordis Corporation | Transluminal angioplasty apparatus |
US4990138A (en) * | 1989-07-18 | 1991-02-05 | Baxter International Inc. | Catheter apparatus, and compositions useful for producing same |
US5045071A (en) * | 1985-12-17 | 1991-09-03 | Mbo Laboratories, Inc. | Double wall catheter with internal printing and embedded marker |
US5300048A (en) * | 1993-05-12 | 1994-04-05 | Sabin Corporation | Flexible, highly radiopaque plastic material catheter |
US5409006A (en) * | 1992-12-03 | 1995-04-25 | Siemens Aktiengesellschaft | System for the treatment of pathological tissue having a catheter with a marker for avoiding damage to healthy tissue |
US5429617A (en) * | 1993-12-13 | 1995-07-04 | The Spectranetics Corporation | Radiopaque tip marker for alignment of a catheter within a body |
US5499973A (en) * | 1994-09-08 | 1996-03-19 | Saab; Mark A. | Variable stiffness balloon dilatation catheters |
US5549552A (en) * | 1995-03-02 | 1996-08-27 | Scimed Life Systems, Inc. | Balloon dilation catheter with improved pushability, trackability and crossability |
US5554121A (en) * | 1994-07-25 | 1996-09-10 | Advanced Cardiovascular Systems, Inc. | Intraluminal catheter with high strength proximal shaft |
US5667767A (en) * | 1995-07-27 | 1997-09-16 | Micro Therapeutics, Inc. | Compositions for use in embolizing blood vessels |
US5693015A (en) * | 1991-04-24 | 1997-12-02 | Advanced Cardiovascular Systems, Inc. | Exchangeable integrated-wire balloon catheter |
US5709658A (en) * | 1993-07-08 | 1998-01-20 | Advanced Cardiovascular Systems, Inc. | Rapid exchange type over-the-wire catheter |
US5743875A (en) * | 1991-05-15 | 1998-04-28 | Advanced Cardiovascular Systems, Inc. | Catheter shaft with an oblong transverse cross-section |
US5769868A (en) * | 1986-04-15 | 1998-06-23 | Yock; Paul G. | Angioplasty apparatus facilitating rapid exchanges |
US5776141A (en) * | 1995-08-28 | 1998-07-07 | Localmed, Inc. | Method and apparatus for intraluminal prosthesis delivery |
US5807355A (en) * | 1996-12-09 | 1998-09-15 | Advanced Cardiovascular Systems, Inc. | Catheter with rapid exchange and OTW operative modes |
US5827312A (en) * | 1995-06-09 | 1998-10-27 | Instratek Incorporated | Marked cannula |
US5846199A (en) * | 1996-04-18 | 1998-12-08 | Cordis Europa N.V. | Catheter with marker sleeve |
US6036682A (en) * | 1997-12-02 | 2000-03-14 | Scimed Life Systems, Inc. | Catheter having a plurality of integral radiopaque bands |
US6059738A (en) * | 1995-06-30 | 2000-05-09 | Meadox Medicals, Inc. | Guidewire having a coated tip |
US6164283A (en) * | 1997-07-08 | 2000-12-26 | The Regents Of The University Of California | Device and method for forming a circumferential conduction block in a pulmonary vein |
US6179811B1 (en) * | 1997-11-25 | 2001-01-30 | Medtronic, Inc. | Imbedded marker and flexible guide wire shaft |
US20010012968A1 (en) * | 1997-10-14 | 2001-08-09 | Howard Preissman | Enhanced visibility materials for implantation in hard tissue |
US20010021873A1 (en) * | 1997-08-01 | 2001-09-13 | Stinson Jonathan S. | Bioabsorbable marker having radiopaque constituents and method of using same |
US20010049549A1 (en) * | 2000-06-02 | 2001-12-06 | Boylan John F. | Marker device for rotationally orienting a stent delivery system prior to deploying a curved self-expanding stent |
US6340367B1 (en) * | 1997-08-01 | 2002-01-22 | Boston Scientific Scimed, Inc. | Radiopaque markers and methods of using the same |
US6355058B1 (en) * | 1999-12-30 | 2002-03-12 | Advanced Cardiovascular Systems, Inc. | Stent with radiopaque coating consisting of particles in a binder |
US6428512B1 (en) * | 2000-10-10 | 2002-08-06 | Advanced Cardiovascular Systems, Inc. | Guidewire with improved lesion measurement |
US6436056B1 (en) * | 1996-02-28 | 2002-08-20 | Boston Scientific Corporation | Polymeric implements for torque transmission |
US6540721B1 (en) * | 1999-12-29 | 2003-04-01 | Advanced Cardiovascular Systems, Inc. | Balloon catheter with flexible radiopaque polymeric marker |
US20030088195A1 (en) * | 2001-11-02 | 2003-05-08 | Vardi Gil M | Guidewire having measurement indicia |
US20030164063A1 (en) * | 2001-10-16 | 2003-09-04 | Elliott Kenneth H. | Tungsten/powdered metal/polymer high density non-toxic composites |
US6761708B1 (en) * | 2000-10-31 | 2004-07-13 | Advanced Cardiovascular Systems, Inc. | Radiopaque marker for a catheter and method of making |
US20040220549A1 (en) * | 2003-04-14 | 2004-11-04 | Dittman Jay A. | Large diameter delivery catheter/sheath |
US6994723B1 (en) * | 2003-05-21 | 2006-02-07 | Advanced Cardiovascular Systems, Inc. | Medical device made from self-stiffening composite |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4591390A (en) * | 1981-03-25 | 1986-05-27 | Shell Internationale Research Maatschappij B. V. | Cable cleaning system |
DE3661200D1 (en) | 1985-04-29 | 1988-12-22 | Dow Chemical Co | Radiopaque thermoset polymer |
US4891399A (en) * | 1986-10-28 | 1990-01-02 | Calp Corporation | Thermoplastic resin-based molding composition |
US4796637A (en) * | 1987-06-17 | 1989-01-10 | Victory Engineering Company | Radiopaque marker for stereotaxic catheter |
US5289831A (en) * | 1989-03-09 | 1994-03-01 | Vance Products Incorporated | Surface-treated stent, catheter, cannula, and the like |
EP0614527A4 (en) | 1991-11-19 | 1998-06-03 | Evan C Unger | Gel particle contrast media for improved diagnostic imaging. |
US5368048A (en) * | 1993-04-19 | 1994-11-29 | Stoy; George P. | Method of making radio-opaque tipped, sleeved guidewire and product |
ES2141071T1 (en) | 1998-02-25 | 2000-03-16 | Medtronic Ave Inc | ASSEMBLY OF GRAFT AND INSERT AND METHOD OF MANUFACTURE. |
EP0987042A3 (en) | 1998-09-15 | 2000-11-02 | Medtronic, Inc. | Design and method to fabricate PTCA balloon radiopaque marker band |
US6862470B2 (en) * | 1999-02-02 | 2005-03-01 | Senorx, Inc. | Cavity-filling biopsy site markers |
DE60032912T2 (en) * | 1999-09-03 | 2007-10-25 | Advanced Cardiovascular Systems, Inc., Santa Clara | POROUS PROSTHESIS AND METHOD FOR THE DEPOSITION OF SUBSTANCES IN THE PORES |
KR20030004357A (en) * | 2000-03-21 | 2003-01-14 | 쿡 인코포레이티드 | Introducer sheath |
US6641776B1 (en) | 2000-11-15 | 2003-11-04 | Scimed Life Systems, Inc. | Method for preparing radiopaque surgical implement |
ITVI20010126A1 (en) * | 2001-05-30 | 2002-11-30 | Tecres Spa | RADIOPACO BONE CEMENT FOR ORTHOPEDIC USE AND METHOD OF REALIZATION |
US7517353B2 (en) * | 2001-09-28 | 2009-04-14 | Boston Scientific Scimed, Inc. | Medical devices comprising nanomaterials and therapeutic methods utilizing the same |
US20030225448A1 (en) * | 2002-05-28 | 2003-12-04 | Scimed Life Systems, Inc. | Polar radiopaque marker for stent |
US20050064223A1 (en) * | 2003-09-22 | 2005-03-24 | Bavaro Vincent Peter | Polymeric marker with high radiopacity |
-
2003
- 2003-09-22 US US10/667,710 patent/US20050064223A1/en not_active Abandoned
-
2004
- 2004-09-21 EP EP10011021A patent/EP2263708B1/en not_active Expired - Lifetime
- 2004-09-21 US US10/945,637 patent/US7303798B2/en not_active Expired - Lifetime
- 2004-09-21 WO PCT/US2004/030526 patent/WO2005030284A2/en active Application Filing
- 2004-09-21 EP EP04788822.7A patent/EP1663335B1/en not_active Expired - Lifetime
- 2004-09-21 EP EP17154438.0A patent/EP3231456A1/en not_active Withdrawn
- 2004-09-21 EP EP15171716.2A patent/EP2944333B1/en not_active Expired - Lifetime
- 2004-09-21 JP JP2006528077A patent/JP2007505721A/en not_active Withdrawn
- 2004-09-21 ES ES04788822.7T patent/ES2546352T3/en not_active Expired - Lifetime
-
2006
- 2006-12-07 HK HK06113524.2A patent/HK1091759A1/en not_active IP Right Cessation
-
2007
- 2007-10-24 US US11/877,905 patent/US7833597B2/en not_active Expired - Fee Related
-
2010
- 2010-11-12 US US12/945,566 patent/US8637132B2/en not_active Expired - Fee Related
-
2013
- 2013-09-11 US US14/023,763 patent/US20140100447A1/en not_active Abandoned
Patent Citations (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3605750A (en) * | 1969-04-07 | 1971-09-20 | David S Sheridan | X-ray tip catheter |
US3618614A (en) * | 1969-05-06 | 1971-11-09 | Scient Tube Products Inc | Nontoxic radiopaque multiwall medical-surgical tubings |
US4588399A (en) * | 1980-05-14 | 1986-05-13 | Shiley Incorporated | Cannula with radiopaque tip |
US4571240A (en) * | 1983-08-12 | 1986-02-18 | Advanced Cardiovascular Systems, Inc. | Catheter having encapsulated tip marker |
US4714721A (en) * | 1984-06-07 | 1987-12-22 | Ernst Leitz Wetzlar Gmbh | Composite plastics-based material for prosthesis purposes |
US4581390A (en) * | 1984-06-29 | 1986-04-08 | Flynn Vincent J | Catheters comprising radiopaque polyurethane-silicone network resin compositions |
US5045071A (en) * | 1985-12-17 | 1991-09-03 | Mbo Laboratories, Inc. | Double wall catheter with internal printing and embedded marker |
US4921483A (en) * | 1985-12-19 | 1990-05-01 | Leocor, Inc. | Angioplasty catheter |
US5769868A (en) * | 1986-04-15 | 1998-06-23 | Yock; Paul G. | Angioplasty apparatus facilitating rapid exchanges |
US4938220A (en) * | 1986-08-01 | 1990-07-03 | Advanced Cardiovascular Systems, Inc. | Catheter with split tip marker and method of manufacture |
US4935019A (en) * | 1986-12-22 | 1990-06-19 | Johnson & Johnson Medical, Inc. | Radiopaque polymeric composition |
US4796367A (en) * | 1987-07-28 | 1989-01-10 | Kulat Andrew C | Adjustable, manual snowplow |
US4946466A (en) * | 1989-03-03 | 1990-08-07 | Cordis Corporation | Transluminal angioplasty apparatus |
US4990138A (en) * | 1989-07-18 | 1991-02-05 | Baxter International Inc. | Catheter apparatus, and compositions useful for producing same |
US5693015A (en) * | 1991-04-24 | 1997-12-02 | Advanced Cardiovascular Systems, Inc. | Exchangeable integrated-wire balloon catheter |
US5743875A (en) * | 1991-05-15 | 1998-04-28 | Advanced Cardiovascular Systems, Inc. | Catheter shaft with an oblong transverse cross-section |
US5409006A (en) * | 1992-12-03 | 1995-04-25 | Siemens Aktiengesellschaft | System for the treatment of pathological tissue having a catheter with a marker for avoiding damage to healthy tissue |
US5300048A (en) * | 1993-05-12 | 1994-04-05 | Sabin Corporation | Flexible, highly radiopaque plastic material catheter |
US5709658A (en) * | 1993-07-08 | 1998-01-20 | Advanced Cardiovascular Systems, Inc. | Rapid exchange type over-the-wire catheter |
US5429617A (en) * | 1993-12-13 | 1995-07-04 | The Spectranetics Corporation | Radiopaque tip marker for alignment of a catheter within a body |
US5554121B1 (en) * | 1994-07-25 | 1998-07-14 | Advanced Cardiovascular System | Intraluminal catheter with high strength proximal shaft |
US5554121A (en) * | 1994-07-25 | 1996-09-10 | Advanced Cardiovascular Systems, Inc. | Intraluminal catheter with high strength proximal shaft |
US5499973A (en) * | 1994-09-08 | 1996-03-19 | Saab; Mark A. | Variable stiffness balloon dilatation catheters |
US5549552A (en) * | 1995-03-02 | 1996-08-27 | Scimed Life Systems, Inc. | Balloon dilation catheter with improved pushability, trackability and crossability |
US5827312A (en) * | 1995-06-09 | 1998-10-27 | Instratek Incorporated | Marked cannula |
US6059738A (en) * | 1995-06-30 | 2000-05-09 | Meadox Medicals, Inc. | Guidewire having a coated tip |
US5667767A (en) * | 1995-07-27 | 1997-09-16 | Micro Therapeutics, Inc. | Compositions for use in embolizing blood vessels |
US5776141A (en) * | 1995-08-28 | 1998-07-07 | Localmed, Inc. | Method and apparatus for intraluminal prosthesis delivery |
US6436056B1 (en) * | 1996-02-28 | 2002-08-20 | Boston Scientific Corporation | Polymeric implements for torque transmission |
US5846199A (en) * | 1996-04-18 | 1998-12-08 | Cordis Europa N.V. | Catheter with marker sleeve |
US5807355A (en) * | 1996-12-09 | 1998-09-15 | Advanced Cardiovascular Systems, Inc. | Catheter with rapid exchange and OTW operative modes |
US6164283A (en) * | 1997-07-08 | 2000-12-26 | The Regents Of The University Of California | Device and method for forming a circumferential conduction block in a pulmonary vein |
US6340367B1 (en) * | 1997-08-01 | 2002-01-22 | Boston Scientific Scimed, Inc. | Radiopaque markers and methods of using the same |
US20010021873A1 (en) * | 1997-08-01 | 2001-09-13 | Stinson Jonathan S. | Bioabsorbable marker having radiopaque constituents and method of using same |
US20010012968A1 (en) * | 1997-10-14 | 2001-08-09 | Howard Preissman | Enhanced visibility materials for implantation in hard tissue |
US6179811B1 (en) * | 1997-11-25 | 2001-01-30 | Medtronic, Inc. | Imbedded marker and flexible guide wire shaft |
US6036682A (en) * | 1997-12-02 | 2000-03-14 | Scimed Life Systems, Inc. | Catheter having a plurality of integral radiopaque bands |
US6540721B1 (en) * | 1999-12-29 | 2003-04-01 | Advanced Cardiovascular Systems, Inc. | Balloon catheter with flexible radiopaque polymeric marker |
US6355058B1 (en) * | 1999-12-30 | 2002-03-12 | Advanced Cardiovascular Systems, Inc. | Stent with radiopaque coating consisting of particles in a binder |
US20010049549A1 (en) * | 2000-06-02 | 2001-12-06 | Boylan John F. | Marker device for rotationally orienting a stent delivery system prior to deploying a curved self-expanding stent |
US6428512B1 (en) * | 2000-10-10 | 2002-08-06 | Advanced Cardiovascular Systems, Inc. | Guidewire with improved lesion measurement |
US6761708B1 (en) * | 2000-10-31 | 2004-07-13 | Advanced Cardiovascular Systems, Inc. | Radiopaque marker for a catheter and method of making |
US20030164063A1 (en) * | 2001-10-16 | 2003-09-04 | Elliott Kenneth H. | Tungsten/powdered metal/polymer high density non-toxic composites |
US20030088195A1 (en) * | 2001-11-02 | 2003-05-08 | Vardi Gil M | Guidewire having measurement indicia |
US20040220549A1 (en) * | 2003-04-14 | 2004-11-04 | Dittman Jay A. | Large diameter delivery catheter/sheath |
US6994723B1 (en) * | 2003-05-21 | 2006-02-07 | Advanced Cardiovascular Systems, Inc. | Medical device made from self-stiffening composite |
Cited By (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080065010A1 (en) * | 2003-09-22 | 2008-03-13 | Advanced Cardiovascular Systems, Inc. | Polymeric marker with high radiopacity for use in medical devices |
US20050064224A1 (en) * | 2003-09-22 | 2005-03-24 | Bavaro Vincent Peter | Polymeric marker with high radiopacity |
US20050255317A1 (en) * | 2003-09-22 | 2005-11-17 | Advanced Cardiovascular Systems, Inc. | Polymeric marker with high radiopacity for use in medical devices |
US20050065434A1 (en) * | 2003-09-22 | 2005-03-24 | Bavaro Vincent P. | Polymeric marker with high radiopacity for use in medical devices |
US8637132B2 (en) | 2003-09-22 | 2014-01-28 | Advanced Cardiovascular Systems, Inc. | Polymeric marker with high radiopacity for use in medical devices |
US7833597B2 (en) | 2003-09-22 | 2010-11-16 | Advanced Cardiovascular Systems, Inc. | Polymeric marker with high radiopacity for use in medical devices |
US9623208B2 (en) * | 2004-01-12 | 2017-04-18 | Varian Medical Systems, Inc. | Instruments with location markers and methods for tracking instruments through anatomical passageways |
US20090299174A1 (en) * | 2004-01-12 | 2009-12-03 | Calypso Medical Technologies, Inc. | Instruments with location markers and methods for tracking instruments through anatomical passageways |
US8394448B2 (en) * | 2005-03-18 | 2013-03-12 | Merit Medical Systems, Inc. | Flexible and plastic radiopaque laminate composition |
US20090318895A1 (en) * | 2005-03-18 | 2009-12-24 | Merit Medical Systems, Inc. | Flexible and plastic radiopaque laminate composition |
JP2008541987A (en) * | 2005-06-07 | 2008-11-27 | アボット、カーディオバスキュラー、システムズ、インコーポレーテッド | Polymer marker with high radiopacity for use in medical devices |
WO2006132850A3 (en) * | 2005-06-07 | 2007-11-22 | Advanced Cardiovascular System | Polymeric marker with high radiopacity for use in medical devices |
WO2006132850A2 (en) | 2005-06-07 | 2006-12-14 | Abbott Cardiovascular Systems, Inc. | Polymeric marker with high radiopacity for use in medical devices |
US20070021811A1 (en) * | 2005-07-19 | 2007-01-25 | Cardiac Pacemakers, Inc. | Medical device including radiopaque polymer coated coil and method therefor |
US7465777B2 (en) | 2006-03-02 | 2008-12-16 | Boston Scientific Scimed, Inc. | Hybrid polymer materials from reactive extrusion for medical devices |
WO2007103142A3 (en) * | 2006-03-02 | 2007-10-25 | Boston Scient Scimed Inc | Polymer materials for medical devices |
US20070208155A1 (en) * | 2006-03-02 | 2007-09-06 | Boston Scientific Scimed, Inc. | Hybrid polymer materials from reactive extrusion for medical devices |
WO2007103142A2 (en) | 2006-03-02 | 2007-09-13 | Boston Scientific Limited | Polymer materials for medical devices |
WO2008007350A1 (en) * | 2006-07-09 | 2008-01-17 | Paieon Inc. | A tool and method for optimal positioning of a device within a tubular organ |
JP2009545380A (en) * | 2006-08-01 | 2009-12-24 | アボット カーディオヴァスキュラー システムズ インコーポレイテッド | Stent made of a composite of polymer and metal with radiopacity |
US20080058919A1 (en) * | 2006-08-01 | 2008-03-06 | Kramer-Brown Pamela A | Composite polymeric and metallic stent with radiopacity |
US9265866B2 (en) * | 2006-08-01 | 2016-02-23 | Abbott Cardiovascular Systems Inc. | Composite polymeric and metallic stent with radiopacity |
WO2008016696A3 (en) * | 2006-08-01 | 2008-03-20 | Abbott Cardiovascular Systems | Composite polymeric and metallic stent with radiopacity |
WO2008016696A2 (en) * | 2006-08-01 | 2008-02-07 | Abbott Cardiovascular Systems Inc. | Composite polymeric and metallic stent with radiopacity |
US20080300673A1 (en) * | 2007-04-16 | 2008-12-04 | Boston Scientific Scimed, Inc. | Radiopaque compositions, stents and methods of preparation |
US8852265B2 (en) | 2007-04-16 | 2014-10-07 | Boston Scientific Scimed, Inc. | Radiopaque compositions, stents and methods of preparation |
US9801742B2 (en) | 2007-04-16 | 2017-10-31 | Boston Scientific Scimed, Inc. | Radiopaque compositions, stents and methods of preparation |
US8409270B2 (en) | 2007-04-16 | 2013-04-02 | Boston Scientific Scimed, Inc. | Radiopaque compositions, stents and methods of preparation |
US20080312559A1 (en) * | 2007-06-12 | 2008-12-18 | Santilli Albert N | Method and Apparatus for Performing Gastric Bypass Surgery |
US20090171196A1 (en) * | 2007-12-31 | 2009-07-02 | Olson Eric S | Method and apparatus for encoding interventional devices |
US9592100B2 (en) * | 2007-12-31 | 2017-03-14 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for encoding catheters with markers for identifying with imaging systems |
US8765856B2 (en) | 2008-01-22 | 2014-07-01 | Globe Composite Solutions, Ltd. | Thermosetting polymer-based composite materials |
US8940827B2 (en) | 2008-01-22 | 2015-01-27 | Globe Composite Solutions, Ltd. | Thermosetting polymer-based composite materials |
US8487029B2 (en) * | 2008-01-22 | 2013-07-16 | Globe Composite Solutions, Ltd. | Thermosetting polymer-based composite materials |
US20100072662A1 (en) * | 2008-01-22 | 2010-03-25 | Globe Composite Solutions, Ltd. | Thermosetting polymer-based composite materials |
US20090326560A1 (en) * | 2008-06-27 | 2009-12-31 | Lampropoulos Fred P | Catheter with radiopaque marker |
US9962523B2 (en) * | 2008-06-27 | 2018-05-08 | Merit Medical Systems, Inc. | Catheter with radiopaque marker |
US20100234875A1 (en) * | 2008-10-30 | 2010-09-16 | R4 Vascular, Inc. | Rupture-resistant compliant radiopaque catheter balloon and methods for use of same in an intravascular surgical procedure |
US11298509B2 (en) * | 2012-12-31 | 2022-04-12 | Clearstream Technologies Limited | Radiopaque guidewire to facilitate catheter alignment |
EP3744383A1 (en) * | 2012-12-31 | 2020-12-02 | Clearstream Technologies Limited | Radiopaque guidewire to facilitate catheter alignment |
US20150335867A1 (en) * | 2012-12-31 | 2015-11-26 | Richard K. Elton | Radiopaque guidewire to facilitate catheter alignment |
WO2014102599A1 (en) * | 2012-12-31 | 2014-07-03 | Clearstream Technologies Limited | Radiopaque guidewire to facilitate catheter alignment |
US10080873B2 (en) | 2012-12-31 | 2018-09-25 | Clearstream Technologies Limited | Radiopaque balloon catheter and guidewire to facilitate alignment |
RU2669472C2 (en) * | 2012-12-31 | 2018-10-11 | Клиарстрим Текнолоджис Лимитед | Radiopaque conductor for catheter positioning |
US11213657B2 (en) * | 2014-02-26 | 2022-01-04 | Symedrix Gmbh | Guide wire for medical devices, method of using the guidewire, and method for forming a covering on the guidewire |
US10918831B2 (en) | 2016-03-11 | 2021-02-16 | Laborie Medical Technologies Corp. | Pressure catheter and connector device |
US11350838B2 (en) * | 2016-03-11 | 2022-06-07 | Laborie Medical Technologies Corp. | Pressure catheter device |
US20170258345A1 (en) * | 2016-03-11 | 2017-09-14 | Laborie Medical Technologies, Corp. | Pressure catheter device |
CN108452390A (en) * | 2017-02-22 | 2018-08-28 | 库克医学技术有限责任公司 | The tungsten of hydrophobicity package |
US11534532B2 (en) | 2017-02-22 | 2022-12-27 | Cook Medical Technologies Llc | Hydrophobically encased tungsten |
EP3366322A1 (en) * | 2017-02-22 | 2018-08-29 | Cook Medical Technologies LLC | Medical device with radiopaque metal particles dispersed in polymer |
US10842448B2 (en) * | 2017-06-30 | 2020-11-24 | Surgentec Llc | Device and method for determining proper screw or implant size during orthopedic surgery |
US20190000405A1 (en) * | 2017-06-30 | 2019-01-03 | Surgentec Llc | Device and method for determining proper screw or implant size during orthopedic surgery |
WO2019166439A1 (en) | 2018-03-01 | 2019-09-06 | Epflex Feinwerktechnik Gmbh | Guide wire for medical magnetic resonance applications |
DE102018203102B3 (en) | 2018-03-01 | 2019-05-16 | Epflex Feinwerktechnik Gmbh | Guidewire for medical MR applications |
USD880690S1 (en) | 2018-07-26 | 2020-04-07 | Laborie Medical Technologies Corp. | Pressure catheter connector |
US10893834B2 (en) | 2018-07-26 | 2021-01-19 | Laborie Medical Technologies Corp. | Charger for pressure sensing catheter |
US10531834B1 (en) | 2018-07-26 | 2020-01-14 | Laborie Medical Technologies Corp. | Pressure catheter connector |
US11219383B2 (en) | 2019-01-28 | 2022-01-11 | Laborie Medical Technologies Corp. | Radiofrequency detection and identification of pressure sensing catheters |
CN113518634A (en) * | 2019-03-01 | 2021-10-19 | 帝斯曼知识产权资产管理有限公司 | Radiopaque medical assemblies and devices |
WO2022126124A1 (en) * | 2020-12-10 | 2022-06-16 | Joseph Passman | Radiopaque marking compositions and delivery thereof |
Also Published As
Publication number | Publication date |
---|---|
EP2263708B1 (en) | 2012-07-11 |
US8637132B2 (en) | 2014-01-28 |
JP2007505721A (en) | 2007-03-15 |
US7303798B2 (en) | 2007-12-04 |
EP1663335B1 (en) | 2015-07-29 |
WO2005030284A3 (en) | 2005-07-07 |
US7833597B2 (en) | 2010-11-16 |
US20110070355A1 (en) | 2011-03-24 |
ES2546352T3 (en) | 2015-09-22 |
EP3231456A1 (en) | 2017-10-18 |
US20140100447A1 (en) | 2014-04-10 |
WO2005030284A2 (en) | 2005-04-07 |
EP2944333B1 (en) | 2017-03-08 |
US20050064224A1 (en) | 2005-03-24 |
EP2944333A1 (en) | 2015-11-18 |
HK1091759A1 (en) | 2007-01-26 |
EP2263708A1 (en) | 2010-12-22 |
EP1663335A2 (en) | 2006-06-07 |
US20080065010A1 (en) | 2008-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7303798B2 (en) | Polymeric marker with high radiopacity for use in medical devices | |
EP1896093B1 (en) | Polymeric marker with high radiopacity for use in medical devices | |
EP1699493B1 (en) | Polymeric marker with high radiopacity for use in medical devices | |
US6077880A (en) | Highly radiopaque polyolefins and method for making the same | |
US20070100279A1 (en) | Radiopaque-balloon microcatheter and methods of manufacture | |
US20070021811A1 (en) | Medical device including radiopaque polymer coated coil and method therefor | |
US20050124976A1 (en) | Medical devices | |
US20040059292A1 (en) | Catheter and medical tube | |
JP2003527227A (en) | Introduction sheath | |
JPH10504207A (en) | Intraluminal catheter with high strength proximal shaft | |
EP0607369A1 (en) | Intraluminal catheter with a composite shaft | |
CN109069281B (en) | Stent delivery system with reduced profile | |
EP1706165A1 (en) | Medical devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADVANCED CARDIOVASCULAR SYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAVARO, VINCENT PETER;SIMPSON, JOHN ARTHUR;D'AQUANNI, PETER;AND OTHERS;REEL/FRAME:015240/0389;SIGNING DATES FROM 20040305 TO 20040316 |
|
AS | Assignment |
Owner name: ADVANCED CARDIOVASCULAR SYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAVARO, VINCENT PETER;SIMPSON, JOHN ARTHUR;D'AQUANNI, PETER;AND OTHERS;REEL/FRAME:017042/0661;SIGNING DATES FROM 20040305 TO 20040316 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |