US20040226860A1 - Process of hydrocracking in two stages using an amorphous catalyst based on platinum and palladium - Google Patents
Process of hydrocracking in two stages using an amorphous catalyst based on platinum and palladium Download PDFInfo
- Publication number
- US20040226860A1 US20040226860A1 US10/781,849 US78184904A US2004226860A1 US 20040226860 A1 US20040226860 A1 US 20040226860A1 US 78184904 A US78184904 A US 78184904A US 2004226860 A1 US2004226860 A1 US 2004226860A1
- Authority
- US
- United States
- Prior art keywords
- less
- weight
- encompassed
- hydrocracking
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 91
- 238000004517 catalytic hydrocracking Methods 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims abstract description 54
- 230000008569 process Effects 0.000 title claims abstract description 44
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 title claims abstract description 20
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 title claims abstract description 16
- 229910052697 platinum Inorganic materials 0.000 title claims abstract description 9
- 229910052763 palladium Inorganic materials 0.000 title claims abstract description 7
- 239000000758 substrate Substances 0.000 claims abstract description 38
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 21
- 239000001257 hydrogen Substances 0.000 claims abstract description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000000926 separation method Methods 0.000 claims abstract description 17
- 238000006243 chemical reaction Methods 0.000 claims abstract description 16
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 10
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 10
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 9
- 239000011148 porous material Substances 0.000 claims description 76
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 46
- 229910052753 mercury Inorganic materials 0.000 claims description 46
- 238000002459 porosimetry Methods 0.000 claims description 41
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 21
- 238000009835 boiling Methods 0.000 claims description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims description 13
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 10
- 229910052796 boron Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 239000011574 phosphorus Substances 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- 125000001477 organic nitrogen group Chemical group 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000010586 diagram Methods 0.000 claims description 6
- 238000009826 distribution Methods 0.000 claims description 6
- 125000001741 organic sulfur group Chemical group 0.000 claims description 6
- 239000011959 amorphous silica alumina Substances 0.000 claims description 4
- 150000002431 hydrogen Chemical class 0.000 claims description 4
- 230000007704 transition Effects 0.000 claims description 4
- 239000002019 doping agent Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 229910052681 coesite Inorganic materials 0.000 claims 1
- 229910052906 cristobalite Inorganic materials 0.000 claims 1
- 229910052682 stishovite Inorganic materials 0.000 claims 1
- 229910052905 tridymite Inorganic materials 0.000 claims 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 36
- 239000000047 product Substances 0.000 description 29
- 239000007789 gas Substances 0.000 description 22
- 239000003921 oil Substances 0.000 description 19
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 17
- 239000003350 kerosene Substances 0.000 description 16
- 229910052782 aluminium Inorganic materials 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 12
- 230000009467 reduction Effects 0.000 description 10
- 238000004821 distillation Methods 0.000 description 9
- 238000001179 sorption measurement Methods 0.000 description 9
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- 229910052717 sulfur Inorganic materials 0.000 description 7
- 239000011593 sulfur Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- -1 VIB metals Chemical class 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 229910001593 boehmite Inorganic materials 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 229910000510 noble metal Inorganic materials 0.000 description 4
- 150000002940 palladium Chemical class 0.000 description 4
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000005292 vacuum distillation Methods 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 229910002621 H2PtCl6 Inorganic materials 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229910003294 NiMo Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000011066 ex-situ storage Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 230000035800 maturation Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 150000003057 platinum Chemical class 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000005987 sulfurization reaction Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- ZZBAGJPKGRJIJH-UHFFFAOYSA-N 7h-purine-2-carbaldehyde Chemical compound O=CC1=NC=C2NC=NC2=N1 ZZBAGJPKGRJIJH-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- LZJOBYGVGAAXFX-UHFFFAOYSA-N O.O.O.O.O.O.[AlH3] Chemical compound O.O.O.O.O.O.[AlH3] LZJOBYGVGAAXFX-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical class O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000012084 conversion product Substances 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000007210 heterogeneous catalysis Methods 0.000 description 1
- 238000010249 in-situ analysis Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 238000000696 nitrogen adsorption--desorption isotherm Methods 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 1
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- JUWGUJSXVOBPHP-UHFFFAOYSA-B titanium(4+);tetraphosphate Chemical class [Ti+4].[Ti+4].[Ti+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O JUWGUJSXVOBPHP-UHFFFAOYSA-B 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical class [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/08—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/12—Silica and alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/185—Phosphorus; Compounds thereof with iron group metals or platinum group metals
- B01J27/1856—Phosphorus; Compounds thereof with iron group metals or platinum group metals with platinum group metals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/06—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/08—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/12—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/44—Hydrogenation of the aromatic hydrocarbons
- C10G45/46—Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
- C10G45/48—Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/50—Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metal, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/44—Hydrogenation of the aromatic hydrocarbons
- C10G45/46—Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
- C10G45/54—Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
- C10G47/02—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
- C10G47/10—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
- C10G47/12—Inorganic carriers
- C10G47/14—Inorganic carriers the catalyst containing platinum group metals or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G55/00—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
- C10G55/02—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
- C10G55/06—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one catalytic cracking step
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/12—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/633—Pore volume less than 0.5 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/635—0.5-1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
Definitions
- This invention relates to the field of hydrocracking hydrocarbon-containing feedstocks for the purpose of producing middle distillates, and more particularly gas oil.
- Certain hydrocracking processes often described as “once through” processes, comprise a preliminary hydrotreatment stage with a limited conversion of light fractions, making it possible to transform the nitrogen-containing and sulfur-containing organic compounds. These types of processes generally do not comprise an intermediate separation between hydrotreatment and hydrocracking.
- hydrocracking processes comprise a preliminary hydrorefining stage that makes it possible to convert between 20 and 60% of the feedstock, a stage of separation for recovering unconverted products, and a hydrocracking stage. These processes are often described as two-stage processes.
- a gas oil of excellent quality is defined as a gas oil that has:
- a sulfur content that is less than 50 ppm, preferably less than 30 ppm, and more preferably less than 10 ppm,
- a cetane number that is higher than 51, preferably higher than 55,
- a content of polyaromatic compounds that is less than 11% by weight, preferably less than 5% by weight, and more preferably less than 2% by weight, and
- a content of aromatic compounds that is less than 15% by weight, preferably less than 10% by weight.
- a kerosene of excellent quality is defined as a kerosene whose smoke point is higher than 20 mm, preferably higher than 25 mm.
- This invention therefore relates to a hydrocracking process for the conversion of a hydrocarbon feedstock that comprises:
- a hydrorefining stage in which the feedstock is brought into contact with the hydrogen in the presence of a hydrorefining catalyst, at a temperature T1, and an effluent that comprises converted products and unconverted products is recovered, optionally a separation stage in which at least a portion of the converted products formed during the hydrorefining stage and a fraction that comprises the unconverted products are separated, and
- a hydrocracking stage in which the unconverted products (therefore optionally at least a portion of the fraction that contains said products that are obtained from the separation) are, at least in part, brought into contact with the hydrogen, in the presence of an amorphous hydrocracking catalyst that comprises a substrate, palladium and platinum, at a temperature T2 that is less than T1, whereby the difference between T1 and T2 is between 5 and 50° C., preferably between 10 and 40° C., and more preferably between 15 and 30° C.
- feedstocks can be treated by the process of the invention.
- these feedstocks contain at least 20% by volume, and often at least 80% by volume, of compounds that have a boiling point above 340° C.
- 95% of the compounds that are present in the feedstock have a boiling point of higher than 340° C., and more preferably, 95% of the compounds that are present in the feedstock have a boiling point that is higher than 370° C.
- the nitrogen content of the treated hydrocarbon-containing feedstocks in the process according to the invention is generally higher than 500 ppm by weight, preferably between 500 and 5,000 ppm by weight, more preferably between 700 and 4,000 ppm by weight, and even more preferably between 1,000 and 3,000 ppm by weight.
- the sulfur content of these hydrocarbon-containing feedstocks is preferably between 0.01 and 5% by weight, and more preferably between 0.2 and 4% by weight.
- the feedstock is subjected, in a first reaction zone, to at least one hydrorefining stage, during which it is brought into contact with the hydrogen in the presence of a hydrorefining catalyst.
- the feedstock generally undergoes hydrodesulfurization, hydrodenitration, as well as a conversion of a portion of the latter into conversion products such as gases, gasolines and middle distillates.
- the hydrorefining catalysts can be selected from among the catalysts that are commonly used in this field.
- the hydrorefining catalyst can preferably comprise a matrix, at least one hydro-dehydrogenating element that is selected from the group that is formed by the elements of group VIB and group VIII of the periodic table.
- the matrix can consist of compounds that are used alone or in a mixture, such as alumina, halogenated alumina, silica, silica-alumina, clays (selected from, for example, natural clays such as kaolin or bentonite), magnesia, titanium oxide, boron oxide, zirconia, aluminum phosphates, titanium phosphates, zirconium phosphates, carbon, and aluminates. It is preferred to use matrices that contain alumina, in all of these forms that are known to one skilled in the art, and even more preferably aluminas, for example gamma-alumina.
- the hydro-dehydrogenating element can be selected from the group that is formed by the elements of group VIB and non-noble element of group VIII of the periodic table.
- the hydro-dehydrogenating element is preferably selected from the group that is formed by molybdenum, tungsten, nickel and cobalt. More preferably, the hydro-dehydrogenating element comprises at least one element of group VIB and at least one non-noble element of group VIII.
- This hydro-dehydrogenating element can comprise, for example, a combination of at least one element of group VIII (Ni, Co) with at least one element of group VIB (Mo, W).
- the hydrorefining catalyst preferably also comprises at least one dopant that is deposited on said catalyst and is selected from the group that is formed by phosphorus, boron and silicon.
- the hydrorefining catalyst can comprise, as dopants, boron and/or silicon, with optionally, in addition, phosphorus.
- the contents of boron, silicon and phosphorus are generally between 0.1 and 20%, preferably 0.1 and 15%, and more preferably between 0.1-10%.
- the hydrorefining catalyst can advantageously comprise phosphorus.
- This compound provides, i.a., two main advantages to the hydrorefining catalyst, whereby a first advantage is a greater facility of preparation of said catalyst during in particular the impregnation of the hydro-dehydrogenating element, for example from solutions based on nickel and molybdenum.
- a second advantage provided by this compound is an increase in the hydrogenation activity of the catalyst.
- the hydrorefining catalyst can also-comprise at least one element of the group VIIA (chlorine and fluorine are preferred) and/or at least one element of group VIIB (manganese is preferred), and optionally at least one element of group VB (niobium is preferred).
- the total concentration of metal oxides of groups VIB and VIII is between 5 and 40% by weight, preferably between 7 and 30% by weight, and the ratio by weight that is expressed in terms of metal oxide between group VIB metal (or metals) vs. group VIII metal (or metals) is between 20 and 1.25, preferably between 10 and 2.
- the concentration of phosphorus oxide P 2 O 5 can be less than 15% by weight, preferably less than 10% by weight.
- said catalyst in another hydrorefining catalyst that comprises boron and/or silicon, preferably boron and silicon, said catalyst generally comprises, in % by weight relative to the total mass of said catalyst,
- [0033] optionally from 0 to 30%, preferably from 0 to 25%, and more preferably from 0 to 20% of at least one metal of group VIII,
- [0036] optionally from 0 to 20%, preferably from 0.1 to 15%, and more preferably from 0.1 to 10% of phosphorus, and
- [0037] optionally from 0 to 20%, preferably from 0.1 to 15%, and more preferably from 0.1 to 10% of at least one element that is selected from group VIIA, for example fluorine.
- said catalyst comprises:
- hydrorefining catalysts that have the following atomic ratios are preferred:
- the particularly preferred hydrorefining catalysts are the NiMo and/or NiW catalysts on alumina, also the NiMo and/or NiW catalysts on alumina that is doped with at least one element that is included in the group of atoms formed by phosphorus, boron, silicon and fluorine.
- hydrorefining catalysts that are described above are therefore used during the hydrorefining stage, often called a hydrotreatment stage.
- the hydrorefining catalyst is preferably subjected in advance to a sulfurization treatment that makes it possible to transform, at least in part, the metal sulfide radicals before contact with the feedstock to be treated.
- This treatment of activation by sulfurization is well known to one skilled in the art and can be carried out by any method that is already described in the literature or in-situ, i.e., in the reactor, or ex-situ.
- the operating conditions that are used during the hydrorefining stage preferably can be defined as follows:
- a temperature T1 ranging from 330 to 420° C., preferably from 350 to 410° C., more preferably from 360 to 400° C., and even more preferably from 370 to 390° C.;
- a pressure that is higher than 7.5 MPa, preferably higher than 8.2 MPa, more preferably higher than 9.0 MPa, and even more preferably higher than 11.0 MPa and less than 20 MPa;
- a volumetric flow rate ranging from 0.1 to 6 h ⁇ 1 , preferably from 0.2 to 3 h ⁇ 1;
- the operating conditions of the hydrorefining stage are preferably established such that the organic nitrogen content of the feedstock that is obtained from this hydrorefining is less than 10 ppm by weight, preferably less than 5 ppm.
- the operating conditions of the hydrorefining stage are preferably established so as to obtain a level of conversion of the feedstock into compounds whose boiling point is less than 340° C. or, even better, less than 370° C., encompassed between 10 and 50%, preferably between 20 and 40%.
- the effluent that is recovered during the hydrorefining stage is subjected to a separation stage in which at least a portion of the converted products formed during the hydrorefining stage and a fraction that comprises the unconverted products are separated.
- the effluent of this hydrorefining stage can be sent into a separation means, such as, for example, a separator tank, so as to eliminate the ammonia and the hydrogen sulfide that are produced during the hydrorefining stage.
- the hydrocarbon-containing effluent, obtained from this separation can undergo an atmospheric distillation. This distillation can be complemented, in some cases, by a vacuum distillation.
- the purpose of the distillation is to carry out the separation between the converted products, i.e., generally having boiling points of less than 340° C., preferably less than 370° C., and a fraction, generally liquid, that comprises unconverted products.
- the fraction that comprises the unconverted products is, at least in part, subjected to a hydrocracking stage.
- the fraction that is subjected to a hydrocracking stage preferably essentially consists of products that have a boiling point that is higher than 340° C., preferably higher than 370° C.
- This fraction that is subjected to the hydrocracking stage generally has very low contents of organic sulfur, organic nitrogen, hydrogen sulfide and ammonia.
- Organic sulfur and organic nitrogen are defined as the sulfur and the nitrogen that are included in organic compounds.
- the organic nitrogen content of the portion of the fraction that comprises the unconverted products subjected to the hydrocracking stage is preferably less than 10 ppm by weight, more preferably less than 5 ppm by weight.
- the organic sulfur content of the portion of the fraction that comprises the unconverted products subjected to the hydrocracking stage is preferably less than 100 ppm by weight, more preferably less than 20 ppm by weight.
- the H 2 S content of the portion of the fraction that comprises the unconverted products subjected to the hydrocracking stage is preferably less than 100 ppm by weight, more preferably less than 10 ppm by weight, and even more preferably less than 5 ppm by weight.
- the NH 3 content of the portion of the fraction that comprises the unconverted products subjected to the hydrocracking stage is preferably less than 100 ppm by weight, more preferably less than 10 ppm by weight and even more preferably less than 5 ppm by weight.
- the hydrocracking stage is carried out by contact with hydrogen in the presence of a hydrocracking catalyst.
- the hydrogen that is used during the hydrocracking stage generally has a hydrogen sulfide content of less than 100 ppm, preferably less than 10 ppm, more preferably less than 5 ppm, and an ammonia content that is less than 50 ppm, preferably less than 10 ppm, more preferably less than 5 ppm.
- the hydrocracking catalyst exhibits an amorphous or non-zeolitic nature.
- the hydrocracking catalyst generally comprises at least one amorphous acidic substrate and at least one noble metal-type hydro-dehydrogenating function.
- the substrates generally have large surface areas that can range from 150 to 800 m 2 g ⁇ 1 and exhibit a surface acidity. They can be selected from among the halogenated aluminas (in particular chlorinated or fluorinated aluminas), the boron and aluminum oxide combinations, the titanium, silicon and aluminum oxide combinations, the zirconium, aluminum and silicon oxide combinations, the amorphous silica-aluminas, and the halogenated silica-aluminas (chlorinated or fluorinated silica-aluminas in particular). These oxides or combinations of amorphous oxides can be obtained by any methods of synthesis that are known to one skilled in the art.
- the substrate of the hydrocracking catalyst is an amorphous silica-alumina.
- the substrate can consist of pure silica-alumina or result from the mixing, with said silica-alumina, of a binder such as silica (SiO2), alumina (Al2O3), clays, titanium oxide (TiO2), boron oxide (B2O3) and zirconia (ZrO2) and any mixture with the binders cited above.
- a binder such as silica (SiO2), alumina (Al2O3), clays, titanium oxide (TiO2), boron oxide (B2O3) and zirconia (ZrO2) and any mixture with the binders cited above.
- the preferred binders are silica and alumina and, even more preferably, alumina in all of these forms that are known to one skilled in the art, for example gamma-alumina.
- the content by weight of binder in the substrate of the catalyst can be between 0 and 40% by weight, preferably between 1 and 40% by weight, and more preferably between
- the substrate can be prepared by shaping silica-alumina with or without the presence of binder by any technique that is known to one skilled in the art.
- the shaping can be carried out by, for example, extrusion, pelletizing, the drop (oil-drop) coagulation method, turntable granulation or any other method that is well known to one skilled in the art.
- At least one calcination can be carried out after any of the stages of the preparation; it is usually carried out in air at a temperature of at least 150° C., preferably at least 300° C.
- the catalyst substrates can exhibit a certain number of characteristics.
- the B.E.T. specific surface area is determined by adsorption of nitrogen according to ASTM Standard D3663-78 established from the BRUNAUER-EMMETT-TELLER method described in the periodical “The Journal of American Society,” 60, 309, (1938).
- D mean is defined as being a diameter such that all the pores of a size smaller than this diameter constitute 50% of the pore volume (VHg) in an interval of between 36 ⁇ and 1,000 ⁇ .
- the value of the mercury volume in ml/g that is provided in the text below corresponds to the value of the total mercury volume in ml/g that is measured in the sample less the value of the mercury volume in ml/g that is measured in the same sample for a pressure that corresponds to 30 psi (about 2 bar).
- the following mercury pore distribution criteria are defined: volume V1 corresponds to the volume that is contained in the pores whose diameter is less than the mean diameter less 30 ⁇ .
- Volume V2 corresponds to the volume that is contained in the pores with a diameter that is larger than the mean diameter less 30 ⁇ and less than the mean diameter plus 30 ⁇ .
- Volume V3 corresponds to the volume that is contained in the pores with a diameter that is larger than the mean diameter plus 30 ⁇ .
- Volume V4 corresponds to the volume that is contained in the pores whose diameter is less than the mean diameter less 15 ⁇ .
- Volume V5 corresponds to the volume that is contained in the pores with a diameter that is larger than the mean diameter less 15 ⁇ and less than the mean diameter plus 15 ⁇ .
- Volume V6 corresponds to the volume that is contained in the pores with a diameter that is larger than the mean diameter plus 15 ⁇ .
- the pore distribution that was measured by nitrogen adsorption was determined by the Barrett-Joyner-Halenda (BJH) model.
- BJH Barrett-Joyner-Halenda
- the nitrogen adsorption-desorption isotherm according to the BJH model is described in the periodical “The Journal of American Society,” 73, 373 (1951) written by E. P. Barrett, L. G. Joyner and P. P. Halenda.
- the nitrogen desorption mean diameter is defined as being a diameter such that all the pores that are smaller than this diameter constitute 50% of pore volume (Vp) measured on the desorption branch of the nitrogen isotherm.
- Adsorption surface area is defined as the surface area that is measured on the branch of the adsorption isotherm.
- the sodium content has been measured by atomic absorption spectrometry.
- ⁇ K a1 1.7890 ⁇
- ⁇ K a2 1.793 ⁇
- Gamma-alumina is defined in the text below, i.a., as, for example, an alumina contained in the group that consists of cubic gamma-aluminas, pseudo-cubic gamma-aluminas, tetragonal gamma-aluminas, poorly or slightly crystallized gamma-aluminas, large-surface-area gamma-aluminas, low-surface-area gamma-aluminas, gamma-aluminas that are obtained from coarse boehmite, gamma-aluminas that are obtained from crystallized boehmite, gamma-aluminas that are obtained from boehmite that is slightly or poorly crystallized, gamma-aluminas that are obtained from a mixture of crystallized boehmite and
- Al IV tetra-coordinated-type aluminum
- Al VI hexa-coordinated-type aluminum
- the aluminum atom is a quadripolar core.
- the NMR technique of magic angle rotation is a quantitative technique.
- the decomposition of the NMR MAS spectra makes it possible to gain access directly to the amount of different radicals.
- the spectrum is locked in chemical displacement relative to a 1 M solution of aluminum nitrate.
- the aluminum signal is at zero ppm.
- proportion of octahedral Al VI is defined as the following ratio: area 2/(area 1+area 2).
- the packing density (DRT) of the substrates and catalysts that can be used in the process according to the invention is measured in the manner that is described in the work “Applied Heterogeneous Catalysis” by J. F. Le Page, J. Cosyns, P. Courty, E. Freund, J.-P. Franck, Y. Jacquin, B. Juguin, C. Marcilly, G. Martino, J. Miguel, R. Montarnal, A. Sugier, H. Van Landeghem, Technip. Paris, 1987.
- a graduated cylinder with acceptable dimensions is filled with catalyst by successive additions; and between each addition, the catalyst is packed by shaking the cylinder until a constant volume is achieved.
- This measurement is generally carried out on 1,000 cm 3 of catalyst that is packed into a cylinder whose height to diameter ratio is close to 5:1. This measurement can preferably be made on automated devices such as Autotap® that is marketed by Quantachrome®.
- the acidity of the catalyst substrate that can be used in the process according to the invention is measured by infra-red (IR) spectrometry.
- IR infra-red
- the IR spectra are recorded on a Nicolet interferometer such as Nexus-670 under a resolution of 4 cm ⁇ 1 with a Happ-Genzel-type apodization.
- the sample (20 mg) is pressed in the form of a self-supported pellet, then is placed in an in-situ analysis cell (25° C. to 550° C., furnace offset from the IR beam, secondary vacuum of 10 ⁇ 6 mbar).
- the diameter of the pellet is 16 mm.
- the sample is pretreated in the following way to eliminate the physisorbed water and to dehydroxylate partially the surface of the catalyst to obtain a representative image of the acidity of the catalyst in use:
- the basic probe (pyridine) is then adsorbed with saturating pressure at 25° C. and then thermo-desorbed according to the following plateaus:
- a spectrum is recorded at 25° C. at the end of the pretreatment and at each desorption plateau in transmission mode with an accumulation time of 100 s.
- the spectra are set to iso-mass (i.e., assumed to be at iso-thickness) (20 mg exactly).
- the number of Lewis sites is proportional to the surface area of the peak whose maximum lies around 1450 cm ⁇ 1 , including any shoulder.
- the number of Bronsted sites is proportional to the surface area of the peak whose maximum is located toward 1545 cm ⁇ 1 .
- the ratio of the number of Bronsted sites/number of Lewis sites is estimated to be equal to the ratio of the surface areas of two peaks described above.
- the surface area of peaks at 25° C. is generally used. This B/L ratio is generally calculated from the spectrum that is recorded at 25° C. at the end of the pretreatment.
- the substrate of the hydrocracking catalyst is a non-zeolitic substrate with a silica-alumina base (i.e., that comprises silica and alumina) that comprises the following characteristics:
- a content by mass of silica that is more than 5% by weight and less than or equal to 95% by weight, preferably between 10 and 80% by weight, preferably a silica content that is more than 20% by weight and less than 80% by weight, and even more preferably more than 25% by weight and less than 75% by weight, and the silica content is advantageously encompassed between 10 and 50% by weight,
- a cationic impurity content that is less than 0.1% by weight, preferably less than 0.05% by weight, and even more preferably less than 0.025% by weight.
- Cationic impurity content is defined as the total alkaline content.
- [0104] preferably an anionic impurity content that is less than 1% by weight, preferably less than 0.5% by weight, and even more preferably less than 0.1% by weight.
- [0106] preferably a ratio between volume V2, measured by mercury porosimetry, encompassed between D mean ⁇ 30 ⁇ and D mean +30 ⁇ , to the total pore volume that is also measured by mercury porosimetry, that is more than 0.6, preferably more than 0.7, and even more preferably more than 0.8,
- a total pore volume measured by mercury porosimetry, encompassed between 0.1 ml/g and 0.6 ml/g, preferably encompassed between 0.20 and 0.50 ml/g, and even more preferably more than 0.20 ml/g,
- a total pore volume measured by nitrogen porosimetry, encompassed between 0.1 ml/g and 0.6 ml/g, preferably between 0.20 and 0.50 ml/g,
- a BET specific surface area encompassed between 100 and 550 m 2 /g, preferably encompassed between 150 and 500 m 2 /g,
- an adsorption surface area such that the ratio between the adsorption surface area and the BET surface area is more than 0.5, preferably more than 0.65, and more preferably more than 0.8,
- an X diffraction diagram that contains at least the main lines that are characteristic of at least one of the transition aluminas contained in the group that consists of the rho, chi, kappa, eta, gamma, theta and delta aluminas, and preferably characterized in that it contains at least the main lines that are characteristic of at least one of the transition aluminas contained in the group that consists of the gamma, eta, theta and delta alumina, and more preferably, characterized in that it contains at least the main lines that are characteristic of the gamma-alumina and eta-alumina, and even more preferably characterized in that it contains the peaks at one d encompassed between 1.39 and 1.40 ⁇ and the peaks at one d encompassed between 1.97 ⁇ and 2.00 ⁇ .
- the NMR MAS spectra of the solid of 27 Al of such a substrate show two clusters of separate peaks.
- a first type of aluminum whose maximum resonates toward 10 ppm extends between ⁇ 100 and 20 ppm. The position of the maximum suggests that these radicals are essentially of Al VI type (octahedral).
- a second type of minority aluminum whose maximum resonates toward 60 ppm extends between 20 and 110 ppm.
- This cluster can be decomposed into at least two radicals. The predominant radical of this cluster would correspond to Al IV atoms (tetrahedral).
- the proportion of octahedral Al VI is more than 50%, preferably more than 60%, and even more preferably more than 70%.
- the substrate can comprise at least two silico-aluminum zones, whereby said zones have Si/Al ratios that are less than or greater than the overall Si/Al ratio that is determined by X fluorescence.
- a substrate that has an overall Si/Al ratio that is equal to 0.5 thus comprises, for example, two silico-aluminum zones: one of the zones has an Si/Al ratio that is determined by MET of less than 0.5, and the other zone has an Si/Al ratio that is determined by MET of between 0.5 and 2.5.
- the substrate can comprise a single silico-aluminum zone, whereby said zone has an Si/Al ratio that is equal to the overall Si/Al ratio that is determined by X fluorescence and is less than 2.3.
- the acidity of the catalyst substrate that can be used in the process according to the invention can advantageously be measured, without restricting the scope of the invention, by IR tracking of the thermodesorption of the pyridine.
- the B/L ratio, as described above, of the substrate according to the invention is between 0.05 and 1, preferably between 0.05 and 0.7, very preferably between 0.06 and 0.3, and even more preferably between 0.075 and 0.15.
- the packing density of the substrates, after calcination, is generally more than 0.65 g/cm 3 , preferably more than 0.72 g/cm 3 , very preferably more than 0.75 g/cm 3 , and even more preferably more than 0.78 g/cm 3 .
- the packing density of the catalysts that are obtained from this substrate is generally more than 0.85 g/cm 3 , preferably more than 0.95 g/cm 3 , very preferably more than 1.025 cm 3 /g, and even more preferably more than 1.1 g/cm 3 .
- this first embodiment of the invention relates to a non-zeolitic substrate based on silica-alumina that contains an amount that is more than 5% by weight and less than or equal to 95% by weight of silica (SiO 2 ), characterized by:
- an X diffraction diagram that contains at least the main lines that are characteristic of at least one of the transition aluminas contained in the group that consists of the rho, chi, eta, gamma, kappa, theta and delta aluminas.
- the substrate of the hydrocracking catalyst comprises at least one silica-alumina, whereby said silica-alumina comprises the following characteristics:
- a content by weight of silica SiO 2 of between 10 and 60%, preferably between 20 and 60%, and even more preferably between 30 and 50% by weight,
- a volume of macropores whose diameter is more than 500 ⁇ and preferably between 1,000 ⁇ and 10,000 ⁇ , represents between 20 and 80% of the total pore volume, preferably between 30 and 60% of the total pore volume, and more preferably, at least 35% of the total pore volume.
- the amorphous hydrocracking catalyst comprises palladium and platinum. These two compounds are part of the hydro-dehydrogenating element of the hydrocracking catalyst.
- the hydro-dehydrogenating element can comprise either one or more noble metals of group VIII of the periodic table, or a combination of at least one metal of group VIB of the periodic table and at least one metal of group VIII.
- the hydrocracking catalyst can comprise, in percentage by weight relative to the total mass of the catalyst, 0.2 to 8% by weight, preferably 0.3 to 5% by weight, and more preferably 0.4 to 2% by weight of noble metals of group VIII.
- the hydrocracking catalyst can be subjected in advance to a reduction treatment that makes it possible to transform, at least in part, the noble metal oxides into reduced noble metals.
- a reduction treatment that makes it possible to transform, at least in part, the noble metal oxides into reduced noble metals.
- One of the preferred methods for carrying out the reduction of the catalyst is a treatment under hydrogen at a temperature of between 150 and 650° C. and at a total pressure of between 0.1 and 20 MPa.
- any ex-situ reduction method can be suitable.
- a reduction can include holding at a temperature of 150° C. for 2 hours, followed by a rise in temperature up to 350° C. at a rate of 1° C. per minute, then holding at 350° C. for 2 hours.
- the hydrogen flow rate can be 1,000 liters of hydrogen per liter of catalyst.
- the hydrocracking stage is implemented at a temperature T2 that is less than hydrorefining temperature T1, whereby the difference between T1 and T2 is between 5 and 50° C., preferably between 10 and 40° C., and more preferably between 15 and 30° C.
- the operating conditions that are used during the hydrocracking stage of the process according to the invention can be:
- a temperature T2 that is more than 200° C., preferably between 250 and 420° C., more preferably between 300 and 400° C., even more preferably between 330 and 380° C.;
- the effluent that is recovered during the hydrocracking stage is generally subjected to a so-called final separation stage so as to separate the gases, such as ammonia, hydrogen sulfide, hydrogen, as well as the other light gases of the effluent.
- gases such as ammonia, hydrogen sulfide, hydrogen
- an atmospheric distillation can be implemented. In some cases, this atmospheric distillation is completed by a vacuum distillation.
- the distillation has as its object to carry out the separation between the converted products, i.e., generally having boiling points of less than 340° C. (and, even better, less than 370° C.) and an unconverted liquid fraction.
- the unconverted liquid fraction can be completely or partially injected into the hydrocracking reactor so as to be converted there.
- the final separation is carried out with separation stage means implemented between the hydrorefining and hydrocracking stages when the latter comprise an atmospheric distribution and optionally a vacuum distillation.
- This process makes it possible to obtain levels of conversion of the feedstock into products whose boiling point is less than 370° C., more than 70% and preferably more than 80%. This process also makes it possible to obtain high selectivities of middle distillates and more especially of gas oil.
- the gas oil and the kerosene that are obtained exhibit excellent qualities, i.e., a high cetane number and a low sulfur content.
- the silica-alumina gels are prepared by mixing soda silicate and water, by sending this mixture into an ion exchange resin. A solution of aluminum hexahydrate in water is added to the decationized silica sol. So as to obtain a gel, ammonia is added, then the precipitate is filtered, and washing is carried out with a solution of water and concentrated ammonia until the conductivity of the wash water is constant.
- the gel that is obtained from this stage is mixed with Pural boehmite powder such that the final composition of the mixed substrate of anhydrous product is, at this stage of the synthesis, equal to 60% Al 2 O 3 -40% SiO 2 . This suspension is passed into a colloidal mill in the presence of nitric acid.
- the content of added nitric acid is adjusted such that the percentage at the nitric acid mill outlet is 8% relative to the mass of solid mixed oxide.
- This mixture is then filtered so as to reduce the amount of water of the mixed cake.
- the cake is mixed in the presence of 10% nitric acid and then extruded.
- the mixing is done in a Z-arm mixing machine.
- the extrusion is carried out by passage of the paste through a die that is equipped with orifices that are 1.4 mm in diameter.
- the extrudates that are thus obtained are dried at 150° C. and then calcined at 550°, and then calcined at 700° C. in the presence of water vapor.
- a volume V6 measured by mercury porosimetry, encompassed in the pores with a diameter of more than D mean +15 ⁇ of 0.041 ml/g;
- an X diffraction diagram that contains at least the gamma characteristic main lines and the peaks at one d encompassed between 1.39 and 1.40 ⁇ and the peaks at one d encompassed between 1.97 ⁇ and 2.00 ⁇ , whereby the X diffraction diagram also contains the characteristic main lines of gamma-alumina and in particular the peaks at one d encompassed between 1.39 and 1.40 ⁇ and the peaks at one d encompassed between 1.97 ⁇ and 2.00 ⁇ ;
- the catalyst contains a single silico-aluminum zone with an Si/Al ratio that is determined by a MET microprobe of 0.63.
- Catalyst C1 is obtained by impregnation in the dry state of substrate S1 by an aqueous solution that contains platinum and palladium salts.
- the platinum salt is hexachloroplatinic acid H 2 PtCl 6 *6H 2 O
- the palladium salt is the palladium nitrate Pd(NO 3 ) 2 .
- the impregnated extrudates are dried at 120° C. for one night and then calcined at 500° C. under dry air.
- the final content of Pt is 0.5% by weight.
- the final content of Pd is 1.0% by weight.
- Substrate S2 is an amorphous silica-alumina that has a chemical composition of 40% by weight of SiO 2 and 60% by weight of Al 2 O 3 . Its Si/Al molar ratio is 0.56. Its Na content is on the order of 100-120 ppm by weight. It is in the form of cylindrical extrudates with a diameter of 1.7 mm. Its specific surface area is 320 m 2 /g. Its total pore volume, measured by mercury porosimetry, is 0.83 ml/g. The pore distribution is bimodal. In the field of mesopores, we observe a wide peak of between 40 and 150 ⁇ with a dV/dD maximum toward 70 ⁇ . On the substrate, macropores that are larger than 500 ⁇ in size represent about 40% of the total pore volume.
- Catalyst C2 is obtained by impregnation in the dry state of substrate S2 by an aqueous solution that contains platinum and palladium salts.
- the platinum salt is hexachloroplatinic acid H 2 PtCl 6 *6H 2 O
- the palladium salt is the palladium nitrate Pd(NO 3 ) 2 .
- the impregnated extrudates are dried at 120° C. for one night and then calcined at 500° C. in dry air.
- the final content of Pt is 0.5% by weight.
- the final content of Pd is 1.0% by weight.
- a vacuum distillate is subjected to a hydrorefining stage on an HR448 catalyst that is marketed by Procatalyse, with a base of nickel (3.3% by weight), molybdenum (16.5% by weight) supported on alumina, in the presence of hydrogen, at a temperature of 385° C. and at an hourly volumetric flow rate of 0.50 h ⁇ 1 .
- the conversion into products whose boiling point is less than 370° C. is about 35% by weight.
- the fraction that is subjected to the hydrocracking stage is introduced into a hydrocracking test unit that simulates the operation of the second stage of a 2-stage hydrocracking process that comprises a fixed-bed reactor with upward circulation of the feedstock (“up flow”) into which 50 ml of catalyst is introduced.
- Catalysts C1 and C2 are reduced in advance at 350° C. for 2 hours under a hydrogen flow rate of 50 l/h, under a total pressure of 14 MPa. At the beginning of this reduction stage, the temperature is increased to 350° C. with a rate of temperature rise of 1° C. per minute.
- the catalytic performance levels are expressed by the net conversion into products that have a boiling point of less than 370° C., by the coarse selectivity of middle distillate (fraction 150-370° C.) and by the ratio between the gas oil yield and the kerosene yield in the middle distillate fraction. They are expressed starting from the simulated distillation results. These performance levels are determined at different temperature levels of the test. For each temperature level, the performance levels are measured on the catalyst after a stabilization period, generally at least 72 hours, has elapsed.
- Net conversion CN is provided by the following formula:
- CN 370 ⁇ [(% 370 ⁇ effluents ) ⁇ (% 370 ⁇ feedstock )]/[100 ⁇ (% 370 ⁇ feedstock )] with:
- % 370 ⁇ effluents content by mass of compounds that have boiling points of less than 370° C. in the effluents
- Middle distillate coarse selectivity SB is obtained as follows:
- SB middle distillates [(fraction(150° C.-370° C.) effluents )]/[(% 370° C. ⁇ effluents )]
- the ratio between the gas oil yield and the kerosene yield (gas oil/kerosene ratio) in the middle distillate fraction corresponds to the ratio between the yield of the fraction (250° C.-370° C.) of the effluent and the yield of the fraction (150° C.-250° C.) of the effluent.
- the C1 and C2 amorphous acid hydrocracking catalysts that are used in the hydrocracking stage make it possible to obtain high levels of conversion into products that have a boiling point less than 370° C. and high selectivities of middle distillates, whereby they do so at a temperature levels such that the temperature of the hydrocracking stage is less than the temperature of the hydrorefining stage by 10 to 25° C., whereby the hydrorefining stage is carried out at 385° C. in this example.
- the effluent that is obtained from the hydrocracking undergoes a distillation so as to recover the kerosene fraction (compounds that have boiling points of more than 150° C. and less than 250° C.) and the gas oil fraction (compounds that have boiling points of more than 250° C. and less than 370° C.).
- the kerosene and gas oil fractions are then analyzed. The characteristics of these fractions are combined in Table 4 regarding kerosene and in Table 5 regarding gas oil. TABLE 4 Characteristics of the Kerosene Fraction that is Obtained Catalyst Smoke Point (mm) C1 27 C2 26
- Catalyst C1 is evaluated under hydrocracking conditions.
- catalyst C1 undergoes a reduction treatment under operating conditions that are identical to the operating conditions of the reduction treatment described in Example 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0302200A FR2851569B1 (fr) | 2003-02-21 | 2003-02-21 | Procede d'hydrocraquage en deux etapes utilisant un catalyseur amorphe a base de platine et de palladium |
FR03/02.200 | 2003-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040226860A1 true US20040226860A1 (en) | 2004-11-18 |
Family
ID=32799519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/781,849 Abandoned US20040226860A1 (en) | 2003-02-21 | 2004-02-20 | Process of hydrocracking in two stages using an amorphous catalyst based on platinum and palladium |
Country Status (2)
Country | Link |
---|---|
US (1) | US20040226860A1 (fr) |
FR (1) | FR2851569B1 (fr) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090057193A1 (en) * | 2005-12-16 | 2009-03-05 | Darush Farshid | Process for upgrading heavy oil using a highly active slurry catalyst composition |
US7678732B2 (en) | 2004-09-10 | 2010-03-16 | Chevron Usa Inc. | Highly active slurry catalyst composition |
US20100065472A1 (en) * | 2008-09-18 | 2010-03-18 | Julie Chabot | Systems and Methods for Producing a Crude Product |
US20100140138A1 (en) * | 2006-11-23 | 2010-06-10 | Alexandra Chaumonnot | Catalyst based on a material with a hierarchical porosity comprising silicon, and a process for hydrocracking/hydroconversion and hydrotreatment of hydrocarbon feeds |
US7897036B2 (en) | 2008-09-18 | 2011-03-01 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US7901569B2 (en) | 2005-12-16 | 2011-03-08 | Chevron U.S.A. Inc. | Process for upgrading heavy oil using a reactor with a novel reactor separation system |
US7931796B2 (en) | 2008-09-18 | 2011-04-26 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US7931797B2 (en) | 2009-07-21 | 2011-04-26 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US7935243B2 (en) | 2008-09-18 | 2011-05-03 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US7938954B2 (en) * | 2005-12-16 | 2011-05-10 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US7943036B2 (en) | 2009-07-21 | 2011-05-17 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US7972499B2 (en) | 2004-09-10 | 2011-07-05 | Chevron U.S.A. Inc. | Process for recycling an active slurry catalyst composition in heavy oil upgrading |
US8048292B2 (en) | 2005-12-16 | 2011-11-01 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US8236169B2 (en) | 2009-07-21 | 2012-08-07 | Chevron U.S.A. Inc | Systems and methods for producing a crude product |
US8372266B2 (en) | 2005-12-16 | 2013-02-12 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US8435400B2 (en) | 2005-12-16 | 2013-05-07 | Chevron U.S.A. | Systems and methods for producing a crude product |
US8697594B2 (en) | 2010-12-30 | 2014-04-15 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US8759242B2 (en) | 2009-07-21 | 2014-06-24 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US8927448B2 (en) | 2009-07-21 | 2015-01-06 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US9068132B2 (en) | 2009-07-21 | 2015-06-30 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US20160040083A1 (en) * | 2011-03-31 | 2016-02-11 | Exxonmobil Research And Engineering Company | Fuels hydrocracking with dewaxing of fuel products |
US9321037B2 (en) | 2012-12-14 | 2016-04-26 | Chevron U.S.A., Inc. | Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units |
US9687823B2 (en) | 2012-12-14 | 2017-06-27 | Chevron U.S.A. Inc. | Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units |
US20220228073A1 (en) * | 2021-01-15 | 2022-07-21 | Saudi Arabian Oil Company | Cyclization and fluid catalytic cracking systems and methods for upgrading naphtha |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021133210A1 (fr) * | 2019-12-24 | 2021-07-01 | Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" | Catalyseur de déshydrogénation d'hydrocarbures paraffiniques с3-с5 dans un lit stationnaire et support pour sa production |
RU2731568C1 (ru) * | 2019-12-24 | 2020-09-04 | Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" | Катализатор дегидрирования С3-С5 парафиновых углеводородов в стационарном слое |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3592759A (en) * | 1969-04-18 | 1971-07-13 | Universal Oil Prod Co | Multiple stage hydrocracking process |
US4197184A (en) * | 1978-08-11 | 1980-04-08 | Uop Inc. | Hydrorefining and hydrocracking of heavy charge stock |
US5879539A (en) * | 1994-04-01 | 1999-03-09 | Institut Francais Du Petrole | Precious metal and silica-alumina based catalyst and hydroisomerisation treatment process for heavy feeds |
US6030921A (en) * | 1996-07-15 | 2000-02-29 | Chevron U.S.A. Inc. | Sulfur resistant hydroconversion catalyst and hydroprocess of sulfur-containing lube feedstock |
US6436280B1 (en) * | 1998-12-10 | 2002-08-20 | Institut Français Du Petrole | Catalyst for hydrotreating hydrocarbon feeds in a fixed bed reactor |
US6733657B2 (en) * | 2001-01-15 | 2004-05-11 | Institut Francais Du Petrole | Hydrocracking catalyst having a unique silica-alumina substrate |
US20040138059A1 (en) * | 2002-10-30 | 2004-07-15 | Patrick Euzen | Catalyst and process for hydrocracking hydrocarbon-containing feedstocks |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2718145B1 (fr) * | 1994-04-01 | 1996-05-31 | Inst Francais Du Petrole | Procédé de traitement avec hydroisomérisation de charges issues du procédé fischer-tropsch. |
EP0776959B1 (fr) * | 1995-11-28 | 2004-10-06 | Shell Internationale Researchmaatschappij B.V. | Procédé pour la production d'huiles lubrifiantes |
FR2792946B1 (fr) * | 1999-04-29 | 2003-10-24 | Inst Francais Du Petrole | Procede de production de bases huiles et de distillats moyens a partir de charges hydrocarbonees par une conversion-hydroisomerisation sur un catalyseur faiblement disperse suivie d'un deparaffinage catalytique |
FR2818285B1 (fr) * | 2000-12-15 | 2004-12-17 | Inst Francais Du Petrole | Procede flexible ameliore de production de bases huiles et de distillats par une conversion-hydroisomerisation sur un catalyseur faiblement disperse suivie d'un deparaffinage catalytique |
-
2003
- 2003-02-21 FR FR0302200A patent/FR2851569B1/fr not_active Expired - Fee Related
-
2004
- 2004-02-20 US US10/781,849 patent/US20040226860A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3592759A (en) * | 1969-04-18 | 1971-07-13 | Universal Oil Prod Co | Multiple stage hydrocracking process |
US4197184A (en) * | 1978-08-11 | 1980-04-08 | Uop Inc. | Hydrorefining and hydrocracking of heavy charge stock |
US5879539A (en) * | 1994-04-01 | 1999-03-09 | Institut Francais Du Petrole | Precious metal and silica-alumina based catalyst and hydroisomerisation treatment process for heavy feeds |
US6030921A (en) * | 1996-07-15 | 2000-02-29 | Chevron U.S.A. Inc. | Sulfur resistant hydroconversion catalyst and hydroprocess of sulfur-containing lube feedstock |
US6136181A (en) * | 1996-07-15 | 2000-10-24 | Chevron U.S.A. Inc. | Hydroconversion sulfur-containing lube feedstock using a sulfur resistant catalyst |
US6436280B1 (en) * | 1998-12-10 | 2002-08-20 | Institut Français Du Petrole | Catalyst for hydrotreating hydrocarbon feeds in a fixed bed reactor |
US6733657B2 (en) * | 2001-01-15 | 2004-05-11 | Institut Francais Du Petrole | Hydrocracking catalyst having a unique silica-alumina substrate |
US20040138059A1 (en) * | 2002-10-30 | 2004-07-15 | Patrick Euzen | Catalyst and process for hydrocracking hydrocarbon-containing feedstocks |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7678732B2 (en) | 2004-09-10 | 2010-03-16 | Chevron Usa Inc. | Highly active slurry catalyst composition |
US7972499B2 (en) | 2004-09-10 | 2011-07-05 | Chevron U.S.A. Inc. | Process for recycling an active slurry catalyst composition in heavy oil upgrading |
US20090057193A1 (en) * | 2005-12-16 | 2009-03-05 | Darush Farshid | Process for upgrading heavy oil using a highly active slurry catalyst composition |
US8435400B2 (en) | 2005-12-16 | 2013-05-07 | Chevron U.S.A. | Systems and methods for producing a crude product |
US8372266B2 (en) | 2005-12-16 | 2013-02-12 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US8048292B2 (en) | 2005-12-16 | 2011-11-01 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US7901569B2 (en) | 2005-12-16 | 2011-03-08 | Chevron U.S.A. Inc. | Process for upgrading heavy oil using a reactor with a novel reactor separation system |
US7938954B2 (en) * | 2005-12-16 | 2011-05-10 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US20100140138A1 (en) * | 2006-11-23 | 2010-06-10 | Alexandra Chaumonnot | Catalyst based on a material with a hierarchical porosity comprising silicon, and a process for hydrocracking/hydroconversion and hydrotreatment of hydrocarbon feeds |
US8821714B2 (en) | 2006-11-23 | 2014-09-02 | IFP Energies Nouvelles | Catalyst based on a material with a hierarchical porosity comprising silicon, and a process for hydrocracking/hydroconversion and hydrotreatment of hydrocarbon feeds |
US7935243B2 (en) | 2008-09-18 | 2011-05-03 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US7931796B2 (en) | 2008-09-18 | 2011-04-26 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US7897035B2 (en) | 2008-09-18 | 2011-03-01 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US7897036B2 (en) | 2008-09-18 | 2011-03-01 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US20100065472A1 (en) * | 2008-09-18 | 2010-03-18 | Julie Chabot | Systems and Methods for Producing a Crude Product |
US8927448B2 (en) | 2009-07-21 | 2015-01-06 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US8236169B2 (en) | 2009-07-21 | 2012-08-07 | Chevron U.S.A. Inc | Systems and methods for producing a crude product |
US9068132B2 (en) | 2009-07-21 | 2015-06-30 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US7931797B2 (en) | 2009-07-21 | 2011-04-26 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US8759242B2 (en) | 2009-07-21 | 2014-06-24 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US7943036B2 (en) | 2009-07-21 | 2011-05-17 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US8802587B2 (en) | 2010-12-30 | 2014-08-12 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US9040446B2 (en) | 2010-12-30 | 2015-05-26 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US8809222B2 (en) | 2010-12-30 | 2014-08-19 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US8809223B2 (en) | 2010-12-30 | 2014-08-19 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US8778828B2 (en) | 2010-12-30 | 2014-07-15 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US8846560B2 (en) | 2010-12-30 | 2014-09-30 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US8703637B2 (en) | 2010-12-30 | 2014-04-22 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US9018124B2 (en) | 2010-12-30 | 2015-04-28 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US9040447B2 (en) | 2010-12-30 | 2015-05-26 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US8802586B2 (en) | 2010-12-30 | 2014-08-12 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US8697594B2 (en) | 2010-12-30 | 2014-04-15 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US20160040083A1 (en) * | 2011-03-31 | 2016-02-11 | Exxonmobil Research And Engineering Company | Fuels hydrocracking with dewaxing of fuel products |
US10017705B2 (en) * | 2011-03-31 | 2018-07-10 | Exxonmobil Research And Engineering Company | Fuels hydrocracking with dewaxing of fuel products |
US9321037B2 (en) | 2012-12-14 | 2016-04-26 | Chevron U.S.A., Inc. | Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units |
US9687823B2 (en) | 2012-12-14 | 2017-06-27 | Chevron U.S.A. Inc. | Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units |
US20220228073A1 (en) * | 2021-01-15 | 2022-07-21 | Saudi Arabian Oil Company | Cyclization and fluid catalytic cracking systems and methods for upgrading naphtha |
US11965136B2 (en) * | 2021-01-15 | 2024-04-23 | Saudi Arabian Oil Company | Cyclization and fluid catalytic cracking systems and methods for upgrading naphtha |
Also Published As
Publication number | Publication date |
---|---|
FR2851569A1 (fr) | 2004-08-27 |
FR2851569B1 (fr) | 2007-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040226860A1 (en) | Process of hydrocracking in two stages using an amorphous catalyst based on platinum and palladium | |
US7655136B2 (en) | Process for producing middle distillates by hydroisomerizing and hydrocracking feeds from the Fischer-Tropsch process using a doped catalyst based on mesoporous alumina-silica with a controlled macropore content | |
US6733657B2 (en) | Hydrocracking catalyst having a unique silica-alumina substrate | |
US7270738B2 (en) | Catalyst and process for hydrocracking hydrocarbon-containing feedstocks | |
US7658836B2 (en) | Process for producing middle distillates by hydroisomerizing and hydrocracking feeds from the Fischer-Tropsch process using a multifunctional guard bed | |
JP5022903B2 (ja) | アルミノシリケートドープ触媒および炭化水素供給材料処理の改良法 | |
JP5033640B2 (ja) | 制御されたドーピング元素含有量を有するゼオライト触媒および炭化水素仕込み原料を製造するための改善法 | |
KR100597052B1 (ko) | 베타 제올라이트 및 vb족 원소를 포함하는 수소화 분해증류 촉매 | |
US7704378B2 (en) | Method for the production of middle distillates by hydroisomerisation et hydrocracking of charges arising from the Fischer-Tropsch method | |
US7790019B2 (en) | Zeolitic catalyst, substrate based on a silica-alumina matrix and zeolite, and hydrocracking process for hydrocarbon feedstocks | |
US6174429B1 (en) | Catalyst and process for hydrocracking fractions that contain hydrocarbon | |
JP4138325B2 (ja) | 修飾ゼオライトおよびそれを用いた水素化処理触媒 | |
KR19980064158A (ko) | 보론과 실리콘을 함유하는 촉매 및 그 촉매를 사용하여탄화수소 공급원료를 가수소처리하는 방법 | |
RU2640804C2 (ru) | Способ получения катализатора гидрокрекинга | |
US6500330B2 (en) | Hydrocracking process with catalyst comprising a zeolite Y not globally dealuminized, an element of group VB, and a promoter element of boron, phosphorus and silicon | |
RU2283857C2 (ru) | Способ получения средних дистиллятов гидроизомеризацией и гидрокрекингом тяжелой фракции из продуктов, полученных способом фишера-тропша, и устройство для его осуществления | |
US7250106B2 (en) | Flexible process for the production of oil bases and middle distillates with a converting pretreatment stage followed by a catalytic dewaxing stage | |
EP0310165B1 (fr) | Procédé d'hydrocraquage de matière première contenant des hydrocarbures | |
RU2351635C2 (ru) | Гидрогенизация ароматических соединений и олефинов с использованием мезопористого катализатора | |
US6387246B1 (en) | Catalyst that comprises a partially amorphous Y zeolite and its use in hydroconversion of hydrocarbon petroleum feedstocks | |
US20010049333A1 (en) | Catalyst and method for hydrogenation of hydrocarbon oils | |
US6402936B1 (en) | Catalyst that comprises a partially amorphous Y zeolite, an element of group VB and its use in hydroconversion and hydrorefining of hydrocarbon petroleum feedstocks | |
US20110155633A1 (en) | Process for middle distillae production form fischer-tropsch waxes using a modified-zeolite-based catalyst | |
KR900004505B1 (ko) | 중간유분을 생성하는 수소화 크래킹 촉매 | |
US20040040888A1 (en) | Process for hydrocracking into a stage of hydrocarbon feedstocks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INSTITUT FRANCAIS DU PETROLE, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOURGES, PATRICK;BENAZZI, ERIC;EUZEN, PATRICK;REEL/FRAME:015561/0430 Effective date: 20040209 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |