US20040262227A1 - Polyazole-based polymer films - Google Patents
Polyazole-based polymer films Download PDFInfo
- Publication number
- US20040262227A1 US20040262227A1 US10/481,170 US48117004A US2004262227A1 US 20040262227 A1 US20040262227 A1 US 20040262227A1 US 48117004 A US48117004 A US 48117004A US 2004262227 A1 US2004262227 A1 US 2004262227A1
- Authority
- US
- United States
- Prior art keywords
- polymer
- polyazole
- membrane
- film
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 CCC1*C(C)=N1.CCC1=N[Ar]2(*C(C)=N2)*1 Chemical compound CCC1*C(C)=N1.CCC1=N[Ar]2(*C(C)=N2)*1 0.000 description 4
- SMUUTZGDEYBHFV-UHFFFAOYSA-N [H]N1C2=CC(C3=CC4=C(C=C3)N([H])C(C)=N4)=CC=C2N=C1C1=CC=CC(C)=C1 Chemical compound [H]N1C2=CC(C3=CC4=C(C=C3)N([H])C(C)=N4)=CC=C2N=C1C1=CC=CC(C)=C1 SMUUTZGDEYBHFV-UHFFFAOYSA-N 0.000 description 3
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2256—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
Definitions
- the present invention relates to polymer films and a polymer membrane having an improved mechanical property profile produced therefrom, to a process for producing them and to their use.
- the acid-doped polymer membrane described below can be used in a wide variety of applications and is suitable, in particular, as polymer electrolyte membrane (PEM) in PEM fuel cells.
- PEM polymer electrolyte membrane
- Acid-doped polyazole membranes for use in PEM fuel cells are known.
- the basic polyazole membranes are doped with concentrated phosphoric acid or sulfuric acid and act as proton conductors and separators in polymer electrolyte membrane fuel cells (PEM fuel cells).
- PEM fuel cells polymer electrolyte membrane fuel cells
- Electrodes coated with catalyst are applied to both sides of the acid-doped polyazole membranes to form a membrane-electrode unit (MEE).
- MEE membrane-electrode unit
- a plurality of such membrane electrode units are then connected in series together with bipolar plates and form the fuel cell stack.
- the cell voltage and power of the stack depends on the number of membrane-electrode units. Furthermore, failure of a single one of these membrane-electrode units results in a break in the circuit and thus failure of the entire fuel cell. For this reason, extraordinarily high quality demands are made on the mechanical stability of all components.
- the thin, usually ⁇ 100 ⁇ m thick polymer membrane in particular is frequently regarded as the weakest link in this chain.
- the membrane performs two essential tasks. Firstly, it has to have a high proton conductivity in order to be able to conduct the protons formed in the oxidation of a hydrogen-rich fuel at the anode to the cathode.
- the membrane functions as a separator and should have a very low permeability to the fuels present.
- the polymer membrane should not fail in operation, even at high temperatures.
- the mechanical stability of the thin (usually ⁇ 0.2 mm) polymer film is reduced by the doping with acid to generate a high proton conductivity. To be able to withstand the stressing of the cells at operating temperatures of >100° C. over the long term, extremely resistant polymers have to be used.
- polymer electrolyte membranes based on polyazoles, converted into membrane-electrode units (MEE), can be used in fuel cells at long-term operating temperatures above 100° C., in particular above 120° C.
- This high long-term operating temperature allows the activity of the catalysts based on noble metals which are present in the membrane-electrode unit (MEE) to be increased.
- significant amounts of carbon monoxide are present in the reformer gas and these usually have to be removed by means of a costly gas work-up or gas purification.
- the ability to increase the operating temperature enables significantly higher concentrations of CO impurities to be tolerated over the long term.
- polymer electrolyte membranes based on polyazole polymers allows, firstly, the costly gas work-up or gas purification to be partly omitted and, secondly, the amount of catalyst in the membrane-electrode unit to be reduced. They are indispensable prerequisites for wide use of PEM fuel cells, since otherwise the costs of a PEM fuel cells system are too high.
- the polyazole-based polymer membranes known hitherto display mechanical properties after doping with acid which are still unsatisfactory for the above application. This mechanical instability is shown by a low modulus of elasticity, a low ultimate tensile strength and a low fracture toughness.
- the present invention accordingly provides a polymer film based on polyazoles which is obtainable by a process comprising steps
- step B) drying the film formed in step B) until it is self-supporting, wherein a polyazole polymer powder having a particle size in the range from 300 ⁇ m to 1500 ⁇ m is used in step A).
- the polyazole polymer powder having a particle size in the range from 300 ⁇ m to 1500 ⁇ m which is used according to the invention is obtained by sieving a commercially available polyazole polymer.
- Polyazole polymers for example those based on polybenzimidazoles, are commercially available products and are sold under the name Celazole®.
- the small particles obtained by sieving give a low fracture toughness. This is surprising because small particles have a high ratio of surface area, SA, to volume, V.
- SA surface area
- V volume
- the degree of polymerization should increase with an increasing SA/V ratio.
- polyazole polymer powders having a particle size in the range from 300 ⁇ m to 1250 ⁇ m, in particular from 300 ⁇ m to 1000 ⁇ m, particularly preferably from 500 ⁇ m to 1000 ⁇ m, are used.
- EP-A-0816415 describes a process for dissolving polymers based on polyazoles using N,N-dimethylacetamide as polar, aprotic solvent at temperatures above 260° C.
- a substantially milder process for preparing solutions based on polyazoles is disclosed in the German patent application 10052237.8.
- polymers based on polyazoles preference is given to using polymers comprising recurring azole units of the formula (I) and/or (II)
- Ar are identical or different and are each a tetravalent aromatic or heteroaromatic group which can be monocyclic or polycyclic,
- Ar 1 are identical or different and are each a divalent aromatic or heteroaromatic group which can be monocyclic or polycyclic,
- Ar 2 are identical or different and are each a trivalent aromatic or heteroaromatic group which can be monocyclic or polycyclic,
- X are identical or different and are each oxygen, sulfur or an amino group bearing a hydrogen atom, a group having 1-20 carbon atoms, preferably a branched or unbranched alkyl or alkoxy group, or an aryl group as further radical.
- Preferred aromatic or heteroaromatics groups are derived from benzene, naphthalene, biphenyl, diphenyl ether, diphenylmethane, diphenyldimethylrnethane, bisphenone, diphenyl sulfone, quinoline, pyridine, bipyridine, anthracene and phenanthrene, each of which may also be substituted.
- Ar 1 can have any substitution pattern; in the case of phenylene, for example, Ar 1 can be ortho-, meta- or para-phenylene. Particularly preferred groups are derived from benzene and biphenylene, each of which may also be substituted.
- Preferred alkyl groups are short-chain alkyl groups having from 1 to 4 carbon atoms, e.g. methyl, ethyl, n-propyl or isopropyl and t-butyl groups.
- Preferred aromatic groups are phenyl or naphthyl groups.
- the alkyl groups and the aromatic groups may be substituted.
- Preferred substituents are halogen atoms such as fluorine, amino groups or short-chain alkyl groups such as methyl or ethyl.
- the polyazoles used according to the invention can in principle also have differing recurring units which, for example, differ in their radical X. However, there are preferably only identical radicals X in a recurring unit.
- the polymer comprising recurring azole units is a copolymer comprising at least two units of the formula (I) and/or (II) which differ from one another.
- the polymer comprising recurring azole units is a polyazole containing only units of the formula (I) and/or (II).
- the number of recurring azole units in the polymer is preferably greater than or equal to 10.
- Particularly preferred polymers have at least 100 recurring azole units.
- n is an integer greater than or equal to 10, preferably greater than or equal to 100.
- step B The casting of a polymer film (step B) from a polymer solution prepared according to step A) is carried out by methods known per se from the prior art.
- the drying of the film in step C) is carried out at temperatures ranging from room temperature to 300° C. Drying is carried out under atmospheric pressure or reduced pressure. The drying time depends on the thickness of the film and is in the range from 10 seconds to 24 hours.
- the film dried as per step C) is subsequently self-supporting and can be processed further. Drying is carried out by drying methods customary in the film industry.
- step C As a result of the drying carried out in step C), the polar, aprotic organic solvent is very largely removed.
- the residual content of polar, aprotic organic solvent is usually 10-23%.
- a further reduction in the residual solvent content to below 2% by weight can be achieved by increasing the drying temperature and drying time, but this significantly prolongs the subsequent doping of the film, for example with phosphoric acid.
- a residual solvent content of 5-15% is thus advantageous to reduce the doping time.
- drying can also be combined with a washing step.
- a particularly mild process for after-treatment and removal of the residual solvent is disclosed in the German patent application 10109829.4.
- the polymer films of the invention display a surprisingly high mechanical stability, as shown by a high modulus of elasticity combined with a high tensile strength, a high elongation at break and a high fracture toughness.
- the polymer films of the invention display, at a modulus of elasticity of at least 2870 MPa, a fracture toughness of greater than 2300 kJ/m 2 , preferably greater than 2320 kJ/m 2 , and an elongation at break of at least 44%.
- the present invention further provides dense or porous polyazole-based separation membranes obtainable by a process comprising the steps
- step A) dipping this film into a precipitation bath wherein a polyazole polymer powder having a particle size in the range from 300 ⁇ m to 1500 ⁇ m is used in step A).
- polyazole polymer powders having a particle size in the range from 300 ⁇ m to 1250 ⁇ m, in particular from 300 ⁇ m to 1000 ⁇ m, particularly preferably from 500 ⁇ m to 1000 ⁇ m.
- separation membranes based on polyazoles may be found in the specialist literature, in particular the patents WO 98/14505; U.S. Pat. Nos. 4,693,815; 4,693,824; 375,262; 3,737,042; 4,512,894; 448,687; 3,841,492.
- the disclosure of the abovementioned references in respect of the structure and production of separation membranes is hereby incorporated by reference as part of the present disclosure.
- such separation membranes can be produced in the form of flat films or as hollow fiber membranes.
- the polymer film formed can be dried after step B) before it is introduced into the precipitation bath (step C). Drying allows better handling of the polymer film. In addition, the morphology of the membrane can be adjusted by drying. To enable the polymer film to be handled more readily, the film can be formed on a support in step B). The polymer film formed, which is generally not yet self-supporting, is subsequently introduced into the precipitation bath. In this way it is possible to produce, for example, asymmetric structures.
- the separation membranes of the invention have improved mechanical properties as a result of a higher molecular weight which lead to increased long-term stability and a longer life and also an improved separation performance.
- Such separation membranes can be produced as dense polymer films, porous hollow fiber membranes or as porous, open-celled polymer films, if desired with a compact surplus layer, by dipping into the precipitation bath.
- the precipitation bath comprises one or more nonsolvents for the polyazole and, if desired, one or more solvents.
- nonsolvents for polyazoles are water, acetone, glycols, alcohols, preferably methanol or benzyl alcohol, and also other liquids which are not soluble in water.
- Nonlimiting examples of solvents for polyazoles are DMAc, NMP, DMF, DMSO and strong acids such as sulfuric acid, methanesulfonic acid or trifluoroacetic acid.
- the polymer solution from step A) can likewise comprise a nonsolvent or pore formers such as glycerol.
- a nonsolvent or pore formers such as glycerol.
- solvent exchange occurs and leads to formation of known porous structures.
- Different morphologies of the separation membranes can thus be produced by choice of the composition of the precipitant.
- the following structures are preferred: i) symmetric, porous structure, ii) asymmetric porous structure with a polymer seal close to a membrane surface. Scanning electron micrographs of such particularly suitable structures of a polybenzimidazole membrane are disclosed in Journal of Membrane Science, Volume 20, 1984, pages 147-66.
- Such phase inversion membranes and structures are known to those skilled in the art.
- Membranes having a symmetric porous structure are employed as separation or filtration membranes for filtration of air and gases or the microfiltration or ultrafiltration of liquids.
- Membranes having an asymmetric porous structure can be used in a variety of reverse osmosis applications, in particular desalination of water, dialysis or purification of gases.
- a particularly advantageous application is the separation of hydrogen and carbon dioxide from gas mixtures in combination with a porous metallic support.
- Alternative technologies for separating off CO 2 require, owing to the low thermal stability of the polymer membrane, cooling of the gas to 150° C., which reduces the efficiency.
- the polyazole-based separation membranes of the invention can be operated continuously at a temperature up to 400° C. and thus lead to an increase in the yield and a reduction in the costs.
- the polymer films of the invention can be made proton-conducting by appropriate doping.
- the present invention further provides a doped polymer membrane based on polyazoles which is obtainable by a process comprising the steps
- step D) doping the polymer film obtained in step C) with a dopant, wherein a polyazole polymer powder having a particle size in the range from 300 ⁇ m to 1500 ⁇ m is used in step A).
- polyazole polymer powders having a particle size in the range from 300 ⁇ m to 1250 ⁇ m, in particular from 300 ⁇ m to 1000 ⁇ m, particularly preferably from 500 ⁇ m to 1000 ⁇ m, are used.
- step D) the doping of the polymer film obtained in step C) is carried out.
- the film is wetted with a dopant or is placed in the latter.
- Dopants used for the polymer membranes of the invention are acids, preferably all known Lewis and Bronsted acids, in particular inorganic Lewis and Bronsted acids.
- acids preferably all known Lewis and Bronsted acids, in particular inorganic Lewis and Bronsted acids.
- polyacids in particular isopolyacids and heteropolyacids, and mixtures of various acids.
- heteropolyacids are inorganic polyacids which have at least two different central atoms and are formed as partial mixed anhydrides from weak, polybasic oxo acids of a metal (preferably Cr, Mo, V, W) and a nonmetal (preferably As, I, P, Se, Si, Te). They include, inter alia, 12-molybdophosphoric acid and 12-tungstophosphoric acid.
- the polymer film used for the doping step D) can also be a separation membrane comprising the polyazole according to the invention. Owing to the increased porosity, this leads, as described in WO 98/14505, to a reduction in the doping time, increased acid loading and a further improved conductivity.
- particularly preferred dopants are sulfuric acid and phosphoric acid.
- a very particularly preferred dopant is phosphoric acid (H 3 PO 4 ).
- the polymer membranes of the invention are doped.
- doped polymer membranes are polymer membranes which as a result of the presence of dopants display increased proton conductivity compared to the undoped polymer membranes.
- Methods of producing doped polymer membranes are known. In a preferred embodiment of the present invention, they are obtained by wetting a film of the polymer concerned with concentrated acid, preferably highly concentrated phosphoric acid, for an appropriate time, preferably 5 minutes-96 hours, particularly preferably 1-72 hours, at temperatures in the range from room temperature to 100° C. and atmospheric or superatmospheric pressure.
- concentrated acid preferably highly concentrated phosphoric acid
- the conductivity of the polymer membrane of the invention can be influenced via the degree of doping.
- the conductivity increases with increasing concentration of dopant until a maximum value has been reached.
- the degree of doping is reported as mol of acid per mol of repeating units of the polymer.
- the polymer membrane of the invention has improved materials properties compared to the previously known doped polymer membranes based on commercially available polyazoles. In particular, they have very good mechanical properties.
- the acid-doped polymer membranes display a significantly improved elongation at break of at least 40%, preferably from 40 to 65%.
- the doped polymer membranes of the invention include, inter alia, use in fuel cells, in electrolysis, in capacitors and in battery systems. Owing to their property profile, the doped polymer membranes are preferably used in fuel cells.
- the present invention also provides a membrane-electrode unit comprising at least one polymer membrane according to the invention.
- a membrane-electrode unit comprising at least one polymer membrane according to the invention.
- Further information on membrane-electrode units may be found in the specialist literature, in particular the patents U.S. Pat. Nos. 4,191,618, 4,212,714 and 4,333,805.
- the disclosure of the abovementioned references [U.S. Pat. Nos. 4,191,618, 4,212,714 and 4,333,805] in respect of the structure and production of membrane-electrode units is hereby incorporated by reference into the present description.
- a commercial polymer (Celazole, PBI polymer) in the form of a powder is separated into various fractions by means of a stack of sieves.
- the results of the sieve analysis are shown in table 1.
- the sieve fractions obtained in this way are dried individually.
- a solution is prepared therefrom by mixing with dimethylacetamide using a method described in the prior art. It is found that particles having a size of >1500 ⁇ m cannot be brought completely into solution. For this reason, particles having a size of >1500 ⁇ m should not be used for the preparation of solutions.
- Each solution prepared using a separate sieve fraction is then used to produce a film by conventional industrial casting processes or by a manual doctor blade technique.
- the films produced in this way are doped by dipping into 85% H 3 PO 4 at room temperature for 72 hours.
- Results TABLE 1 Results of the sieve analysis of a commercial PBI polymer Sieve fraction Proportion (percent by weight) ⁇ 200 ⁇ m 6 200-300 ⁇ m 15 300-500 ⁇ m 43 500-750 ⁇ m 15 750-1000 ⁇ m 11 1000-1500 ⁇ m 7 >1500 ⁇ m 3
- test specimens of type 1 B in accordance with ISO 527-3 are stamped from the films and examined by means of a uniaxial tensile test using a Zwick universal testing machine model S100.
- the deformation rate is 5 mm/min and the test temperature is set to 160° C. so as to correspond to temperatures typical for use in fuel cells.
- At least 5 tensile tests are carried out on each sample composition and the statistical mean is determined. Examples of tensile test curves of film produced from individual sieve fractions are shown in FIG. 1. The data obtained in this way are summarized in table 2.
- the specific conductivity is measured by means of impedance spectroscopy in a 4-pole arrangement in the potentiostatic mode using platinum electrodes (wire, 0.25 mm diameter). The distance between the current collector electrodes is 2 cm.
- the spectrum obtained is evaluated using a simple model consisting of a parallel arrangement of an ohmic resistance and a capacitor.
- the specimen cross section of the membrane doped with phosphoric acid is measured immediately before mounting of the specimen. To measure the temperature dependence, the measurement cell is brought to the desired temperature in an oven and the temperature is regulated via a Pt-100 resistance thermometer positioned in the immediate vicinity of the specimen.
- the specimen is maintained at this temperature for 10 minutes prior to commencement of the measurement.
Landscapes
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Conductive Materials (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Fuel Cell (AREA)
- Thermal Insulation (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Laminated Bodies (AREA)
Abstract
The present invention relates to polymer films and a polymer membrane having an improved mechanical property profile produced therefrom, to a process for producing them and to their use.
The polymer films, polymer membranes and separation membranes of the invention are produced from selected polymer raw materials and have excellent chemical, thermal and mechanical properties as are required for use as polymer electrolyte membranes (PEMs) in PEM fuel cells or in apparatuses for the filtration and/or separation of gases and/or liquids or for reverse osmosis.
Description
- The present invention relates to polymer films and a polymer membrane having an improved mechanical property profile produced therefrom, to a process for producing them and to their use.
- Owing to its excellent chemical, thermal and mechanical properties, the acid-doped polymer membrane described below can be used in a wide variety of applications and is suitable, in particular, as polymer electrolyte membrane (PEM) in PEM fuel cells.
- Acid-doped polyazole membranes for use in PEM fuel cells are known. The basic polyazole membranes are doped with concentrated phosphoric acid or sulfuric acid and act as proton conductors and separators in polymer electrolyte membrane fuel cells (PEM fuel cells).
- For this application, electrodes coated with catalyst are applied to both sides of the acid-doped polyazole membranes to form a membrane-electrode unit (MEE). A plurality of such membrane electrode units are then connected in series together with bipolar plates and form the fuel cell stack.
- As a result of the series construction, the cell voltage and power of the stack depends on the number of membrane-electrode units. Furthermore, failure of a single one of these membrane-electrode units results in a break in the circuit and thus failure of the entire fuel cell. For this reason, extraordinarily high quality demands are made on the mechanical stability of all components. The thin, usually <100 μm thick polymer membrane in particular is frequently regarded as the weakest link in this chain. The membrane performs two essential tasks. Firstly, it has to have a high proton conductivity in order to be able to conduct the protons formed in the oxidation of a hydrogen-rich fuel at the anode to the cathode. There, reduction with oxygen, preferably from air, then takes place with formation of water. Secondly, the membrane functions as a separator and should have a very low permeability to the fuels present. In particular, when hydrogen and oxygen are used, mixing of the two gases has to be prevented. For this reason, the polymer membrane should not fail in operation, even at high temperatures. The mechanical stability of the thin (usually <0.2 mm) polymer film is reduced by the doping with acid to generate a high proton conductivity. To be able to withstand the stressing of the cells at operating temperatures of >100° C. over the long term, extremely resistant polymers have to be used.
- Due to the excellent properties of the polyazole polymer, polymer electrolyte membranes based on polyazoles, converted into membrane-electrode units (MEE), can be used in fuel cells at long-term operating temperatures above 100° C., in particular above 120° C. This high long-term operating temperature allows the activity of the catalysts based on noble metals which are present in the membrane-electrode unit (MEE) to be increased. Particularly when using reformer products produced from hydrocarbons, significant amounts of carbon monoxide are present in the reformer gas and these usually have to be removed by means of a costly gas work-up or gas purification. The ability to increase the operating temperature enables significantly higher concentrations of CO impurities to be tolerated over the long term.
- The use of polymer electrolyte membranes based on polyazole polymers allows, firstly, the costly gas work-up or gas purification to be partly omitted and, secondly, the amount of catalyst in the membrane-electrode unit to be reduced. They are indispensable prerequisites for wide use of PEM fuel cells, since otherwise the costs of a PEM fuel cells system are too high.
- The acid-doped polyazole-based polymer membranes known hitherto display a favorable property profile. However, owing to the applications sought for PEM fuel cells, especially in the automobile and stationary sector, these need to be improved overall.
- Thus, the polyazole-based polymer membranes known hitherto display mechanical properties after doping with acid which are still unsatisfactory for the above application. This mechanical instability is shown by a low modulus of elasticity, a low ultimate tensile strength and a low fracture toughness.
- It is an object of the present invention to provide acid-doped polymer membranes based on polyazoles which have, firstly, improved mechanical properties and, secondly, retain the advantages of polymer membranes based on polyazoles and allow an operating temperature above 100° C. without additional humidification of the fuel gas.
- We have now found that polyazole-based polymer films which display a significantly improved mechanical stability after doping with an acid can be obtained when selected polyazole raw materials are used for producing the polymer film.
- The present invention accordingly provides a polymer film based on polyazoles which is obtainable by a process comprising steps
- A) dissolving the polyazole polymer in a polar, aprotic organic solvent,
- B) casting a polymer film using the solution obtained from step A),
- C) drying the film formed in step B) until it is self-supporting, wherein a polyazole polymer powder having a particle size in the range from 300 μm to 1500 μm is used in step A).
- The polyazole polymer powder having a particle size in the range from 300 μm to 1500 μm which is used according to the invention is obtained by sieving a commercially available polyazole polymer. Polyazole polymers, for example those based on polybenzimidazoles, are commercially available products and are sold under the name Celazole®.
- The commercially available polyazole (Celazole, PBI polymer) is separated into different particle size fractions by sieving. Sieving avoids a complex fractionation as described, for example, in Mat. Res. Soc. Symp. Proc. 548 (1999), pages 313-323.
- It has surprisingly been found that the small particles obtained by sieving give a low fracture toughness. This is surprising because small particles have a high ratio of surface area, SA, to volume, V. However, in a process for the polycondensation of polyazoles as employed, for example, for PBI, the degree of polymerization should increase with an increasing SA/V ratio. Targeted selection of the fractions obtained on sieving enables the mechanical properties to be improved significantly.
- In a preferred embodiment of the invention, polyazole polymer powders having a particle size in the range from 300 μm to 1250 μm, in particular from 300 μm to 1000 μm, particularly preferably from 500 μm to 1000 μm, are used.
- The preparation of polymer solutions based on polyazoles as in step A) has been comprehensively described in the prior art. Thus, EP-A-0816415 describes a process for dissolving polymers based on polyazoles using N,N-dimethylacetamide as polar, aprotic solvent at temperatures above 260° C. A substantially milder process for preparing solutions based on polyazoles is disclosed in the German patent application 10052237.8.
-
- where
- Ar are identical or different and are each a tetravalent aromatic or heteroaromatic group which can be monocyclic or polycyclic,
- Ar1 are identical or different and are each a divalent aromatic or heteroaromatic group which can be monocyclic or polycyclic,
- Ar2 are identical or different and are each a trivalent aromatic or heteroaromatic group which can be monocyclic or polycyclic,
- X are identical or different and are each oxygen, sulfur or an amino group bearing a hydrogen atom, a group having 1-20 carbon atoms, preferably a branched or unbranched alkyl or alkoxy group, or an aryl group as further radical.
- Preferred aromatic or heteroaromatics groups are derived from benzene, naphthalene, biphenyl, diphenyl ether, diphenylmethane, diphenyldimethylrnethane, bisphenone, diphenyl sulfone, quinoline, pyridine, bipyridine, anthracene and phenanthrene, each of which may also be substituted.
- Ar1 can have any substitution pattern; in the case of phenylene, for example, Ar1 can be ortho-, meta- or para-phenylene. Particularly preferred groups are derived from benzene and biphenylene, each of which may also be substituted.
- Preferred alkyl groups are short-chain alkyl groups having from 1 to 4 carbon atoms, e.g. methyl, ethyl, n-propyl or isopropyl and t-butyl groups.
- Preferred aromatic groups are phenyl or naphthyl groups. The alkyl groups and the aromatic groups may be substituted.
- Preferred substituents are halogen atoms such as fluorine, amino groups or short-chain alkyl groups such as methyl or ethyl.
- If polyazoles having recurring units of the formula (I) are used for the purposes of the present invention, the radicals X within a recurring unit should be identical.
- The polyazoles used according to the invention can in principle also have differing recurring units which, for example, differ in their radical X. However, there are preferably only identical radicals X in a recurring unit.
- In a preferred embodiment of the present invention, the polymer comprising recurring azole units is a copolymer comprising at least two units of the formula (I) and/or (II) which differ from one another.
- In a particularly preferred embodiment of the present invention, the polymer comprising recurring azole units is a polyazole containing only units of the formula (I) and/or (II).
- The number of recurring azole units in the polymer is preferably greater than or equal to 10. Particularly preferred polymers have at least 100 recurring azole units.
-
- where n is an integer greater than or equal to 10, preferably greater than or equal to 100.
- The casting of a polymer film (step B) from a polymer solution prepared according to step A) is carried out by methods known per se from the prior art.
- The drying of the film in step C) is carried out at temperatures ranging from room temperature to 300° C. Drying is carried out under atmospheric pressure or reduced pressure. The drying time depends on the thickness of the film and is in the range from 10 seconds to 24 hours. The film dried as per step C) is subsequently self-supporting and can be processed further. Drying is carried out by drying methods customary in the film industry.
- As a result of the drying carried out in step C), the polar, aprotic organic solvent is very largely removed. The residual content of polar, aprotic organic solvent is usually 10-23%.
- A further reduction in the residual solvent content to below 2% by weight can be achieved by increasing the drying temperature and drying time, but this significantly prolongs the subsequent doping of the film, for example with phosphoric acid. A residual solvent content of 5-15% is thus advantageous to reduce the doping time.
- In one variant, drying can also be combined with a washing step. A particularly mild process for after-treatment and removal of the residual solvent is disclosed in the German patent application 10109829.4.
- The polymer films of the invention display a surprisingly high mechanical stability, as shown by a high modulus of elasticity combined with a high tensile strength, a high elongation at break and a high fracture toughness.
- The polymer films of the invention display, at a modulus of elasticity of at least 2870 MPa, a fracture toughness of greater than 2300 kJ/m2, preferably greater than 2320 kJ/m2, and an elongation at break of at least 44%.
- The present invention further provides dense or porous polyazole-based separation membranes obtainable by a process comprising the steps
- A) dissolving the polyazole polymer in a polar, aprotic organic solvent,
- B) casting a polymer film using the solution obtained from step A),
- C) dipping this film into a precipitation bath wherein a polyazole polymer powder having a particle size in the range from 300 μm to 1500 μm is used in step A).
- In these separation membranes too, preference is given to using polyazole polymer powders having a particle size in the range from 300 μm to 1250 μm, in particular from 300 μm to 1000 μm, particularly preferably from 500 μm to 1000 μm.
- The preferred polymer structures of the formulae (I) and (II) are also preferred for these separation membranes.
- Further information on separation membranes based on polyazoles may be found in the specialist literature, in particular the patents WO 98/14505; U.S. Pat. Nos. 4,693,815; 4,693,824; 375,262; 3,737,042; 4,512,894; 448,687; 3,841,492. The disclosure of the abovementioned references in respect of the structure and production of separation membranes is hereby incorporated by reference as part of the present disclosure. In particular, such separation membranes can be produced in the form of flat films or as hollow fiber membranes.
- Depending on the desired specification of the separation membrane, the polymer film formed can be dried after step B) before it is introduced into the precipitation bath (step C). Drying allows better handling of the polymer film. In addition, the morphology of the membrane can be adjusted by drying. To enable the polymer film to be handled more readily, the film can be formed on a support in step B). The polymer film formed, which is generally not yet self-supporting, is subsequently introduced into the precipitation bath. In this way it is possible to produce, for example, asymmetric structures.
- Apart from the known advantages of separation membranes based on polyazoles, for example high thermal stability and resistance to chemicals, the separation membranes of the invention have improved mechanical properties as a result of a higher molecular weight which lead to increased long-term stability and a longer life and also an improved separation performance.
- Such separation membranes can be produced as dense polymer films, porous hollow fiber membranes or as porous, open-celled polymer films, if desired with a compact surplus layer, by dipping into the precipitation bath. The precipitation bath comprises one or more nonsolvents for the polyazole and, if desired, one or more solvents. Nonlimiting examples of nonsolvents for polyazoles are water, acetone, glycols, alcohols, preferably methanol or benzyl alcohol, and also other liquids which are not soluble in water. Nonlimiting examples of solvents for polyazoles are DMAc, NMP, DMF, DMSO and strong acids such as sulfuric acid, methanesulfonic acid or trifluoroacetic acid.
- To produce a porous membrane, the polymer solution from step A) can likewise comprise a nonsolvent or pore formers such as glycerol. In the precipitation in step C), solvent exchange occurs and leads to formation of known porous structures. Different morphologies of the separation membranes can thus be produced by choice of the composition of the precipitant. For separation applications, the following structures are preferred: i) symmetric, porous structure, ii) asymmetric porous structure with a polymer seal close to a membrane surface. Scanning electron micrographs of such particularly suitable structures of a polybenzimidazole membrane are disclosed in Journal of Membrane Science,
Volume 20, 1984, pages 147-66. - Such phase inversion membranes and structures are known to those skilled in the art. Membranes having a symmetric porous structure are employed as separation or filtration membranes for filtration of air and gases or the microfiltration or ultrafiltration of liquids. Membranes having an asymmetric porous structure can be used in a variety of reverse osmosis applications, in particular desalination of water, dialysis or purification of gases.
- A particularly advantageous application is the separation of hydrogen and carbon dioxide from gas mixtures in combination with a porous metallic support. Alternative technologies for separating off CO2 require, owing to the low thermal stability of the polymer membrane, cooling of the gas to 150° C., which reduces the efficiency. The polyazole-based separation membranes of the invention can be operated continuously at a temperature up to 400° C. and thus lead to an increase in the yield and a reduction in the costs.
- The polymer films of the invention can be made proton-conducting by appropriate doping.
- Accordingly, the present invention further provides a doped polymer membrane based on polyazoles which is obtainable by a process comprising the steps
- A) dissolving the polyazole polymer in a polar, aprotic organic solvent,
- B) casting a polymer film using the solution obtained from step A),
- C) drying the film formed in step B) until it is self-supporting,
- D) doping the polymer film obtained in step C) with a dopant, wherein a polyazole polymer powder having a particle size in the range from 300 μm to 1500 μm is used in step A).
- In a preferred embodiment of the invention, polyazole polymer powders having a particle size in the range from 300 μm to 1250 μm, in particular from 300 μm to 1000 μm, particularly preferably from 500 μm to 1000 μm, are used.
- The preferred polymer structures of the formulae (I) and (II) are also preferred for this doped polymer membrane.
- In step D), the doping of the polymer film obtained in step C) is carried out. For this purpose, the film is wetted with a dopant or is placed in the latter. Dopants used for the polymer membranes of the invention are acids, preferably all known Lewis and Bronsted acids, in particular inorganic Lewis and Bronsted acids. Apart from the acids just mentioned, it is also possible to use polyacids, in particular isopolyacids and heteropolyacids, and mixtures of various acids. For the purposes of the present invention, heteropolyacids are inorganic polyacids which have at least two different central atoms and are formed as partial mixed anhydrides from weak, polybasic oxo acids of a metal (preferably Cr, Mo, V, W) and a nonmetal (preferably As, I, P, Se, Si, Te). They include, inter alia, 12-molybdophosphoric acid and 12-tungstophosphoric acid.
- The polymer film used for the doping step D) can also be a separation membrane comprising the polyazole according to the invention. Owing to the increased porosity, this leads, as described in WO 98/14505, to a reduction in the doping time, increased acid loading and a further improved conductivity.
- According to the invention, particularly preferred dopants are sulfuric acid and phosphoric acid. A very particularly preferred dopant is phosphoric acid (H3PO4).
- The polymer membranes of the invention are doped. For the purposes of the present invention, doped polymer membranes are polymer membranes which as a result of the presence of dopants display increased proton conductivity compared to the undoped polymer membranes.
- Methods of producing doped polymer membranes are known. In a preferred embodiment of the present invention, they are obtained by wetting a film of the polymer concerned with concentrated acid, preferably highly concentrated phosphoric acid, for an appropriate time, preferably 5 minutes-96 hours, particularly preferably 1-72 hours, at temperatures in the range from room temperature to 100° C. and atmospheric or superatmospheric pressure.
- The conductivity of the polymer membrane of the invention can be influenced via the degree of doping. The conductivity increases with increasing concentration of dopant until a maximum value has been reached. According to the invention, the degree of doping is reported as mol of acid per mol of repeating units of the polymer. For the purposes of the present invention, a degree of doping of from 3 to 15, in particular from 6 to 12, is preferred.
- The polymer membrane of the invention has improved materials properties compared to the previously known doped polymer membranes based on commercially available polyazoles. In particular, they have very good mechanical properties.
- Particularly when using polyazole polymer powders having a particle size in the range from 500 μm to 1000 μm, the acid-doped polymer membranes display a significantly improved elongation at break of at least 40%, preferably from 40 to 65%.
- Possible applications for the doped polymer membranes of the invention include, inter alia, use in fuel cells, in electrolysis, in capacitors and in battery systems. Owing to their property profile, the doped polymer membranes are preferably used in fuel cells.
- The present invention also provides a membrane-electrode unit comprising at least one polymer membrane according to the invention. Further information on membrane-electrode units may be found in the specialist literature, in particular the patents U.S. Pat. Nos. 4,191,618, 4,212,714 and 4,333,805. The disclosure of the abovementioned references [U.S. Pat. Nos. 4,191,618, 4,212,714 and 4,333,805] in respect of the structure and production of membrane-electrode units is hereby incorporated by reference into the present description.
- The invention is illustrated below by means of examples and comparative examples, without the invention being restricted to these examples.
- A commercial polymer (Celazole, PBI polymer) in the form of a powder is separated into various fractions by means of a stack of sieves. The results of the sieve analysis are shown in table 1. The sieve fractions obtained in this way are dried individually. As soon as the water content of a sieve fraction is <0.1%, a solution is prepared therefrom by mixing with dimethylacetamide using a method described in the prior art. It is found that particles having a size of >1500 μm cannot be brought completely into solution. For this reason, particles having a size of >1500 μm should not be used for the preparation of solutions.
- Each solution prepared using a separate sieve fraction is then used to produce a film by conventional industrial casting processes or by a manual doctor blade technique. The films produced in this way are doped by dipping into 85% H3PO4 at room temperature for 72 hours.
- Results:
TABLE 1 Results of the sieve analysis of a commercial PBI polymer Sieve fraction Proportion (percent by weight) <200 μm 6 200-300 μm 15 300-500 μm 43 500-750 μm 15 750-1000 μm 11 1000-1500 μm 7 >1500 μm 3 - Mechanical properties of commercial PBI films
- To determine the mechanical properties, test specimens of type1B in accordance with ISO 527-3 are stamped from the films and examined by means of a uniaxial tensile test using a Zwick universal testing machine model S100. The deformation rate is 5 mm/min and the test temperature is set to 160° C. so as to correspond to temperatures typical for use in fuel cells. At least 5 tensile tests are carried out on each sample composition and the statistical mean is determined. Examples of tensile test curves of film produced from individual sieve fractions are shown in FIG. 1. The data obtained in this way are summarized in table 2.
- It is found that the fracture toughness depends strongly on the sieve fraction. In particular, high fracture toughness are achieved for films which have been produced using sieve fractions in the range 300-1000 μm.
TABLE 2 Results of the tensile tests on films produced from various sieve fractions Polymer fraction Unsieved polymer <200 μm 300-500 μm 500-750 μm 750-1000 μm 1000-1500 μm Number of 6 5 5 5 5 6 measurements Modulus of 2850 2910 2870 2875 2661 2780 elasticity [MPa] Tensile 147 139 141 148 149 123 strength [MPa] Elongation at 42 20 44 49 61 30 break [%] Fracture 2268 892 2320 2528 2910 1281 toughness [kJ/m2] - Mechanical properties of acid-doped membranes
- After doping with acid, strip specimens having a width of 15 mm and a length of 120 mm are produced and tested in a tensile test at T=100° C. at an elongation rate of 50 mm/min. Examples of tensile test curves as shown in FIG. 3 and the results of the analysis are summarized in table 3.
- The specimens obtained using the sieve fractions <200 μm and 200-300 μm are very unstable mechanically and rupture at very low stresses. Only unsatisfactory mechanical properties were able to be achieved using these fine fractions. As observed in the case of the films, the membranes, too, display the best mechanical properties in the case of materials produced from powders in the range 300-1000 μm. Surprisingly, it is likewise found that the use of particles >1000 μm leads to a worsening of the mechanical properties.
TABLE 3 Results of the tensile tests on acid-doped PBI membranes produced from various sieve fractions Polymer fraction Unsieved polymer <200 μm1 200-300 μm1 300-500 μm 500-750 μm 750-1000 μm 1000-1500 μm Number of 5 3 5 5 5 5 5 measurements Modulus of 8.2 5 5.1 3 5.2 4.2 5.3 elasticity [MPa] Tensile 1.2 <0.5 0.2 0.9 1.2 1.6 0.5 strength [MPa] Elongation at 26 <5 5 40 48 65 11 break [%] Fracture 21.6 <1 0.6 19.4 20.5 56 3.1 toughness [kJ/m2] - The specific conductivity is measured by means of impedance spectroscopy in a 4-pole arrangement in the potentiostatic mode using platinum electrodes (wire, 0.25 mm diameter). The distance between the current collector electrodes is 2 cm. The spectrum obtained is evaluated using a simple model consisting of a parallel arrangement of an ohmic resistance and a capacitor. The specimen cross section of the membrane doped with phosphoric acid is measured immediately before mounting of the specimen. To measure the temperature dependence, the measurement cell is brought to the desired temperature in an oven and the temperature is regulated via a Pt-100 resistance thermometer positioned in the immediate vicinity of the specimen.
- After the temperature has been reached, the specimen is maintained at this temperature for 10 minutes prior to commencement of the measurement.
- It is surprisingly found that, particularly in the temperature range >100° C., membranes produced using the sieve fractions have higher conductivities than a membrane produced using the unsieved polymer.
TABLE 3 Specific conductivity (S/cm) of PBI membranes which have been produced from various sieve fractions and doped with phosphoric acid Unsieved T (° C.) polymer <200 μm 200-300 μm 300-500 μm 500-750 μm 750-1000 μm 1000-1500 μm 25 0.053 0.073 0.051 0.049 0.050 0.048 0.037 40 0.066 0.069 0.062 0.064 0.050 0.054 60 0.040 0.052 0.059 0.060 0.061 0.042 0.051 80 0.043 0.058 0.062 0.056 0.057 0.051 0.053 100 0.062 0.077 0.084 0.069 0.070 0.071 0.068 120 0.077 0.089 0.103 0.091 0.089 0.091 0.088 140 0.075 0.090 0.109 0.097 0.091 0.092 0.091 160 0.073 0.089 0.105 0.099 0.085 0.090 0.090 - The fines (<300 μm) and the coarse material (>1250 μm) are separated off from a commercial PBI polymer (Celazole) by sieving. This polymer is then dried and a solution is prepared. A film is produced from the solution using conventional methods. The film is subsequently doped in 85% phosphoric acid for 72 hours so as to produce a membrane.
- As shown by the comparison in FIG. 3, it is found that the mechanical properties of such a membrane are virtually identical to those of the best membrane from example 1. A maximum conductivity of 0.09 S/cm is likewise measured at a temperature of 120° C.
Claims (22)
1. A polymer film based on polyazoles which is obtainable by a process comprising steps
A) dissolving the polyazole polymer in polar, aprotic organic solvent,
B) casting a polymer film using the solution obtained from Step A),
C) drying the film formed in step B) until it is self-supporting, wherein a polyazole polymer powder having a particle size in the range from 300 μm to 1500 μ is used in step A).
2. A polymer film as claimed in claim 1 , wherein a polyazole polymer powder having a particle size in the range from 300 μm to 1250 μm, in particular from 300 μm to 1000 μm, particularly preferably from 500 μm to 1000 μm, is used.
3. A polymer film as claimed in claim 1 , wherein the polyazole-based polymer used is a polymer comprising recurring azole units of the formula (I) and/or (II)
where
Ar are identical or different and are each a tetravalent aromatic or heteroaromatic group which can be monocyclic or polycyclic,
Ar1 are identical or different and are each a divalent aromatic or heteroaromatic group which can be monocyclic or polycyclic,
Ar2 are identical or different and are each a trivalent aromatic or heteroaromatic group which can be monocyclic or polycyclic,
X are identical or different and are each oxygen, sulfur or an amino group bearing a hydrogen atom, a group having 1-20 carbon atoms, preferably a branched or unbranched alkyl or alkoxy group, or an aryl group as further radical.
5. A polymer film as claimed in claim 1 , wherein drying of the film in step C) is carried out at temperatures in the range from room temperature to 300° C.
6. A polymer film as claimed in claim 1 , wherein drying of the film in step C) is carried out for a period of from 10 seconds to 24 hours.
7. A doped polymer membrane based on polyazoles which is obtainable by a process comprising the steps
A) dissolving the polyazole polymer in a polar, aprotic organic solvent,
B) casting a polymer film using the solution obtained from step A),
C) drying the film formed in step B) until it is self-supporting,
D) doping the polymer film obtained in step C) with a dopant, wherein a polyazole polymer powder having a particle size in the range from 300 μm to 1500 μm is used in step A).
8. A polymer membrane as claimed in claim 7 , wherein a polyazole polymer powder having a particle size in the range from 300 μm to 1250 μm, in particular from 300 μm to 1000 μm, particularly preferably from 500 μm to 1000 μm, is used.
9. A polymer membrane as claimed in claim 7 , wherein the polyazole-based polymer used is a polymer comprising recurring azole units of the formula (I) and/or (II)
where
Ar are identical or different and are each a tetravalent aromatic or heteroaromatic group which can be monocyclic or polycyclic,
Ar1 are identical or different and are each a divalent aromatic or heteroaromatic group which can be monocyclic or polycyclic,
Ar2 are identical or different and are each a trivalent aromatic or heteroaromatic group which can be monocyclic or polycyclic,
X are identical or different and are each oxygen, sulfur or an amino group bearing a hydrogen atom, a group having 1-20 carbon atoms, preferably a branched or unbranched alkyl or alkoxy group, or an aryl group as further radical.
11. A polymer membrane as claimed in claim 7 , wherein drying of the film in step C) is carried out at temperatures in the range from room temperature to 300° C.
12. A polymer membrane as claimed in claim 7 , wherein drying of the film in step C) is carried out for a period of from 10 seconds to 24 hours.
13. A polymer membrane as claimed in claim 7 , wherein doping is carried out for a period of from 5 minutes to 96 hours.
14. A polymer membrane as claimed in claim 7 , wherein the degree of doping is from 3 to 15 mol of acid per mol of repeating units of the polymer.
15. A polymer membrane as claimed in claim 7 , wherein the dopant used is sulfuric acid or phosphoric acid.
16. A membrane-electrode unit comprising at least one polymer membrane as claimed in claim 7 and at least one electrode.
17. A polymer electrolyte fuel cell comprising at least one membrane-electrode unit as claimed in claim 16 .
18. A polyazole-based separation membrane obtainable by a process comprising the steps
A) dissolving the polyazole polymer in a polar, aprotic organic solvent,
B) casting a polymer film using the solution obtained from step A),
C) dipping this film into a precipitation bath wherein a polyazole polymer powder having a particle size in the range from 300 μm to 1500 μm is used in step A).
19. A separation membrane as claimed in claim 18 , wherein a polyazole polymer powder having a particle size in the range from 300 μm to 1250 μm, in particular from 300 μm to 1000 μm, particularly preferably from 500 μm to 1000 μm, is used.
20. The use of a separation membrane as claimed in claim 19 for the filtration and/or separation of gases and/or liquids or in reverse osmosis.
21. An apparatus for the filtration and/or separation of gases and/or liquids comprising at least one separation membrane as claimed in claim 18 .
22. An apparatus for carrying out reverse osmosis comprising at least one separation membrane as claimed in claim 18.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/512,803 US7485227B2 (en) | 2001-06-19 | 2006-08-30 | Polyazole-based polymer films |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10129458A DE10129458A1 (en) | 2001-06-19 | 2001-06-19 | Improved polymer films based on polyazoles |
DE10129458.1 | 2001-06-19 | ||
PCT/EP2002/006773 WO2002102881A1 (en) | 2001-06-19 | 2002-06-19 | Polyazole-based polymer films |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/512,803 Continuation US7485227B2 (en) | 2001-06-19 | 2006-08-30 | Polyazole-based polymer films |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040262227A1 true US20040262227A1 (en) | 2004-12-30 |
Family
ID=7688642
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/481,170 Abandoned US20040262227A1 (en) | 2001-06-19 | 2002-06-19 | Polyazole-based polymer films |
US11/512,803 Expired - Fee Related US7485227B2 (en) | 2001-06-19 | 2006-08-30 | Polyazole-based polymer films |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/512,803 Expired - Fee Related US7485227B2 (en) | 2001-06-19 | 2006-08-30 | Polyazole-based polymer films |
Country Status (10)
Country | Link |
---|---|
US (2) | US20040262227A1 (en) |
EP (1) | EP1404745B1 (en) |
JP (1) | JP4392553B2 (en) |
CN (1) | CN1239581C (en) |
AT (1) | ATE283888T1 (en) |
CA (1) | CA2449239C (en) |
DE (2) | DE10129458A1 (en) |
ES (1) | ES2233839T3 (en) |
MX (1) | MXPA03011703A (en) |
WO (1) | WO2002102881A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050244694A1 (en) * | 2002-08-02 | 2005-11-03 | Pemeas Gmbh | Proton-conducting polymer membrane comprising polymers containing phosphonic acid groups and its use in fuel cells |
US20060035095A1 (en) * | 2002-09-13 | 2006-02-16 | Pemeas Gmbh | Proton-conducting membrane and use thereof verwendung |
US20060078774A1 (en) * | 2002-10-04 | 2006-04-13 | Pemeas Gmbh | Proton-conducting polymer membrane containing polyazole blends and application thereof in fuel cells |
US20060079392A1 (en) * | 2002-10-04 | 2006-04-13 | Pemeas Gmbh | Proton-conducting polymer membrane that contains polyazoles and is coated with a catalyst layer, and application thereof in fuel cells |
US20060199062A1 (en) * | 2004-09-09 | 2006-09-07 | Asahi Kasei Chemicals Corporation | Solid polymer electrolyte membrane and production method of the same |
US20080050514A1 (en) * | 2001-04-09 | 2008-02-28 | Gordon Calundann | Proton-Conducting Membrane and the Use Thereof |
US20080187807A1 (en) * | 2005-05-03 | 2008-08-07 | Basf Fuel Cell Gmbh | Fuel Cells With Reduced Weight and Volume |
US20090098430A1 (en) * | 2005-10-31 | 2009-04-16 | Oemer Uensal | Membrane-electrode assemblies and long-life fuel cells |
US20090169955A1 (en) * | 2005-10-29 | 2009-07-02 | Basf Fuel Cell Gmbh | Membrane for fuel cells, containing polymers comprising phosphonic acid groups and/or sulfonic acid groups, membrane units and the use thereof in fuel cells |
US20100047667A1 (en) * | 2005-07-01 | 2010-02-25 | Basf Fuel Cell Gmbh | Gas Diffusion Electrodes, Membrane-Electrode Assemblies and Method for the Production Thereof |
US20130313192A1 (en) * | 2012-05-25 | 2013-11-28 | Yan Wang | Acid resistant pbi membrane for pervaporation dehydration of acidic solvents |
US20130331470A1 (en) * | 2010-02-04 | 2013-12-12 | Pbi Performance Products Inc. | Porous polybenzimidazole resin and method of making same |
US8945736B2 (en) | 2005-09-10 | 2015-02-03 | Basf Fuel Cell Gmbh | Method for conditioning membrane-electrode-units for fuel cells |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10109829A1 (en) * | 2001-03-01 | 2002-09-05 | Celanese Ventures Gmbh | Polymer membrane, process for its production and its use |
DE10209419A1 (en) | 2002-03-05 | 2003-09-25 | Celanese Ventures Gmbh | Process for producing a polymer electrolyte membrane and its use in fuel cells |
CN1277869C (en) | 2002-03-06 | 2006-10-04 | 佩密斯股份有限公司 | Proton conducting electrolyte membrane having reduced methanol permeability and the use thereof in fuel cells |
CN100358178C (en) | 2002-04-25 | 2007-12-26 | 佩密斯股份有限公司 | Multilayer electrolyte membrane |
DE10230477A1 (en) | 2002-07-06 | 2004-01-15 | Celanese Ventures Gmbh | Functionalized polyazoles, processes for their preparation and their use |
KR20050036964A (en) | 2002-08-02 | 2005-04-20 | 페메아스 게엠베하 | Proton-conducting polymer membrane comprising polymers containing sulfonic acid groups and use thereof in fuel cells |
DE10239701A1 (en) | 2002-08-29 | 2004-03-11 | Celanese Ventures Gmbh | Production of polymer membrane, used in membrane electrode unit for fuel cell, uses phosphorus and/or sulfur oxy-acid in liquid for hydrolyzing membrane made by heating mixture of polyphosphoric acid and polyazole or precursors |
DE10246373A1 (en) | 2002-10-04 | 2004-04-15 | Celanese Ventures Gmbh | Polymer electrolyte membrane for use, e.g. in fuel cells, manufactured by heating a mixture of sulfonated aromatic polyazole monomers in polyphosphoric acid and then processing to form a self-supporting membrane |
DE10246459A1 (en) | 2002-10-04 | 2004-04-15 | Celanese Ventures Gmbh | Polymer electrolyte membrane for use, e.g. in fuel cells, obtained by heating a mixture of phosphonated aromatic polyazole monomers in polyphosphoric acid and then processing to form a self-supporting membrane |
US7892993B2 (en) | 2003-06-19 | 2011-02-22 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US20040260034A1 (en) | 2003-06-19 | 2004-12-23 | Haile William Alston | Water-dispersible fibers and fibrous articles |
US8513147B2 (en) | 2003-06-19 | 2013-08-20 | Eastman Chemical Company | Nonwovens produced from multicomponent fibers |
EP1652259A2 (en) | 2003-07-27 | 2006-05-03 | Pemeas GmbH | Proton-conducting membrane and use thereof |
DE102004008628A1 (en) | 2004-02-21 | 2005-09-08 | Celanese Ventures Gmbh | High performance membrane electrode assembly and its application in fuel cells |
KR20070067649A (en) | 2004-05-14 | 2007-06-28 | 페메아스 게엠베하 | Anisotropic shaped bodies, method for the production and utilization of anisotropic shaped bodies |
DE102004034139A1 (en) | 2004-07-15 | 2006-02-02 | Pemeas Gmbh | Process for the preparation of membrane-electrode assemblies |
KR101244565B1 (en) * | 2004-12-07 | 2013-03-20 | 도레이 카부시키가이샤 | Production method for film electrode composite element, and fuel cell |
DE102005058578A1 (en) | 2005-12-08 | 2007-06-28 | Sartorius Ag | Membranes of polyazoles, processes for their preparation and fuel cells using such membranes |
US20080317946A1 (en) * | 2007-06-21 | 2008-12-25 | Clearedge Power, Inc. | Fuel cell membranes, gels, and methods of fabrication |
KR101436770B1 (en) * | 2008-04-24 | 2014-09-03 | 닛토덴코 가부시키가이샤 | Transparent substrate |
US8512519B2 (en) | 2009-04-24 | 2013-08-20 | Eastman Chemical Company | Sulfopolyesters for paper strength and process |
JP5416546B2 (en) * | 2009-10-23 | 2014-02-12 | 日東電工株式会社 | Transparent substrate |
US8460591B2 (en) * | 2010-03-23 | 2013-06-11 | GM Global Technology Operations LLC | Porous membranes and methods of making the same |
CN102918693A (en) * | 2010-04-22 | 2013-02-06 | 巴斯夫欧洲公司 | Improved polymer electrolyte membrane based on polyazole |
DE102010039900A1 (en) * | 2010-08-27 | 2012-03-01 | Wacker Chemie Ag | Porous polymer films based on nitrogen-containing aromatic polymers |
US9273417B2 (en) | 2010-10-21 | 2016-03-01 | Eastman Chemical Company | Wet-Laid process to produce a bound nonwoven article |
US8541517B2 (en) | 2011-03-10 | 2013-09-24 | Battelle Energy Alliance, Llc | Polymer compositions, polymer films and methods and precursors for forming same |
US8840758B2 (en) | 2012-01-31 | 2014-09-23 | Eastman Chemical Company | Processes to produce short cut microfibers |
US9617685B2 (en) | 2013-04-19 | 2017-04-11 | Eastman Chemical Company | Process for making paper and nonwoven articles comprising synthetic microfiber binders |
US9309205B2 (en) | 2013-10-28 | 2016-04-12 | Wincom, Inc. | Filtration process for purifying liquid azole heteroaromatic compound-containing mixtures |
US9598802B2 (en) | 2013-12-17 | 2017-03-21 | Eastman Chemical Company | Ultrafiltration process for producing a sulfopolyester concentrate |
US9605126B2 (en) | 2013-12-17 | 2017-03-28 | Eastman Chemical Company | Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion |
Citations (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3313783A (en) * | 1962-07-20 | 1967-04-11 | Teijin Ltd | Process for preparation of polybenzimidazoles |
US3951920A (en) * | 1971-09-13 | 1976-04-20 | Teijin Limited | Permselective polymeric membrane prepared from polybenzimidazoles |
US4087388A (en) * | 1976-10-21 | 1978-05-02 | E. I. Du Pont De Nemours And Company | Process of preparing a permselective membrane |
US4120098A (en) * | 1976-06-22 | 1978-10-17 | E. I. Du Pont De Nemours And Company | Solvent exchange drying of membranes for gas separation |
US4259183A (en) * | 1978-11-07 | 1981-03-31 | Midwest Research Institute | Reverse osmosis membrane |
US4483977A (en) * | 1982-05-24 | 1984-11-20 | Celanese Corporation | High molecular weight polybenzimidazoles |
US4628067A (en) * | 1984-01-16 | 1986-12-09 | Celanese Corporation | Microporous polybenzimidazole particulates |
US4690765A (en) * | 1981-03-17 | 1987-09-01 | Aligena Ag | Chemically modified semipermeable membranes and their use in reverse osmosis and ultrafiltration |
US4693824A (en) * | 1985-09-23 | 1987-09-15 | Celanese Corporation | Process for the production of polybenzimidazole ultrafiltration membranes |
US4693825A (en) * | 1985-09-23 | 1987-09-15 | Celanese Corporation | Method for the preparation of polybenzimidazole membranes |
US4758343A (en) * | 1985-09-20 | 1988-07-19 | Toray Industries, Inc. | Interfacially synthesized reverse osmosis membrane |
US4761234A (en) * | 1985-08-05 | 1988-08-02 | Toray Industries, Inc. | Interfacially synthesized reverse osmosis membrane |
US4814530A (en) * | 1987-09-03 | 1989-03-21 | Hoechst Celanese Corporation | Sintered polybenzimidazole article |
US4814399A (en) * | 1987-07-24 | 1989-03-21 | Hoechst Celanese Corporation | Sulfoalkylation of polybenzimidazole |
US4933083A (en) * | 1985-04-15 | 1990-06-12 | Hoechst Celanese Corp. | Polybenzimidazole thin film composite membranes |
US5043113A (en) * | 1988-08-05 | 1991-08-27 | Hoechst Celanese Corp. | Process for formation of halogenated polymeric microporous membranes having improved strength properties |
US5091087A (en) * | 1990-06-25 | 1992-02-25 | Hoechst Celanese Corp. | Fabrication of microporous PBI membranes with narrow pore size distribution |
US5147895A (en) * | 1991-12-19 | 1992-09-15 | Hoechst Celanese Corp. | Highly porous compressible polymeric powders |
US5169871A (en) * | 1991-12-19 | 1992-12-08 | Hoechst Celanese Corp. | Highly porous compressible polymeric powders |
US5247010A (en) * | 1991-12-19 | 1993-09-21 | Hoechst Celanese Corp. | Compactible benzimidazole polymeric compositions |
US5262056A (en) * | 1992-11-30 | 1993-11-16 | Board Of Regents, The University Of Texas System | Polyamides and polypyrrolones for fluid separation membranes |
US5286324A (en) * | 1987-07-30 | 1994-02-15 | Toray Industries, Inc. | Polytetrafluoroethylene resin porous membrane, separator making use of the porous membrane and methods of producing the porous membrane and the separator |
US5304307A (en) * | 1990-12-03 | 1994-04-19 | Aligena Ag | Chargedasymmetric mosaic membrances |
US5525436A (en) * | 1994-11-01 | 1996-06-11 | Case Western Reserve University | Proton conducting polymers used as membranes |
US6623639B2 (en) * | 1999-03-19 | 2003-09-23 | Bend Research, Inc. | Solvent-resistant microporous polybenzimidazole membranes |
US6623634B1 (en) * | 2000-10-11 | 2003-09-23 | Paul L. Whitehurst | Tissue float water bath liner and filter |
US6767664B2 (en) * | 1999-09-20 | 2004-07-27 | Honda Giken Kogyo Kabushiki Kaisha | Proton conducting polymer, method for producing the same, solid polymer electrolyte and electrode |
US6770202B1 (en) * | 1999-04-14 | 2004-08-03 | Pall Corporation | Porous membrane |
US6790553B1 (en) * | 1999-01-27 | 2004-09-14 | Celanese Ventures Gmbh | Method for producing bridged polymer membrane and fuel cell |
US6794480B2 (en) * | 2001-03-30 | 2004-09-21 | Jsr Corporation | Monomer containing electron-withdrawing group and electron-donative group, and copolymer and proton-conductive membrane comprising same |
US6864006B2 (en) * | 2001-01-09 | 2005-03-08 | National Institute Of Advanced Industrial Science And Technology | Proton-conducting membrane, method for producing the same, and fuel cell using the same |
US6878475B2 (en) * | 2002-11-22 | 2005-04-12 | T/J Technologies, Inc. | Membrane for fuel cell, and fuel cell incorporating that membrane |
US6946211B1 (en) * | 1999-09-09 | 2005-09-20 | Danish Power Systems Aps | Polymer electrolyte membrane fuel cells |
US6946015B2 (en) * | 2003-06-26 | 2005-09-20 | The Regents Of The University Of California | Cross-linked polybenzimidazole membrane for gas separation |
US6997971B1 (en) * | 2004-07-28 | 2006-02-14 | The Regents Of The University Of California | Cross-linked polybenzimidazole membrane for gas separation |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3607004B2 (en) * | 1996-07-05 | 2005-01-05 | クラリアント インターナショナル リミテッド | Solution of polybenzimidazole compound and process for producing the same |
DE10052242A1 (en) * | 2000-10-21 | 2002-05-02 | Celanese Ventures Gmbh | Acid-doped, single- or multi-layer plastic membrane with layers comprising polymer blends comprising polymers with repeating azole units, processes for producing such plastic membranes and their use |
DE10110752A1 (en) * | 2001-03-07 | 2002-09-19 | Celanese Ventures Gmbh | Process for the production of a membrane from bridged polymer and fuel cell |
DE10117686A1 (en) * | 2001-04-09 | 2002-10-24 | Celanese Ventures Gmbh | Proton-conducting membrane for use e.g. in fuel cells, is made by coating a support with a solution of aromatic tetra-amine and aromatic polycarboxylic acid in polyphosphoric acid and then heating the coating |
DE10117687A1 (en) * | 2001-04-09 | 2002-10-17 | Celanese Ventures Gmbh | Proton-conducting membrane and its use |
KR20050036964A (en) * | 2002-08-02 | 2005-04-20 | 페메아스 게엠베하 | Proton-conducting polymer membrane comprising polymers containing sulfonic acid groups and use thereof in fuel cells |
-
2001
- 2001-06-19 DE DE10129458A patent/DE10129458A1/en not_active Withdrawn
-
2002
- 2002-06-19 EP EP02748797A patent/EP1404745B1/en not_active Expired - Lifetime
- 2002-06-19 CA CA002449239A patent/CA2449239C/en not_active Expired - Fee Related
- 2002-06-19 AT AT02748797T patent/ATE283888T1/en not_active IP Right Cessation
- 2002-06-19 WO PCT/EP2002/006773 patent/WO2002102881A1/en active IP Right Grant
- 2002-06-19 ES ES02748797T patent/ES2233839T3/en not_active Expired - Lifetime
- 2002-06-19 CN CNB028120930A patent/CN1239581C/en not_active Expired - Fee Related
- 2002-06-19 US US10/481,170 patent/US20040262227A1/en not_active Abandoned
- 2002-06-19 MX MXPA03011703A patent/MXPA03011703A/en not_active Application Discontinuation
- 2002-06-19 JP JP2003506350A patent/JP4392553B2/en not_active Expired - Fee Related
- 2002-06-19 DE DE50201690T patent/DE50201690D1/en not_active Expired - Lifetime
-
2006
- 2006-08-30 US US11/512,803 patent/US7485227B2/en not_active Expired - Fee Related
Patent Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3313783A (en) * | 1962-07-20 | 1967-04-11 | Teijin Ltd | Process for preparation of polybenzimidazoles |
US3951920A (en) * | 1971-09-13 | 1976-04-20 | Teijin Limited | Permselective polymeric membrane prepared from polybenzimidazoles |
US4120098A (en) * | 1976-06-22 | 1978-10-17 | E. I. Du Pont De Nemours And Company | Solvent exchange drying of membranes for gas separation |
US4087388A (en) * | 1976-10-21 | 1978-05-02 | E. I. Du Pont De Nemours And Company | Process of preparing a permselective membrane |
US4259183A (en) * | 1978-11-07 | 1981-03-31 | Midwest Research Institute | Reverse osmosis membrane |
US4690765A (en) * | 1981-03-17 | 1987-09-01 | Aligena Ag | Chemically modified semipermeable membranes and their use in reverse osmosis and ultrafiltration |
US4483977A (en) * | 1982-05-24 | 1984-11-20 | Celanese Corporation | High molecular weight polybenzimidazoles |
US4628067A (en) * | 1984-01-16 | 1986-12-09 | Celanese Corporation | Microporous polybenzimidazole particulates |
US4933083A (en) * | 1985-04-15 | 1990-06-12 | Hoechst Celanese Corp. | Polybenzimidazole thin film composite membranes |
US4761234A (en) * | 1985-08-05 | 1988-08-02 | Toray Industries, Inc. | Interfacially synthesized reverse osmosis membrane |
US4758343A (en) * | 1985-09-20 | 1988-07-19 | Toray Industries, Inc. | Interfacially synthesized reverse osmosis membrane |
US4693824A (en) * | 1985-09-23 | 1987-09-15 | Celanese Corporation | Process for the production of polybenzimidazole ultrafiltration membranes |
US4693825A (en) * | 1985-09-23 | 1987-09-15 | Celanese Corporation | Method for the preparation of polybenzimidazole membranes |
US4814399A (en) * | 1987-07-24 | 1989-03-21 | Hoechst Celanese Corporation | Sulfoalkylation of polybenzimidazole |
US5286324A (en) * | 1987-07-30 | 1994-02-15 | Toray Industries, Inc. | Polytetrafluoroethylene resin porous membrane, separator making use of the porous membrane and methods of producing the porous membrane and the separator |
US4814530A (en) * | 1987-09-03 | 1989-03-21 | Hoechst Celanese Corporation | Sintered polybenzimidazole article |
US5043113A (en) * | 1988-08-05 | 1991-08-27 | Hoechst Celanese Corp. | Process for formation of halogenated polymeric microporous membranes having improved strength properties |
US5091087A (en) * | 1990-06-25 | 1992-02-25 | Hoechst Celanese Corp. | Fabrication of microporous PBI membranes with narrow pore size distribution |
US5304307A (en) * | 1990-12-03 | 1994-04-19 | Aligena Ag | Chargedasymmetric mosaic membrances |
US5169871A (en) * | 1991-12-19 | 1992-12-08 | Hoechst Celanese Corp. | Highly porous compressible polymeric powders |
US5247010A (en) * | 1991-12-19 | 1993-09-21 | Hoechst Celanese Corp. | Compactible benzimidazole polymeric compositions |
US5147895A (en) * | 1991-12-19 | 1992-09-15 | Hoechst Celanese Corp. | Highly porous compressible polymeric powders |
US5262056A (en) * | 1992-11-30 | 1993-11-16 | Board Of Regents, The University Of Texas System | Polyamides and polypyrrolones for fluid separation membranes |
US5525436A (en) * | 1994-11-01 | 1996-06-11 | Case Western Reserve University | Proton conducting polymers used as membranes |
US6790553B1 (en) * | 1999-01-27 | 2004-09-14 | Celanese Ventures Gmbh | Method for producing bridged polymer membrane and fuel cell |
US6623639B2 (en) * | 1999-03-19 | 2003-09-23 | Bend Research, Inc. | Solvent-resistant microporous polybenzimidazole membranes |
US6986844B2 (en) * | 1999-03-19 | 2006-01-17 | Bend Research, Inc. | Solvent-resistant microporous polybenzimidazole membranes and modules |
US6770202B1 (en) * | 1999-04-14 | 2004-08-03 | Pall Corporation | Porous membrane |
US6946211B1 (en) * | 1999-09-09 | 2005-09-20 | Danish Power Systems Aps | Polymer electrolyte membrane fuel cells |
US6767664B2 (en) * | 1999-09-20 | 2004-07-27 | Honda Giken Kogyo Kabushiki Kaisha | Proton conducting polymer, method for producing the same, solid polymer electrolyte and electrode |
US6623634B1 (en) * | 2000-10-11 | 2003-09-23 | Paul L. Whitehurst | Tissue float water bath liner and filter |
US6864006B2 (en) * | 2001-01-09 | 2005-03-08 | National Institute Of Advanced Industrial Science And Technology | Proton-conducting membrane, method for producing the same, and fuel cell using the same |
US6794480B2 (en) * | 2001-03-30 | 2004-09-21 | Jsr Corporation | Monomer containing electron-withdrawing group and electron-donative group, and copolymer and proton-conductive membrane comprising same |
US6878475B2 (en) * | 2002-11-22 | 2005-04-12 | T/J Technologies, Inc. | Membrane for fuel cell, and fuel cell incorporating that membrane |
US6946015B2 (en) * | 2003-06-26 | 2005-09-20 | The Regents Of The University Of California | Cross-linked polybenzimidazole membrane for gas separation |
US6997971B1 (en) * | 2004-07-28 | 2006-02-14 | The Regents Of The University Of California | Cross-linked polybenzimidazole membrane for gas separation |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7582210B2 (en) | 2001-04-09 | 2009-09-01 | Basf Fuel Cell Gmbh | Proton-conducting membrane and use thereof |
US20080050514A1 (en) * | 2001-04-09 | 2008-02-28 | Gordon Calundann | Proton-Conducting Membrane and the Use Thereof |
US20080057358A1 (en) * | 2001-04-09 | 2008-03-06 | Gordon Calundann | Proton-Conducting Membrane and Use Thereof |
US7540984B2 (en) | 2001-04-09 | 2009-06-02 | Basf Fuel Cell Gmbh | Proton-conducting membrane and the use thereof |
US20100227252A1 (en) * | 2002-08-02 | 2010-09-09 | Basf Fuel Cell Gmbh | Proton-conducting polymer membrane comprising polymers containing phosphonic acid groups and its use in fuel cells |
US7727651B2 (en) | 2002-08-02 | 2010-06-01 | Basf Fuel Cell Gmbh | Proton-conducting polymer membrane comprising polymers containing phosphonic acid groups and its use in fuel cells |
US20050244694A1 (en) * | 2002-08-02 | 2005-11-03 | Pemeas Gmbh | Proton-conducting polymer membrane comprising polymers containing phosphonic acid groups and its use in fuel cells |
US20060035095A1 (en) * | 2002-09-13 | 2006-02-16 | Pemeas Gmbh | Proton-conducting membrane and use thereof verwendung |
US8277983B2 (en) | 2002-09-13 | 2012-10-02 | Basf Fuel Cell Gmbh | Proton-conducting membrane and its use |
US8716356B2 (en) | 2002-09-13 | 2014-05-06 | Basf Fuel Cell Gmbh | Proton-conducting membrane and its use |
US7661542B2 (en) | 2002-10-04 | 2010-02-16 | Basf Fuel Cell Gmbh | Proton-conducting polymer membrane that contains polyazoles and is coated with a catalyst layer, and application therof in fuel cells |
US8142917B2 (en) | 2002-10-04 | 2012-03-27 | Basf Fuel Cell Gmbh | Proton-conducting polymer membrane comprising polyazole blends and its use in fuel cells |
US20060078774A1 (en) * | 2002-10-04 | 2006-04-13 | Pemeas Gmbh | Proton-conducting polymer membrane containing polyazole blends and application thereof in fuel cells |
US20060079392A1 (en) * | 2002-10-04 | 2006-04-13 | Pemeas Gmbh | Proton-conducting polymer membrane that contains polyazoles and is coated with a catalyst layer, and application thereof in fuel cells |
US20100216051A1 (en) * | 2002-10-04 | 2010-08-26 | Basf Fuel Cell Gmbh | Proton-conducting polymer membrane comprising polyazole blends and its use in fuel cells |
US7736779B2 (en) | 2002-10-04 | 2010-06-15 | Basf Fuel Cell | Proton-conducting polymer membrane containing polyazole blends, and application thereof in fuel cells |
US20060199062A1 (en) * | 2004-09-09 | 2006-09-07 | Asahi Kasei Chemicals Corporation | Solid polymer electrolyte membrane and production method of the same |
US7799452B2 (en) * | 2004-09-09 | 2010-09-21 | Asahi Kasei Chemicals Corporation | Solid polymer electrolyte membrane and production method of the same |
US20100330456A1 (en) * | 2004-09-09 | 2010-12-30 | Asahi Kasei Chemicals Corporation | Solid polymer electrolyte membrane and production method of the same |
US8465856B2 (en) | 2004-09-09 | 2013-06-18 | Asahi Kasei Chemicals Corporation | Solid polymer electrolyte membrane and production method of the same |
US20080187807A1 (en) * | 2005-05-03 | 2008-08-07 | Basf Fuel Cell Gmbh | Fuel Cells With Reduced Weight and Volume |
US20100047667A1 (en) * | 2005-07-01 | 2010-02-25 | Basf Fuel Cell Gmbh | Gas Diffusion Electrodes, Membrane-Electrode Assemblies and Method for the Production Thereof |
US8460841B2 (en) | 2005-07-01 | 2013-06-11 | Basf Fuel Cell Gmbh | Gas diffusion electrodes, membrane-electrode assemblies and method for the production thereof |
US8945736B2 (en) | 2005-09-10 | 2015-02-03 | Basf Fuel Cell Gmbh | Method for conditioning membrane-electrode-units for fuel cells |
US20090169955A1 (en) * | 2005-10-29 | 2009-07-02 | Basf Fuel Cell Gmbh | Membrane for fuel cells, containing polymers comprising phosphonic acid groups and/or sulfonic acid groups, membrane units and the use thereof in fuel cells |
US20090098430A1 (en) * | 2005-10-31 | 2009-04-16 | Oemer Uensal | Membrane-electrode assemblies and long-life fuel cells |
US20130331470A1 (en) * | 2010-02-04 | 2013-12-12 | Pbi Performance Products Inc. | Porous polybenzimidazole resin and method of making same |
US9828479B2 (en) * | 2010-02-04 | 2017-11-28 | Pbi Performance Products, Inc. | Porous polybenzimidazole resin and method of making same |
US10273340B2 (en) | 2010-02-04 | 2019-04-30 | PBI Performances Products, Inc. | Porous polybenzimidazole resin and method of making same |
US20130313192A1 (en) * | 2012-05-25 | 2013-11-28 | Yan Wang | Acid resistant pbi membrane for pervaporation dehydration of acidic solvents |
US9283523B2 (en) * | 2012-05-25 | 2016-03-15 | Pbi Performance Products, Inc. | Acid resistant PBI membrane for pervaporation dehydration of acidic solvents |
US9827532B2 (en) | 2012-05-25 | 2017-11-28 | Pbi Performance Products, Inc. | Acid resistant PBI membrane for pervaporation dehydration of acidic solvents |
USRE46720E1 (en) * | 2012-05-25 | 2018-02-20 | Pbi Performance Products, Inc. | Acid resistant PBI membrane for pervaporation dehydration of acidic solvents |
Also Published As
Publication number | Publication date |
---|---|
MXPA03011703A (en) | 2004-03-19 |
JP2004534882A (en) | 2004-11-18 |
CA2449239C (en) | 2008-08-26 |
US7485227B2 (en) | 2009-02-03 |
US20070102361A1 (en) | 2007-05-10 |
JP4392553B2 (en) | 2010-01-06 |
CA2449239A1 (en) | 2002-12-27 |
DE50201690D1 (en) | 2005-01-05 |
DE10129458A1 (en) | 2003-01-02 |
EP1404745A1 (en) | 2004-04-07 |
WO2002102881A1 (en) | 2002-12-27 |
CN1516717A (en) | 2004-07-28 |
ATE283888T1 (en) | 2004-12-15 |
CN1239581C (en) | 2006-02-01 |
ES2233839T3 (en) | 2005-06-16 |
EP1404745B1 (en) | 2004-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7485227B2 (en) | Polyazole-based polymer films | |
US8168105B2 (en) | Polymer membrane, method for the production and use thereof | |
KR100968101B1 (en) | Method for production of proton-conducting membrane | |
US7285325B2 (en) | Membranes having improved mechanical properties, for use in fuel cells | |
JP5226751B2 (en) | Proton conducting membrane and use thereof | |
KR101279352B1 (en) | Porous substrate with enhanced strength, reinforced composite electrolyte membrane using the same, membrane-electrode assembly having the same and fuel cell having them | |
EP1519981B1 (en) | Proton-conducting membrane and the use thereof | |
KR101697693B1 (en) | Porous support and polymer electrolyte membrane for fuel cell including the same | |
EP3125349B1 (en) | Polymer electrolyte membrane, and membrane-electrode assembly and fuel cell containing same | |
JP2011190445A (en) | Asymmetric polymer film, method for manufacturing the same, and use thereof | |
JP2021036079A (en) | Polymer electrolyte membrane sheet, polymer electrolyte membrane roll, electrolyte membrane with catalyst layer, membrane electrode assembly, electrochemical hydrogen pump, and water electrolytic device | |
EP2169748A1 (en) | Membrane-electrode assembly, method for producing the same and solid polymer fuel cell | |
EP2161771A1 (en) | Membrane-electrode assembly, method for production thereof, and solid polymer fuel cell | |
KR20110054607A (en) | Reinfored composite electrolyte membrane and manufacturing method thereof | |
JP4093408B2 (en) | Novel membranes for use in fuel cells with improved mechanical properties | |
Bai et al. | High-Performance Composite Membranes Based on Sulfonated Polyarylenethioethersulfone and Sulfonated Polybenzimidazole for Fuel Cell Applications | |
JP2007035315A (en) | Complex polymer electrolyte, manufacturing method of complex polymer electrolyte film, and fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CELANESE VENTURES GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:UENSAL, OEMER;KIEFER, JOACHIM;BAURMEISTER, JOCHEN;AND OTHERS;REEL/FRAME:015131/0989;SIGNING DATES FROM 20040708 TO 20040811 |
|
AS | Assignment |
Owner name: PEMEAS GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CELANESE VENTURES GMBH;REEL/FRAME:016963/0383 Effective date: 20050901 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |