US20040239460A1 - Switchable magnetic device - Google Patents
Switchable magnetic device Download PDFInfo
- Publication number
- US20040239460A1 US20040239460A1 US10/487,538 US48753804A US2004239460A1 US 20040239460 A1 US20040239460 A1 US 20040239460A1 US 48753804 A US48753804 A US 48753804A US 2004239460 A1 US2004239460 A1 US 2004239460A1
- Authority
- US
- United States
- Prior art keywords
- magnetic
- switchable
- magnets
- magnetic device
- magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/121—Guiding or setting position of armatures, e.g. retaining armatures in their end position
- H01F7/122—Guiding or setting position of armatures, e.g. retaining armatures in their end position by permanent magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
- H01F7/04—Means for releasing the attractive force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q3/00—Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
- B23Q3/15—Devices for holding work using magnetic or electric force acting directly on the work
- B23Q3/154—Stationary devices
- B23Q3/1546—Stationary devices using permanent magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
- H01F7/0205—Magnetic circuits with PM in general
- H01F7/0226—PM with variable field strength
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
- H01F7/0231—Magnetic circuits with PM for power or force generation
- H01F7/0252—PM holding devices
- H01F7/0257—Lifting, pick-up magnetic objects
Definitions
- the present invention relates to a switchable magnetic device. Additional aspects of the present invention further relate to various devices including a switchable magnetic device.
- a switchable permanent magnetic device in our co-pending international patent application no. PCT/AU00/01505 and our co-pending U.S. patent application Ser. No. 09/951905 (the entire contents of which are expressly herein incorporated by cross reference) a switchable permanent magnetic device is described.
- This device includes a housing and first and second permanent magnets mounted in the housing.
- the first and second permanent magnets are mounted in the housing such that they are able to be relatively rotated. This is preferably achieved by having one of the magnets fixed into position and the second magnet being rotatable.
- the first and second magnets can be positioned such that a north and south pole of the first magnet are in substantial alignment with respect of north and south poles of the second magnet.
- the device presents a strong external magnetic field.
- the magnets can also be rotated relative to each other such that the north pole of the first magnet is substantially in alignment with the south pole of the second magnet and the south pole of the first magnet is substantially in alignment with the north pole of the second magnet. In this orientation, the device presents a relatively weak external magnetic field.
- the magnets are rotated by the actuation means.
- switchable magnetic device refers to a device including a first permanent magnet and a second permanent magnet, the first and second permanent magnets being rotatable relative to each other between an “off” state in which the magnets are aligned such that the device presents a relatively weak external magnetic field, and an “on” state in which the magnets are aligned such that the device presents a relatively strong external magnetic field.
- the present invention provides a switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between a “fully off” position in which the north and south poles of the first magnet are in substantial alignment with the south and north poles respectively of the second magnet such that the device presents a relatively weak external magnetic field, and a “fully on” position in which the north and south poles of the first magnet are positioned substantially in alignment with the north and south poles respectively of the second magnet such that the device presents a relatively strong external magnetic field, characterised in that biasing means are operatively associated with first and second magnets to bias the relative rotation of said magnets toward the fully on position, and wherein placing said device on or in close proximity to a ferromagnetic material causes the first and second magnets to rotate to a relative orientation such that the device presents a relatively strong external magnetic field.
- the force required to cause relative rotation of the first and second magnets towards the fully on position is within a first predetermined force range
- the force required to cause relative rotation of the first and second magnets toward the fully on position is within a second predetermined force range, said second predetermined force range having a higher peak force than said first predetermined force range
- said bias means applies a rotational force to bias the relative rotation of said magnets towards the fully on position with a force exceeding the peak force of the first predetermined force range, but less than the peak force of the second predetermined force range, thereby causing the magnets to automatically rotate toward the fully on position when the device is on or in close proximity to a ferromagnetic material.
- the bias means is preferably a spring.
- the device of the first aspect of the present invention provides a switchable magnetic device that can automatically switch to an “on” position in which the device presents a relative strong external magnetic field when the device is positioned on or in close proximity to a ferromagnetic material.
- the present invention provides a switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between a “fully off” position in which the north and south poles of the first magnet are in substantial alignment with the south and north poles respectively of the second magnet such that the device presents a relatively weak external magnetic field, and a “fully on” position in which the north and south poles of the first magnet are positioned substantially in alignment with the north and south poles respectively of the second magnet such that the device presents a relatively strong external magnetic field, characterised in that said device further includes rotation limiting means to limit the extent of the relative rotation of the magnets.
- the rotation limiting means can permit relative rotation of the magnets between a deactivated state in which the north and south poles of the first magnet are most closely aligned with the south and north poles respectively of the second magnet such that the device presents a relatively weak external magnetic field, and an activated position in which the north and south poles of the first magnet are positioned approximately in alignment with the north and south poles respectively of the second magnet such that the device presents a relatively strong external magnetic field.
- the angle of misalignment of the north and south poles of the first magnet and the north and south poles respectively of the second magnet is preferably less than 15 degrees. More preferably the misalignment is approximately 10 degrees.
- the activated position can be the fully on position.
- the angle of misalignment of the north and south poles of the first magnet and the south and north poles respectively of the second magnet is preferably less than 40 degrees. More preferably it is less than 30 degrees. In a particularly preferred embodiment the deactivated state has the magnets in the fully off position.
- the rotation limiting means limits the relative rotation of the magnets to less than or equal to 180 degrees. Preferably the rotation limiting means prevents said magnets from reaching the “fully on” position.
- the rotation limiting means may allow the relative rotation of the magnets to an extent greater than 180 degrees
- the rotation limiting means allows relative rotation of the magnets to an orientation past the “fully on” position.
- the magnets are retained in the activated position by a retaining force.
- a first force is required to retain the magnets in the activated position
- a second force greater than the first force, is required to retain the magnets in the activated position
- the retaining force applied to hold the magnets in the activated position is greater than the first force but less than the second force, thereby allowing the magnets to automatically rotate toward the deactivated position when the device is removed from a position in contact with or in close proximity to a ferromagnetic material.
- the retaining force may be a friction force.
- the device may further include retention means configured to apply a retaining force to retain the magnets in the activated position when the device is in contact with or in close proximity to a ferromagnetic material.
- the retention means preferably includes a latch means which yields at a predetermined force less than the second force but greater than the first force.
- the present invention provides a switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between a “fully off” position in which the north and south poles of the first magnet are in substantial alignment with the south and north poles respectively of the second magnet such that the device presents a relatively weak external magnetic field, and a “fully on” position in which the north and south poles of the first magnet are positioned substantially in alignment with the north and south poles respectively of the second magnet such that the device presents a relatively strong external magnetic field, characterised in that relative rotation of the first and second magnets is limited such that said magnets are prevented from reaching the fully on position but said first and second magnets can be rotated to a predetermined relative orientation such that the north and south poles of the first magnet are closely but not completely aligned with respective north and south poles of the second magnet such that said device still presents a
- the present invention provides a switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other between a “fully off” position in which the north and south poles of the first magnet are in substantial alignment with the south and north poles respectively of the second magnet such that the device presents a relatively weak external magnetic field, and a “fully on” position in which the north and south poles of the first magnet, are positioned substantially in alignment with the north and south poles respectively of the second magnet such that the device presents a relatively strong external magnetic field, and actuation means configured to cause relative motion of the first and second magnets, characterised in that said actuation means includes a flexible portion that deforms if the actuation means is actuated in the absence of an external magnetic circuit to thereby limit relative rotation of said magnets, said flexible portion having sufficient yield strength to substantially avoid deformation during actuation of said
- said flexible portion is a spring link.
- said flexible portion can be deformed to a maximum extent, after which continued actuation of the actuation means acts to cause relative rotation of the magnets.
- the device may remain in the “on” position if the external magnetic circuit is forcibly removed.
- the device can act as a “memory” adviser in that its status can tell whether successful contact with an external magnetic circuit was achieved.
- the housing may include a pair of passive ferromagnetic elements which are magnetically separated, for example, by an air gap or by magnetically high reluctance material(s).
- the housing most suitably defines a chamber in which the first and second magnets are positioned.
- the chamber may have open ends or, more preferably, is a closed chamber. Chamber closing members are suitably used to close the chamber.
- the housing is made as a unitary construction from a single piece of material.
- portions of the housing may be treated such that the portions become non-magnetic to thereby result in the housing acting as two passive poles.
- the housing is preferably made from a material having a low magnetic reluctance. Soft steel, iron or permalloys are examples of suitable materials for the housing.
- the housing most preferably includes a pair of passive poles.
- the strength of the external magnetic field can be maximised by shaping the pair of passive poles such that they reflect the magnetic field strength around the perimeter of the first and second permanent magnets.
- the first and second magnets are preferably substantially disc-shaped. Most preferably, the first and second magnets are essentially cylindrical in shape and the height of the cylinder is less than the diameter of the cylinder. It will be appreciated that the first and second magnets need not be exactly cylindrical and that slight variations from a circular cross-section also fall within the scope of the present invention. The height of the magnets may vary over a wide range, and the ratio of diameter to height may also vary over a wide range.
- the first and second magnets are preferably also diametrically magnetised. By that, it is meant that the north pole region is separated by a diameter of the cylindrical surface of the magnet from the south pole region.
- the north pole region and south pole region both exist on the upper and lower substantially circular faces of the magnet and extend through the length or height of the magnet.
- one magnet is fixed in the housing and one magnet can rotate in the housing. It is especially preferred that the rotatable magnet can rotate about the centre point of its essentially circular faces. In this fashion, the requirement for large clearances between the inner walls of the housing and the rotatable magnet are avoided.
- the shape of the body of rotation of the rotatable magnet is the same shape as the magnet itself (ie substantially circular in top or plan view) and thus the magnet can rotate and yet retain its positioning relative to the walls of the housing.
- the actuation means for causing relative rotation of the magnets preferably comprises a handle or knob being in connection with one of the magnets.
- the handle or knob may be connected to the one magnet by one or more intermediate members.
- the handle or knob may be rotated manually, electrically, pneumatically, hydraulically, by the action of expansion of a bimetallic strip, or indeed by any other suitable method.
- the housing preferably includes two passive poles, and it is also preferred that one magnet is fixed in the housing.
- the one magnet is fixed in place such that the pole pieces are permanently energised. It will also be appreciated that, in some embodiments of the present invention, both magnets may rotate.
- the permanent magnets in the present invention may be of any suitable type.
- the most preferred at present are rare earth magnets because they can have a strong magnetic field.
- Such magnets also have a high coercivity, which means that they resist becoming demagnetised. It is envisaged that permanent magnetic technology will continue to develop and it is likely that more powerful magnets will become available in the future that will be suitable for use in the present invention.
- the first and second magnets may be essentially identical to each other.
- the first and second magnets may have different magnetic properties.
- the magnets may have the same or different physical dimensions to each other. Varying the magnetic properties or the physical dimensions of the first and second magnets can be used in some embodiments of the invention to vary magnetic switching properties.
- the device may further include a child-proof lock or child-proof catch type arrangement in the actuation means such that some extra manipulation by a user is required before the magnets can be rotated.
- the actuation means may comprise a knob that must be pushed down before rotational force applied to the knob can be transferred to the magnet(s)).
- Other arrangements which will be readily apparent to the person of skill in the art will also be readily apparent.
- An embodiment of the present invention may also be used to provide short range acceleration in space through interaction with the magnetosphere of the Earth or other planet, and/or attraction/repulsion with ferromagnetic materials in a spacecraft.
- Astronauts may use such acceleration in space walk or emergencies.
- a second switchable permanent magnet may be installed in the craft.
- a system for controlling the orientation of a satellite in orbit around a planet having a planetary magnetic field including at least one switchable magnetic device mounted to the satellite such that the orientation of the at least one switchable magnetic device can be varied relative to the satellite, wherein in use the orientation of the satellite can be changed by deflecting the magnetic axis of the switchable magnetic device relative to the direction of the planetary magnetic field when the magnets are in the second position, thereby causing the satellite to change orientation to at least partially re-align the magnetic axis of the at least one switchable magnetic device to the direction of the planetary magnetic field.
- the at least one switchable magnetic device can be mounted on a lever arm on the satellite.
- the system as claimed includes a plurality of switchable magnetic devices arranged in pairs, wherein each pair of switchable magnetic devices act in concert to control the orientation of the satellite about one axis. More preferable the system includes at least two pairs of switchable magnetic devices. The system can include at least three pairs of switchable magnetic devices, wherein the respective axes of the pairs of switchable magnetic devices are mutually orthogonal.
- the one or more switchable magnetic devices can be selectively varied between the on or off states to periodically re-orient the satellite. During launch and/or deployment of the satellite the least one switchable magnetic device can advantageously be off.
- a device for collecting ferromagnetic items said device including a ferromagnetic collection portion configured to collect and retain ferromagnetic items by magnetic attraction therewith, and a surface engaging portion which is configured in use to engage a ferromagnetic support surface against which the device is held, said device further including at least one switchable magnetic device switchable between an “off” position in which the ferromagnetic collection portion is substantially demagnetised, and an “on” position in which the external magnetic field of the switchable magnetic device, magnetises the collection portion to collect and retain ferromagnetic articles in contact with or in close proximity to the collection portion, and holds the device against the ferromagnetic support surface by magnetic attraction.
- the switchable magnetic device is on the “off” position the magnetic attraction between the ferromagnetic collection portion and the ferromagnetic articles and the switchable magnetic device and the support surface are negligible.
- the device can further include actuation means configured to switch the switchable magnetic device between the on and off positions.
- the device further includes at least one ferromagnetic shunt located between the switchable magnetic device and the ferromagnetic collection portion which is magnetised preferentially to the ferromagnetic collection portion when the switchable magnetic device is in the off position, thereby effectively preventing magnetisation of the ferromagnetic collection portion when the switchable magnetic device is in the off position.
- the ferromagnetic shunt is preferably not magnetically saturated when the switchable magnetic device is in the off position, but is magnetically saturated when the switchable magnetic device is in the on first position.
- the device can further include a high reluctance region between the switchable magnetic device and the surface engagement portion, wherein the high reluctance region has sufficient reluctance that the magnetic flux at the surface engagement portion is substantially independent of the magnetic properties of the support surface.
- a clamping. means adapted to clamp at least one article, said clamping means including: a first clamping member; a second clamping member slideable towards and away from the first clamping member, and spaced apart from the first member to define a gap into which an article to be clamped can be inserted; and a switchable magnetic device mounted to or in close proximity to one of the first or second clamping member, said switchable magnetic device including actuation means for switching the switchable magnetic device off or on, whereby when the switchable magnetic device is on the first and second clamping members move towards each other thereby clamping an article inserted in the gap between the clamping members.
- the holder preferably includes one or more additional clamping members slideable relative to the first and second clamping members, and arranged such that a gap into which an article to be clamped can be inserted is defined between neighbouring pairs of clamping members, whereby when the switchable magnetic device is “on” neighbouring pairs of clamping members move towards each other thereby clamping an article inserted in the gap between the neighbouring pairs of clamping members.
- the holder can also include one or more additional switchable magnetic devices mounted to one or more of the additional clamping members.
- the holder further includes means for operating the actuation means of one of said switchable magnetic devices in concert with at least one other of the one or more additional switchable magnetic devices.
- a switchable magnetic device configured to operably engage one or more functional modules adapted to provide or limit functionality of the switchable magnetic device.
- the one or more functional modules can include one ore more of the following types of module:
- a rotation limiting module which limits the relative rotation of the magnets of the switchable magnetic device to within a predetermined angular range.
- a biasing module configured to bias the relative rotation of the magnets of the switchable magnetic device.
- a locking module configured to releasably lock the relative orientation of the magnets of the switchable magnetic device.
- the locking module is preferably configured to releasably lock the magnets of the switchable magnetic device in one or more predetermined relative orientations.
- the switchable magnetic device further includes actuation means configured to cause relative rotation of the magnets, wherein the actuation means are additionally configured to be engaged by said at least one functional module to control the functionality of the switchable magnetic device.
- a gripping device configured to grip a surface
- said gripping device including at least one gripping means of the type having an evacuatable void adapted to sealably engage a surface, wherein said gripping means grips the surface by forming a suction force between the surface and the gripping means by partially evacuating the void, wherein said gripping device further includes at least one switchable magnetic device configured to produce an additional magnetic engagement with a surface when the surface is ferromagnetic.
- the gripping means is sealably engaged with a surface said at least one switchable magnetic device is in contact with or in close proximity to the surface.
- the magnetic engagement of the at least one switchable magnetic device acts to at least partially re-establish the sealing engagement of the gripping means with the surface, if the sealing engagement is partially or wholly broken.
- the gripping device can include actuation means to switch the switchable magnetic device between the on and or off position to enable attachment and or detachment of the gripping device to or from the surface respectively.
- the gripping device can also include one or more magnetic pole extension means which provide a relatively high permeability magnetic circuit to substantially conduct the external magnetic field of the switchable magnetic device to a ferromagnetic surface to increase magnetic attraction therewith.
- the gripping device can also include a plurality of gripping means or switchable magnetic devices.
- a coupling comprising a first magnetic device and a second magnetic device, the first magnetic device being a switchable magnetic device, said first magnetic device and said second magnetic device being arranged relative to each other such that said second magnetic device attracts the first magnetic device when the first magnetic device is off, and said second magnetic device repels said first magnetic device when said first magnetic device is on.
- the second magnetic device may comprises a magnet.
- the second magnetic device comprises a second switchable magnetic device and the first and second switchable magnetic devices repel each other when said first and second switchable magnetic devices are turned on.
- the first magnetic device is movable relatively towards and away from the second magnetic device.
- a coupling means including a switchable magnetic device, and at least one second magnetic means, said switchable magnetic device and said second magnetic means being arranged relative to each other such that when the switchable magnetic device is on and the second magnetic means is in contact with or in close proximity to the switchable magnetic device, the second magnetic means is relatively strongly attracted to the switchable magnetic device to thereby couple said the second magnetic means to the switchable magnetic device, and when said switchable magnetic device is off the second magnetic means is relatively weakly attracted to the switchable magnetic device such that the second magnetic means and switchable magnetic device can be decoupled.
- the coupling includes at least one additional magnetic means arranged relative to the second magnetic means such that when the switchable magnetic device is on and the second magnetic means is in contact with or in close proximity to the switchable magnetic device, and the and additional magnetic means are in contact with or in close proximity to the second magnetic means, the additional magnetic means are coupled to the second magnetic means, and when said switchable magnetic device is off the second and additional magnetic means is relatively weakly attracted to the switchable magnetic device such that the second magnetic means and additional magnetic means can be decoupled.
- the switchable device can be movable relatively towards and away from the second magnetic means.
- the additional magnetic means are preferably movable relatively towards and away from the second magnetic means and the switchable device.
- the at least one second magnetic means and or the at least one additional magnetic means can be ferromagnetic members.
- the coupling can also include actuation means configured to turn the switchable magnetic device off to allow decoupling of the coupling means.
- actuation means is additionally configured to turn the switchable magnetic device on to cause coupling of the coupling means.
- the coupling means may further include a plurality of spaced second magnetic means, and wherein the switchable magnetic device is movable such that the switchable magnetic device can be coupled to a chosen one of the plurality of spaced second magnetic means.
- a latching means including, a latching member, movable between an extended position in which it can be received into a latching recess to cause latching of the latching means, and a retracted position, a first magnetic means and a switchable magnetic device, movable relative to each other and mounted such that one of said, first magnetic means or switchable magnetic device is coupled to said latching member, such that actuation of the switchable magnetic device causes relative movement of the latching member.
- the first magnetic means is preferably a magnet.
- the switchable magnetic device or first magnetic means can be coupled to the latching member.
- the switchable magnetic device and first magnetic means are arranged relative to each other such that switchable magnetic device attracts the first magnetic means when the switchable magnetic device is on.
- the switchable magnetic device and first magnetic means are arranged relative to each other such that switchable magnetic device repels the first magnetic means when the switchable magnetic device is on.
- the first magnetic means can also be formed from a ferromagnetic material, and the switchable magnetic device and first magnetic means are arranged relative to each other such that switchable magnetic device attracts the first magnetic means when the switchable magnetic device is on.
- Either the first magnetic means or the switchable magnetic device can be mounted to the latching member.
- the device preferably further includes bias means to bias the latching pin into either the extended or retracted positions.
- the latching member and a first magnetic means are mounted to first member, and the switchable magnetic device is mounted to a second member which is movable relative to the first member, wherein the latching means is configured to latch the first member to the second member.
- the latching pin and first magnetic means, and the switchable magnetic device are mounted to first member and the latching member is adapted to be received into a receiving aperture of a second member which is movable relative to the first member, wherein the latching means is configured to latch the first member to the second member.
- the latching member may comprise the first magnetic member.
- a switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between an off position in which the device presents a relatively weak external magnetic field, and an on position in which the device presents a relatively strong external magnetic field, characterised in that the device further includes a low reluctance shunt mounted to at least a first portion of the housing configured to be at least partially magnetised when the device is in the off position such that the external magnetic field presented by the device adjacent to the first portion of the housing is negligible, and that the device further includes a high reluctance region between the magnets and a portion of an external surface of the device, wherein the high reluctance region has sufficient reluctance that the magnetic flux presented at said portion of the external surface of the device is substantially constant.
- the shunt is preferably almost magnetically saturated by the external magnetic field of the switchable magnetic device when the switchable magnetic device is in the off position.
- the shunt is preferably ferromagnetic.
- a switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between an off position in which the device presents a relatively weak external magnetic field, and an on position in which the device presents a relatively strong external magnetic field, characterised in that the device further includes a low reluctance shunt configured to be at least partially magnetised when the device is in the off position such that the external magnetic field presented by the device adjacent to the shunt is negligible.
- the shunt is configured such that when the device is in the on position the device presents a relatively strong external magnetic field adjacent to the shunt.
- the shunt is preferably separated from the magnets by an air-gap. More preferably the shunt is not magnetically saturated when the switchable magnetic device is in the off position, but is magnetically saturated when the switchable magnetic device is in the on position.
- a switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between an off position in which the device presents a relatively weak external magnetic field, and an on position in which the device presents a relatively strong external magnetic field, characterised in that the device further includes a high reluctance region between the magnets and a portion of an external surface of the device, wherein the high reluctance region has sufficient reluctance that the magnetic flux presented at said portion of the external surface of the device is substantially constant.
- the high reluctance region can be an air gap.
- the high reluctance region can be formed in any known manner including, by providing an outer shell surrounding the housing defining the high reluctance region, a spacer mounted externally to the housing, a void in the housing, a gap or non magnetic spacer between the magnets and the housing.
- the switchable magnetic device can further include a releasable holding means for releasably holding the magnets in a first relative orientation, said releasable holding means being releasable to allow the magnets to move to a second relative orientation.
- the switchable magnetic device includes actuation means for actuating the releasable holding means to release a said magnets.
- the actuation means preferably comprises a push button arrangement.
- the releasable holding means preferably releasably holds the biasing means.
- an electrical coupling configured to make an electrical connection with an external conductor, said coupling including at least one contact portion configured to make the electrical connection, and a switchable magnetic device configured to retain the contact portion in conductive contact with the external conductor when the switchable magnetic device is in the on position.
- the contact portion is mounted to the housing of the switchable magnetic device.
- the contact portion can be integrally formed with the housing of the switchable magnetic device.
- the electrical coupling can include two or more contact portions.
- the coupling further includes an electrically conductive circuit between said two or more contact portions.
- the coupling can also include cable receiving means adapted to receive and make electrical contact with an electrically conductive cable.
- the electrical coupling preferably also includes actuation means adapted to relatively rotate the magnets of the switchable magnetic device between the on and off states to selectively allow coupling and decoupling of the electrical coupling means.
- the coupling further includes electrical switching means configured to selectively prevent or allow electrical current to pass through the coupling.
- the actuation means can be associated with the electrical switching means such that an electrical current is prevented from passing through the coupling when the switchable magnetic device is in the off position.
- the electrical coupling can also include electrical insulation means.
- the coupling can advantageously be configured to be an earth coupling for welding.
- a switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between an off position in which the device presents a relatively weak external magnetic field, and an on position in which the device presents a relatively strong external magnetic field, characterised in that the relative orientation of the first and second magnets can be varied between the on and off positions to produce an external magnetic field of varying strength.
- the relative orientation of the first and second magnets is preferably continuously variable between the on and off positions.
- the relative orientation of the first and second magnets can also be incrementally variable between the on and off positions.
- a particle deflection means adapted to deflect charged particles moving past the deflection means, said deflection means including a switchable magnetic device configured to generate an external magnetic field to deflect said particles.
- a fluid coupling configured to make an fluid connection between a first fluid port and second fluid port, characterised in that said fluid coupling further includes at least one switchable magnetic device configured to retain the fluid ports in fluid communication with each other when the switchable magnetic device is in the on position.
- the fluid coupling can further include actuation means adapted to relatively rotate the magnets of the switchable magnetic device between the on and off states to selectively allow coupling and decoupling of the fluid coupling means.
- the fluid coupling may also include flow control means configured to control the flow of fluid between the first and second fluid ports.
- the actuation means is preferably associated with the flow control means such that fluid flow is prevented when the switchable magnetic device is in the off position.
- a suspension device having a first member suspended relative to a second member of the type including a first magnetic means associated with the first member and second magnetic means associated with the second member, characterised in that either said first or second magnetic means includes a switchable magnetic device.
- the first and second magnetic means can be arranged to repel each other when said switchable magnetic device presents a relatively strong external magnetic field.
- the first and second magnetic means can be arranged to attract each other when said switchable magnetic device presents a relatively strong external magnetic field.
- the first and second magnetic means can also be arranged to attract each other when said switchable magnetic device presents a relatively weak external magnetic field.
- the magnetic suspension device can further include damping means including an electrically conductive portion coupled to the first or second member such that relative movement of the first and second members causes the conductive portion to move in the magnetic field generated by the first or second magnetic means.
- the first and second members are preferably slideable relative to each other.
- the first magnetic means and or second magnetic means can include a switchable magnetic device.
- the external magnetic field of the switchable magnetic device can preferably be varied to vary the separation the first and second members when suspended.
- the suspension device can preferably comprise a damper or a shock absorber.
- a magnetic braking means of the kind in which the motion of a conductive member relative to a magnetic means can be decreased by application of a magnetic force to the conductive member, characterised in that the magnetic means includes a switchable magnetic device.
- the external magnetic field of the switchable magnetic device can be varied between a relatively low level and a large level so as to vary the rate of decrease of the relative motion of the conducive member and the magnetic means.
- the switchable magnetic device further includes indication means to indicate the relative orientation of the magnets.
- the indication means can indicate the relative orientation of the magnets prior to removal.
- the indication means may comprise the actuation means.
- FIG. 1A shows a plot of relative force against angular displacement showing the internal forces acting on the device as a function of angular displacement of the magnets relative to each other in the absence of an external magnetic circuit
- FIG. 1B is a similar plot to FIG. 1A but shown in the presence of an external magnetic circuit
- FIG. 2 shows a plot similar to that of FIG. 3 for a prototype switchable magnetic device showing relative force against angular displacement for a range of separations from an external magnetic circuit.
- FIG. 3 shows a plot of FIGS. 1 and 2 superimposed upon each other with an explanation as to the functioning of the first aspect of the present invention
- FIG. 4A shows the forces required for an explanation as to the functioning of the second and third aspects of the present invention
- FIG. 5A is reproduction of FIG. 2 of our co-pending international patent application no PCT/AU00/01505 showing one basic construction of the switchable magnetic device;
- FIG. 5B shows an end view of a device in accordance with an aspect of the present invention, showing an alternative shape for the pole pieces.
- FIG. 6 is a top view, partly in cross-section of a switchable magnetic device in accordance with an embodiment of the present invention.
- FIG. 7 shows a top view of a switchable magnetic device for use with the second and third aspects of the present invention
- FIG. 8 shows a top view, in cross-section, of an embodiment of the invention using a torque sensitive lever as the actuation means
- FIG. 9 illustrates the forces involved in a fail-safe arrangement embodying the present invention
- FIG. 10 shows the relationship between the angle of rotation and the external magnetic field in a device in accordance with an embodiment of the present invention
- FIG. 11A shows a collection tray employing a switchable magnetic device according to an embodiment of the present invention
- FIG. 11B shows a cutaway view of a base portion of the collection tray of FIG. 11A
- FIGS. 12A and 12B show schematic representations of a latching mechanism using a switchable magnetic device to actuate movement of a locking pin
- FIGS. 13A and 13B show a second variation of a latch mechanism employing a switchable magnetic device
- FIGS. 14A and 14B show a further embodiment of a latching mechanism which includes a switchable magnetic device according to an embodiment of the present invention
- FIGS. 15A and 15B show a cutlery block incorporating a switchable magnetic device
- FIG. 16 shows an exemplary embodiment of an orientation control system for a satellite which includes a switchable magnetic device
- FIGS. 17A and 17B show embodiments of a hybrid vacuum/magnetic holder including a switchable magnetic device
- FIG. 18 shows a switchable magnetic device having a modular construction
- FIGS. 19 and 20 show schematic diagrams demonstrating the principle of operation of a further coupling in accordance with a further aspect of the present invention
- FIG. 21 shows a schematic cutaway view of a tunable suspension assembly using a switchable magnetic device
- FIG. 22 shows a first embodiment of an adjustable braking systems using a switchable magnetic device
- FIG. 23 shows a second embodiment of an adjustable braking system using a switchable magnetic device.
- FIG. 1A shows a graph of the relative force required to turn the actuation means of the switchable magnetic device described in our co-pending international patent application number PCT/AU00/01505 with angular displacement.
- the force required to switch the device into the “on” position (which is represented at an angular displacement of 180° in the graph of FIG. 1A) is high if the external magnetic permeability is low. This is due to the high intrinsic magnetic field strength of the device when no high permeability external magnetic circuit is present. Thus, work has to be performed to overcome the resistance produced by this intrinsic magnetic field.
- Rotation of the magnets toward the on position i.e. 180° on FIG. 1A, converts mechanical energy to magnetic potential energy which is stored in a high flux density repulsion field between the poles.
- FIG. 1B shows the same graph as FIG. 1A, but with the switchable magnetic device being in the presence of an external magnetic path of high permeability. This may be achieved, for example, by placing the device in contact with, or in close proximity to, an external ferromagnetic material, such as occurs when the magnet is attached to an external iron load.
- an external ferromagnetic material such as occurs when the magnet is attached to an external iron load.
- FIG. 1B although the general shape of the graph is similar to that of FIG. 1A, the relative force required to move the magnets between the off position and the on position is much lower than when there is no high permeability external magnetic circuit.
- the force required to move the magnets between the off and on positions in FIG. 1B is lower than that in FIG. 1A because the high permeability of the external magnetic circuit results in the magnetic flux finding an easier, external path, which diverts some of the magnetic flux from between the repelling poles.
- an angular displacement force tries to return the magnets towards 0° or 360° orientation (ie the fully off position) except at 180° (ie the fully on position) at which clockwise and counter clockwise forces hold a balance, albeit an unstable or quasi-stable equilibrium.
- FIG. 2 shows a series of plots of the relative force required to turn the actuation means of a prototype switchable magnetic device plotted against angular displacement. Each separate plot is a representative of the turning force when the switchable magnetic device is at a different separation distance from a ferromagnetic substrate.
- Plot 2001 shows the angle of the force vs angular displacement when the switchable magnetic device is unloaded, that is it is not in close proximity to a ferromagnetic surface.
- Plot 2002 shows the force vs angular displacement when the switchable magnetic device is 3.5 mm from the external magnetic article.
- Plots 2003 , 2004 and 2005 show the force vs angular displacement when the switchable magnetic device is 2 mm, 0.5 mm and 0.1 mm respectively away from the magnetic circuit.
- Plot 2006 shows the force vs angular displacement when the switchable magnetic device is in contact with a ferromagnetic material. As can be seen from these plots as the switchable magnetic device is brought closer to an external ferromagnetic article the force required to rotate the magnets of the switchable magnetic device reduces significantly. When the switchable magnetic device is in contact with an external ferromagnetic circuit the peak force required to rotate the magnets between the off position (0 degrees) and on position (180 degrees) is less than 20% of the peak force required when the switchable magnetic device is unloaded.
- the magnetic device includes a biasing means operatively associated with the magnets to bias the magnets away from the fully off position.
- a biasing means operatively associated with the magnets to bias the magnets away from the fully off position.
- the device in accordance with the first aspect of the present invention when the device in accordance with the first aspect of the present invention is placed in close proximity to, or in contact with, an external ferromagnetic material, the device automatically switches to the on position.
- the device of the first aspect of the present invention may be said to have an “automatic turn-on” feature.
- the biasing means acts to hold the actuation means away from the fully off position.
- the biasing means may apply a force F as shown in FIG. 3, which biases the actuation means away from the 0° or fully off position, when there is no external magnetic circuit present.
- the biasing force F applied by the biasing means holds the actuation means at approximately 30° from the fully off position when there is no external magnetic circuit.
- force F is greater than the force F 1 required to move the magnets and hence the device automatically moves to the on position.
- the biasing means applies a rotational force F to the magnets.
- a maximum force F 2 is required to move the device to the “on” position. As F is less than F 2 , the device does not move to the “on” position in the absence of an external magnet circuit. However, once an external magnetic circuit is in place (plot 32 ), the maximum force that needs to be applied to move to the “on” position reduces to F 1 . As the force F provided by the biasing means is greater than F 1 , the device automatically moves to the “on” position when an external magnetic circuit is completed.
- a biasing means which applies approximately 2 Newtons of force would not rotate the magnets into the on position when the switchable magnetic device is unloaded but would rotate the magnets to the on position once the switchable magnetic device was placed within 0.1 mm, or in contact with an external ferromagnetic article.
- the 2 Newtons of force of the biasing means would cause the magnets to rest at a relative orientation of approximately 35° when the switchable magnetic device is unloaded.
- the embodiments in accordance with the second and third aspects of the present invention may be described as including an “automatic off” feature in which the device automatically turns off if an external magnetic circuit is removed, for example, by forcibly removing the device from an external ferromagnetic material.
- the “automatic-off” feature is achieved by preventing the magnets from rotating into “fully on” position. This action may be explained with reference to FIG. 4A, which is a plot of angular displacement against the relative force, together with FIGS. 6 & 7.
- Plot A shows the force for the case where there is no external magnetic circuit
- Plot B shows the force where there is an external magnetic circuit.
- the device may utilise the internal friction of the device, or a purpose built overridable retaining device may be used.
- the reset feature is triggered when the external magnetic path is interrupted.
- FIG. 4A illustrates the applicable forces in an embodiment of the automatic off configuration relying on the internal friction of the device.
- the device is switched on to, say, 175°, (FIG. 7), ie, it is not in the 180° quasi-equilibrium position, and that the device is in contact with, or close proximity to an external magnetic circuit, such as a ferromagnetic material.
- Plot B represents the repulsive rotational force caused by magnetic repulsion between the magnets in this condition.
- W (FIG. 4A), acting to rotate the magnets to the “off” orientation.
- the internal friction at 175° is shown at X.
- This frictional force resists the repulsive magnetic force W, and because the frictional force is greater than W, the switch remains in the 175° position as long as the high permeability external magnetic path is in place. If the external high permeability path is broken, the repulsive force between the magnets becomes that shown by Plot A, and the repulsive force becomes Y, which is greater than X. As a result, the movable magnet is driven towards the off position until the repulsive magnetic force of Plot A and the frictional force are in equilibrium at Z.
- friction line is shown in FIG. 4A as a straight line, the friction force may vary with rotation due to, eg, the effect of the change in the magnetic interaction between the magnets with position.
- Other factors besides friction may also assist in retaining the device in the on position when in the presence of an external magnetic circuit.
- a trippable latching mechanism which will yield under the Plot A magnetic repulsion, may be used.
- One embodiment of such a latch is similar to a triangular sectioned spring loaded door latch with a perpendicular “leading” edge in the turn on direction, and a sloping trailing edge.
- This spring-loaded latch can engage with a suitable recess at the desired angle of rotation (eg, 175°) on the other part of the relatively moving pair of magnets or their respective carriers. The spring tension can be adjusted to control the automatic turn off force while providing a more predictable latching force.
- the switchable magnetic device incorporates the automatic on feature and an automatic-off feature.
- the automatic-on feature is similar to that of the first aspect of the present invention and the automatic off feature is similar to that of either the second or third aspects of the present invention.
- the biasing means operatively associated with the actuation means preferably includes one or more springs.
- the biasing means may include air pressure means, pneumatic means, bimetallic spring or indeed any other suitable means for applying a biasing force.
- the biasing means applies a biasing force such that the first and second magnets are offset by about 10° to 60°, more preferably 20° to 40°, most preferably about 30° from the fully off position when no external magnetic circuit is present.
- the rotation limiting means may comprise a stop means preventing rotation of the actuation means to the fully on position.
- the rotation limiting means may comprise stop means inter-engaging with one or both of the first and second magnets for preventing rotation of the first and/or second magnets into the fully on position.
- the stop means may comprise a retractable engaging member that moves into a recess formed in a surface of one of the magnets when the recess moves into alignment with the retractable member as the magnet is rotated towards the on position.
- an inclined or tapering surface may be provided in order to enable the retractable member to be disengaged from the recess in the magnet.
- the basic device described in our co-pending international patent application no PCT/AU00/01505 and US09/951905 includes a first magnet 10 and a second magnet 11 .
- Both magnets 10 , 11 are generally disc shaped magnets and are similar to magnet 1 as shown in FIG. 1 of PCT/AU00/01505.
- Magnets 10 , 11 are housed in a housing that is made from pole pieces 12 , 13 .
- Pole pieces 12 , 13 are preferably made from a material that is ferromagnetic with low magnetic reluctance.
- the pole pieces 12 , 13 are arranged such that they fixedly hold lower magnets 10 in a fixed position.
- the upper magnet 11 is able to be rotated within the housing formed by pole pieces 12 , 13 .
- the magnet 11 is formed with notches or grooves 14 , 15 along its vertical side walls. These notches or grooves 14 , 15 receive the downwardly depending arms 16 , 17 of bar 18 . Bar 18 is received inside a groove 19 formed on boss 20 . Boss 20 is connected to a short bar 21 that, in turn, is fixedly connected to a handle or lever 22 . By this means, rotation of handle or lever 22 causes rotation of second magnet 11 . It will be appreciated that second magnet 11 rotates essentially about its centre point.
- the device further includes a top cover 23 that is fixedly secured to the housing formed by pole pieces 12 and 13 .
- Cover 23 seals the top of the housing formed by pole pieces 12 , 13 .
- boss 20 extends through an opening in top cover 23 and that sealing member 24 assists in forming a water tight and dust proof seal around that opening.
- the lower surface of lower magnet 10 formed part of the lower surface of the device.
- the lowest surface of the lower magnet 10 is positioned such that it lies essentially adjacent to the lower surfaces of respective pole pieces 12 , 13 .
- the lower surface of the device is provided by a lower cover (not shown).
- it is preferred that the device is substantially sealed, such that it is substantially waterproof and dustproof. This enables the device to be used in harsh environments, such as dusty environments, wet environments, or even fully submerged.
- FIG. 6 shows a switchable magnetic device in accordance with the present invention
- the basic device of FIG. 6 is generally similar to that shown in FIG. 5 and like features have been denoted by like reference numerals.
- the device shown in FIG. 6 includes embodiments of the first aspect of the present invention and embodiments of the second aspect of the present invention. It will be appreciated that other embodiments of the invention may provide the auto-on feature of the first aspect of the present invention or the auto-off feature of the second or third aspects of the present invention.
- the device of FIG. 6 also includes a biasing spring 30 in the form of a coil spring connected at one end 31 to pole 13 and at its inner end to the shaft 21 .
- Coil spring 30 biases the shaft 21 such that when there is no external magnetic circuit present the shaft 21 , and consequently the top rotatable magnet is held at an angle a, of about 30° from the fully off position.
- the fully off position is denoted by reference numeral 32 .
- a high reluctance external magnetic circuit leads to a balance between the force provided by biasing spring 30 , which tries to turn the device to the on position and the resistance of the internal magnetic field counteracting this force. This results in the device adopting a stable stand-by state. Closing the external magnetic circuit with a sufficiently low reluctance path will lower the internal magnetic field and the force provided by the biasing spring will now be sufficient to switch the device to the on position.
- the device may be provided with a stop member 33 located before 180°, say at 175°.
- the stop member 33 may be as simple as a projection extending upwardly from the upper surface of the pole piece 12 of the device, which engages with it as lever 22 is turned towards the fully on position. Stop member 33 prevents the lever 22 from rotating to the fully on position. It is preferred that the lever 22 is allowed to rotate close to but below 180°, which allows the device to almost, but not quite, go into the fully on position. In this case, the device will return automatically to the low external field state if the external magnetic circuit is forcefully removed as described above. While the low reluctance external path is in place, the internal friction may be sufficient to hold the magnets in the switched on positioned, as discussed with reference to FIG. 4A.
- the rotation of the lever 22 can be permitted to go beyond 180° to a stop member (not shown) at, say 185°.
- a stop member not shown
- the internal magnetic field will push the movable magnet against the stop.
- the device will remain in the fully on position if the external magnetic circuit is forcefully removed This may be thought of as the equivalent of a magnetic over-the-centre toggle.
- the handle may comprise a torque sensitive lever that does not allow a torque in excess of a predetermined amount to be applied to the one magnet.
- a torque sensitive lever that does not allow a torque in excess of a predetermined amount to be applied to the one magnet.
- This feature may be utilised as a fail-safe feature to prevent an attempt to connect to an object where the magnetic coupling to the object is insufficient to safely lift the object.
- the turning mechanism eg handle or lever
- the turning mechanism is connected to the movable magnet through a torque sensing spring mechanism as shown in FIG. 8.
- the relevant forces are shown in FIG. 4B. If the required force to overcome the repulsive magnetic force exceeds the threshold shown in FIG. 9, eg as shown at V on Plot C, this is an indication that insufficient flux has been diverted to the external magnetic path or, in other words, the reluctance of the external path is too high.
- the torque limiting device may act as a lost motion device allowing the lever to continue turning, but preventing transfer of the rotation to the movable magnet.
- FIG. 8 shows an embodiment of the invention utilising a torque lever as the actuation means.
- shaft 21 is surrounded by an inner ring 40 and an outer ring 41 .
- Inner ring 40 contains a recess for receiving the pointed end of a piston 42 .
- Outer ring 41 includes a passageway through which the piston 42 passes.
- Piston 42 is contained within an outer casing 43 .
- Piston 42 is spring loaded by virtue of compression spring 44 which is positioned inside casing 43 and extends between piston 42 and adjustable grub screw 45 . If an attempt is made to turn the lever 22 without an external magnetic circuit being present, the resistance to turning caused by the internal magnetic field of the device results in the force applied to the lever 22 exceeding a present value.
- turning handle 22 is connected to the rotatable magnet via a flexible link, such as a spring 50 .
- Spring 50 is selected such that it does not substantially deform if the turning handle 22 is rotated when the device is in the presence of an external magnetic circuit, such as when the device is placed on a ferromagnetic material.
- the force required to rotate the magnet is much greater (see FIG. 1) and the spring 50 deforms. This results in the turning handle rotation being taken up by the deformation in the spring 50 and thus the magnet does not rotate.
- the turning handle may be rotated sufficiently far such that the spring 50 is fully deformed (or compressed) and further rotation of the turning handle 22 is translated into rotation of the magnet.
- FIGS. 1A-4B have been provided to illustrate the principles involved in the present invention.
- shape of the force vs angular displacement curves shown in FIGS. 1A to 4 B are not necessarily correct and the actual shape of the curve may vary from that illustrated.
- FIG. 10 shows the analogue relationship between the angle of rotation and the variation of the external magnetic field.
- the exact characteristics of the curve depend on the way the magnets are magnetised in their physical shape as well as the shape of the poles ( 12 , 13 of FIG. 5A). Variation of the ratio of the magnetic energy output of the magnetic discs 10 , 11 can achieve further modification of the curve in FIG. 10 to suit particular applications.
- FIG. 5B indicates the design of the pole pieces 12 , 13 shaped in accordance with the variation of the field strength H around the perimeter of the magnetic discs 10 , 11 .
- the application of the inverse square law of magnetic fields achieves good results but specific materials and applications influence the optimal pole shape. It has been ascertained that the wall thickness of the poles may be varied in a number of was including the following:
- oval poles where the wall thickness is a mathematical function of the field strength of the perimeter of the magnets
- oval poles where the wall thickness is a mathematical function of the distribution of the magnetic mass of magnets 10 and 11 ;
- FIG. 5B shows an embodiment having oval-shape poles which maximises the external field strength and assists in holding the device in place in incomplete magnetic circuits. Incomplete magnetic circuits are met in practice when there is an air gap between the bottom of the device and the surface to which it is to be attached, or where there is a non-magnetic material interposed between the surface to which the device is attached and the bottom of the device.
- the poles are of the shortest possible length.
- the poles form part of the magnetic circuit (along with the magnets) and have an inherent magnetic resistance (“reluctance”) which results in loss of magnetic energy.
- reluctance inherent magnetic resistance
- Embodiments of the present invention may be used as a switchable magnetic holding device.
- the device may be used to clasp onto surfaces, especially metal surfaces. All sides of the switchable magnetic device can be utilised for attaching to magnetic materials.
- the holding force generated at different points around the housing will also vary.
- the surface to which the device is affixed is located adjacent or underneath a lower surface of the lower magnet. In other embodiments, the surface to which the device is affixed is located adjacent or beside the side surfaces of the magnets.
- up to four sides of the switchable magnetic device can be used.
- each of the four sides of the switchable magnetic device can be used in a “flux-constant” arrangement by providing a suitable air gap or high reluctance path between the surface of the switchable magnetic device and the surface to which it is attached.
- the present invention is based on a switchable magnetic device as described in our previous co-pending application PCT/AU00/01505, thus the inventors have ascertained that that embodiments of the various aspects of the present invention can advantageously be made in a modular fashion.
- the present invention additionally relates to a modular construction for a switchable magnetic device and modules used in such a device.
- FIG. 18 An embodiment of a switchable magnetic device having a modular construction will now be described with reference to FIG. 18.
- the basis of the modular switchable magnetic device 2000 is a switchable magnet device 2010 as described in connection with FIG. 5A and as further described in PCT/AU00/01505.
- the rotation limiting module 2020 is adapted to limit the rotation of the rotatable magnet to a predetermined angular range.
- a rotation limiting module 2020 can comprise a flat plate with a slot or aperture that is adapted to receive a pin or stop mounted on the top rotatable magnet of the switchable magnet device 2010 .
- the slot is sized and shaped such that the range of angular rotation of the rotatable magnet is limited by the allowed travel of the pin or stop within the slot or aperture.
- the rotation limiting module 2020 may limit the range of angular rotation of the rotatable magnet to 180 degrees from the fully off position so that a user can easily turn the switchable magnetic device into the on position by fully rotating the actuation means.
- the rotation limiting module 2020 may limit the range of angular rotation of the rotatable magnet to 185-190 degrees from the fully off position to take advantage of the “over centre toggle” operation of the switchable magnetic device as described above.
- the rotation limiting module 2020 may limit the range of angular rotation of the rotatable magnet to less than 180 degrees from the fully off position, for example 170 degrees, to provide an automatic turn-off function as described above.
- the spring module 2030 includes a housing having a rotatable portion mounted therein which adapted to receive the actuation shaft of the switchable magnet device 2010 , and one or more biasing means coupled to the rotatable portion to bias the actuation of the switchable magnet device 2010 .
- the spring module can provide automatic turn-on functionality.
- the operation mode selection module 2040 includes two buttons 2050 , 2060 which can be used to activate the automatic on or automatic off functions of the switchable magnetic device 2010 .
- the operation mode selection module 2040 can be used with or without the rotation limiter module, and acts to selectively limit the range of angular rotation of the rotatable magnet to certain predetermined ranges which provide automatic off or “over centre” functionality.
- the operation mode selection module 2040 may also be configured to interact with the spring module to selectively allow tensioning of the bias means to above the threshold level to activate the automatic-on mode.
- the operation mode selection module 2040 may also include a locking means to lock the actuation means in a certain predetermined orientations, such as the on or off positions.
- the switchable magnetic device may be produced in large numbers and appropriate module(s) added thereto, depending upon the described use of the product. It will also be appreciated that modules with different functionality to those described above may be used.
- FIG. 11A shows a collection tray 1000 employing a switchable magnetic device to according to an embodiment of the present invention.
- a collection tray can be magnetically attached to a ferromagnetic support surface 1050 and be used to collect ferromagnetic articles.
- the magnetic fields at both the top and the bottom of the switchable magnetic device are utilised.
- the magnetic field at the bottom of the switchable magnetic device 1040 is used to retain the collection tray on the support surface 1050
- the magnetic field at the top of the switchable magnetic device 1040 is used to retain ferromagnetic articles in the collection well 1030 of the tray 1010 .
- FIG. 11B shows a cutaway view of a base portion 1020 of the collection tray 1000 .
- the base 1020 includes a switchable magnetic device 1040 .
- the extent and permeability of any external magnetic circuit attached to the collection tray 1000 either in the form of articles retained in the bowl 1010 , or in the form of a ferromagnetic surface on which the bowl is supported, will affect the magnetic field generated by the switchable magnetic device.
- it is desirable that the magnetic field available to hold the tray 1000 to the support surface 1050 is generally independent of the thickness and magnetic properties of the support surface 1050 .
- a collection tray having these desirable magnetic quality can be achieved by providing the high permeability shunt 1060 in the air gap 1061 between the collection well 1030 of the bowl 1010 , and the top surface of the switchable magnetic device 1040 , and by providing a second, larger air gap 1070 between the bottom surface of the switchable magnetic device 1040 and the support surface: 1050 .
- the residual field shunt 1060 should have as low a reluctance as possible.
- the size of the shunt 1060 and the material for the shunt 1060 should chosen so as to be so small that any residual magnetic flux when the switchable magnetic device 1040 is in the off position will almost saturate the shunt.
- the switchable magnetic device 1040 is switched to the on position the residual field shunt 1060 becomes saturated and thus effectively becomes an air gap.
- the air gap 1061 should be significantly smaller than the air gap 1070 .
- the operation of the collection tray is further enhanced by the fact that when the switchable magnetic device 1040 is turned off the magnetic field within the collection well 1030 of the tray 1010 rotates and reverses its direction. This helps to demagnetise the collected particles.
- a further application of a switchable magnetic device is in magnetic latches and couplings for use in doors or windows or the like.
- Latches incorporating a switchable magnetic device generally fall into two categories, namely those using switchable permanent magnet to actuate a moveable locking element or the like, and those which use magnetic attraction as a securing means.
- a number of embodiments of latches will now be described which utilise one or the other of these latching mechanisms. Whilst these exemplary embodiments will be described in connection with latching doors or windows it is envisaged that these embodiments may be generally applicable to latching any moveable article, for example tool box lids, cupboard doors etc.
- FIGS. 12A and 12B show schematic representations of a latching mechanism using a switchable magnetic device to move a locking pin.
- the latch includes two portions, the first portion 1200 which may be mounted within a door or the like, and the second portion 1210 which may be mounted in the door jamb or other surface against which the door closes.
- the portions 1200 and 1210 of the latch may be interchangeably mounted in the door or door jamb.
- the first portion 1200 of the locking device includes a switchable magnetic device 1220 having an actuation member 1225 attached thereto.
- the actuation member 1225 is further attached to a handle or other means to allow movement of the actuation member 1225 .
- Attached to the other side of the switchable magnetic device is a ferromagnetic mating recess 1230 into which a locking pin can be received.
- the first portion 1200 generally comprises a recess in a ferromagnetic material which may have a magnetic field selectively applied to it.
- the second component 1210 is slideably mounted to the door jamb, and includes a permanent magnetic portion 1240 mounted to a slideable locking pin 1250 .
- the second portion 1210 is mounted in a recess in either the door or door jamb at a suitable position to engage the first portion 1200 when the door is in the locked position.
- FIG. 12A the switchable magnetic device 1220 is turned off and therefore the ferromagnetic recess 1230 has no magnetic field.
- the permanent magnet 1240 mounted on the slideable locking pin 1250 will be attracted toward the ferromagnetic material of the recess 1230 , as denoted by arrows 1260 .
- This draws the locking pin 1250 into the recess 1230 and locks the two components 1200 and 1210 , thereby locking the door to the door jamb.
- the switchable magnetic device 1220 is turned on creating an external magnetic field.
- FIG. 12B shows a similar view to that of FIG.
- switchable magnetic device is generating an external magnetic field.
- the polarity of the external magnetic field generated by switchable magnetic device 1220 is aligned with that of the fixed permanent magnet 1240 mounted on the locking pin 1250 .
- the alignment of the magnetic fields of the permanent magnet 1240 and the switchable magnetic device 1220 causes a repulsive force to be set up between the magnetic elements which pushes the locking pin 1250 from the recess 1230 of the first component 1200 , and thus unlock the door.
- One preferred embodiment includes both the slideable locking member having the permanent magnet and the switchable magnetic device in the door, and uses an attractive force created by the counter alignment of the magnetic fields to retract the locking pin fixed to the permanent magnet into the door.
- locking can be achieved either through biasing the locking pin into the locked position using a spring or the like, or by allowing the permanent magnet to be attracted to ferromagnetic striking surface on the door jamb.
- FIGS. 13A and 13B show a second variation of a latch mechanism employing a switchable magnetic device of the type described above.
- the latch 1300 includes a switchable magnetic device 1310 , which will typically be mounted on a door or the like, and striker plate 1305 mounted to a door jamb.
- the striker plate 1305 and switchable magnetic device 1310 are aligned such that when the door is closed the switchable magnetic device 1310 comes into contact with the striker 1305 .
- the striker 1305 is made from a ferromagnetic material.
- the switchable magnetic device is not used to actuate a locking pin or other mechanical latch means, but rather that it creates a magnetic attraction between the door and the door jamb which must be overcome to open the door, thus the magnetic attraction provides the securing element of the latch 1300 .
- a switchable magnetic device having an automatic-on feature as described in relation to FIG. 6 is preferably used.
- a switchable magnetic device additionally having an automatic-off feature can also be used, as will be described below.
- the switchable magnetic device with automatic-on creates a small residual magnetic field which, causes a force drawing the door toward the latched position when the door is in close proximity with the striker.
- the switchable magnetic device is triggered into the “on” position causing a much larger magnetic field which latches the door to the striker 1305 .
- the door can now only be opened if sufficient force is applied to the latch to separate the switchable magnetic device 1310 from the striker 1305 , or by switching the switchable magnetic device to the “off” position. Switching the switchable magnetic device 1310 to the off position is achieved by turning the handle 1330 , which is attached to the actuation means 1320 of the switchable magnetic device 1310 .
- Latches according to this embodiment are particularly suited to uses where privacy rather than security is required, such as in internal doors in hospitals, aged care facilities or the like.
- the ability to forcibly open the door without tools renders the latch particularly suited for environments in which emergency access to a room is required.
- a switchable magnetic device having an automatic-off facility as described in relation to FIG. 7 can advantageously be used. This ensures that in an situation where a door is forcibly unlatched the switchable magnetic device automatically returns to a low magnetism state.
- FIGS. 14A and 14B show a further embodiment of a latching mechanism which includes a switchable magnetic device according to an embodiment of the present invention.
- the latch 1400 of this embodiment is suited for latching articles with multiple components, such as concertina type doors or windows with shutters etc.
- the latch 1400 includes a variable number of components, depending on the number of movable parts to be latched, and includes a switchable magnetic device 1410 which is held in fixed relationship to the desired latched position, and an end plate 1420 which is formed of ferromagnetic material, mounted in a position aligned with the switchable magnetic device 1410 on the farthest component of the plurality of movable parts to be latched.
- an intermediate latching member 1430 which is also formed of ferromagnetic material.
- the switchable magnetic device 1410 is turned off and the movable parts of the article are free to move as there is little or no residual magnetic field.
- the switchable magnetic device 1410 can be turned on and a magnetic circuit is set up between the intermediate latching members 1430 , end plate 1420 and the switchable magnetic device 1410 , thus holding the movable parts in a latched position.
- the coupling 3100 comprises a first switchable magnetic device 3102 and a second switchable magnetic device 3104 .
- both switchable magnetic devices 3102 , 3104 are in an “on” position.
- devices 3102 , 3104 are arranged such that when they are in the “on” position, their respective north and south poles are in alignment.
- the two magnetic devices 3102 , 3104 repel each other.
- switchable magnetic device 3102 has been switched to the “off” position so that it presents a relatively weak or insignificant external magnetic field.
- switchable magnetic device 3102 includes ferromagnetic material, it is attracted to second switchable magnetic device 3104 , which is still in the “on” position.
- the coupling 3100 can actively couple. Switching the switchable magnetic device 102 to the “on” position shown in FIG. 19 will cause repulsion and the coupling will actively uncouple.
- the coupling shown in FIGS. 19 and 20 also allows second switchable magnetic device 3104 to be switched to an “off” position. If switchable magnetic devices 3102 , 3104 are both switched to an “off” position, the coupling goes into a passive state in which neither attraction nor repulsion occurs. If such a passive state is not required, on of the switchable magnetic devices 3102 , 3104 may be substituted by a magnet, such as a permanent magnet.
- the first and second magnetic devices should be arranged such that they can move relatively towards and away from each other to allow coupling and uncoupling thereof.
- the first magnetic device can be mounted in a door
- the second magnetic device mounted in a doorjamb, such that opening and closing of the door
- first and/or second magnetic devices are switchable magnetic devices, they are preferably as described with reference to any the of the exemplary switchable magnetic devices described herein.
- a similar principal to the latch for concertina type doors can be used to lock articles into a holder.
- the holder described in connection with FIGS. 15A and 15B is described as a cutlery holder, however as will be appreciated the holder can also be used to hold non-ferromagnetic articles of relatively narrow thickness, and therefore should not be viewed as being limited to holding ferromagnetic articles or cutlery.
- FIGS. 15 A and 1 SB An embodiment of a holder using a switchable magnetic device which is adapted to hold cutlery will now be described in connection with FIGS. 15 A and 1 SB.
- Unsecured cutlery can be a hazard in the kitchen, especially for children.
- previously known means for locking knives or the like into knife blocks have been limited to mechanical devices which are relatively limited in their application, in so far as, that they are generally only able to lock specific sized knives in predetermined slots in a knife block.
- FIGS. 15A and 15B show a cutlery block incorporating a switchable magnetic device, which overcomes many of the drawbacks of previously known cutlery blocks.
- FIGS. 15A and 15B show an exemplary cutlery block 1500 which is configured to hold 4 knives 1505 .
- a holder of the type described can be designed that will hold more or fewer items than the present embodiment and therefore the present aspect of the invention should not be considered to be limited to any particular holding capacity.
- FIG. 15A the switchable magnetic devices are shown in their off position and cutlery can freely be withdrawn from, and placed into the block.
- FIG. 15B shows the cutlery block in a configuration in which the cutlery is locked.
- the cutlery block 1500 includes a main body 1510 which will typically have a plurality of cutlery receiving apertures or slots therein (not shown).
- the cutlery block 1500 also includes two switchable magnetic devices 1515 on opposite sides of the block 1510 in alignment with a row of cutlery 1505 to be held in the block.
- the one or both of the switchable magnetic devices 1515 are slideably mounted so that the relative separation between the switchable magnetic devices can be varied.
- the switchable magnetic devices 1515 are mounted such that when they are turned on their magnetic poles are oppositely aligned.
- Mounted between the switchable magnetic devices 1505 are a plurality of slideable intermediate members 1520 which are made from high permeability ferromagnetic material. The facing surfaces of the intermediate members 1520 and switchable magnetic devices 1515 define gaps into which the cutlery 1505 is inserted.
- the two switchable magnetic devices 1515 are turned on. This sets up a magnetic field which is conducted through a magnetic circuit formed by the switchable magnetic devices 1515 , slideable intermediate members 1520 and the engaged portions of the articles of cutlery 1505 , which firmly holds the cutlery in the block, clamped between the switchable magnetic devices 1505 and the intermediate members.
- a number of additional magnetic circuits are set up as the items being clamped are typically ferromagnetic. Magnetic circuits between adjacent items of cutlery are also present which act to increase the clamping force on the cutlery.
- the actuation means of the two switchable magnetic devices 1515 are connected together in such a way that they can be turned on and off in concert.
- the ends of the intermediate members can additionally be contoured to suit particular articles of cutlery, such as sharpening steels or the like, in order to produce the maximum holding force.
- FIG. 17 Another application of a switchable magnetic device in is a holding device which can be advantageously used to grip surfaces with ferromagnetic properties, such as sheet-metal, motor car panels, refrigerators etc.
- the preferred embodiment of the holding device is a hybrid between a suction cup, or vacuum pad, and a magnetic holder.
- the holding device 1700 shown in FIG. 17 includes a deformable skirt portion 1710 , which is generally similar to those used in known suction cups or vacuum pads, and a switchable magnetic device 1720 centrally mounted on the skirt 1710 .
- the deformable skirt portion 1710 operates in the same manner as prior art suction cup and creates a suction force towards the surface 1730 by partially evacuating the air from inside the void formed between the skirt 1710 and the surface 1730 .
- the switchable magnetic device 1720 generates a magnetic attraction towards the surface when it is turned on and thereby acts to re-establish or maintain the seal between the deformable skirt portion 1710 and the surface if the seal is broken or partially broken.
- a valve can be added to allow release of the suction pressure.
- the same actuation means can be used to turn off the switchable magnetic device 1720 and release the suction in the skirt 1710 .
- a switchable magnetic device having an automatic turn-on feature will be particularly advantageous in the present embodiment. If such an switchable magnetic device is employed, the user can simply push the holder onto the surface to attach the holder. The act of pushing the holder will evacuate the skirt to create a suction force, and also to turn on the switchable magnetic device to generate the magnetic holding force.
- FIG. 17B shows an alternative embodiment of a holder 1701 similar to that shown in FIG. 17A. Like parts have been like numbered. The only difference between the two embodiments is the addition of a substantially rigid support shell 1740 in the embodiment of FIG. 17B.
- the support shell can be made of a plastics material and be used to provide added stability and prevent rocking of the holder which may cause breaking of the seal between the skirt 1710 and the surface 1730 .
- the support shell includes at least two portions e.g. 1750 which are formed of ferromagnetic material, and which extend from a position adjacent the switchable magnetic device to the peripheral edge 1760 of the shell 1740 , and act as magnetic pole extensions.
- the ferromagnetic portions of the shell 1740 are positioned such that they are come into contact with the surface on which the holder 1700 is engaged when the suction and magnetic field is applied. Therefore, as the magnetic pole extensions are be closer to the surface than the main body of the switchable magnetic device 1720 the magnetic attraction between the holder 1700 and the surface is increased.
- Switchable magnetic devices present advantages over permanent magnets for applications in which stray magnetic fields may cause damage, for example in space and satellite applications. Because switchable magnetic devices can be put into an “off” state in which the external magnetic field produced by the device is minimised, the chances of the switchable magnetic device interfering with the launch craft or satellite systems are reduced.
- a plurality of switchable magnetic devices can be used to control the orientation of a satellite in orbit around a planet.
- An orientation control system (OCS) for a satellite which employs at least one pair of switchable magnetic device and a method for controlling such a satellite will now be described in connection with FIG. 16.
- the OCS depicted in FIG. 16 includes three pairs 1610 , 1620 , 1630 of switchable magnetic devices which are mounted to the satellite and controlled by the satellite's guidance system.
- Each of the pairs 1610 , 1620 , 1630 of switchable magnetic devices interacts with the planet's magnetosphere and is used to control the orientation of the satellite in one plane and achieves this in a manner analogous to a compass needle.
- the switchable magnetic devices 1610 , 1620 , 1630 are each rotatably mounted on the satellite and are driven, by a drive means, in concert with its counterpart to choose the direction of rotation of the satellite during reorientation.
- Each pair of switchable magnetic devices control the orientation of the satellite in one plane.
- a switchable magnetic device can also be used to create a magnetic field to deflect electrically charged or magnetic particles.
- the degree of deflection can be controlled by varying the external magnetic field produced by the switchable magnetic device by changing the relative orientation of the magnets of the switchable magnetic device (as described in connection with FIG. 10).
- a magnetic field can be used to deflect charged particles from around a space craft or satellite, in the same way as the magnetosphere deflects particles from around the Earth.
- a switchable magnetic device can be mounted toward an “upstream” end of a space craft or satellite and switched to the on position to generate a large external magnetic field which will interact with moving charged particles or magnetic particles to deflect them from colliding with the space craft. As described above because the switchable magnetic device can be switched on or off when required interference with satellite or craft systems can be minimised.
- Interaction between a switchable magnetic device and the magnetosphere can also be used to provide short range acceleration in space, for example to position or recover an astronaut during a space walk.
- switchable magnetic devices may also be devised.
- one or more switchable magnetic devices can be used to secure hose couplings during transfer of liquids or gasses.
- a switchable magnetic device having an automatic-on feature is particularly advantageous, as the person making the connection is not required to perform any additional step to cause the magnetic securement to take place.
- a switchable magnetic device can also be used as an electrical connection for welding or the like.
- the magnet can be used to hold the work pieces being welded as well as provide an electrical connection between the welder and the workpiece.
- the housing which retains the magnets is additionally used to form the electrical connection between the power source and the metal being welded.
- a switchable magnetic device using rare-earth magnets is employed in welding application. Rare earth magnets have high coercivity and therefore are will not demagnetise at the high electric currents likely to be encountered in such a use.
- FIG. 21 shows a cutaway schematic view of a tunable suspension system using a switchable magnetic device.
- the suspension system 2500 includes a piston mounted such that it can reciprocate within a cylinder 2520 .
- Mounted at the lower end of the piston 2510 is a permanent magnet 2515 .
- Mounted at the base of the cylinder 2520 is a switchable magnetic device 2525 which includes an actuation means 2530 , that is adapted to change the relative orientation of the magnets of the switchable magnetic device 2525 to vary the external magnetic field presented by the switchable magnetic device 2525 .
- the magnet 2515 mounted on the end of piston 2510 , and the switchable magnetic device 2525 are aligned such that when the switchable magnetic device is turned on they will repel each other.
- the piston 2510 when the switchable magnetic device is in the on position the piston 2510 is suspended within the cylinder 2520 and is able to reciprocate up and down within the cylinder.
- the repulsive force between the permanent magnet 2515 and the switchable magnetic device 2525 behaves like a spring to moveably support the piston 2510 .
- the external field presented by the switchable magnetic device magnetic device 2525 varies depending on the degree of alignment between the magnets of the switchable magnetic device 2525 .
- This variable external field can be used to vary the level of repulsion between the magnets 2515 and the switchable magnetic device 2525 , and thus providing a tunable suspension system.
- By increasing the external field of the switchable magnetic device the equilibrium position of the piston 2510 is raised relative to the cylinder 2520 , and conversely by decreasing the external strength of the switchable magnetic device 2525 the equilibrium position of the piston 2510 relative to the cylinder 2520 is lowered.
- the force required to force the piston 2510 toward the switchable magnetic device 2525 also increases with increasing strength of the external field of the switchable magnetic device.
- the piston 2510 includes a highly electrical conductive portion adjacent to its lower end.
- the highly conductive portion can be made by copper or aluminium or other highly conductive material.
- the highly conductive portion is provided to introduce a damping effect to the suspension system.
- the highly conductive portion of the piston 2510 when moving within the magnetic field presented by the switchable magnetic device will create eddy currents in the electrically conductive portion of the piston 2510 thereby causing a damping affect on the oscillation of the piston 2510 within the cylinder 2520 .
- suspension system 2500 as described above can advantageously be used in place of coil springs, and or hydraulic or pneumatic damping means.
- the permanent magnet 2515 may be replaced by a second switchable magnetic device to provide additional tunability to the suspension system, and to prevent locking of the suspension when the other switchable magnetic device is in the off position.
- the relative positions of the switchable magnetic device and permanent magnet 2515 may be interchanged.
- a suspension system employing one or more switchable magnetic devices need not take the form of a piston and cylinder, and can include any arrangement where relatively moveable members can have opposing magnetic devices associated therewith.
- FIGS. 22 and 23 show two arrangements for providing a variable braking device using a switchable magnetic device.
- the arrangement shown in FIG. 22 and 23 rely on the principle that eddy currents will be induced in a body of conductive material moving relative to a magnetic field, and that these eddy currents will cause a braking effect in the relatively moving bodies.
- the variability of the external magnetic field provided by a switchable magnetic device can advantageously be employed in an eddy current braking device to provide variable strength braking.
- FIG. 22 shows a disk 2210 which has switchable magnetic device 2220 mounted adjacent to its side face.
- the disk 2210 is rotating in the direction of arrow 2211 with respect to the switchable magnetic device 2220 .
- the relative motion of the disk 2210 and the switchable magnetic device 2220 will cause eddy currents in the disk 2210 in the area 2230 adjacent to the switchable magnetic device when the switchable magnetic device is presenting an external magnetic field.
- the strength of the eddy currents, and hence the strength of the braking force can be increased by increasing the relative alignment of the magnets of the switchable magnetic device 2220 such that the external magnetic field presented increases.
- the relative alignment of the magnets of the switchable magnetic device 2220 can be decreased (ie the magnets can be moved towards the off position).
- FIG. 23 shows an alternative arrangement to provide braking using switchable magnetic device.
- the switchable magnetic device 2320 is mounted within a cylinder 2310 which is movable in the directions indicated by arrows 2311 relative to the switchable magnetic device 2320 .
- the switchable magnetic device 2320 is arranged such that its poles 2325 extend across the diameter of the cylinder 2310 .
- the switchable magnetic device 2320 will induce eddy currents in regions 2330 of the moving cylinder 2310 when the switchable magnetic device is in the on position.
- variable braking principle using a switchable magnetic device can include a plurality of switchable magnetic devices mounted relative to a movable conductive member. Furthermore, the switchable magnetic device can be arranged to move around a fixed conductive member to provide braking affect on the switchable magnetic device. Furthermore, both the switchable magnetic device(s) and the conductive member may be movable.
- the switchable magnetic device as described herein can be advantageously employed in any application where a magnetic field is desired, and in particular, may be employed where a magnetic field of variable strength is desired. Accordingly, the present invention should be considered to extend to all applications of a switchable magnetic device of any one of the embodiments described herein.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Load-Engaging Elements For Cranes (AREA)
- Switches That Are Operated By Magnetic Or Electric Fields (AREA)
- Push-Button Switches (AREA)
- Keying Circuit Devices (AREA)
- Tumbler Switches (AREA)
- Arc-Extinguishing Devices That Are Switches (AREA)
Abstract
The present invention relates to a switchable magnetic device. Additional aspects of the present invention further relate to various devices including a switchable magnetic device.
In one aspect there is described a switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between a “fully off” position in which the north and south poles of the first magnet are in substantial alignment with the south and north poles respectively of the second magnet such that the device presents a relatively weak external magnetic field, and a “fully on” position in which the north and south poles of the first magnet are positioned substantially in alignment with the north and south poles respectively of the second magnet such that the device presents a relatively strong external magnetic field, characterised in that biasing means are operatively associated with one or both of the first and second magnets to bias the relative rotation of said magnets toward the fully on position, and wherein placing said device on or in close proximity to a ferromagnetic material causes the first and second magnets to rotate to a relative orientation such that the device presents a relatively strong external magnetic field.
The device of the first aspect of the present invention provides a switchable magnetic device that can automatically switch to an “on” position in which the device presents a relative strong external magnetic field when the device is positioned on or in close proximity to a ferromagnetic material.
Description
- The present invention relates to a switchable magnetic device. Additional aspects of the present invention further relate to various devices including a switchable magnetic device.
- In our co-pending international patent application no. PCT/AU00/01505 and our co-pending U.S. patent application Ser. No. 09/951905 (the entire contents of which are expressly herein incorporated by cross reference) a switchable permanent magnetic device is described. This device includes a housing and first and second permanent magnets mounted in the housing. The first and second permanent magnets are mounted in the housing such that they are able to be relatively rotated. This is preferably achieved by having one of the magnets fixed into position and the second magnet being rotatable. In the device of our co-pending international patent application no PCT/AU00/01505, the first and second magnets can be positioned such that a north and south pole of the first magnet are in substantial alignment with respect of north and south poles of the second magnet. When the magnets are in this orientation, the device presents a strong external magnetic field. The magnets can also be rotated relative to each other such that the north pole of the first magnet is substantially in alignment with the south pole of the second magnet and the south pole of the first magnet is substantially in alignment with the north pole of the second magnet. In this orientation, the device presents a relatively weak external magnetic field. The magnets are rotated by the actuation means.
- Unless expressly stated otherwise, wherein in the specification and claims the phrase “switchable magnetic device” is used the phrase should be understood to refer to a device including a first permanent magnet and a second permanent magnet, the first and second permanent magnets being rotatable relative to each other between an “off” state in which the magnets are aligned such that the device presents a relatively weak external magnetic field, and an “on” state in which the magnets are aligned such that the device presents a relatively strong external magnetic field.
- In a first aspect, the present invention provides a switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between a “fully off” position in which the north and south poles of the first magnet are in substantial alignment with the south and north poles respectively of the second magnet such that the device presents a relatively weak external magnetic field, and a “fully on” position in which the north and south poles of the first magnet are positioned substantially in alignment with the north and south poles respectively of the second magnet such that the device presents a relatively strong external magnetic field, characterised in that biasing means are operatively associated with first and second magnets to bias the relative rotation of said magnets toward the fully on position, and wherein placing said device on or in close proximity to a ferromagnetic material causes the first and second magnets to rotate to a relative orientation such that the device presents a relatively strong external magnetic field.
- Preferably when said device is on or in close proximity to a ferromagnetic material the force required to cause relative rotation of the first and second magnets towards the fully on position is within a first predetermined force range, and when said device is not in contact with or in close proximity to a ferromagnetic material the force required to cause relative rotation of the first and second magnets toward the fully on position is within a second predetermined force range, said second predetermined force range having a higher peak force than said first predetermined force range, and wherein said bias means applies a rotational force to bias the relative rotation of said magnets towards the fully on position with a force exceeding the peak force of the first predetermined force range, but less than the peak force of the second predetermined force range, thereby causing the magnets to automatically rotate toward the fully on position when the device is on or in close proximity to a ferromagnetic material. The bias means is preferably a spring.
- The device of the first aspect of the present invention provides a switchable magnetic device that can automatically switch to an “on” position in which the device presents a relative strong external magnetic field when the device is positioned on or in close proximity to a ferromagnetic material.
- In a second aspect, the present invention provides a switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between a “fully off” position in which the north and south poles of the first magnet are in substantial alignment with the south and north poles respectively of the second magnet such that the device presents a relatively weak external magnetic field, and a “fully on” position in which the north and south poles of the first magnet are positioned substantially in alignment with the north and south poles respectively of the second magnet such that the device presents a relatively strong external magnetic field, characterised in that said device further includes rotation limiting means to limit the extent of the relative rotation of the magnets.
- The rotation limiting means can permit relative rotation of the magnets between a deactivated state in which the north and south poles of the first magnet are most closely aligned with the south and north poles respectively of the second magnet such that the device presents a relatively weak external magnetic field, and an activated position in which the north and south poles of the first magnet are positioned approximately in alignment with the north and south poles respectively of the second magnet such that the device presents a relatively strong external magnetic field.
- In the activated state, the angle of misalignment of the north and south poles of the first magnet and the north and south poles respectively of the second magnet is preferably less than 15 degrees. More preferably the misalignment is approximately 10 degrees. The activated position can be the fully on position.
- In the deactivated state the angle of misalignment of the north and south poles of the first magnet and the south and north poles respectively of the second magnet is preferably less than 40 degrees. More preferably it is less than 30 degrees. In a particularly preferred embodiment the deactivated state has the magnets in the fully off position.
- The rotation limiting means limits the relative rotation of the magnets to less than or equal to 180 degrees. Preferably the rotation limiting means prevents said magnets from reaching the “fully on” position.
- The rotation limiting means may allow the relative rotation of the magnets to an extent greater than 180 degrees Preferably the rotation limiting means allows relative rotation of the magnets to an orientation past the “fully on” position.
- Preferably, in use when the device is on or in close proximity to a ferromagnetic material the magnets are retained in the activated position by a retaining force.
- It is also preferable that when the device is on or in close proximity to a ferromagnetic material a first force is required to retain the magnets in the activated position, and when said device is not in close proximity to a ferromagnetic material a second force, greater than the first force, is required to retain the magnets in the activated position, and wherein the retaining force applied to hold the magnets in the activated position is greater than the first force but less than the second force, thereby allowing the magnets to automatically rotate toward the deactivated position when the device is removed from a position in contact with or in close proximity to a ferromagnetic material.
- The retaining force may be a friction force. The device may further include retention means configured to apply a retaining force to retain the magnets in the activated position when the device is in contact with or in close proximity to a ferromagnetic material. The retention means preferably includes a latch means which yields at a predetermined force less than the second force but greater than the first force.
- In a third aspect, the present invention provides a switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between a “fully off” position in which the north and south poles of the first magnet are in substantial alignment with the south and north poles respectively of the second magnet such that the device presents a relatively weak external magnetic field, and a “fully on” position in which the north and south poles of the first magnet are positioned substantially in alignment with the north and south poles respectively of the second magnet such that the device presents a relatively strong external magnetic field, characterised in that relative rotation of the first and second magnets is limited such that said magnets are prevented from reaching the fully on position but said first and second magnets can be rotated to a predetermined relative orientation such that the north and south poles of the first magnet are closely but not completely aligned with respective north and south poles of the second magnet such that said device still presents a relatively strong external magnetic field and said device automatically switches to a state where the external magnetic field is relatively weak when said device is removed from contact or removed from close proximity to an external ferromagnetic material.
- In a fourth aspect, the present invention provides a switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other between a “fully off” position in which the north and south poles of the first magnet are in substantial alignment with the south and north poles respectively of the second magnet such that the device presents a relatively weak external magnetic field, and a “fully on” position in which the north and south poles of the first magnet, are positioned substantially in alignment with the north and south poles respectively of the second magnet such that the device presents a relatively strong external magnetic field, and actuation means configured to cause relative motion of the first and second magnets, characterised in that said actuation means includes a flexible portion that deforms if the actuation means is actuated in the absence of an external magnetic circuit to thereby limit relative rotation of said magnets, said flexible portion having sufficient yield strength to substantially avoid deformation during actuation of said actuation means in the presence of an external magnetic circuit.
- Preferably, said flexible portion is a spring link.
- Preferably, said flexible portion can be deformed to a maximum extent, after which continued actuation of the actuation means acts to cause relative rotation of the magnets.
- In one embodiment of the fourth aspect of the present invention, if an external magnetic circuit is established and the device switched to the “on” position, the device may remain in the “on” position if the external magnetic circuit is forcibly removed. Thus, the device can act as a “memory” adviser in that its status can tell whether successful contact with an external magnetic circuit was achieved.
- The housing may include a pair of passive ferromagnetic elements which are magnetically separated, for example, by an air gap or by magnetically high reluctance material(s). The housing most suitably defines a chamber in which the first and second magnets are positioned. The chamber may have open ends or, more preferably, is a closed chamber. Chamber closing members are suitably used to close the chamber.
- In another embodiment, the housing is made as a unitary construction from a single piece of material. In this embodiment, it is preferred that there be two portions of the housing having reduced cross sectional area such that the housing acts as two passive poles. Alternatively, portions of the housing may be treated such that the portions become non-magnetic to thereby result in the housing acting as two passive poles.
- The housing is preferably made from a material having a low magnetic reluctance. Soft steel, iron or permalloys are examples of suitable materials for the housing.
- The housing most preferably includes a pair of passive poles. The strength of the external magnetic field can be maximised by shaping the pair of passive poles such that they reflect the magnetic field strength around the perimeter of the first and second permanent magnets.
- The first and second magnets are preferably substantially disc-shaped. Most preferably, the first and second magnets are essentially cylindrical in shape and the height of the cylinder is less than the diameter of the cylinder. It will be appreciated that the first and second magnets need not be exactly cylindrical and that slight variations from a circular cross-section also fall within the scope of the present invention. The height of the magnets may vary over a wide range, and the ratio of diameter to height may also vary over a wide range.
- The first and second magnets are preferably also diametrically magnetised. By that, it is meant that the north pole region is separated by a diameter of the cylindrical surface of the magnet from the south pole region. The north pole region and south pole region both exist on the upper and lower substantially circular faces of the magnet and extend through the length or height of the magnet.
- As mentioned earlier, it is preferred that one magnet is fixed in the housing and one magnet can rotate in the housing. It is especially preferred that the rotatable magnet can rotate about the centre point of its essentially circular faces. In this fashion, the requirement for large clearances between the inner walls of the housing and the rotatable magnet are avoided. In this embodiment, the shape of the body of rotation of the rotatable magnet is the same shape as the magnet itself (ie substantially circular in top or plan view) and thus the magnet can rotate and yet retain its positioning relative to the walls of the housing.
- The actuation means for causing relative rotation of the magnets preferably comprises a handle or knob being in connection with one of the magnets. The handle or knob may be connected to the one magnet by one or more intermediate members.
- The handle or knob may be rotated manually, electrically, pneumatically, hydraulically, by the action of expansion of a bimetallic strip, or indeed by any other suitable method.
- As mentioned above, the housing preferably includes two passive poles, and it is also preferred that one magnet is fixed in the housing. In this particularly preferred embodiment, the one magnet is fixed in place such that the pole pieces are permanently energised. It will also be appreciated that, in some embodiments of the present invention, both magnets may rotate.
- The permanent magnets in the present invention may be of any suitable type. The most preferred at present are rare earth magnets because they can have a strong magnetic field. Such magnets also have a high coercivity, which means that they resist becoming demagnetised. It is envisaged that permanent magnetic technology will continue to develop and it is likely that more powerful magnets will become available in the future that will be suitable for use in the present invention.
- The first and second magnets may be essentially identical to each other.
- Alternatively, the first and second magnets may have different magnetic properties. The magnets may have the same or different physical dimensions to each other. Varying the magnetic properties or the physical dimensions of the first and second magnets can be used in some embodiments of the invention to vary magnetic switching properties.
- In all aspects of the present invention, the device may further include a child-proof lock or child-proof catch type arrangement in the actuation means such that some extra manipulation by a user is required before the magnets can be rotated. For example, the actuation means may comprise a knob that must be pushed down before rotational force applied to the knob can be transferred to the magnet(s)). Other arrangements which will be readily apparent to the person of skill in the art will also be readily apparent.
- An embodiment of the present invention may also be used to provide short range acceleration in space through interaction with the magnetosphere of the Earth or other planet, and/or attraction/repulsion with ferromagnetic materials in a spacecraft. Astronauts may use such acceleration in space walk or emergencies. To increase attraction or repulsion distances a second switchable permanent magnet may be installed in the craft.
- According to another aspect of the present invention there is provided a system for controlling the orientation of a satellite in orbit around a planet having a planetary magnetic field, said system including at least one switchable magnetic device mounted to the satellite such that the orientation of the at least one switchable magnetic device can be varied relative to the satellite, wherein in use the orientation of the satellite can be changed by deflecting the magnetic axis of the switchable magnetic device relative to the direction of the planetary magnetic field when the magnets are in the second position, thereby causing the satellite to change orientation to at least partially re-align the magnetic axis of the at least one switchable magnetic device to the direction of the planetary magnetic field.
- The at least one switchable magnetic device can be mounted on a lever arm on the satellite.
- Preferably the system as claimed includes a plurality of switchable magnetic devices arranged in pairs, wherein each pair of switchable magnetic devices act in concert to control the orientation of the satellite about one axis. More preferable the system includes at least two pairs of switchable magnetic devices. The system can include at least three pairs of switchable magnetic devices, wherein the respective axes of the pairs of switchable magnetic devices are mutually orthogonal.
- The one or more switchable magnetic devices can be selectively varied between the on or off states to periodically re-orient the satellite. During launch and/or deployment of the satellite the least one switchable magnetic device can advantageously be off.
- According to yet another aspect of the present invention there is provided a device for collecting ferromagnetic items, said device including a ferromagnetic collection portion configured to collect and retain ferromagnetic items by magnetic attraction therewith, and a surface engaging portion which is configured in use to engage a ferromagnetic support surface against which the device is held, said device further including at least one switchable magnetic device switchable between an “off” position in which the ferromagnetic collection portion is substantially demagnetised, and an “on” position in which the external magnetic field of the switchable magnetic device, magnetises the collection portion to collect and retain ferromagnetic articles in contact with or in close proximity to the collection portion, and holds the device against the ferromagnetic support surface by magnetic attraction.
- Preferably when the switchable magnetic device is on the “off” position the magnetic attraction between the ferromagnetic collection portion and the ferromagnetic articles and the switchable magnetic device and the support surface are negligible.
- The device can further include actuation means configured to switch the switchable magnetic device between the on and off positions.
- In a preferred embodiment the device further includes at least one ferromagnetic shunt located between the switchable magnetic device and the ferromagnetic collection portion which is magnetised preferentially to the ferromagnetic collection portion when the switchable magnetic device is in the off position, thereby effectively preventing magnetisation of the ferromagnetic collection portion when the switchable magnetic device is in the off position. The ferromagnetic shunt is preferably not magnetically saturated when the switchable magnetic device is in the off position, but is magnetically saturated when the switchable magnetic device is in the on first position. The device can further include a high reluctance region between the switchable magnetic device and the surface engagement portion, wherein the high reluctance region has sufficient reluctance that the magnetic flux at the surface engagement portion is substantially independent of the magnetic properties of the support surface.
- According to a further aspect of the present invention there is provided a clamping. means adapted to clamp at least one article, said clamping means including: a first clamping member; a second clamping member slideable towards and away from the first clamping member, and spaced apart from the first member to define a gap into which an article to be clamped can be inserted; and a switchable magnetic device mounted to or in close proximity to one of the first or second clamping member, said switchable magnetic device including actuation means for switching the switchable magnetic device off or on, whereby when the switchable magnetic device is on the first and second clamping members move towards each other thereby clamping an article inserted in the gap between the clamping members.
- The holder preferably includes one or more additional clamping members slideable relative to the first and second clamping members, and arranged such that a gap into which an article to be clamped can be inserted is defined between neighbouring pairs of clamping members, whereby when the switchable magnetic device is “on” neighbouring pairs of clamping members move towards each other thereby clamping an article inserted in the gap between the neighbouring pairs of clamping members. The holder can also include one or more additional switchable magnetic devices mounted to one or more of the additional clamping members.
- Preferably the holder further includes means for operating the actuation means of one of said switchable magnetic devices in concert with at least one other of the one or more additional switchable magnetic devices.
- According to another aspect of the present invention there is provided a switchable magnetic device configured to operably engage one or more functional modules adapted to provide or limit functionality of the switchable magnetic device.
- The one or more functional modules can include one ore more of the following types of module:
- a rotation limiting module which limits the relative rotation of the magnets of the switchable magnetic device to within a predetermined angular range.
- a biasing module configured to bias the relative rotation of the magnets of the switchable magnetic device.
- a locking module configured to releasably lock the relative orientation of the magnets of the switchable magnetic device.
- The locking module is preferably configured to releasably lock the magnets of the switchable magnetic device in one or more predetermined relative orientations.
- Preferably the switchable magnetic device further includes actuation means configured to cause relative rotation of the magnets, wherein the actuation means are additionally configured to be engaged by said at least one functional module to control the functionality of the switchable magnetic device.
- According to yet another aspect of the present invention there is provided a gripping device configured to grip a surface, said gripping device including at least one gripping means of the type having an evacuatable void adapted to sealably engage a surface, wherein said gripping means grips the surface by forming a suction force between the surface and the gripping means by partially evacuating the void, wherein said gripping device further includes at least one switchable magnetic device configured to produce an additional magnetic engagement with a surface when the surface is ferromagnetic.
- Preferably when the gripping means is sealably engaged with a surface said at least one switchable magnetic device is in contact with or in close proximity to the surface.
- In use the magnetic engagement of the at least one switchable magnetic device acts to at least partially re-establish the sealing engagement of the gripping means with the surface, if the sealing engagement is partially or wholly broken.
- The gripping device can include actuation means to switch the switchable magnetic device between the on and or off position to enable attachment and or detachment of the gripping device to or from the surface respectively.
- The gripping device can also include one or more magnetic pole extension means which provide a relatively high permeability magnetic circuit to substantially conduct the external magnetic field of the switchable magnetic device to a ferromagnetic surface to increase magnetic attraction therewith. The gripping device can also include a plurality of gripping means or switchable magnetic devices.
- According to another aspect of the present invention there is provided a coupling comprising a first magnetic device and a second magnetic device, the first magnetic device being a switchable magnetic device, said first magnetic device and said second magnetic device being arranged relative to each other such that said second magnetic device attracts the first magnetic device when the first magnetic device is off, and said second magnetic device repels said first magnetic device when said first magnetic device is on.
- The second magnetic device may comprises a magnet. Preferably the second magnetic device comprises a second switchable magnetic device and the first and second switchable magnetic devices repel each other when said first and second switchable magnetic devices are turned on.
- Preferably the first magnetic device is movable relatively towards and away from the second magnetic device.
- According to a further aspect of the present invention there is provided a coupling means including a switchable magnetic device, and at least one second magnetic means, said switchable magnetic device and said second magnetic means being arranged relative to each other such that when the switchable magnetic device is on and the second magnetic means is in contact with or in close proximity to the switchable magnetic device, the second magnetic means is relatively strongly attracted to the switchable magnetic device to thereby couple said the second magnetic means to the switchable magnetic device, and when said switchable magnetic device is off the second magnetic means is relatively weakly attracted to the switchable magnetic device such that the second magnetic means and switchable magnetic device can be decoupled.
- Preferably the coupling includes at least one additional magnetic means arranged relative to the second magnetic means such that when the switchable magnetic device is on and the second magnetic means is in contact with or in close proximity to the switchable magnetic device, and the and additional magnetic means are in contact with or in close proximity to the second magnetic means, the additional magnetic means are coupled to the second magnetic means, and when said switchable magnetic device is off the second and additional magnetic means is relatively weakly attracted to the switchable magnetic device such that the second magnetic means and additional magnetic means can be decoupled.
- The switchable device can be movable relatively towards and away from the second magnetic means. The additional magnetic means are preferably movable relatively towards and away from the second magnetic means and the switchable device. The at least one second magnetic means and or the at least one additional magnetic means can be ferromagnetic members.
- The coupling can also include actuation means configured to turn the switchable magnetic device off to allow decoupling of the coupling means. Preferably the actuation means is additionally configured to turn the switchable magnetic device on to cause coupling of the coupling means.
- The coupling means may further include a plurality of spaced second magnetic means, and wherein the switchable magnetic device is movable such that the switchable magnetic device can be coupled to a chosen one of the plurality of spaced second magnetic means.
- According to another aspect of the present invention there is provided a latching means including, a latching member, movable between an extended position in which it can be received into a latching recess to cause latching of the latching means, and a retracted position, a first magnetic means and a switchable magnetic device, movable relative to each other and mounted such that one of said, first magnetic means or switchable magnetic device is coupled to said latching member, such that actuation of the switchable magnetic device causes relative movement of the latching member.
- The first magnetic means is preferably a magnet.
- The switchable magnetic device or first magnetic means can be coupled to the latching member.
- Preferably the switchable magnetic device and first magnetic means are arranged relative to each other such that switchable magnetic device attracts the first magnetic means when the switchable magnetic device is on. Alternatively the switchable magnetic device and first magnetic means are arranged relative to each other such that switchable magnetic device repels the first magnetic means when the switchable magnetic device is on.
- The first magnetic means can also be formed from a ferromagnetic material, and the switchable magnetic device and first magnetic means are arranged relative to each other such that switchable magnetic device attracts the first magnetic means when the switchable magnetic device is on.
- Either the first magnetic means or the switchable magnetic device can be mounted to the latching member.
- The device preferably further includes bias means to bias the latching pin into either the extended or retracted positions.
- In one embodiment the latching member and a first magnetic means are mounted to first member, and the switchable magnetic device is mounted to a second member which is movable relative to the first member, wherein the latching means is configured to latch the first member to the second member.
- In an alternative embodiment the latching pin and first magnetic means, and the switchable magnetic device are mounted to first member and the latching member is adapted to be received into a receiving aperture of a second member which is movable relative to the first member, wherein the latching means is configured to latch the first member to the second member. The latching member may comprise the first magnetic member.
- According to a further aspect of the present invention there is provided a switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between an off position in which the device presents a relatively weak external magnetic field, and an on position in which the device presents a relatively strong external magnetic field, characterised in that the device further includes a low reluctance shunt mounted to at least a first portion of the housing configured to be at least partially magnetised when the device is in the off position such that the external magnetic field presented by the device adjacent to the first portion of the housing is negligible, and that the device further includes a high reluctance region between the magnets and a portion of an external surface of the device, wherein the high reluctance region has sufficient reluctance that the magnetic flux presented at said portion of the external surface of the device is substantially constant.
- The shunt is preferably almost magnetically saturated by the external magnetic field of the switchable magnetic device when the switchable magnetic device is in the off position. The shunt is preferably ferromagnetic.
- According to yet another aspect of the present invention there is provided a switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between an off position in which the device presents a relatively weak external magnetic field, and an on position in which the device presents a relatively strong external magnetic field, characterised in that the device further includes a low reluctance shunt configured to be at least partially magnetised when the device is in the off position such that the external magnetic field presented by the device adjacent to the shunt is negligible.
- In these aspects of the invention the shunt is configured such that when the device is in the on position the device presents a relatively strong external magnetic field adjacent to the shunt. The shunt is preferably separated from the magnets by an air-gap. More preferably the shunt is not magnetically saturated when the switchable magnetic device is in the off position, but is magnetically saturated when the switchable magnetic device is in the on position.
- According to a further aspect of the present invention there is provided a switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between an off position in which the device presents a relatively weak external magnetic field, and an on position in which the device presents a relatively strong external magnetic field, characterised in that the device further includes a high reluctance region between the magnets and a portion of an external surface of the device, wherein the high reluctance region has sufficient reluctance that the magnetic flux presented at said portion of the external surface of the device is substantially constant. The high reluctance region can be an air gap.
- The high reluctance region can be formed in any known manner including, by providing an outer shell surrounding the housing defining the high reluctance region, a spacer mounted externally to the housing, a void in the housing, a gap or non magnetic spacer between the magnets and the housing.
- The switchable magnetic device can further include a releasable holding means for releasably holding the magnets in a first relative orientation, said releasable holding means being releasable to allow the magnets to move to a second relative orientation. Preferably the switchable magnetic device includes actuation means for actuating the releasable holding means to release a said magnets. The actuation means preferably comprises a push button arrangement. The releasable holding means preferably releasably holds the biasing means.
- According to another aspect of the present invention there is provided an electrical coupling configured to make an electrical connection with an external conductor, said coupling including at least one contact portion configured to make the electrical connection, and a switchable magnetic device configured to retain the contact portion in conductive contact with the external conductor when the switchable magnetic device is in the on position.
- Preferably the contact portion is mounted to the housing of the switchable magnetic device. The contact portion can be integrally formed with the housing of the switchable magnetic device. The electrical coupling can include two or more contact portions. Preferably the coupling further includes an electrically conductive circuit between said two or more contact portions. The coupling can also include cable receiving means adapted to receive and make electrical contact with an electrically conductive cable.
- The electrical coupling preferably also includes actuation means adapted to relatively rotate the magnets of the switchable magnetic device between the on and off states to selectively allow coupling and decoupling of the electrical coupling means.
- In a preferred embodiment the coupling further includes electrical switching means configured to selectively prevent or allow electrical current to pass through the coupling.
- The actuation means can be associated with the electrical switching means such that an electrical current is prevented from passing through the coupling when the switchable magnetic device is in the off position. The electrical coupling can also include electrical insulation means.
- The coupling can advantageously be configured to be an earth coupling for welding.
- According to another aspect of the present invention there is provided a switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between an off position in which the device presents a relatively weak external magnetic field, and an on position in which the device presents a relatively strong external magnetic field, characterised in that the relative orientation of the first and second magnets can be varied between the on and off positions to produce an external magnetic field of varying strength.
- The relative orientation of the first and second magnets is preferably continuously variable between the on and off positions. The relative orientation of the first and second magnets can also be incrementally variable between the on and off positions.
- According to yet another aspect of the present invention there is provided a particle deflection means adapted to deflect charged particles moving past the deflection means, said deflection means including a switchable magnetic device configured to generate an external magnetic field to deflect said particles.
- According to another aspect of the present invention there is provided a fluid coupling configured to make an fluid connection between a first fluid port and second fluid port, characterised in that said fluid coupling further includes at least one switchable magnetic device configured to retain the fluid ports in fluid communication with each other when the switchable magnetic device is in the on position.
- The fluid coupling can further include actuation means adapted to relatively rotate the magnets of the switchable magnetic device between the on and off states to selectively allow coupling and decoupling of the fluid coupling means. The fluid coupling may also include flow control means configured to control the flow of fluid between the first and second fluid ports. The actuation means is preferably associated with the flow control means such that fluid flow is prevented when the switchable magnetic device is in the off position.
- According to another aspect of the present invention there is provided a suspension device having a first member suspended relative to a second member of the type including a first magnetic means associated with the first member and second magnetic means associated with the second member, characterised in that either said first or second magnetic means includes a switchable magnetic device.
- The first and second magnetic means can be arranged to repel each other when said switchable magnetic device presents a relatively strong external magnetic field. Alternatively the first and second magnetic means can be arranged to attract each other when said switchable magnetic device presents a relatively strong external magnetic field. In this case the first and second magnetic means can also be arranged to attract each other when said switchable magnetic device presents a relatively weak external magnetic field.
- The magnetic suspension device can further include damping means including an electrically conductive portion coupled to the first or second member such that relative movement of the first and second members causes the conductive portion to move in the magnetic field generated by the first or second magnetic means.
- The first and second members are preferably slideable relative to each other. The first magnetic means and or second magnetic means can include a switchable magnetic device.
- In use the external magnetic field of the switchable magnetic device can preferably be varied to vary the separation the first and second members when suspended.
- The suspension device can preferably comprise a damper or a shock absorber.
- According to another aspect of the present invention there is provided a magnetic braking means of the kind in which the motion of a conductive member relative to a magnetic means can be decreased by application of a magnetic force to the conductive member, characterised in that the magnetic means includes a switchable magnetic device.
- Preferably in use the external magnetic field of the switchable magnetic device can be varied between a relatively low level and a large level so as to vary the rate of decrease of the relative motion of the conducive member and the magnetic means.
- In preferred embodiment the switchable magnetic device further includes indication means to indicate the relative orientation of the magnets. In use, if the switchable magnetic device is forcibly removed form an external magnetic circuit, the indication means can indicate the relative orientation of the magnets prior to removal. The indication means may comprise the actuation means.
- Notwithstanding other forms which may fall within the scope of the present invention, preferred forms of the invention will now be described by way of example only with reference to the accompanying drawings, in which:
- FIG. 1A shows a plot of relative force against angular displacement showing the internal forces acting on the device as a function of angular displacement of the magnets relative to each other in the absence of an external magnetic circuit;
- FIG. 1B is a similar plot to FIG. 1A but shown in the presence of an external magnetic circuit;
- FIG. 2 shows a plot similar to that of FIG. 3 for a prototype switchable magnetic device showing relative force against angular displacement for a range of separations from an external magnetic circuit.
- FIG. 3 shows a plot of FIGS. 1 and 2 superimposed upon each other with an explanation as to the functioning of the first aspect of the present invention;
- FIG. 4A shows the forces required for an explanation as to the functioning of the second and third aspects of the present invention;
- FIG. 5A is reproduction of FIG. 2 of our co-pending international patent application no PCT/AU00/01505 showing one basic construction of the switchable magnetic device;
- FIG. 5B shows an end view of a device in accordance with an aspect of the present invention, showing an alternative shape for the pole pieces.
- FIG. 6 is a top view, partly in cross-section of a switchable magnetic device in accordance with an embodiment of the present invention;
- FIG. 7 shows a top view of a switchable magnetic device for use with the second and third aspects of the present invention;
- FIG. 8 shows a top view, in cross-section, of an embodiment of the invention using a torque sensitive lever as the actuation means; and
- FIG. 9 illustrates the forces involved in a fail-safe arrangement embodying the present invention;
- FIG. 10 shows the relationship between the angle of rotation and the external magnetic field in a device in accordance with an embodiment of the present invention;
- FIG. 11A shows a collection tray employing a switchable magnetic device according to an embodiment of the present invention;
- FIG. 11B shows a cutaway view of a base portion of the collection tray of FIG. 11A;
- FIGS. 12A and 12B show schematic representations of a latching mechanism using a switchable magnetic device to actuate movement of a locking pin;
- FIGS. 13A and 13B show a second variation of a latch mechanism employing a switchable magnetic device;
- FIGS. 14A and 14B show a further embodiment of a latching mechanism which includes a switchable magnetic device according to an embodiment of the present invention;
- FIGS. 15A and 15B show a cutlery block incorporating a switchable magnetic device;
- FIG. 16 shows an exemplary embodiment of an orientation control system for a satellite which includes a switchable magnetic device;
- FIGS. 17A and 17B show embodiments of a hybrid vacuum/magnetic holder including a switchable magnetic device;
- FIG. 18 shows a switchable magnetic device having a modular construction;
- FIGS. 19 and 20 show schematic diagrams demonstrating the principle of operation of a further coupling in accordance with a further aspect of the present invention;
- FIG. 21 shows a schematic cutaway view of a tunable suspension assembly using a switchable magnetic device;
- FIG. 22 shows a first embodiment of an adjustable braking systems using a switchable magnetic device; and
- FIG. 23 shows a second embodiment of an adjustable braking system using a switchable magnetic device.
- It will be appreciated that the attached figures show preferred embodiments of the present invention. These figures have been provided for the purpose of illustrating the preferred embodiments of the present invention, and the present invention should not be considered to be limited to the specific embodiments as shown.
- The various aspects of the present invention have been developed following further studies conducted by the inventor on the switchable magnetic device described in our co-pending international patent application no PCT/AU00/01505. These studies have shown that the force required to turn the switchable magnetic device from the “off” to the “on” positions varies with the permeability of the external magnetic circuit. In particular, it has been found that the force required to switch the device into the “on” position from the “off” positions, when there is no external magnetic circuit, is much greater than the force required to switch the device into the on position when an external magnetic circuit is present. A high permeability external magnetic circuit may be present, for example, when the device is placed in contact with or close proximity to an external ferromagnetic material. FIG. 1A shows a graph of the relative force required to turn the actuation means of the switchable magnetic device described in our co-pending international patent application number PCT/AU00/01505 with angular displacement. As can be seen from FIG. 1A, the force required to switch the device into the “on” position (which is represented at an angular displacement of 180° in the graph of FIG. 1A) is high if the external magnetic permeability is low. This is due to the high intrinsic magnetic field strength of the device when no high permeability external magnetic circuit is present. Thus, work has to be performed to overcome the resistance produced by this intrinsic magnetic field. Rotation of the magnets toward the on position, i.e. 180° on FIG. 1A, converts mechanical energy to magnetic potential energy which is stored in a high flux density repulsion field between the poles.
- FIG. 1B shows the same graph as FIG. 1A, but with the switchable magnetic device being in the presence of an external magnetic path of high permeability. This may be achieved, for example, by placing the device in contact with, or in close proximity to, an external ferromagnetic material, such as occurs when the magnet is attached to an external iron load. As can be seen from FIG. 1B, although the general shape of the graph is similar to that of FIG. 1A, the relative force required to move the magnets between the off position and the on position is much lower than when there is no high permeability external magnetic circuit. The force required to move the magnets between the off and on positions in FIG. 1B is lower than that in FIG. 1A because the high permeability of the external magnetic circuit results in the magnetic flux finding an easier, external path, which diverts some of the magnetic flux from between the repelling poles.
- In both FIG. 1A and FIG. 1B, an angular displacement force tries to return the magnets towards 0° or 360° orientation (ie the fully off position) except at 180° (ie the fully on position) at which clockwise and counter clockwise forces hold a balance, albeit an unstable or quasi-stable equilibrium.
- FIG. 2 shows a series of plots of the relative force required to turn the actuation means of a prototype switchable magnetic device plotted against angular displacement. Each separate plot is a representative of the turning force when the switchable magnetic device is at a different separation distance from a ferromagnetic substrate.
Plot 2001 shows the angle of the force vs angular displacement when the switchable magnetic device is unloaded, that is it is not in close proximity to a ferromagnetic surface.Plot 2002 shows the force vs angular displacement when the switchable magnetic device is 3.5 mm from the external magnetic article.Plots Plot 2006 shows the force vs angular displacement when the switchable magnetic device is in contact with a ferromagnetic material. As can be seen from these plots as the switchable magnetic device is brought closer to an external ferromagnetic article the force required to rotate the magnets of the switchable magnetic device reduces significantly. When the switchable magnetic device is in contact with an external ferromagnetic circuit the peak force required to rotate the magnets between the off position (0 degrees) and on position (180 degrees) is less than 20% of the peak force required when the switchable magnetic device is unloaded. - Since the force acting on the magnets is always (except when the magnets are in the 180 degree equilibrium state) attempting to return the magnets to the off position (0 or 360 degrees) any work done to rotate the magnets into the on position is returned when the magnets are returned to the off position.
- In the first aspect of the present invention the magnetic device includes a biasing means operatively associated with the magnets to bias the magnets away from the fully off position. As described above, when the switchable magnetic device has no external magnetic circuit, for example, where the device is not in contact with, or in close proximity to, an external ferromagnetic material, the force required to shift the device from the off position to the on position is relatively high. The biasing means is arranged so that it applies a rotational force to the magnets which is lower than the peak force required to move the actuation means to the on position in the absence of the external magnetic circuit but which is sufficient to move the actuation means to the on position in the presence of an external magnetic circuit. As a result, when the device in accordance with the first aspect of the present invention is placed in close proximity to, or in contact with, an external ferromagnetic material, the device automatically switches to the on position. Thus, the device of the first aspect of the present invention may be said to have an “automatic turn-on” feature.
- In the apparatus of the first aspect of the present invention, the biasing means acts to hold the actuation means away from the fully off position. For example, the biasing means may apply a force F as shown in FIG. 3, which biases the actuation means away from the 0° or fully off position, when there is no external magnetic circuit present. In the example of in FIG. 3, the biasing force F applied by the biasing means holds the actuation means at approximately 30° from the fully off position when there is no external magnetic circuit. When an external magnet circuit is closed, force F is greater than the force F1 required to move the magnets and hence the device automatically moves to the on position. Put in slightly different terms, the biasing means applies a rotational force F to the magnets. In the absence of an external magnetic circuit (plot 31), a maximum force F2 is required to move the device to the “on” position. As F is less than F2, the device does not move to the “on” position in the absence of an external magnet circuit. However, once an external magnetic circuit is in place (plot 32), the maximum force that needs to be applied to move to the “on” position reduces to F1. As the force F provided by the biasing means is greater than F1, the device automatically moves to the “on” position when an external magnetic circuit is completed.
- With reference again to FIG. 2, a biasing means which applies approximately 2 Newtons of force would not rotate the magnets into the on position when the switchable magnetic device is unloaded but would rotate the magnets to the on position once the switchable magnetic device was placed within 0.1 mm, or in contact with an external ferromagnetic article. In this embodiment the 2 Newtons of force of the biasing means would cause the magnets to rest at a relative orientation of approximately 35° when the switchable magnetic device is unloaded.
- The embodiments in accordance with the second and third aspects of the present invention, may be described as including an “automatic off” feature in which the device automatically turns off if an external magnetic circuit is removed, for example, by forcibly removing the device from an external ferromagnetic material. In general terms the “automatic-off” feature is achieved by preventing the magnets from rotating into “fully on” position. This action may be explained with reference to FIG. 4A, which is a plot of angular displacement against the relative force, together with FIGS. 6 & 7. Plot A shows the force for the case where there is no external magnetic circuit and Plot B shows the force where there is an external magnetic circuit.
- For the device to operate in the automatic-off mode, it may utilise the internal friction of the device, or a purpose built overridable retaining device may be used. The reset feature is triggered when the external magnetic path is interrupted.
- FIG. 4A illustrates the applicable forces in an embodiment of the automatic off configuration relying on the internal friction of the device. In this embodiment it is assumed that the device is switched on to, say, 175°, (FIG. 7), ie, it is not in the 180° quasi-equilibrium position, and that the device is in contact with, or close proximity to an external magnetic circuit, such as a ferromagnetic material. Plot B represents the repulsive rotational force caused by magnetic repulsion between the magnets in this condition. In this configuration there is a reverse force, W (FIG. 4A), acting to rotate the magnets to the “off” orientation. The internal friction at 175° is shown at X. This frictional force resists the repulsive magnetic force W, and because the frictional force is greater than W, the switch remains in the 175° position as long as the high permeability external magnetic path is in place. If the external high permeability path is broken, the repulsive force between the magnets becomes that shown by Plot A, and the repulsive force becomes Y, which is greater than X. As a result, the movable magnet is driven towards the off position until the repulsive magnetic force of Plot A and the frictional force are in equilibrium at Z.
- While the friction line is shown in FIG. 4A as a straight line, the friction force may vary with rotation due to, eg, the effect of the change in the magnetic interaction between the magnets with position. Other factors besides friction (such as inertia of the magnet(s)) may also assist in retaining the device in the on position when in the presence of an external magnetic circuit.
- Where a larger or more precise control of the automatic-off feature is required, a trippable latching mechanism which will yield under the Plot A magnetic repulsion, may be used. One embodiment of such a latch is similar to a triangular sectioned spring loaded door latch with a perpendicular “leading” edge in the turn on direction, and a sloping trailing edge. This spring-loaded latch can engage with a suitable recess at the desired angle of rotation (eg, 175°) on the other part of the relatively moving pair of magnets or their respective carriers. The spring tension can be adjusted to control the automatic turn off force while providing a more predictable latching force.
- In another embodiment of the invention, the switchable magnetic device incorporates the automatic on feature and an automatic-off feature. Preferably the automatic-on feature is similar to that of the first aspect of the present invention and the automatic off feature is similar to that of either the second or third aspects of the present invention.
- In embodiments of the first aspect of the present invention, the biasing means operatively associated with the actuation means preferably includes one or more springs. Alternatively, the biasing means may include air pressure means, pneumatic means, bimetallic spring or indeed any other suitable means for applying a biasing force.
- It is preferred that the biasing means applies a biasing force such that the first and second magnets are offset by about 10° to 60°, more preferably 20° to 40°, most preferably about 30° from the fully off position when no external magnetic circuit is present.
- In embodiments of the second or third aspects of the present invention, the rotation limiting means may comprise a stop means preventing rotation of the actuation means to the fully on position. Alternatively, the rotation limiting means may comprise stop means inter-engaging with one or both of the first and second magnets for preventing rotation of the first and/or second magnets into the fully on position. In this embodiment, the stop means may comprise a retractable engaging member that moves into a recess formed in a surface of one of the magnets when the recess moves into alignment with the retractable member as the magnet is rotated towards the on position. When the magnet rotates back towards the off position, an inclined or tapering surface may be provided in order to enable the retractable member to be disengaged from the recess in the magnet.
- Turning to FIG. 5A, the basic device described in our co-pending international patent application no PCT/AU00/01505 and US09/951905 includes a
first magnet 10 and asecond magnet 11. Bothmagnets magnet 1 as shown in FIG. 1 of PCT/AU00/01505.Magnets pole pieces Pole pieces pole pieces lower magnets 10 in a fixed position. Theupper magnet 11, however, is able to be rotated within the housing formed bypole pieces - In order to facilitate rotation of
upper magnet 11, themagnet 11 is formed with notches orgrooves 14, 15 along its vertical side walls. These notches orgrooves 14, 15 receive the downwardly dependingarms bar 18.Bar 18 is received inside agroove 19 formed onboss 20.Boss 20 is connected to ashort bar 21 that, in turn, is fixedly connected to a handle orlever 22. By this means, rotation of handle or lever 22 causes rotation ofsecond magnet 11. It will be appreciated thatsecond magnet 11 rotates essentially about its centre point. - The device further includes a top cover23 that is fixedly secured to the housing formed by
pole pieces pole pieces boss 20 extends through an opening in top cover 23 and that sealingmember 24 assists in forming a water tight and dust proof seal around that opening. - In one embodiment of the device shown in FIG. 5A, the lower surface of
lower magnet 10 formed part of the lower surface of the device. In this embodiment, the lowest surface of thelower magnet 10 is positioned such that it lies essentially adjacent to the lower surfaces ofrespective pole pieces - Turning to FIG. 6, which shows a switchable magnetic device in accordance with the present invention, the basic device of FIG. 6 is generally similar to that shown in FIG. 5 and like features have been denoted by like reference numerals. The device shown in FIG. 6 includes embodiments of the first aspect of the present invention and embodiments of the second aspect of the present invention. It will be appreciated that other embodiments of the invention may provide the auto-on feature of the first aspect of the present invention or the auto-off feature of the second or third aspects of the present invention.
- In addition to the features common to the embodiment of FIG. 5A, the device of FIG. 6 also includes a biasing
spring 30 in the form of a coil spring connected at oneend 31 topole 13 and at its inner end to theshaft 21.Coil spring 30 biases theshaft 21 such that when there is no external magnetic circuit present theshaft 21, and consequently the top rotatable magnet is held at an angle a, of about 30° from the fully off position. The fully off position is denoted byreference numeral 32. A high reluctance external magnetic circuit leads to a balance between the force provided by biasingspring 30, which tries to turn the device to the on position and the resistance of the internal magnetic field counteracting this force. This results in the device adopting a stable stand-by state. Closing the external magnetic circuit with a sufficiently low reluctance path will lower the internal magnetic field and the force provided by the biasing spring will now be sufficient to switch the device to the on position. - The apparatus shown in FIG. 6, the device may be provided with a
stop member 33 located before 180°, say at 175°. Thestop member 33 may be as simple as a projection extending upwardly from the upper surface of thepole piece 12 of the device, which engages with it aslever 22 is turned towards the fully on position.Stop member 33 prevents thelever 22 from rotating to the fully on position. It is preferred that thelever 22 is allowed to rotate close to but below 180°, which allows the device to almost, but not quite, go into the fully on position. In this case, the device will return automatically to the low external field state if the external magnetic circuit is forcefully removed as described above. While the low reluctance external path is in place, the internal friction may be sufficient to hold the magnets in the switched on positioned, as discussed with reference to FIG. 4A. - In an alternative version of this embodiment, the rotation of the
lever 22 can be permitted to go beyond 180° to a stop member (not shown) at, say 185°. When thelever 22 is rotated such that it is against the stop the internal magnetic field will push the movable magnet against the stop. Thus the device will remain in the fully on position if the external magnetic circuit is forcefully removed This may be thought of as the equivalent of a magnetic over-the-centre toggle. - In some cases, it may be desirable to ensure that the reluctance of the external path is sufficiently low to reduce the turn-on force below a predetermined threshold, indicating that a predetermined amount of flux has been diverted through the external magnetic circuit before allowing the switchable magnetic device to be switched to the “on” position. This arrangement is examined with reference to FIGS. 8 & 9.
- The handle may comprise a torque sensitive lever that does not allow a torque in excess of a predetermined amount to be applied to the one magnet. As described above, when there is no external load applied to the device, it requires more force to switch the device between active and inactive states. Use of a torque sensitive lever as part of the actuation means can result in it being impossible to switch the device between the active and inactive states if no sufficient external magnetic circuit is present. This feature may be utilised as a fail-safe feature to prevent an attempt to connect to an object where the magnetic coupling to the object is insufficient to safely lift the object.
- In a first arrangement of the torque limited switch, the turning mechanism, eg handle or lever, is connected to the movable magnet through a torque sensing spring mechanism as shown in FIG. 8. The relevant forces are shown in FIG. 4B. If the required force to overcome the repulsive magnetic force exceeds the threshold shown in FIG. 9, eg as shown at V on Plot C, this is an indication that insufficient flux has been diverted to the external magnetic path or, in other words, the reluctance of the external path is too high. When the force applied to the handle exceeds the threshold, the torque limiting device may act as a lost motion device allowing the lever to continue turning, but preventing transfer of the rotation to the movable magnet.
- FIG. 8 shows an embodiment of the invention utilising a torque lever as the actuation means. In this case,
shaft 21 is surrounded by aninner ring 40 and anouter ring 41.Inner ring 40 contains a recess for receiving the pointed end of apiston 42.Outer ring 41 includes a passageway through which thepiston 42 passes.Piston 42 is contained within anouter casing 43.Piston 42 is spring loaded by virtue ofcompression spring 44 which is positioned inside casing 43 and extends betweenpiston 42 andadjustable grub screw 45. If an attempt is made to turn thelever 22 without an external magnetic circuit being present, the resistance to turning caused by the internal magnetic field of the device results in the force applied to thelever 22 exceeding a present value. This results in the tip of thepiston 42 being displaced from the recess ininner ring 40 and the lever then slips together with the outer ring, thus disconnecting the flow of force to the inner ring, which is fixed to the shaft. The top magnet thus returns to the off state. In this way, a connection between an external magnetic circuit and the controlled turning-on function of the device can be realised. - In the embodiment shown in FIG. 9, which is one embodiment of the fourth aspect of the present invention, turning
handle 22 is connected to the rotatable magnet via a flexible link, such as aspring 50.Spring 50 is selected such that it does not substantially deform if the turning handle 22 is rotated when the device is in the presence of an external magnetic circuit, such as when the device is placed on a ferromagnetic material. However, if the turning handle 22 is operated in the absence of an external magnetic field, the force required to rotate the magnet is much greater (see FIG. 1) and thespring 50 deforms. This results in the turning handle rotation being taken up by the deformation in thespring 50 and thus the magnet does not rotate. Eventually, the turning handle may be rotated sufficiently far such that thespring 50 is fully deformed (or compressed) and further rotation of the turning handle 22 is translated into rotation of the magnet. - It will be appreciated that the force vs angular displacement diagrams shown in FIGS. 1A-4B have been provided to illustrate the principles involved in the present invention. However, it will also be appreciated that the shape of the force vs angular displacement curves shown in FIGS. 1A to4B are not necessarily correct and the actual shape of the curve may vary from that illustrated.
- As described above, a switchable magnetic device as described herein and in the above mentioned co-pending applications can be used in states intermediate between the fully on and fully off positions. FIG. 10 shows the analogue relationship between the angle of rotation and the variation of the external magnetic field. The exact characteristics of the curve depend on the way the magnets are magnetised in their physical shape as well as the shape of the poles (12, 13 of FIG. 5A). Variation of the ratio of the magnetic energy output of the
magnetic discs - Further increases in external magnetic field strengths can be accomplished by shaping the wall thickness of the
pole pieces discs - FIG. 5B indicates the design of the
pole pieces magnetic discs - oval poles, where the wall thickness is a mathematical function of the field strength of the perimeter of the magnets;
- oval poles, where the wall thickness is a mathematical function of the distribution of the magnetic mass of
magnets - round pole pieces, where the wall thickness is constant and the magnetic field strength is lower but uniform around the perimeter.
- FIG. 5B shows an embodiment having oval-shape poles which maximises the external field strength and assists in holding the device in place in incomplete magnetic circuits. Incomplete magnetic circuits are met in practice when there is an air gap between the bottom of the device and the surface to which it is to be attached, or where there is a non-magnetic material interposed between the surface to which the device is attached and the bottom of the device.
- Preferably the poles are of the shortest possible length. The poles form part of the magnetic circuit (along with the magnets) and have an inherent magnetic resistance (“reluctance”) which results in loss of magnetic energy. Thus, minimising the length of the poles minimises loss of magnetic energy and hence maximises the external field strength.
- Embodiments of the present invention may be used as a switchable magnetic holding device. For example, the device may be used to clasp onto surfaces, especially metal surfaces. All sides of the switchable magnetic device can be utilised for attaching to magnetic materials. However, as the magnetic field intensity varies at different positions around the housing the holding force generated at different points around the housing will also vary. In preferred embodiments, the surface to which the device is affixed is located adjacent or underneath a lower surface of the lower magnet. In other embodiments, the surface to which the device is affixed is located adjacent or beside the side surfaces of the magnets. Thus in a preferred embodiment up to four sides of the switchable magnetic device can be used.
- As will be further described in relation to FIG. 11B, each of the four sides of the switchable magnetic device can be used in a “flux-constant” arrangement by providing a suitable air gap or high reluctance path between the surface of the switchable magnetic device and the surface to which it is attached.
- As described above the present invention is based on a switchable magnetic device as described in our previous co-pending application PCT/AU00/01505, thus the inventors have ascertained that that embodiments of the various aspects of the present invention can advantageously be made in a modular fashion. Thus the present invention additionally relates to a modular construction for a switchable magnetic device and modules used in such a device.
- An embodiment of a switchable magnetic device having a modular construction will now be described with reference to FIG. 18. The basis of the modular switchable
magnetic device 2000 is aswitchable magnet device 2010 as described in connection with FIG. 5A and as further described in PCT/AU00/01505. Mounted on top of theswitchable magnet device 2010 module, from bottom to top, are the following modules: arotation limiting module 2020, aspring module 2030, an operationmode selection module 2040 and anactuator 2070. - The
rotation limiting module 2020 is adapted to limit the rotation of the rotatable magnet to a predetermined angular range. Such arotation limiting module 2020 can comprise a flat plate with a slot or aperture that is adapted to receive a pin or stop mounted on the top rotatable magnet of theswitchable magnet device 2010. The slot is sized and shaped such that the range of angular rotation of the rotatable magnet is limited by the allowed travel of the pin or stop within the slot or aperture. Therotation limiting module 2020 may limit the range of angular rotation of the rotatable magnet to 180 degrees from the fully off position so that a user can easily turn the switchable magnetic device into the on position by fully rotating the actuation means. Alternatively therotation limiting module 2020 may limit the range of angular rotation of the rotatable magnet to 185-190 degrees from the fully off position to take advantage of the “over centre toggle” operation of the switchable magnetic device as described above. Therotation limiting module 2020 may limit the range of angular rotation of the rotatable magnet to less than 180 degrees from the fully off position, for example 170 degrees, to provide an automatic turn-off function as described above. - The
spring module 2030 includes a housing having a rotatable portion mounted therein which adapted to receive the actuation shaft of theswitchable magnet device 2010, and one or more biasing means coupled to the rotatable portion to bias the actuation of theswitchable magnet device 2010. Thus the spring module can provide automatic turn-on functionality. - The operation
mode selection module 2040, according to the present embodiment includes twobuttons magnetic device 2010. The operationmode selection module 2040 can be used with or without the rotation limiter module, and acts to selectively limit the range of angular rotation of the rotatable magnet to certain predetermined ranges which provide automatic off or “over centre” functionality. The operationmode selection module 2040 may also be configured to interact with the spring module to selectively allow tensioning of the bias means to above the threshold level to activate the automatic-on mode. The operationmode selection module 2040 may also include a locking means to lock the actuation means in a certain predetermined orientations, such as the on or off positions. - The thus described modular construction allows for a great deal of flexibility in manufacture. In particular, the switchable magnetic device may be produced in large numbers and appropriate module(s) added thereto, depending upon the described use of the product. It will also be appreciated that modules with different functionality to those described above may be used.
- As will be appreciated by those skilled in the art, the features of the switchable magnetic device described herein and in a co-pending applications PCT/AU00/01505 and US 09/951905 render them suitable for use in a variety of applications in which switchable permanent magnetic devices have not previously been used.
- Therefore, exemplary applications of the switchable magnetic device as described above and in PCT/AU00/01505 will now be described by way of non-limiting example.
- FIG. 11A shows a
collection tray 1000 employing a switchable magnetic device to according to an embodiment of the present invention. Such a collection tray can be magnetically attached to aferromagnetic support surface 1050 and be used to collect ferromagnetic articles. - In this application, the magnetic fields at both the top and the bottom of the switchable magnetic device are utilised. The magnetic field at the bottom of the switchable
magnetic device 1040 is used to retain the collection tray on thesupport surface 1050, whereas the magnetic field at the top of the switchablemagnetic device 1040 is used to retain ferromagnetic articles in the collection well 1030 of thetray 1010. - FIG. 11B shows a cutaway view of a
base portion 1020 of thecollection tray 1000. As can be seen in FIG. 11B thebase 1020 includes a switchablemagnetic device 1040. The extent and permeability of any external magnetic circuit attached to thecollection tray 1000, either in the form of articles retained in thebowl 1010, or in the form of a ferromagnetic surface on which the bowl is supported, will affect the magnetic field generated by the switchable magnetic device. In this regard, it is desirable that the magnetic field available to hold thetray 1000 to thesupport surface 1050 is generally independent of the thickness and magnetic properties of thesupport surface 1050. It is also desirable that when thecollection tray 1000 is turned on, that the maximum possible magnetic field is available in the collection well 1030, and that when the magnetic field is turned off that there is minimum residual magnetisation in thecollection well 1030. A collection tray having these desirable magnetic quality can be achieved by providing thehigh permeability shunt 1060 in theair gap 1061 between the collection well 1030 of thebowl 1010, and the top surface of the switchablemagnetic device 1040, and by providing a second,larger air gap 1070 between the bottom surface of the switchablemagnetic device 1040 and the support surface: 1050. Theresidual field shunt 1060 should have as low a reluctance as possible. Ideally, the size of theshunt 1060 and the material for theshunt 1060 should chosen so as to be so small that any residual magnetic flux when the switchablemagnetic device 1040 is in the off position will almost saturate the shunt. Thus, when the switchablemagnetic device 1040 is switched to the on position theresidual field shunt 1060 becomes saturated and thus effectively becomes an air gap. - In order to ensure that the magnetic field is decoupled from the affect of the support surface, and therefore that the magnetic field remains of substantially constant flux irrespective of the surface's magnetic properties, and to ensure that maximum field strength is present in the
bowl 1030 of the collection tray it is preferable that theair gap 1061 should be significantly smaller than theair gap 1070. - The operation of the collection tray is further enhanced by the fact that when the switchable
magnetic device 1040 is turned off the magnetic field within the collection well 1030 of thetray 1010 rotates and reverses its direction. This helps to demagnetise the collected particles. - A further application of a switchable magnetic device is in magnetic latches and couplings for use in doors or windows or the like. Latches incorporating a switchable magnetic device generally fall into two categories, namely those using switchable permanent magnet to actuate a moveable locking element or the like, and those which use magnetic attraction as a securing means. A number of embodiments of latches will now be described which utilise one or the other of these latching mechanisms. Whilst these exemplary embodiments will be described in connection with latching doors or windows it is envisaged that these embodiments may be generally applicable to latching any moveable article, for example tool box lids, cupboard doors etc.
- FIGS. 12A and 12B show schematic representations of a latching mechanism using a switchable magnetic device to move a locking pin. The latch includes two portions, the
first portion 1200 which may be mounted within a door or the like, and thesecond portion 1210 which may be mounted in the door jamb or other surface against which the door closes. Clearly theportions - The
first portion 1200 of the locking device includes a switchablemagnetic device 1220 having anactuation member 1225 attached thereto. Theactuation member 1225 is further attached to a handle or other means to allow movement of theactuation member 1225. Attached to the other side of the switchable magnetic device is aferromagnetic mating recess 1230 into which a locking pin can be received. Thus thefirst portion 1200 generally comprises a recess in a ferromagnetic material which may have a magnetic field selectively applied to it. Thesecond component 1210 is slideably mounted to the door jamb, and includes a permanentmagnetic portion 1240 mounted to aslideable locking pin 1250. Thesecond portion 1210 is mounted in a recess in either the door or door jamb at a suitable position to engage thefirst portion 1200 when the door is in the locked position. - In FIG. 12A the switchable
magnetic device 1220 is turned off and therefore theferromagnetic recess 1230 has no magnetic field. In this condition, when the door is closed against the door jamb thepermanent magnet 1240 mounted on theslideable locking pin 1250 will be attracted toward the ferromagnetic material of therecess 1230, as denoted byarrows 1260. This draws thelocking pin 1250 into therecess 1230 and locks the twocomponents actuation handle 1225 is rotated the switchablemagnetic device 1220 is turned on creating an external magnetic field. FIG. 12B shows a similar view to that of FIG. 12A with the exception that the switchable magnetic device is generating an external magnetic field. The polarity of the external magnetic field generated by switchablemagnetic device 1220 is aligned with that of the fixedpermanent magnet 1240 mounted on thelocking pin 1250. The alignment of the magnetic fields of thepermanent magnet 1240 and the switchablemagnetic device 1220 causes a repulsive force to be set up between the magnetic elements which pushes thelocking pin 1250 from therecess 1230 of thefirst component 1200, and thus unlock the door. - As will be appreciated by those skilled in the art various alternative embodiments based on a similar principle to the latch described above may be devised. One preferred embodiment includes both the slideable locking member having the permanent magnet and the switchable magnetic device in the door, and uses an attractive force created by the counter alignment of the magnetic fields to retract the locking pin fixed to the permanent magnet into the door. In this embodiment locking can be achieved either through biasing the locking pin into the locked position using a spring or the like, or by allowing the permanent magnet to be attracted to ferromagnetic striking surface on the door jamb.
- FIGS. 13A and 13B show a second variation of a latch mechanism employing a switchable magnetic device of the type described above. In this variation the
latch 1300 includes a switchablemagnetic device 1310, which will typically be mounted on a door or the like, andstriker plate 1305 mounted to a door jamb. Thestriker plate 1305 and switchablemagnetic device 1310 are aligned such that when the door is closed the switchablemagnetic device 1310 comes into contact with thestriker 1305. Thestriker 1305 is made from a ferromagnetic material. In this embodiment it should be noted that the switchable magnetic device is not used to actuate a locking pin or other mechanical latch means, but rather that it creates a magnetic attraction between the door and the door jamb which must be overcome to open the door, thus the magnetic attraction provides the securing element of thelatch 1300. - In this embodiment a switchable magnetic device having an automatic-on feature as described in relation to FIG. 6 is preferably used. A switchable magnetic device additionally having an automatic-off feature can also be used, as will be described below.
- As described above the switchable magnetic device with automatic-on creates a small residual magnetic field which, causes a force drawing the door toward the latched position when the door is in close proximity with the striker. Once the door touches the striker, as shown in FIG. 13B the switchable magnetic device is triggered into the “on” position causing a much larger magnetic field which latches the door to the
striker 1305. - The door can now only be opened if sufficient force is applied to the latch to separate the switchable
magnetic device 1310 from thestriker 1305, or by switching the switchable magnetic device to the “off” position. Switching the switchablemagnetic device 1310 to the off position is achieved by turning thehandle 1330, which is attached to the actuation means 1320 of the switchablemagnetic device 1310. - Latches according to this embodiment are particularly suited to uses where privacy rather than security is required, such as in internal doors in hospitals, aged care facilities or the like. The ability to forcibly open the door without tools renders the latch particularly suited for environments in which emergency access to a room is required.
- As mentioned above a switchable magnetic device having an automatic-off facility as described in relation to FIG. 7 can advantageously be used. This ensures that in an situation where a door is forcibly unlatched the switchable magnetic device automatically returns to a low magnetism state.
- FIGS. 14A and 14B show a further embodiment of a latching mechanism which includes a switchable magnetic device according to an embodiment of the present invention. The
latch 1400 of this embodiment is suited for latching articles with multiple components, such as concertina type doors or windows with shutters etc. Thelatch 1400 includes a variable number of components, depending on the number of movable parts to be latched, and includes a switchablemagnetic device 1410 which is held in fixed relationship to the desired latched position, and anend plate 1420 which is formed of ferromagnetic material, mounted in a position aligned with the switchablemagnetic device 1410 on the farthest component of the plurality of movable parts to be latched. On each intermediate movable part to be latched there is positioned anintermediate latching member 1430 which is also formed of ferromagnetic material. In the unlatched position, as shown in FIG. 14A the switchablemagnetic device 1410 is turned off and the movable parts of the article are free to move as there is little or no residual magnetic field. In order to latch the movable parts the movable parts are brought into contact, such that theintermediate latching members 1430, andend plate 1420 are aligned with the switchablemagnetic device 1410, as shown in FIG. 14B. In this position the switchablemagnetic device 1410 can be turned on and a magnetic circuit is set up between theintermediate latching members 1430,end plate 1420 and the switchablemagnetic device 1410, thus holding the movable parts in a latched position. - Referring now to FIGS. 19 and 20, which show a further latching or coupling means in accordance with the present invention, In this embodiment the
coupling 3100 comprises a first switchablemagnetic device 3102 and a second switchablemagnetic device 3104. In FIG. 19, both switchablemagnetic devices devices magnetic devices - In the configuration shown in FIG. 20, switchable
magnetic device 3102 has been switched to the “off” position so that it presents a relatively weak or insignificant external magnetic field. As switchablemagnetic device 3102 includes ferromagnetic material, it is attracted to second switchablemagnetic device 3104, which is still in the “on” position. Thus, thecoupling 3100 can actively couple. Switching the switchable magnetic device 102 to the “on” position shown in FIG. 19 will cause repulsion and the coupling will actively uncouple. - The coupling shown in FIGS. 19 and 20 also allows second switchable
magnetic device 3104 to be switched to an “off” position. If switchablemagnetic devices magnetic devices - The first and second magnetic devices should be arranged such that they can move relatively towards and away from each other to allow coupling and uncoupling thereof. For example the first magnetic device can be mounted in a door, and the second magnetic device mounted in a doorjamb, such that opening and closing of the door
- In embodiments where the first and/or second magnetic devices are switchable magnetic devices, they are preferably as described with reference to any the of the exemplary switchable magnetic devices described herein.
- A similar principal to the latch for concertina type doors can be used to lock articles into a holder. The holder described in connection with FIGS. 15A and 15B is described as a cutlery holder, however as will be appreciated the holder can also be used to hold non-ferromagnetic articles of relatively narrow thickness, and therefore should not be viewed as being limited to holding ferromagnetic articles or cutlery.
- An embodiment of a holder using a switchable magnetic device which is adapted to hold cutlery will now be described in connection with FIGS.15A and 1SB. Unsecured cutlery can be a hazard in the kitchen, especially for children. However, previously known means for locking knives or the like into knife blocks have been limited to mechanical devices which are relatively limited in their application, in so far as, that they are generally only able to lock specific sized knives in predetermined slots in a knife block. FIGS. 15A and 15B show a cutlery block incorporating a switchable magnetic device, which overcomes many of the drawbacks of previously known cutlery blocks.
- FIGS. 15A and 15B show an
exemplary cutlery block 1500 which is configured to hold 4knives 1505. Clearly a holder of the type described can be designed that will hold more or fewer items than the present embodiment and therefore the present aspect of the invention should not be considered to be limited to any particular holding capacity. - In FIG. 15A the switchable magnetic devices are shown in their off position and cutlery can freely be withdrawn from, and placed into the block. Whereas FIG. 15B shows the cutlery block in a configuration in which the cutlery is locked.
- The
cutlery block 1500 includes amain body 1510 which will typically have a plurality of cutlery receiving apertures or slots therein (not shown). Thecutlery block 1500 also includes two switchable magnetic devices 1515 on opposite sides of theblock 1510 in alignment with a row ofcutlery 1505 to be held in the block. The one or both of the switchable magnetic devices 1515 are slideably mounted so that the relative separation between the switchable magnetic devices can be varied. The switchable magnetic devices 1515 are mounted such that when they are turned on their magnetic poles are oppositely aligned. Mounted between the switchablemagnetic devices 1505 are a plurality of slideableintermediate members 1520 which are made from high permeability ferromagnetic material. The facing surfaces of theintermediate members 1520 and switchable magnetic devices 1515 define gaps into which thecutlery 1505 is inserted. - To lock cutlery in the
block 1500 the two switchable magnetic devices 1515 are turned on. This sets up a magnetic field which is conducted through a magnetic circuit formed by the switchable magnetic devices 1515, slideableintermediate members 1520 and the engaged portions of the articles ofcutlery 1505, which firmly holds the cutlery in the block, clamped between the switchablemagnetic devices 1505 and the intermediate members. In a cutlery block of this type a number of additional magnetic circuits are set up as the items being clamped are typically ferromagnetic. Magnetic circuits between adjacent items of cutlery are also present which act to increase the clamping force on the cutlery. - It is preferable that the actuation means of the two switchable magnetic devices1515 are connected together in such a way that they can be turned on and off in concert. As will be readily apparent the ends of the intermediate members can additionally be contoured to suit particular articles of cutlery, such as sharpening steels or the like, in order to produce the maximum holding force.
- Another application of a switchable magnetic device in is a holding device which can be advantageously used to grip surfaces with ferromagnetic properties, such as sheet-metal, motor car panels, refrigerators etc. The preferred embodiment of the holding device is a hybrid between a suction cup, or vacuum pad, and a magnetic holder. The
holding device 1700 shown in FIG. 17 includes adeformable skirt portion 1710, which is generally similar to those used in known suction cups or vacuum pads, and a switchablemagnetic device 1720 centrally mounted on theskirt 1710. - The
deformable skirt portion 1710 operates in the same manner as prior art suction cup and creates a suction force towards thesurface 1730 by partially evacuating the air from inside the void formed between theskirt 1710 and thesurface 1730. The switchablemagnetic device 1720 generates a magnetic attraction towards the surface when it is turned on and thereby acts to re-establish or maintain the seal between thedeformable skirt portion 1710 and the surface if the seal is broken or partially broken. By turning off the switchable magnetic device the magnetic attraction between the switchablemagnetic device 1720 and thesurface 1730 is removed and the seal can be more easily broken to allow removal of theholder 1700 from the surface. Alternatively a valve can be added to allow release of the suction pressure. Preferably the same actuation means can be used to turn off the switchablemagnetic device 1720 and release the suction in theskirt 1710. - A switchable magnetic device having an automatic turn-on feature will be particularly advantageous in the present embodiment. If such an switchable magnetic device is employed, the user can simply push the holder onto the surface to attach the holder. The act of pushing the holder will evacuate the skirt to create a suction force, and also to turn on the switchable magnetic device to generate the magnetic holding force.
- FIG. 17B shows an alternative embodiment of a
holder 1701 similar to that shown in FIG. 17A. Like parts have been like numbered. The only difference between the two embodiments is the addition of a substantiallyrigid support shell 1740 in the embodiment of FIG. 17B. The support shell can be made of a plastics material and be used to provide added stability and prevent rocking of the holder which may cause breaking of the seal between theskirt 1710 and thesurface 1730. However, in a particularly preferred embodiment the support shell includes at least two portions e.g. 1750 which are formed of ferromagnetic material, and which extend from a position adjacent the switchable magnetic device to theperipheral edge 1760 of theshell 1740, and act as magnetic pole extensions. Preferably the ferromagnetic portions of theshell 1740 are positioned such that they are come into contact with the surface on which theholder 1700 is engaged when the suction and magnetic field is applied. Therefore, as the magnetic pole extensions are be closer to the surface than the main body of the switchablemagnetic device 1720 the magnetic attraction between theholder 1700 and the surface is increased. - Switchable magnetic devices present advantages over permanent magnets for applications in which stray magnetic fields may cause damage, for example in space and satellite applications. Because switchable magnetic devices can be put into an “off” state in which the external magnetic field produced by the device is minimised, the chances of the switchable magnetic device interfering with the launch craft or satellite systems are reduced.
- A plurality of switchable magnetic devices can be used to control the orientation of a satellite in orbit around a planet. An orientation control system (OCS) for a satellite which employs at least one pair of switchable magnetic device and a method for controlling such a satellite will now be described in connection with FIG. 16.
- The OCS depicted in FIG. 16 includes three
pairs pairs magnetic devices - When the switchable magnetic devices of one pair are turned on they will attempt to align that axis of satellite with an external magnetic field. And when they are turned off no further rotational motion will be applied o the satellite. Thus, by selectively varying the alignment of the magnets of the switchable magnetic devices between (and including) the on and off positions, to change the external magnetic field generated, and by changing their orientation relative to the satellite the orientation of a satellite in 3 dimensions can be altered.
- A switchable magnetic device can also be used to create a magnetic field to deflect electrically charged or magnetic particles. The degree of deflection can be controlled by varying the external magnetic field produced by the switchable magnetic device by changing the relative orientation of the magnets of the switchable magnetic device (as described in connection with FIG. 10).
- For example a magnetic field can be used to deflect charged particles from around a space craft or satellite, in the same way as the magnetosphere deflects particles from around the Earth. A switchable magnetic device can be mounted toward an “upstream” end of a space craft or satellite and switched to the on position to generate a large external magnetic field which will interact with moving charged particles or magnetic particles to deflect them from colliding with the space craft. As described above because the switchable magnetic device can be switched on or off when required interference with satellite or craft systems can be minimised.
- Interaction between a switchable magnetic device and the magnetosphere can also be used to provide short range acceleration in space, for example to position or recover an astronaut during a space walk.
- Further applications of switchable magnetic devices according to an embodiment of the present invention may also be devised. For example one or more switchable magnetic devices can be used to secure hose couplings during transfer of liquids or gasses. In such an application a switchable magnetic device having an automatic-on feature is particularly advantageous, as the person making the connection is not required to perform any additional step to cause the magnetic securement to take place.
- A switchable magnetic device can also be used as an electrical connection for welding or the like. In use the magnet can be used to hold the work pieces being welded as well as provide an electrical connection between the welder and the workpiece. Preferably the housing which retains the magnets is additionally used to form the electrical connection between the power source and the metal being welded. Advantageously a switchable magnetic device using rare-earth magnets is employed in welding application. Rare earth magnets have high coercivity and therefore are will not demagnetise at the high electric currents likely to be encountered in such a use.
- FIG. 21 shows a cutaway schematic view of a tunable suspension system using a switchable magnetic device. The
suspension system 2500 includes a piston mounted such that it can reciprocate within acylinder 2520. Mounted at the lower end of thepiston 2510 is apermanent magnet 2515. Mounted at the base of thecylinder 2520 is a switchablemagnetic device 2525 which includes an actuation means 2530, that is adapted to change the relative orientation of the magnets of the switchablemagnetic device 2525 to vary the external magnetic field presented by the switchablemagnetic device 2525. Themagnet 2515 mounted on the end ofpiston 2510, and the switchablemagnetic device 2525 are aligned such that when the switchable magnetic device is turned on they will repel each other. Thus, when the switchable magnetic device is in the on position thepiston 2510 is suspended within thecylinder 2520 and is able to reciprocate up and down within the cylinder. The repulsive force between thepermanent magnet 2515 and the switchablemagnetic device 2525 behaves like a spring to moveably support thepiston 2510. - As described above the external field presented by the switchable magnetic device
magnetic device 2525 varies depending on the degree of alignment between the magnets of the switchablemagnetic device 2525. This variable external field can be used to vary the level of repulsion between themagnets 2515 and the switchablemagnetic device 2525, and thus providing a tunable suspension system. By increasing the external field of the switchable magnetic device the equilibrium position of thepiston 2510 is raised relative to thecylinder 2520, and conversely by decreasing the external strength of the switchablemagnetic device 2525 the equilibrium position of thepiston 2510 relative to thecylinder 2520 is lowered. The force required to force thepiston 2510 toward the switchablemagnetic device 2525 also increases with increasing strength of the external field of the switchable magnetic device. - In the preferred embodiments of the suspension system as described above the
piston 2510 includes a highly electrical conductive portion adjacent to its lower end. The highly conductive portion can be made by copper or aluminium or other highly conductive material. The highly conductive portion is provided to introduce a damping effect to the suspension system. The highly conductive portion of thepiston 2510 when moving within the magnetic field presented by the switchable magnetic device will create eddy currents in the electrically conductive portion of thepiston 2510 thereby causing a damping affect on the oscillation of thepiston 2510 within thecylinder 2520. - As will be appreciated by those skilled in the art the
suspension system 2500 as described above can advantageously be used in place of coil springs, and or hydraulic or pneumatic damping means. - Furthermore, when the switchable magnetic device is turned into the fully off position the
magnet 2515 mounted on thepiston 2510 is attracted to the ferromagnetic pole portion 2526 of the switchablemagnetic device 2525 and causes the suspension means to lock in a retracted position. - As will be appreciated by those skilled in the art the
permanent magnet 2515 may be replaced by a second switchable magnetic device to provide additional tunability to the suspension system, and to prevent locking of the suspension when the other switchable magnetic device is in the off position. The relative positions of the switchable magnetic device andpermanent magnet 2515 may be interchanged. Furthermore, it will be appreciated by those skilled in the art that a suspension system employing one or more switchable magnetic devices need not take the form of a piston and cylinder, and can include any arrangement where relatively moveable members can have opposing magnetic devices associated therewith. - FIGS. 22 and 23 show two arrangements for providing a variable braking device using a switchable magnetic device. The arrangement shown in FIG. 22 and23 rely on the principle that eddy currents will be induced in a body of conductive material moving relative to a magnetic field, and that these eddy currents will cause a braking effect in the relatively moving bodies. The variability of the external magnetic field provided by a switchable magnetic device can advantageously be employed in an eddy current braking device to provide variable strength braking.
- Turning now to FIG. 22 which shows a
disk 2210 which has switchablemagnetic device 2220 mounted adjacent to its side face. Thedisk 2210 is rotating in the direction ofarrow 2211 with respect to the switchablemagnetic device 2220. The relative motion of thedisk 2210 and the switchablemagnetic device 2220 will cause eddy currents in thedisk 2210 in thearea 2230 adjacent to the switchable magnetic device when the switchable magnetic device is presenting an external magnetic field. The strength of the eddy currents, and hence the strength of the braking force can be increased by increasing the relative alignment of the magnets of the switchablemagnetic device 2220 such that the external magnetic field presented increases. To decrease the braking force the relative alignment of the magnets of the switchablemagnetic device 2220 can be decreased (ie the magnets can be moved towards the off position). - FIG. 23 shows an alternative arrangement to provide braking using switchable magnetic device. In this embodiment the switchable
magnetic device 2320 is mounted within acylinder 2310 which is movable in the directions indicated byarrows 2311 relative to the switchablemagnetic device 2320. The switchablemagnetic device 2320 is arranged such that itspoles 2325 extend across the diameter of thecylinder 2310. In this embodiment the switchablemagnetic device 2320 will induce eddy currents inregions 2330 of the movingcylinder 2310 when the switchable magnetic device is in the on position. - Again by varying the alignment of the magnets of the switchable
magnetic device 2320 the extent of theeddy currents 2330 can be varied, and thus the braking effect on thecylinder 2310 can be varied. - As will be appreciated by those skilled in the art the variable braking principle using a switchable magnetic device can include a plurality of switchable magnetic devices mounted relative to a movable conductive member. Furthermore, the switchable magnetic device can be arranged to move around a fixed conductive member to provide braking affect on the switchable magnetic device. Furthermore, both the switchable magnetic device(s) and the conductive member may be movable.
- As will be appreciated by those skilled in the art the switchable magnetic device as described herein can be advantageously employed in any application where a magnetic field is desired, and in particular, may be employed where a magnetic field of variable strength is desired. Accordingly, the present invention should be considered to extend to all applications of a switchable magnetic device of any one of the embodiments described herein.
- Those skilled in the art will appreciate that the present invention may be susceptible to variations and modifications other than those specifically described. It is to be understood that the present invention encompasses all such variations and modifications that fall within its spirit and scope
Claims (25)
1. A switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between a “fully off” position in which the north and south poles of the first magnet are in substantial alignment with the south and north poles respectively of the second magnet such that the device presents a relatively weak external magnetic field, and a “fully on” position in which the north and south poles of the first magnet are positioned substantially in alignment with the north and south poles respectively of the second magnet such that the device presents a relatively strong external magnetic field, characterised in that biasing means are operatively associated with one or both of the first and second magnets to bias the relative rotation of said magnets toward the fully on position, and wherein placing said device on or in close proximity to a ferromagnetic material causes the first and second magnets to rotate to a relative orientation such that the device presents a relatively strong external magnetic field.
2. A switchable magnetic device as claimed in claim 1 wherein in use, when said device is on or in close proximity to a ferromagnetic material the force required to cause relative rotation of the first and second magnets towards the fully on position is within a first predetermined force range, and when said device is not in contact with or in close proximity to a ferromagnetic material the force required to cause relative rotation of the first and second magnets toward the fully on position is within a second predetermined force range, said second predetermined force range having a higher peak force than said first predetermined force range, and wherein said bias means applies a rotational force to bias the relative rotation of said magnets towards the fully on position with a force exceeding the peak force of the first predetermined force range, but less than the peak force of the second predetermined force range, thereby causing the magnets to automatically rotate toward the fully on position when the device is on or in close proximity to a ferromagnetic material.
3. A device as claimed in claim 1 or claim 2 wherein the biasing means is a spring.
4. A switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between a “fully off” position in which the north and south poles of the fist magnet are in substantial alignment with the south and north poles respectively of the second magnet such that the device presents a relatively weak external magnetic field, and a “fully on” position in which the north and south poles of the first magnet are positioned substantially in alignment with the north and south poles respectively of the second magnet such that the device presents a relatively strong external magnetic field, characterised in that said device further includes rotation limiting means to limit the extent of the relative rotation of the magnets.
5. A switchable magnetic device of the kind including a housing, a first permanent magnet, a second peremanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between a “fully off” position in which the north and south poles of the first magnet are in substantial alignment with the south and north poles respectively of the second magnet such that the device presents a relatively weak external magnetic field, and a “fully on” position in which the north and south poles of the first magnet are positioned substantially in alignment with the north and south poles respectively of the second magnet such that the device presents a relatively strong external magnetic field, characterised in that relative rotation of the first and second magnets is limited such that said magnets are prevented from reaching the fully on position but said first and second magnets can be rotated to a predetermined relative orientation such that the north and south poles of the first magnet are closely but not completely aligned with respective north and south poles of the second magnet such that said device still presents a relatively strong external magnetic field and said device automatically switches to a state where the external magnetic field is relatively weak when said device is removed from contact or removed from close proximity to an external ferromagnetic material.
6. A switchable magnetic device of the kind including a housing a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other between a “fully off” position in which the north and south poles of the first magnet are in substantial alignment with the south and north poles respectively of the second magnet such that the device presents a relatively weak external magnetic field, and a “fully on” position in which the north and south poles of the first magnet, are positioned substantially in alignment with the north and south poles respectively of the second magnet such that the device presents a relatively strong external magnetic field, and actuation means configured to cause relative motion of the first and second magnets, characterised in that said actuation means includes a flexible portion that deforms if the actuation means is actuated in the absence of an external magnetic circuit to thereby limit relative rotation of said magnets, said flexible portion having sufficient yield strength to substantially avoid deformation during actuation of said actuation means in the presence of an external magnetic circuit.
7. A device as claimed in claim 6 wherein said flexible portion is a spring link.
8. A device as claimed in either claim 6 or 7 wherein said flexible portion can be deformed to a maximum extent, after which continued actuation of the actuation means causes relative rotation of the magnets
9. A system for controlling the orientation of a satellite in orbit around a planet having a planetary magnetic field, said system including at least one switchable magnetic device mounted to the satellite such that the orientation of the at least one switchable magnetic device can be varied relative to the satellite, wherein in use the orientation of the satellite can be changed by deflecting the magnetic axis of the switchable magnetic device relative to the direction of the planetary magnetic field when the magnets are in the second position, thereby causing the satellite to change orientation to at least partially re-align the magnetic axis of the at least one switchable magnetic device to the direction of the planetary magnetic field.
10. A device for collecting ferromagnetic items, said device including a ferromagnetic collection portion configured to collect and retain ferromagnetic items by magnetic attraction therewith, and a surface engaging portion which is configured in use to engage a ferromagnetic support surface against which the device is held, said device further including at least one switchable magnetic device switchable between an “off” position in which the ferromagnetic collection portion is substantially demagnetised, and an “on” position in which the external magnetic field of the switchable magnetic device, magnetises the collection portion to collect and retain ferromagnetic articles in contact with or in close proximity to the collection portion, and holds the device against the ferromagnetic support surface by magnetic attraction.
11. Clamping means adapted to clamp at least one article, said clamping means including:
a first clamping members;
a second clamping member slideable towards and away from the first clamping member, and spaced apart from the first member to define a gap into which an article to be clamped can be inserted; and
a switchable magnetic device mounted to or in close proximity to one of the first or second clamping member, said switchable magnetic device including actuation means for switching the switchable magnetic device off or on, whereby when the switchable magnetic device is on the first and second clamping members move towards each other thereby clamping an article inserted in the gap between the clamping members.
12. A switchable magnetic device configured to operably engage one or more functional modules adapted to provide or limit functionality of the switchable magnetic device.
13. A gripping device configured to grip a surface, said gripping device including at least one gripping means of the type having an evacuatable void adapted to sealably engage a surface, wherein said gripping means grips the surface by forming a suction force between the surface and the gripping means by partially evacuating the void, wherein said gripping device further includes at least one switchable magnetic device configured to produce an additional magnetic engagement with a surface when the surface is ferromagnetic.
14. A coupling comprising a first magnetic device and a second magnetic device, the first magnetic device being a switchable magnetic device, said first magnetic device and said second magnetic device being arranged relative to each other such that said second magnetic device attracts the first magnetic device when the first magnetic device is off, and said second magnetic device repels said first magnetic device when said first magnetic device is on.
15. A coupling means including a switchable magnetic device, and at least one second magnetic means, said switchable magnetic device and said second magnetic means being arranged relative to each other such that when the switchable magnetic device is on and the second magnetic means is in contact with or in close proximity to the switchable magnetic device, the second magnetic means is relatively strongly attracted to the switchable magnetic device to thereby couple said the second magnetic means to the switchable magnetic device, and when said switchable magnetic device is off the second magnetic means is relatively weakly attracted to the switchable magnetic device such that the second magnetic means and switchable magnetic device can be decoupled.
16. A latching means including,
a latching member, movable between an extended position in which it can be received into a latching recess to cause latching of the latching means, and a retracted position,
a first magnetic means and a switchable magnetic device, movable relative to each other and mounted such that one of said, first magnetic means or switchable magnetic device is coupled to said latching member, such that actuation of the switchable magnetic device causes relative movement of the latching member.
17. A switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between an off position in which the device presents a relatively weak external magnetic field, and an on position in which the device presents a relatively strong external magnetic field, characterised in that the device further includes a low reluctance shunt mounted to at least a first portion of the housing configured to be at least partially magnetised when the device is in the off position such that the external magnetic field presented by the device adjacent to the first portion of the housing is negligible, and that the device further includes a high reluctance region between the magnets and a portion of an external surface of the device, wherein the high reluctance region has sufficient reluctance that the magnetic flux presented at said portion of the external surface of the device is substantially constant.
18. A switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between an off position in which the device presents a relatively weak external magnetic field, and an on position in which the device presents a relatively strong external magnetic field, characterised in that the device flier includes a low reluctance shunt configured to be at least partially magnetised when the device is in the off position such that the external magnetic field presented by the device adjacent to the shunt is negligible.
19. A switchable magnetic device of the kind including a housing, a first permanent magnet a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between an off position in which the device presents a relatively weak external magnetic field, and an on position in which the device presents a relatively strong external magnetic field, characterised in that the device further includes a high reluctance region between the magnets and a portion of an external surface of the device, wherein the high reluctance region has sufficient reluctance that the magnetic flux presented at said portion of the external surface of the device is substantially constant.
20. An electrical coupling configured to make an electrical connection with an external conductor, said coupling including at least one contact portion configured to make the electrical connection, and a switchable magnetic device configured to retain the contact portion in conductive contact with the external conductor when the switchable magnetic device is in the on position.
21. A switchable magnetic device of the kind including a housing, a first permanent magnet, a second permanent magnet, the first and second permanent magnets being mounted within the housing such that the first and second magnets are rotatable relative to each other, between an off position in which the device presents a relatively weak external magnetic field, and an on position in which the device presents a relatively strong external magnetic field, characterised in that the relative orientation of the first and second magnets can be varied between the on and off positions to produce an external magnetic field of varying strength.
22. A particle deflection means adapted to deflect charged particles moving past the deflection means, said deflection means including a switchable magnetic device configured to generate an external magnetic field to deflect said particles.
23. A fluid coupling configured to make an fluid connection between a first fluid port and second fluid port, characterised in that said fluid coupling further includes at least one switchable magnetic device configured to retain the fluid ports in fluid communication with each other when the switchable magnetic device is in the on position.
24. A suspension device having a first member suspended relative to a second member of the type including a first magnetic means associated with the first member and second magnetic means associated with the second member, characterised in that either said first or second magnetic means includes a switchable magnetic device.
25. A magnetic bring means of the kind in which the motion of a conductive member relative to a magnetic means can be decreased by application of a magnetic force to the conductive member, characterised in that the magnetic means includes a switchable magnetic device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/487,538 US20040239460A1 (en) | 1999-12-06 | 2002-08-26 | Switchable magnetic device |
Applications Claiming Priority (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPQ4466 | 1999-12-06 | ||
AUPQ4466A AUPQ446699A0 (en) | 1999-12-06 | 1999-12-06 | Switchable (variable) permanent magnet device |
PCT/AU2000/001505 WO2001043147A1 (en) | 1999-12-06 | 2000-12-06 | Switchable permanent magnetic device |
AUPR7251 | 2001-08-24 | ||
AUPR7251A AUPR725101A0 (en) | 2001-08-24 | 2001-08-24 | Switchable magnetic device |
US09/951,905 US6707360B2 (en) | 1999-12-06 | 2001-09-14 | Switchable permanent magnetic device |
AUPR9975 | 2002-01-17 | ||
AUPR9975A AUPR997502A0 (en) | 2002-01-17 | 2002-01-17 | Holding device (vacuum pad) |
AUPS0091A AUPS009102A0 (en) | 2002-01-23 | 2002-01-23 | Locking mechanism for cutlery blocks |
AUPS0091 | 2002-01-23 | ||
AUPS0338 | 2002-02-07 | ||
AUPS0338A AUPS033802A0 (en) | 2002-02-07 | 2002-02-07 | Transport system for car roofs |
AUPS1083 | 2002-03-14 | ||
AUPS1083A AUPS108302A0 (en) | 2002-03-14 | 2002-03-14 | Magnetic latches |
AUPS1168 | 2002-03-19 | ||
AUPS1168A AUPS116802A0 (en) | 2002-03-19 | 2002-03-19 | Device for turning/positioning of satellites operating within a magnetic field |
PCT/AU2002/001156 WO2003019583A1 (en) | 2001-08-24 | 2002-08-26 | Switchable magnetic device |
US10/487,538 US20040239460A1 (en) | 1999-12-06 | 2002-08-26 | Switchable magnetic device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/951,905 Continuation US6707360B2 (en) | 1999-12-06 | 2001-09-14 | Switchable permanent magnetic device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040239460A1 true US20040239460A1 (en) | 2004-12-02 |
Family
ID=3818608
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/951,905 Expired - Lifetime US6707360B2 (en) | 1999-12-06 | 2001-09-14 | Switchable permanent magnetic device |
US10/487,538 Abandoned US20040239460A1 (en) | 1999-12-06 | 2002-08-26 | Switchable magnetic device |
US10/712,091 Expired - Lifetime US7012495B2 (en) | 1999-12-06 | 2003-11-14 | Switchable permanent magnetic device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/951,905 Expired - Lifetime US6707360B2 (en) | 1999-12-06 | 2001-09-14 | Switchable permanent magnetic device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/712,091 Expired - Lifetime US7012495B2 (en) | 1999-12-06 | 2003-11-14 | Switchable permanent magnetic device |
Country Status (15)
Country | Link |
---|---|
US (3) | US6707360B2 (en) |
EP (1) | EP1243006B1 (en) |
JP (1) | JP4964382B2 (en) |
KR (1) | KR100728448B1 (en) |
CN (1) | CN1245725C (en) |
AT (1) | ATE517714T1 (en) |
AU (1) | AUPQ446699A0 (en) |
BR (2) | BR0016483A (en) |
CA (1) | CA2392772C (en) |
ES (1) | ES2370265T3 (en) |
HK (1) | HK1045758B (en) |
MX (1) | MXPA02005610A (en) |
NZ (1) | NZ518865A (en) |
WO (1) | WO2001043147A1 (en) |
ZA (1) | ZA200203752B (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070013468A1 (en) * | 2005-07-18 | 2007-01-18 | Heard Ian G | Means to increase or decrease magnetic strength in permanent magnetic clamping devices |
US20090027149A1 (en) * | 2005-09-26 | 2009-01-29 | Magswitch Technology Worldwide Pty Ltd | Magnet Arrays |
US20090078484A1 (en) * | 2006-03-13 | 2009-03-26 | Matswitch Technology Worldwide Pty Ltd | Magnetic wheel |
US20090108243A1 (en) * | 2007-10-29 | 2009-04-30 | Romar Mec, Llc | Releasable Pry Bar |
US20090256320A1 (en) * | 2008-04-11 | 2009-10-15 | Will Harris | Releasable guide and methods for using same |
US7647681B1 (en) | 2008-12-23 | 2010-01-19 | Will Harris | Portable magnetic positioning tool |
US8276768B1 (en) | 2010-06-15 | 2012-10-02 | Johnson Bart A | Magnetic knife guard device |
US9121550B2 (en) | 2011-07-12 | 2015-09-01 | Baker Hughes Incorporated | Apparatus of a magnetic resonance multiphase flow meter |
WO2019226901A1 (en) * | 2018-05-23 | 2019-11-28 | Jpw Industries Inc. | Vise with magnet |
US11031166B2 (en) | 2017-06-08 | 2021-06-08 | Magswitch Technology Worldwide Pty Ltd | Electromagnet-switchable permanent magnet device |
US11097401B2 (en) | 2017-04-27 | 2021-08-24 | Magswitch Technology Worldwide Pty Ltd. | Magnetic coupling device with at least one of a sensor arrangement and a degauss capability |
US11358257B2 (en) | 2018-10-26 | 2022-06-14 | Kenneth K. Redman | Magnetic clamping device |
US11830671B2 (en) | 2020-12-03 | 2023-11-28 | Lantha Tech Ltd. | Methods for generating directional magnetic fields and magnetic apparatuses thereof |
US11901142B2 (en) | 2017-04-27 | 2024-02-13 | Magswitch Technology, Inc. | Variable field magnetic couplers and methods for engaging a ferromagnetic workpiece |
US12023770B2 (en) | 2017-04-27 | 2024-07-02 | Magswitch Technology, Inc. | Magnetic coupling device with at least one of a sensor arrangement and a degauss capability |
Families Citing this family (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITBO20010305A1 (en) * | 2001-05-17 | 2002-11-17 | Famatec S R L | SERVO-OPERATED MAGNETIC OPERATING SOCKET DEVICE |
ITMI20011394A1 (en) * | 2001-06-29 | 2002-12-29 | Claudio Vicentelli | MAFNETIC ANCHORAGE MODULE WITH ACTIVATION / DEACTIVATION SYSTEM AND REGULATION OF THE MAGNETIC FORCE OF ANCHOR AND RELATED ASSEMBLIES |
JP4567971B2 (en) * | 2001-08-24 | 2010-10-27 | ジ・オージー・キッズ・トイ・カンパニー・プロプライエタリー・リミテッド | Switchable magnetic device |
AU2002325077B2 (en) * | 2001-08-24 | 2008-09-04 | Magswitch Technology Worldwide Pty Limited | Switchable magnetic device |
US20040251757A1 (en) * | 2003-06-10 | 2004-12-16 | Porter James M. | High efficiency torque converter |
WO2005012757A1 (en) * | 2003-07-31 | 2005-02-10 | Magswitch Technology Worldwide Pty Ltd | Permanent magnet braking and coupling arrangements |
DE102004015873B4 (en) * | 2004-03-31 | 2007-03-22 | Joachim Fiedler | Detachable magnetic holder |
US7567159B2 (en) * | 2005-02-03 | 2009-07-28 | Macken John A | Energy absorbing magnetic coupling device |
DE202005021283U1 (en) * | 2005-03-09 | 2007-10-04 | Fiedler, Joachim | Magnetic holder |
DE102005021094A1 (en) * | 2005-05-06 | 2006-11-09 | B.T. Innovation Gmbh | Switchable magnetic device |
AU2006294433B2 (en) * | 2005-09-26 | 2011-06-09 | Magswitch Technology Worldwide Pty Ltd | Magnet arrays |
KR100746116B1 (en) | 2006-06-14 | 2007-08-03 | 서동우 | Fixing apparatus using magnetic |
WO2008105393A1 (en) * | 2007-02-26 | 2008-09-04 | Olympus Medical Systems Corp. | Magnetic actuator, magnetic actuator operation method, and encapsulated endoscope using the same |
KR100863560B1 (en) | 2007-05-07 | 2008-10-14 | 매그스위치 테크놀로지 코리아 (주) | Fixing prop that use switch magnetic |
WO2009000008A1 (en) * | 2007-06-22 | 2008-12-31 | Magswitch Technology Worldwide Pty Ltd | Magnetic latching mechanism |
US7963771B2 (en) * | 2007-10-04 | 2011-06-21 | Shinko Engineering Reseach Corp. | Experiment and education system employing a plurality of units |
DE102007058188A1 (en) * | 2007-12-04 | 2009-06-10 | Fidlock Gmbh | Magnetic coupling device |
KR101510694B1 (en) * | 2007-12-12 | 2015-04-10 | 엘지전자 주식회사 | Apparatus and method for processing data |
US7735237B1 (en) | 2008-05-30 | 2010-06-15 | C.M. Engineering, Llc | Versatile caliper mounting and measurement accessory |
CN101616196B (en) * | 2008-06-25 | 2014-10-29 | 摩托罗拉移动公司 | Wireless communication device with sensor synergistically operated with a plurality of magnets |
KR101110868B1 (en) * | 2008-11-21 | 2012-02-15 | 삼성중공업 주식회사 | Rope holder |
CN101446627B (en) * | 2008-12-18 | 2011-04-06 | 中国科学院微电子研究所 | Vertical variable magnetic field device |
US10173292B2 (en) * | 2009-01-23 | 2019-01-08 | Correlated Magnetics Research, Llc | Method for assembling a magnetic attachment mechanism |
US8217743B2 (en) * | 2009-03-19 | 2012-07-10 | Robert Bosch Gmbh | Magnetic locking system |
US8446242B2 (en) * | 2009-06-16 | 2013-05-21 | The Charles Stark Draper Laboratory, Inc. | Switchable permanent magnet and related methods |
US20110070058A1 (en) * | 2009-09-23 | 2011-03-24 | Bunting Magnetics Co. | Magnetic Lifting Assembly |
US8183965B2 (en) | 2010-04-09 | 2012-05-22 | Creative Engineering Solutions, Inc. | Switchable core element-based permanent magnet apparatus |
CN201774463U (en) * | 2010-06-14 | 2011-03-23 | 鸿富锦精密工业(深圳)有限公司 | Energy-saving adapter |
DE202010012741U1 (en) * | 2010-09-17 | 2010-12-02 | Schaeffler Technologies Gmbh & Co. Kg | Puller for bearing rings |
US8641105B2 (en) | 2011-01-25 | 2014-02-04 | Won-Door Corporation | Securing mechanisms for partitions, partition systems including same, and related methods |
US9017147B2 (en) | 2011-04-19 | 2015-04-28 | Siemens Energy, Inc. | Surface sample collection tool |
US9305120B2 (en) | 2011-04-29 | 2016-04-05 | Bryan Marc Failing | Sports board configuration |
US8823477B2 (en) * | 2011-06-21 | 2014-09-02 | They Innovate Inc. | Shielded magnetic attachment apparatus |
US8350663B1 (en) | 2011-12-07 | 2013-01-08 | Creative Engineering Solutions, Inc. | Rotary switchable multi-core element permanent magnet-based apparatus |
US9386872B2 (en) | 2012-04-13 | 2016-07-12 | Gregory McDermott | Tray handling systems |
US20130287508A1 (en) | 2012-04-25 | 2013-10-31 | Milwaukee Electric Tool Corporation | Magnetic drill press |
KR101367122B1 (en) | 2012-09-20 | 2014-02-26 | 한국원자력연구원 | A magnetic device by using permanent magnets |
TWM459430U (en) * | 2012-12-21 | 2013-08-11 | Hon Hai Prec Ind Co Ltd | Support and display device using same |
WO2014144782A2 (en) | 2013-03-15 | 2014-09-18 | Ancera, Inc. | Systems and methods for active particle separation |
US20160299132A1 (en) | 2013-03-15 | 2016-10-13 | Ancera, Inc. | Systems and methods for bead-based assays in ferrofluids |
EP3613526B1 (en) | 2013-04-19 | 2023-12-13 | Milwaukee Electric Tool Corporation | Magnetic drill press |
US9662050B2 (en) | 2013-06-21 | 2017-05-30 | Verify Life Sciences LLC | Physiological measurement using wearable device |
US8915172B1 (en) | 2013-06-24 | 2014-12-23 | Dale Turner Hood | Magnetized fence with integral stock feeder for decked saws |
GB2515786A (en) * | 2013-07-03 | 2015-01-07 | Bioflow Ltd | Magnetic Assembly |
EP3068578A4 (en) * | 2013-11-15 | 2017-12-20 | Magswitch Technology Inc. | Permanent magnetic device |
CN109249751A (en) * | 2013-11-30 | 2019-01-22 | 沙特阿拉伯石油公司 | Magnetic omni-directional wheel |
US10315882B2 (en) | 2014-01-13 | 2019-06-11 | Nv Bekaert Sa | Spool fixation device with bi-stable magnet assemblies |
US9324487B1 (en) * | 2014-06-11 | 2016-04-26 | Amazon Technologies, Inc. | Damper for magnetic coupler |
MX2017000364A (en) | 2014-07-09 | 2017-07-11 | Magswitch Tech Inc | Magnetic tool stand. |
US9570221B2 (en) * | 2014-10-30 | 2017-02-14 | International Business Machines Corporation | Permanent magnetic chucking device with large force differential |
US20150076757A1 (en) * | 2014-11-20 | 2015-03-19 | Caterpillar Inc. | System for securing two components |
WO2016143928A1 (en) * | 2015-03-12 | 2016-09-15 | 근로복지공단 | Artificial limb structure having magnetic lock device |
EP3280553A1 (en) | 2015-04-08 | 2018-02-14 | Magswitch Technology Europe GmbH | Ferromagnetic sheet fanning and gripping device |
GB2537152B (en) * | 2015-04-09 | 2017-12-13 | Adey Holdings 2008 Ltd | Magnetic filter with drain and removable external magnetic element |
US9633634B2 (en) * | 2015-05-22 | 2017-04-25 | Randall May International, Inc. | Magnetic throw-off floating attachment |
US11285490B2 (en) | 2015-06-26 | 2022-03-29 | Ancera, Llc | Background defocusing and clearing in ferrofluid-based capture assays |
CN106975942A (en) * | 2016-01-15 | 2017-07-25 | 珠海罗西尼表业有限公司 | Special-shaped part fixture |
US10183744B2 (en) * | 2016-02-10 | 2019-01-22 | Lockheed Martin Corporation | Magnetic orientation detent |
US9649770B1 (en) * | 2016-03-28 | 2017-05-16 | Hiwin Technologies Corp. | Magnetic holding device with movable magnetic shielding device |
USD856127S1 (en) | 2016-03-29 | 2019-08-13 | John C. Pistone | Hinged door stop |
EP3458306B1 (en) | 2016-05-18 | 2020-12-16 | Shanghai Yanfeng Jinqiao Automotive Trim Systems Co., Ltd. | Console assembly for vehicle interior |
CN106586799A (en) * | 2016-07-08 | 2017-04-26 | 岳阳市永金起重永磁铁有限公司 | Sealing method for preventing magnet block fragments from getting stuck in rotating magnetic pole |
CN106586800A (en) * | 2016-07-11 | 2017-04-26 | 岳阳市永金起重永磁铁有限公司 | Multifunctional switch type permanent magnetic unit with overlapped magnetic circuits |
US10464177B2 (en) * | 2016-10-26 | 2019-11-05 | Creative Engineering Solutions, Inc. | Adjustable depth magnetic device |
KR101969402B1 (en) * | 2016-10-27 | 2019-04-16 | 대한민국 | Apparatus for mounting Water Injection Mortar |
WO2018106935A2 (en) * | 2016-12-07 | 2018-06-14 | University Of Florida Research Foundation, Incorporated | Axisymmetric electropermanent magnets |
US10766123B1 (en) * | 2017-01-23 | 2020-09-08 | Kevin Wilson | Magnetic tools |
GB2560000B (en) | 2017-02-24 | 2021-06-09 | Roke Manor Res Limited | A coupling mechanism for light vehicles |
US10145143B1 (en) * | 2017-06-06 | 2018-12-04 | Schlage Lock Company Llc | Lever return mechanism using magnets |
CN107634678A (en) * | 2017-09-02 | 2018-01-26 | 王秀兰 | It is a kind of can be in the magnetic binding clasp of open mode self-locking |
CN107610876A (en) * | 2017-09-03 | 2018-01-19 | 王秀兰 | It is a kind of can be with the magnetic binding clasp of self-locking |
CN107600054A (en) * | 2017-09-04 | 2018-01-19 | 中国第汽车股份有限公司 | One kind is automatically controlled to wait stroke pair brake treadle mechanism |
US10395863B2 (en) | 2017-11-28 | 2019-08-27 | Denso International America, Inc. | Magnetic rotary dial |
US11655000B2 (en) | 2017-12-05 | 2023-05-23 | Smart Clips Llc | Magnetic engagement mechanism for a recreational and/or transportation apparatus |
CN111683866B (en) | 2017-12-05 | 2022-03-25 | 史蒂文·鲍尔 | Pedal for bicycle |
EP3723908A4 (en) * | 2017-12-12 | 2021-07-14 | Ancera, LLC | Systems, methods and devices for magnetic scanning for ferrofluid based assay |
US11915864B2 (en) | 2018-01-11 | 2024-02-27 | Berndorf Band Gmbh | Magnetic retaining device |
EP3746261B1 (en) | 2018-01-29 | 2023-11-01 | Magswitch Technology, Inc. | Magnetic lifting device having pole shoes with spaced apart projections |
CN112154044A (en) * | 2018-02-23 | 2020-12-29 | 磁转换技术全球私人有限公司 | Variable field magnetic coupler and method for joining ferromagnetic workpieces |
IT201800006207A1 (en) * | 2018-06-11 | 2019-12-11 | Magnetic module with anchoring surfaces that can be activated and deactivated magnetically | |
EP3581232B1 (en) | 2018-06-11 | 2021-02-17 | Dentsply IH AB | Urethral stent and bladder control assembly comprising such a urethral stent |
CN109159048B (en) * | 2018-09-13 | 2021-05-11 | 广东睿住住工科技有限公司 | Magnetic fixing device |
KR101957385B1 (en) * | 2018-10-11 | 2019-03-12 | (주)하성 | A magnetic coupling device having a plurality of locking functions |
CN117577411A (en) | 2018-10-24 | 2024-02-20 | 磁转换技术有限公司 | Linearly actuated magnetic coupling |
KR102608916B1 (en) * | 2018-12-13 | 2023-11-30 | 엘지디스플레이 주식회사 | Tiling display device and methode of manufacturing the same |
DE102019100637A1 (en) * | 2019-01-11 | 2020-07-16 | Simonswerk Gmbh | Magnetic lock and door |
US11572723B2 (en) | 2019-02-27 | 2023-02-07 | Shanghai Yanfeng Jinqiao Automotive Triim Systems Co. Ltd. | Vehicle interior component |
EP3976893A4 (en) | 2019-05-31 | 2023-06-28 | Hot Spot Holdings Pty Ltd | A securing device and removal tool for use with the securing device |
US11497299B2 (en) * | 2019-06-12 | 2022-11-15 | Watchguard Video Inc. | Magnetic body-worn mounting system and method |
CN110473690A (en) * | 2019-07-29 | 2019-11-19 | 珠海格力电器股份有限公司 | Magnetic field generator and magnetic refrigerator |
GB201913907D0 (en) | 2019-09-26 | 2019-11-13 | Ceres Ip Co Ltd | Fuel cell stack assembly apparatus and method |
CN110775822B (en) * | 2019-11-12 | 2020-08-11 | 合肥市春华起重机械有限公司 | Accurate positioning control system of hoist |
US11482359B2 (en) | 2020-02-20 | 2022-10-25 | Magnetic Mechanisms L.L.C. | Detachable magnet device |
US11791590B2 (en) * | 2020-04-22 | 2023-10-17 | Keysight Technologies, Inc. | Magnetic cable connection device and adapator |
CN113012889B (en) * | 2021-02-08 | 2022-07-29 | 上海大学 | Permanent magnetic wheel with controllable on-off external magnetic force |
US11901119B2 (en) | 2021-04-01 | 2024-02-13 | Julius Kelly | On-off switchable magnet assembly |
US12096869B2 (en) * | 2021-05-07 | 2024-09-24 | Toshiba Global Commerce Solutions Holdings Corporation | Repositionable bag-retaining device |
USD1039353S1 (en) * | 2021-05-07 | 2024-08-20 | Yang He | Magnet |
WO2022251593A2 (en) | 2021-05-28 | 2022-12-01 | Magswitch Technology, Inc. | Magnetic coupling device |
KR20220169100A (en) | 2021-06-18 | 2022-12-27 | 주식회사 코리아웰드 | Switchable permanent magnetic device |
CN113685461A (en) * | 2021-09-08 | 2021-11-23 | 安徽理工大学 | Controllable permanent magnet normally closed disc brake |
KR102617581B1 (en) * | 2021-12-15 | 2023-12-27 | 주식회사 노바텍 | Magnet module including core magnet and rf connector including the same |
WO2023147082A1 (en) * | 2022-01-28 | 2023-08-03 | Taco, Inc. | Switchable magnetic filter |
WO2023239927A1 (en) | 2022-06-11 | 2023-12-14 | Magswitch Technology, Inc. | Magnetic coupling device |
CN115229428B (en) * | 2022-08-10 | 2024-08-27 | 青岛北船管业有限责任公司 | Automatic welding equipment suitable for production of tube for ship with irregular cambered surface |
CN115966364B (en) * | 2022-11-18 | 2023-07-25 | 东莞金坤新材料股份有限公司 | Array type permanent magnet for biochemical diagnosis equipment and manufacturing method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2421716A (en) * | 1944-02-08 | 1947-06-03 | Lockheed Aircraft Corp | Machine worktable having magnetic clamp means |
US3671893A (en) * | 1970-11-18 | 1972-06-20 | Gen Electric | Magnetic latch and switch using cobalt-rare earth permanent magnets |
US4639170A (en) * | 1985-04-08 | 1987-01-27 | Milwaukee Electric Tool Corporation | Magnetic base for portable tools |
US4779582A (en) * | 1987-08-12 | 1988-10-25 | General Motors Corporation | Bistable electromechanical valve actuator |
US5166654A (en) * | 1991-04-10 | 1992-11-24 | Braillon Magnetique, Societe Anonyme | Permanent-magnet grab |
US5266914A (en) * | 1992-06-15 | 1993-11-30 | The Herman Schmidt Company | Magnetic chuck assembly |
US20010026204A1 (en) * | 2000-03-16 | 2001-10-04 | John Petro | Permanent magnet actuator mechanism |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US36652A (en) * | 1862-10-14 | Holder for pens | ||
DE1121242B (en) * | 1958-07-24 | 1962-01-04 | Deutsche Edelstahlwerke Ag | Switchable permanent magnetic adhesive system |
US3121193A (en) * | 1960-05-05 | 1964-02-11 | Walker O S Co Inc | Permanent magnet work holding device |
US3635511A (en) | 1969-11-05 | 1972-01-18 | Cons Controls Corp | Latching assembly with magnetic locking |
US3627959A (en) | 1970-03-19 | 1971-12-14 | Sage Laboratories | Magnetic latching and switching |
US3791687A (en) | 1972-06-19 | 1974-02-12 | H Schroeder | Pop up magnetic door stop and holder |
US3812629A (en) * | 1972-08-15 | 1974-05-28 | P Campbell | Workholder |
DE2517364A1 (en) | 1975-04-19 | 1976-10-28 | Max Baermann | SWITCHABLE, PERMANENT MAGNETIC HOLDING DEVICE |
JPS5325099Y2 (en) * | 1975-12-03 | 1978-06-27 | ||
US4099755A (en) | 1976-12-10 | 1978-07-11 | Anderson Keith J | Releasable magnet assembly |
JPS53101700A (en) * | 1977-02-17 | 1978-09-05 | Kanetsu Kogyo | Method of transfering magnetic force of permanent magnet device used for attraction |
GB2095135B (en) | 1981-03-25 | 1984-09-26 | Lansing Bagnall Ltd | Production of wiring harnesses |
IT7823323V0 (en) | 1978-11-17 | 1978-11-17 | Cardone Tecnomagnetica | MAGNETIC LIFTER WITH MANUAL CONTROL. |
JPS5578505A (en) * | 1978-12-08 | 1980-06-13 | Kanetsuu Kogyo Kk | Attraction type magnetic device |
JPH0217106Y2 (en) | 1979-02-28 | 1990-05-11 | ||
US4314219A (en) | 1979-04-17 | 1982-02-02 | Hitachi Metals, Ltd. | Permanent magnet type lifting device |
JPS5626415A (en) * | 1979-08-12 | 1981-03-14 | Kanetsuu Kogyo Kk | Magnetic device for attraction |
JPS5655465U (en) | 1979-10-05 | 1981-05-14 | ||
DE3040582A1 (en) * | 1980-10-25 | 1982-05-27 | AMD-Vertriebsgesellschaft für Antriebstechnik mbH, 5800 Hagen | Holding magnet with variable force - has movable permanent magnet between pole pieces to vary force |
FR2523940A1 (en) | 1982-03-25 | 1983-09-30 | Braillon Cie | MAGNETIC APPARATUS, IN PARTICULAR FOR HANDLING |
DE3220801A1 (en) | 1982-06-03 | 1984-01-26 | Max Baermann GmbH, 5060 Bergisch Gladbach | SWITCHABLE, PERMANENT MAGNETIC HOLDING DEVICE |
US4603563A (en) | 1982-08-10 | 1986-08-05 | Nissan Motor Co., Ltd. | Magnetic door locking system |
JPS5982635U (en) * | 1982-11-24 | 1984-06-04 | 鐘通工業株式会社 | Switchable permanent magnetic chuck |
US4419644A (en) * | 1983-01-14 | 1983-12-06 | Max Baermann Gmbh | Switchable permanent magnetic holding device |
US4506407A (en) | 1983-07-18 | 1985-03-26 | Schlage Lock Company | Releasable hold-open device for a door closer |
SU1211824A1 (en) * | 1984-04-03 | 1986-02-15 | Предприятие П/Я М-5174 | Switch magnetic device for fixing on permeance base |
US4822085A (en) | 1986-12-22 | 1989-04-18 | Texim International | Adjustable magnetic door latch system |
GB2211356A (en) * | 1987-10-16 | 1989-06-28 | Holdings James Neill | Magnetic work holders |
SU1763341A1 (en) | 1989-09-05 | 1992-09-23 | Н.В. Мудров и А.Н. Мудров | Magnetic hoisting device |
US5114195A (en) | 1990-01-25 | 1992-05-19 | Southwire Company | Tamper resistant magnetic gate lock |
JP2759371B2 (en) * | 1990-03-23 | 1998-05-28 | コニカ株式会社 | Magnetic adsorption device |
US5270678A (en) | 1992-03-06 | 1993-12-14 | Walker Magnetics Group, Inc. | Magnetic rail chuck |
US5244239A (en) | 1992-10-14 | 1993-09-14 | Eaton Corporation | Latch assembly |
DE4328171A1 (en) * | 1993-08-21 | 1995-02-23 | Krupp Ag Hoesch Krupp | Magnetic gripper |
CN1038406C (en) * | 1994-04-21 | 1998-05-20 | 关品三 | Disk small rotary angle permanent magnet weight sucking device |
AU6735396A (en) * | 1995-07-24 | 1997-02-18 | Railfix N.V. | Electrical permanent-magnet system for manoeuvring a magnetic, particularly a ferromagnetic, load |
DE19710186A1 (en) * | 1997-02-28 | 1998-09-03 | Manfred Dipl Ing Stelter | Permanent magnet coupling device |
US5844458A (en) | 1997-04-08 | 1998-12-01 | Slc Technologies, Inc. | Resilient and compressible magnet module for door channel installation |
US5836049A (en) | 1997-09-19 | 1998-11-17 | Chiang; Mao Sung | Door stop |
US6279218B1 (en) | 1999-09-13 | 2001-08-28 | Daimlerchrysler Corporation | Magnetic striker fixture |
NO313369B1 (en) | 1999-09-23 | 2002-09-23 | Factor Tools Internat As | Magnetic earthing terminal |
-
1999
- 1999-12-06 AU AUPQ4466A patent/AUPQ446699A0/en not_active Abandoned
-
2000
- 2000-12-06 EP EP00982763A patent/EP1243006B1/en not_active Expired - Lifetime
- 2000-12-06 CA CA2392772A patent/CA2392772C/en not_active Expired - Lifetime
- 2000-12-06 ES ES00982763T patent/ES2370265T3/en not_active Expired - Lifetime
- 2000-12-06 BR BR0016483-6A patent/BR0016483A/en not_active IP Right Cessation
- 2000-12-06 NZ NZ518865A patent/NZ518865A/en not_active IP Right Cessation
- 2000-12-06 CN CNB008166501A patent/CN1245725C/en not_active Ceased
- 2000-12-06 BR BRPI0016483-6A patent/BRPI0016483B1/en unknown
- 2000-12-06 JP JP2001543745A patent/JP4964382B2/en not_active Expired - Lifetime
- 2000-12-06 MX MXPA02005610A patent/MXPA02005610A/en active IP Right Grant
- 2000-12-06 WO PCT/AU2000/001505 patent/WO2001043147A1/en active IP Right Grant
- 2000-12-06 AT AT00982763T patent/ATE517714T1/en not_active IP Right Cessation
-
2001
- 2001-09-14 US US09/951,905 patent/US6707360B2/en not_active Expired - Lifetime
-
2002
- 2002-05-10 ZA ZA200203752A patent/ZA200203752B/en unknown
- 2002-06-07 KR KR1020027007295A patent/KR100728448B1/en active IP Right Grant
- 2002-08-26 US US10/487,538 patent/US20040239460A1/en not_active Abandoned
- 2002-09-26 HK HK02107107.3A patent/HK1045758B/en not_active IP Right Cessation
-
2003
- 2003-11-14 US US10/712,091 patent/US7012495B2/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2421716A (en) * | 1944-02-08 | 1947-06-03 | Lockheed Aircraft Corp | Machine worktable having magnetic clamp means |
US3671893A (en) * | 1970-11-18 | 1972-06-20 | Gen Electric | Magnetic latch and switch using cobalt-rare earth permanent magnets |
US4639170A (en) * | 1985-04-08 | 1987-01-27 | Milwaukee Electric Tool Corporation | Magnetic base for portable tools |
US4779582A (en) * | 1987-08-12 | 1988-10-25 | General Motors Corporation | Bistable electromechanical valve actuator |
US5166654A (en) * | 1991-04-10 | 1992-11-24 | Braillon Magnetique, Societe Anonyme | Permanent-magnet grab |
US5266914A (en) * | 1992-06-15 | 1993-11-30 | The Herman Schmidt Company | Magnetic chuck assembly |
US20010026204A1 (en) * | 2000-03-16 | 2001-10-04 | John Petro | Permanent magnet actuator mechanism |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070013468A1 (en) * | 2005-07-18 | 2007-01-18 | Heard Ian G | Means to increase or decrease magnetic strength in permanent magnetic clamping devices |
US20090027149A1 (en) * | 2005-09-26 | 2009-01-29 | Magswitch Technology Worldwide Pty Ltd | Magnet Arrays |
US20150022299A1 (en) * | 2005-09-26 | 2015-01-22 | Magswitch Technology Worldwide Pty Ltd | Magnet arrays |
US20150042428A1 (en) * | 2005-09-26 | 2015-02-12 | Magswitch Technology Worldwide Pty Ltd | Magnet arrays |
US8878639B2 (en) * | 2005-09-26 | 2014-11-04 | Magswitch Technology Worldwide Pty | Magnet arrays |
US9818522B2 (en) * | 2005-09-26 | 2017-11-14 | Magswitch Technology Worldwide Pty Ltd | Magnet arrays |
US9484137B2 (en) * | 2005-09-26 | 2016-11-01 | Magswitch Technology Worldwide Pty Ltd | Magnet arrays |
US20150042427A1 (en) * | 2005-09-26 | 2015-02-12 | Magswitch Technology Worldwide Pty Ltd | Magnet arrays |
US20120092104A1 (en) * | 2005-09-26 | 2012-04-19 | Magswitch Technology Worldwide Pty Ltd | Magnet arrays |
US20090078484A1 (en) * | 2006-03-13 | 2009-03-26 | Matswitch Technology Worldwide Pty Ltd | Magnetic wheel |
US8604900B2 (en) | 2006-03-13 | 2013-12-10 | Magswitch Technology Worldwide Pty Ltd | Magnetic wheel |
US7587800B2 (en) * | 2007-10-29 | 2009-09-15 | Romar Mec, Llc | Releasable pry bar |
US9187302B2 (en) | 2007-10-29 | 2015-11-17 | Gerald L. Dasbach | Releasable pry bar |
US8240017B2 (en) | 2007-10-29 | 2012-08-14 | Romar/Mec, Llc | Releasable pry bar |
US20100213424A1 (en) * | 2007-10-29 | 2010-08-26 | Dasbach Gerald L | Releasable Pry bar |
US20090108243A1 (en) * | 2007-10-29 | 2009-04-30 | Romar Mec, Llc | Releasable Pry Bar |
US8310324B2 (en) | 2008-04-11 | 2012-11-13 | Will Harris | Releasable guide and methods for using same |
US20090256320A1 (en) * | 2008-04-11 | 2009-10-15 | Will Harris | Releasable guide and methods for using same |
US7647681B1 (en) | 2008-12-23 | 2010-01-19 | Will Harris | Portable magnetic positioning tool |
US8739378B2 (en) | 2008-12-23 | 2014-06-03 | Will Harris | Portable magnetic positioning tool |
US8291563B2 (en) | 2008-12-23 | 2012-10-23 | Will Harris | Portable magnetic positioning tool |
US20100154194A1 (en) * | 2008-12-23 | 2010-06-24 | Will Harris | Portable magnetic positioning tool |
US9669520B2 (en) | 2008-12-23 | 2017-06-06 | Will Harris | Portable magnetic positioning tool |
US8276768B1 (en) | 2010-06-15 | 2012-10-02 | Johnson Bart A | Magnetic knife guard device |
US9121550B2 (en) | 2011-07-12 | 2015-09-01 | Baker Hughes Incorporated | Apparatus of a magnetic resonance multiphase flow meter |
US11511396B2 (en) | 2017-04-27 | 2022-11-29 | Magswitch Technology Worldwide Pty Ltd. | Magnetic coupling devices |
US11839954B2 (en) | 2017-04-27 | 2023-12-12 | Magswitch Technology, Inc. | Magnetic coupling device with at least one of a sensor arrangement and a degauss capability |
US11097401B2 (en) | 2017-04-27 | 2021-08-24 | Magswitch Technology Worldwide Pty Ltd. | Magnetic coupling device with at least one of a sensor arrangement and a degauss capability |
US12023770B2 (en) | 2017-04-27 | 2024-07-02 | Magswitch Technology, Inc. | Magnetic coupling device with at least one of a sensor arrangement and a degauss capability |
US11901141B2 (en) | 2017-04-27 | 2024-02-13 | Magswitch Technology, Inc. | Variable field magnetic couplers and methods for engaging a ferromagnetic workpiece |
US11901142B2 (en) | 2017-04-27 | 2024-02-13 | Magswitch Technology, Inc. | Variable field magnetic couplers and methods for engaging a ferromagnetic workpiece |
US11850708B2 (en) | 2017-04-27 | 2023-12-26 | Magswitch Technology, Inc. | Magnetic coupling device with at least one of a sensor arrangement and a degauss capability |
US11031166B2 (en) | 2017-06-08 | 2021-06-08 | Magswitch Technology Worldwide Pty Ltd | Electromagnet-switchable permanent magnet device |
US11651883B2 (en) | 2017-06-08 | 2023-05-16 | Magswitch Technology Worldwide Pty Ltd. | Electromagnet-switchable permanent magnet device |
US11837402B2 (en) | 2017-06-08 | 2023-12-05 | Magswitch Technology, Inc. | Electromagnet-switchable permanent magnet device |
US11253974B2 (en) | 2018-05-23 | 2022-02-22 | Jpw Industries Inc. | Vise with magnet |
WO2019226901A1 (en) * | 2018-05-23 | 2019-11-28 | Jpw Industries Inc. | Vise with magnet |
WO2019226905A1 (en) * | 2018-05-23 | 2019-11-28 | Jpw Industries Inc. | Work table with magnet |
US11358257B2 (en) | 2018-10-26 | 2022-06-14 | Kenneth K. Redman | Magnetic clamping device |
US11830671B2 (en) | 2020-12-03 | 2023-11-28 | Lantha Tech Ltd. | Methods for generating directional magnetic fields and magnetic apparatuses thereof |
Also Published As
Publication number | Publication date |
---|---|
AUPQ446699A0 (en) | 2000-01-06 |
EP1243006A1 (en) | 2002-09-25 |
ATE517714T1 (en) | 2011-08-15 |
KR100728448B1 (en) | 2007-06-13 |
JP2003516627A (en) | 2003-05-13 |
BRPI0016483B1 (en) | 2017-09-12 |
EP1243006A4 (en) | 2007-09-05 |
KR20030007387A (en) | 2003-01-23 |
HK1045758B (en) | 2011-10-21 |
NZ518865A (en) | 2002-08-28 |
EP1243006B1 (en) | 2011-07-27 |
CN1245725C (en) | 2006-03-15 |
JP4964382B2 (en) | 2012-06-27 |
HK1045758A1 (en) | 2002-12-06 |
BR0016483A (en) | 2002-11-05 |
US6707360B2 (en) | 2004-03-16 |
ZA200203752B (en) | 2003-10-29 |
CN1402876A (en) | 2003-03-12 |
ES2370265T3 (en) | 2011-12-14 |
MXPA02005610A (en) | 2004-03-26 |
WO2001043147A1 (en) | 2001-06-14 |
US7012495B2 (en) | 2006-03-14 |
US20050012579A1 (en) | 2005-01-20 |
CA2392772C (en) | 2010-06-15 |
US20020105400A1 (en) | 2002-08-08 |
CA2392772A1 (en) | 2001-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2458251C (en) | Switchable magnetic device | |
US20040239460A1 (en) | Switchable magnetic device | |
US11651883B2 (en) | Electromagnet-switchable permanent magnet device | |
EP0047264B1 (en) | Magnetic decoupler | |
US4813729A (en) | Magnetic retrieval tool | |
JP3619693B2 (en) | Automatic open / close device for magnetic force adsorber | |
US4099755A (en) | Releasable magnet assembly | |
AU2002325077B2 (en) | Switchable magnetic device | |
AU2002325077A1 (en) | Switchable magnetic device | |
GB2211356A (en) | Magnetic work holders | |
AU753496B2 (en) | Switchable permanent magnetic device | |
US20230333463A1 (en) | Reticle container having magnetic latching | |
US20190214941A1 (en) | Panel with Magnetically-Controlled Connectors for Attachment to a Support Member | |
GB2395744A (en) | Magnetic retaining device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE AUSSIE KIDS TOY COMPANY PTY LTD, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KOCIJAN, FRANZ;REEL/FRAME:015103/0354 Effective date: 20040826 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |