US20040225432A1 - Method and system for the navigation and control of vehicles at an airport and in the surrounding airspace - Google Patents
Method and system for the navigation and control of vehicles at an airport and in the surrounding airspace Download PDFInfo
- Publication number
- US20040225432A1 US20040225432A1 US10/733,968 US73396803A US2004225432A1 US 20040225432 A1 US20040225432 A1 US 20040225432A1 US 73396803 A US73396803 A US 73396803A US 2004225432 A1 US2004225432 A1 US 2004225432A1
- Authority
- US
- United States
- Prior art keywords
- gps
- vehicle
- airport
- differential
- zone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 103
- 238000012937 correction Methods 0.000 claims abstract description 81
- 238000007726 management method Methods 0.000 claims abstract description 59
- 238000013459 approach Methods 0.000 claims description 39
- 238000012876 topography Methods 0.000 claims description 3
- 238000010276 construction Methods 0.000 abstract description 22
- 230000001419 dependent effect Effects 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000012545 processing Methods 0.000 description 131
- 230000006870 function Effects 0.000 description 94
- 239000013598 vector Substances 0.000 description 72
- 238000004891 communication Methods 0.000 description 39
- 230000008859 change Effects 0.000 description 35
- 238000005516 engineering process Methods 0.000 description 27
- 230000008569 process Effects 0.000 description 26
- 238000001514 detection method Methods 0.000 description 24
- 238000013479 data entry Methods 0.000 description 22
- 238000006243 chemical reaction Methods 0.000 description 21
- 230000005540 biological transmission Effects 0.000 description 19
- 238000005259 measurement Methods 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 16
- 238000013461 design Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 16
- 238000000926 separation method Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 15
- 238000012360 testing method Methods 0.000 description 14
- 239000011159 matrix material Substances 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 238000011161 development Methods 0.000 description 12
- 238000012544 monitoring process Methods 0.000 description 12
- 230000003068 static effect Effects 0.000 description 11
- 238000013507 mapping Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 230000002123 temporal effect Effects 0.000 description 9
- 230000001133 acceleration Effects 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 238000011960 computer-aided design Methods 0.000 description 8
- 230000010354 integration Effects 0.000 description 8
- 230000009471 action Effects 0.000 description 7
- 210000004209 hair Anatomy 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 230000008439 repair process Effects 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 101000620653 Homo sapiens Serine/threonine-protein phosphatase 5 Proteins 0.000 description 6
- 102100022346 Serine/threonine-protein phosphatase 5 Human genes 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- NAGRVUXEKKZNHT-UHFFFAOYSA-N Imazosulfuron Chemical compound COC1=CC(OC)=NC(NC(=O)NS(=O)(=O)C=2N3C=CC=CC3=NC=2Cl)=N1 NAGRVUXEKKZNHT-UHFFFAOYSA-N 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 229940103177 maxalt Drugs 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 238000012805 post-processing Methods 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- ULFRLSNUDGIQQP-UHFFFAOYSA-N rizatriptan Chemical compound C1=C2C(CCN(C)C)=CNC2=CC=C1CN1C=NC=N1 ULFRLSNUDGIQQP-UHFFFAOYSA-N 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 230000014616 translation Effects 0.000 description 3
- 238000007792 addition Methods 0.000 description 2
- 230000003416 augmentation Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 230000007123 defense Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000003121 nonmonotonic effect Effects 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 238000012384 transportation and delivery Methods 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 101000578834 Synechocystis sp. (strain PCC 6803 / Kazusa) Methionine aminopeptidase A Proteins 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000009411 base construction Methods 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 238000005314 correlation function Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012067 mathematical method Methods 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000011079 streamline operation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 231100000756 time-weighted average Toxicity 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C23/00—Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S1/00—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
- G01S1/02—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
- G01S1/04—Details
- G01S1/047—Displays or indicators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/03—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
- G01S19/07—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
- G01S19/071—DGPS corrections
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/14—Receivers specially adapted for specific applications
- G01S19/15—Aircraft landing systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/0009—Transmission of position information to remote stations
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0004—Transmission of traffic-related information to or from an aircraft
- G08G5/0013—Transmission of traffic-related information to or from an aircraft with a ground station
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0017—Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
- G08G5/0026—Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located on the ground
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0043—Traffic management of multiple aircrafts from the ground
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0073—Surveillance aids
- G08G5/0082—Surveillance aids for monitoring traffic from a ground station
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/02—Automatic approach or landing aids, i.e. systems in which flight data of incoming planes are processed to provide landing data
- G08G5/025—Navigation or guidance aids
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/20—Integrity monitoring, fault detection or fault isolation of space segment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/40—Correcting position, velocity or attitude
- G01S19/41—Differential correction, e.g. DGPS [differential GPS]
Definitions
- GNSS Global System for Mobile Communications
- Differential GNSS reference receivers located at precise GNSS surveyed locations provide differential corrections over an RF datalink to differential GNSS capable receivers located aboard vehicles.
- Two Federal Aviation Administration programs build on this demonstrated technique of the applicant, specifically the Wide Area Augmentation System and the Local Area Augmentation System.
- Supporting the navigation function descriptive digital maps indicative of airport surrounding terrain and airport physical features are used in the vehicles for navigation and by air traffic controllers for the control of airport operations. In uncontrolled airports without controllers the pilot and vehicle operators control their movement independently using differential GNSS navigation.
- the initial separation surveillance system was a radar system consisting of a rotating radar antenna.
- the antenna rotated typically about once every 4.8 seconds while transmitting a signal, another receiving antenna picks up a reflected signal from a target.
- the surveillance system then calculated a range (based on transit time) and an azimuth angle based on the physical orientation of the antenna.
- the 2-dimensional position was then usually plotted on a display with other detected targets, objects and clutter.
- Radar today relies on faster rotating antennas or electronically scanned antennas to provide more frequent updates and higher resolution.
- a transponder is used on the aircraft. The transponder is the key element in radar surveillance systems, since without it no identification and no altitude information is provided to the air traffic control system.
- Haken Lans (GP&C) of Sweden is demonstrating the use of Differential GPS with Self Organizing Time Division Multiple Access datalink communications.
- the invention of Haken Lans is described in World Intellectual Property Organization document # 93/01576.
- the invention of Fraughton describes an airborne system for collision avoidance in U.S. Pat. No. 5,153,836.
- the inventions of Lans and Fraughton fail to provide the seamless 4 dimensional GNSS compatible operational and processing environment of Pilley and fail to include the digital map of Pilley.
- the inventor has taken an active stand to promote the technology in a public manner and, as such, may have informed others to key elements of this application.
- the inventor has promoted this technology.
- the inventor's airports philosophy has been described in general terms to the aviation industry since it was felt industry and government awareness was necessary.
- the intent of this Continuation application to identify and protect through letters of Patent techniques, methods and improvements to the demonstrated system.
- This invention most generally is a system and a method for the control of surface and airborne traffic within a defined space envelope.
- GNSS-based, or GPS based data is used to define and create a 3-dimensional map, define locations, to compute trajectories, speeds, velocities, static and dynamic regions and spaces or volumes (zones) including zones identified as forbidden zones.
- Databases are also created, which are compatible with the GNSS data. Some of these databases may contain, vehicle information such as type and shape, static zones including zones specific to vehicle type which are forbidden to the type of vehicle, notice to airmen (notams) characterized by the information or GNSS data.
- the GNSS data in combination with the databases is used, for example, by air traffic control, to control and manage the flow of traffic approaching and departing the airport and the control of the flow of surface vehicles and taxiing aircraft.
- All or a selected group of vehicles may have GNSS receivers. Additionally, all or a selected group may have bi-directional digital data and voice communications between vehicles and also with air traffic control. All of the data is made compatible for display on a screen or selected screens for use and observation including screens located on selected vehicles and aircraft.
- Vehicle/aircraft data may be compatibly superimposed with the 3-dimensional map data and the combination of data displayed or displayable may be manipulated to provide selected viewing. The selected viewing may be in the form of choice of the line of observation, the viewing may be by layers based upon the data and the objective for the use of the data.
- a 4-D process logic flow which provides precise vehicle waypoint navigation in the air and on the ground. This process allows for monitoring of on or off course conditions for vehicles and aircraft operating within the airport space envelope on board the vehicle.
- a 4-D process logic flow which provides precise ATC waypoint navigation mirroring of actual vehicles in the air and on the ground at ATC. This process allows for monitoring of on or off course conditions for vehicles and aircraft operating within the airport space envelope at the ATC computer
- a vehicle process logic flow which detects 3-D runway incursions. The process logic then generates message alerts and sounds tones within the vehicle or aircraft
- a 4-D ATC process logic flow which manages ground and air “Clearances” with precise waypoint navigation aboard the vehicle and at the ATC computer.
- a 4-D ATC process logic flow which manages ground and air “Clearances” incorporating an integrated system of controlling airport lights.
- a 4-D vehicle process logic flow which manages ground and air “Clearances” with an integrated system of waypoint navigation.
- Zones database management methods are used aboard the vehicle and at ATC
- a operational management method where the ATC computer provides navigational instructions to vehicles and aircraft. The instructions result in a travel path with clear paths defined being displayed in an airport map
- a operational management method where the ATC computer provides navigational instructions to vehicles and aircraft The instructions result in waypoints being entered into a 4-D navigation computer
- FIG. 1 depicts the high-level Airport Control and Management processing elements and flow
- FIG. 2 represents an example of a cylindrical static zone in a 3-D ALP. This zone could be graphically displayed in a layer of the ALP
- FIG. 3 represents an example of a static zone around a construction area of the airport and is used in zone incursion processing in the vehicles and at the ATC Processor
- FIG. 4 represents an example of a dynamic zone which travels with a moving vehicle, in this case the zone represents the minimum safe clearance spacing which would be used in zone based collision detection processing in the vehicles and at the ATC processor
- FIG. 5 represents an example of a route zone which is defined by navigational waypoints and is used for on ⁇ off course processing and is used in the vehicles and at the ATC Processor
- FIG. 6 represents an example of a 3-D ATC zone, used to segregate tracked vehicles to particular ATC stations
- FIG. 7 illustrates the construction of a 3-D runway zone
- FIG. 8 shows a map display with surface waypoints and travel path
- FIG. 9 shows a map display with departure waypoints and travel path
- FIG. 10 illustrates the 4-D collision detection mechanism employed in the Airport Control and Management System
- FIG. 11 depicts a waypoint processing diagram showing the earth and ECEF coordinate system, expanded view of airport waypoints, further expanded view of previous and next waypoint geometry with present position, the cross hair display presentation used in the developed GPS navigator
- FIG. 12 graphs latitude, Longitude plot of a missed approach followed by a touch and go with waypoints indicated about every 20 seconds
- FIG. 13 graphs altitude vs. time for missed approach followed by touch and go, waypoints are indicated about every 20 seconds
- FIG. 14 graphs ECEF X and Y presentation of missed approach followed by a touch and go with waypoints indicated about every 20 seconds
- FIG. 15 graphs ECEF Z versus time of missed approach followed by touch and go, with waypoints about every 20 seconds
- FIG. 16 shows a block diagram of on ⁇ off course processing
- FIG. 17 shows a missed approach followed by a touch and go GPS trajectory displayed in a 3-D airport map
- FIG. 18 shows an ECEF navigation screen with navigational window insert and 3-D digital map elements
- FIG. 19 shows the area navigation display with range rings, course and bearing radial lines, and altitude to true course indicators
- FIG. 20 depicts the GPS sliding cross hair landing display indicating too low (go up) and too far right (turn left)
- FIG. 21 illustrates the GPS approach cone with digital map elements showing current position with respect to true course line
- FIG. 22 depicts the demonstration system airport communications diagram showing processor, DGPS base station, radio elements and message flows
- FIG. 23 depicts the demonstration system AC&M hardware block diagram showing various elements of the system
- FIG. 24 depicts the demonstration system aircraft hardware block diagram
- FIG. 25 depicts the demonstration system vehicle # 1 hardware block diagram
- FIG. 26 depicts the demonstration system vehicle # 2 hardware block diagram
- FIG. 27 shows the navigator display compass rose area navigator and cross hair sliding precision approach display in combination with waypoint information, position, velocity, range to the waypoint, cross track error, speed, heading and distance to true course
- FIG. 28 depicts the airport system single controller station, non redundant design
- FIG. 29 depicts the airport system redundant single controller station
- FIG. 30 depicts the airport system redundant dual controller station
- FIG. 31 depicts the map temporal differential correction system diagram
- FIG. 32 depicts the differential GPS system diagram
- FIG. 33 depicts the closed loop differential GPS system diagram
- FIG. 34 depicts the computer human interface using a touch screen
- FIG. 35 depicts Control Facility and Selected Aircraft elements with RF datalink message flow and Controller Display inputs and actions related to an off course condition.
- FIG. 36 identifies Computer Functionality of the AC&M Processor and Graphic Processor.
- Bold elements represent functions necessary for supporting the controller—computer human interface for sending travel paths to an aircraft, displaying position of an aircraft on a display, performing automated conformance monitoring, detecting an off course condition, displaying an alert and ultimately sending a new travel path to the aircraft.
- FIG. 37 contains selected text from the Specification indicative of the automated computer detected off course means using conformance monitoring (mirrored navigation at the AC&M station) and associated controller actions to attempt to bring off course aircraft back on course
- the primary Airport Control and Management (AC&M) functions of the invention utilize a Cartesian ECEF X, Y, Z coordinate frame compatible with GNSS.
- FIG. 1 provides additional detail for the operational elements of the AC&M processing.
- the GNSS signals broadcast by the vehicles 8 are processed by the Real Time Communication Handler 3 and sent to AC&M Operational Control 1 .
- the Operational Control 1 uses the GNSS data to perform the following processing functions 5 : position projections, coordinate conversions, zone detection, collision prediction, runway incursion detection, layer filter, alarm control, and lighting control. If waypoints have been issued to the vehicle 8 , mirrored waypoint navigation is also performed by the AC&M processing.
- the Operational Control 1 interfaces directly to the Graphical Control 2 . Graphics messages, including GNSS data and coded information pertaining to zone incursions, possible collision conditions, or off course conditions detected by the AC&M Processing, are passed to the Graphical Control 2 .
- the Graphical Control 2 interprets this data and updates the display
- the Operational Control 1 function also receives inputs from the Controller/Operator Interface 6 .
- the Controller/Operator Interface uses the data received by Controller/Operator Inputs 7 to compose ATC commands which are sent to the Operational Control 1 function for processing. Commands affecting the presentation on the computer display screen are sent by the Operational Control 1 function to the Graphical Control 2 .
- ATC commands composed by the Controller/Operator Interface 6 processing that do not require further AC&M processing are forwarded directly to the Graphical Control 2 to update the display screen.
- Both the Operational Control 1 function and Graphical Control 2 processing have access to the Monumentation, Aircraft/Vehicle, Static Zones, Waypoints, Airport Map, ATIS Interface and Airport Status and other low level data bases 9 to process and manipulate the presentation of map and vehicle data on a computer display screen.
- each vehicle 8 supports the capability to transmit a minimum of an identifier, the GNSS referenced position of one or more antennas, velocity, optional acceleration and time reports. Since this data is broadcast, it is accessible to the airport control tower, other aircraft and vehicles in the local area, and various airline monitoring or emergency command centers which may perform similar processing functions.
- ATC commands processed by the Controller/Operator Interface 6 and Operational Control 1 function are passed to the Real Time Communication Handler 3 for transmission to the aircraft/vehicle(s) 8 .
- the vehicle(s) 8 Upon receipt of ATC messages, the vehicle(s) 8 return an acknowledgment message which is received by the Real Time communication Handler 3 and passed to the Operational Control 1 function.
- Differential GNSS corrections are generated by the Differential GPS Processor 4 and passed to the Real Time Communication Handler 3 for broadcast to the vehicles.
- the Real Time Communication Handler 8 performs the following functions at a minimum:
- Zones are two and three dimensional shapes which are used to provide spatial cueing for a number of design constructs. Static zones may be defined around obstacles which may pose a hazard to navigation such as transmission towers, tall buildings, and terrain features. Zones may also be keyed to the airport's NOTAMS, identifying areas of the airport which have restricted usage. Dynamic zones are capable of movement. For example, a dynamic zone may be constructed around moving vehicles or hazardous weather areas. A route zone is a 3-D zone formed along a travel path such as a glide slope. Zone processing techniques are also applied to the management of travel clearances and for the detection of runway incursions. Zones may also be associated with each aircraft or surface vehicle to provide collision prediction information.
- a database is constructed using the ADS message reports.
- the AC&M processing converts the position and velocity information to the appropriate coordinate frame (if necessary, speed in knots and a true north heading).
- Simple first and second order time projections based upon position, velocity and acceleration computations are used.
- the ability to smooth and average the velocity information is also possible using time weighted averages.
- PROJECTED X X + (VX)(t) + (AX)(t 2 )/2
- PROJECTED Y Y + (VY)(t) + (AY)(t 2 )/2
- PROJECTED Z Z + (VZ)(t) + (AZ)(t 2 )/2
- Zone areas may be defined in the initial map data base construction or may be added to the map database using a 2-D or 3-D data entry capability.
- the data entry device may be used to construct a zone using a digital map in the following manner:
- the data entry device is used to enter the coordinates of a shape around the area to be designated as a zone.
- a zone An example may be a construction area closed to aircraft traffic listed in the current NOTAMS.
- the zone is stored as a list of X, Y, Z coordinates. Lines connecting the points form a geometric shape corresponding to the physical zone in the selected color, line type and style in the proper layer of the base map.
- Zone information may then be used by collision detection and boundary detection software contained in the AC&M system. This processing software is explained later in this specification.
- FIG. 2 depicts a 3-D cylindrical static zone around a hypothetical utility pole.
- This zone 10 is added into the airport map 11 , while the specific coordinates (center point of base 12 , radius of circular base 13 , and the height 14 ) are saved to the zone file list in a convenient coordinate frame.
- the 3-D digital map 11 is then updated using a series of graphic instructions to draw the zone 10 into the map with specific graphic characteristics such as line type, line color, area fill and other characteristics.
- a database of zone information containing zones in surface coordinates such as X & Y state plane coordinates and mean sea level, ECEF referenced X, Y, Z and others are accessible to the AC&M Processing.
- the database may consist of, but is not limited to the following type of zones.
- the zone information is retrieved from a zone database. As the AC&M Processor receives current ADS reports, information on each position report is checked for zone incursion. Further processing utilizes velocity and acceleration information to determine projected position and potential collision hazards. If a current position or projected position enters a zone area or presents a collision hazard an alert is generated.
- a zone is any shape which forms a 2-D or 3-D figure such as but not limited to a convex polygon (2-D or 3-D), or a circular (2-D), spherical (3-D), cylindrical (3-D) or conical shape represented as a mathematical formula or as a series of coordinate points. Zones are stored in numerous ways based upon the type of zone. The coordinate system of the map and the units of measure greatly affect the manner in which zones are constructed, stored and processed.
- the invention described herein utilizes four primary types of 2-D and 3-D zones in the Airport Control and Management System.
- the first type zone is a static zone as shown in FIG. 3.
- Static zones represent static non-moving objects, such as radio towers, construction areas, or forbidden areas off limits to particular vehicles.
- the zone 15 shown in the FIG. 3 represents a closed area of the airport which is under construction.
- the zone 15 is a 3-D zone with a height of 100 Meters 16 , since it is desired not to have aircraft flying low over the construction site, but high altitude passes over the zone are permitted.
- An example of a permitted flyover path 17 and a forbidden fly through path 18 are shown in the figure. The fly through will produce a zone incursion, while the flyover will not.
- a second zone type is shown in FIG. 4 and represents a dynamic zone 19 which moves with a moving vehicle or aircraft.
- Dynamic zones may be sized and shaped for rough check purposes or may be used to describe the minimum safe clearance distance.
- the dynamic zone is capable of changing size and shape as a function of velocity and or phase of flight and characterized by vehicle or aircraft type.
- the third type zone is shown in FIG. 5 and is a route zone 20 .
- Route zones are described though the use of travel waypoints 21 and 22 .
- the waypoints 21 and 22 define the center line of a travel path, the zone has a specified allowable travel radius X 1 , Y 1 at Waypoint 1 21 and X 2 , Y 2 at Waypoint 2 22 for the determination of on or off course processing.
- X 1 may equal X 2
- Y 1 may equal Y 2 .
- On course 23 operations result in travel which is within the zone, while off course 24 operations result in travel which is outside the zone and result in an off course warning.
- the fourth type zone(s) shown in FIG. 6 is a 3-D zone which is dynamic and used to sort ATC traffic by.
- This type zone is used to segregate information to various types of controller/operator positions, i.e. ground control, clearance delivery, Crash Fire and Rescue and others. Travel within a particular zone automatically defines which ATC position or station the traffic is managed by. For example travel within zone 1 25 is directed to ATC ground station, while travel within zone 2 26 is directed to ATC Clearance Delivery position.
- the ATC zone concept allows for automatic handoff from one controllers position to the other as well as providing overall database the management automation.
- zones are very important to the overall operation of the described invention herein. Further examples of zone processing methods and zone definition is provided below.
- the position is in the 3-D cylindrical zone. It can be seen that the basic methods used here are applicable to other grid or coordinate systems based on linear distances.
- a cylindrical zone on the airport surface (normal with the airport surface) constructed using the Earth Centered Earth Fixed coordinate system is stored using three axis (X, Y, Z). Convert current position to ECEF X, Y, Z Center point of circle CX value, CY value, CZ value
- the second assumption based on the first approximation is that, rather than perform complex coordinate reference transformations for zone shapes not parallel with the earth's surface, projections normal to the surface of the earth will be used. Zones which are not parallel with the earth's surface are handled in a manner similar to that applied to on or off course waypoint processing using rotation about a point or center line.
- a zone which is shaped like a polygon is initially defined as a series of points.
- the points may be entered using a data entry device and a software program with respect to the digital map or they may be part of the base digital map.
- the points are then ordered in a manner which facilitates processing of polygon zone incursion.
- the following examples indicate how a ( 4 sided) polygon is stored and how an airport surface zone incursion is performed using both the state plane coordinates and Earth Centered Earth Fixed X, Y, Z coordinates.
- a further example is provided in the definition of a 3-D runway zone using ECEF X,Y,Z.
- a list of runway corners is constructed using the 3-D map and a data entry device and an automated software tool.
- the runway zone is shown in FIG. 7.
- PPM SQRT [( PX 1 ) 2 +( PY 1 ) 2 +( PZ 1 ) 2 ]
- An alternate method of determining if the present position PP is within a zone which is not normal to the earth's surface is determined using a method similar to that above, except that all N sides of the zone are represented as normal cross products, the corresponding Dot products are calculated and their total products inspected for sign. Based upon the sign of the product PP is either out of or inside of the zone.
- Zone and Runway Incursion software code is contained shown below.
- the actual code includes interfaces to light control, clearance status, tones and other ATC functions.
- the airport control and management system manages overall taxi, departure and arrival clearances in a unique and novel manner through the use of zone processing.
- a departure ground taxi clearance is issued to the selected vehicle.
- the waypoints and travel path are drawn into the map aboard the selected vehicle.
- the vehicle(s) then use the presented taxi information to proceed to the final waypoint.
- AC&M processing uses this clearance information to mask runway zone incursions along the travel path. Since runway incursions are masked for only the selected vehicle and for zones traversed no runway incursion alert actions or warning lights are produced when following the proper course. Should the position represent movement outside of the extablished corridor, an alert is issued signifing an off course condition exist for that vehicle.
- the mask is reset for that zone. Once the last waypoint is reached the clearance is removed and the zone mask is reset. The description below details how such clearances are managed.
- the operator or controller wishes to issue a surface departure clearance to a specific vehicle.
- issue waypoints command is selected for surface departure waypoints
- the vehicle data window then displays a scrollable list of available vehicles contained in a database which are capable of performing operations of departure clearance
- a list is then displayed in a scrollable graphical window of available departure travel paths for the selected vehicle
- AC&M processing sends to the selected vehicle using a radio duplex datalink, the clearance, 4-D waypoint and travel path information
- the vehicle data window then displays a scrollable list of available aircraft contained in a database which are capable of performing operations of departure clearance
- a list is then displayed in a scrollable graphical window of available departure travel paths for the selected vehicle
- AC&M processing sends to the selected vehicle using a radio duplex datalink, the clearance, 4-D waypoint and travel path information
- the zone mask is updated indicating that the selected vehicle has a clearance to occupy runway(s) and taxiway(s) along the travel path. This mask suppresses zone runway incursion logic for this vehicle.
- the zone based lighting control processing then activates the appropriate set of airport lights for the issued clearance in this case Take Off Lights
- the vehicle now has active navigation information and may start to move, sending out ADS message broadcasts over the datalink to other vehicles and the AC&M system
- the selected vehicle ADS messages are received at the AC&M system and at other vehicles.
- Zone incursion checking is performed for every received ADS message using position projection techniques for zones contained in the zones database
- the zone mask is used to determine if the incurred zone is one which the vehicle is allowed to be in. If the zone is not in the zone mask then a warning is issued. Should the zone be that of a Runway, a Runway Incursion Alert is Issued and the appropriate airport lights are activated.
- the ADS position is used to determine when the vehicle leaves a zone. When the vehicle leaves the zone, the clearance mask is updated indicated travel though a particular zone is complete. When this occurs the following steps are initiated by the AC&M:
- AC&M zones based clearance function as presented here provides a unique and automated method for the controlling and managing airport surface and air clearances.
- Collision detection is performed through the zones management process.
- the basic steps for collision detection and avoidance are shown below in a general form.
- FIG. 10 shows graphically what the following text describes.
- a rough check zone 38 and 39 is established based on the current velocity for each vehicle in the database
- Every vehicle's rough check radius is compared with every other vehicle in the database. This is done simply by subtracting the current position of vehicle V from the position of vehicle V+1 in the database to determine the separation distance between each vehicle and every other vehicle in the database. This is performed in the ECEF coordinate frame.
- [0225] 7. Determine the new separation distance between all vehicles which initially required further checking. Compare this distance to the sum of minimum safe clearance distances R 1 and R 2 for those vehicles at the new incremented time.
- the minimum safe clearance distances R 1 and R 2 are contained in a database and is a function of vehicle velocity and type. Should the separation distance 42 between them be less than the sum of the minimal safe clearance distances R 1 +R 2 , then generate alert warning condition. Record the collision time values for each set of vehicles checked. If no minimum safe clearance distance is violated then continue checking the next set of vehicles in a similar fashion. When all vehicles pairs are checked then return to the start of the vehicle database.
- a course change is not expected or if the course change will not alleviate the collision situation then generate alert. If the projection time T is less than the maximum projection time for warning alerts, generate a warning. If the projection time T is greater than the maximum projection time for a warning alert and less than the maximum projection time for a watch alert, generate a watch alert. If the projection time T is greater than the maximum projection time for a watch alert generate no watch alert.
- the warning condition generates a message on the ALERT display identifying which vehicles are in a collision warning state. It also elevates the layer identifier code for those vehicle(s) to an always displayed (non-maskable) warning layer in which all potentially colliding vehicles are displayed in RED. 10 .
- the watch condition generates a message on the ALERT display identifying which vehicles are in a collision watch state. It also elevates the layer identifier code for that vehicle(s) to an always displayed (non-maskable) watch layer in which all potentially colliding vehicles are displayed in YELLOW.
- collpred.c contains the routines which update the vehicle database and perform collision prediction algorithms.
- the AC&M processing performs mirrored navigational processing using the same coordinate references and waypoints as those aboard the vehicles. In this manner the ATC system can quickly detect off course conditions anywhere in the 3-D airport space envelope and effectively perform zone incursion processing aboard the vehicles and at the AC&M.
- the AC&M processing software converts the position and velocity information to the appropriate coordinate frame (zone & map compatible) using techniques described previously. Waypoints based upon the precise 3-dimensional map are used for surface and air navigation in the airport space envelope.
- the capability is provided to store waypoints in a variety of coordinate systems, such as conventional Latitude, Longitude, Mean Sea Level, State Plane Coordinates, ECEF X, Y, Z and others.
- the navigational waypoint and on course—off course determinations are preferred to be performed in an ECEF X, Y, Z coordinate frame, but this is not mandatory.
- FIG. 11 depicts the ECEF waypoint processing used in the AC&M.
- the ECEF coordinate system 43 is shown as X,Y,Z, the origin of the coordinate system is shown as 0 , 0 , 0 .
- the coordinate system rotates 44 with the earth on its polar axis.
- the airport 45 is shown as a square patch.
- An enlarged side view of the airport 46 is shown with (4) waypoints 47 .
- a further enlargement shows the Present Position 48 (PP), the Next Waypoint 49 (NWP) the Previous Waypoint (PWP) 50 .
- the True Course Line 58 is between the Next Waypoint 49 and Previous Waypoint 50 .
- the vector from the Present Position 48 to the Next Waypoint 49 is vector TNWP 51 .
- the Velocity Vector 52 and the Time Projected Position is shown as a solid black box 53 .
- the Projected Position 53 is used in zone incursion processing.
- the 3-D distance to the true coarse is represented by the Cross Track Vector 54 XTRK.
- the vector normal to the earth surface at the present position and originating at the center of mass of the earth is shown as 55 . This vector is assumed to be in the same direction of the vertical axis 56 .
- the lateral axis 57 is perpendicular to the vertical axis and perpendicular to the true course line 58 between the Next Waypoint 49 and the Previous Waypoint 50 .
- the Navigational Display 59 shows the Present Position 48 with respect to the True Course Line 58 .
- WLO wT Waypoint Lon.
- WALT wT altitude
- a wT : ( WALT wT + ⁇ wT ) ⁇ cos( WLA wT ) ⁇ cos( WLO wT )
- TNWP: NWP ⁇ PP VECTOR DISTANCE TO THE NEXT WAYPOINT
- TNWP ( ⁇ 394.0104406164 424.5394341322 588.6638708804)
- TIME EXPECTED AT NEXT WAYPOINT IS 80 SECONDS INTO TRAJECTORY CURRENT VELOCITY IS BASED UPON GNSS RECEIVER DETERMINATION VX : TNWP ⁇ 0 > 80 - T
- VX ⁇ 20.7373916114 M/S X ECEF VELOCITY TO REACH WAYPOINT ON TIME
- COMPARE CURRENT X VELOCITY TO REQUIRED X VELOCITY, IF LESS INCREASE IN VELOCITY, IF GREATER THAN REQUIRED VELOCITY DECREASE VELOCITY VY : TNWP ⁇ 1 > 80 - T
- VY 22.3441807438 M/S Y ECEF VELOCITY TO REACH WAYPOINT ON TIME
- COMPARE CURRENT Y VELOCITY TO REQUIRED Y VELOCITY, IF LESS INCREASE IN VELOCITY, IF GREATER THAN REQUIRED VELOCITY DECREASE VELOCITY VZ : TNWP ⁇ 2 > 80 - T
- VZ 30.9823089937 M/S Z ECEF VELOCITY TO REACH WAYPOINT ON TIME
- VELENUMAG 43.4644892872 M/S
- TNWP NWP ( X,Y,Z ) ⁇ PP ( X,Y,Z )
- a and B are between 0 and 1 and represent an adjustable value based on the allowable vehicle velocity angular deviation from the true course
- the AC&M processing utilizes the combination of precise ECEF X, Y, Z navigation and waypoints.
- Waypoints may be stored in a data file for a particular runway approach, taxi path or departure path. Waypoints may be entered manually, through the use of a data entry device.
- a list of waypoints describing a flight and or taxi trajectory is then assigned to a particular vehicle.
- expected arrival time may be added to each waypoint as well as velocity ranges for each phase of flight.
- 4 dimensional airport control and management is provided utilizing a GNSS based system.
- Mathematical processing is used in conjunction with precise waypoints to define flight trajectories. The mathematics typically uses cylindrical shapes but is not limited to cylinders, cones may also be used, and are defined between adjacent waypoints. Typical on or off course processing is outlined below and is shown in FIG. 16.
- the controller reviews the situation displayed and if necessary invokes a navigational correction message to be sent to the Real Time Communication Handler, and then broadcast by radio to the aircraft off course or flying at the wrong speed.
- the controller at this time may change the expected arrival time at the next waypoint if so necessary
- the controller reviews the situation displayed and if necessary invokes a navigational correction message to be sent to the Real Time Communication Handler, and then broadcast by radio to the aircraft off course or flying at the wrong speed.
- the controller at this time may change the expected arrival time at the next waypoint if so necessary
- the AC&M processing performs all on or off course processing determinations and the displays information related to on or off course or late or early arrival conditions.
- zone, off course and improper speed warnings are handled somewhat differently than normal position updates.
- the aircraft(s)/vehicle(s) involved are moved to a special ALP layer.
- the layer filter controls what graphic parameters a particular vehicle or aircraft is displayed with. The change in the layer from the default vehicle layer signifies that the target has been classified as a potential collision, zone intrusion risk, off course condition or improper speed.
- ATC Control Zones are used to sort and manage air and surface traffic within the airport space envelope.
- the AC&M Control Area is divided into AC&M Control Zones.
- the outer most airport control zone interfaces with an en route zone.
- Aircraft within the 3-D AC&M zone transmit their GNSS derived positions via an on board datalink.
- the GNSS data is received by the airport AC&M equipment.
- the AC&M Processing determines the ECEF AC&M Control Zone assignment based on the aircraft's current position and assigns the aircraft to the map layer associated with that Control Zone. Mathematical computations as defined previously, are used to determine when a vehicle is in a particular control zone.
- All targets within an AC&M Control Zone would be placed in the appropriate map layer for tracking and display purposes.
- Layer coding for each tracked target can be used to control graphic display parameters such as line type, color, line width as well as be used as a key into the underlying database for that object.
- Additional AC&M Control Zones may be defined for other surface areas of the airport, such as construction areas, areas limited to specific type of traffic, weight limited areas and others. These areas may be handled through ATC but will most or be controlled by airline or airport maintenance departments.
- the concept of a zone based AC&M system integrated with 3-D map information provides a valuable management and navigational capability to all vehicles and aircraft within the airport space envelope.
- the AC&M processing defined herein allows the user to enter waypoints using the digital map as a guide.
- the controller simply uses the map which may provide plan and side views of the airport space envelope.
- the cursor is moved to the appropriate point and a selection is made by pressing a key.
- the position is then stored in a list with other waypoints entered at the same time.
- the user is then prompted to enter a name for the waypoint list and an optional destination.
- the waypoints converted the appropriate coordinate frame and are then saved to a file or transmitted to a particular vehicle. In this manner the user may add and define waypoints.
- the user may define zones using the digital map as a guide.
- the controller simply uses the map which may provide plan and side views of the airport space envelope.
- the cursor is moved to the appropriate point and a selection is made by pressing a key.
- the position is then stored in a list with other zone definition points.
- the controller is then prompted to enter a name for the zone (pole, tower, construction area, etc.) and type of zone (circle, sphere, box, cylinder, etc.).
- the zones are converted to the appropriate coordinate frame and saved to a file or transmitted to a particular vehicle. In this manner the user may define additional zones.
- WORLD WIDE USE The coordinate reference system is recognized throughout the world. Scale does not change as a function of where you are on the earth. SIMPLE NAVIGATION The coordinate system lends itself MATHEMATICS to simple vector navigational mathematics. COMPATIBLE WITH The coordinate reference can COMPLEX 4-D CURVED support curved trajectory PATH 4-D NAVIGATION mathematics. FUNCTIONS COMPATIBLE WITH Is compatible with management MANAGEMENT SYSTEM operations at ATC and aboard A/Vs. COMPATIBLE WITH SPACE The coordinate system is compatible OPERATIONS with low earth orbit or space-based operations. NAD83 AND WGS84 REF. The reference system is compatible with NAD 83 and WGS 84 SINGLE ORIGIN The system has one single point origin. LINEAR SYSTEM The system is a linear coordinate system and does not change scale as a function of location. UNITS OF DISTANCE The coordinate system is based on units of distance rather than angle NO DISCONTINUTITIES The coordinate reference system is continuous world wide.
- the ECEF X, Y, Z Cartesian coordinate system satisfies all of the above criteria.
- Other systems may be used such as, Universal Transverse Mercator, Latitude, Longitude and Mean Sea Level and other grid systems but additional processing overhead and complexities are involved.
- a representative ADS message structure is provided below: SAMPLE AIRPORT ECEF MESSAGE CONTENT ID # 8 Characters VEHICLE TYPE 4 Characters CURRENT POSITION: ECEF X Position (M) 10 Characters ECEF Y Position (M) 10 Characters ECEF Z Position (M) 10 Characters ECEF X2 Position (M) 4 Characters * ECEF Y2 Position (M) 4 Characters * ECEF Z2 Position (M) 4 Characters * ECEF X3 Position (M) 4 Characters * ECEF Y3 Position (M) 4 Characters * ECEF Z3 Position (M) 4 Characters * ECEF X Velocity (M/S) 5 Characters ECEF Y Velocity (M/S) 5 Characters ECEF Z Velocity (M/S) 5 Characters NEXT WAYPOINT (WHERE HEADED INFORMATION): ECEF X 10 Characters ECEF Y 10 Characters ECEF Z 10 Characters
- a bit oriented protocol representing the same type of information, may be used to streamline operations and potential error correction processing. (The asterisks denote optional fields which may be used to determine the attitude of an aircraft.)
- the ID field is used to identify the particular vehicle or aircraft. For aircraft this is typically the flight number or, in the case of GA or private aircraft, the tail number. For airport surface vehicles it is the vehicle's callsign.
- the vehicle type is used to identify the A/V's type classification. Numerous type classifications may be defined to categorize and identify various aircraft and surface vehicles.
- the ECEF X,Y,Z position fields provide the vehicle's position at the time of the ADS transmission in ECEF X,Y,Z coordinates.
- the position is calculated by the GPS receiver. Based on the system design, these values may or may not be smoothed to compensate for system latencies.
- the message length of 10 characters provides a sign bit in the most significant digit and 9 digits of positional accuracy. The least significant digit represents 0.1 meter resolution. This provides a maximum ADS distance of +9999999.9 which translates to an altitude of about 3600 KM above the earth's surface, providing sufficient coverage to support low earth orbiting satellites and spacecraft.
- Delta positions are used to represent the positional offset of two other GPS antenna locations. These locations can be used to determine the attitude of the aircraft or its orientation when it is not moving. All delta distances are calculated with respect to the current ECEF position. Straight forward ECEF vector processing may then be used to determine the attitude and orientation of the aircraft with respect to the ECEF coordinate frame. An ECEF-to-local on board coordinate system (ie. North, East, Up) conversion may be performed if necessary. Accurate cross wind information can be determined on the ground and on board the aircraft from delta position information. Delta positions may also be used as 3-D graphical handles for map display presentations.
- the message length of 4 characters provides a sign bit in the most significant digit and 3 digits of delta position accuracy.
- the least significant digit represents 0.1 meter resolution.
- the fields represent the A/V's ECEF X,Y,Z velocity in meters per second. Tenth of a meter/second resolution is required during the ground phase of GPS based movement detection, latency compensation, zone and collision detection processing.
- the message length of 5 characters provides a sign bit in the most significant digit and 4 digits of velocity accuracy.
- This field identifies the Universal Coordinated Time at the time of the ADS transmission. This time is the GPS derived UTC time (in seconds) plus any latency due to processing delays (optional).
- the ADS message format provides a very valuable set of information that simplifies mathematical processing. Since the ECEF cartesian coordinate frame is native to every GPS receiver, no additional GPS burden is incurred. This type of ADS broadcast message information is more than adequate for precision ground and air operations as well as for general ATC/airport control and management functions.
- Mode S system is in use today and is compatible with today's en route radar and Terminal Radar Approach Control (TRACON)-based air traffic control systems.
- Current Mode S 1030 MHZ interrogation is performed using Mode S radars which scan at the 4.8 second rate.
- the scan rate represents the rotational period of the scanning antenna.
- the aircraft or vehicle broadcasts its GPS-based information to air traffic control at 1090 MHZ. In this manner, ADS information is received by ATC and by other interrogating sources.
- Airborne Mode S transponder operation requires that squitter messages be broadcast when in the air and turned off on the ground.
- a Mode S squitter is a periodic repetitive broadcast of ADS information. This, by definition, will interfere with airport interrogation broadcasts and essentially create a self jamming system.
- Mode S squitter utilizes the Mode S frequencies.
- a squitter is a randomly timed broadcast which is rebroadcast periodically.
- the Mode S squitter broadcasts GPS information at a periodic rate at 1090 MHZ with a bit rate of 1 MBPS.
- Current thinking requires that the ADS system be compatible with the Traffic Collision Avoidance System (TCAS).
- TCAS Traffic Collision Avoidance System
- the TCAS system currently uses a 56 bit squitter message that must be turned off in the low altitude airport environment since it will interfere with other radar processing activities performed on the ground. Turning TCAS off inside the terminal area (where most midair problems and airport surface collisions occur) defeats the system's operational benefits where they are needed most. Operationally this is unacceptable.
- a modified 112 bit squitter message has been proposed by MIT Lincoln Laboratories. With this approach, the GPS data is squittered twice per second to support ground and low altitude operations.
- the proposed Mode S squitter operation has distinct advantages over the Mode S interrogation method. Broadcasts are generated from all aircraft and (potentially) surface vehicles. Message collisions are possible, especially when the number of users is increased. If a collision occurs, the current message is lost and one must wait for the next message to be transmitted. At a two hertz transmission rate, this is not a significant problem. Analysis performed by MIT Lincoln Laboratories indicates that an enhanced Mode S squitter has potential to support operations at major airports.
- Mode S Squitter As currently defined, is not without risk. This implementation requires a fleet update to convert to the 112 bit fixed format. Procedural issues of the switch-over between the 56 and 112 bit operation remain problematic. Operation in metroplex areas such as New York may create operationally dangerous conditions. Airside TCAS and ASR 56 bit transponder responses would be turned off based on phase of flight to be compatible with 112 bit squitter messages used at low altitudes and on the ground. In metroplex areas, confusion is almost certain for both the pilot and air traffic controller when systems are turned off and on. Further modifications may be required to ground and vehicular equipment should these issues be a significant problem.
- the 112 bit fixed squitter length message fails to take advantage of precise GNSS velocity information. This is a significant limiting factor in the proposed squitter message format.
- the current squitter message is designed to be compatible with today's radar processing software and is not designed to fully capitalize on GNSS and ADS capabilities.
- AVPAC radio is currently in use with services provided by ARINC and may be a viable candidate to provide ADS services.
- a GPS-based squitter or an interrogator-initiated broadcast is utilized at aeronautical VHF frequencies. Work is underway to adapt AVPAC to support both voice and data transmissions.
- a Carrier Sense Multiple Access (CSMA) protocol is utilized on multiple VHF frequencies
- ACARS is a character oriented protocol and currently transmits at 2400 baud. Work is underway to increase the baud rate to support more complex message formats.
- TDMA Time Division Multiple Access
- a single or multiple frequency system may be utilized based upon total traffic in the area.
- the user equipment Upon entering an airport area, the user equipment listens to all slot traffic. The user equipment then selects an unused broadcast time slot. Precise GPS time is used to determine the precise slot.
- ADS broadcasts are then transmitted at a periodic rate. Broadcasts typically repeat at one second intervals. Should a collision be detected upon entering a new location, the system then transmits on another clear time slot. Since all time slots are continuously received and monitored, all necessary information for situational awareness and collision avoidance is available.
- This system maximizes the efficiency of the broadcast link since, in a steady state environment, no transmission collisions can occur.
- a time guard band is required to assure that starting and ending transmissions do not overlap.
- the size of the guard band is a function of GPS time accuracy and propagation delay effects between various users of the system.
- Another feature of this system is an auto-ranging function to the received broadcasts. This is possible due to the fact that the ADS slot transmissions are defined to occur at precise time intervals. It is then possible, using a GNSS synchronized precise time source, to determine the transit time of the ADS broadcast. By multiplying the speed of light by the transit time, one may calculate the 1-dimensional range to the transmitting object. In reality, a more precise direction, distance and predicted future location is obtainable from the ADS message information itself.
- CDMA Code Division Multiple Access
- CDMA spread spectrum ADS broadcasts utilize a transmission format similar to that used in the GPS satellites.
- PRN codes are utilized to uniquely identify the sending message from other messages.
- the number of users able to simultaneously utilize an existing channel depends upon the PRN codes used and the resulting cross correlation function between the codes.
- This implementation is being utilized commercially in wireless computer systems with data rates exceeding 256 KBPS. In a frequency agile environment, this implementation may be able to provide secure ADS services.
- Cellular technology is rapidly changing to support the large potential markets of mobile offices and personal communication systems.
- CCITT and ISDN standards will provide both voice, video and data capability.
- Cellular communication may be used by surface vehicles and aircraft for full duplex data link operations.
- ADS broadcast message formats receivable by ATC and other users will require changes to commercially available services.
- Cellular telephone has the mass market advantage of cost effective large scale integration and millions of users to amortize development costs over. This particular technology holds promise, and bears watching.
- ADS Aircraft/Vehicle
- Waypoints based upon the precise 3-D map and standard surface, approach and departure paths are used for surface and air navigation in the 3-D airport space envelope.
- Waypoints may be stored in a variety of coordinate systems, such as conventional Latitude, Longitude, Mean Sea Level; State Plane Coordinates; ECEF X, Y, Z; and others.
- the navigational waypoint and on/off course determinations are preferred to be performed in an ECEF X, Y, Z coordinate frame, but this is not mandatory.
- Waypoints and navigation processing should be defined and designed for compatibility with air and ground operations, including precision approach capability.
- the same information and processing techniques should be in place on board the A/V's and at the AC&M.
- the AC&M performs mirrored navigational processing using the same coordinate references and waypoints as those on board the A/Vs. In this manner, the AC&M system can quickly detect off course and ‘wrong way’ conditions anywhere in the 3-D airport space envelope at the same time these conditions are detected on board the A/V's.
- FIG. 11 presented in the earilier ON Or Off Course Processing section depicts the major ECEF waypoint elements which are used throughout the following navigation mathematical processing example.
- the following example utilizes an ECEF Waypoint Matrix.
- NWP next waypoint
- PWP previous waypoint
- the values for the waypoints are shown in the examples.
- the range to the waypoint is determined from the current position. The range is compared to the previous range for possible off course or wrong way conditions. If the range is increasing, the waypoint auto-indexing distance may have been exceeded even though the vehicle is on course.
- the waypoint index is temporarily indexed and checking is performed to determine whether the velocity vector is pointing within X degrees of the next waypoint (in this example it is set to +/ ⁇ 90 degrees). Based upon the outcome, a wrong way signal is generated or the waypoints are indexed.
- the ECEF cross track vector (XTRK) is determined and projected on to the vertical axis, local lateral axis and the plane tangent with the earth's surface at the current position.
- SRT[(X * X) + (Y * Y) + (Z * Z)]
- This vector is in the local vertical direction and for all practical purposes in the vertical direction at the actual user position, since the separations are very small compared to the length of the vector.
- the ECEF coordinate frame provides direct GPS compatibility with minimal processing overhead.
- the system is based upon the ECEF world wide coordinate frame and provides for 4-D gate-to-gate navigation without local coordinate reference complications. Furthermore, it is directly compatible with zone processing functions as described in earlier sections.
- the above techniques can also be expanded to include curved approaches using cubic splines to smooth the transitions between waypoints.
- a curved trajectory requires changes to the above set of equations.
- cubic splines one can calculate three cubic equations which describe smooth (continuous first and second derivatives) curves through the 3-D ECEF waypoints. Additional information on the use of splines may be found in mathematical and numerical programming text books. Four dimensional capability is possible when the set of cubic equations is converted into a set of parametric equations in time.
- FIG. 17 shows a missed approach 81 on runway 35 followed by a touch and go 82 on runway 24 at the Manchester Airport.
- the power of such a situation display 83 presentation for the air traffic controller can be instantly recognized.
- GPS and precise graphical maps can be a valuable asset in air and ground navigation.
- FIG. 18 combines the elements of precise ECEF navigational information with a 3-D airport map.
- the key element in the construction of the map is compatibility with the navigation display, where the selection of map and navigation coordinate frames is of paramount importance.
- the Cartesian coordinate system is preferred for the map database.
- a 3-D X,Y,Z digital map presentation provides the most efficient path to 2-D screen coordinates through the use of projection transformations.
- the integration of GPS-based navigation information with digital maps suggests that new methods of navigation processing should be considered.
- aircraft typically relied on a signal in space for instrument-based navigation.
- the instrument landing system (ILS) consists of a localized directed signal of azimuth and elevation.
- the VOR-DME navigation system uses a signal in space which radiates from an antenna located at a particular latitude and longitude. Altitude is determined from pressure altitude.
- Current, 2-D radar surveillance systems are also based upon a localized coordinate reference, usually to the center of the radar antenna. Again, altitude information is from barometric pressure readings which vary with weather.
- the integration of localized navigation and surveillance systems and 3-D ATC and navigational display presentations require an excessive number of coordinate conversions, making the process overly difficult and inaccurate.
- a Cartesian X,Y,Z coordinate system is used for the navigation computations, map database and display presentations.
- Many X,Y,Z map database formats are in use today, but many are generated as a 2-D projection with altitude measured above mean sea level.
- Two examples of this type of system are Universal Transverse Mercator (UTM) and State Plane Coordinate System (SPCS). Neither one of these systems is continuous around the world, each suffer from discontinuities and scale deformity. Furthermore, neither of these systems is directly compatible with GPS and also requires coordinate conversions. If the map, travel path waypoints, navigational processing, navigational screen graphics and airport control and management functions are in the Cartesian coordinate frame, the overall processing is greatly simplified.
- the perspective is that of a pilot from behind his current GPS position 84 . From this vantage point 85 , the pilot can view his current position 84 and his planned travel path 86 . As the aircraft moves, its precise ECEF X,Y,Z velocity 87 components are used to determine how far back 88 and in what direction the observation is conducted from. This is determined by taking the current ECEF velocity 87 , negating it and multiplying it by a programmable time value (step-back time). When applied to the aircraft's current position 84 , this results in an observation point 89 which is always looking at the current position 84 and ahead in the direction of travel 87 .
- an imaginary mathematical focal plane 90 is established containing the current position 84 .
- the focal plane 90 is orthogonal to the GPS-derived ECEF velocity vector 87 .
- the mathematical focal plane 90 represents the imaginary surface where the navigation ‘insert’ 91 will be presented.
- the focal plane is always, by definition, orthogonal to the viewing point 85 .
- the travel path 86 composed of ECEF X,Y,Z waypoints ( 92 - 95 ) is drawn into the 3-dimensional map.
- the point on the true travel path 86 which is perpendicular to the current position 84 represents the center 96 of the navigational insert screen 91 .
- the orientation of the navigational insert with respect to the horizontal axis is determined by the roll of the aircraft.
- the roll may be determined through the use of multiple GPS antennas located at known points on the aircraft or may be determined by inertial sensors and then converted to the ECEF coordinate frame.
- Vector mathematics performed in the ECEF coordinate frame are then used to determine the new rotated coordinates of the navigation screen insert 91 .
- the rotated coordinates are then translated through the use of the graphical translation matrix and drawn into the 3-D map 97 .
- the final step is the placement of the current position ‘cross-hair’ symbol 84 with respect to travel path 86 .
- the aircraft's GPS position, previous and next waypoints are used to determine the ECEF cross track vector 98 .
- the cross track vector 98 is then broken down into its local vertical 99 and local lateral 100 (horizontal) components. (Local components must be used here since the vertical and lateral vectors change as a function of location on the earth.)
- the cross-hair symbol 101 is then drawn on to the focal (image) plane 90 surface at the proper offset from the true course position indicated by the center of the navigation screen insert 96 .
- this display provides precise navigation information (lateral and vertical distance to true course) with respect to true course, provides information on 3-D airport features and shows the planned 3-D travel path.
- the element of time may also be presented in this display format as an arrow (drawn in the direction of travel) of variable length where the length indicates speed up or slow down information.
- the area navigation display shown in FIG. 19 features auto-scaling range 102 rings 103 which provide course, 104 bearing 105 and range distance to the waypoint.
- the length of the course 104 and bearing lines 105 superimposed on the ring scale 103 are proportional to the distance from the waypoint.
- the compass orientation of the bearing line 105 provide the course to travel from the current position to the waypoint.
- the course line 104 indicates the compass direction of current travel.
- the display also provides altitude information as a auto-scaling bar chart display 106 with indicated go up or down information.
- the area navigation display provides the following:
- the GPS landing display is shown in FIG. 20. This display is activated when the first GPS waypoint at the top of the glide slope is reached.
- the precision landing display is composed of a simple heavy cross 107 which moved about on an X Y graticuled cross hair display 108 . Textual TURN LEFT/TURN RIGHT and GO UP/GO DOWN messages are presented to the pilot when the aircraft is more than a predetermined amount eg. 10.0 meters off of true course.
- FIG. 21 Another display format utilizing a 3-D map is provided in FIG. 21.
- This display technique provides a 3-D view of the approaching airport as viewed from the aircraft's position.
- the techniques described above for the cross hair navigation screen are identical to those used in the 3-D approach presentation.
- a conical zone 109 is constructed around the line 110 between the landing approach waypoints.
- the apex of the cone is at the touch down point 111 and the base of the cone is at the top of the glide slope waypoint.
- This 3-D object is viewed normal to the line between the current and previous waypoint as shown in FIG. 21.
- the cone is sliced at the point on the line (formed by the current and previous waypoint) perpendicular to the present position 112 .
- the resulting cross section then effectively represents the cross hair symbology implemented in the graphical GPS landing display.
- the current position is then displayed within the conical cross section 113 of the glide slope zone 109 .
- a position not in the center of the display means the aircraft is not on true course.
- a position report in the upper right of the display cross section means the aircraft is too high and too far to the right. In this case the pilot should turn left and go down. As the aircraft gets closer to the touch down point, the conical cross section scale gets smaller.
- the display reverts to a plan view of the airport similar to that shown in FIG. 8 which is then used for surface navigation.
- the graphical nature of this display format is useful in the air and on the ground, but requires very fast graphical and computational performance.
- the advantage of this system is that it minimizes many of the navigational calculations such as cross track errors, but requires moderate spatial graphical computations and fast display performance.
- way.c contains the routines used to enter and save the waypoint data.
- FIG. 22 A high level block diagram of the Airport Communications System and its interfaces to other major elements of the AC&M subsystem is provided in FIG. 22.
- all ADS and A/V messages are received by the AC&M Processor 115 and are forwarded to the COMM Processor 116 for re-transmission to the vehicles.
- the AC&M Processor is also used to compose ATC messages which are also forwarded to the vehicles through the COMM interface or passed to the local Graphics Processor 117 to control the situation display presentation.
- the COMM processor 116 also transmits the differential correction messages generated by the reference station 118 directly to the vehicles.
- the idea is simple in concept and basically incorporates two or more GPS receivers, one acting as a stationary base station 118 and the other(s) acting as roving receiver(s) 119 , 120 .
- the differential base station is “anchored” at a known point on the earth's surface.
- the base station receives the satellite signals, determines the errors in the signals and then calculates corrections to remove the errors. The corrections are then broadcast to the roving receivers.
- Real time differential processing provides accuracy of 10.0 meters or better (typically 1.0-5.0 meters for local differential corrections).
- the corrections broadcast by the base station are accurate over an area of about 1500 km or more.
- Typical positional degradation is approximately a few millimeters of position error per kilometer of base station and roving receiver separation.
- a site survey of potential differential base station sites should be performed to determine a suitable location for the GPS antenna.
- the location should have a clear view of the sky and should not be located near potentially reflective surfaces (within about 300 meters).
- the antenna site should be away from potentially interfering radiation sources such as radio, television, radar and communications transmitters.
- a GPS survey should be conducted to determine the precise location of the GPS antenna—preferably to centimeter level accuracy. This should be performed using survey grade GPS equipment.
- Survey grade GPS equipment makes use of the 19 and 21 centimeter wavelength of the L 1 and L 2 GPS transmissions.
- Real time kinematic or post processing GPS surveys may be conducted.
- Real time kinematic utilizes a base station located at a precise location which broadcasts carrier phase correction and processing data to a radio receiver and processing computer.
- Code, carrier integral cycles and carrier phase information are used at the survey site to calculate the WGS 84 antenna position.
- subframe information, time, code, carrier, and carrier phase data are collected for a period of time. This data is later post processed using precise ephemerides which are available from a network of international GPS sites. The collected information is then post processed with post-fit precise orbital information.
- the precisely surveyed location of the GPS antenna is programmed into the reference station as part of its initial installation and set up procedures.
- Industry standard reference stations determine pseudo range and delta range based on carrier smoothed measurements for all satellites in view. Since the exact ECEF position of the antenna is known, corrections may be generated for the pseudo range and delta range measurements and precise time can be calculated.
- the DGPS correction messages are broadcast by the reference station and received by the roving receivers.
- the corrections are applied directly to the differential GPS receiver.
- the DGPS receiver calculates the pseudo range and the delta range measurements for each satellite in the usual manner.
- the received pseudo range and delta range corrections are applied to the internal measurements. The receiver then calculates corrected position, velocity and time data.
- differential GPS Since differential GPS eliminates most GPS errors, it provides significant improvements in system reliability for life critical airport operations. Short term and long term drift of the satellite orbits, clocks and naturally occurring phenomenon are compensated for by differential GPS as are other potential GPS satellite failures. Differential GPS is mandatory in the airport environment from a reliability, accuracy and fault compensating perspective.
- ADS messages are generated on board each vehicle and broadcast to the AC&M System.
- the message format is shown below:
- the GPS-based position and velocity data is converted to Earth Centered Earth Fixed (ECEF) coordinates for use in the navigation and zone processing algorithms if necessary. For simplicity, this format is used in the ADS transmission as well.
- ECEF Earth Centered Earth Fixed
- the AC&M Processor 115 Upon receipt of an ADS message, the AC&M Processor 115 forwards the message to the COMM Processor 116 then stores the data in the vehicle database. The stored ECEF position and velocity data is used to perform collision prediction, zone incursion, lighting control and navigation processing at the AC&M station.
- Air Traffic Control (ATC) messages are composed using the AC&M station.
- the ATC messages are used locally to control the AC&M graphics display 117 or present current status information to the user.
- ATC message are also broadcast to the vehicles 119 and 120 through the COMM Processor 116 . All ATC messages utilize an explicit acknowledgment message. If an acknowledgment is not received within a defined time interval, the message is automatically retransmitted.
- the standard format is shown below.
- Cyclical Redundancy Checking (CRC) is performed on all messages, with the exception of the [RTCM-104] differential correction messages generated in the Base Station 118 .
- ADS messages are discarded if an error is detected in the received message. This has not been a significant problem for the prototype system since the next message is received in one (1.0) second.
- the ATC messages directed to specific vehicles also support CRC error detection.
- ATC messages are “addressed” to a specific A/V and expect an explicit acknowledgment. Upon receipt of an ATC message, the A/V sends back a valid “message received” acknowledgment. The ATC message is discarded by the A/V if an error is detected.
- FIG. 23 A block diagram of the AC&M Processor is provided in FIG. 23.
- the AC&M Processor 121 is based on a 33 MHz 386 processor with a 387 math co-processor. This processor performs the following functions:
- the AC&M touch screen provides an efficient means of command input for interfacing to the airport management system.
- the touch screen is used to perform the following high level functions:
- the touch screen is organized into four discrete display areas—the Command List, the Message Composition and Response (MC&R) Window, the Alerts Window, and the Vehicle List.
- the following figure shows the touch screen layout used during the final demonstration.
- FIG. 34 depicts the touch screen with representative information.
- the Command List is used to provide key high level command functions. When a command is invoked, it is emphasized in the Command List and remains emphasized until the command is canceled or completed.
- the MC&R window has two major functions—it is used to compose ATC messages and it is used to display information to the operator. During message composition, the MC&R window is used to prompt the operator and provide a series of options relating to the content and destination of the message.
- the MC&R window also serves as the display presentation medium for list displays such as the Vehicle Data display.
- Critical watch and warning messages are presented to the operator in the Alerts window of the touch screen.
- the Alerts window displays messages generated as a result of a potential collision condition, zone incursion or off course determination.
- the Vehicle List provides the operator with a list of the active vehicles. Vehicles may be selected from the list during the message composition activities.
- the AC&M touch screen provides an efficient means of command input for interfacing to the airport management system.
- the touch screen is used to perform the following high level functions:
- the touch screen is organized into four discrete display areas—the Command List, the Message Composition and Response (MC&R) Window, the Alerts Window, and the Vehicle List.
- the following figure shows the touch screen layout used during the final demonstration.
- FIG. 34 depicts the touch screen with representative information.
- the Command List is used to provide key high level command functions. When a command is invoked, it is emphasized in the Command List and remains emphasized until the command is canceled or completed.
- the MC&R window has two major functions—it is used to compose ATC messages and it is used to display information to the operator. During message composition, the MC&R window is used to prompt the operator and provide a series of options relating to the content and destination of the message.
- the MC&R window also serves as the display presentation medium for list displays such as the Vehicle Data display.
- Critical watch and warning messages are presented to the operator in the Alerts window of the touch screen.
- the Alerts window displays messages generated as a result of a potential collision condition, zone incursion or off course determination.
- the Vehicle List provides the operator with a list of the active vehicles. Vehicles may be selected from the list during the message composition activities.
- the ARRIVAL WAYPOINTS command is issued to grant a landing clearance to an approaching aircraft and provide it with a set of waypoints for the landing operation.
- the command is invoked by touching the ARRIVAL WAYPOINT soft function key on the AC&M touch screen.
- the waypoints are automatically loaded into the AC&M's mirrored navigator.
- the MC&R window is cleared and a message completed indicator is displayed.
- the DEPARTURE WAYPOINTS command is issued to grant a takeoff clearance to a departing aircraft and provide it with a set of waypoints for the operation.
- the command is invoked by touching the DEPARTURE WAYPOINT soft function key on the AC&M touch screen.
- the SURFACE WAYPOINTS command is issued to grant a ground clearance to an aircraft or surface vehicle and provide it with a set of waypoints for the operation.
- the command is invoked by touching the SURFACE WAYPOINT soft function key on the AC&M touch screen.
- the CLEAR PATH WAYPOINTS command is issued to manually end a previously granted clearance and clear any pending waypoints for a specific vehicle.
- the command is invoked by touching the CLEAR PATH WAYPOINTS soft function key on the AC&M touch screen.
- the AIRPORT LIGHTS command is issued to manually change the status of a specific set of runway approach, departure or intersection lights.
- the command is invoked by touching the AIRPORT LIGHTS soft function key on the AC&M touch screen.
- Each lighting system and its current status (ON or OFF) is displayed in the MC&R window. The user is prompted to select the desired light(s) from the window.
- the VEHICLE FILTER command is issued to enable or suppress the display of a particular type of vehicle by altering the status of its graphic layer.
- the command is invoked by touching the VEHICLE FILTER soft function key on the AC&M touch screen.
- the user has the capability to suppress and re-enable various vehicle types by selecting it from the MC&R window.
- Vehicle types which are suppressed are not displayed on the AC&M graphics display unless they are in a collision or zone incursion condition.
- the LAYER FILTER command is issued to manually change the status of a specific graphic layer. Layers which are masked are no longer displayed. The command is invoked by touching the LAYER FILTER soft function key on the AC&M touch screen.
- the user has the capability to suppress and re-enable various layers by selecting it from the MC&R window.
- the VEHICLE DATA command is issued to display status information for a particular vehicle.
- the vehicle data is displayed in the MC&R window.
- the command is invoked by touching the VEHICLE DATA soft function key on the AC&M touch screen. Upon invocation, the following steps are followed:
- the DISPLAY VIEW command is issued to change the display view presented on the situation display.
- the command is invoked by touching the DISPLAY VIEW soft function key on the AC&M touch screen.
- AIRPORT LIGHTS the system also demonstrates the capability to control; airport lights based on GPS inputs and current clearance status.
- a vehicle database is maintained by the AC&M and on board ‘fully equipped’ vehicles to provide a situational awareness capability to the controller and/or vehicle operator.
- GPS-based situational awareness requires the integration of a datalink between the aircraft, surface vehicles and the AC&M system.
- the position and velocity information determined on board each vehicle is broadcase over and experimental VHF datalink and received by the AC&M.
- the message is assembled into a dynamic vehicle database. As each ADS message is received, the following fields in the vehicle database are updated:
- Each vehicle is assigned a map layer based on vehicle type.
- the digital airport map features numerous object oriented layers which are used to segregate various types of graphical information.
- spatial filtering may be performed on a layer by layer basis. Color my be assigned by layer or by individual vehicle.
- Position reporting functions operating on a moving platform potentially suffer from a positional error introduced by processing time.
- the precise DGPS derived ECEF velocity components are used to project the position ahead.
- a latency compensation time projection factor is applied in an ECEF Velocity ⁇ Time relationship.
- the new, projected ECEF position is then considered the current position, is stored in the vehicle database and is used throughout the navigation and collision prediction algorithms.
- collision prediction processing is performed using the current GPS data and the information stored in the vehicle database.
- the following database fields are used in the collision prediction processing: Collision Time Time (secs) when a collision may occur Collision Count Number of potential collisions detected Collision Condition Warning or watch state detected Collision Separation Current collision separation Radius Vehicle's minimum separation radius
- a ‘rough check’ is performed to determine if there are any vehicles in the immediate vicinity of the current vehicle.
- the current vehicle's position is projected ahead using a defined MAXIMUM_PROJECTION_FACTOR.
- the vehicle database is sequentially scanned.
- the position of the first vehicle in the database is projected ahead in the same manner. If the projected positions intersect, further collision checking is performed.
- the current vehicle's position is projected ahead by incrementing time in one second intervals.
- an imaginary sphere is drawn around the vehicle using a predefined radius based on the vehicle's minimum safe separation.
- the position of the next vehicle in the database is projected ahead. If the two imaginary spheres intersect and the time interval of the intersection is less than or equal to the MINIMUM_WARNING_TIME factor, a collision warning condition is generated. If the two imaginary spheres intersect at a time interval greater than the MINIMUM_WARNING_TIME but less than the MINIMUM_WATCH_TIME, a collision watch condition is generated.
- a collision watch condition is generated, the vehicles in the watch condition are displayed in YELLOW on the AC&M map display. A warning message is displayed to the operator in the Alerts window of the touchscreen. If a warning condition is detected, the vehicle's symbol is displayed in RED on the graphics screen and a warning message is displayed in the Alert window.
- a COLLISION WATCH is detected when the distance between the two vehicles is less than the sum of its radii.
- a COLLISION WARNING is detected when the intersection occurs within the MINIMUM_WARNING_TIME of 3 seconds or less. Also note that as soon as the vehicles pass one another and the distance between them begins to increase, no WATCH or WARNING condition is detected.
- Zones are three dimensional shapes which are used to provide spatial cueing for a number of constructs unique to DSDC's demonstration system. Zones may be defined around obstacles which may pose a hazard to navigation, such as transmission towers, tall buildings, and terrain features. Zones may also be keyed to the airport's NOTAMS, identifying areas of the airport which have restricted usage.
- Zones are represented graphically on the map display and mathematically by DSDC's zone processing algorithms. Multi-sided zones are stored in a zone database as a series of points. Each zone is assigned a zone id and type. The zone type is used to determine whether a particular zone is off-limits for a specific vehicle type.
- Zone information is maintained in the zone database.
- a zone incursion status field is also maintained for the vehicle in the vehicle database. If the vehicle is currently inside a zone, this field is used to store the zone's id. If the vehicle is not inside a zone, this field is zero (0).
- zone incursion processing is performed in a manner similar to the collision processing described previously. As each vehicle report is received, it is projected ahead by incrementing time up to a MAX_ZONE_PROJECTION_FACTOR. At each interval, the vehicle's projected position is compared to each line of the zone as defined by its endpoints. If the vehicle's position is inside all of the lines comprising the zone and the current projection time is less than the MIN_ZONE_WARNING factor, a zone incursion warning is generated. If the vehicle's position is inside the zone and the current projection time is less than the MIN_ZONE_WATCH factor but greater than the MIN_ZONE_WARNING factor, a zone incursion watch is generated. As in the collision processing, a zone incursion watch or warning will result in a message displayed to the operator and a change in layer assignments for the affected vehicle.
- a zone incursion condition is automatically cleared when the vehicle exits the zone. All zones are defined as 3-dimensional entities and may be exited laterally or vertically. Heights may be assigned to ‘surface’ zones individually or collectively. The concepts of 3-dimensional zones is critical to an airport environment to prevent passing aircraft from triggering ground-based zones.
- An additional field is maintained in the vehicle database to indicate whether a runway incursion state has been detected.
- the runway incursion value is set to the id of the zone (i.e., the runway) if an incursion is currently occurring and is set to zero (0) if there is no runway incursion.
- a runway incursion condition is generated at the AC&M.
- a watch or warning message is displayed in the AC&M Alerts window and the vehicle's symbol is moved to the dedicated watch or warning map layer, changing its color to YELLOW or RED.
- the runway incursion results in a status change in the runway's landing, takeoff and intersection lights forcing the lights to flash on the affected (and related) runway(s).
- the following table describes the lighting states for runway incursions in each of the five runway zones.
- a runway incursion is automatically terminated when the incurring vehicle exits the runway.
- the lights on the affected runway return to their default state.
- runway zones are 3-dimensional entities. Runway zones are assigned a height of approximately 100 meters above the surface of the runway in the prototype demonstration system. Therefor, a runway incursion occurs only when an uncleared vehicle enters the zone at the surface level. Demonstration prototype lighting software is provided below:
- update_lights DESCRIPTION: this routine resets the lights on the specified runway based.
- process_clearance parses the clearance or departure message issued by the controller via the touch screen. update_clearance_lights is then called to change the specified light settings.
- the message format is: $ATC,002,veh id,waypoint id
- a clearance is issued by the AC&M operator using the ARRIVAL WAYPOINTS, DEPARTURE WAYPOINTS or SURFACE WAYPOINTS functions.
- a global CURRENT_CLEARANCE flag is updated.
- the CURRENT_CLEARANCE flag is used to maintain the current airport light settings.
- a separate clearance status flag is also maintained in the vehicle database for each vehicle. As the vehicle approaches a runway zone, its clearance status flag is read to determine whether a runway incursion condition should be generated. Clearances are terminated automatically when the vehicle reaches the last waypoint. Clearances may also be manually cleared by the AC&M operator through the CLEAR PATH WAYPOINTS function. When the clearances are terminated, the global CURRENT_CLEARANCE flag and individual vehicle clearance flags are updated.
- the AC&M After waypoints have been issued to a vehicle or vehicles, the AC&M performs a set of navigation functions, mirroring those performed on board the vehicle using the ADS position reports. A set of waypoints is maintained for each cleared vehicle. The vehicle's current 3-D range to the waypoint and cross track error is computed for each subsequent ADS report. A determination as to whether the vehicle is on or off course is also made. If an off course condition is detected, a warning message is displayed to the operator in the AC&M's Alerts window.
- the Waypoint Index is the ID of the waypoint list assigned to the vehicle and the Current Waypoint is the waypoint the pilot is navigating towards.
- the vehicle's 3-D range to the waypoint, cross track error, current waypoint, speed and heading information may be displayed in the MC&R window using the VEHICLE DATA function.
- the Graphics Processor (GP) 122 interfaces to the AC&M Processor 121 via a dedicated communication link 123 .
- the GP is currently based on a 66 mHz 486 processor with a VESA Video Local Bus. This processor performs the following functions:
- the AC&M Processor Upon receipt of an ADS report, the AC&M Processor converts the vehicle's ECEF X,Y,Z position to the map's coordinate system if required and determines the appropriate map layer for the vehicle based on the vehicle's type and any collision or zone incursion conditions. If the vehicle is moving, the newly formatted message is sent to the GP. Stationary vehicle's are not redisplayed in the map but remain displayed in their last reported position. The message format is shown below:
- Display commands are also generated by the AC&M Processor 121 and sent to the GP 122 .
- Numerous AC&M commands including ARRIVAL WAYPOINTS, DEPARTURE WAYPOINTS, SURFACE WAYPOINTS, CLEAR PATH WAYPOINTS, DISPLAY VIEW, VEHICLE FILTER and LAYER FILTER affect the display presentation on the GP.
- An acknowledgment is returned to the AC&M Processor 121 when a display command message is received by the GP 122 .
- the GP 122 supports up to 256 unique layers which are used for the display and segregation of graphic information.
- the layer assignments are provided below.
- MAP LAYER ASSIGNMENTS LAYER # DESCRIPTION MODE 0-2 AIRPORT MAP RUNWAYS, TAXIWAYS, TRAVEL PATHS ALWAYS 3 RANGE RINGS ON DEMAND 4 EXPANSION TBD 5 RANGE RINGS, 5 MILE INCREMENTS ON DEMAND 6-8 EXPANSION TBD 9 AIRPORT LIGHTING SYSTEMS (RNWY 35) ON DEMAND 10 AIRPORT LIGHTING SYSTEMS (RNWY 24) ON DEMAND 11 TRACKED SURFACE VEHICLES (LIMITED ACCESS) ALWAYS 12 TRACKED SURFACE VEHICLES (FULL ACCESS) ALWAYS 13 TRACKED DEPARTURE AIRCRAFT ALWAYS 14 TRACKED ARRIVAL AIRCRAFT ALWAYS 15-19 E
- Differential GPS data is provided by a GPS GOLD DGPS receiver 124 and a differential data link 125 .
- GPS position, velocity, and time information is supplied to the dual 486 based processing unit.
- the first 486 processor, or Navigation (NAV) Processor 126 receives GPS Receiver 124 information and performs the following functions:
- the second 486 processor receives graphics instructions from the NAV Processor 126 and performs the following functions:
- differential GPS data is provided by a DGPS receiver 131 and a differential data link 132 .
- GPS position, velocity, and time information are supplied to the dual 486 based processing unit.
- the first 486 processor, the Navigation Processor (NAV) 133 receives GPS information and performs the following functions:
- VGP Vehicle Graphics Processor
- the functions supported in the full access surface vehicle are identical to those performed in the aircraft with a couple of additions.
- the full access vehicle receives remote ADS messages from other vehicles operating within the airport space envelope. This information is used to provide a situational awareness capability on board the vehicle. Full collision detection processing is also implemented.
- the limited access surface vehicle (Vehicle # 2 ) is equipped with developed hardware and software as shown in FIG. 26.
- a single 386-based processor 137 is utilized. Again, differential GPS data is provided by an on board DGPS receiver 138 and a differential data link 139 . GPS position, velocity, and time information is supplied to the 386 based processing unit 137 which performs the following functions:
- Vehicle # 2 The functions supported in Vehicle # 2 are actually a subset of those supported in the aircraft and Vehicle # 1 .
- Each vehicle is equipped with a VHF/UHF radio capable of full duplex communications.
- the radio interfaces to an integrated modem/GPS interface card.
- the radio modem is used to receive differential corrections, ADS messages, and ATC command messages forwarded by the COMM Processor.
- Local GPS messages are received by the vehicle's Navigation (NAV) processor.
- NAV vehicle's Navigation
- the GPS position and velocity data is converted to the ECEF coordinate frame, reformatted and transmitted to the AC&M Processor over the same radio.
- Navigation functions are performed on board the vehicle when waypoints are received from the AC&M Processor via the VHF datalink.
- Two navigation screens are provided, a cross hairs display for airborne applications and a map-based display for ground operations.
- the waypoint id Upon receipt of the waypoint message from the AC&M Processor, the waypoint id is extracted and used to identify the predefined waypoint path. The waypoints are automatically loaded into the vehicle's ECEF navigation system and drawn into the vehicle's map display. FIG. 27 shows the airborne navigation display produced with the previously listed software routines.
- the navigator display format is unique since it provides conventional course, bearing and range information and actual position with respect to the true course.
- the display portion on the right side of the screen is driven by NEU surface parameters while the display at the left is driven directly by ECEF X, Y, Z parameters.
- This display format may be used for all phases of flight.
- FIG. 8 shows a waypoint path from the Crash, Fire and Rescue (CFR) Station to the East Terminal Ramp drawn in the on board digital map display.
- CFR Fire and Rescue
- FIG. 9 depicts the predefined waypoint path for a departure on Runway 35 .
- All surface vehicles are capable of performing static zone incursion processing.
- the zone processing algorithms are identical to those implemented at the AC&M system with the addition of an audible tone generated when an incursion occurs.
- the fully equipped vehicle is capable of performing collision prediction processing based on the vehicle's current position (and velocity) and the remote vehicles' ADS messages.
- ADS messages are received, they are parsed and stored in the local vehicle database. Collision processing is performed each second, upon receipt of the FEV's GPS position and velocity data. After each GPS update, projections are performed on the FEV's current position and compared to the projected positions for each vehicle stored in the local database. In the same manner as described for the AC&M Processor, potential collision watch and warning conditions are detected between the FEV and other vehicles. However, collisions between two remote vehicles are not detected. Collisions tests are only performed with respect to the FEV itself and those in its vicinity.
- Both the FEV and the aircraft are capable of displaying their current position with respect to an on board moving map display.
- the map is automatically panned and redrawn with the vehicle centered in the display.
- the map is drawn with a north orientation at a 0.25 mile plan view perspective.
- the map is automatically redrawn at a ten (10) mile scale.
- the FEV is capable of displaying the positions of remote vehicle positions in the on board moving map display.
- ADS messages are received from the COMM Processor, the remote vehicles' positions are checked to see if they would appear on the current display view. If the positions are outside of the current view, they are discarded. Positions within the current view are drawn into the map display.
- the FEV's situational awareness display uses color cues to indicate vehicles in a collision or zone incursion condition.
- ADS and GPS messages are received and processed by the on board NAV Processor, graphics messages are formatted and sent to the local Graphics Processor (GP).
- GP Graphics Processor
- Waypoint lists are stored by type—arrival, departure, missed approach or surface.
- Map temporal differential corrections are a simple and effective means of reducing error sources in GPS operation for short periods of time when Selective Availability is not active.
- FIG. 31 depicts the map temporal correction elements.
- Map temporal corrections utilize at least one precisely surveyed location in the local area.
- the surveyed location may be determined from a monument marker or may be determined using a highly accurate digital or paper map.
- a GPS receiver and (optionally) a processing computer are co-located at the known location with the GPS antenna carefully positioned at the survey point.
- the receiver/computer remains at the known location for a period of time and, when enough data has been collected, determines pseudo range correction and pseudo range rate factors. These correction factors may then be applied to the differential GPS receiver to determine a corrected position. These factors are used in subsequent position determinations until another map temporal correction is applied.
- Map temporal corrections are the simplest form of closed loop differential correction. As the name implies, temporal corrections degrade with time as the receiver moves within the local area. SA significantly reduces the benefits of a temporal differential correction approach. When SA is not active, the short term ( 30 minute) accuracy of this technique is very good (a meter or two), since all error sources are reduced. One additional limiting factor is that the same satellites must be used during roving operations as those used at the surveyed location. This may be accomplished through software control to ensure a ‘selected’ set of satellites are used for a given GPS session.
- Real time differential correction techniques compensate for a number of error sources inherent to GPS.
- the idea is simple in concept and basically incorporates two or more GPS receivers, one acting as a stationary base station and the other(s) acting as roving receiver(s).
- the differential base station is “anchored” at a known point on the earth's surface.
- the base station receives the satellite signals, determines the errors in the signals and then calculates corrections to remove the errors.
- the corrections are then broadcast to the roving receivers.
- Real time differential processing provides accuracies of 10.0 meters or better (typically 1.0-5.0 meters for local differential corrections).
- the corrections broadcast by the base station are accurate over an area of about 1500 km or more.
- Typical positional degradation is approximately a few millimeters of position error per kilometer of base station and roving receiver separation.
- FIG. 32 shows the basic elements for real time differential GPS (DGPS) operations.
- DGPS real time differential GPS
- Differential GPS can introduce an additional error, if not employed properly.
- the age of the differential correction must be monitored at the GPS receiver. As the differential correction ages, the error in the propagated value increases as well. This is particularly true for ‘virulent’ strains of SA where the errors introduced slew quickly over very short time intervals.
- the precisely surveyed location of the GPS antenna is programmed into the reference station as part of its initial installation and set up procedures.
- Industry standard reference stations determine pseudo range and delta range based on carrier smoothed measurements for all satellites in view. Since the exact ECEF position of the antenna is known, corrections may be generated for the pseudo range and delta range measurements and precise time can be calculated.
- the DGPS correction messages are broadcast by the reference station and received by the roving receivers.
- the corrections are applied directly to the differential GPS receiver.
- the DGPS receiver calculates the pseudo range and the delta range measurements for each satellite in the usual manner.
- the received pseudo range and delta range corrections are applied to the internal measurements.
- the receiver then calculates corrected position, velocity and time data. Typical DGPS position and velocity performance is presented in the table below.
- differential GPS Since differential GPS eliminates most GPS errors, it provides significant improvements in system reliability for life critical airport operations. Short term and long term drift of the satellite orbits, clocks and naturally occurring phenomenon are compensated for by differential GPS as are other potential GPS satellite failures. Differential GPS is mandatory in the airport environment from a reliability, accuracy and fault compensating perspective.
- DGPS provides the means to eliminate most GPS system errors. The remaining errors are related to receiver design and multipath. Not all GPS receivers and reference stations are created equal, some are distinctly better than others. The selection of the reference station and the roving receivers has a significant effect on the overall system accuracy.
- Receiver errors are not corrected using an ‘open loop’ differential correction method as described above. These errors may be reduced when a ‘closed loop’ differential technique is employed.
- FIG. 33 presents a high level block diagram of a ‘closed loop’ differential system.
- FIG. 33 has additional elements over the standard differential system configuration.
- a second GPS antenna is installed at a precisely surveyed antenna location and a stationary GPS receiver is co-located with the reference station. This receiver accepts differential correction inputs generated by the reference station.
- the stationary GPS receiver incorporates the pseudo range corrections in the normal manner and determines DGPS position and velocity. The corrected position and velocity are then compared to the stationary receivers known position and velocity ( 0 , 0 , 0 ).
- the ECEF delta position and velocity data are then used by the reference station processing to further refine the pseudo range and delta range corrections which are broadcast to the roving receivers. Processing software which minimizes the position and velocity errors is used.
- This technique requires that the roving receivers be identical to the stationary GPS receiver located at the reference station site. That is, the roving receivers must exhibit receiver errors similar to those on the stationary DGPS receiver.
- the integration of GPS with an inertial system can be used to improve the dynamic performance of the navigation solution.
- Dynamic sensors may provide jerk, acceleration and velocity information to aid in the navigation solution.
- Sole means inertial navigation may be used in conjunction with GPS.
- the integration of GPS with inertial systems usually require 12 (or higher) state Kalman filter solutions techniques .
- RAIM Receiver Autonomous Integrity Monitoring
- GPS When combined with other sensors such as WAAS, inertial, baro altimeter and internal RAIM processing, GPS will have superior accuracy, fault tolerance and fault detection capability.
- Any system which controls life critical operations at an airport must support fault tolerance and high availability. At the same time, the system must be cost effective and support technology insertion. High system availability may be achieved through a custom design process utilizing selected and screened components for high Mean Time Between Failure (MTBF). Alternatively, high availability may be achieved through system redundancy using components of non-custom, commercial-off-the-shelf design. The following paragraphs introduce a few of the concepts which are later utilized in the system_design analysis.
- MTBF Mean Time Between Failure
- AVAILABILITY Availability is defined as the probability that a system will operate to specification at any point in time, when supported with a specific level of maintenance and spares.
- MEAN TIME BETWEEN FAILURES The mean time a piece of equipment will remain operational before it is expected to fail.
- RELIABILITY The inherent probability that a piece of equipment or hardware will remain operational for a period of time (t). It is expressed as follows:
- TRAVEL TIME The travel time is measured from the time of failure to the time the repair technician and required spare parts arrive at the failed equipment.
- MEAN TIME TO RECONFIGURE The mean time a system is inoperable as measured from the time of failure to the time of full operation. Typically, reconfiguration time involves bringing on line redundant systems in an effort to provide continued service.
- MEAN TIME TO REPAIR AND CERTIFY (MTTRC): The mean time of the actual repair and recertification activities as measured from the time of arrival of the failed equipment to the time which the equipment is on line, certified and declared operational.
- MEAN TIME TO REPAIR (MTTR): MTTR is the sum of TRAVEL+MTTC+MTTRC.
- This example will determine the overall reliability and availability of the architecture shown in FIG. 28.
- the requirement for system availability for this terminal area system comes from the FAA Advanced Automation Program (AAS).
- AAS program defines the system yearly availability to be 0.99995 determined using a 2 hour travel time which is added to any other system down time.
- radio transceiver (voice and data function)
- the hardware elements can be connected in a minimal hardware configuration and the overall availability can be compared to the specified value of 0.99995
- RINT: RSBC 2 ⁇ RXCVR ⁇ RTOUCH ⁇ RLVPS ⁇ RDIS 2 ⁇ RRAID ⁇ RLAN ⁇ RDIFF ⁇ RLITE ⁇ RKBD
- Redundant Local Area Networks are also required, since a single point failure can not be tolerated in communications between the AC&M SBC and Graphic SBC.
- the keyboard and the touch screen provide the same capability, hence may be treated as a parallel redundant system element.
- the keyboard/touch screen combination is found below:
- An extra display surface will be added to display information. This display capability will be used should a failure occur in an AC&M display or in a graphic situation display. A 2 of 3 display scenario is used for successful mission completion. Should a failure occur auto reconfiguration must occur within the specified time allocation. To determine exactly what the 2 out of 3 display process represents, a probability analysis is performed. The probability is determined from the series elements which make up the display function. One display channel may fail while the two others provide the necessary information. The third display is used to provide non mission critical information when acting as a hot spare.
- controller stations may be added to support larger airport systems. In this case a slightly different architecture is utilized. Common elements are shared by multiple stations. In the 2 station architecture shown parallel differential GPS base stations, parallel lighting control interfaces, parallel Local Area Networks and parallel transceivers are utilized. Since a redundant capability is provided with multiple controller stations consisting of 2 of 3scenario increased availability is provided as shown in FIG. 30.
- RSTATP RSTAT+RSTAT ⁇ ( RSTAT ⁇ RSTAT )
- RSTATP 0.976973
- ALP Airport Layout Plans
- the ALP should be suitable for use in airport master plan activities, emergency work, maintenance, navigation and ATC.
- Airport ALP generation or mapping activities may use any number of map coordinate systems based on a number of earth datums or ellipsoid references. Standardization of the mapping techniques and references are key in the development of any successful multi-use mapping program. In addition to the selection of a standard reference system, the interface to the local area surrounding the airport must be addressed. Accurate cross referenced monumentation points are necessary to allow for a smooth transition between the local coordinate system and the one used in the airport maps or in the navigation system. In the U.S., local State Plane Coordinate Systems (SPCS) form the baseline for most local mapping activities. As such, the ALPs for all U.S.
- SPCS local State Plane Coordinate Systems
- the surveyed accuracy of the multi-use airport map is recommended to be better than 0.5 meters for the horizontal and 0.1 meter for elevation.
- the Airport Runway Touch Down Marker Reference Points the precise coordinates of the center of a runway's touch down marker
- the Airport Runway Reference Points the precise coordinates along the centerline path of the runway.
- the precise locations of all turn outs and turn ins should be identified in the airport map database.
- Earth reference systems used in these locations should be ECEF X,Y,Z, North American Datum of 1983 (NAD 83) or WGS 84 latitude, longitude, MSL. These three models are compatible with GPS-based navigation. Should the positions not be in one of these coordinate reference systems, then local airport multi-coordinate reference monumentation should be used to support the required coordinate conversions.
- NAD 83 is a reference datum for the earth replacing the North American Datum of 1927 (NAD 27). It was developed over many years through international efforts of many people. It was the largest single project ever undertaken by the National Geodetic Survey (NGS), spanning 12 years.
- the task involved 1,785,772 survey observations at 266,436 sites in North and Central America, Greenland and the Caribbean Islands. The observations were made with all types of survey and measurement equipment from satellites to tape measures. The ultimate task was to develop an earth model which satisfied a set of 1,785,722 simultaneous equations. The task was performed using a least squares approach and Helmert blocking. The purpose was to update NAD 27, calculate geoid heights at 193,241 control points and the deflections of vertical at the control points.
- the NAD 83 reference uses the Geodetic Reference System of 1980 (GRS 80) ellipsoid based on the Naval Surface Warfare Center 9Z-2 (NSWC 9Z-2) doppler measurements.
- GRS 80 Geodetic Reference System of 1980
- NSWC 9Z-2 NASA Surface Warfare Center 9Z-2
- the ellipsoid is positioned to be geocentric and have cartesian coordinate orientation consistent with the definition of Bureau International de l'Heure (BIH) Terrestrial System of 1984.
- NAD 83 data sheets contain information to update North American 1927 references.
- the data sheets contain new information which is relevant for precise surveys and users of GPS equipment. These include: precise latitude and longitude [DDD MM SS.ssss], latitude—longitude shift in seconds of degree from NAD 27 to NAD 83, elevation above the geoid with standard error, geoid height and standard error, state plane and Universal Transverse Mercator (UTM) coordinates.
- UDM Universal Transverse Mercator
- GRS 80 used by NAD 83 has the following fundamental parameters: NAD 83 PARAMETERS PARAMETER VALUE UNITS Semimajor axis* 6378137 M Angular velocity* 7292115 ⁇ 10 ⁇ 11 RAD/SEC Gravitational constant* 3986005 ⁇ 10 8 M 3 /SEC 2 Dynamic form factor 108263 ⁇ 10 ⁇ 8 unnormalized Semiminor axis* 6356752.314 M Eccentricity squared 0.0066943 8002290 Flattening 0.0033528106 8118 Polar Radius of Curvature* 6399593.625 M
- WGS 84 was developed by the U.S. Department of Defense. The reference system started with the same initial BIH conventions as NAD 83 but, over the development, some parameters changed slightly.
- the geocentric ECEF system is based on a cartesian coordinate system with its origin at the center of mass of the earth. The system defines the X and Y axis to be in the plane of the equator with the X axis anchored 0.554 arc seconds east of 0 longitude meridian and the Y axis rotated 90 degrees east of the X axis.
- the Z axis extends through the axis of rotation of the earth.
- the WGS 84 reference uses the GRS 80 ellipsoid as does NAD 83.
- WGS 84 includes slight changes to GRS 80 parameters which are identified below: WGS 84 PARAMETERS PARAMETER VALUE UNITS Semimajor axis* 6378137 M Angular velocity* 7292115 ⁇ 10 ⁇ 11 RAD/SEC Gravitational constant* 3986005 ⁇ 10 8 M 3 /SEC 2 Dynamic form factor normalized ⁇ 484.16685 ⁇ 10 ⁇ 6 Semiminor axis* 6356752.314 M Eccentricity squared 0.0066943 7999013 Flattening 0.0033528106 6474 Polar Radius of Curvature* 6399593.625 M
- NAD 83 The North American Datum of 1983 (NAD 83) and World Geodetic Survey of 1984 (WGS 84) attempt to describe the surface of the earth from two different perspectives.
- NAD 83 describes the surface of North America using the Geodetic Reference System of 1980 (GRS 80) ellipsoid and over 1.7 million actual measurements. A least squares Helmert blocking analysis was performed by National Geodetic Survey (NGS) on these measurements to determine the best fit solution to the actual measurements.
- NGS 83 uses monumented reference points across the country to precisely reference various coordinate systems such as the State Plane Coordinate Systems.
- WGS 84 incorporates positional references using GPS and local references. Position determination by GPS incorporates precise Keplerian orbital mechanics and radio positioning technology. Clearly, the two systems are describing the same thing, but the methods of determining a position are different.
- NAD 83 and WGS 84 are based on BIH conventions. Though both are based on the GRS 80 ellipsoid, small changes have occurred between the two systems during their development. The basic difference in the dynamic form factor was attributed to GRS 80 using the unnormalized form while WGS 84 used a normalized form and rounded to eight significant figures. Since other parameters derived from the dynamic form factor differences usually appear after the eighth decimal place, most experts feel that the computational differences are of no significance.
- Both WGS 84 and NAD 83 have many common points used as local reference points. The differences between the two systems may reach several meters in rare locations, but on the average the systems should be identical. Generally, measurement errors and equipment inaccuracies introduce more error than the differences in the two systems.
- Photogrammetry techniques incorporating ground reference point(s) are recommended for creating electronic ALP's.
- Various techniques may be employed to generate digital ALP's including aerial photogrammetry and ground based moving platforms with integrated video cameras and sensors.
- the collected image data may be post processed to produce a highly accurate 2 or 3-D digital map of the surrounding area.
- a digital map of Manchester (NH) Airport was created to support early test activities.
- the digital map was based on aerial photogrammetry and GPS ground control using postprocessing software.
- a Wild Heerbrugg aerial camera equipped with forward motion compensation was used to capture the photogrammetry.
- the 3-D digitalization was performed using a Zeiss stereoscopic digitizing table. During the digitalization process, numerous object oriented map layers were constructed to segregate various types of map information.
- the resulting 3-D digital map had a relative horizontal accuracy of better than 1.0 meter and a relative vertical accuracy of better than 0.1 meter across the airport.
- Maps may be in either raster format (such as those generated by image scanning) or vector format (those developed on CAD and digitizing equipment).
- the vector format provides a much more robust environment for developers of ATC and map display systems.
- Vector based drawings are represented by individual vectors which can be controlled and modified individually or collectively. This enables the developer to manage these entities at a high level rather than at the individual pixel level.
- the vectors may represent specific geographical features (entities) in the map which may be assigned to a particular map layer in a particular user defined color.
- map and ATC situation display are in a vector format, a convenient method of graphically identifying and manipulating information is available.
- the selection of a graphical symbol on the screen through the use of a pointing device can be used to access an entity-related database or initiate an entity-based processing function.
- entity-related database or initiate an entity-based processing function.
- raster-based images there is no simple way to segregate the various pieces of map or graphic information for high level management.
- Raster formats represent a series of individual pixels, each pixel controlled as a function of a series of control bits. Typically a series of three (3) words are used to describe the Red, Green and Blue (RGB) intensity of each pixel. Each pixel of information represents the smallest piece of the image and has no information about the larger graphical entity that it is part of. From a management perspective, this introduces additional complications for even the simplest graphical manipulation tasks such as suppressing the display of a series of raster based topographical contour lines in the airport map.
- a high level management capability is required for ALP graphic entity control.
- the current raster-based maps do not provide this functionality, hence additional processing is required each time the map is displayed or modified.
- the pixel elements must be functionally organized in some manner to support the higher level management functions described in this application. For this reason, raster scan map formats are not recommended for ALPs at this time.
- Vector formats may be in ASCII or binary and may be constructed using different rules for their generation.
- the example below uses the AutoCADTM DXF standard drawing format.
- AutoCAD is a registered trademark of AUTODESK, Inc.
- AutoCADTM is one of the most popular Computer Aided Design (CAD) software packages in the world today and is typical of vector ALP formats.
- the DXF map format may be easily converted to almost any CAD drawing format.
- Map file formats may be binary or ASCII characters.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Traffic Control Systems (AREA)
Abstract
A navigation and airport control and management method and system for aircraft and surface vehicles. The system incorporates the use of differential GPS to provide increased accuracy and robustness for aircraft and vehicles using GPS as the primary terminal area navigation system. An antenna is precisely located and identified with GPS compatible coordinate references. GPS signals are received with the antenna and supplied to a differential GPS base station. The base station calculates psuedorange and delta range corrections for each tracked satellite. Calculated differential corrections are then broadcast to vehicles in the local area using a radio transmitter. Vehicles receive the broadcast differential corrections and calculate differentially corrected position, velocity and time (PVT) information. This information is used on aboard the vehicle for navigational or automatic dependent surveillance purposes. At an airport control and management system ADS broadcasts are received and used for control purposes.
The construction of precise digital maps compatible with GPS is used for vehicle onboard navigation and for air traffic control situation display purposes. The digital maps include airport features such as runways, taxiways, gate areas, geographical features nearby the airport and other pieces of useful in formation.
Description
- This invention is a Continuation of application Ser. No. 09/871,328 filing date May 31, 2001 currently pending, which is a Divisional Application of application Ser. No. 09/598,001 filing date Jun. 20, 2000 now U.S. Pat. No. 6,314,363, which is Divisional Application of application Ser. No. 09/032,313 filing date Feb. 27, 1998 now U.S. Pat. No. 6,195,609, and is a continuation in part of application Ser. No. 08/651,837, filed May 21, 1996 now U.S. Pat. No. 5,740,047, and is Divisional Application of application Ser. No. 08/524,081 filing date Sep. 6, 1995 now U.S. Pat. No. 5,867,804, from Document Disclosure # 360870 dated Sep. 2, 1994, Book “GPS Based Airport Operations, Requirements, Algorithms and Analysis, Publication Date Sep. 14, 1994, Copyright Registration Nov. 10, 1994, and is a continuation in part of Ser. No. 08/117,920 filed Sep. 7, 1993 now U.S. Pat. No. 5,548,515, which is a continuation of application Ser. No. 08/117,920 filed Sep. 7, 1993 now U.S. Pat. No. 5,548,515, which is a continuation in part of Ser. No 07/758,852 filed Sep. 12, 1991 abandon, and a continuation in part of Ser. No. 07/659,681 Jun. 9. 1992 abandon, which is the US national phase of PCT/US-91/07575 filed Oct. 9, 1991 abandon, which is a continuation in part of Ser. No. 07/758,852 filed Sep. 12, 1991 abandon, which is a continuation in part of Ser. No. 07/593,214 filed Oct. 9, 1990 now U.S. Pat. No. 5,200,902.
- 1. Field of the Invention
- The use of GNSS in the airport environment plays an important role in the navigation and control of vehicles comprised of aircraft and surface equipment. To meet the accuracy and integrity of demanding airport navigation and control operations, differential GNSS is used. Differential GNSS reference receivers located at precise GNSS surveyed locations provide differential corrections over an RF datalink to differential GNSS capable receivers located aboard vehicles. Two Federal Aviation Administration programs build on this demonstrated technique of the applicant, specifically the Wide Area Augmentation System and the Local Area Augmentation System. Supporting the navigation function, descriptive digital maps indicative of airport surrounding terrain and airport physical features are used in the vehicles for navigation and by air traffic controllers for the control of airport operations. In uncontrolled airports without controllers the pilot and vehicle operators control their movement independently using differential GNSS navigation.
- 2. Description of Prior Art
- Today's airport terminal operations are complex and varied from airport to airport. Airports today are, in many cases, the limiting factor in aviation system capacity. Each airport has a unique set of capacity limiting factors which may include; limited tarmac, runways, suitable approaches, navigational or/and Air Traffic Control (ATC) facilities.
- Furthermore, operational requirements in the terminal area involve all facets of aviation, communication, navigation and surveillance. The satisfaction of these requirements with technological/procedural solutions should be based upon three underlying principles; improved safety, improved capacity and cost effectiveness.
- Today airport air traffic control procedures and general airport aviation operations are based on procedures from the 1950's. These air traffic control procedures were initially developed to separate aircraft while in the air. The initial separation surveillance system was a radar system consisting of a rotating radar antenna. The antenna rotated typically about once every 4.8 seconds while transmitting a signal, another receiving antenna picks up a reflected signal from a target. The surveillance system then calculated a range (based on transit time) and an azimuth angle based on the physical orientation of the antenna. The 2-dimensional position was then usually plotted on a display with other detected targets, objects and clutter. Radar today relies on faster rotating antennas or electronically scanned antennas to provide more frequent updates and higher resolution. To further enhance the performance of the target returns, provide altitude information and an identifier, a transponder is used on the aircraft. The transponder is the key element in radar surveillance systems, since without it no identification and no altitude information is provided to the air traffic control system.
- Surveillance data from multiple surveillance systems (radars) is then discretely mosaiced or “tiled” into a semi-continuous system. Controllers today separate traffic visually by the rule of “green in between” the target tracks. This is a highly manual method for separation of aircraft, placing stress on the controllers and limits any true automation assistance for the controller.
- In the high density and high precision airport environment numerous single function airport systems have been developed over the years to support air traffic control and pilot needs. Precise landing navigation is currently provided by the Instrument Landing System (ILS), while airside navigation is provided by VOR/DME, LORAN and NDB's. Airport air traffic controller surveillance is provided thorough visual means, airport surface detection radar (ASDE), secondary surveillance radar, parallel runway monitoring radar and in some cases primary radar. Each of these systems is single function, local in nature and operation and provides accuracy which is a function of distance to the object being tracked. Merging these navigation and surveillance systems into a 4-dimensional seamless airport environment is technically difficult and expensive. MIT Lincoln Laboratories is attempting to provide an improved radar based Air Traffic Control environment and has received three U.S. Pat. Nos. 5,374,932, 5,519,618 and 5,570,095 reflecting those efforts. These patents relate to improvements of the current localized surveillance and navigation airport environment without the use of GNSS compatible seamless techniques as described herein by Pilley.
- These localized systems have served the aviation system well for nearly 50 years and numerous mishaps have been prevented over this period through their use. With the advent of new multi-function technologies superior performance is available at a fraction of the cost of today's current single function systems. The technologies of Global Navigation Satellite Systems, digital communication and low cost commercial computers can support seamless 4-dimensional airport operations at smaller airports unable to justify the heavy financial investment in today's single function navigation and surveillance systems.
- The FAA, NASA, the Defense Department and private industry are active utilizing elements of the applicants methods and systems demonstrated over a decade ago. Specific United States Programs involving this technology are:
- FAA Capstone
- FAA Ohio River Valley Project
- FAA
Safe Flight 21 - NASA Runway Incursion Protection System (RIPS)
- Others are also demonstrating and developing similar systems in prior years included: Haken Lans (GP&C) of Sweden is demonstrating the use of Differential GPS with Self Organizing Time Division Multiple Access datalink communications. The invention of Haken Lans is described in World Intellectual Property
Organization document # 93/01576. The invention of Fraughton describes an airborne system for collision avoidance in U.S. Pat. No. 5,153,836. The inventions of Lans and Fraughton fail to provide the seamless 4 dimensional GNSS compatible operational and processing environment of Pilley and fail to include the digital map of Pilley. - After the demonstrations of the applicant it became clear that this technology had great application in airport operations. After a decade the industry is accepting the concepts, deploying systems and equipping vehicles.
- The inventor having been involved with the FAA's Advanced Automation System became aware that airport program segments were not getting the attention they deserved, nor were advanced technologies being investigated. The inventor set out to demonstrate that new technologies could be used to support seamless airport navigation and surveillance. The multi-year efforts of the inventors are summarized in the book titled:
- GPS BASED AIRPORT OPERATIONS, Requirements, Analysis, Algorithms US copyright # TX U.S. Pat. No. 3,926,573, (Library of Congress # 94-69078), (ISBN 0-9643568-0-5). This bookprovides much of the back ground for this patent application. In addition to the book the following publications and professional papers have been published by the inventor in efforts of due diligence to promote this life saving technology.
- PUBLICATIONS:
- Institute of Navigation, ION GPS-91, Sep. 12, 1991, Technical Paper, “Airport Navigation and Surveillance Using GPS and ADS”.
- GPS WORLD Magazine, 10-91, Article, “GPS, Aviation and Airports the Integrated Solution”.
- 71st Transportation Research Board, Annual Meeting, Jan. 14, 1992, Technical Paper, “Applications of Satellite CNS in the Terminal Area”.
- Institute of Navigation National Technical Meeting, Jan. 28, 1992, Technical Paper, “Terminal Area Surveillance Using GPS”.
- Institute of Navigation, ION GPS-92, Technical Paper, “Collision Prediction and Avoidance Using Enhanced GPS”.
- Institute of Navigation, 49th Annual Meeting, June 1993, Technical Paper, “Runway Incursion Avoidance Using GPS”.
- Airport Surface Traffic Automation Technical Information Group FAA & Industry Forum, Jul. 15, 1993, Presentation.
- Commercial Aviation News, Jul. 19, 1993, “Airport Test to Look at Collision Avoidance”.
- IEEE Vehicle Navigation and Intelligent Vehicle (VNIS), Conference, Oct. 14, 1993, Technical Paper, “Demonstration Results of GPS for Airport Surface Control and Management”. Institute of Navigation, ION GPS-93, Sep. 23, 1993, Technical Paper,
- “GPS for Airport Surface Guidance and Traffic Management”. Avionics Magazine, 10-93, “Differential GPS Runway Navigation System Demonstrated”.
- IEEE PLANS '94, April 1994, Technical Paper, “GPS, 3-D Maps and ADS Provide A Seamless Airport Control and Management Environment”.
- Institute of Navigation, ION GPS-94, Sep. 22, 1994, Technical Paper, “DGPS for Seamless Airport Operations”.
- Presentation Seattle, Washington, May 9, 1995. International Civil Aviation Organization of the United Nations, Advanced Surface Movement Guidance and Control (SMGCS) meeting, Presentation and demonstration “GPS based SMGCS”.
- As the list of presentations and publications shows the inventors have been active in getting the government and the aviation community to accept this life saving cost effective airport technology.
- The United States alone currently contains some 17,000 airports, heliports and seabases. Presently only the largest of these can justify the investment in dedicated navigation and surveillance systems while the vast majority of smaller airports have neither. Clearly, a new approach is required to satisfy aviation user, airport operator, airline and ATC needs.
- It would therefore be an advance in the art to provide a cost effective Airport Control and Management System which would provide navigation, surveillance, collision prediction, zone/runway incursion and automated airport lighting control based on the Global Navigation Satellite System (GNSS) as the primary position and velocity sensor on board participating vehicles. It would be still a further advance of the art if this system were capable of performing the navigation, surveillance, collision prediction, lighting control and zone/runway incursion both on board the aircraft/vehicles and at a remote ATC, or other monitoring site.
- With the advent of new technologies such as the Global Positioning System, communication and computer technology, the application of new technologies to the management of our airports can provide improved efficiency, enhanced safety and lead to greater profitability for our aviation industry and airport operators.
- On Aug. 12, 1993, Deering System Design Consultants, Inc. (DSDC) of Deering, N.H., successfully demonstrated their Airport Control & Management System (AC&M) to the Federal Aviation Administration (FAA). After many years of development efforts, the methods and processes described herein were demonstrated to Mike Harrison of the FAA's Runway Incursion Office, officials from the FAA's Satellite Program Office, the FAA New England Regional Office, the Volpe National Transportation System Center, the New Hampshire Department of Transportation, the Office of U.S. Senator Judd Gregg and the Office of U.S. Representative Dick Swett. This was the first time such concepts were reduced to a working demonstrable system. The inventor has taken an active stand to promote the technology in a public manner and, as such, may have informed others to key elements of this application. The inventor has promoted this technology. The inventor's airports philosophy has been described in general terms to the aviation industry since it was felt industry and government awareness was necessary. The intent of this Continuation application to identify and protect through letters of Patent techniques, methods and improvements to the demonstrated system.
- With these and other objects in view, as will be apparent to those skilled in the art, the improved airport control and management invention stated herein is unique, novel and promotes the public well being.
- This invention most generally is a system and a method for the control of surface and airborne traffic within a defined space envelope. GNSS-based, or GPS based data is used to define and create a 3-dimensional map, define locations, to compute trajectories, speeds, velocities, static and dynamic regions and spaces or volumes (zones) including zones identified as forbidden zones. Databases are also created, which are compatible with the GNSS data. Some of these databases may contain, vehicle information such as type and shape, static zones including zones specific to vehicle type which are forbidden to the type of vehicle, notice to airmen (notams) characterized by the information or GNSS data. The GNSS data in combination with the databases is used, for example, by air traffic control, to control and manage the flow of traffic approaching and departing the airport and the control of the flow of surface vehicles and taxiing aircraft. All or a selected group of vehicles may have GNSS receivers. Additionally, all or a selected group may have bi-directional digital data and voice communications between vehicles and also with air traffic control. All of the data is made compatible for display on a screen or selected screens for use and observation including screens located on selected vehicles and aircraft. Vehicle/aircraft data may be compatibly superimposed with the 3-dimensional map data and the combination of data displayed or displayable may be manipulated to provide selected viewing. The selected viewing may be in the form of choice of the line of observation, the viewing may be by layers based upon the data and the objective for the use of the data.
- It is, therefore, an object of this invention to provide the following:
- 1.) A 4-D process logic flow which provides a “seamless” airport environment on the ground and in the air anywhere in the world with a common 3-D coordinate reference and time
- 2.) An Airport Control and Management Method and System which utilizes GNSS, 3-D maps, precise waypoint navigation based on the ECEF reference frame, a digital full duplex communication link and a comprehensive array of processing logic methods implemented in developed operational software
- 3.) An Airport Control and Management Method and System where a vehicle based 4-D navigational computer and ATC computer utilize the same coordinate reference and precise time standard.
- 4.) A database management method compatible with 3-D waypoint storage and presentation in 3-D digital maps.
- 5.) A automated method utilizing the precise 3-D airport map for the definition and creation of airport routes and travel ways.
- 6.) A 4-D process logic flow which provides precise vehicle waypoint navigation in the air and on the ground. This process allows for monitoring of on or off course conditions for vehicles and aircraft operating within the airport space envelope on board the vehicle.
- 7.) A 4-D process logic flow which provides precise ATC waypoint navigation mirroring of actual vehicles in the air and on the ground at ATC. This process allows for monitoring of on or off course conditions for vehicles and aircraft operating within the airport space envelope at the ATC computer
- 8.) A 4-D process logic flow performed on board the vehicle which provides for precise collision prediction based on 3-dimensional zones
- 9.) A 4-D process logic flow performed at the ATC computer which provides for precise collision prediction based on 3-dimensional zones
- 10.) A collision detection management method which utilizes the application of false alarm reducing methods
- 11.) An ATC process logic flow which detects 3-D runway incursions. The process logic then generates message alerts and controls airport lights
- 12.) An ATC zone management method which utilizes the application of false alarm reducing methods
- 13.) A vehicle process logic flow which detects 3-D runway incursions. The process logic then generates message alerts and sounds tones within the vehicle or aircraft
- 14.) A vehicle zone management method which utilizes the application of false alarm reducing methods
- 15.) A 4-D ATC process logic flow which manages ground and air “Clearances” with precise waypoint navigation aboard the vehicle and at the ATC computer.
- 16.) A 4-D ATC process logic flow which manages ground and air “Clearances” incorporating an integrated system of controlling airport lights.
- 17.) A 4-D vehicle process logic flow which manages ground and air “Clearances” with an integrated system of waypoint navigation.
- 18.) A method of management for 3-D spatial constructs called zones
- 19.) A method of management for 3-D graphical constructs called zones
- 20.) A method of management for the automated generation of a zones database at any airport
- 21.) A database management method for the storage of zones data. Zones database management methods are used aboard the vehicle and at ATC
- 22.) A operational management method where the ATC computer provides navigational instructions to vehicles and aircraft. The instructions result in a travel path with clear paths defined being displayed in an airport map
- 23.) A operational management method where the ATC computer provides navigational instructions to vehicles and aircraft The instructions result in waypoints being entered into a 4-D navigation computer
- 24.) A datalink message content which supports the above management methods and processes
- 25.) A redundant system architecture which satisfies life critical airport operations
- 26.) Methods for navigation within the airport environment using map displays, controller clearances and automation techniques in the cockpit and at ATC
- 27.) An integrated airport controller automation interface which supports GNSS compatible processing.
- 28.) A method for managing GNSS travel path information, clearances and conformance monitoring using broadcast GNSS trajectory information and automatic dependent surveillance.
- More specifically, the elements mentioned above form the process framework of the invention stated herein
- The invention, may be best understood by reference to one of its structural forms, as illustrated by the accompanying drawings, in which:
- FIG. 1 depicts the high-level Airport Control and Management processing elements and flow
- FIG. 2 represents an example of a cylindrical static zone in a 3-D ALP. This zone could be graphically displayed in a layer of the ALP
- FIG. 3 represents an example of a static zone around a construction area of the airport and is used in zone incursion processing in the vehicles and at the ATC Processor
- FIG. 4 represents an example of a dynamic zone which travels with a moving vehicle, in this case the zone represents the minimum safe clearance spacing which would be used in zone based collision detection processing in the vehicles and at the ATC processor
- FIG. 5 represents an example of a route zone which is defined by navigational waypoints and is used for on\off course processing and is used in the vehicles and at the ATC Processor
- FIG. 6 represents an example of a 3-D ATC zone, used to segregate tracked vehicles to particular ATC stations
- FIG. 7 illustrates the construction of a 3-D runway zone
- FIG. 8 shows a map display with surface waypoints and travel path
- FIG. 9 shows a map display with departure waypoints and travel path
- FIG. 10 illustrates the 4-D collision detection mechanism employed in the Airport Control and Management System
- FIG. 11 depicts a waypoint processing diagram showing the earth and ECEF coordinate system, expanded view of airport waypoints, further expanded view of previous and next waypoint geometry with present position, the cross hair display presentation used in the developed GPS navigator
- FIG. 12 graphs latitude, Longitude plot of a missed approach followed by a touch and go with waypoints indicated about every 20 seconds
- FIG. 13 graphs altitude vs. time for missed approach followed by touch and go, waypoints are indicated about every 20 seconds
- FIG. 14 graphs ECEF X and Y presentation of missed approach followed by a touch and go with waypoints indicated about every 20 seconds
- FIG. 15 graphs ECEF Z versus time of missed approach followed by touch and go, with waypoints about every 20 seconds
- FIG. 16 shows a block diagram of on\off course processing
- FIG. 17 shows a missed approach followed by a touch and go GPS trajectory displayed in a 3-D airport map
- FIG. 18 shows an ECEF navigation screen with navigational window insert and 3-D digital map elements
- FIG. 19 shows the area navigation display with range rings, course and bearing radial lines, and altitude to true course indicators
- FIG. 20 depicts the GPS sliding cross hair landing display indicating too low (go up) and too far right (turn left)
- FIG. 21 illustrates the GPS approach cone with digital map elements showing current position with respect to true course line
- FIG. 22 depicts the demonstration system airport communications diagram showing processor, DGPS base station, radio elements and message flows
- FIG. 23 depicts the demonstration system AC&M hardware block diagram showing various elements of the system
- FIG. 24 depicts the demonstration system aircraft hardware block diagram
- FIG. 25 depicts the demonstration
system vehicle # 1 hardware block diagram - FIG. 26 depicts the demonstration
system vehicle # 2 hardware block diagram - FIG. 27 shows the navigator display compass rose area navigator and cross hair sliding precision approach display in combination with waypoint information, position, velocity, range to the waypoint, cross track error, speed, heading and distance to true course
- FIG. 28 depicts the airport system single controller station, non redundant design
- FIG. 29 depicts the airport system redundant single controller station
- FIG. 30 depicts the airport system redundant dual controller station
- FIG. 31 depicts the map temporal differential correction system diagram
- FIG. 32 depicts the differential GPS system diagram
- FIG. 33 depicts the closed loop differential GPS system diagram
- FIG. 34 depicts the computer human interface using a touch screen
- FIG. 35 depicts Control Facility and Selected Aircraft elements with RF datalink message flow and Controller Display inputs and actions related to an off course condition.
- FIG. 36 identifies Computer Functionality of the AC&M Processor and Graphic Processor. Bold elements represent functions necessary for supporting the controller—computer human interface for sending travel paths to an aircraft, displaying position of an aircraft on a display, performing automated conformance monitoring, detecting an off course condition, displaying an alert and ultimately sending a new travel path to the aircraft.
- FIG. 37 contains selected text from the Specification indicative of the automated computer detected off course means using conformance monitoring (mirrored navigation at the AC&M station) and associated controller actions to attempt to bring off course aircraft back on course
- The primary Airport Control and Management (AC&M) functions of the invention utilize a Cartesian ECEF X, Y, Z coordinate frame compatible with GNSS. FIG. 1 provides additional detail for the operational elements of the AC&M processing. The GNSS signals broadcast by the
vehicles 8 are processed by the RealTime Communication Handler 3 and sent to AC&MOperational Control 1. TheOperational Control 1 uses the GNSS data to perform the following processing functions 5: position projections, coordinate conversions, zone detection, collision prediction, runway incursion detection, layer filter, alarm control, and lighting control. If waypoints have been issued to thevehicle 8, mirrored waypoint navigation is also performed by the AC&M processing. TheOperational Control 1 interfaces directly to theGraphical Control 2. Graphics messages, including GNSS data and coded information pertaining to zone incursions, possible collision conditions, or off course conditions detected by the AC&M Processing, are passed to theGraphical Control 2. TheGraphical Control 2 interprets this data and updates the display presentation accordingly. - The
Operational Control 1 function also receives inputs from the Controller/Operator Interface 6. The Controller/Operator Interface uses the data received by Controller/Operator Inputs 7 to compose ATC commands which are sent to theOperational Control 1 function for processing. Commands affecting the presentation on the computer display screen are sent by theOperational Control 1 function to theGraphical Control 2 . ATC commands composed by the Controller/Operator Interface 6 processing that do not require further AC&M processing are forwarded directly to theGraphical Control 2 to update the display screen. Both theOperational Control 1 function andGraphical Control 2 processing have access to the Monumentation, Aircraft/Vehicle, Static Zones, Waypoints, Airport Map, ATIS Interface and Airport Status and other lowlevel data bases 9 to process and manipulate the presentation of map and vehicle data on a computer display screen. - More specifically, each
vehicle 8 supports the capability to transmit a minimum of an identifier, the GNSS referenced position of one or more antennas, velocity, optional acceleration and time reports. Since this data is broadcast, it is accessible to the airport control tower, other aircraft and vehicles in the local area, and various airline monitoring or emergency command centers which may perform similar processing functions. ATC commands, processed by the Controller/Operator Interface 6 andOperational Control 1 function are passed to the RealTime Communication Handler 3 for transmission to the aircraft/vehicle(s) 8. Upon receipt of ATC messages, the vehicle(s) 8 return an acknowledgment message which is received by the RealTime communication Handler 3 and passed to theOperational Control 1 function. Differential GNSS corrections are generated by theDifferential GPS Processor 4 and passed to the RealTime Communication Handler 3 for broadcast to the vehicles. The RealTime Communication Handler 8 performs the following functions at a minimum: - a. Initialize ATC computer communication lines
- b. Initialize radio equipment
- c. Establish communication links
- d. Receive vehicle identifier, positions, velocity, time and other information
- e. Receive information from ATC Processor to transmit to vehicle(s)
- f. Receive ATC acknowledgment messages from vehicle(s)
- g. Transmit information to all vehicles or to selected vehicles by controlling frequency and/or identifier tags
- h. Monitor errors or new information being transmitted
- i. Receive and broadcast differential correction data
- The AC&M techniques and methods described herein provide for GNSS compatible 4-Dimensional Airport Control and Management.
- The combination of ECEF navigation combined with NAD 83 (Lat, Lon, MSL and State Plane) and WGS 84 (X,Y,Z) based 3-D airport features are necessary in constructing an airport layout plan (ALP). The Airport Control and Management System (AC&M) requires that navigation and Automatic dependent Surveillance (ADS) information used in collision detection processing share the same coordinate frame. The processing methods described herein, require very accurate and properly monumented airport layout plans. Physical features surrounding the airport may be surveyed in a local coordinate frame and, as such, require accurate transformation into the airport map/processing coordinate frame. For these reasons, the use of multi-monumented coordinate references is mandatory for such map construction and survey. Clearly, highly accurate 3-D maps are required when using precise GNSS based navigation, collision avoidance and overall Airport Control and Management for life critical airport applications.
- The 3-D ALP database and display presentation support the concept of zones. The display of zone information is managed using the Map Layer Filter. Zones are two and three dimensional shapes which are used to provide spatial cueing for a number of design constructs. Static zones may be defined around obstacles which may pose a hazard to navigation such as transmission towers, tall buildings, and terrain features. Zones may also be keyed to the airport's NOTAMS, identifying areas of the airport which have restricted usage. Dynamic zones are capable of movement. For example, a dynamic zone may be constructed around moving vehicles or hazardous weather areas. A route zone is a 3-D zone formed along a travel path such as a glide slope. Zone processing techniques are also applied to the management of travel clearances and for the detection of runway incursions. Zones may also be associated with each aircraft or surface vehicle to provide collision prediction information.
- AC&M projection processing utilizes received GNSS ADS messages from a datalink. The complete received message is then checked for errors using CRC error detection techniques or a error correcting code. The message contains the following information, or a subset thereof, but not limited to: PVT ADS DATA
PVT ADS DATA ID# 8 Characters VEHICLE TYPE 4 Characters CURRENT POSITION: X = ECEF X Position (M) 10 Characters Y = ECEF Y Position (M) 10 Characters Z = ECEF Z Position (M) 10 Characters X2 = ECEF X2 Position (M) 2 Characters * Y2 = ECEF Y2 Position (M) 2 Characters * Z2 = ECEF Z2 Position (M) 2 Characters * X3 = ECEF X3 Position (M) 2 Characters * Y3 = ECEF Y3 Position (M) 2 Characters * Z3 = ECEF Z3 Position (M) 2 Characters * VX = ECEF X Velocity (M/S) 4 Characters VY = ECEF Y Velocity (M/S) 4 Characters VZ = ECEF Z Velocity (M/S) 4 Characters AX = ECEF X Acceleration (M/S2) 2 Characters # AY = ECEF Y Acceleration (M/S2) 2 Characters # AZ = ECEF Z Acceleration (M/S2) 2 Characters # TIME 8 Characters TOTAL CHARACTERS/MESSAGE: 80 Characters - A database is constructed using the ADS message reports. The AC&M processing converts the position and velocity information to the appropriate coordinate frame (if necessary, speed in knots and a true north heading). Simple first and second order time projections based upon position, velocity and acceleration computations are used. The ability to smooth and average the velocity information is also possible using time weighted averages.
-
PROJECTED X = X + (VX)(t) + (AX)(t2)/2 PROJECTED Y = Y + (VY)(t) + (AY)(t2)/2 PROJECTED Z = Z + (VZ)(t) + (AZ)(t2)/2 - This set of simple projection relationships is used in the collision prediction and zone incursion processing methods.
- Zone areas may be defined in the initial map data base construction or may be added to the map database using a 2-D or 3-D data entry capability. The data entry device may be used to construct a zone using a digital map in the following manner:
- Using the displayed map, the data entry device is used to enter the coordinates of a shape around the area to be designated as a zone. (An example may be a construction area closed to aircraft traffic listed in the current NOTAMS.)
- The corners of the polygon are saved along with a zone type code after the last corner is entered. Circles and spheres are noted by the center point and a radius, cylinders are noted as a circle and additional height qualifying information. Other shapes are defined and entered in a similar fashion.
- The zone is stored as a list of X, Y, Z coordinates. Lines connecting the points form a geometric shape corresponding to the physical zone in the selected color, line type and style in the proper layer of the base map.
- Zone information may then be used by collision detection and boundary detection software contained in the AC&M system. This processing software is explained later in this specification.
- FIG. 2 depicts a 3-D cylindrical static zone around a hypothetical utility pole. This
zone 10 is added into theairport map 11, while the specific coordinates (center point ofbase 12, radius ofcircular base 13, and the height 14) are saved to the zone file list in a convenient coordinate frame. Below is an example of a zone which is stored in the zone database.IDENTIFIER PARAMETER Utility pole Type of Zone Center of base X, Y, Z Radius of base R Height of the cylinder H - The 3-D
digital map 11 is then updated using a series of graphic instructions to draw thezone 10 into the map with specific graphic characteristics such as line type, line color, area fill and other characteristics. - A database of zone information containing zones in surface coordinates such as X & Y state plane coordinates and mean sea level, ECEF referenced X, Y, Z and others are accessible to the AC&M Processing. The database may consist of, but is not limited to the following type of zones.
OBJECT OF THE ZONE TRANSMISSION TOWERS AIRPORT CONSTRUCTION AREAS CLOSED AREAS OF AIRPORT MOUNTAINS TALL BUILDINGS AREAS OFF TAXIWAY AND RUNWAY RESTRICTED AIRSPACE INVISIBLE BOUNDARIES BETWEEN AIR TRAFFIC CONTROLLER AREAS APPROACH ENVELOPE DEPARTURE ENVELOPE AREAS SURROUNDING THE AIRPORT MOVING ZONES AROUND AIRCRAFT/VEHICLES - The zone information is retrieved from a zone database. As the AC&M Processor receives current ADS reports, information on each position report is checked for zone incursion. Further processing utilizes velocity and acceleration information to determine projected position and potential collision hazards. If a current position or projected position enters a zone area or presents a collision hazard an alert is generated.
- A zone is any shape which forms a 2-D or 3-D figure such as but not limited to a convex polygon (2-D or 3-D), or a circular (2-D), spherical (3-D), cylindrical (3-D) or conical shape represented as a mathematical formula or as a series of coordinate points. Zones are stored in numerous ways based upon the type of zone. The coordinate system of the map and the units of measure greatly affect the manner in which zones are constructed, stored and processed.
- The invention described herein utilizes four primary types of 2-D and 3-D zones in the Airport Control and Management System.
- The first type zone is a static zone as shown in FIG. 3. Static zones represent static non-moving objects, such as radio towers, construction areas, or forbidden areas off limits to particular vehicles. The
zone 15 shown in the FIG. 3 represents a closed area of the airport which is under construction. Thezone 15 is a 3-D zone with a height of 100Meters 16, since it is desired not to have aircraft flying low over the construction site, but high altitude passes over the zone are permitted. An example of a permittedflyover path 17 and a forbidden fly throughpath 18 are shown in the figure. The fly through will produce a zone incursion, while the flyover will not. - A second zone type is shown in FIG. 4 and represents a
dynamic zone 19 which moves with a moving vehicle or aircraft. Dynamic zones may be sized and shaped for rough check purposes or may be used to describe the minimum safe clearance distance. The dynamic zone is capable of changing size and shape as a function of velocity and or phase of flight and characterized by vehicle or aircraft type. - The third type zone is shown in FIG. 5 and is a
route zone 20 . Route zones are described though the use oftravel waypoints waypoints Waypoint 1 21 and X2, Y2 atWaypoint 2 22 for the determination of on or off course processing. For simplicity X1 may equal X2 and Y1 may equal Y2. Oncourse 23 operations result in travel which is within the zone, while off course 24 operations result in travel which is outside the zone and result in an off course warning. - The fourth type zone(s) shown in FIG. 6 is a 3-D zone which is dynamic and used to sort ATC traffic by. This type zone is used to segregate information to various types of controller/operator positions, i.e. ground control, clearance delivery, Crash Fire and Rescue and others. Travel within a particular zone automatically defines which ATC position or station the traffic is managed by. For example travel within
zone 1 25 is directed to ATC ground station, while travel withinzone 2 26 is directed to ATC Clearance Delivery position. The ATC zone concept allows for automatic handoff from one controllers position to the other as well as providing overall database the management automation. - The construct of zones is very important to the overall operation of the described invention herein. Further examples of zone processing methods and zone definition is provided below.
- A cylindrical zone on the airport surface constructed using the state plane coordinate system would be represented as the following:
Center point of circle CXsp value, CYsp value Elevation (MSL) Elev = constant, or may be a range Circle radius CR value - The detection of a zone incursion (meaning that the position is within the 2-D circle) is described below.
Convert position to State Plane coordinates Current or projected position Xsp, Ysp Subtract circle center Xsp − CXsp = DXsp from current position Ysp − CYsp = DYsp Determine distance from DXsp2 + Dysp2 = Rsp2 circle center Test if position is in Rsp <= CR circle If true continue If not true exit not in zone Test if position is Min Elev <= Elev <= Max Elev within altitude range (a cylindrical zone) - If the above conditions are met, the position is in the 3-D cylindrical zone. It can be seen that the basic methods used here are applicable to other grid or coordinate systems based on linear distances.
- A cylindrical zone on the airport surface (normal with the airport surface) constructed using the Earth Centered Earth Fixed coordinate system is stored using three axis (X, Y, Z).
Convert current position to ECEF X, Y, Z Center point of circle CX value, CY value, CZ value Circle radius CR value Determine distance from (X − CX) = DX current or projected position (Y − CY) = DY to center of circle (Z − CZ) = DZ Determine radial distance DX2 + DY2 + DZ2 = R2 to circle center point from current position Test position to see if it R <= CR is in sphere of radius R If true continue If not true exit not in zone Determine the vector between VC = CXE + CYE + CZE the center of the circle and the center of mass of the earth Calculate its magnitude VC2 = CXE2 + CYE2 + CZE2 Determine the vector between the V = VX + VY + VZ center of mass of the earth and the current or projected position Calculate its magnitude V2 = VX2 + VY2 + VZ2 Determine the difference between V − VC = 0 the two vectors, if result = 0 then in the 2-D zone, if the result is <0 then position is below, if >0 then position is above the zone To check for incursion into an ECEF cylindrical zone, the following is tested for. Test if position is Min VC <= V <= Max VC within Vector range (a cylindrical zone) Where Min VC represents the bottom of the cylinder Max VC represents the top of the cylinder - The final two tests use an approximation which greatly simplifies the processing overhead associated with zone incursion detection. The assumption assumes that over the surface area of an airport, the vector between the center of mass of the earth circular zone center and the vector from the current position to the center of the circle are coincident. That is, the angle between the two vectors is negligible.
- The second assumption based on the first approximation is that, rather than perform complex coordinate reference transformations for zone shapes not parallel with the earth's surface, projections normal to the surface of the earth will be used. Zones which are not parallel with the earth's surface are handled in a manner similar to that applied to on or off course waypoint processing using rotation about a point or center line.
-
EXAMPLE # 3 - A zone which is shaped like a polygon is initially defined as a series of points. The points may be entered using a data entry device and a software program with respect to the digital map or they may be part of the base digital map. The points are then ordered in a manner which facilitates processing of polygon zone incursion. The following examples indicate how a (4 sided) polygon is stored and how an airport surface zone incursion is performed using both the state plane coordinates and Earth Centered Earth Fixed X, Y, Z coordinates.
Convert Position to SP Xsp, Ysp, State Plane Zone Vertices X1sp, Y1sp; X2sp, Y2sp; Order in a clockwise X3sp, Y3sp; X4sp, Y4sp direction Height of 3- D zone min Elev max Elev Determine min & max Xspmax, Xspmin, Yspmax, Yspmin values for X & Y Perform rough check Is Xspmin <= Xsp <= Xspmax of current position Is Yspmin <= Ysp <= Yspmax or projected position If both true then continue with zone checking If not true exit, not in zone Calculate the slope (Y2sp − Y1sp)/(X2sp − X1sp) = M of the line between points 1 & 2 Calculate the slope of M−1 = −Mnor the line from the present position normal to the line between points 1 & 2 Determine the equation Y1sp − M * X1sp = L between points 1 & 2 Determine the equation Ysp − Mnor * Xsp = LN for the line normal to the line between points 1 & 2 and position Determine the intersection intXsp = (LN − L)/(M − Mnor) of both lines intYsp = Mnor * intXsp + (Ysp − Mnor * Xsp) Determine the offset from Xsp − intXsp = DXsp position to intersect Ysp − intYsp = DYsp point on the line between points 1 & 2 Perform check to see which Check the sign of DXsp side of the line the position Check the sign of Dysp is on (note sign change as function of quadrant & direction in which points are entered in) If the point is on the proper Meaning the signs are side continue and check o.k. the next line between points 2 & 3 and perform the same analysis If the line is on the wrong side of the line, then not in the zone hence exit If point is on the proper side of all (4) lines of polygon then in 2-D zone Note: If the zone vertices are entered in a counter clockwise direction the sign of DXsp and DYsp are swapped. Test if position is Min Elev <= Elev <= Max Elev within altitude range (a 3-D polygon zone) - A further example is provided in the definition of a 3-D runway zone using ECEF X,Y,Z. A list of runway corners is constructed using the 3-D map and a data entry device and an automated software tool. The runway zone is shown in FIG. 7.
- The horizontal outline the
runway 27 by selecting the four corners C1,C2,C3,C4 in aclockwise direction 28, starting anywhere on the closed convex polygon formed by therunway 27 - Define the thickness of the zone (height above the runway)29
- The 4 corner 3-D coordinates and min and max altitudes are obtained through the use of a program using the ALP, then conversion are performed if necessary to convert from ALP coordinates to ECEF X, Y, Z values.
C1 = X1, Y1, Z1 C2 = X2, Y2, Z2 C3 = X3, Y3, Z3 C4 = X4, Y4, Z4 MINALT = SQRT(XMIN2 + YMIN2 + ZMIN2) MAXALT = SQRT(XMAX2 + YMAX2 + ZMAX2) HEIGHT = MAXALT − MINALT - Define the (4) planes formed by the vectors originating at the center of mass of the earth and terminating at the respective four runway corners. Represent the 4 planes by the vector cross product as indicated below:
XP1 = C1 × C2 XP2 = C2 × C3 XP3 = C3 × C4 XP4 = C4 × C1 - Store the vector cross products in the polygon zones database, where the number of stored vector cross products equals the number of sides of the convex polygon
- Determine if the present position or projected position is within the zone (PP=position to be checked)
- PP=PX1, PY1, PZ1
- Determine the scalar Dot product between the current position and the previously calculated Cross Products
DP1 = PP * XP1 DP2 = PP * XP2 DP3 = PP * XP3 DP4 = PP * XP4 - If the products are negative then PP is within the volume defined by intersection planes, if it is positive then outside the volume defined by the intersecting planes.
- Note: the signs reverse if one proceeds around the zone in a counter clockwise direction during the definition process
- Determine if PP is within the height confines of the zone
- Determine the magnitude of the PP vector, for an origin at center of mass of the earth.
- PPM=SQRT[(PX 1)2+(PY 1)2+(PZ 1)2]
- Compare PPM=(PP magnitude) to minimum altitude of zone and maximum altitude of zone
- MINALT<=PPM<=MAXALT
- If the above relationship is true then in the zone.
- If false then outside of the zone
- An alternate method of determining if the present position PP is within a zone which is not normal to the earth's surface is determined using a method similar to that above, except that all N sides of the zone are represented as normal cross products, the corresponding Dot products are calculated and their total products inspected for sign. Based upon the sign of the product PP is either out of or inside of the zone.
- An example of actual Zone and Runway Incursion software code is contained shown below. The actual code includes interfaces to light control, clearance status, tones and other ATC functions.
- Since the extension to polygons of N sides based upon the previous concepts are easily understood, the derivation has been omitted for the sake of brevity.
- In summary two mathematical methods are identified for detecting zone incursions into convex polygons, one based on the equation and slope of the lines, the other is based on vector cross and dot product operators.
- The concept of zones, regardless as to whether they are referenced to surface coordinates, local grid systems or ECEF coordinates, provide a powerful analytical method for use in the Airport Control and Management System.
- The airport control and management system manages overall taxi, departure and arrival clearances in a unique and novel manner through the use of zone processing. A departure ground taxi clearance is issued to the selected vehicle. The waypoints and travel path are drawn into the map aboard the selected vehicle. The vehicle(s) then use the presented taxi information to proceed to the final waypoint. AC&M processing uses this clearance information to mask runway zone incursions along the travel path. Since runway incursions are masked for only the selected vehicle and for zones traversed no runway incursion alert actions or warning lights are produced when following the proper course. Should the position represent movement outside of the extablished corridor, an alert is issued signifing an off course condition exist for that vehicle. Upon the vehicle exit from a particular “cleared” zone, the mask is reset for that zone. Once the last waypoint is reached the clearance is removed and the zone mask is reset. The description below details how such clearances are managed.
- 1. The operator or controller wishes to issue a surface departure clearance to a specific vehicle.
- 2. Through the use of a data entry device such as a touch screen or keyboard or mouse, issue waypoints command is selected for surface departure waypoints
- 3. The operator is asked to select a specific vehicle from a list of available aircraft and vehicles
- 4. The vehicle data window then displays a scrollable list of available vehicles contained in a database which are capable of performing operations of departure clearance
- 5. The operator then selects the specific vehicle using a data entry device such as a touch screen or other data entry device
- 6. A list is then displayed in a scrollable graphical window of available departure travel paths for the selected vehicle
- 7. The operator then selects from this list using a data entry device such as a touch screen or other data entry device
- 8. Upon selection of a particular departure path the waypoints and travel path are drawn into a 3-D ALP. The purpose of presentation is to show the controller or operator the actual path selected
- 9. The controller or operator is then asked to confirm the selected path. Is the selected path correct? Using a data entry device such as a touch screen or other data entry device a selection is made.
- 10. If the selected path was not correct, then the command is terminated and no further action is taken
- 11. If the selection was correct the following steps are taken automatically.
- a. AC&M processing sends to the selected vehicle using a radio duplex datalink, the clearance, 4-D waypoint and travel path information
- b. The selected vehicle upon receipt of the ATC command replies with an acknowledgment. The acknowledgment is sent over the full duplex radio datalink to the AC&M processing
- c. Should the AC&M processing not receive the acknowledgment in a specified amount of time from the selected vehicle, a re-transmission occurs up to a maximum of N re-transmissions
- d. The vehicle upon receiving the ATC command then “loads” the 4-D navigator with the 4-D waypoint information. A map display contained in the vehicle then draws into the 3-D ALP the departure travel path as shown in FIG. 8. This figure shows travel path as30 in the
digital ALP 31 while actual waypoints are shown as (14)spheres 32. - 1. The operator or controller wishes to issue a departure clearance to a specific aircraft
- 2. Through the use of a data entry device such as a touch screen or keyboard or mouse, issue waypoints command is selected for departure waypoints
- 3. The operator is asked to select a specific vehicle from a list of available aircraft
- 4. The vehicle data window then displays a scrollable list of available aircraft contained in a database which are capable of performing operations of departure clearance
- 5. The operator then selects the specific vehicle using a data entry device such as a touch screen or other data entry device
- 6. A list is then displayed in a scrollable graphical window of available departure travel paths for the selected vehicle
- 7. The operator then selects from this list using a data entry device such as a touch screen or other data entry device
- 8. Upon selection of a particular departure path the waypoints and travel path are drawn into a 3-D ALP. The purpose of presentation is to show the controller or operator the actual path selected
- 9. The controller or operator is then asked to confirm the selected path. Is the selected path correct? Using a data entry device such as a touch screen or other data entry device a selection is made.
- 10. If the selected path was not correct, then the command is terminated and no further action is taken
- 11. If the selection was correct the following steps are taken automatically.
- a. AC&M processing sends to the selected vehicle using a radio duplex datalink, the clearance, 4-D waypoint and travel path information
- b. The selected vehicle upon receipt of the ATC command replies with an acknowledgment. The acknowledgment is sent over the full duplex radio datalink to the AC&M processing
- c. Should the AC&M processing not receive the acknowledgment in a specified amount of time from the selected vehicle, a re-transmission occurs up to a maximum of N re-transmissions
- d. The vehicle upon receiving the ATC command then “loads” the 4-D navigator with the 4-D waypoint information. A map display contained in the vehicle then draws into the 3-D ALP the departure travel path as shown in FIG. 9. This figure shows travel path as34 in the
digital ALP 35 while actual waypoints are shown as (5)spheres 36. - 12. Upon AC&M receiving the acknowledgment, the following is performed:
- a. the zone mask is updated indicating that the selected vehicle has a clearance to occupy runway(s) and taxiway(s) along the travel path. This mask suppresses zone runway incursion logic for this vehicle.
- b. the zone based lighting control processing then activates the appropriate set of airport lights for the issued clearance in this case Take Off Lights
- 13. The vehicle now has active navigation information and may start to move, sending out ADS message broadcasts over the datalink to other vehicles and the AC&M system
- 14. The selected vehicle ADS messages are received at the AC&M system and at other vehicles.
- 15. AC&M processing using information contained in the ADS message performs mirrored navigational processing, as outlined in a latter section.
- 16. Zone incursion checking is performed for every received ADS message using position projection techniques for zones contained in the zones database
- 17. Should a zone incursion be detected, the zone mask is used to determine if the incurred zone is one which the vehicle is allowed to be in. If the zone is not in the zone mask then a warning is issued. Should the zone be that of a Runway, a Runway Incursion Alert is Issued and the appropriate airport lights are activated.
- 18. The ADS position is used to determine when the vehicle leaves a zone. When the vehicle leaves the zone, the clearance mask is updated indicated travel though a particular zone is complete. When this occurs the following steps are initiated by the AC&M:
- a. the zones mask is updated
- b. airport light status is updated
- If the exited zone was a Runway, operations may now occur on the exited runway
- 19. The vehicle continues to travel towards the final waypoint
- 20. At the final waypoint the navigator and the map display are purged of active waypoint information, meaning the vehicle is where it is expected to be. New waypoints may be issued at any time with a waypoints command function.
- AC&M zones based clearance function as presented here provides a unique and automated method for the controlling and managing airport surface and air clearances.
- Collision detection is performed through the zones management process. The basic steps for collision detection and avoidance are shown below in a general form. FIG. 10 shows graphically what the following text describes.
- 1. Vehicle Position, Velocity and Time (PVT) information are received for all tracked vehicles. The following processing is performed for each and every ADS vehicle report
- 2. PVT information is converted to the appropriate coordinate system if necessary and stored in the database
- 3. A
rough check zone - 4. Every vehicle's rough check radius is compared with every other vehicle in the database. This is done simply by subtracting the current position of vehicle V from the position of vehicle V+1 in the database to determine the separation distance between each vehicle and every other vehicle in the database. This is performed in the ECEF coordinate frame.
- 5. For each pair of vehicles in the database that are within the sum of the two respective rough check radii values; continue further checking since a possible collision condition exists, if not within the sum of the rough check radii do no further processing until the next ADS message is received
- 6. For each set of vehicles which have intersecting rough check radii project the position ahead by an increment of Time (t) using the received vehicle velocity and optionally acceleration information. Projected positions at time=T1 are shown by two
circles - 7. Determine the new separation distance between all vehicles which initially required further checking. Compare this distance to the sum of minimum safe clearance distances R1 and R2 for those vehicles at the new incremented time. The minimum safe clearance distances R1 and R2 are contained in a database and is a function of vehicle velocity and type. Should the
separation distance 42 between them be less than the sum of the minimal safe clearance distances R1+R2, then generate alert warning condition. Record the collision time values for each set of vehicles checked. If no minimum safe clearance distance is violated then continue checking the next set of vehicles in a similar fashion. When all vehicles pairs are checked then return to the start of the vehicle database. - 8. Increment the projection time value (T+t) seconds and
repeat step 7 if separation was greater than the sum of the minimal safe separation distance R1+R2. Continue to increment the time value to a maximum preset value, until the maximum projection time is reached, then process next pair of vehicles in a similar fashion, until the last vehicle is reached at that time start the process over. If minimum safe clearance (R1+R2) was violated compare the time of intersection to the previous time of intersection. If the previous intersection time is less than the new intersection time the vehicles are moving apart, no collision warning generated. In the event that the vehicles are moving together, meaning the intersection times are getting smaller, determine if a course change is expected based upon the current waypoints issued, and if the course change will eliminate the collision condition. If a course change is not expected or if the course change will not alleviate the collision situation then generate alert. If the projection time T is less than the maximum projection time for warning alerts, generate a warning. If the projection time T is greater than the maximum projection time for a warning alert and less than the maximum projection time for a watch alert, generate a watch alert. If the projection time T is greater than the maximum projection time for a watch alert generate no watch alert. - 9. The warning condition generates a message on the ALERT display identifying which vehicles are in a collision warning state. It also elevates the layer identifier code for those vehicle(s) to an always displayed (non-maskable) warning layer in which all potentially colliding vehicles are displayed in RED.10. The watch condition generates a message on the ALERT display identifying which vehicles are in a collision watch state. It also elevates the layer identifier code for that vehicle(s) to an always displayed (non-maskable) watch layer in which all potentially colliding vehicles are displayed in YELLOW.
- 11. The process continually runs with each new ADS message report.
- The sample code below performs the above collision processing, without the routine which checks for course changes, to reduce false alarms.
- /**********************************************************************
- File Name: collpred.c
- Description: collpred.c contains the routines which update the vehicle database and perform collision prediction algorithms.
- Units: get_veh_index, store_remote_msg, chk_for_collisions, convert_veh
- /*----------------------------------------------------------------------*/
- #include <stdio.h>
- #include <string.h>
- #include <stdlib.h>
- #include <graph.h>
- #include <math.h>
- #include “veh.h”
- #include “sio.h”
- #include “coord.h”
- #include “color.h”
- The AC&M processing performs mirrored navigational processing using the same coordinate references and waypoints as those aboard the vehicles. In this manner the ATC system can quickly detect off course conditions anywhere in the 3-D airport space envelope and effectively perform zone incursion processing aboard the vehicles and at the AC&M.
- The AC&M processing software converts the position and velocity information to the appropriate coordinate frame (zone & map compatible) using techniques described previously. Waypoints based upon the precise 3-dimensional map are used for surface and air navigation in the airport space envelope. The capability is provided to store waypoints in a variety of coordinate systems, such as conventional Latitude, Longitude, Mean Sea Level, State Plane Coordinates, ECEF X, Y, Z and others. The navigational waypoint and on course—off course determinations are preferred to be performed in an ECEF X, Y, Z coordinate frame, but this is not mandatory.
- The following mathematical example is provided to show how waypoints and trajectories are processed in Latitude, Longitude, Mean Sea Level and in ECEF X, Y, Z. An actual GNSS flight trajectory is used for this mathematical analysis. The flight trajectory has been previously converted to an ECEF X, Y, Z format as have the waypoints using the previously described techniques. FIGS.11,12,13,14,15 are used in conjunction with the following description.
- FIG. 11 depicts the ECEF waypoint processing used in the AC&M. The ECEF coordinate
system 43 is shown as X,Y,Z, the origin of the coordinate system is shown as 0,0,0. The coordinate system rotates 44 with the earth on its polar axis. Theairport 45 is shown as a square patch. An enlarged side view of theairport 46 is shown with (4)waypoints 47. A further enlargement shows the Present Position 48 (PP), the Next Waypoint 49 (NWP) the Previous Waypoint (PWP) 50. TheTrue Course Line 58 is between theNext Waypoint 49 andPrevious Waypoint 50. The vector from thePresent Position 48 to theNext Waypoint 49 isvector TNWP 51. TheVelocity Vector 52 and the Time Projected Position is shown as a solid black box 53. The Projected Position 53 is used in zone incursion processing. The 3-D distance to the true coarse is represented by theCross Track Vector 54 XTRK. The vector normal to the earth surface at the present position and originating at the center of mass of the earth is shown as 55. This vector is assumed to be in the same direction of thevertical axis 56. Thelateral axis 57 is perpendicular to the vertical axis and perpendicular to thetrue course line 58 between theNext Waypoint 49 and thePrevious Waypoint 50. TheNavigational Display 59 shows thePresent Position 48 with respect to theTrue Course Line 58. - The following equations describe the processing performed in the AC&M while FIGS. 12, 13,14, and 15 represent plots of the actual trajectory information.
Variable Definition Ω = the number of degrees per radian 57.295779513 α = semi major axis, equatorial radius 6378137 meters e = earth's eccentricity 0.0818182 TALT = ellipsoidal altitude of trajectory position (meters) WALT = ellipsoidal altitude of the waypoint positions (meters) ρ = earth's radius of curvature at the position or waypoint r = 2-d equatorial radius (meters) R = first estimate of the radius of curvature (meters) sφ = the ratio of ECEF Z value divided by R (meters) RC = radius of curvature at the present position (meters) h = altitude with respect to the reference ellipsoid (meters) λ = longitude of position in radians φ = latitude of position in radians ENU = East, North, Up coordinate reference XYZ = East, North, Up vector distance (meters) to waypoint VELENU = East, North, Up velocity in (meters/sec) DISTENU = East, North, Up scalar distance to waypoint VELEMUMAG = East, North, Up Velocity magnitude (scalar) meters/sec NBEAR = True North Bearing T = Time in seconds pwT = Earth's radius of curvature at the waypoint Waypoint indexes through a list of waypoints Waypoints are indexed as a function of position pT = Earth's radius of curvature at the GNSS position Position LAT = Latitude LOT = Longitude TALTT = altitude Waypoint WLAwT = Waypoint Lat. WLOwT = Waypoint Lon. WALTwT = altitude Position XT = ECEF X YT = ECEF Y ZT = ECEF Z Waypoint AT = Waypoint ECEF X BT = Waypoint ECEF Y CT = Waypoint ECEF Z -
- AT WAYPOINT AT GNSS POSITION
- CONVERT TRAJECTORY TO ECEF COORDINATES
- X T:=(TALT T+ρT)·cos(LA T)·(LO T)
- Y T:=(TALT T +ρ T)·cos(LA T)·sin(LO T)
- Z T :=[TALT T+ρT)·(1−e 2)]·sin(LA T)
- CONVERT WAYPOINTS TO ECEF COORDINATES
- A wT:=(WALT wT+ρwT)·cos(WLA wT)·cos(WLO wT)
- B wT:=(WALT wT+ρwT)·cos(WLA wT)·sin(WLO wT)
- C wT :=[WALT wT+ρwT·(1−e 2)]·sin(WLA wT)
- FIND VECTOR FROM PRESENT POSITION TO NEXT WAYPOINT
- T=TIME OF TRAJECTORY DATA MATRIX INDEX
- TIME INTO TRAJECTORY=61 SECONDS
-
- WAYPOINT
SELECTION CRITERIA # 1 TIME BASED -
-
- DETERMINE VECTOR BETWEEN PREVIOUS AND THE NEXT WAYPOINT
- Qa:=(Q a+1,0 −Q a,0 Q a+1,1 −Q a,1 Q a+1,2 −Q a,2)
- PP:=(X T Y T Z T) PRESENT POSITION
- NWP:=[A N·(1+a) B N·(1+a) C N·(1+a)] NEXT WAYPOINT
- TNWP:=NWP−PP VECTOR DISTANCE TO THE NEXT WAYPOINT
- AT FLIGHT TIME T=61 SECONDS, THE NEXT WAYPOINT IS THE FOLLOWING X, Y, Z DISTANCE FROM THE CURRENT POSITION
- TNWP=(−394.0104406164 424.5394341322 588.6638708804)
- DETERMINE THE MAGNITUDE OF THE DISTANCE TO THE WAYPOINT
- DIST:={square root}{square root over ((TNWP <0>)2+(TNWP <1>)2+(TNWP <2>)2)}
- DIST=825.8347966318 METERS
- NEXT DETERMINE IF THE SPEED SHOULD REMAIN THE SAME, OR CHANGE
-
- VX=−20.7373916114 M/S X ECEF VELOCITY TO REACH WAYPOINT ON TIME
-
- VY=22.3441807438 M/S Y ECEF VELOCITY TO REACH WAYPOINT ON TIME
-
- VZ=30.9823089937 M/S Z ECEF VELOCITY TO REACH WAYPOINT ON TIME
- COMPARE CURRENT Z VELOCITY TO REQUIRED Z VELOCITY, IF LESS INCREASE IN VELOCITY, IF GREATER THAN REQUIRED VELOCITY DECREASE VELOCITY
- VELECEF:={square root}{square root over ((VX 2)+(VY 2)+(VZ 2))} VELOCITY MAGNITUDE
- VELECEF=43.4649892964 M/S
- VELECEF=(−20.737 22.344 30.982)
- DETERMINE THE ON COURSE OFF COURSE NAVIGATIONAL DATA
-
-
- CROSS TRACK ERROR
- XTRK:=UN·TNWPT
- XTRK=28.5392020973
-
-
-
-
- CHECK AGAINST GREAT CIRCLE TECHNIQUE
- GREAT CIRCLE ANGLE β:=a cos(UNWP·UPP) β·Ω=0.0074290102 DEGREES
-
- ‘THE ECEF ANALYSIS COMPARES TO GREAT CIRCLE ANALYSIS VERY CLOSELY’
- CONVERTING BACK TO LAT. LON AND MSL
-
-
- FIND ENU VECTOR FROM PRESENT POSITION TO NEXT WAYPOINT
- EAST DISTANCE
- NORTH DISTANCE
-
- EAST VEL.
- NORTH VEL.
-
- DIST=825.8347966318 METERS
- VELENUMAG:={square root}{square root over ((VELENU 0)2+(VELENU 1)2+(VELENU 2)2)}
- VELENUMAG=43.4644892872 M/S
- THE ECEF APPROACH AND THE ENU APPROACH PRODUCE THE SAME RESULTS SO IT IS POSSIBLE TO USE EITHER COORDINATE REFERENCE TO CONTROL THE NECESSARY SPEED TOTHE WAYPOINT
-
- ADJUST FOR TRIGONOMETRIC QUADRANTS AND YOU HAVE THE TRUE BEARING
- Should the Range to the Waypoint become larger than the previous range of the waypoint a waypoint may not have automatically indexed. This situation could occur if the vehicle did not get close enough to the waypoint to index automatically or an ADS message may have been garbled and the waypoint did not index, due to a lost ADS message. In this case the following analysis is performed:
- a) temporarily increment the waypoint index
- b) find the vector between the vehicles present position (PP) and the next waypoint (NWP)
- Vector to the next waypoint, TNWP=NWP(X,Y,Z)−PP(X,Y,Z)
- c) Determine the current vehicle velocity vector
- VEL=(VX,VY,VZ)
- d) Determine the Dot Product between the Velocity Vector and Vector TNWP
- COS θ=TNWP dot VEL
- e) If A< COS θ<B then keep current waypoint index
- Where A and B are between 0 and 1 and represent an adjustable value based on the allowable vehicle velocity angular deviation from the true course
- If −1<COS θ<=0 then return to previous waypoint index and generate wrong way alert The above technique can be expanded to include curved approach, using cubic splines to smooth the transitions between waypoints. A curved trajectory requires changes to the above set of equations. Using the technique of cubic splines, one can calculate three cubic equations which describe smooth (continuous first and second derivatives) curves through the three dimensional ECEF waypoints. The four dimensional capability is possible when the set of cubic equations is converted into a set of parametric equations in time. The table below depicts an ECEF waypoint matrix which is used in cubic spline determinations.
- The AC&M processing utilizes the combination of precise ECEF X, Y, Z navigation and waypoints. Waypoints may be stored in a data file for a particular runway approach, taxi path or departure path. Waypoints may be entered manually, through the use of a data entry device. A list of waypoints describing a flight and or taxi trajectory is then assigned to a particular vehicle. To further supplement waypoint processing expected arrival time may be added to each waypoint as well as velocity ranges for each phase of flight. In this manner,4 dimensional airport control and management is provided utilizing a GNSS based system. Mathematical processing is used in conjunction with precise waypoints to define flight trajectories. The mathematics typically uses cylindrical shapes but is not limited to cylinders, cones may also be used, and are defined between adjacent waypoints. Typical on or off course processing is outlined below and is shown in FIG. 16.
- a. Construct the True Course line between the
previous waypoint 61 and thenext waypoint 62 - b. Determine the shortest distance (cross track error64) from the
current position 63 to theline 60 between theprevious waypoint 61 andnext waypoint 62 - c. Determine the magnitude of cross track error
- d. Compare the magnitude of the cross track error to a predefined limit for total off course error shown as65 in the figure.
- e. Construct an mathematical cylindrical zone centered on the line between the previous61 and
next waypoint 62 with radius equal to theoff course threshold 65. - f. If the magnitude of the
cross track error 64 is greater than theoff course threshold 65 then raise flag and generate alert (off course). - g. Determine the necessary velocity to reach next waypoint on schedule, as shown previously
- h. Is necessary velocity within preset limits or guidelines?
- i. Check actual current velocity against preset limits and necessary velocity, If above preset limits, raise flag and issue alert to slow down. If below preset limits, raise flag and issue alert to speed up
- j. Automatically index to the following
waypoint 66 when the position is within theindex waypoint circle 67 - k. Should wrong way be detected (
positions 68 and 69), index ahead to the next towaypoint pair line 72 between thewaypoints - l. In the event that an off course condition and wrong way occur (position69) a message is formatted which updates the layer filter for the target which is off course, an alert is generated, the waypoints are returned to the initial settings and action is taken to bring vehicle back on course possibly using a set of new waypoints
- m. In the event of a velocity check which indicates that the speed up or slow down velocity is outside of an approved range, generate a warning the speed for vehicle is out of established limits, Preset speed over ground limits are adjusted for current air wind speed.
- n. The controller reviews the situation displayed and if necessary invokes a navigational correction message to be sent to the Real Time Communication Handler, and then broadcast by radio to the aircraft off course or flying at the wrong speed. The controller at this time may change the expected arrival time at the next waypoint if so necessary
- a. Construct the True Course line between the
previous waypoint 66 and thenext waypoint 72 - b. Determine the shortest distance (cross track error73) from the
current position 74 to the line between theprevious waypoint 66 andnext waypoint 72 - c. Determine the magnitude of cross track error
- d. Compare the magnitude of the cross track error to a predefined limit for total off course error shown as75 in the figure.
- e. Construct an mathematical cylindrical zone centered on the line between the
previous waypoint 66 andnext waypoint 72 with radius equal to theoff course threshold 75 - f. If the magnitude of the
cross track error 73 is greater than theoff course threshold 75 then raise flag and generate alert (off course). - g. Determine the necessary velocity to reach next waypoint on schedule, as shown previously
- h. Is necessary velocity within preset limits or guidelines?
- i. Check actual current velocity against preset limits and necessary velocity, If above preset limits, raise flag and issue alert to slow down. If below preset limits, raise flag and issue alert to speed up
- j. Automatically index to the following
waypoint 76 when the position is within theindex waypoint circle 77 - k. Should wrong way be detected (position74), index ahead to the next to
waypoint pair line 80 between thewaypoints - l. In the event of a velocity check which indicates that the speed up or slow down velocity is outside of an approved range, generate a warning the speed for vehicle is out of established limits, Preset speed over ground limits are adjusted for current air wind speed.
- m. The controller reviews the situation displayed and if necessary invokes a navigational correction message to be sent to the Real Time Communication Handler, and then broadcast by radio to the aircraft off course or flying at the wrong speed. The controller at this time may change the expected arrival time at the next waypoint if so necessary
- The AC&M processing performs all on or off course processing determinations and the displays information related to on or off course or late or early arrival conditions.
- Within the AC&M system collision alerts, zone, off course and improper speed warnings are handled somewhat differently than normal position updates. When the AC&M processing recognizes a warning condition, the aircraft(s)/vehicle(s) involved are moved to a special ALP layer. The layer filter controls what graphic parameters a particular vehicle or aircraft is displayed with. The change in the layer from the default vehicle layer signifies that the target has been classified as a potential collision, zone intrusion risk, off course condition or improper speed.
- ATC Control Zones are used to sort and manage air and surface traffic within the airport space envelope. The AC&M Control Area is divided into AC&M Control Zones. Typically the outer most airport control zone interfaces with an en route zone. Aircraft within the 3-D AC&M zone transmit their GNSS derived positions via an on board datalink. The GNSS data is received by the airport AC&M equipment. The AC&M Processing determines the ECEF AC&M Control Zone assignment based on the aircraft's current position and assigns the aircraft to the map layer associated with that Control Zone. Mathematical computations as defined previously, are used to determine when a vehicle is in a particular control zone.
- As an aircraft enters the AC&M or transitions to another ATC Control Zone, a handoff is performed between the controllers passing and receiving control of that aircraft. Surface traffic is handled in the same manner. With this AC&M scenario, each controller receives all target information but suppresses those layers that are not under his control. In this manner the controller or operator views on those vehicles or aircraft in his respective control zone. Should there be a collision condition across an ATC zone boundary the conflicting vehicles will be displayed in a non-surpressable layer.
- All targets within an AC&M Control Zone would be placed in the appropriate map layer for tracking and display purposes. Layer coding for each tracked target can be used to control graphic display parameters such as line type, color, line width as well as be used as a key into the underlying database for that object.
- Additional AC&M Control Zones may be defined for other surface areas of the airport, such as construction areas, areas limited to specific type of traffic, weight limited areas and others. These areas may be handled through ATC but will most or be controlled by airline or airport maintenance departments. The concept of a zone based AC&M system integrated with 3-D map information provides a valuable management and navigational capability to all vehicles and aircraft within the airport space envelope.
- The AC&M processing defined herein allows the user to enter waypoints using the digital map as a guide. To enter a series of waypoints the controller simply uses the map which may provide plan and side views of the airport space envelope. The cursor is moved to the appropriate point and a selection is made by pressing a key. The position is then stored in a list with other waypoints entered at the same time. The user is then prompted to enter a name for the waypoint list and an optional destination. Lastly, the waypoints converted the appropriate coordinate frame and are then saved to a file or transmitted to a particular vehicle. In this manner the user may add and define waypoints.
- The user may define zones using the digital map as a guide. To enter a series of zones the controller simply uses the map which may provide plan and side views of the airport space envelope. The cursor is moved to the appropriate point and a selection is made by pressing a key. The position is then stored in a list with other zone definition points. The controller is then prompted to enter a name for the zone (pole, tower, construction area, etc.) and type of zone (circle, sphere, box, cylinder, etc.). Lastly, the zones are converted to the appropriate coordinate frame and saved to a file or transmitted to a particular vehicle. In this manner the user may define additional zones.
- The ability to quickly and accurately define zones is key to the implementation of a zones based AC&M capability.
- The definition and standardization of a ‘seamless’ aviation system datalink format(s) is critical to the implementation of a GNSS-based aviation system.
- Perhaps the most basic issue which must be resolved in the determination of the datalink format, is the selection of the coordinate system and units for the GNSS-derived position and velocity data. Compatibility with digital and paper maps, navigation system and overall mathematical processing efficiency play major roles in the selection of the coordinate reference. Below is a list of criteria which are used in this determination:
-
WORLD WIDE USE The coordinate reference system is recognized throughout the world. Scale does not change as a function of where you are on the earth. SIMPLE NAVIGATION The coordinate system lends itself MATHEMATICS to simple vector navigational mathematics. COMPATIBLE WITH The coordinate reference can COMPLEX 4-D CURVED support curved trajectory PATH 4-D NAVIGATION mathematics. FUNCTIONS COMPATIBLE WITH Is compatible with management MANAGEMENT SYSTEM operations at ATC and aboard A/Vs. COMPATIBLE WITH SPACE The coordinate system is compatible OPERATIONS with low earth orbit or space-based operations. NAD83 AND WGS84 REF. The reference system is compatible with NAD 83 andWGS 84SINGLE ORIGIN The system has one single point origin. LINEAR SYSTEM The system is a linear coordinate system and does not change scale as a function of location. UNITS OF DISTANCE The coordinate system is based on units of distance rather than angle NO DISCONTINUTITIES The coordinate reference system is continuous world wide. - The ECEF X, Y, Z Cartesian coordinate system satisfies all of the above criteria. Other systems may be used such as, Universal Transverse Mercator, Latitude, Longitude and Mean Sea Level and other grid systems but additional processing overhead and complexities are involved. A representative ADS message structure is provided below:
SAMPLE AIRPORT ECEF MESSAGE CONTENT ID # 8 Characters VEHICLE TYPE 4 Characters CURRENT POSITION: ECEF X Position (M) 10 Characters ECEF Y Position (M) 10 Characters ECEF Z Position (M) 10 Characters ECEF X2 Position (M) 4 Characters * ECEF Y2 Position (M) 4 Characters * ECEF Z2 Position (M) 4 Characters * ECEF X3 Position (M) 4 Characters * ECEF Y3 Position (M) 4 Characters * ECEF Z3 Position (M) 4 Characters * ECEF X Velocity (M/S) 5 Characters ECEF Y Velocity (M/S) 5 Characters ECEF Z Velocity (M/S) 5 Characters NEXT WAYPOINT (WHERE HEADED INFORMATION): ECEF X 10 Characters ECEF Y 10 Characters ECEF Z 10 Characters TIME 8 Characters - A bit oriented protocol, representing the same type of information, may be used to streamline operations and potential error correction processing. (The asterisks denote optional fields which may be used to determine the attitude of an aircraft.)
- The individual fields of the ADS message are described below:
- ID (8 Character Word, Alpha-Numeric)
- The ID field is used to identify the particular vehicle or aircraft. For aircraft this is typically the flight number or, in the case of GA or private aircraft, the tail number. For airport surface vehicles it is the vehicle's callsign.
- Type of Vehicle (4 Character Word, Alpha-Numeric)
- The vehicle type is used to identify the A/V's type classification. Numerous type classifications may be defined to categorize and identify various aircraft and surface vehicles.
- Current ECEF X,Y,Z Position (10 Characters by 3 Words)
- The ECEF X,Y,Z position fields provide the vehicle's position at the time of the ADS transmission in ECEF X,Y,Z coordinates. The position is calculated by the GPS receiver. Based on the system design, these values may or may not be smoothed to compensate for system latencies. The message length of 10 characters provides a sign bit in the most significant digit and 9 digits of positional accuracy. The least significant digit represents 0.1 meter resolution. This provides a maximum ADS distance of +9999999.9 which translates to an altitude of about 3600 KM above the earth's surface, providing sufficient coverage to support low earth orbiting satellites and spacecraft.
- Delta Positions (Relative Positions, 4 Characters by 6 Words)
- Delta positions are used to represent the positional offset of two other GPS antenna locations. These locations can be used to determine the attitude of the aircraft or its orientation when it is not moving. All delta distances are calculated with respect to the current ECEF position. Straight forward ECEF vector processing may then be used to determine the attitude and orientation of the aircraft with respect to the ECEF coordinate frame. An ECEF-to-local on board coordinate system (ie. North, East, Up) conversion may be performed if necessary. Accurate cross wind information can be determined on the ground and on board the aircraft from delta position information. Delta positions may also be used as 3-D graphical handles for map display presentations.
- The message length of 4 characters provides a sign bit in the most significant digit and 3 digits of delta position accuracy. The least significant digit represents 0.1 meter resolution.
- ECEF X,Y,Z Velocity (5 Characters by 3 Words)
- The fields represent the A/V's ECEF X,Y,Z velocity in meters per second. Tenth of a meter/second resolution is required during the ground phase of GPS based movement detection, latency compensation, zone and collision detection processing.
- The message length of 5 characters provides a sign bit in the most significant digit and 4 digits of velocity accuracy.
- Next Waypoint (10 Characters by 3 Words)
- These fields describe where the A/V is currently headed, in terms of the ECEF X,Y,Z coordinates of the next waypoint. This provides intent information which is vital to the collision avoidance functions.
- Time (Universal Coordinated Time) 8 Characters
- This field identifies the Universal Coordinated Time at the time of the ADS transmission. This time is the GPS derived UTC time (in seconds) plus any latency due to processing delays (optional).
- The ADS message format provides a very valuable set of information that simplifies mathematical processing. Since the ECEF cartesian coordinate frame is native to every GPS receiver, no additional GPS burden is incurred. This type of ADS broadcast message information is more than adequate for precision ground and air operations as well as for general ATC/airport control and management functions.
- Many communication technologies are available which can provide ADS capability. Many of the systems already exist in some form today, but may require modification to meet the requirements of ADS in the terminal area. In evaluating datalink candidates, it is important that future airport standards are not compromised by forcing compatibility with the past. Systems should develop independently in a manner designed to achieve the systems' maximum operational benefits. Transitional elements and issues of compatibility with current systems are better handled through the implementation of translators which do not detract from a future system's true potential.
- Mode S Interrogation
- The Mode S system is in use today and is compatible with today's en route radar and Terminal Radar Approach Control (TRACON)-based air traffic control systems. Current Mode S 1030 MHZ interrogation is performed using Mode S radars which scan at the 4.8 second rate. The scan rate represents the rotational period of the scanning antenna. When a target is interrogated by the radar pulse, the aircraft or vehicle broadcasts its GPS-based information to air traffic control at 1090 MHZ. In this manner, ADS information is received by ATC and by other interrogating sources.
- Numerous problems exist with any interrogation technique which has multiple interrogators. For radar systems to provide seamless coverage, surface, parallel runway and airport surveillance radars are required. Aircraft and surface vehicles would require the use of a transponder which broadcasts a response at 1090 MHZ when interrogated at 1030 MHZ. In an environment where multiple interrogations are required, system complexities increase dramatically. Early ATCRBS, Mode A and Mode C systems were troubled with too many unsynchronized interrogation requests. This resulted in cross talk, garble and loss of transmission bandwidth. Further complicating the airport environment is the possibility of reflected signals which interrogate areas of the airport outside the view of the surveillance radar. This clogs the 1090 channel and further complicates surveillance processing. Airborne Mode S transponder operation requires that squitter messages be broadcast when in the air and turned off on the ground. A Mode S squitter is a periodic repetitive broadcast of ADS information. This, by definition, will interfere with airport interrogation broadcasts and essentially create a self jamming system.
- Any airport ADS system utilizing a Mode S interrogation capability would require almost a ground up development effort encompassing the myriad of necessary surveillance systems.
- Mode S Squitter (GPS Squitter)
- Similarly, the Mode S squitter utilizes the Mode S frequencies. A squitter is a randomly timed broadcast which is rebroadcast periodically. The Mode S squitter broadcasts GPS information at a periodic rate at 1090 MHZ with a bit rate of 1 MBPS. Current thinking requires that the ADS system be compatible with the Traffic Collision Avoidance System (TCAS). The TCAS system currently uses a 56 bit squitter message that must be turned off in the low altitude airport environment since it will interfere with other radar processing activities performed on the ground. Turning TCAS off inside the terminal area (where most midair problems and airport surface collisions occur) defeats the system's operational benefits where they are needed most. Operationally this is unacceptable.
- A modified 112 bit squitter message has been proposed by MIT Lincoln Laboratories. With this approach, the GPS data is squittered twice per second to support ground and low altitude operations. The proposed Mode S squitter operation has distinct advantages over the Mode S interrogation method. Broadcasts are generated from all aircraft and (potentially) surface vehicles. Message collisions are possible, especially when the number of users is increased. If a collision occurs, the current message is lost and one must wait for the next message to be transmitted. At a two hertz transmission rate, this is not a significant problem. Analysis performed by MIT Lincoln Laboratories indicates that an enhanced Mode S squitter has potential to support operations at major airports.
- The integration of the Mode S Squitter, as currently defined, is not without risk. This implementation requires a fleet update to convert to the 112 bit fixed format. Procedural issues of the switch-over between the 56 and 112 bit operation remain problematic. Operation in metroplex areas such as New York may create operationally dangerous conditions. Airside TCAS and
ASR 56 bit transponder responses would be turned off based on phase of flight to be compatible with 112 bit squitter messages used at low altitudes and on the ground. In metroplex areas, confusion is almost certain for both the pilot and air traffic controller when systems are turned off and on. Further modifications may be required to ground and vehicular equipment should these issues be a significant problem. - The 112 bit fixed squitter length message, as defined in May 1994, fails to take advantage of precise GNSS velocity information. This is a significant limiting factor in the proposed squitter message format. The current squitter message is designed to be compatible with today's radar processing software and is not designed to fully capitalize on GNSS and ADS capabilities.
- Aviation Packet Radio (AVPAC)
- AVPAC radio is currently in use with services provided by ARINC and may be a viable candidate to provide ADS services. Again, a GPS-based squitter or an interrogator-initiated broadcast is utilized at aeronautical VHF frequencies. Work is underway to adapt AVPAC to support both voice and data transmissions. A Carrier Sense Multiple Access (CSMA) protocol is utilized on multiple VHF frequencies
- Aircraft Communications Addressing & Reporting System
- Another communication system currently in use by the aviation industry is ACARS. ACARS is a character oriented protocol and currently transmits at2400 baud. Work is underway to increase the baud rate to support more complex message formats.
- VHF/UHF Time Division Multiple Access (TDMA)
- An interesting communication scheme currently under test and development in Sweden utilizes TDMA operation. TDMA is similar to communication technologies used by the United States military and others. In this system, each user is assigned a slot time in which to broadcast the ADS message. A single or multiple frequency system may be utilized based upon total traffic in the area. Upon entering an airport area, the user equipment listens to all slot traffic. The user equipment then selects an unused broadcast time slot. Precise GPS time is used to determine the precise slot. ADS broadcasts are then transmitted at a periodic rate. Broadcasts typically repeat at one second intervals. Should a collision be detected upon entering a new location, the system then transmits on another clear time slot. Since all time slots are continuously received and monitored, all necessary information for situational awareness and collision avoidance is available.
- This system maximizes the efficiency of the broadcast link since, in a steady state environment, no transmission collisions can occur. A time guard band is required to assure that starting and ending transmissions do not overlap. The size of the guard band is a function of GPS time accuracy and propagation delay effects between various users of the system. Another feature of this system is an auto-ranging function to the received broadcasts. This is possible due to the fact that the ADS slot transmissions are defined to occur at precise time intervals. It is then possible, using a GNSS synchronized precise time source, to determine the transit time of the ADS broadcast. By multiplying the speed of light by the transit time, one may calculate the 1-dimensional range to the transmitting object. In reality, a more precise direction, distance and predicted future location is obtainable from the ADS message information itself.
- Code Division Multiple Access (CDMA) Spread Spectrum
- CDMA spread spectrum ADS broadcasts utilize a transmission format similar to that used in the GPS satellites. PRN codes are utilized to uniquely identify the sending message from other messages. The number of users able to simultaneously utilize an existing channel depends upon the PRN codes used and the resulting cross correlation function between the codes. This implementation is being utilized commercially in wireless computer systems with data rates exceeding 256 KBPS. In a frequency agile environment, this implementation may be able to provide secure ADS services.
- Cellular Telephone
- Cellular technology is rapidly changing to support the large potential markets of mobile offices and personal communication systems. CCITT and ISDN standards will provide both voice, video and data capability. Cellular communication may be used by surface vehicles and aircraft for full duplex data link operations. ADS broadcast message formats receivable by ATC and other users will require changes to commercially available services. Cellular telephone has the mass market advantage of cost effective large scale integration and millions of users to amortize development costs over. This particular technology holds promise, and bears watching.
- As the above examples show, a number of datalinks exist or may be modified to provide ADS services. It is not the intent of this specification to rigidly define a particular datalink.
- ADS Operational Considerations
- To fully exploit the ADS concepts presented in this specification, a new set of operational procedures and processing techniques are necessary. The ADS concept will provide the controller and the Aircraft/Vehicle (A/V) operator with the best possible view of the airport environment. With highly accurate 3-D position and velocity information, many new operational capabilities are possible which will provide increased efficiency and safety improvements. The following sections show how precise ADS information is used in seamless airport control and management.
- Waypoints based upon the precise 3-D map and standard surface, approach and departure paths are used for surface and air navigation in the 3-D airport space envelope. Waypoints may be stored in a variety of coordinate systems, such as conventional Latitude, Longitude, Mean Sea Level; State Plane Coordinates; ECEF X, Y, Z; and others. The navigational waypoint and on/off course determinations are preferred to be performed in an ECEF X, Y, Z coordinate frame, but this is not mandatory.
- Waypoints and navigation processing should be defined and designed for compatibility with air and ground operations, including precision approach capability. The same information and processing techniques should be in place on board the A/V's and at the AC&M. The AC&M performs mirrored navigational processing using the same coordinate references and waypoints as those on board the A/Vs. In this manner, the AC&M system can quickly detect off course and ‘wrong way’ conditions anywhere in the 3-D airport space envelope at the same time these conditions are detected on board the A/V's.
- The following mathematical example is provided to show how waypoints and trajectories are processed in the ECEF X, Y, Z coordinate reference frame. An actual DGPS flight trajectory is used for this mathematical analysis. The flight trajectory and waypoints have been previously converted to an ECEF X, Y, Z format.
- FIG. 11 presented in the earilier ON Or Off Course Processing section depicts the major ECEF waypoint elements which are used throughout the following navigation mathematical processing example. The following example utilizes an ECEF Waypoint Matrix. In this example, the next waypoint (NWP) is
element 5 in the matrix and the previous waypoint (PWP) iselement 4. The values for the waypoints are shown in the examples. The range to the waypoint is determined from the current position. The range is compared to the previous range for possible off course or wrong way conditions. If the range is increasing, the waypoint auto-indexing distance may have been exceeded even though the vehicle is on course. In this situation, the waypoint index is temporarily indexed and checking is performed to determine whether the velocity vector is pointing within X degrees of the next waypoint (in this example it is set to +/−90 degrees). Based upon the outcome, a wrong way signal is generated or the waypoints are indexed. The ECEF cross track vector (XTRK) is determined and projected on to the vertical axis, local lateral axis and the plane tangent with the earth's surface at the current position.CONSTRUCT TRAJECTORY VECTOR OF PRESENT POSITION (PP) INDEX TO NEXT WAYPOINT i := 1 PRESENT POSITION WAYPOINT INDEX WAYPOINT MATRIX Q WAYPOINT INDICES PREVIOUS NEXT pwp = 4 nwp = 5 PREVIOUS WAYPOINT PWP := (WPpwp,0 WPpwp,1 WPpwp,2) NEXT WAYPOINT NWP := (WPnwp,0 WPnwp,1 WPnwp,2) DEFINE VECTOR BETWEEN WAYPOINTS FOR CURRENT TRAJECTORY TIME BWP := NWPT − PWPT DISTANCE BETWEEN THE WAYPOINTS |BWP| =758.2006572307 DEFINE VECTOR BETWEEN PRESENT POSITION & NEXT WAYPOINT TNWP := NWPT − PP<t> DISTANCE TO THE WAYPOINT (RANGE) |TNWP| = 367.019470009 CHECK RANGE TO SEE IF A WAYPOINT HAS BEEN MISSED IF VEH. N RANGE > PREVIOUS VEH. N RANGE THEN PERFORM TEST: INCREMENT WAYPOINT INDEX FIND THE VECTOR LINE BETWEEN THE CURRENT POSITION AND NEXT WAYPONT TNWP = NWP(X,Y,Z) − PP(X,Y,Z) CALCULATE ECEF CURRENT POSITIONS VELOCITY VECTOR VEL = (VX,VY,VZ) CALCULATE DOT PRODUCT BETWEEN THE VELOCITY VECTOR AND TNWP COS θ = TNWP(X,Y,Z) dot VEL(VX,VY,VZ) |TNWP| = SRT[(X * X) + (Y * Y) + (Z * Z)] |VEL| = SRT[(VX*VX)+(VY*VY)+VZ*VZ)] COS θ = [(X*VX)+(Y*VY)+(Z*VZ)]/(|TNWP|*|VEL|) IF 0 < COS θ < 1 THEN KEEP CURRENT WAYPT INDEX, MISSED AUTO WAYPOINT INDEX DISTANCE IF −1 < COS θ <=0 THEN GO BACK TO PREVIOUS WAYPOINT FLASH WRONG WAY PRESENT POSITION NEXT WAYPONT UNIT VECTOR PERPENDICULAR TO PLANE CONTAINING INTER- SECTING LINES TNWP & LINE UNIT NORMAL FROM DESIRED TRACK BETWEEN WAYPOINTS TO THE PRESENT POSITION POINT CROSS TRACK ERROR CALCULATIONS CROSS TRACK MAGNITUDE DETERMINATION XTRK := UN · TNWP XTRK = 16.7573345255 CROSS TRACK VECTOR DETERMINATION VXTRK := UN · XTRK VXTRK −8.0728483774 DETERMINE THE ADJUSTED POSITION The adjusted position is the point, on the line between the previous and next waypoint which is normal to the present position. ADJ<t> := PP<t> + VXTRK DETERMINE THE UNIT VECTOR IN THE DIRECTION FROM CENTER OF MASS OF THE EARTH TO ADJUSTED POSITION This vector is in the local vertical direction and for all practical purposes in the vertical direction at the actual user position, since the separations are very small compared to the length of the vector. FIND THE PROJECTION OF THE XTRACK VECTOR ON TO THE UNIT VECTOR This distance represents the vertical distance to true course VERTDIST := VXTRK · UVADJ VERTDIST −4.2570109135 FIND THE LATERAL AXIS OF XTRK INFORMATION The lateral axis represents horizontal distance to true course from the current position. A number of steps are necessary in this determination and are outlined below. FIRST FIND THE VECTOR PERPENDICULAR TO THE PLANE FORMED BY THE XTRK AND THE UVADJ VECTOR FIND THE VECTOR (VLAT) WHICH LIES IN THE PLANE FORMED BY UVADJ AND VXTRK WHICH IS PERPENDICULAR TO THE UVADJ VECTOR IT IS KNOWN THAT VLAT DOT UVADJ = 0 AND UVPER DOT VLAT = 0 SOLVE FOR VLAT BY USING SIMULTANEOUS EQUATIONS EQUATION # 1 EQUATION # 2DEFINE VARIABLES FOR EQUATION SUBSTITUTION DEFINE VLAT VECTOR NOTE: VLAT(Z) TERM WILL CANCEL OUT WHEN FINDING UNIT VECTOR VLAT := (VLATX VLATY 1) VLAT = (0.989509706 1.3079658867 1) DETERMINE THE LOCAL LATERAL AXIS UNIT VECTOR PERFORM CHECK TO SEE IF UVLAT IS PERPENDICULAR TO UVADJ UVADJ · UVLATT = 5.5511151231 · 10−17 CLOSE ENOUGH TO ZERO IS PERPENDICULAR PERFORM CHECK TO SEE IF UVLAT IS PERPENDICULAR TO UVPER UVPER · UVLATT = 0 IT IS PERPENDICULAR PROJECT THE CROSS TRACK TO THE LATERAL AXIS LATDIST := VXTRK · UVLATT LATDIST = −16.2075944693 VERTDIST = −4.2570109135 The sign of the lateral distance (LATDIST) and vertical distance (VERTDIST) determine whether one turns right or left or goes up or down to true course - From a simplicity standpoint, the ECEF coordinate frame provides direct GPS compatibility with minimal processing overhead. The system is based upon the ECEF world wide coordinate frame and provides for 4-D gate-to-gate navigation without local coordinate reference complications. Furthermore, it is directly compatible with zone processing functions as described in earlier sections.
- The above techniques can also be expanded to include curved approaches using cubic splines to smooth the transitions between waypoints. A curved trajectory requires changes to the above set of equations. Using cubic splines, one can calculate three cubic equations which describe smooth (continuous first and second derivatives) curves through the 3-D ECEF waypoints. Additional information on the use of splines may be found in mathematical and numerical programming text books. Four dimensional capability is possible when the set of cubic equations is converted into a set of parametric equations in time.
- Three dimensional display graphics, merged with GPS sensor inputs, provide exciting new tools for airport navigation, control and management. Today's airport users operate in a 4-dimensional environment as precisely scheduled operations become increasingly important in an expansion-constrained aviation system. The 4-D capability of GPS integrated with precise 3-D airport maps and computer graphics, provide seamless airport safety and capacity enhancements. The merger of these technologies provides precise, real-time, 3-D situational awareness capability to both the A/V operators and the air traffic controller.
- The FIG. 17 shows a missed
approach 81 onrunway 35 followed by a touch and go 82 onrunway 24 at the Manchester Airport. The power of such asituation display 83 presentation for the air traffic controller can be instantly recognized. Upon closer inspection, it becomes increasingly clear that GPS and precise graphical maps can be a valuable asset in air and ground navigation. - For the air traffic controller, 3-D situational awareness displays, supplemented with navigation status information, are sufficient. For the pilot navigating in a 3-D world, a 3-D terrain or airport map superimposed with graphical navigational information would be extremely valuable, particularly in adverse weather conditions.
- The FIG. 18 combines the elements of precise ECEF navigational information with a 3-D airport map. The key element in the construction of the map is compatibility with the navigation display, where the selection of map and navigation coordinate frames is of paramount importance. Upon inspection of computer graphical rotation and translational matrices, it becomes clear that, for processing speed and mathematical efficiency, the Cartesian coordinate system is preferred for the map database. A 3-D X,Y,Z digital map presentation provides the most efficient path to 2-D screen coordinates through the use of projection transformations.
- The integration of GPS-based navigation information with digital maps suggests that new methods of navigation processing should be considered. In the past, aircraft typically relied on a signal in space for instrument-based navigation. The instrument landing system (ILS) consists of a localized directed signal of azimuth and elevation. The VOR-DME navigation system uses a signal in space which radiates from an antenna located at a particular latitude and longitude. Altitude is determined from pressure altitude. Current, 2-D radar surveillance systems are also based upon a localized coordinate reference, usually to the center of the radar antenna. Again, altitude information is from barometric pressure readings which vary with weather. The integration of localized navigation and surveillance systems and 3-D ATC and navigational display presentations require an excessive number of coordinate conversions, making the process overly difficult and inaccurate.
- To minimize navigational and display overhead, a Cartesian X,Y,Z coordinate system is used for the navigation computations, map database and display presentations. Many X,Y,Z map database formats are in use today, but many are generated as a 2-D projection with altitude measured above mean sea level. Two examples of this type of system are Universal Transverse Mercator (UTM) and State Plane Coordinate System (SPCS). Neither one of these systems is continuous around the world, each suffer from discontinuities and scale deformity. Furthermore, neither of these systems is directly compatible with GPS and also requires coordinate conversions. If the map, travel path waypoints, navigational processing, navigational screen graphics and airport control and management functions are in the Cartesian coordinate frame, the overall processing is greatly simplified.
- In the graphical navigation display FIG. 18, the perspective is that of a pilot from behind his
current GPS position 84. From thisvantage point 85, the pilot can view hiscurrent position 84 and his plannedtravel path 86. As the aircraft moves, its precise ECEF X,Y,Z velocity 87 components are used to determine how far back 88 and in what direction the observation is conducted from. This is determined by taking thecurrent ECEF velocity 87, negating it and multiplying it by a programmable time value (step-back time). When applied to the aircraft'scurrent position 84, this results in anobservation point 89 which is always looking at thecurrent position 84 and ahead in the direction oftravel 87. - Once the
observation point 89 is established in the 3-D Cartesian coordinate system, an imaginary mathematicalfocal plane 90 is established containing thecurrent position 84. Thefocal plane 90 is orthogonal to the GPS-derivedECEF velocity vector 87. The mathematicalfocal plane 90 represents the imaginary surface where the navigation ‘insert’ 91 will be presented. The focal plane is always, by definition, orthogonal to theviewing point 85. Thetravel path 86 composed of ECEF X,Y,Z waypoints (92-95) is drawn into the 3-dimensional map. The point on thetrue travel path 86 which is perpendicular to thecurrent position 84 represents thecenter 96 of thenavigational insert screen 91. The orientation of the navigational insert with respect to the horizontal axis is determined by the roll of the aircraft. The roll may be determined through the use of multiple GPS antennas located at known points on the aircraft or may be determined by inertial sensors and then converted to the ECEF coordinate frame. Vector mathematics performed in the ECEF coordinate frame are then used to determine the new rotated coordinates of thenavigation screen insert 91. The rotated coordinates are then translated through the use of the graphical translation matrix and drawn into the 3-D map 97. - The final step is the placement of the current position ‘cross-hair’
symbol 84 with respect to travelpath 86. The aircraft's GPS position, previous and next waypoints are used to determine the ECEFcross track vector 98. Thecross track vector 98 is then broken down into its local vertical 99 and local lateral 100 (horizontal) components. (Local components must be used here since the vertical and lateral vectors change as a function of location on the earth.) Thecross-hair symbol 101 is then drawn on to the focal (image)plane 90 surface at the proper offset from the true course position indicated by the center of thenavigation screen insert 96. Thus, this display provides precise navigation information (lateral and vertical distance to true course) with respect to true course, provides information on 3-D airport features and shows the planned 3-D travel path. The element of time may also be presented in this display format as an arrow (drawn in the direction of travel) of variable length where the length indicates speed up or slow down information. - The construction of this type of display in other than ECEF coordinates entails substantial coordinate conversion and additional processing. Again, for simplicity and compatibility with proven 3-dimensional graphic techniques, an ECEF Cartesian X,Y,Z coordinate framework is desired.
- Various display formats are used to provide the GPS navigational information to the pilot. The area navigation display shown in FIG. 19 features auto-
scaling range 102rings 103 which provide course, 104bearing 105 and range distance to the waypoint. The length of the course 104 and bearinglines 105 superimposed on thering scale 103 are proportional to the distance from the waypoint. The compass orientation of thebearing line 105 provide the course to travel from the current position to the waypoint. The course line 104 indicates the compass direction of current travel. The display also provides altitude information as a auto-scalingbar chart display 106 with indicated go up or down information. - In this manner the area navigation display provides the following:
- 1. Range to the waypoint based on length of the line and an autoranging scale
- 2. Compass heading to travel to the waypoint
- 3. Compass heading of current travel
- 4. Autoranging altitude navigation bar graph display
- The GPS landing display is shown in FIG. 20. This display is activated when the first GPS waypoint at the top of the glide slope is reached. The precision landing display is composed of a simple
heavy cross 107 which moved about on an X Y graticuledcross hair display 108. Textual TURN LEFT/TURN RIGHT and GO UP/GO DOWN messages are presented to the pilot when the aircraft is more than a predetermined amount eg. 10.0 meters off of true course. - Another display format utilizing a 3-D map is provided in FIG. 21. This display technique provides a 3-D view of the approaching airport as viewed from the aircraft's position. The techniques described above for the cross hair navigation screen are identical to those used in the 3-D approach presentation. In the 3-D approach presentation, a
conical zone 109 is constructed around theline 110 between the landing approach waypoints. The apex of the cone is at the touch downpoint 111 and the base of the cone is at the top of the glide slope waypoint. This 3-D object is viewed normal to the line between the current and previous waypoint as shown in FIG. 21. - The cone is sliced at the point on the line (formed by the current and previous waypoint) perpendicular to the
present position 112. The resulting cross section then effectively represents the cross hair symbology implemented in the graphical GPS landing display. The current position is then displayed within theconical cross section 113 of theglide slope zone 109. A position not in the center of the display means the aircraft is not on true course. For example, a position report in the upper right of the display cross section means the aircraft is too high and too far to the right. In this case the pilot should turn left and go down. As the aircraft gets closer to the touch down point, the conical cross section scale gets smaller. Once thetouchdown waypoint 114 is reached, the display reverts to a plan view of the airport similar to that shown in FIG. 8 which is then used for surface navigation. The graphical nature of this display format is useful in the air and on the ground, but requires very fast graphical and computational performance. The advantage of this system is that it minimizes many of the navigational calculations such as cross track errors, but requires moderate spatial graphical computations and fast display performance. - Waypoints
- /******************************************************************
- File Name: way.c
- Description: way.c contains the routines used to enter and save the waypoint data.
- Units: store_wps, calc_navdata,
- #include <stdio.h> /* standard input/output */
- #include <math.h> /* MSC math library */
- #include <string.h> /* MSC string routines
- #include <graph.h> /* MSC graphics routines */
- #include <stdlib.h> /* MSC standard library routines */
- #include <bios.h> /* MSC bios routines */
- #include “coord.h” /* coordinate definitions */
- #include “sio.h” /* CAD/NAV global declarations
- #include “veh.h” /* vehicle data */
- #include “lights.h” /* lighting definitions */
- Communications Processor and Communication Flow
- The processing of data communications within the airport is a key element of any GPS-based airport control and management system. A minimum of three types of messages must be addressed:
- (1) the broadcast of Differential GPS correction messages to the vehicles
- (2) the transmission and receipt of Automatic Dependent Surveillance (ADS) messages
- (3) the transmission of control messages from the AC&M to the vehicle and vice versa.
- A high level block diagram of the Airport Communications System and its interfaces to other major elements of the AC&M subsystem is provided in FIG. 22.
- In this design, all ADS and A/V messages are received by the
AC&M Processor 115 and are forwarded to theCOMM Processor 116 for re-transmission to the vehicles. The AC&M Processor is also used to compose ATC messages which are also forwarded to the vehicles through the COMM interface or passed to thelocal Graphics Processor 117 to control the situation display presentation. TheCOMM processor 116 also transmits the differential correction messages generated by thereference station 118 directly to the vehicles. - Differential GPS Overview
- Real time differential correction techniques compensate for a number of error sources inherent to GPS.
- The idea is simple in concept and basically incorporates two or more GPS receivers, one acting as a
stationary base station 118 and the other(s) acting as roving receiver(s) 119, 120. The differential base station is “anchored” at a known point on the earth's surface. The base station receives the satellite signals, determines the errors in the signals and then calculates corrections to remove the errors. The corrections are then broadcast to the roving receivers. - Real time differential processing provides accuracy of 10.0 meters or better (typically 1.0-5.0 meters for local differential corrections). The corrections broadcast by the base station are accurate over an area of about 1500 km or more. Typical positional degradation is approximately a few millimeters of position error per kilometer of base station and roving receiver separation.
- Through the implementation of local differential GPS techniques, SA errors are reduced significantly while the atmospheric errors are almost completely removed. Ephemeris and clock errors are virtually removed as well.
- Antenna Placement
- A site survey of potential differential base station sites should be performed to determine a suitable location for the GPS antenna. The location should have a clear view of the sky and should not be located near potentially reflective surfaces (within about 300 meters). The antenna site should be away from potentially interfering radiation sources such as radio, television, radar and communications transmitters. After a suitable site is determined, a GPS survey should be conducted to determine the precise location of the GPS antenna—preferably to centimeter level accuracy. This should be performed using survey grade GPS equipment.
- Survey grade GPS equipment makes use of the 19 and 21 centimeter wavelength of the L1 and L2 GPS transmissions. Real time kinematic or post processing GPS surveys may be conducted. Real time kinematic utilizes a base station located at a precise location which broadcasts carrier phase correction and processing data to a radio receiver and processing computer. Code, carrier integral cycles and carrier phase information are used at the survey site to calculate the
WGS 84 antenna position. In the post processing survey mode, subframe information, time, code, carrier, and carrier phase data are collected for a period of time. This data is later post processed using precise ephemerides which are available from a network of international GPS sites. The collected information is then post processed with post-fit precise orbital information. - Base Station Operational Elements
- The precisely surveyed location of the GPS antenna is programmed into the reference station as part of its initial installation and set up procedures. Industry standard reference stations determine pseudo range and delta range based on carrier smoothed measurements for all satellites in view. Since the exact ECEF position of the antenna is known, corrections may be generated for the pseudo range and delta range measurements and precise time can be calculated.
- Naturally occurring errors are, for the most part, slow changing and monotonic over the typical periods of concern. When SA is not invoked, delta range corrections provide a valid method of improving positional accuracy at the roving receivers using less frequent correction broadcasts. With the advent of SA and its random, quick changing non-monotonic characteristics, delta range corrections become somewhat meaningless and may actually degrade the system performance under some conditions.
- As shown previously in FIG. 22 the DGPS correction messages are broadcast by the reference station and received by the roving receivers. The corrections are applied directly to the differential GPS receiver. The DGPS receiver calculates the pseudo range and the delta range measurements for each satellite in the usual manner. Prior to performing the navigation solution, the received pseudo range and delta range corrections are applied to the internal measurements. The receiver then calculates corrected position, velocity and time data.
- Since differential GPS eliminates most GPS errors, it provides significant improvements in system reliability for life critical airport operations. Short term and long term drift of the satellite orbits, clocks and naturally occurring phenomenon are compensated for by differential GPS as are other potential GPS satellite failures. Differential GPS is mandatory in the airport environment from a reliability, accuracy and fault compensating perspective.
- As with autonomous GPS receiver operation, multipath is a potential problem. The differential reference station cannot correct for multipath errors at the roving receiver(s). Antenna design and placement considerations, and receiver design characteristics remain the best solutions to date in the minimization of multipath effects.
- ADS Messages
- ADS messages are generated on board each vehicle and broadcast to the AC&M System. The message format is shown below:
- MSG Header, Vehicle ID, Vehicle Type, ECEF X, ECEF Y, ECEF Z, ECEF X VEL, ECEF Y VEL, ECEF Z VEL <CR><LF>
- On board each vehicle, the GPS-based position and velocity data is converted to Earth Centered Earth Fixed (ECEF) coordinates for use in the navigation and zone processing algorithms if necessary. For simplicity, this format is used in the ADS transmission as well. Upon receipt of an ADS message, the
AC&M Processor 115 forwards the message to theCOMM Processor 116 then stores the data in the vehicle database. The stored ECEF position and velocity data is used to perform collision prediction, zone incursion, lighting control and navigation processing at the AC&M station. - ATC Messages
- Air Traffic Control (ATC) messages are composed using the AC&M station. The ATC messages are used locally to control the AC&M graphics display117 or present current status information to the user. ATC message are also broadcast to the
vehicles COMM Processor 116. All ATC messages utilize an explicit acknowledgment message. If an acknowledgment is not received within a defined time interval, the message is automatically retransmitted. The standard format is shown below. - $ATC, MESSAGE TYPE, VEHICLE ID, MESSAGE DATA <CR><LF>
- Error Detection and Correction
- In the demonstration prototype system, Cyclical Redundancy Checking (CRC) is performed on all messages, with the exception of the [RTCM-104] differential correction messages generated in the
Base Station 118. In this scheme, ADS messages are discarded if an error is detected in the received message. This has not been a significant problem for the prototype system since the next message is received in one (1.0) second. The ATC messages directed to specific vehicles also support CRC error detection. ATC messages are “addressed” to a specific A/V and expect an explicit acknowledgment. Upon receipt of an ATC message, the A/V sends back a valid “message received” acknowledgment. The ATC message is discarded by the A/V if an error is detected. In this case, no message received acknowledgment is generated. If no “message received” acknowledgment is received by theAC&M 115 within a preset time interval, the original message is immediately retransmitted. ATC messages require a corresponding acknowledgment since they may represent critical controller instructions and airport and safety operations could be compromised if the message fails to reach its destination. - The CRC system operated effectively in the demonstration prototype system, but a more robust communication error detection and correction capability may be required for end state deployment. Forward error correction and Viterbi—Trellis techniques provide a cost effective forward error correction capability. These techniques are widely used in commercial modem technology and are available in Application Specific Integrated Circuits (ASIC). Wide spread use of the technology makes it very cost effective for use in future airport communication systems.
- A block diagram of the AC&M Processor is provided in FIG. 23.
- The
AC&M Processor 121 is based on a 33MHz 386 processor with a 387 math co-processor. This processor performs the following functions: - Interfaces to communication digital datalinks
- Receives ADS vehicle broadcasts
- Receives acknowledgment messages from vehicles
- Generates and transmits messages to vehicles
- Performs collision prediction processing for each vehicle
- Monitors zone and runway incursion conditions
- Controls runway intersections and runway clearance lights
- Maintains and controls vehicle, waypoint and zone databases
- Performs navigational processing for on-off course checking
- Performs map layer control and assignment
- Sends vehicle reports and commands to Graphic Processor for situation display
- Provides a touch screen and keyboard command interface
- Representative command functions are described in the following section.
- Touch Screen
- The AC&M touch screen provides an efficient means of command input for interfacing to the airport management system. The touch screen is used to perform the following high level functions:
- Command interface to the Graphics Processor
- Command interface to the AC&M Processor
- Communication interface to properly equipped vehicles and aircraft
- Display of various AC&M data lists
- Display of vehicle status information
- The touch screen is organized into four discrete display areas—the Command List, the Message Composition and Response (MC&R) Window, the Alerts Window, and the Vehicle List. The following figure shows the touch screen layout used during the final demonstration. FIG. 34 depicts the touch screen with representative information.
- The Command List, as shown on the right in the figure below, is used to provide key high level command functions. When a command is invoked, it is emphasized in the Command List and remains emphasized until the command is canceled or completed.
- After command selection, the valid command options are displayed in the large MC&R window to the left. The MC&R window has two major functions—it is used to compose ATC messages and it is used to display information to the operator. During message composition, the MC&R window is used to prompt the operator and provide a series of options relating to the content and destination of the message. The MC&R window also serves as the display presentation medium for list displays such as the Vehicle Data display.
- Critical watch and warning messages are presented to the operator in the Alerts window of the touch screen. The Alerts window displays messages generated as a result of a potential collision condition, zone incursion or off course determination.
- The Vehicle List provides the operator with a list of the active vehicles. Vehicles may be selected from the list during the message composition activities.
- Numerous commands have been implemented to demonstrate the capability of the touch screen data entry device. Representative command functions are described in the following section.
- AC&M Command List Touch Screen
- The AC&M touch screen provides an efficient means of command input for interfacing to the airport management system. The touch screen is used to perform the following high level functions:
- Command interface to the Graphics Processor
- Command interface to the AC&M Processor
- Communication interface to properly equipped vehicles and aircraft
- Display of various AC&M data lists
- Display of vehicle status information
- The touch screen is organized into four discrete display areas—the Command List, the Message Composition and Response (MC&R) Window, the Alerts Window, and the Vehicle List. The following figure shows the touch screen layout used during the final demonstration. FIG. 34 depicts the touch screen with representative information.
- The Command List, as shown on the right in the figure below, is used to provide key high level command functions. When a command is invoked, it is emphasized in the Command List and remains emphasized until the command is canceled or completed.
- After command selection, the valid command options are displayed in the large MC&R window to the left. The MC&R window has two major functions—it is used to compose ATC messages and it is used to display information to the operator. During message composition, the MC&R window is used to prompt the operator and provide a series of options relating to the content and destination of the message. The MC&R window also serves as the display presentation medium for list displays such as the Vehicle Data display.
- Critical watch and warning messages are presented to the operator in the Alerts window of the touch screen. The Alerts window displays messages generated as a result of a potential collision condition, zone incursion or off course determination.
- The Vehicle List provides the operator with a list of the active vehicles. Vehicles may be selected from the list during the message composition activities.
- Numerous commands have been implemented to demonstrate the capability of the touch screen data entry device. Representative command functions are described in the following section.
- AC&M Command List
- ARRIVAL WAYPOINTS
- The ARRIVAL WAYPOINTS command is issued to grant a landing clearance to an approaching aircraft and provide it with a set of waypoints for the landing operation. The command is invoked by touching the ARRIVAL WAYPOINT soft function key on the AC&M touch screen.
- Upon invocation, the following steps are followed:
- 1. The ARRIVAL WAYPOINTS soft function key is highlighted.
- 2. The list of valid vehicle ids is displayed in the VEHICLE LIST window. The user is prompted to select one of the vehicles.
- 3. Upon selection of a valid vehicle, a description of each predefined arrival waypoint path is displayed in the MESSAGE COMPOSITION AND RESPONSE (MC&R) window. The user is prompted to select one of the waypoint lists.
- 4. Upon selection of the waypoint list, the corresponding waypoints are drawn into the AC&M's digital map display. The user is then prompted as to whether the waypoints are correct.
- 5. If the user accepts the waypoints, an ATC message is composed and transmitted to the vehicle.
- The waypoints are automatically loaded into the AC&M's mirrored navigator. The MC&R window is cleared and a message completed indicator is displayed.
- 6. If the user does not accept the waypoints, the waypoints drawn into the map display are cleared, the MC&R window is cleared and no waypoints are processed.
- DEPARTURE WAYPOINTS
- The DEPARTURE WAYPOINTS command is issued to grant a takeoff clearance to a departing aircraft and provide it with a set of waypoints for the operation. The command is invoked by touching the DEPARTURE WAYPOINT soft function key on the AC&M touch screen.
- Upon invocation, the following steps are followed:
- 1. The DEPARTURE WAYPOINTS soft function key is highlighted.
- 2. The list of valid vehicle ids is displayed in the VEHICLE LIST window. The user is prompted to select one of the vehicles.
- 3. Upon selection of a valid vehicle, a description of each predefined departure waypoint path is displayed in the MESSAGE COMPOSITION AND RESPONSE (MC&R) window. The user is prompted to select one of the waypoint lists.
- 4. Upon selection of the waypoint list, the corresponding waypoints are drawn into the AC&M's digital map display. The user is then prompted as to whether the waypoints are correct.
- 5. If the user accepts the waypoints, an ATC message is composed and transmitted to the vehicle. The waypoints are automatically loaded into the AC&M's mirrored navigator. The MC&R window is cleared and a message completed indicator is displayed.
- 6. If the user does not accept the waypoints, the waypoints drawn into the map display are cleared, the MC&R window is cleared and no waypoints are processed.
- SURFACE WAYPOINTS
- The SURFACE WAYPOINTS command is issued to grant a ground clearance to an aircraft or surface vehicle and provide it with a set of waypoints for the operation. The command is invoked by touching the SURFACE WAYPOINT soft function key on the AC&M touch screen.
- Upon invocation, the following steps are followed:
- 1. The SURFACE WAYPOINTS soft function key is highlighted.
- 2. The list of valid vehicle ids is displayed in the VEHICLE LIST window. The user is prompted to select one of the vehicles.
- 3. Upon selection of a valid vehicle, a description of each predefined surface waypoint path is displayed in the MESSAGE COMPOSITION AND RESPONSE (MC&R) window. The user is prompted to select one of the waypoint lists.
- 4. Upon selection of the waypoint list, the corresponding waypoints are drawn into the AC&M's digital map display. The user is then prompted as to whether the waypoints are correct.
- 5. If the user accepts the waypoints, an ATC message is composed and transmitted to the vehicle. The waypoints are automatically loaded into the AC&M's mirrored navigator. The MC&R window is cleared and a message completed indicator is displayed.
- 6. If the user does not accept the waypoints, the waypoints drawn into the map display are cleared, the MC&R window is cleared and no waypoints are processed.
- CLEAR PATH WAYPOINTS
- The CLEAR PATH WAYPOINTS command is issued to manually end a previously granted clearance and clear any pending waypoints for a specific vehicle. The command is invoked by touching the CLEAR PATH WAYPOINTS soft function key on the AC&M touch screen.
- Upon invocation, the following steps are followed:
- 1. The CLEAR PATH WAYPOINTS soft function key is highlighted.
- 2. The list of valid vehicle ids is displayed in the VEHICLE LIST window. The user is prompted to select one of the vehicles.
- 3. Upon selection of a valid vehicle, a clear waypoints command is issued to the vehicle, clearing its remaining waypoints. Similarly, the clearance status and waypoints at the AC&M system are cleared as well.
- AIRPORT LIGHTS
- The AIRPORT LIGHTS command is issued to manually change the status of a specific set of runway approach, departure or intersection lights. The command is invoked by touching the AIRPORT LIGHTS soft function key on the AC&M touch screen.
- Upon invocation, the following steps are followed:
- 1. The AIRPORT LIGHTS soft function key is highlighted.
- 2. Each lighting system and its current status (ON or OFF) is displayed in the MC&R window. The user is prompted to select the desired light(s) from the window.
- 3. Upon selection of a set of lights, the status is toggled and the corresponding lights on the map lighting board are changed accordingly.
- VEHICLE FILTER
- The VEHICLE FILTER command is issued to enable or suppress the display of a particular type of vehicle by altering the status of its graphic layer. The command is invoked by touching the VEHICLE FILTER soft function key on the AC&M touch screen.
- Upon invocation, the following steps are followed:
- 1. The VEHICLE FILTER soft function key is highlighted.
- 2. The current vehicle types are displayed in the MC&R window with the current filter status (ON or OFF) as shown:
LIMITED ACCESS AREA GROUND VEHICLE ON EMERGENCY/SERVICE GROUND VEHICLE ON ARRIVAL AIRCRAFT ON DEPARTURE AIRCRAFT ON ALL VEHICLES ON - 3. The user has the capability to suppress and re-enable various vehicle types by selecting it from the MC&R window.
- 4. Upon selection, the user is prompted to accept the command. If the command is selected, the vehicle type's status is toggled and the vehicle is either suppressed from the map display or re-displayed if previously suppressed.
- Vehicle types which are suppressed are not displayed on the AC&M graphics display unless they are in a collision or zone incursion condition.
- 5. If NO is selected, the vehicle type's status remains unchanged.
- LAYER FILTER
- The LAYER FILTER command is issued to manually change the status of a specific graphic layer. Layers which are masked are no longer displayed. The command is invoked by touching the LAYER FILTER soft function key on the AC&M touch screen.
- Upon invocation, the following steps are followed:
- 1. The LAYER FILTER soft function key is highlighted.
- 1. The current LAYER types are displayed in the MC&R window with the current filter status (ON or OFF) as shown below:
LAYER TYPE STATUS RANGE RINGS ON RANGE RINGS, 5 MILE INCREMENTS ON AIRPORT LIGHTING SYSTEMS (RNWY 35) OFF AIRPORT LIGHTING SYSTEMS (RNWY 24) OFF TRACKED SURFACE VEHICLES (LIMITED ACCESS) ON TRACKED SURFACE VEHICLES (FULL ACCESS) ON TRACKED DEPARTURE AIRCRAFT ON TRACKED ARRIVAL AIRCRAFT ON ARRIVAL WAYPOINTS OFF DEPARTURE WAYPOINTS OFF SURFACE WAYPOINTS OFF CUSTOM WAYPOINTS DEFINITION OFF AIRPORT SURFACE ZONES OFF WEIGHT LIMITED ZONES OFF RESTRICTED TRAVEL AREA OFF AIRSPACE HAZARD ZONES OFF OPEN CONSTRUCTION ZONES OFF CLOSED CONSTRUCTIONS ZONES OFF - 3. The user has the capability to suppress and re-enable various layers by selecting it from the MC&R window.
- 4. Upon selection, the user is prompted to accept the command. If the command is selected, the layer's status is toggled and the layer is either suppressed from the map display or re-displayed if previously suppressed.
- Vehicle types which are suppressed are not displayed on the AC&M graphics display unless they are in a collision or zone incursion condition. Special category, watch or warning layers are never suppressed.
- 5. If NO is selected, the layer's status remains unchanged.
- VEHICLE DATA
- The VEHICLE DATA command is issued to display status information for a particular vehicle. The vehicle data is displayed in the MC&R window. The command is invoked by touching the VEHICLE DATA soft function key on the AC&M touch screen. Upon invocation, the following steps are followed:
- 1. The VEHICLE DATA soft function key is highlighted.
- 2. The list of valid vehicle ids is displayed in the VEHICLE LIST window. The user is prompted to select one of the vehicles.
- 3. Upon selection of a valid vehicle, data corresponding to that vehicle is displayed in the MC&R window. The data is updated automatically as the vehicle's ADS messages are received at the AC&M. The data includes the vehicle id, tag, type, minimum safe distance for collision processing, heading and speed. If the vehicle has been assigned waypoints the current waypoint, 3-D range and cross track error are also displayed. The vehicle data remains displayed until another soft function key is invoked.
- DISPLAY VIEW
- The DISPLAY VIEW command is issued to change the display view presented on the situation display. The command is invoked by touching the DISPLAY VIEW soft function key on the AC&M touch screen.
- Upon invocation, the following steps are followed:
- 1. The DISPLAY VIEW soft function key is highlighted.
- 2. Upon invocation, the following display view options are displayed in the MC&R window:
VIEW ID DESCRIPTION 00 PLAN VIEW 10 MILE RANGE01 PLAN VIEW 5 MILE RANGE02 PLAN VIEW 1 MILE RANGE03 PLAN VIEW .5 MILE RANGE 04 RUNWAY 3505 RUNWAY 1706 RUNWAY 2407 RUNWAY 06 08 GATE AREA 09 FIRE, CRASH AND RESCUE 10 TERMINAL BUILDING 11 3D VIEW RUNWAY 3512 3D VIEW RUNWAY 1713 3D VIEW RUNWAY 2414 3D VIEW RUNWAY 06 15 APPROACH VIEW RUNWAY 3516 APPROACH VIEW RUNWAY 1717 APPROACH VIEW RUNWAY 2418 APPROACH VIEW RUNWAY 06 - 3. Upon selection of the desired view, the AC&M map display is redrawn. AIRPORT LIGHTS: the system also demonstrates the capability to control; airport lights based on GPS inputs and current clearance status.
INTER- ACTIVITY LANDING SECTION TAKEOFF DESCRIPTION LIGHTS LIGHTS LIGHTS NO ACTIVITY STATE (RUNWAY 35) RED OFF RED (RUNWAY 17) RED OFF RED TAKE OFF CLEARANCE GIVEN - 35 (35 - TAKEOFF END) RED OFF RED (17 - OPPOSITE END) RED OFF RED AIRCRAFT ENTERS RNWY 35 ZONE (35 - TAKEOFF END) RED RED GREEN (17 - OPPOSITE END) RED RED RED TAKE OFF COMPLETED (35 - TAKEOFF END) RED OFF RED (17 - OPPOSITE END) RED OFF RED LANDING CLEARANCE ISSUED - 35 (35 - APPROACH END) GREEN RED RED (17 - OPPOSITE END) RED RED RED ARRIVAL AIRCRAFT EXITS RUNWAY (RUNWAY 35) RED OFF RED (RUNWAY 17) RED OFF RED RUNWAY INCURSION OCCURRED (RUNWAY 35) FLASH FLASH FLASH RED/GREEN RED/OFF RED/GREEN (RUNWAY 17) FLASH FLASH FLASH RED/GREEN RED/OFF RED/GREEN RUNWAY INCURSION ENDS (RUNWAY 35) RED OFF RED (RUNWAY 17) RED OFF RED - Airport lighting control techniques are provided as a demonstration mechanism and are not intended to dictate a specific lighting scheme for airports.
- Situation Display
- A vehicle database is maintained by the AC&M and on board ‘fully equipped’ vehicles to provide a situational awareness capability to the controller and/or vehicle operator. GPS-based situational awareness requires the integration of a datalink between the aircraft, surface vehicles and the AC&M system. In the demonstration prototype system, the position and velocity information determined on board each vehicle is broadcase over and experimental VHF datalink and received by the AC&M. At the AC&M, the message is assembled into a dynamic vehicle database. As each ADS message is received, the following fields in the vehicle database are updated:
- Vehicle I
- Vehicle Type
- Position (ECEF X,Y,Z)
- Velocity (ECEF X,Y,Z)
- In order to present the vehicle position data graphically, the following information is also maintained in the vehicle database:
- Layer ID
- Vehicle Color
- Each vehicle is assigned a map layer based on vehicle type. The digital airport map features numerous object oriented layers which are used to segregate various types of graphical information. By assigning vehicles to specific map layers, spatial filtering may be performed on a layer by layer basis. Color my be assigned by layer or by individual vehicle.
- Position reporting functions operating on a moving platform potentially suffer from a positional error introduced by processing time. To compensate for this factor, the precise DGPS derived ECEF velocity components are used to project the position ahead. As each ADS message is received, a latency compensation time projection factor is applied in an ECEF Velocity×Time relationship. The new, projected ECEF position is then considered the current position, is stored in the vehicle database and is used throughout the navigation and collision prediction algorithms.
- Once the dynamic vehicle database is constructed, a sequential scanning of the database is performed as new ADS position reports are received. Vehicles outside of the defined range are filtered out. Vehicles within range are displayed in the 3-D airport map. In this manner, graphical situational awareness is provided at the AC&M and on board the vehicles/aircraft.
- Collision Prediction Processing
- As ADS messages are received, collision prediction processing is performed using the current GPS data and the information stored in the vehicle database. The following database fields are used in the collision prediction processing:
Collision Time Time (secs) when a collision may occur Collision Count Number of potential collisions detected Collision Condition Warning or watch state detected Collision Separation Current collision separation Radius Vehicle's minimum separation radius - A ‘rough check’ is performed to determine if there are any vehicles in the immediate vicinity of the current vehicle. The current vehicle's position is projected ahead using a defined MAXIMUM_PROJECTION_FACTOR. The vehicle database is sequentially scanned. The position of the first vehicle in the database is projected ahead in the same manner. If the projected positions intersect, further collision checking is performed.
- When further collision checking is warranted, the current vehicle's position is projected ahead by incrementing time in one second intervals. At each interval, an imaginary sphere is drawn around the vehicle using a predefined radius based on the vehicle's minimum safe separation. Similarly, the position of the next vehicle in the database is projected ahead. If the two imaginary spheres intersect and the time interval of the intersection is less than or equal to the MINIMUM_WARNING_TIME factor, a collision warning condition is generated. If the two imaginary spheres intersect at a time interval greater than the MINIMUM_WARNING_TIME but less than the MINIMUM_WATCH_TIME, a collision watch condition is generated.
- If a collision watch condition is generated, the vehicles in the watch condition are displayed in YELLOW on the AC&M map display. A warning message is displayed to the operator in the Alerts window of the touchscreen. If a warning condition is detected, the vehicle's symbol is displayed in RED on the graphics screen and a warning message is displayed in the Alert window.
- During any collision condition, the vehicle's symbol is moved to a dedicated watch or warning map layer. These layers are reserved for critical operations and cannot be suppressed by the user.
- The following collision data was generated from actual collision tests and represents two surface vehicles driving towards each other. During this test scenario, the following factors were used:
MINIMUM_WARNING_TIME 3 seconds MINIMUM_WATCH_TIME 7 seconds RADIUS, VEHICLE 03 7 meters RADIUS, VEHICLE 04 7 meters - Note that a COLLISION WATCH is detected when the distance between the two vehicles is less than the sum of its radii. A COLLISION WARNING is detected when the intersection occurs within the MINIMUM_WARNING_TIME of 3 seconds or less. Also note that as soon as the vehicles pass one another and the distance between them begins to increase, no WATCH or WARNING condition is detected.
- VEH=03 DIST=74.9 PROJ TIME=1 SECONDS
- VEH=03 DIST=64.7 PROJ TIME=2 SECONDS
- VEH=03 DIST=54.5 PROJ TIME=3 SECONDS
- VEH=03 DIST=44.3 PROJ TIME=4 SECONDS
- VEH=03DIST=34.2 PROJ TIME=5 SECONDS
- VEH=03DIST=24.0 PROJ TIME=6 SECONDS
- VEH=03DIST=14.0 PROJ TIME=7 SECONDS COLLISION WATCH
- VEH=04DIST=70.0 PROJ TIME=1 SECONDS
- VEH=04DIST=59.7 PROJ TIME=2 SECONDS
- VEH=04DIST=49.5 PROJ TIME=3 SECONDS
- VEH=04DIST=39.2 PROJ TIME=4 SECONDS
- VEH=04DIST=29.0 PROJ TIME=5 SECONDS
- VEH=04DIST=18.8 PROJ TIME=6 SECONDS
- VEH=04DIST=8.9 PROJ TIME=7 SECONDS COLLISION WATCH
- VEH=03DIST=64.1 PROJ TIME=1 SECONDS
- VEH=03DIST=53.7 PROJ TIME=2 SECONDS
- VEH=03DIST=43.4 PROJ TIME=3 SECONDS
- VEH=03DIST=33.1 PROJ TIME=4 SECONDS
- VEH=03DIST=22.8 PROJ TIME=5 SECONDS
- VEH=03DIST=12.7 PROJ TIME=6 SECONDS COLLISION WATCH
- VEH=04DIST=59.1 PROJ TIME=1 SECONDS
- VEH=04DIST=48.6 PROJ TIME=2 SECONDS
- VEH=04DIST=38.1 PROJ TIME=3 SECONDS
- VEH=04DIST=27.6 PROJ TIME=4 SECONDS
- VEH=04DIST=17.1 PROJ TIME=5 SECONDS
- VEH=04DIST=7.0 PROJ TIME=6 SECONDS COLLISION WATCH
- VEH=03DIST=53.3 PROJ TIME=1 SECONDS
- VEH=03DIST=42.7 PROJ TIME=2 SECONDS
- VEH=03DIST=32.3 PROJ TIME=3 SECONDS
- VEH=03DIST=21.8 PROJ TIME=4 SECONDS
- VEH=03DIST=11.4 PROJ TIME=5 SECONDS COLLISION WATCH
- VEH=04DIST=47.8 PROJ TIME=1 SECONDS
- VEH=04DIST=37.1 PROJ TIME=2 SECONDS
- VEH=04DIST=26.4 PROJ TIME=3 SECONDS
- VEH=04DIST=15.8 PROJ TIME=4 SECONDS
- VEH=04DIST=5.4 PROJ TIME=5 SECONDS COLLISION WATCH
- VEH=03DIST=41.9 PROJ TIME=1 SECONDS
- VEH=03DIST=31.2 PROJ TIME=2 SECONDS
- VEH=03DIST=20.5 PROJ TIME=3 SECONDS
- VEH=03DIST=9.9 PROJ TIME=4 SECONDS COLLISION WATCH
- VEH=04DIST=36.6 PROJ TIME=1 SECONDS
- VEH=04DIST=25.9 PROJ TIME=2 SECONDS
- VEH=04DIST=15.3 PROJ TIME=3 SECONDS
- VEH=04DIST=5.4 PROJ TIME=4 SECONDS COLLISION WATCH
- VEH=03DIST=31.9 PROJ TIME=1 SECONDS
- VEH=03DIST=21.2 PROJ TIME=2 SECONDS
- VEH=03DIST=10.6 PROJ TIME=3 SECONDS COLLISION WARNING
- VEH=04DIST=26.6 PROJ TIME=1 SECONDS
- VEH=04DIST=15.9 PROJ TIME=2 SECONDS
- VEH=04DIST=5.6 PROJ TIME=3 SECONDS COLLISION WARNING
- VEH=03DIST=14.4 PROJ TIME=1 SECONDS
- VEH=03DIST=4.6 PROJ TIME=2 SECONDS COLLISION WARNING
- VEH=04DIST=10.6 PROJ TIME=1 SECONDS COLLISION WARNING
- VEH=03DIST=5.9 PROJ TIME=1 SECONDS COLLISION WARNING
- VEH=04 DIST=2.9 PROJ TIME=1 SECONDS COLLISION WARNING
- DIST=5.4, VEHICLE SEPARATION IS INCREASING, STOP PROCESSING . . .
- Zone Incursion Processing
- A 3-D map database and ECEF mathematical processing algorithms support the concept of zones. Zones are three dimensional shapes which are used to provide spatial cueing for a number of constructs unique to DSDC's demonstration system. Zones may be defined around obstacles which may pose a hazard to navigation, such as transmission towers, tall buildings, and terrain features. Zones may also be keyed to the airport's NOTAMS, identifying areas of the airport which have restricted usage.
- Zones are represented graphically on the map display and mathematically by DSDC's zone processing algorithms. Multi-sided zones are stored in a zone database as a series of points. Each zone is assigned a zone id and type. The zone type is used to determine whether a particular zone is off-limits for a specific vehicle type.
- Zone information is maintained in the zone database. A zone incursion status field is also maintained for the vehicle in the vehicle database. If the vehicle is currently inside a zone, this field is used to store the zone's id. If the vehicle is not inside a zone, this field is zero (0).
- At the AC&M, zone incursion processing is performed in a manner similar to the collision processing described previously. As each vehicle report is received, it is projected ahead by incrementing time up to a MAX_ZONE_PROJECTION_FACTOR. At each interval, the vehicle's projected position is compared to each line of the zone as defined by its endpoints. If the vehicle's position is inside all of the lines comprising the zone and the current projection time is less than the MIN_ZONE_WARNING factor, a zone incursion warning is generated. If the vehicle's position is inside the zone and the current projection time is less than the MIN_ZONE_WATCH factor but greater than the MIN_ZONE_WARNING factor, a zone incursion watch is generated. As in the collision processing, a zone incursion watch or warning will result in a message displayed to the operator and a change in layer assignments for the affected vehicle.
- A zone incursion condition is automatically cleared when the vehicle exits the zone. All zones are defined as 3-dimensional entities and may be exited laterally or vertically. Heights may be assigned to ‘surface’ zones individually or collectively. The concepts of 3-dimensional zones is critical to an airport environment to prevent passing aircraft from triggering ground-based zones.
- Runway Incursion Processing
- If a zone incursion is detected, a further check is performed to determine if the vehicle is entering or inside a runway zone. For Manchester Airport, five (5) runway zones have been defined:
- RNWY_35_ZONE
- RNWY_17_ZONE
- RNWY_24_ZONE
- RNWY_06_ZONE
- RNWY_INT_ZONE “RUNWAY INTERSECTION VOLUME”
- An additional field is maintained in the vehicle database to indicate whether a runway incursion state has been detected. As with the zone incursion field, the runway incursion value is set to the id of the zone (i.e., the runway) if an incursion is currently occurring and is set to zero (0) if there is no runway incursion.
- If the vehicle is entering or inside a runway zone and is not cleared for that zone, a runway incursion condition is generated at the AC&M. As in any zone incursion situation, a watch or warning message is displayed in the AC&M Alerts window and the vehicle's symbol is moved to the dedicated watch or warning map layer, changing its color to YELLOW or RED. In addition, the runway incursion results in a status change in the runway's landing, takeoff and intersection lights forcing the lights to flash on the affected (and related) runway(s). The following table describes the lighting states for runway incursions in each of the five runway zones.
RNWY 35RNWY 17RNWY 24RNWY 06 ACTIVITY DESCRIPTION A D I A D I A D I A D I INCURSION - RNWY 35FLASH FLASH NO CHANGE NO CHANGE INCURSION ENDS DEFAULT DEFAULT NO CHANGE NO CHANGE INCURSION - RNWY 17FLASH FLASH NO CHANGE NO CHANGE INCURSION ENDS DEFAULT DEFAULT NO CHANGE NO CHANGE INCURSION - RNWY 24NO CHANGE NO CHANGE FLASH FLASH INCURSION ENDS NO CHANGE NO CHANGE DEFAULT DEFAULT INCURSION - RNWY 06 NO CHANGE NO CHANGE FLASH FLASH INCURSION ENDS NO CHANGE NO CHANGE DEFAULT DEFAULT INCUR. - INTERSECTION FLASH FLASH FLASH FLASH INCURSION ENDS DEFAULT DEFAULT DEFAULT DEFAULT - A runway incursion is automatically terminated when the incurring vehicle exits the runway. When the incursion condition is terminated, the lights on the affected runway return to their default state. As in all zone definitions, runway zones are 3-dimensional entities. Runway zones are assigned a height of approximately 100 meters above the surface of the runway in the prototype demonstration system. Therefor, a runway incursion occurs only when an uncleared vehicle enters the zone at the surface level. Demonstration prototype lighting software is provided below:
-
/**************************************************************** LIGHTS.H Description: lights.h contains the global constants and data structures for the airport lights. ****************************************************************/ #define LIGHT_ADDR 0x300 /* address of digital IO board */ /*- light bit settings, digital I/O card -*/ #define LANDING_35 0x01 #define LANDING_17 0x02 #define LANDING_24 0x04 #define LANDING_06 0x08 #define TAKEOFF_17 0x10 #define TAKEOFF_06 0x20 #define TAKEOFF_35 0x40 #define TAKEOFF_24 0x80 /*----- light status states -----*/ #define NO_ACTIVITY 0 #define RUNWAY_INCURSION 1 #define LANDING 2 #define TAKEOFF 3 #define SURFACE 5 /*---- ruwnay id ----*/ #define RNWY_35 35 #define RNWY_17 17 #define RNWY_24 24 #define RNWY_06 6 #define RNWY_INT 1 /**************************************************************** File Name: LIGHTS.C Description: lights.c contains the procedures used update the airport lighs Units : initialize_lights, update_lights, update_clearance_lights, get_runway_clear, process_clearance ****************************************************************/ #include <stdio.h> /* standard input/output */ #include <graph.h> /* MSC graphics routines */ #include <string.h> /* MSC string routines */ #include <stdlib.h> /* MSC standard library */ #include <math.h> /* MSC math library */ #include “sio.h” /* serial input/output */ #include “lights.h” /* airport light definitions */ #include “veh.h” /* vehicle data */ #include “coord.h” /* coordinate data */ /*-------------------- external functions --------------------*/ void store_wps(char wp_id[12],int wpindex); /*-------------------- external variables --------------------*/ extern VEHICLE_DATA veh[MAX_VEHS]; /* vehicle database */ extern unsigned curr_lights; /* current light settings */ /*-------------------- global variables --------------------*/ short current_clearance; /* set if any vehicle is cleared */ char veh_cleared[8]; /* vehicle cleared for landing/takeoff*/ short veh_clear_status;/* clearance status for curr vehicle */ short end_of_wps; /* end of clearance/ wps */ /*---------------------------------------------------------- UNIT: initialize_lights( ) DESCRIPTION: initialize_lights sets the airport lights to their default settings - RED for landing and takeoff lights and OFF for runway intersection (i.e., stop) lights. ----------------------------------------------------------*/ initialize_lights( ) { update_lights(NO_ACTIVITY,RNWY_35); update_lights(NO_ACTIVITY,RNWY_17); update_lights(NO_ACTIVITY,RNWY_24); update_lights(NO_ACTIVITY,RNWY_06); } /*---------------------------------------------------------- UNIT: update_lights DESCRIPTION: this routine resets the lights on the specified runway based. ----------------------------------------------------------*/ update_lights(int activity_type, int rnwy) { switch (rnwy) { case RNWY_35 : case RNWY_17 : switch (activity_type) { case NO_ACTIVITY : curr_lights = curr_lights & 0xAC; break; } break; case RNWY_24 : case RNWY_06 : switch (activity_type) { case NO_ACTIVITY : curr_lights = curr_lights & 0x53; break; } break; case RNWY_INT : switch (activity_type) { case NO_ACTIVITY : curr_lights = 0; break; } break; } /* write new light settings to board */ outp(LIGHT_ADDR,curr_lights); } /*---------------------------------------------------------- UNIT: update_clearance_lights DESCRIPTION: this routine updates the specified clearance lights for a landing or takeoff operation. The landing/ takeoff light for the specified runway is enabled, then the remaining landing/taxi lights for both runway ends are disabled. INPUTS: curr_clear - clearance issued by ATC ----------------------------------------------------------*/ update_clearance_lights(short curr_clear) { /* based on current clearance, affected runway and the current status of the runway's lights, update the lights */ switch (curr_clear) { case LANDING_35 : if ((curr_lights & LANDING_35) = = 0) curr_lights = curr_lights + LANDING_35; break; case LANDING_17 : if ((curr_lights & LANDING_17) = = 0) curr_lights = curr_lights + LANDING_17; break; case LANDING_24 : if ((curr_lights & LANDING_24) = = 0) curr_lights = curr_lights + LANDING_24; break; case LANDING_06 : if ((curr_lights & LANDING_06) = = 0) curr_lights = curr_lights + LANDING_06; break; case TAKEOFF_35 : if ((curr_lights & TAKEOFF_35) = = 0) curr_lights = curr_lights + TAKEOFF_35; break; case TAKEOFF_17 : if ((curr_lights & TAKEOFF_17) = = 0) curr_lights = curr_lights + TAKEOFF_17; break; case TAKEOFF_24 : if ((curr_lights & TAKEOFF_24) = = 0) curr_lights = curr_lights + TAKEOFF_24; break; case TAKEOFF_06 : if ((curr_lights & TAKEOFF_06) = = 0) curr_lights = curr_lights + TAKEOFF_06; break; } /* write new light settings to board */ outp(LIGHT_ADDR,curr_lights); } /*---------------------------------------------------------- UNIT: get_runway_clear DESCRIPTION: determines the landing or takeoff flag setting INPUTS: int rw_id - id of runway char * msg_type - arrival or takeoff ----------------------------------------------------------*/ int get_runway_clear(int rw_id, char *msg_type) { /**- local variables -**/ int clear_stat; /* clearance status */ /* update current clearance (clear_stat) based on the designated runway (rw_id) and type of clearance (ARRIVAL) or (TAKEOFF) */ switch (rw_id) { case RNWY_35 : if (strstr(msg_type,“ARR”) != NULL) clear_stat = LANDING_35; else clear_stat = TAKEOFF_35; break; case RNWY_17 : if (strstr(msg_type,“ARR”) != NULL) clear_stat = LANDING_17; else clear_stat = TAKEOFF_17; break; case RNWY_24 : if (strstr(msg_type,“ARR”) != NULL) clear_stat = LANDING_24; else clear_stat = TAKEOFF_24; break; case RNWY_06 : if (strstr(msg_type,“ARR”) != NULL) clear_stat = LANDING_06; else clear_stat = TAKEOFF_06; break; default : clear_stat = SURFACE; } return(clear_stat); } /*---------------------------------------------------------- UNIT: process_clearance for arrival (landing) waypoints and $ATC,004,veh id,waypoint id for departure (takeoff) waypoints INPUTS: char clearance_msg[MAX_STR] ----------------------------------------------------------*/ process_clearance(char clearance_msg[MAX_STR]) { /**- local variables -**/ char wp_id[12]; /* waypoint id */ char *token; /* character field from ATC msg */ int rw_id; /* id of runway cleared for operation */ int veh_index; /* index into veh database for current veh */ int slen; /* string length */ int i; /* counter */ /* parse clearance message */ token = strtok(clearance_msg,“,”); /* $ATC */ token = strtok(NULL,“,”); /* message type */ token = strtok(NULL,“,”); /* vehicle id */ strcpy(veh_cleared,token); token = strtok(NULL,“,”); /* waypoint id */ /* extract waypoint information */ slen = strlen(token) − 2; for (i = 0; i < slen; i++) wp_id[i] = token[i]; wp_id[i] = ‘\0’; /* get runway id from waypoint information */ if (strstr(wp_id,“35”) != NULL) rw_id = RNWY_35; else if(strstr(wp_id,“24”) != NULL) rw_id = RNWY_24; else if (strstr(wp_id,“17”) != NULL) rw_id = RNWY_17; else if (strstr(wp_id,“06”) != NULL) rw_id = RNWY_06; else rw_id = 0; /* find vehicle in vehicle database */ veh_index = find_veh_index(veh_cleared); if (veh_index != −1) /* if vehicle found in database */ { /* set clearance based on message type and selected runway */ current_clearance = current_clearance − veh[veh_index].clear_status; veh[veh_index].clear_status = get_runway_clear(rw_id,wp_id); current_clearance = veh[veh_index].clear_status + current_clearance; /* extract and store waypoint data */ store_wps(wp_id,veh[veh_index].wpindex); veh[veh_index].currwp = NO_WP; end_of_wps = FALSE; /* update lights immediately for arrival aircraft */ if (strstr(wp_id,“ARR”) != NULL) update_clearance_lights(current_clearance); } /* if vehicle in database */ } - DESCRIPTION: process_clearance parses the clearance or departure message issued by the controller via the touch screen. update_clearance_lights is then called to change the specified light settings.
- The message format is: $ATC,002,veh id,waypoint id
- If the vehicle is entering or inside a runway zone and the vehicle has a clearance, a runway incursion is not detected. A clearance is issued by the AC&M operator using the ARRIVAL WAYPOINTS, DEPARTURE WAYPOINTS or SURFACE WAYPOINTS functions.
- When a clearance is issued, a global CURRENT_CLEARANCE flag is updated. The CURRENT_CLEARANCE flag is used to maintain the current airport light settings. A separate clearance status flag is also maintained in the vehicle database for each vehicle. As the vehicle approaches a runway zone, its clearance status flag is read to determine whether a runway incursion condition should be generated. Clearances are terminated automatically when the vehicle reaches the last waypoint. Clearances may also be manually cleared by the AC&M operator through the CLEAR PATH WAYPOINTS function. When the clearances are terminated, the global CURRENT_CLEARANCE flag and individual vehicle clearance flags are updated.
- ECEF Waypoint Navigation
- After waypoints have been issued to a vehicle or vehicles, the AC&M performs a set of navigation functions, mirroring those performed on board the vehicle using the ADS position reports. A set of waypoints is maintained for each cleared vehicle. The vehicle's current 3-D range to the waypoint and cross track error is computed for each subsequent ADS report. A determination as to whether the vehicle is on or off course is also made. If an off course condition is detected, a warning message is displayed to the operator in the AC&M's Alerts window.
- To support the AC&M's mirrored navigation processing, the following fields are maintained in the vehicle database:
- Waypoint Index
- Current Waypoint
- Cross Track Error
- 3D Range to Waypoint
- Wrong Way Indicator
- The Waypoint Index is the ID of the waypoint list assigned to the vehicle and the Current Waypoint is the waypoint the pilot is navigating towards.
- At any time after the assignment of waypoints to the vehicle, the vehicle's 3-D range to the waypoint, cross track error, current waypoint, speed and heading information may be displayed in the MC&R window using the VEHICLE DATA function.
- The Graphics Processor (GP)122 interfaces to the
AC&M Processor 121 via adedicated communication link 123. The GP is currently based on a 66mHz 486 processor with a VESA Video Local Bus. This processor performs the following functions: - Receives graphics commands from AC&M
- Interprets graphics commands
- Performs the graphic display functions
- Provides situational awareness capability
- Manages the view and content of the display presentation
- Maintains local map-based waypoint, zone and map layer databases
- Interface with large graphics display hardware
- Two types of messages are received by the GP:
- (1) vehicle position messages
- (2) display commands
- Upon receipt of an ADS report, the AC&M Processor converts the vehicle's ECEF X,Y,Z position to the map's coordinate system if required and determines the appropriate map layer for the vehicle based on the vehicle's type and any collision or zone incursion conditions. If the vehicle is moving, the newly formatted message is sent to the GP. Stationary vehicle's are not redisplayed in the map but remain displayed in their last reported position. The message format is shown below:
- $TRK,vehicle id,map layer,map x, map y, mapz coordinates<CR><LF>
- Display commands are also generated by the
AC&M Processor 121 and sent to theGP 122. Numerous AC&M commands, including ARRIVAL WAYPOINTS, DEPARTURE WAYPOINTS, SURFACE WAYPOINTS, CLEAR PATH WAYPOINTS, DISPLAY VIEW, VEHICLE FILTER and LAYER FILTER affect the display presentation on the GP. An acknowledgment is returned to theAC&M Processor 121 when a display command message is received by theGP 122. - LAYER ASSIGNMENTS
- The
GP 122 supports up to 256 unique layers which are used for the display and segregation of graphic information. The layer assignments are provided below.MAP LAYER ASSIGNMENTS LAYER # DESCRIPTION MODE 0-2 AIRPORT MAP RUNWAYS, TAXIWAYS, TRAVEL PATHS ALWAYS 3 RANGE RINGS ON DEMAND 4 EXPANSION TBD 5 RANGE RINGS, 5 MILE INCREMENTS ON DEMAND 6-8 EXPANSION TBD 9 AIRPORT LIGHTING SYSTEMS (RNWY 35) ON DEMAND 10 AIRPORT LIGHTING SYSTEMS (RNWY 24) ON DEMAND 11 TRACKED SURFACE VEHICLES (LIMITED ACCESS) ALWAYS 12 TRACKED SURFACE VEHICLES (FULL ACCESS) ALWAYS 13 TRACKED DEPARTURE AIRCRAFT ALWAYS 14 TRACKED ARRIVAL AIRCRAFT ALWAYS 15-19 EXPANSION TBD 20 ARRIVAL WAYPOINTS ON DEMAND 21 DEPARTURE WAYPOINTS ON DEMAND 22 SURFACE WAYPOINTS ON DEMAND 23 CUSTOM WAYPOINTS DEFINITION ON DEMAND 24 EXPANSION TBD 25 AIRPORT SURFACE ZONES ON DEMAND 26 WEIGHT LIMITED ZONES ON DEMAND 27 RESTRICTED TRAVEL AREA (WINGSPAN, ETC.) ON DEMAND 28 AIRSPACE HAZARD ZONES ON DEMAND 29 OPEN CONSTRUCTION ZONES ON DEMAND 30 CLOSED CONSTRUCTIONS ZONES ON DEMAND 31-60 EXPANSION TBD 61 WATCH LAYER (COLOR = YELLOW) ALWAYS 62 WARNING LAYER (COLOR = RED) ALWAYS - AC&M System Functional Matrix
- Many of the functions performed at the AC&M Processor are also performed on board the vehicles. Three vehicles, equipped with varying configurations of hardware and software, have been used in a number of prototype demonstrations. The matrix below lists the major functions and the vehicles on which they are performed.
VEHICLE FUNCTIONAL MATRIX FULL LIMITED ACCESS ACCESS AIR- VEHICLE VEHICLE FUNCTION AC&M CRAFT 1 2 Receive & process DGPS N Y Y Y corrections Formats and transmits N Y Y Y ADS posn & vel. data Receives remote ADS Y N Y N messages Displays ADS positions Y N Y N in map display Performs dynamic Y N Y N collision processing Performs zone incursion Y Y Y Y processing Performs runway incursion Y N N N processing Controls airport lights Y N N N Formats ATC commands Y N N N Receives ATC commands N Y Y Y Performs waypoint Y Y Y N navigation Displays current position N Y Y N in moving map display - Hardware block diagrams for each of the three prototype vehicle types are provided in the figures which follow, starting with the Aircraft System FIG. 24.
- Differential GPS data is provided by a GPS GOLD DGPS receiver124 and a differential data link 125. GPS position, velocity, and time information is supplied to the dual 486 based processing unit. The first 486 processor, or Navigation (NAV)
Processor 126, receives GPS Receiver 124 information and performs the following functions: - Coordinate conversions from Lat/Lon/MSL to ECEF X, Y, Z
- Position projections
- Zone and runway incursion checking
- Map layer control
- General ECEF waypoint navigation and on/off course processing
- ECEF-based precision landing navigation
- Access to waypoint and zone databases
- Transmission of graphic instructions to second486
processor 127 - Broadcast of position and velocity data over
ADS datalink 128 - Control of communication digital datalinks
- Support for monochrome
flat panel display 129 - The second486 processor, the Aircraft Graphics Processor (AGP) 127, receives graphics instructions from the
NAV Processor 126 and performs the following functions: - Graphics command translations and interpretations
- Graphic display functions
- Display presentation view and content management
- Support for monochrome
flat panel display 130 - The functions supported in the aircraft are actually a slightly modified version of those performed by the AC&M Subsystem. The use of common hardware and operational software elements simplified the prototype demonstration development efforts.
- The full access surface vehicle (Vehicle #1) high level block diagram is provided in FIG. 25.
- Again, differential GPS data is provided by a
DGPS receiver 131 and adifferential data link 132. GPS position, velocity, and time information are supplied to the dual 486 based processing unit. The first 486 processor, the Navigation Processor (NAV) 133, receives GPS information and performs the following functions: - Coordinate conversions from Lat/Lon/MSL to ECEF X, Y, Z
- Position projections
- Collision prediction processing
- Zone and runway incursion checking
- Layer control
- General ECEF waypoint navigation (optional)
- Access to vehicle, waypoint and zone databases
- Transmission of graphic instructions to second 486
processor 134 - Broadcast of position and velocity data over
ADS datalink 135 - Receipt of remote ADS messages from other vehicles
- Control of communication digital datalinks
- Support for flat panel LCD display
- The second 486 processor, the Vehicle Graphics Processor (VGP)134 receives graphics instructions from the
NAV Processor 133 and performs the following functions: - Graphics command translations and interpretations
- Graphic display functions
- Situational awareness capability
- Display presentation view and content management
- Support for flat
panel LCD display 136 - The functions supported in the full access surface vehicle are identical to those performed in the aircraft with a couple of additions. The full access vehicle receives remote ADS messages from other vehicles operating within the airport space envelope. This information is used to provide a situational awareness capability on board the vehicle. Full collision detection processing is also implemented.
- The limited access surface vehicle (Vehicle #2) is equipped with developed hardware and software as shown in FIG. 26.
- Since no graphic display is provided on
Vehicle # 2, a single 386-basedprocessor 137 is utilized. Again, differential GPS data is provided by an onboard DGPS receiver 138 and adifferential data link 139. GPS position, velocity, and time information is supplied to the 386 basedprocessing unit 137 which performs the following functions: - Coordinate conversions from Lat/Lon/MSL to ECEF X, Y, Z
- Position projections
- Zone and runway incursion checking
- Access to zone database
- Sounds audible warning when zone incursion is detected140
- Broadcast of position and velocity data over
ADS datalink 141 - The functions supported in
Vehicle # 2 are actually a subset of those supported in the aircraft andVehicle # 1. - Communications
- Each vehicle is equipped with a VHF/UHF radio capable of full duplex communications. The radio interfaces to an integrated modem/GPS interface card. The radio modem is used to receive differential corrections, ADS messages, and ATC command messages forwarded by the COMM Processor. Local GPS messages are received by the vehicle's Navigation (NAV) processor. The GPS position and velocity data is converted to the ECEF coordinate frame, reformatted and transmitted to the AC&M Processor over the same radio.
- Navigation Processor and Navigation
- Navigation functions are performed on board the vehicle when waypoints are received from the AC&M Processor via the VHF datalink. Two navigation screens are provided, a cross hairs display for airborne applications and a map-based display for ground operations.
- Upon receipt of the waypoint message from the AC&M Processor, the waypoint id is extracted and used to identify the predefined waypoint path. The waypoints are automatically loaded into the vehicle's ECEF navigation system and drawn into the vehicle's map display. FIG. 27 shows the airborne navigation display produced with the previously listed software routines.
- The navigator display format is unique since it provides conventional course, bearing and range information and actual position with respect to the true course. The display portion on the right side of the screen is driven by NEU surface parameters while the display at the left is driven directly by ECEF X, Y, Z parameters. This display format may be used for all phases of flight.
- The algorithms for 3-D range to the waypoint, transitioning to the next waypoint, cross track error, on/off course and wrong way determination are identical to those performed at the AC&M Processor.
- For ground taxi operations, map-based waypoint navigation was found to be preferable. FIG. 8 shows a waypoint path from the Crash, Fire and Rescue (CFR) Station to the East Terminal Ramp drawn in the on board digital map display.
- FIG. 9 depicts the predefined waypoint path for a departure on
Runway 35. - Zones Processing
- All surface vehicles are capable of performing static zone incursion processing. The zone processing algorithms are identical to those implemented at the AC&M system with the addition of an audible tone generated when an incursion occurs.
- Collision Detection Processing
- The fully equipped vehicle (FEV) is capable of performing collision prediction processing based on the vehicle's current position (and velocity) and the remote vehicles' ADS messages.
- As the ADS messages are received, they are parsed and stored in the local vehicle database. Collision processing is performed each second, upon receipt of the FEV's GPS position and velocity data. After each GPS update, projections are performed on the FEV's current position and compared to the projected positions for each vehicle stored in the local database. In the same manner as described for the AC&M Processor, potential collision watch and warning conditions are detected between the FEV and other vehicles. However, collisions between two remote vehicles are not detected. Collisions tests are only performed with respect to the FEV itself and those in its vicinity.
- Graphic Processor and Moving Map Display
- Both the FEV and the aircraft are capable of displaying their current position with respect to an on board moving map display. As the vehicle's position approaches the edge of the map display, the map is automatically panned and redrawn with the vehicle centered in the display. When the vehicle is on the airport surface, the map is drawn with a north orientation at a 0.25 mile plan view perspective. When the vehicle is more than one mile from the center of the map, the map is automatically redrawn at a ten (10) mile scale.
- Situational Awareness
- The FEV is capable of displaying the positions of remote vehicle positions in the on board moving map display. As ADS messages are received from the COMM Processor, the remote vehicles' positions are checked to see if they would appear on the current display view. If the positions are outside of the current view, they are discarded. Positions within the current view are drawn into the map display.
- Layer—Color Control
- As at the AC&M processor, the FEV's situational awareness display uses color cues to indicate vehicles in a collision or zone incursion condition. As ADS and GPS messages are received and processed by the on board NAV Processor, graphics messages are formatted and sent to the local Graphics Processor (GP). These graphics messages are identical to those created at the AC&M Processor and include the vehicle id, layer id and map x,y,z position.
- /****************************************************************
- File Name: COORD.H
- Description: coord.h contains the global definitions and record structures for waypoint and current
- position data. Waypoint lists are stored by type—arrival, departure, missed approach or surface.
- *****************************************************************/
- #define
GRND_ALT 92 /* indicates ground level, specific to Manchester Airport */ - /* coordinate type (coord_type) definitions */
- #define
DECDEG 1 /* lat/lon decimal degrees */ - #define
NHSPM 2 /* NH state plane meters */ - #define
NHSPF 3 /* NH state plane feet */ - /* conversion factors for map/decimal degree conversions */
- double LRLON; /* lon for lower right corner of map */
- double LRLAT; /* lat for lower right corner of map */
- double ULLON; /* lon for upper left corner of map */
- double ULLAT; /* lat for upper left corner of map */
- double LRX; /* map x coordinate—lower right */
- Map Temporal Differential Correction
- Map temporal differential corrections are a simple and effective means of reducing error sources in GPS operation for short periods of time when Selective Availability is not active. FIG. 31 depicts the map temporal correction elements.
- Map temporal corrections utilize at least one precisely surveyed location in the local area. The surveyed location may be determined from a monument marker or may be determined using a highly accurate digital or paper map. A GPS receiver and (optionally) a processing computer are co-located at the known location with the GPS antenna carefully positioned at the survey point. The receiver/computer remains at the known location for a period of time and, when enough data has been collected, determines pseudo range correction and pseudo range rate factors. These correction factors may then be applied to the differential GPS receiver to determine a corrected position. These factors are used in subsequent position determinations until another map temporal correction is applied.
- Map temporal corrections are the simplest form of closed loop differential correction. As the name implies, temporal corrections degrade with time as the receiver moves within the local area. SA significantly reduces the benefits of a temporal differential correction approach. When SA is not active, the short term (30 minute) accuracy of this technique is very good (a meter or two), since all error sources are reduced. One additional limiting factor is that the same satellites must be used during roving operations as those used at the surveyed location. This may be accomplished through software control to ensure a ‘selected’ set of satellites are used for a given GPS session.
- Regional Differential Corrections and Differential Overview
- Real time differential correction techniques compensate for a number of error sources inherent to GPS. The idea is simple in concept and basically incorporates two or more GPS receivers, one acting as a stationary base station and the other(s) acting as roving receiver(s). The differential base station is “anchored” at a known point on the earth's surface. The base station receives the satellite signals, determines the errors in the signals and then calculates corrections to remove the errors. The corrections are then broadcast to the roving receivers.
- Real time differential processing provides accuracies of 10.0 meters or better (typically 1.0-5.0 meters for local differential corrections). The corrections broadcast by the base station are accurate over an area of about 1500 km or more. Typical positional degradation is approximately a few millimeters of position error per kilometer of base station and roving receiver separation. FIG. 32 shows the basic elements for real time differential GPS (DGPS) operations.
- Through the implementation of local differential GPS techniques, SA errors are reduced significantly while the atmospheric errors are almost completely removed. Ephemeris and clock errors are virtually removed as well.
ERROR SOURCES CORRECTED OR REDUCED BY DGPS USER RANGE ERRORS (URE) 1 SIGMA MAGNITUDES WITHOUT DGPS WITH DGPS SATELLITE CLOCK & NAV. 2.7 0 EPHEMERIDES & PREDICTION 2.7 0 ATMOSPHERIC IONOSPHERIC 9.0 0 TROPOSPHERIC 2.0 .15* SELECTIVE AVAILABILITY 30.0# 0 TOTAL RSS 31.6 .15 - Differential GPS can introduce an additional error, if not employed properly. The age of the differential correction must be monitored at the GPS receiver. As the differential correction ages, the error in the propagated value increases as well. This is particularly true for ‘virulent’ strains of SA where the errors introduced slew quickly over very short time intervals.
- Operational Elements
- The precisely surveyed location of the GPS antenna is programmed into the reference station as part of its initial installation and set up procedures. Industry standard reference stations determine pseudo range and delta range based on carrier smoothed measurements for all satellites in view. Since the exact ECEF position of the antenna is known, corrections may be generated for the pseudo range and delta range measurements and precise time can be calculated.
- Naturally occurring errors are, for the most part, slow changing and monotonic over the typical periods of concern. When SA is not invoked, delta range corrections provide a valid method of improving positional accuracy at the roving receivers using less frequent correction broadcasts. With the advent of SA and its random, quick changing non-monotonic characteristics, delta range corrections become somewhat meaningless and may actually degrade the system performance under some conditions.
- As shown previously in FIG. 32, the DGPS correction messages are broadcast by the reference station and received by the roving receivers. The corrections are applied directly to the differential GPS receiver. The DGPS receiver calculates the pseudo range and the delta range measurements for each satellite in the usual manner. Prior to performing the navigation solution, the received pseudo range and delta range corrections are applied to the internal measurements. The receiver then calculates corrected position, velocity and time data. Typical DGPS position and velocity performance is presented in the table below.
COMPARISON OF TYPICAL GPS POSITION AND VELOCITY MEASUREMENTS USING COMMERCIAL NAVIGATION TYPE RECEIVERS (ACCURACIES ARE A FUNCTION OF CORRECTION AGE) THIS EXAMPLE USES CORRECTION AGE = 5 SECONDS WITHOUT DGPS WITH DGPS CODE RCVR CARRIER RCVR CODE RCVR CARRIER RCVR 2-D POSITION <100 M <40 M <10 M <2 M 3-D POSITION <176 M <80 M <18 M <4 M VELOCITY knots <10 KN <5 KN <.1 KN <.1 KN TIME* <300 ns <100 ns <100 ns <50 ns - Since differential GPS eliminates most GPS errors, it provides significant improvements in system reliability for life critical airport operations. Short term and long term drift of the satellite orbits, clocks and naturally occurring phenomenon are compensated for by differential GPS as are other potential GPS satellite failures. Differential GPS is mandatory in the airport environment from a reliability, accuracy and fault compensating perspective.
- As with autonomous GPS receiver operation, multipath is a potential problem. The differential reference station cannot correct for multipath errors at the roving receiver(s). Antenna design and placement considerations, and receiver design characteristics remain the best solutions to date in the minimization of multipath effects.
- DGPS provides the means to eliminate most GPS system errors. The remaining errors are related to receiver design and multipath. Not all GPS receivers and reference stations are created equal, some are distinctly better than others. The selection of the reference station and the roving receivers has a significant effect on the overall system accuracy.
- Compensating for Receiver Error
- Receiver errors are not corrected using an ‘open loop’ differential correction method as described above. These errors may be reduced when a ‘closed loop’ differential technique is employed. FIG. 33 presents a high level block diagram of a ‘closed loop’ differential system.
- FIG. 33 has additional elements over the standard differential system configuration. A second GPS antenna is installed at a precisely surveyed antenna location and a stationary GPS receiver is co-located with the reference station. This receiver accepts differential correction inputs generated by the reference station. The stationary GPS receiver incorporates the pseudo range corrections in the normal manner and determines DGPS position and velocity. The corrected position and velocity are then compared to the stationary receivers known position and velocity (0,0,0). The ECEF delta position and velocity data are then used by the reference station processing to further refine the pseudo range and delta range corrections which are broadcast to the roving receivers. Processing software which minimizes the position and velocity errors is used. This technique requires that the roving receivers be identical to the stationary GPS receiver located at the reference station site. That is, the roving receivers must exhibit receiver errors similar to those on the stationary DGPS receiver.
- The issues of integrity and fault monitoring are a major concerns for any technology considered for the life critical application of air transport and air traffic control. The integration of GPS with other technologies provides a higher degree of fault detection capability, a potentially improved GPS navigational performance, and the potential of limited navigation support should a catastrophic GPS failure occur aboard the vehicle.
- The integration of GPS with an inertial system can be used to improve the dynamic performance of the navigation solution. Dynamic sensors may provide jerk, acceleration and velocity information to aid in the navigation solution. Sole means inertial navigation may be used in conjunction with GPS. The integration of GPS with inertial systems usually require 12 (or higher) state Kalman filter solutions techniques .
- The concept of Receiver Autonomous Integrity Monitoring (RAIM) is accepted as a potential integrity monitoring system. The RAIM concept requires that the GPS receiver and/or navigation system include the required “smarts” to diagnose its own health using additional satellites, redundant hardware and specialized internal software processing. RAIM standards are currently being developed for industry approval.
- When combined with other sensors such as WAAS, inertial, baro altimeter and internal RAIM processing, GPS will have superior accuracy, fault tolerance and fault detection capability.
- Any system which controls life critical operations at an airport must support fault tolerance and high availability. At the same time, the system must be cost effective and support technology insertion. High system availability may be achieved through a custom design process utilizing selected and screened components for high Mean Time Between Failure (MTBF). Alternatively, high availability may be achieved through system redundancy using components of non-custom, commercial-off-the-shelf design. The following paragraphs introduce a few of the concepts which are later utilized in the system_design analysis.
- AVAILABILITY: Availability is defined as the probability that a system will operate to specification at any point in time, when supported with a specific level of maintenance and spares.
- MEAN TIME BETWEEN FAILURES (MTBF): The mean time a piece of equipment will remain operational before it is expected to fail.
- RELIABILITY: The inherent probability that a piece of equipment or hardware will remain operational for a period of time (t). It is expressed as follows:
- −(t/MBTF)
- R(t)=e
- TRAVEL TIME: The travel time is measured from the time of failure to the time the repair technician and required spare parts arrive at the failed equipment.
- MEAN TIME TO RECONFIGURE (MTTC): The mean time a system is inoperable as measured from the time of failure to the time of full operation. Typically, reconfiguration time involves bringing on line redundant systems in an effort to provide continued service.
- MEAN TIME TO REPAIR AND CERTIFY (MTTRC): The mean time of the actual repair and recertification activities as measured from the time of arrival of the failed equipment to the time which the equipment is on line, certified and declared operational.
- MEAN TIME TO REPAIR (MTTR): MTTR is the sum of TRAVEL+MTTC+MTTRC.
- The following analysis builds upon elements of the system composed of off the shelf components arranged in a redundant configuration. Commercial industrial single board computers are connected with other commercial elements in the manner as shown in the FIGS. 28, 29,30. This approach provides cost effectiveness, COTS technology insertion, declining COTS life cycle costs and high availability. The analysis starts with no design redundancy FIG. 28, and ends describing a two controller station redundant architecture FIG. 30.
- This example will determine the overall reliability and availability of the architecture shown in FIG. 28. The requirement for system availability for this terminal area system comes from the FAA Advanced Automation Program (AAS). The AAS program defines the system yearly availability to be 0.99995 determined using a 2 hour travel time which is added to any other system down time. The major elements of the airport system shown in FIG. 28.
KEY OPERATIONAL PARAMETERS AVALABILITY* AVAIL := 0.99995 TRAVEL TIME (HRS)* TRAVEL := 2.0 *= FROM FAA ADVANCED AUTOMATION SPECIFICATION TIME TO AUTO CONFIGURE (HRS) MTTC := .025 90 SECONDS MEAN TIME TO REPAIR AND CERTIFY (HRS) MTTRC := .25 (TESTED SPARES, FAULT ISOLATED TO LRU) MEAN TIME TO REPAIR (MTTR) MTTR := MTTRC + MTTC + TRAVEL MTTR = 2.275 SPECIFIC COMPONENT PARAMETERS SINGLE BOARD COMPUTER 142, 143 MEAN TIME BETWEEN FAILURES (HRS) SBC := 90000 SBC RELIABILITY (RSBC) RSBC = 0.907254 DIGITAL RADIO TRANSCEIVER 144 MEAN TIME BETWEEN FAILURES (HRS) XCVR := 75000 DIGITAL RADIO TRANSCEIVER RELIABILITY (RXMTR) RXCVR = 0.889763 TOUCH SCREEN 145 MEAN TIME BETWEEN FAILURES (HRS) TOUCH := 100000 TOUCH SCREEN RELIABILITY (RTOUCH) RTOUCH = 0.916127 LOW VOLTAGE DC POWER SUPPLY 146 MEAN TIME BETWEEN FAILURES (HRS) LVPS := 500000 LOW VOLTAGE POWER SUPPLY RELIABILITY (RLVPS) RLVPS = 0.982633 FLAT SCREEN DISPLAY 147 MEAN TIME BETWEEN DIS := 75000 FAILURES (HRS) FLAT SCREEN DISPLAY RELIABILITY (RDIS) RDIS = 0.889763 AIRPORT LIGHTING UNIT 148 MEAN TIME BETWEEN FAILURES (HRS) Interface only, no light bulbs or individual light switches LITE := 250000 AIRPORT LIGHTING UNIT RELIABILITY (RLITE) RLITE = 0.965567 REDUNDANT ARRAY of INEXPENSIVE DISKS (RAID 149 MTBF (HRS) RAID := 150000 RAID RELIABILITY (RRALD) RRAID = 0.943273 LOCAL AREA NETWORK 150 MEAN TIME BETWEEN FAILURES (HRS) LAN := 87600 LOCAL AREA NETWORK RELIABILITY (RLAN) RLAN = 0.904837 KEYBOARD 151 MEAN TIME BETWEEN FAILURES (HRS) KBD := 75000 KEYBOARD RELIABILITY (RKBD) RKBD = 0.889763 DIFFERENTIAL BASE STATION 152 MEAN TIME BETWEEN FAILURES (HRS) DIFF := 100000 DIFFERENTIAL BASE STATION RELIABILITY (RDIFF) RDIFF = 0.916127 - This particular analysis is for a single controller station, multiple stations could be used simply by duplicating the design elements. The controller must have the following capabilities to perform his airport duties:
- 1. have full duplex voice and data communications
- 2. a controlling AC&M display and graphic display
- 3. a command touch screen capability or keyboard
- 4. differential GPS for all navigation
- 5. airport lighting interface (independent bulbs and switches may fail without loss of function)
- The minimal set of controller actions require the following hardware and associated software to be operational.
- 1. radio transceiver (voice and data function)
- 2. AC&M display, SBC server, and RAID
- 3. Graphic display, SBC,
- 4. a low voltage power supply
- 5. a command and control touch screen or a keyboard
- 6. minimal configuration operational software
- 7. a LAN assembly
- 8. a differential GPS base station
- 9. a airport lighting interface
- The hardware elements can be connected in a minimal hardware configuration and the overall availability can be compared to the specified value of 0.99995
- RINT:=RSBC2·RXCVR·RTOUCH·RLVPS·RDIS2·RRAID·RLAN·RDIFF·RLITE·RKBD
- RINT=0.350629
-
-
- As expected availability does not meet the specification, system redundancy will be necessary to achieve the design goal. To meet the required availability a system MTBF of about 45,000 hours will be necessary with a 2.275 hour mean time to repair. A new architecture is shown in FIG. 29.
- Redundant radio transceivers will be necessary since a single point failure is unacceptable in this component. Parallel radio transceiver reliability is determined below:
- RXCVRP:=RXCVR+RXCVR−RXCVR·RXCVR·RXCVRP=0.987848
- Redundant LVPS are required for the same reason.
- RLVPSP RLVPS RLVPS (RLVPS·RLVPS) RLVPSP=0.999698
- Redundant Local Area Networks are also required, since a single point failure can not be tolerated in communications between the AC&M SBC and Graphic SBC.
- RLANP:=RLAN+RLAN−(RLAN·RLAN) RLANP=0.990944
- Redundant Differential GPS are also required, since a_single point failure can not be tolerated in airport navigation functions.
- RDIFFP:=RDIFF+RDIFF−(RDIFF·RDIFF) RDIFF=0.916127
- Redundant airport lighting control interfaces are required.
- RLITEP:=RLITE RLITE (RLITE·RLITE) RLITEP=0.998814
- The keyboard and the touch screen provide the same capability, hence may be treated as a parallel redundant system element. The keyboard/touch screen combination is found below:
- RTOU — KBD:=RKBD+RTOUCH−(RKBD·RTOUCH) RTOU — KBD=0.990754
- An extra display surface will be added to display information. This display capability will be used should a failure occur in an AC&M display or in a graphic situation display. A 2 of 3 display scenario is used for successful mission completion. Should a failure occur auto reconfiguration must occur within the specified time allocation. To determine exactly what the 2 out of 3 display process represents, a probability analysis is performed. The probability is determined from the series elements which make up the display function. One display channel may fail while the two others provide the necessary information. The third display is used to provide non mission critical information when acting as a hot spare.
- RSDIS:=RDIS·RSBC·RRAID·RSDIS=0.761448
- In the 2 of 3 scenario the possible operating combinations must add to one; meaning the probability of all of the possible operating modes must add to 1. The operating combinations are identified below:
- 1. all 3 serial display channels are operational
- 2. one channel is down and the other two are operational
- 3. two channels are down and only one is operating
- 4. all channels are down
- Unreliability is Defined as:
- Q:=1−RSDIS
- The Probability is Defined Below:
- RTOTAL:=RSDIS 3+3·RSDIS 2 ·Q+3·RSDIS·Q 2 +Q 3
- RTOTAL=1 All combinations do add to 1
- Two of Three Operational Reliability is:
-
R 2 OF 3 :=RSDIS 33·RSDIS 2 ·Q+0+0R 2 OF 3=0.856429 - Now the overall system reliability and availability functions may be evaluated.
- RFINAL:=
R 2 OF 3·RXCVRP·RLVPSP·RTOU — KBD·RLANP·RDIFFP·RLITEP RFINAL=0.82354 -
- From a hardware perspective the system meets requirements. The system software must be able to detect hard and soft failures and must be able to fault isolate the failed device. Parallel hardware redundancy and “smart” software provide the necessary fault monitoring, fault containment and fault identification to the LRU level. Operational software is tailored to the specific application, but the hardware is based upon COTS standards to allow for future technology insertion and cost effective replacement.
- Multiple controller stations may be added to support larger airport systems. In this case a slightly different architecture is utilized. Common elements are shared by multiple stations. In the 2 station architecture shown parallel differential GPS base stations, parallel lighting control interfaces, parallel Local Area Networks and parallel transceivers are utilized. Since a redundant capability is provided with multiple controller stations consisting of 2 of 3scenario increased availability is provided as shown in FIG. 30.
- RSTAT:=
R 2 OF 3·RTOU — KBD·RLVPSP RSTAT=0.848255 - The Reliability of the Shared Elements Follows
- REXT:=RLVPSP·RXCVRP·RDIFFP·RLITEP·RLANP REXT=0.97057
- Reliability of the Two
Parallel 2 of 3 Controller Stations is - RSTATP:=RSTAT+RSTAT−(RSTAT·RSTAT) RSTATP=0.976973
- Reliability of the Two Controller Station Airport System is
- RTOT:=RSTATP·REXT RTOT=0.948222
-
-
- Further availabilty improvements and cost reduction may be realized when configured with multiple controller stations. The 2 of 3display channel operation may be reduced to 2 single display channels and RAIDS may be eliminated while still meeting availability goals when operating with multiple redundant reconfigurable controller stations.
- The U.S. FAA recommends the development of digitized Airport Layout Plans (ALPs). In an ALP, the existing and proposed land and facilities required in the operation and development of the airport are provided in a scaled drawing. Each ALP should include the following information: airport facilities—runways, taxiways, ramps, service roads, navigation aids, and buildings
- airspace matters—existing and planned approach/missed approach/departure procedures, special use and controlled airspace, control zones and traffic patterns
- obstructions to air and ground navigation
- airport topography
- precise airport monumentation
- If designed properly, the ALP should be suitable for use in airport master plan activities, emergency work, maintenance, navigation and ATC.
- GPS Compatible Monumentation
- Airport ALP generation or mapping activities may use any number of map coordinate systems based on a number of earth datums or ellipsoid references. Standardization of the mapping techniques and references are key in the development of any successful multi-use mapping program. In addition to the selection of a standard reference system, the interface to the local area surrounding the airport must be addressed. Accurate cross referenced monumentation points are necessary to allow for a smooth transition between the local coordinate system and the one used in the airport maps or in the navigation system. In the U.S., local State Plane Coordinate Systems (SPCS) form the baseline for most local mapping activities. As such, the ALPs for all U.S. airports should be monumented with reference points to provide for accurate coordinate conversion between World Geodetic Survey of 1984 (WGS 84) Latitude—Longitude, Earth Centered Earth Fixed (ECEF) X, Y, Z and local SPCSs or Universal Transverse Mercator (UTM). GPS and conventional survey techniques are recommended for such monumentation.
- The surveyed accuracy of the multi-use airport map is recommended to be better than 0.5 meters for the horizontal and 0.1 meter for elevation. Of particular interest are the Airport Runway Touch Down Marker Reference Points (the precise coordinates of the center of a runway's touch down marker) and the Airport Runway Reference Points (the precise coordinates along the centerline path of the runway). In addition, the precise locations of all turn outs and turn ins should be identified in the airport map database.
- Earth reference systems used in these locations should be ECEF X,Y,Z, North American Datum of 1983 (NAD 83) or
WGS 84 latitude, longitude, MSL. These three models are compatible with GPS-based navigation. Should the positions not be in one of these coordinate reference systems, then local airport multi-coordinate reference monumentation should be used to support the required coordinate conversions. - Airport map latitude, longitude projections should be based upon the Transverse Mercator, Lambert Conformal Conic, or Hotine Oblique Mercator These projections are used in state plane coordinate systems. Additional information on reference systems and projections is available in North American Datum of 1983 (NAD 83), by Charles R. Schwartz.
- The Manchester, N.H. (NH) airport map used in numerous test activities was initially in NH State Plane Coordinate System feet. This coordinate system was chosen for compatibility with existing maps and because it represented distances in linear feet rather than in degrees of latitude and longitude. The map was later converted to NH state plane meters and ECEF X,Y,Z representations. Manchester Airport was carefully surveyed and monumentation was performed at multiple sites around the airport. The monumented points were referenced to the ECEF Cartesian Coordinate System,
NAD 83 Latitude, Longitude and Mean Sea Level (MSL), and the NH State Plane. Coordinate conversions were performed using the monumented points shown below.MULTI-REFERENCE MONUMENTATION FLAGPOLE RUNWAY 35 END MONUMENT SITE # 1MONUMENT SITE # 2NEW HAMPSHIRE STATE PLANE COORDINATES NH SPCS X = 1045137.57 FT E NH SPCS X = 1048524.02 FT E NH SPCS Y = 158006.05 FT N NH SPCS Y = 154481.07 FT N NH ALT = 225.04 FT NH ALT = 215.73 FT NH ALT = 68.59 M NH ALT = 65.75 M NAD83 LAT, LON, MSL LAT83 = 42.933325800 N LAT83 = 42.923628275 N LON83 = 71.439298894 W LON83 = 71.426691202 W MSL = 225.04 FT MSL = 215.73 FT MSL ALT = 68.59 M MSL ALT = 65.75 M ECEF X, Y, Z COORDINATES ECEF X = 1488741.9 M ECEF X = 1489950.5 M ECEF Y = −4433764.7 M ECEF Y = −4434130.5 M ECEF Z = 4322109.2 M ECEF Z = 4321318.4 M GEOID HT = −28.24 M GEOID HT = −28.24 M WGS ALT = 40.35 M WGS ALT = 37.51 M - North American Datum of 1983
-
NAD 83 is a reference datum for the earth replacing the North American Datum of 1927 (NAD 27). It was developed over many years through international efforts of many people. It was the largest single project ever undertaken by the National Geodetic Survey (NGS), spanning 12 years. - The task involved 1,785,772 survey observations at 266,436 sites in North and Central America, Greenland and the Caribbean Islands. The observations were made with all types of survey and measurement equipment from satellites to tape measures. The ultimate task was to develop an earth model which satisfied a set of 1,785,722 simultaneous equations. The task was performed using a least squares approach and Helmert blocking. The purpose was to update
NAD 27, calculate geoid heights at 193,241 control points and the deflections of vertical at the control points. - The
NAD 83 reference uses the Geodetic Reference System of 1980 (GRS 80) ellipsoid based on the Naval Surface Warfare Center 9Z-2 (NSWC 9Z-2) doppler measurements. The ellipsoid is positioned to be geocentric and have cartesian coordinate orientation consistent with the definition of Bureau International de l'Heure (BIH) Terrestrial System of 1984. -
NAD 83 data sheets contain information to update North American 1927 references. The data sheets contain new information which is relevant for precise surveys and users of GPS equipment. These include: precise latitude and longitude [DDD MM SS.sssss], latitude—longitude shift in seconds of degree fromNAD 27 toNAD 83, elevation above the geoid with standard error, geoid height and standard error, state plane and Universal Transverse Mercator (UTM) coordinates. These fundamental corrections and ellipsoid constants are the basic parameters used in many coordinate conversions and navigational programs and form the basis of modem survey measurements.GRS 80 used byNAD 83 has the following fundamental parameters:NAD 83 PARAMETERSPARAMETER VALUE UNITS Semimajor axis* 6378137 M Angular velocity* 7292115 × 10−11 RAD/SEC Gravitational constant* 3986005 × 108 M3/SEC2 Dynamic form factor 108263 × 10−8 unnormalized Semiminor axis* 6356752.314 M Eccentricity squared 0.00669438002290 Flattening 0.00335281068118 Polar Radius of Curvature* 6399593.625 M - World Geodetic Survey of 1984
-
WGS 84 was developed by the U.S. Department of Defense. The reference system started with the same initial BIH conventions asNAD 83 but, over the development, some parameters changed slightly. The geocentric ECEF system is based on a cartesian coordinate system with its origin at the center of mass of the earth. The system defines the X and Y axis to be in the plane of the equator with the X axis anchored 0.554 arc seconds east of 0 longitude meridian and the Y axis rotated 90 degrees east of the X axis. The Z axis extends through the axis of rotation of the earth. TheWGS 84 reference uses theGRS 80 ellipsoid as doesNAD 83.WGS 84 includes slight changes toGRS 80 parameters which are identified below:WGS 84 PARAMETERSPARAMETER VALUE UNITS Semimajor axis* 6378137 M Angular velocity* 7292115 × 10−11 RAD/SEC Gravitational constant* 3986005 × 108 M3/SEC2 Dynamic form factor normalized −484.16685 × 10−6 Semiminor axis* 6356752.314 M Eccentricity squared 0.00669437999013 Flattening 0.00335281066474 Polar Radius of Curvature* 6399593.625 M - Comparison of
NAD 83 andWGS 84 - The North American Datum of 1983 (NAD 83) and World Geodetic Survey of 1984 (WGS 84) attempt to describe the surface of the earth from two different perspectives.
NAD 83 describes the surface of North America using the Geodetic Reference System of 1980 (GRS 80) ellipsoid and over 1.7 million actual measurements. A least squares Helmert blocking analysis was performed by National Geodetic Survey (NGS) on these measurements to determine the best fit solution to the actual measurements.NAD 83 uses monumented reference points across the country to precisely reference various coordinate systems such as the State Plane Coordinate Systems.WGS 84 incorporates positional references using GPS and local references. Position determination by GPS incorporates precise Keplerian orbital mechanics and radio positioning technology. Clearly, the two systems are describing the same thing, but the methods of determining a position are different. - Both
NAD 83 andWGS 84 are based on BIH conventions. Though both are based on theGRS 80 ellipsoid, small changes have occurred between the two systems during their development. The basic difference in the dynamic form factor was attributed toGRS 80 using the unnormalized form whileWGS 84 used a normalized form and rounded to eight significant figures. Since other parameters derived from the dynamic form factor differences usually appear after the eighth decimal place, most experts feel that the computational differences are of no significance. - Computations to determine the latitude and longitude from ECEF X,Y,Z coordinates highlight the small difference in the two reference systems. It has been shown that the maximum error between the two reference systems occurs at a latitude of 45 degrees. (Refer to North American Datum of 1983, Charles R. Schwartz) No error occurs between the two systems in the determination of longitude. The maximum error amounts to 0.000003 seconds of arc which amounts to a latitude shift of 0.0001 meters. For all practical purposes, the computational differences between the two systems are negligible. This is an important point for, if the two earth models differed in basic latitude and longitude computations, serious charting and navigational problems would occur and GPS navigation based on
NAD 83 referenced maps would be seriously limited. - Both
WGS 84 andNAD 83 have many common points used as local reference points. The differences between the two systems may reach several meters in rare locations, but on the average the systems should be identical. Generally, measurement errors and equipment inaccuracies introduce more error than the differences in the two systems. - For airport mapping and GPS navigation we can assume that errors due to the differences between the
NAD 83 andWGS 84 ellipsoid models are negligible. This implies that either system can be used in calculating navigational entities and performing precise mapping with GPS navigation. The monumented New Hampshire points established onNAD 83 near the airport are well within the measurement accuracy of the GPS survey and navigation equipment. The documented offsets betweenNAD 83 andWGS 84 for New Hampshire are 0.0 meters in the Y direction and −0.5 meters in the X direction. - Photogrammetry techniques incorporating ground reference point(s) are recommended for creating electronic ALP's. Various techniques may be employed to generate digital ALP's including aerial photogrammetry and ground based moving platforms with integrated video cameras and sensors. The collected image data may be post processed to produce a highly accurate 2 or 3-D digital map of the surrounding area.
- A digital map of Manchester (NH) Airport was created to support early test activities. The digital map was based on aerial photogrammetry and GPS ground control using postprocessing software. A Wild Heerbrugg aerial camera equipped with forward motion compensation was used to capture the photogrammetry. The 3-D digitalization was performed using a Zeiss stereoscopic digitizing table. During the digitalization process, numerous object oriented map layers were constructed to segregate various types of map information. The resulting 3-D digital map had a relative horizontal accuracy of better than 1.0 meter and a relative vertical accuracy of better than 0.1 meter across the airport.
- Many digital map formats are in widespread use today. Translators are available to convert from one computer format to another. Maps may be in either raster format (such as those generated by image scanning) or vector format (those developed on CAD and digitizing equipment). The vector format provides a much more robust environment for developers of ATC and map display systems. Vector based drawings are represented by individual vectors which can be controlled and modified individually or collectively. This enables the developer to manage these entities at a high level rather than at the individual pixel level. The vectors may represent specific geographical features (entities) in the map which may be assigned to a particular map layer in a particular user defined color.
- Since the map and ATC situation display are in a vector format, a convenient method of graphically identifying and manipulating information is available. The selection of a graphical symbol on the screen through the use of a pointing device can be used to access an entity-related database or initiate an entity-based processing function. With raster-based images, there is no simple way to segregate the various pieces of map or graphic information for high level management.
- Raster formats represent a series of individual pixels, each pixel controlled as a function of a series of control bits. Typically a series of three (3) words are used to describe the Red, Green and Blue (RGB) intensity of each pixel. Each pixel of information represents the smallest piece of the image and has no information about the larger graphical entity that it is part of. From a management perspective, this introduces additional complications for even the simplest graphical manipulation tasks such as suppressing the display of a series of raster based topographical contour lines in the airport map.
- A high level management capability is required for ALP graphic entity control. The current raster-based maps do not provide this functionality, hence additional processing is required each time the map is displayed or modified. For raster-based maps to provide this capability, the pixel elements must be functionally organized in some manner to support the higher level management functions described in this application. For this reason, raster scan map formats are not recommended for ALPs at this time.
- Vector formats may be in ASCII or binary and may be constructed using different rules for their generation. The example below uses the AutoCAD™ DXF standard drawing format. (AutoCAD is a registered trademark of AUTODESK, Inc.) AutoCAD™ is one of the most popular Computer Aided Design (CAD) software packages in the world today and is typical of vector ALP formats. The DXF map format may be easily converted to almost any CAD drawing format.
AUTOCADTM DXF ALP FORMAT NEW HAMPSHIRE STATE PLANE ECEF X, Y, Z FEET METERS 3DFACE 3DFACE 8 8 BUILDING BUILDING 10 10 1046289.75 1489279.59 20 20 154935.219 −4434265.78 30 30 256.499 4321428.53 11 11 1046289.75 1489277.26 21 21 154935.219 −4434258.83 31 31 223.7 4321421.72 12 12 1046245.375 1489258.04 22 22 155032.25 −4434243.98 32 32 223.7 4321443.43 13 13 1046245.375 1489260.37 23 23 155032.25 −4434250.92 33 33 256.499 4321450.24 0 0 - The two formats shown above represent the vertical side of a building which is, by AutoCAD™ convention, a 3-D face. Since the two coordinate systems are different, one must appropriately set the respective viewpoint for each display. This is accomplished in the initial ALP DXF configuration declarations. In a similar fashion, the drawing could be converted to other coordinate systems such as Universal Transverse Mercator (UTM) using a DXF coordinate conversion utility program such as TRALAINE™ (available from Mentor Software, Thornton, Colo.
- The above example represents just one of the thousands of entities making up an ALP. Many commercial graphical libraries and commercial CAD software products are available today for the construction and use of ALPs and other 3-D graphic entities.
- The use of modern digital Computer Aided Design (CAD) techniques is required for the development of electronic map databases. The use of GPS-based, ground referenced photogrammetry with
post processing 2 or 3-D digitalization provides a cost effective, highly accurate and automated method of constructing the 2 or 3-D ALP. - An industry or international standard format for the construction and interchange of digital graphical information should be used. Numerous standards are established with readily available software translators for conversions between the various formats. Map file formats may be binary or ASCII characters.
- When stored in a digital format, the ALP should be arranged in object oriented map layers. Proper layering of information provides the capability to present only the information that is needed for a particular purpose. For example, navigational maps should not necessarily include all the digital layers of the ALP. A simplified version of the map showing only runways, taxiways, navigational references (landmarks) and gate areas should be used. The use of specific layers of interest provides the following advantages:
- minimizes possible confusion in presenting too much information to the pilot or controller
- decreases reaction times of controller and pilot by only presenting what is needed
- reduces computer memory requirements
- minimizes computer processing requirements
- provides faster display updates (fewer pixels to redraw)
- 3-D Digital Map Coordinate Systems
- In order to integrate GPS navigational data with 2 or3-D maps, the potential map formats must be evaluated for compatibility and ease of use with the navigational output and coordinate reference system. The table below lists twelve of the most likely combinations.
COMBINATIONS OF MAPS, NAVIGATIONAL PARAMETERS AND MATHEMATICAL COORDINATE REFERENCES MATHEMATICAL DIGITAL NAVIGATIONAL COORDINATE # MAP FORMAT I/ O FORMAT REFERENCE 1. LAT, LON, MSL LAT, LON, MSL LAT, LON, MSL 2.* LAT, LON, MSL LAT, LON, MSL ECEF 3. LAT, LON, MSL STATE ECEF PLANE/ UTM 4. LAT, LON, MSL ECEF ECEF 5. STATE STATE STATE PLANE/UTM PLANE/UTM PLANE/ UTM 6. STATE LAT, LON, MSL LAT, LON, MSL PLANE/UTM 7.* STATE LAT, LON, MSL ECEF PLANE/ UTM 8. STATE ECEF ECEF PLANE/ UTM 9. ECEF ECEF ECEF 10.* ECEF LAT, LON, MSL ECEF 11. ECEF LAT, LON, MSL LAT, LON, MSL 12. ECEF STATE STATE PLANE/UTM PLANE/UTM - Other permutations are possible for the different combinations of coordinate systems, map references and navigational output formats. Other combinations can be “made to work”, but based on arithmetic precision, map availability and software complexity, the combinations identified with an asterisk satisfy the evaluation criteria most effectively. The table below presents a compliancy matrix, where each of the twelve combinations are evaluated against a set of criteria. The criteria used are described in greater detail following the table.
COMPLIANCY MATRIX * * * MAPPING FORMAT: 1 2 3 4 5 6 7 8 9 10 11 12 EXISTING MAP DATA Y Y Y Y Y Y Y Y N N N N RECOGNIZABLE MAP Y Y Y Y Y Y Y Y N N N N CONV. SW EXISTS Y Y Y Y Y Y Y Y Y Y Y Y EASY 3D-2D CONV Y Y Y Y Y Y Y Y N N N N MULTI-USE FORMAT Y Y Y Y Y Y Y Y N N N N WORLD WIDE SYSTEM Y Y Y Y N N N N Y Y Y Y LINEAR SYSTEM N N N N Y Y Y Y Y Y Y Y GPS COMPATIBLE Y Y Y Y N N N N Y Y Y Y SEAMLESS SYSTEM N N N N N N N N Y Y Y Y NAV INPUT-OUTPUT: RECOGNIZABLE Y Y N N N Y Y N N Y Y N ACCEPTED STANDARD Y Y N N N Y Y N N Y Y N WORLD WIDE USE Y Y N Y N Y Y Y Y Y Y N GPS COMPATIBLE Y Y N Y N Y Y Y Y Y Y N CHARTS AVAILABLE Y Y N N Y Y Y N N Y Y Y COORD REFERENCE: RECOGNIZABLE REF. Y N N N Y Y N N N N Y Y WORLD WIDE USE Y Y Y Y N Y Y Y Y Y Y N SIMPLE NAV. MATH. N Y Y Y Y N Y Y Y Y N Y NAD83 & WGS84 REF Y Y Y Y Y Y Y Y Y Y Y Y SINGLE 3D ORIGIN N Y Y Y N N Y Y Y Y N N LINEAR SYSTEM N Y Y Y Y N Y Y Y Y N Y UNITS OF DISTANCE N Y Y Y Y N Y Y Y Y N Y * * * TOTAL YES COUNT: 15 18 13 15 12 14 17 14 13 16 13 11 MAPPING: CRITERIA DEFINITIONS COMPATIBILITY WITH Existing digital map data is available for the airport EXISTING MAP DATA and surrounding area. RECOGNIZABLE MAP A map which is instantly recognizable, one which resembles the surface on which we live. The map should not need to be differentially corrected from the reference geoid. CONVERSION SW EXISTS Commercially available software exists to convert from one 3-D map reference system to the other EASY 3D-2D CONVERSION Digital map presentations can be easily converted from 3-D to 2-D by setting the altitude to zero without any additional mathematical conversions in the raw map data or in the 3-D graphical interface. MULTI-USE FORMAT The map data is in a standard format which can satisfy multi-use needs such as Master Plans, construction needs, ATC and general navigation. WORLD WIDE SYSTEM References in the map are with respect to world wide datums and accepted world wide mapping units. LINEAR SYSTEM The axes and units of the map are linear and represent distance. GPS COMPATIBLE Mapping units and presentations are directly compatible with existing GPS receiver output formats and calculation references. SEAMLESS SYSTEM Maps do not have mathematical/physical discontinuity, the map format must be seamless on a world wide basis. For example UTM maps do not cover polar regions and map edges do not match on 6 degree boundaries when placed together. NAVIGATIONAL OUTPUT: RECOGNIZABLE The final navigational output should be instantly recognizable; i.e. if LAT, LON, MSL output is used, one can instantly visualize a location on the earth, while if ECEF outputs are given it is difficult to visually picture a point in space. ACCEPTED STANDARD Navigational format is an accepted standard; i.e. LAT, LON, MSL WORLD WIDE USE The navigational format is usable over the entire world. GPS COMPATIBLE Navigational format is compatible with existing GPS receiver outputs. CHARTS AVAILABLE Paper and digital charts are available. COORDINATE REFERENCE: WORLD WIDE USE The coordinate reference system is recognized throughout the world. SIMPLE NAVIGATION The coordinate system lends itself to simple linear MATHEMATICS navigational mathematics. NAD83 AND WGS84 REF. The reference system is compatible with North American Datum of 1983 and World Geodetic Survey of 1984. SINGLE ORIGIN The system has one and only one origin. LINEAR SYSTEM The system is a linear coordinate system. UNITS OF DISTANCE The coordinate system is based on units of distance rather than angle. - To illustrate the differences between GPS trajectories displayed in maps using different coordinate systems, the following plot examples are provided. FIG. 12 shows a plan view of latitude versus longitude. FIG. 14 shows the same trajectory in ECEF X and Y coordinates. FIG. 13 depicts the MSL Altitude versus Time while FIG. 15 shows the ECEF X values versus Time. Note the distortion between the latitude, longitude, MSL altitude and the ECEF X,Y, and Z coordinates. (The small rectangles on each plot represent waypoints along the trajectory path.)
- Plotting points in the map database requires that the navigational computations provide output which is compatible with the map database coordinates.
Combination # 7 in the previous Table includes a map database which is in a State Plane Coordinate System and a navigational output in latitude, longitude and MSL. Additional conversions are required to convert the navigational data to state plane coordinates prior to plotting the points in the map database. A more convenient map, navigational and coordinate reference frame is required. - ALP Summary and Recommendations
- Future airport maps or modifications to existing maps should make every attempt to utilize recent technological advances in their construction. The following items are guidelines for future map development:
- Precise, 3-D airport maps (ALPs) should be created and maintained for all major and reliever airports.
- ALPs should be constructed to satisfy multiple user requirements.
- Electronic graphical design tools should be used in ALP construction. Computer Aided Design tools should be used wherever possible.
- Standard graphical formats (either ASCII character or industry standard binary file formats) should be used.
- The concept of electronic layers should be used to identify and isolate entities in the map database.
- Airport Reference Points (ARPs) should be located at precisely monumented positions around the airport. ARPs should be referenced to the coordinate systems of interest (such as LAT,LON,MSL, ECEF X,Y,Z and the SPCS).
- At least three (3) ARPs, located within the airport confines in areas which are not likely to be disturbed, are recommended. Where possible, these points should be placed in the far corners of the airport to form a triangle. These points should be surveyed with GPS based survey equipment and monumented physically on the ground and within the digital map database.
- ARPs should be recomputed as necessary to assure accuracy of the navigation and ATC functions. Re-monumentation may be required as a part of airport construction and expansion. Natural phenomena such as plate tectonics, may force re-monumentation of the airport. When ARP positions change more than 0.5 meters horizontally and 0.1 meters vertically, re-monumentation is recommended.
- Areas used by aircraft such as runways, taxiways, gate areas and ramps should be surveyed to a horizontal accuracy of 0.5 meters horizontally and elevation to 0.1 meters.
- The use of photogrammetry is suggested as an efficient means of creating a digital database of an existing airport.
- Earth reference systems used for the various map projections should be the
NAD 83 orWGS 84. Older, previously accepted datums which do not correlate with GPS navigation or surveys should be avoided. - ALPs should be compatible with cockpit instrumentation and ATC databases.
- GPS calibration areas should be located at all gates or areas where aircraft remain stationary. These areas should be identified in the airport digital map. The purpose of the calibration area is to allow the pilot to check the accuracy of the on board GPS equipment.
- Cost effective and highly accurate mapping technology is available to allow for the generation of multi-use maps which should be compatible with a host of platforms and potential uses. The exploitation of these common use maps will enhance master planning, aviation and Air Traffic Control (ATC) capabilities. Maps developed to national standards will provide a cost effective navigational and ATC data base.
- The presented invention provides a valuable enhancement to the current airport environment. This enhancement will result in safer air travel and more efficient operation of our currently capacity limited airports. Human blunders in the cockpit and in the control tower have cost hundred of lives in the past. Seamless airport air/ground operations will result in lower air traffic controller and pilot workloads through the use of automation processing. Advanced situational awareness displays showing travel paths, and clearance compatible mirrored navigation automation processing will reduce the likelihood of human blunders in the control tower and in the cockpit resulting in a safer airport environment. The elimination of out dated single function navigation and surveillance systems will result in significant cost savings for the airport authority and the FAA. The cost effective nature of this GNSS based airport control and management system will allow deployment at smaller airports resulting in safer operations and better on time performance throughout the whole aviation system.
- It is obvious that minor changes may be made in the form and construction of the invention without departing from the material spirit thereof. It is not, however, desired to confine the invention to the exact form herein shown and described, but is desired to include all such a properly come within the scope claimed.
Claims (3)
1. An airport navigation method for a plurality vehicles selected from the group comprising aircraft and surface vehicles, said method comprising
a. installing a GPS reference antenna at a known physical location, said physical location being GPS referenced;
b. preparing an airport map that is GPS referenced; said map containing at least one digital representation of features selected from the group comprising runways, taxiways, gate areas, geographical features of the area surrounding the airport, topography surrounding the airport, approach paths, departure paths and identified obstructions;
c. providing said map to a vehicular navigation computer system;
d. receiving GPS signals at said GPS reference antenna;
e. providing said received GPS signals to a Differential GPS base station;
f. calculating with said Differential GPS base station differential corrections;
g. providing said differential corrections to a radio transmitter;
h. broadcasting using said radio transmitter, said differential corrections to said vehicle;
i. receiving using a radio receiver located on said vehicle said broadcast differential corrections;
j. receiving GNSS signals using a GNSS antenna located on said vehicle and providing said received GNSS signals to a differential GNSS receiver located on said vehicle;
k. providing said received differential corrections to said differential GPS receiver;
l. calculating using said differential GPS receiver at least one differentially corrected information element selected from the group comprising 3-dimensional position, 2-dimensional horizontal position, vertical position, 3-dimensional velocity, speed, heading, vertical rate and time;
m. navigating said vehicle using said differentially corrected information using said vehicular navigation computer system that displays said location of said vehicle on said digital map.
2. An airport control and management method for a plurality vehicles selected from the group comprising aircraft and surface vehicles, said method comprising
a. installing a GPS reference antenna at a known physical location, said physical location being GPS referenced;
b. preparing an airport map that is GPS referenced; said map containing at least one digital representation of features selected from the group comprising runways, taxiways, gate areas, geographical features of the area surrounding the airport, topography surrounding the airport, approach paths, departure paths and identified obstructions;
c. providing said map to an airport control and management computer system;
d. receiving GPS signals at said GNSS reference antenna;
e. providing said received GPS signals to a Differential GPS base station;
f. calculating with said Differential GPS base station differential corrections;
g. providing said differential corrections to a radio transmitter;
h. broadcasting using said radio transmitter, said differential corrections to said vehicle;
i. receiving using a radio receiver located on said vehicle said broadcast differential corrections;
j. receiving GPS signals using a GPS antenna located on said vehicle and providing said received GPS signals to a differential GPS receiver located on said vehicle;
k. providing said received differential corrections to said differential GPS receiver;
l calculating using said differential GPS receiver at least one differentially corrected information element selected from the group comprising 3-dimensional position, 2-dimensional horizontal position, vertical position, 3-dimensional velocity, speed, heading, vertical rate and time;
m. broadcasting differentially corrected position information indicative of said vehicle location using a radio transmitter located on said vehicle;
n. receiving said broadcast position information at said control and management computer system;
o. presenting said airport map on a display of said airport control and management computer system and
p. displaying the location of said vehicle in said presented airport map using said received broadcast position information.
3. An airport navigation system, the system comprising:
a. a GPS antenna used to receive broadcast signals from GPS satellites, said GPS antenna located at a known location, identified with 3-dimensional GPS compatible coordinates;
b. a differential GPS base station that receives GPS signals from said GPS antenna;
c. means within said differential GPS base station to calculate differential corrections consisting of psuedorange corrections;
d. a radio transmitter connected to said differential GPS base station;
e. means within said differential GPS base station to send psuedorange corrections to said radio transmitter;
f. a radio receiver located on a vehicle selected from the group comprising aircraft and surface equipment;
g. means on said vehicle to receive said psuedorange corrections using said radio receiver and means to provide said psuedorange corrections to an onboard differential GPS receiver;
h. means to calculate a differentially corrected position using said onboard differential GPS receiver and said received psuedorange corrections and
i. means to navigate said vehicle using said differentially corrected GPS position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/733,968 US20040225432A1 (en) | 1991-02-25 | 2003-12-11 | Method and system for the navigation and control of vehicles at an airport and in the surrounding airspace |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US65968191A | 1991-02-25 | 1991-02-25 | |
US75885291A | 1991-09-12 | 1991-09-12 | |
US08/117,920 US5548515A (en) | 1990-10-09 | 1993-09-07 | Method and system for airport control and management |
US08/524,081 US5867804A (en) | 1993-09-07 | 1995-09-06 | Method and system for the control and management of a three dimensional space envelope |
US08/651,837 US5740047A (en) | 1990-10-09 | 1996-05-21 | GNSS based, seamless, multi-dimensional control and management system for vehicles operating in a multi-dimensional environment |
US09/032,313 US6195609B1 (en) | 1993-09-07 | 1998-02-27 | Method and system for the control and management of an airport |
US09/598,001 US6314363B1 (en) | 1993-09-07 | 2000-06-20 | Computer human method and system for the control and management of an airport |
US09/871,328 US20030083804A1 (en) | 1990-10-09 | 2001-05-31 | Computer human methods for the control and management of an airport |
US10/733,968 US20040225432A1 (en) | 1991-02-25 | 2003-12-11 | Method and system for the navigation and control of vehicles at an airport and in the surrounding airspace |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/871,328 Continuation US20030083804A1 (en) | 1990-10-09 | 2001-05-31 | Computer human methods for the control and management of an airport |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040225432A1 true US20040225432A1 (en) | 2004-11-11 |
Family
ID=26815797
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/032,313 Expired - Lifetime US6195609B1 (en) | 1990-10-09 | 1998-02-27 | Method and system for the control and management of an airport |
US09/598,001 Expired - Lifetime US6314363B1 (en) | 1990-10-09 | 2000-06-20 | Computer human method and system for the control and management of an airport |
US09/871,328 Abandoned US20030083804A1 (en) | 1990-10-09 | 2001-05-31 | Computer human methods for the control and management of an airport |
US10/733,968 Abandoned US20040225432A1 (en) | 1991-02-25 | 2003-12-11 | Method and system for the navigation and control of vehicles at an airport and in the surrounding airspace |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/032,313 Expired - Lifetime US6195609B1 (en) | 1990-10-09 | 1998-02-27 | Method and system for the control and management of an airport |
US09/598,001 Expired - Lifetime US6314363B1 (en) | 1990-10-09 | 2000-06-20 | Computer human method and system for the control and management of an airport |
US09/871,328 Abandoned US20030083804A1 (en) | 1990-10-09 | 2001-05-31 | Computer human methods for the control and management of an airport |
Country Status (1)
Country | Link |
---|---|
US (4) | US6195609B1 (en) |
Cited By (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030009280A1 (en) * | 2001-01-05 | 2003-01-09 | Alcatel | Navigation method and navigation system |
US20030023595A1 (en) * | 2001-06-12 | 2003-01-30 | Carlbom Ingrid Birgitta | Method and apparatus for retrieving multimedia data through spatio-temporal activity maps |
US20040083035A1 (en) * | 1996-09-25 | 2004-04-29 | Ellis Christ G. | Apparatus and method for automatic vision enhancement in a traffic complex |
US20040222916A1 (en) * | 1999-03-05 | 2004-11-11 | Smith Alexander E. | Minimum safe altitude warning |
US20040245408A1 (en) * | 2003-03-19 | 2004-12-09 | Airbus France | Method and device to assist in the piloting of an aircraft in a non-precision approach during a landing phase |
US20050007272A1 (en) * | 2000-02-29 | 2005-01-13 | Smith Alexander E. | Correlation of flight track data with other data sources |
US20050131639A1 (en) * | 2003-12-11 | 2005-06-16 | International Business Machines Corporation | Methods, systems, and media for providing a location-based service |
WO2006087276A1 (en) * | 2005-02-18 | 2006-08-24 | Thales | Onboard device for managing data exchanged by an aircraft with the ground or other aircraft |
WO2006117437A1 (en) * | 2005-04-29 | 2006-11-09 | Tracker Oy | Method for displaying objects to be positioned on a display of a positioning device, a positioning device and an application |
WO2006135923A2 (en) * | 2005-06-10 | 2006-12-21 | Aviation Communication & Surveillance Systems Llc | System and method for enhancing situational awareness of an aircraft on the ground |
FR2888363A1 (en) * | 2005-07-07 | 2007-01-12 | Frederic Aberlenc | Observation terminal e.g. telephone, for monitoring system, has cartographic memory with information to identify monitoring zones as authorized/prohibited zones, and microcontroller verifying if geographical marks appear in prohibited zones |
US20070016369A1 (en) * | 2005-07-14 | 2007-01-18 | Murata Kikai Kabushiki Kaisha | Guided vehicle system and travel route map creation method for guided vehicle system |
US20070040734A1 (en) * | 1999-03-05 | 2007-02-22 | Evers Carl A | Method and system for elliptical-based surveillance |
US20070078592A1 (en) * | 2005-09-30 | 2007-04-05 | Hugues Meunier | Method and device for evaluating the licitness of the situation of a craft on the surface of an airport |
US20070083302A1 (en) * | 2005-10-07 | 2007-04-12 | Delemarre Louis C | Object locating arrangements, and in particular, aircraft geometric height measurement arrangements |
WO2007048237A1 (en) * | 2005-10-27 | 2007-05-03 | Marcia Consulting Ltd. | System and method for use in air traffic management |
DE102005053499A1 (en) * | 2005-11-09 | 2007-05-24 | Siemens Ag | Method, arrangement and control device for navigating aircraft and ground vehicles using satellite-based positioning |
US20070150124A1 (en) * | 2005-12-22 | 2007-06-28 | Patrick Wipplinger | Methods and systems for displaying enroute moving maps |
US20070159378A1 (en) * | 2005-09-28 | 2007-07-12 | Powers Stanley J | Methods and apparatus for radar time sensor |
US20070241904A1 (en) * | 2006-03-28 | 2007-10-18 | Tomohiro Ozaki | RFID tag distance measuring system and reader |
US20070299598A1 (en) * | 2006-06-08 | 2007-12-27 | Airbus France | Method and device for assisting in the navigation of an airplane on the ground at an airport |
US20080004756A1 (en) * | 2006-06-02 | 2008-01-03 | Innovative Solutions & Support, Inc. | Method and apparatus for display of current aircraft position and operating parameters on a graphically-imaged chart |
US7337063B1 (en) * | 2003-12-16 | 2008-02-26 | Garmin International, Inc. | Method and system for using database and GPS data to linearize VOR and ILS navigation data |
EP1903351A1 (en) | 2006-09-21 | 2008-03-26 | Deere & Company | System and method for providing authorization to use corrections provided by an RTK base station |
US20080109163A1 (en) * | 2006-06-12 | 2008-05-08 | Stone Cyro A | Systems and methods for providing aircraft runway guidance |
US20080125960A1 (en) * | 2006-11-29 | 2008-05-29 | Patrick Ralf Wipplinger | System and method for terminal charts, airport maps and aeronautical context display |
WO2008065658A1 (en) * | 2006-11-28 | 2008-06-05 | Israel Aerospace Industries Ltd. | Aircraft anti-collision system and method |
US20080140727A1 (en) * | 2006-12-07 | 2008-06-12 | Karl Christian Pschierer | Method and apparatus for managing geographic information system data |
CN100415606C (en) * | 2006-07-14 | 2008-09-03 | 深圳市伊爱多维科技有限公司 | Airport vehicle managing system and method |
US7428450B1 (en) * | 2003-12-16 | 2008-09-23 | Garmin International, Inc | Method and system for using a database and GPS position data to generate bearing data |
US20080246652A1 (en) * | 2007-04-04 | 2008-10-09 | Scott Lewis | Gps pathfinder method and device |
EP1995708A1 (en) * | 2007-05-23 | 2008-11-26 | Honeywell International Inc. | Methods and systems for detecting a potential conflict between aircraft on an airport surface |
US20080312942A1 (en) * | 2007-06-15 | 2008-12-18 | Suresh Katta | Method and system for displaying predictions on a spatial map |
US20080313129A1 (en) * | 2007-06-13 | 2008-12-18 | Christian Pschierer | Method and apparatus for enhancing a geographic information system database with operational data |
WO2009000732A2 (en) * | 2007-06-25 | 2008-12-31 | Siemens Aktiengesellschaft | Method and system to improve accuracy when determining a position |
US20090005960A1 (en) * | 2005-12-23 | 2009-01-01 | Alison Laura Udal Roberts | Air Traffic Control |
US20090012661A1 (en) * | 2005-12-02 | 2009-01-08 | Thales | Device and method for changing the zones prohibited to an aircraft |
US20090015663A1 (en) * | 2005-12-22 | 2009-01-15 | Dietmar Doettling | Method and system for configuring a monitoring device for monitoring a spatial area |
US20090182587A1 (en) * | 2007-04-04 | 2009-07-16 | Scott Lewis | GPS Pathfinder Cell Phone And Method |
US20090322598A1 (en) * | 2008-06-26 | 2009-12-31 | Honeywell International, Inc. | Integrity of differential gps corrections in navigation devices using military type gps receivers |
US7667647B2 (en) | 1999-03-05 | 2010-02-23 | Era Systems Corporation | Extension of aircraft tracking and positive identification from movement areas into non-movement areas |
US7739167B2 (en) | 1999-03-05 | 2010-06-15 | Era Systems Corporation | Automated management of airport revenues |
US20100198489A1 (en) * | 2009-01-30 | 2010-08-05 | David Rozovski | Systems and method for managing airport ground traffic |
US7777675B2 (en) | 1999-03-05 | 2010-08-17 | Era Systems Corporation | Deployable passive broadband aircraft tracking |
US7782256B2 (en) | 1999-03-05 | 2010-08-24 | Era Systems Corporation | Enhanced passive coherent location techniques to track and identify UAVs, UCAVs, MAVs, and other objects |
US20100231721A1 (en) * | 2007-11-30 | 2010-09-16 | Searidge Technologies Inc. | Airport target tracking system |
US20100256840A1 (en) * | 2006-05-22 | 2010-10-07 | Call Curtis J | Methods and systems for radar aided aircraft positioning for approaches and landings |
US20100312461A1 (en) * | 2009-06-08 | 2010-12-09 | Haynie Michael B | System and method for vitally determining position and position uncertainty of a railroad vehicle employing diverse sensors including a global positioning system sensor |
US20110010026A1 (en) * | 2009-07-13 | 2011-01-13 | Utah State University | Calibration Method for Aerial Vehicles |
US20110032124A1 (en) * | 2009-08-10 | 2011-02-10 | John Baskin | Taxiway aircraft location monitoring system |
US7889133B2 (en) | 1999-03-05 | 2011-02-15 | Itt Manufacturing Enterprises, Inc. | Multilateration enhancements for noise and operations management |
US7908077B2 (en) | 2003-06-10 | 2011-03-15 | Itt Manufacturing Enterprises, Inc. | Land use compatibility planning software |
EP1988365A3 (en) * | 2007-05-04 | 2011-06-08 | The Boeing Company | Methods and systems for displaying airport moving map information |
US7965227B2 (en) | 2006-05-08 | 2011-06-21 | Era Systems, Inc. | Aircraft tracking using low cost tagging as a discriminator |
US8072382B2 (en) | 1999-03-05 | 2011-12-06 | Sra International, Inc. | Method and apparatus for ADS-B validation, active and passive multilateration, and elliptical surveillance |
US20120136562A1 (en) * | 2010-11-30 | 2012-05-31 | Airbus Operations (S.A.S.) | Method And System For Aiding The Taxiing Of An Aircraft On An Airport Domain |
US8203486B1 (en) | 1999-03-05 | 2012-06-19 | Omnipol A.S. | Transmitter independent techniques to extend the performance of passive coherent location |
US20120245836A1 (en) * | 2010-07-15 | 2012-09-27 | Thomas White | System and Method for Airport Surface Management |
US20120303252A1 (en) * | 2011-05-27 | 2012-11-29 | Avidyne Corporation | Database augmented surveillance |
US20130036376A1 (en) * | 2011-08-02 | 2013-02-07 | The Boeing Company | Management System for Aeronautical Information |
US20130033396A1 (en) * | 2011-08-05 | 2013-02-07 | Chen Lien-Wu | Positioning method for long-thin fleet |
RU2476897C2 (en) * | 2011-02-15 | 2013-02-27 | Тимур Георгиевич Келин | Method of controlling data receiving and transmitting devices in navigation receiver and device for realising said method |
US8417448B1 (en) | 2010-04-14 | 2013-04-09 | Jason Adam Denise | Electronic direction technology |
US20130090842A1 (en) * | 2011-10-08 | 2013-04-11 | James R. Stabile | Energy Resource Geographical Overlay |
US8446321B2 (en) | 1999-03-05 | 2013-05-21 | Omnipol A.S. | Deployable intelligence and tracking system for homeland security and search and rescue |
RU2500990C1 (en) * | 2012-06-05 | 2013-12-10 | Открытое акционерное общество "Завод им. В.А. Дегтярева" | Method for automated generation of local geodetic networks of high class of accuracy |
US8645056B2 (en) | 2006-11-29 | 2014-02-04 | The Boeing Company | System and method for electronic moving map and aeronautical context display |
US20140074324A1 (en) * | 2012-09-12 | 2014-03-13 | Honeywell International Inc. | Methods and systems for indicating whether an aircraft is within distance and altitude criteria for an ifr procedure turn |
US8712609B2 (en) * | 2012-05-14 | 2014-04-29 | Honeywell International Inc. | Methods and systems for representing missed approach information in perspective view on a cockpit display |
US8788128B1 (en) * | 2008-08-01 | 2014-07-22 | Rockwell Collins, Inc. | Precision navigation for landing |
WO2014189561A1 (en) * | 2013-04-09 | 2014-11-27 | Raytheon Company | Coherent aggregation from multiple diverse sources on a single display |
US8930458B2 (en) | 2007-04-04 | 2015-01-06 | Pathfinders International, Llc | GPS pathfinder cell phone and method |
US9002944B2 (en) | 2007-04-04 | 2015-04-07 | Pathfinders International, Llc | Virtual badge, device and method |
US20150187232A1 (en) * | 2012-07-31 | 2015-07-02 | Google Inc. | System and method for displaying real-time flight information on an airport map |
US9141113B1 (en) | 2012-04-26 | 2015-09-22 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Probabilistic surface characterization for safe landing hazard detection and avoidance (HDA) |
US20150277441A1 (en) * | 2014-03-25 | 2015-10-01 | The Boeing Company | Method for Controlling Aircraft Time of Arrival |
US9189964B1 (en) * | 2009-02-03 | 2015-11-17 | Rockwell Collins, Inc. | System, module, and method for presenting runway traffic information |
US9202380B1 (en) * | 2011-09-27 | 2015-12-01 | Rockwell Collins Inc. | System and method for electronically recording a taxi clearance on an aircraft display unit |
US20160086496A1 (en) * | 2014-09-23 | 2016-03-24 | Raytheon Company | Runway incursion detection and indication using an electronic flight strip system |
US9470528B1 (en) * | 2015-03-26 | 2016-10-18 | Honeywell International Inc. | Aircraft synthetic vision systems utilizing data from local area augmentation systems, and methods for operating such aircraft synthetic vision systems |
US20170329019A1 (en) * | 2016-05-12 | 2017-11-16 | GM Global Technology Operations LLC | Gnss vehicle location involving overlapping roads |
US9886040B1 (en) * | 2014-09-24 | 2018-02-06 | Rockwell Collins, Inc. | System and method for platform alignment, navigation or targeting |
US20180040252A1 (en) * | 2016-08-05 | 2018-02-08 | Honeywell International Inc. | Monitor and control of surface traffic at airport |
US20180218620A1 (en) * | 2017-02-01 | 2018-08-02 | Honeywell International Inc. | Air traffic control flight management |
EP3444791A2 (en) | 2017-08-13 | 2019-02-20 | IATAS Automatic Air Traffic Control Ltd | System and methods for automated airport air traffic control services |
GB2580787A (en) * | 2018-12-20 | 2020-07-29 | Bosch Gmbh Robert | Method of identifying a UERE, method of determining a UERE, computer-implemented data structure, use, device and computer-implemented program |
US20220084414A1 (en) * | 2019-01-08 | 2022-03-17 | Suzhou Eavision Robotic Technologies Co., Ltd. | Aircraft operation path planning method, control device and control equipment |
KR20220123705A (en) | 2020-02-05 | 2022-09-08 | 지.케이. 싸우전즈 | Aircraft landing guidance support system and aircraft landing integrated support system including the same |
Families Citing this family (244)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5943140A (en) | 1997-03-14 | 1999-08-24 | Monroe; David | Method and apparatus for sending and receiving facsimile transmissions over a non-telephonic transmission system |
US6636748B2 (en) * | 1998-01-12 | 2003-10-21 | David A. Monroe | Method and apparatus for image capture, compression and transmission of a visual image over telephone or radio transmission system |
CA2341161A1 (en) * | 1998-01-12 | 1999-07-15 | Raytheon Company | Apparatus and method for selection of circuit in multi-circuit communications device |
AU2223999A (en) * | 1998-01-12 | 1999-07-26 | David Monroe | Apparatus for capturing, converting and transmitting a visual image signal via adigital transmission system |
US6448929B1 (en) | 1998-07-14 | 2002-09-10 | Rannoch Corporation | Method and apparatus for correlating flight identification data with secondary surveillance radar data |
US7428002B2 (en) * | 2002-06-05 | 2008-09-23 | Monroe David A | Emergency telephone with integrated surveillance system connectivity |
US7023913B1 (en) * | 2000-06-14 | 2006-04-04 | Monroe David A | Digital security multimedia sensor |
US6853302B2 (en) * | 2001-10-10 | 2005-02-08 | David A. Monroe | Networked personal security system |
US7197228B1 (en) | 1998-08-28 | 2007-03-27 | Monroe David A | Multifunction remote control system for audio and video recording, capture, transmission and playback of full motion and still images |
US20030061325A1 (en) * | 2001-09-21 | 2003-03-27 | Monroe David A. | Method and apparatus for interconnectivity between legacy security systems and networked multimedia security surveillance system |
US7131136B2 (en) * | 2002-07-10 | 2006-10-31 | E-Watch, Inc. | Comprehensive multi-media surveillance and response system for aircraft, operations centers, airports and other commercial transports, centers and terminals |
US20040068583A1 (en) * | 2002-10-08 | 2004-04-08 | Monroe David A. | Enhanced apparatus and method for collecting, distributing and archiving high resolution images |
US20030202101A1 (en) * | 2002-04-29 | 2003-10-30 | Monroe David A. | Method for accessing and controlling a remote camera in a networked system with multiple user support capability and integration to other sensor systems |
US7228429B2 (en) * | 2001-09-21 | 2007-06-05 | E-Watch | Multimedia network appliances for security and surveillance applications |
US7634662B2 (en) * | 2002-11-21 | 2009-12-15 | Monroe David A | Method for incorporating facial recognition technology in a multimedia surveillance system |
US7057647B1 (en) * | 2000-06-14 | 2006-06-06 | E-Watch, Inc. | Dual-mode camera system for day/night or variable zoom operation |
US20080201505A1 (en) * | 2003-01-08 | 2008-08-21 | Monroe David A | Multimedia data collection device for a host with a single available input port |
US20030025599A1 (en) * | 2001-05-11 | 2003-02-06 | Monroe David A. | Method and apparatus for collecting, sending, archiving and retrieving motion video and still images and notification of detected events |
US20030067542A1 (en) | 2000-10-13 | 2003-04-10 | Monroe David A. | Apparatus for and method of collecting and distributing event data to strategic security personnel and response vehicles |
US20020170064A1 (en) * | 2001-05-11 | 2002-11-14 | Monroe David A. | Portable, wireless monitoring and control station for use in connection with a multi-media surveillance system having enhanced notification functions |
US20020097322A1 (en) * | 2000-11-29 | 2002-07-25 | Monroe David A. | Multiple video display configurations and remote control of multiple video signals transmitted to a monitoring station over a network |
US7576770B2 (en) * | 2003-02-11 | 2009-08-18 | Raymond Metzger | System for a plurality of video cameras disposed on a common network |
JP2000098880A (en) * | 1998-09-28 | 2000-04-07 | Casio Comput Co Ltd | Position display controller, position display control method, and recording medium |
US6545601B1 (en) | 1999-02-25 | 2003-04-08 | David A. Monroe | Ground based security surveillance system for aircraft and other commercial vehicles |
US6518881B2 (en) * | 1999-02-25 | 2003-02-11 | David A. Monroe | Digital communication system for law enforcement use |
US7576695B2 (en) * | 1999-03-05 | 2009-08-18 | Era Systems Corporation | Multilateration enhancements for noise and operations management |
US20100079342A1 (en) * | 1999-03-05 | 2010-04-01 | Smith Alexander E | Multilateration enhancements for noise and operations management |
US6992626B2 (en) * | 1999-03-05 | 2006-01-31 | Rannoch Corporation | Method and apparatus to correlate aircraft flight tracks and events with relevant airport operations information |
US7423590B2 (en) | 1999-03-05 | 2008-09-09 | Era Systems Corporation | Method and apparatus for improving ADS-B security |
US7495612B2 (en) | 1999-03-05 | 2009-02-24 | Era Systems Corporation | Method and apparatus to improve ADS-B security |
US6812890B2 (en) | 2000-02-29 | 2004-11-02 | Rannoch Corporation | Voice recognition landing fee billing system |
US7429950B2 (en) | 1999-03-05 | 2008-09-30 | Era Systems Corporation | Method and apparatus to extend ADS performance metrics |
US7437250B2 (en) | 1999-03-05 | 2008-10-14 | Era Systems Corporation | Airport pavement management system |
US7132982B2 (en) | 1999-03-05 | 2006-11-07 | Rannock Corporation | Method and apparatus for accurate aircraft and vehicle tracking |
US7612716B2 (en) * | 1999-03-05 | 2009-11-03 | Era Systems Corporation | Correlation of flight track data with other data sources |
US7375683B2 (en) * | 1999-03-05 | 2008-05-20 | Era Systems Corporation | Use of geo-stationary satellites to augment wide— area multilateration synchronization |
US6633259B1 (en) | 1999-03-05 | 2003-10-14 | Rannuch Corporation | Method and apparatus for improving utility of automatic dependent surveillance |
US6567395B1 (en) * | 1999-03-10 | 2003-05-20 | Rockwell Collins, Inc. | Display for a high frequency (HF) radio |
US6463383B1 (en) * | 1999-04-16 | 2002-10-08 | R. Michael Baiada | Method and system for aircraft flow management by airlines/aviation authorities |
US6307573B1 (en) * | 1999-07-22 | 2001-10-23 | Barbara L. Barros | Graphic-information flow method and system for visually analyzing patterns and relationships |
US6461872B1 (en) * | 1999-11-17 | 2002-10-08 | General Electric Company | Poly(1,4-ethylene-2-piperazone) composition, method for production of a poly(1,4-ethylene-2-piperazone) composition, TCE-detecting method and sensor |
US7535404B2 (en) * | 1999-11-25 | 2009-05-19 | Nigel Corrigan | Airport safety system |
US6868421B1 (en) * | 1999-11-27 | 2005-03-15 | Ching-Fang Lin | Method of converting geospatial database into compressive database for multiple dimensional data storage |
US7243074B1 (en) | 1999-12-30 | 2007-07-10 | General Electric Company | Capacity monitoring process for a goods delivery system |
US20060063752A1 (en) * | 2000-03-14 | 2006-03-23 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Bicyclic heterocycles, pharmaceutical compositions containing them, their use, and processes for preparing them |
US6456234B1 (en) | 2000-06-07 | 2002-09-24 | William J. Johnson | System and method for proactive content delivery by situation location |
US8489669B2 (en) | 2000-06-07 | 2013-07-16 | Apple Inc. | Mobile data processing system moving interest radius |
US8060389B2 (en) * | 2000-06-07 | 2011-11-15 | Apple Inc. | System and method for anonymous location based services |
US6728637B2 (en) * | 2000-06-23 | 2004-04-27 | Sportvision, Inc. | Track model constraint for GPS position |
US6545631B2 (en) * | 2000-10-17 | 2003-04-08 | United Parcel Service Of America, Inc. | Integrated datalinks in a surveillance receiver |
US7839926B1 (en) | 2000-11-17 | 2010-11-23 | Metzger Raymond R | Bandwidth management and control |
US20070107029A1 (en) * | 2000-11-17 | 2007-05-10 | E-Watch Inc. | Multiple Video Display Configurations & Bandwidth Conservation Scheme for Transmitting Video Over a Network |
EP1389324A2 (en) * | 2001-02-27 | 2004-02-18 | Honeywell International Inc. | Terrain information server |
US7117089B2 (en) * | 2001-03-06 | 2006-10-03 | Honeywell International Inc. | Ground runway awareness and advisory system |
US7587278B2 (en) * | 2002-05-15 | 2009-09-08 | Honeywell International Inc. | Ground operations and advanced runway awareness and advisory system |
US8145367B2 (en) | 2001-03-06 | 2012-03-27 | Honeywell International Inc. | Closed airport surface alerting system |
US7702461B2 (en) | 2001-03-06 | 2010-04-20 | Honeywell International Inc. | Ground operations and imminent landing runway selection |
US7853404B2 (en) * | 2001-04-03 | 2010-12-14 | Mitac International Corporation | Vehicle docking station for portable handheld computing device |
US7102540B2 (en) * | 2001-05-03 | 2006-09-05 | Siemens Airfield Solutions, Inc. | Remote access of an airport airfield lighting system |
US6791474B2 (en) | 2001-08-30 | 2004-09-14 | Honeywell International Inc. | Magnetic checkpoint |
US6606553B2 (en) * | 2001-10-19 | 2003-08-12 | The Mitre Corporation | Traffic flow management method and system for weather problem resolution |
US6731226B2 (en) * | 2001-12-04 | 2004-05-04 | Smiths Aerospace, Inc. | Airport feature display system and data interchange method for conformal display |
US6789010B2 (en) | 2001-12-04 | 2004-09-07 | Smiths Aerospace, Inc. | Airport map display system and data interchange method |
US6862519B2 (en) * | 2001-12-04 | 2005-03-01 | Smiths Aerospace, Inc. | Airport map system with compact feature data storage |
US6748325B1 (en) | 2001-12-07 | 2004-06-08 | Iwao Fujisaki | Navigation system |
ATE417247T1 (en) * | 2002-02-19 | 2008-12-15 | Jeppesen Sanderson Inc | AIRPORT TOLLWAY NAVIGATION SYSTEM |
US20040217228A1 (en) * | 2002-03-14 | 2004-11-04 | Dimensions International Inc. | Data transfer system |
US7099341B2 (en) * | 2002-05-03 | 2006-08-29 | International Business Machines Corporation | Traffic routing management system using the open shortest path first algorithm |
US20040059474A1 (en) * | 2002-09-20 | 2004-03-25 | Boorman Daniel J. | Apparatuses and methods for displaying autoflight information |
US6876926B2 (en) * | 2002-09-26 | 2005-04-05 | Honeywell International Inc. | Method and system for processing pulse signals within an inertial navigation system |
GB0222692D0 (en) * | 2002-10-01 | 2002-11-06 | Roke Manor Research | Autonomous vehicle guidance on or near airports |
US6816169B2 (en) * | 2002-10-09 | 2004-11-09 | Evans & Sutherland Computer Corporation | System and method for run-time integration of an inset geometry into a background geometry |
US20040078136A1 (en) * | 2002-10-22 | 2004-04-22 | Cornell Bradley D. | Tailored trajectory generation system and method |
US7634334B2 (en) * | 2002-11-22 | 2009-12-15 | Monroe David A | Record and playback system for aircraft |
US7781172B2 (en) * | 2003-11-21 | 2010-08-24 | Kimberly-Clark Worldwide, Inc. | Method for extending the dynamic detection range of assay devices |
US7643168B2 (en) * | 2003-01-03 | 2010-01-05 | Monroe David A | Apparatus for capturing, converting and transmitting a visual image signal via a digital transmission system |
US6927701B2 (en) * | 2003-01-29 | 2005-08-09 | Architecture Technology Corporation | Runway occupancy monitoring and warning |
US6718236B1 (en) | 2003-04-29 | 2004-04-06 | The Mitre Corporation | Method for conducting a moving vehicle along a trajectory of a coordinated maneuver based on state information broadcast by other vehicles participating in the coordinated maneuver |
US6950037B1 (en) * | 2003-05-06 | 2005-09-27 | Sensis Corporation | Smart airport automation system |
US20050090969A1 (en) * | 2003-10-22 | 2005-04-28 | Arinc Incorporation | Systems and methods for managing airport operations |
US7231294B2 (en) * | 2003-10-23 | 2007-06-12 | International Business Machines Corporation | Navigating a UAV |
US20070138347A1 (en) * | 2004-12-16 | 2007-06-21 | Ehlers Gregory A | System and method for providing information to an operator of a vehicle |
US7188007B2 (en) * | 2003-12-24 | 2007-03-06 | The Boeing Company | Apparatuses and methods for displaying and receiving tactical and strategic flight guidance information |
US7109889B2 (en) * | 2004-03-01 | 2006-09-19 | Honeywell International Inc. | Methods and apparatus for surface movement situation awareness |
US7308048B2 (en) * | 2004-03-09 | 2007-12-11 | Rambus Inc. | System and method for selecting optimal data transition types for clock and data recovery |
US7751947B2 (en) | 2004-03-31 | 2010-07-06 | The Boeing Company | Methods and systems for displaying assistance messages to aircraft operators |
US7586438B1 (en) * | 2004-04-19 | 2009-09-08 | Novariant Inc. | Navigation with satellite communications |
US7222017B2 (en) | 2004-06-17 | 2007-05-22 | The Boeing Company | Method and system for entering and displaying ground taxi instructions |
IL169408A (en) | 2004-06-28 | 2010-02-17 | Northrop Grumman Corp | System for navigation redundancy |
US7228227B2 (en) * | 2004-07-07 | 2007-06-05 | The Boeing Company | Bezier curve flightpath guidance using moving waypoints |
US7970639B2 (en) * | 2004-08-20 | 2011-06-28 | Mark A Vucina | Project management systems and methods |
AR048477A1 (en) * | 2004-11-19 | 2006-05-03 | Alusud Argentina S R L | PICO VERTEDOR OF THE TYPE EMPLOYED IN BOTTLES CONTAINERS OF LIQUID SUBSTANCES WITH VARIABLE VISCOSITY DEGREE |
US7805473B2 (en) * | 2005-03-23 | 2010-09-28 | Oracle International Corporation | Data center management systems and methods |
US8370054B2 (en) * | 2005-03-24 | 2013-02-05 | Google Inc. | User location driven identification of service vehicles |
US7353034B2 (en) | 2005-04-04 | 2008-04-01 | X One, Inc. | Location sharing and tracking using mobile phones or other wireless devices |
FR2884953B1 (en) * | 2005-04-22 | 2007-07-06 | Thales Sa | METHOD AND AIRBORNE DEVICE FOR AIRCRAFT, TRACK INCURSION ALERT |
US7496445B2 (en) * | 2005-04-27 | 2009-02-24 | Proxemics, Llc | Wayfinding |
US20070090972A1 (en) * | 2005-06-10 | 2007-04-26 | Monroe David A | Airborne digital video recorder |
DE112006001864T5 (en) * | 2005-07-14 | 2008-06-05 | GM Global Technology Operations, Inc., Detroit | System for monitoring the vehicle environment from a remote perspective |
US7908078B2 (en) * | 2005-10-13 | 2011-03-15 | Honeywell International Inc. | Perspective-view visual runway awareness and advisory display |
US7501981B2 (en) * | 2005-11-18 | 2009-03-10 | Texas Instruments Incorporated | Methods and apparatus to detect and correct integrity failures in satellite positioning system receivers |
US7953526B2 (en) * | 2006-01-18 | 2011-05-31 | I-Guide Robotics, Inc. | Robotic vehicle controller |
US8239083B2 (en) * | 2006-01-18 | 2012-08-07 | I-Guide Robotics, Inc. | Robotic vehicle controller |
US7801649B2 (en) * | 2006-02-28 | 2010-09-21 | Honeywell International Inc. | Predicted path selection system and method for hazard coding in selectively constrained aircraft control systems |
US20070222665A1 (en) * | 2006-03-07 | 2007-09-27 | Koeneman Robert L | Airborne Situational Awareness System |
US7957853B2 (en) * | 2006-06-13 | 2011-06-07 | The Mitre Corporation | Flight restriction zone detection and avoidance |
US8072482B2 (en) | 2006-11-09 | 2011-12-06 | Innovative Signal Anlysis | Imaging system having a rotatable image-directing device |
WO2008060605A2 (en) * | 2006-11-17 | 2008-05-22 | Raytheon Company | Methods and apparatus to contact aircraft |
US7979200B2 (en) * | 2006-11-20 | 2011-07-12 | Lockheed Martin Corporation | Managing an air-ground communications network with air traffic control information |
CN101617354A (en) | 2006-12-12 | 2009-12-30 | 埃文斯和萨瑟兰计算机公司 | Be used for calibrating the system and method for the rgb light of single modulator projector |
US20080167083A1 (en) * | 2007-01-07 | 2008-07-10 | Wyld Jeremy A | Method, Device, and Graphical User Interface for Location-Based Dialing |
US7847722B2 (en) * | 2007-01-26 | 2010-12-07 | Kabushiki Kaisha Toshiba | Secondary surveillance radar and method of analyzing replies for secondary surveillance radar |
US7479919B2 (en) * | 2007-02-07 | 2009-01-20 | Honeywell International Inc. | Surface vehicle transponder |
WO2009025907A2 (en) * | 2007-05-31 | 2009-02-26 | Raytheon Company | Methods and apparatus for coordinating ads-b with mode s ssr and/or having single link communication |
FR2917222B1 (en) * | 2007-06-05 | 2009-10-30 | Thales Sa | COLLISION PREVENTION DEVICE AND METHOD FOR A GROUND VEHICLE |
US20080316057A1 (en) * | 2007-06-19 | 2008-12-25 | Honeywell International Inc. | Method for automated standby message response to reduce pilot and air traffic controller workload |
US8571586B2 (en) * | 2007-06-19 | 2013-10-29 | Honeywell International Inc. | Method for automatic standby response to reduce pilot workload |
US8180379B2 (en) | 2007-06-28 | 2012-05-15 | Apple Inc. | Synchronizing mobile and vehicle devices |
US8332402B2 (en) * | 2007-06-28 | 2012-12-11 | Apple Inc. | Location based media items |
US8463238B2 (en) * | 2007-06-28 | 2013-06-11 | Apple Inc. | Mobile device base station |
US8290513B2 (en) | 2007-06-28 | 2012-10-16 | Apple Inc. | Location-based services |
US8275352B2 (en) * | 2007-06-28 | 2012-09-25 | Apple Inc. | Location-based emergency information |
US8108144B2 (en) | 2007-06-28 | 2012-01-31 | Apple Inc. | Location based tracking |
US8175802B2 (en) * | 2007-06-28 | 2012-05-08 | Apple Inc. | Adaptive route guidance based on preferences |
US9109904B2 (en) * | 2007-06-28 | 2015-08-18 | Apple Inc. | Integration of map services and user applications in a mobile device |
US8311526B2 (en) | 2007-06-28 | 2012-11-13 | Apple Inc. | Location-based categorical information services |
US8762056B2 (en) * | 2007-06-28 | 2014-06-24 | Apple Inc. | Route reference |
US20090005018A1 (en) * | 2007-06-28 | 2009-01-01 | Apple Inc. | Route Sharing and Location |
US8204684B2 (en) * | 2007-06-28 | 2012-06-19 | Apple Inc. | Adaptive mobile device navigation |
US9066199B2 (en) | 2007-06-28 | 2015-06-23 | Apple Inc. | Location-aware mobile device |
US20090005076A1 (en) * | 2007-06-28 | 2009-01-01 | Scott Forstall | Location-Based Information Services |
US8385946B2 (en) | 2007-06-28 | 2013-02-26 | Apple Inc. | Disfavored route progressions or locations |
US8774825B2 (en) * | 2007-06-28 | 2014-07-08 | Apple Inc. | Integration of map services with user applications in a mobile device |
US8428793B2 (en) * | 2007-07-31 | 2013-04-23 | Honeywell International Inc. | Automatic downlink messaging during emergency flight situations |
US8127246B2 (en) * | 2007-10-01 | 2012-02-28 | Apple Inc. | Varying user interface element based on movement |
US8977294B2 (en) * | 2007-10-10 | 2015-03-10 | Apple Inc. | Securely locating a device |
US20090118997A1 (en) * | 2007-11-02 | 2009-05-07 | Government Of The United States | Integrated flight data interface for airport traffic control towers |
US20090143968A1 (en) * | 2007-11-29 | 2009-06-04 | Government Of The United States | Perceptual-Spatial Electronic Flight Data Interface for airport traffic control towers |
US8355862B2 (en) * | 2008-01-06 | 2013-01-15 | Apple Inc. | Graphical user interface for presenting location information |
US8452529B2 (en) * | 2008-01-10 | 2013-05-28 | Apple Inc. | Adaptive navigation system for estimating travel times |
US20090195401A1 (en) * | 2008-01-31 | 2009-08-06 | Andrew Maroney | Apparatus and method for surveillance system using sensor arrays |
WO2009122587A1 (en) * | 2008-04-04 | 2009-10-08 | 株式会社ザナヴィ・インフォマティクス | Map display |
US9465097B2 (en) | 2008-04-17 | 2016-10-11 | Aviation Communication & Surveillance Systems Llc | Systems and methods for providing ADS-B mode control through data overlay |
US8718928B2 (en) * | 2008-04-23 | 2014-05-06 | Verizon Patent And Licensing Inc. | Traffic monitoring systems and methods |
US20090326815A1 (en) * | 2008-05-02 | 2009-12-31 | Apple Inc. | Position Fix Indicator |
US9250092B2 (en) | 2008-05-12 | 2016-02-02 | Apple Inc. | Map service with network-based query for search |
US8644843B2 (en) | 2008-05-16 | 2014-02-04 | Apple Inc. | Location determination |
US8358317B2 (en) | 2008-05-23 | 2013-01-22 | Evans & Sutherland Computer Corporation | System and method for displaying a planar image on a curved surface |
US8180562B2 (en) | 2008-06-04 | 2012-05-15 | The Boeing Company | System and method for taxi route entry parsing |
US8702248B1 (en) | 2008-06-11 | 2014-04-22 | Evans & Sutherland Computer Corporation | Projection method for reducing interpixel gaps on a viewing surface |
US8369867B2 (en) * | 2008-06-30 | 2013-02-05 | Apple Inc. | Location sharing |
FR2935524B1 (en) * | 2008-08-29 | 2010-10-01 | Thales Sa | DEVICE AND METHOD FOR MONITORING THE LOCATION OF GROUND AIRCRAFT |
US8359643B2 (en) * | 2008-09-18 | 2013-01-22 | Apple Inc. | Group formation using anonymous broadcast information |
US8077378B1 (en) | 2008-11-12 | 2011-12-13 | Evans & Sutherland Computer Corporation | Calibration system and method for light modulation device |
US20100161158A1 (en) * | 2008-12-18 | 2010-06-24 | Honeywell International Inc. | Systems and methods for enhancing terrain elevation awareness |
US8284043B2 (en) * | 2009-01-23 | 2012-10-09 | Honeywell International Inc. | Method of formulating response to expired timer for data link message |
US8666367B2 (en) * | 2009-05-01 | 2014-03-04 | Apple Inc. | Remotely locating and commanding a mobile device |
US8660530B2 (en) * | 2009-05-01 | 2014-02-25 | Apple Inc. | Remotely receiving and communicating commands to a mobile device for execution by the mobile device |
US8670748B2 (en) * | 2009-05-01 | 2014-03-11 | Apple Inc. | Remotely locating and commanding a mobile device |
US8305208B2 (en) * | 2009-05-04 | 2012-11-06 | Honeywell International Inc. | Aircraft uplink message response prompt |
US11482115B2 (en) * | 2009-05-06 | 2022-10-25 | Aviation Communiation & Surveillance Systems Llc | Systems and methods for providing optimal sequencing and spacing in an environment of potential wake vortices |
US8255097B1 (en) * | 2009-05-29 | 2012-08-28 | American Airlines, Inc. | System and method for managing maintenance activities |
US8386100B1 (en) * | 2009-06-16 | 2013-02-26 | The Boeing Company | Aircraft flight event data integration and visualization |
US20110035150A1 (en) * | 2009-08-07 | 2011-02-10 | Gm Global Technology Operations, Inc. | Simple technique for dynamic path planning and collision avoidance |
US8233919B2 (en) | 2009-08-09 | 2012-07-31 | Hntb Holdings Ltd. | Intelligently providing user-specific transportation-related information |
US8601402B1 (en) * | 2009-09-29 | 2013-12-03 | Rockwell Collins, Inc. | System for and method of interfacing with a three dimensional display |
US8600651B2 (en) * | 2009-11-24 | 2013-12-03 | The Boeing Company | Filtering of relevant traffic for display, enhancement, and/or alerting |
US9430923B2 (en) | 2009-11-30 | 2016-08-30 | Innovative Signal Analysis, Inc. | Moving object detection, tracking, and displaying systems |
US8515597B2 (en) * | 2009-12-10 | 2013-08-20 | The Boeing Company | Multiple transition RNP approach procedure |
US8886445B1 (en) * | 2010-03-05 | 2014-11-11 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Automatic aircraft collision avoidance system and method |
EP2559017A2 (en) * | 2010-04-12 | 2013-02-20 | Flight Focus Pte. Ltd. | Moving map display |
WO2011156027A1 (en) * | 2010-06-11 | 2011-12-15 | Sensis Corporation | Runway clearance advisor |
WO2011163454A1 (en) | 2010-06-25 | 2011-12-29 | Trimble Navigation Ltd. | Method and apparatus for image-based positioning |
US9008884B2 (en) | 2010-12-15 | 2015-04-14 | Symbotic Llc | Bot position sensing |
US10096073B2 (en) | 2011-05-13 | 2018-10-09 | The Climate Corporation | Systems to prescribe and deliver fertilizer over agricultural fields and related methods |
US10842144B2 (en) * | 2011-05-13 | 2020-11-24 | The Climate Corporation | Method and system to map biological pests in agricultural fields using remotely-sensed data for field scouting and targeted chemical application |
US8629787B1 (en) * | 2011-05-25 | 2014-01-14 | Rockwell Collins, Inc. | System, module, and method for presenting clearance-dependent advisory information in an aircraft |
US9146133B2 (en) * | 2011-06-06 | 2015-09-29 | Honeywell International Inc. | Methods and systems for displaying procedure information on an aircraft display |
US9134127B2 (en) | 2011-06-24 | 2015-09-15 | Trimble Navigation Limited | Determining tilt angle and tilt direction using image processing |
US9109889B2 (en) | 2011-06-24 | 2015-08-18 | Trimble Navigation Limited | Determining tilt angle and tilt direction using image processing |
US9146131B2 (en) | 2011-07-05 | 2015-09-29 | Aisin Aw Co., Ltd. | Evaluation indication system, evaluation indication method and computer-readable storage medium |
JP5724689B2 (en) * | 2011-07-05 | 2015-05-27 | アイシン・エィ・ダブリュ株式会社 | Navigation system, navigation method, and navigation program |
US9151630B2 (en) | 2011-07-05 | 2015-10-06 | Aisin Aw Co., Ltd. | Evaluation indication system, evaluation indication method and computer-readable storage medium |
TWI622540B (en) | 2011-09-09 | 2018-05-01 | 辛波提克有限責任公司 | Automated storage and retrieval system |
WO2013051047A1 (en) * | 2011-10-03 | 2013-04-11 | 古野電気株式会社 | Display device, display program, and display method |
US9641826B1 (en) | 2011-10-06 | 2017-05-02 | Evans & Sutherland Computer Corporation | System and method for displaying distant 3-D stereo on a dome surface |
US8736633B2 (en) | 2011-11-09 | 2014-05-27 | Honeywell International Inc. | Traffic symbology on airport moving map |
US8660783B2 (en) * | 2012-01-11 | 2014-02-25 | Honeywell International Inc. | Systems and methods for detecting ownship deviation from assigned taxiway clearance |
US9317983B2 (en) * | 2012-03-14 | 2016-04-19 | Autoconnect Holdings Llc | Automatic communication of damage and health in detected vehicle incidents |
SE536533C2 (en) | 2012-04-30 | 2014-02-04 | Fmt Int Trade Ab | Procedure for identifying an aircraft in connection with parking of the aircraft at a stand |
WO2013186989A1 (en) * | 2012-06-13 | 2013-12-19 | 日本電気株式会社 | Movement-measurement-processing system, movement-measurement-processing method, and movement-measurement-processing program |
US20140043188A1 (en) * | 2012-08-09 | 2014-02-13 | California Institute Of Technology | Global positioning system radiometric evaluation |
US9467814B2 (en) | 2012-12-28 | 2016-10-11 | Trimble Navigation Limited | Collecting external accessory data at a mobile data collection platform that obtains raw observables from an external GNSS raw observable provider |
US9488736B2 (en) | 2012-12-28 | 2016-11-08 | Trimble Navigation Limited | Locally measured movement smoothing of GNSS position fixes |
US9544737B2 (en) | 2012-12-28 | 2017-01-10 | Trimble Inc. | Performing data collection based on external raw observables using a mobile data collection platform |
US9462446B2 (en) | 2012-12-28 | 2016-10-04 | Trimble Navigation Limited | Collecting external accessory data at a mobile data collection platform that obtains raw observables from an internal chipset |
US9821999B2 (en) | 2012-12-28 | 2017-11-21 | Trimble Inc. | External GNSS receiver module with motion sensor suite for contextual inference of user activity |
US9903957B2 (en) | 2012-12-28 | 2018-02-27 | Trimble Inc. | Global navigation satellite system receiver system with radio frequency hardware component |
US9945959B2 (en) | 2012-12-28 | 2018-04-17 | Trimble Inc. | Global navigation satellite system receiver system with radio frequency hardware component |
US9177384B2 (en) | 2013-07-31 | 2015-11-03 | Trimble Navigation Limited | Sequential rolling bundle adjustment |
US9639941B2 (en) | 2012-12-28 | 2017-05-02 | Trimble Inc. | Scene documentation |
US9456067B2 (en) | 2012-12-28 | 2016-09-27 | Trimble Navigation Limited | External electronic distance measurement accessory for a mobile data collection platform |
US9835729B2 (en) | 2012-12-28 | 2017-12-05 | Trimble Inc. | Global navigation satellite system receiver system with radio frequency hardware component |
US10101465B2 (en) | 2012-12-28 | 2018-10-16 | Trimble Inc. | Electronic tape measure on a cellphone |
US9645248B2 (en) | 2012-12-28 | 2017-05-09 | Trimble Inc. | Vehicle-based global navigation satellite system receiver system with radio frequency hardware component |
US9538336B2 (en) | 2012-12-28 | 2017-01-03 | Trimble Inc. | Performing data collection based on internal raw observables using a mobile data collection platform |
WO2014115139A1 (en) * | 2013-01-23 | 2014-07-31 | Iatas (Automatic Air Traffic Control) Ltd | System and methods for automated airport air traffic control services |
US9092748B2 (en) * | 2013-02-21 | 2015-07-28 | Raythoen Company | System and method for connecting user actions on a touchscreen electronic flight strip system |
US9189824B2 (en) * | 2013-03-11 | 2015-11-17 | McFarland-Johnson, Inc. | Dynamic aviation planning tool |
WO2014156169A1 (en) * | 2013-03-29 | 2014-10-02 | 日本電気株式会社 | Air traffic control assistance system, air traffic control assistance method, and air traffic control assistance program |
US9262932B1 (en) * | 2013-04-05 | 2016-02-16 | Rockwell Collins, Inc. | Extended runway centerline systems and methods |
US9141107B2 (en) * | 2013-04-10 | 2015-09-22 | Google Inc. | Mapping active and inactive construction zones for autonomous driving |
US9266611B2 (en) * | 2013-06-20 | 2016-02-23 | University Of Florida Research Foundation, Inc. | Flight path development for remote sensing vehicles in a moving reference frame |
TWI547355B (en) | 2013-11-11 | 2016-09-01 | 財團法人工業技術研究院 | Safety monitoring system of human-machine symbiosis and method using the same |
EP2887277A1 (en) * | 2013-12-18 | 2015-06-24 | Thales Nederland B.V. | Method, system and computer program for decision support |
US20150212701A1 (en) * | 2014-01-30 | 2015-07-30 | Honeywell International Inc. | Systems and methods for displaying a datalink message log on a forward field-of-view display |
US9718558B2 (en) | 2014-02-26 | 2017-08-01 | Honeywell International Inc. | Pilot centered system and method for decluttering aircraft displays |
FR3019361B1 (en) * | 2014-03-28 | 2017-05-19 | Airbus Helicopters | METHOD FOR DETECTING AND VISUALIZING ARTIFICIAL OBSTACLES IN A ROTARY WING AIRCRAFT |
US9923626B2 (en) | 2014-06-13 | 2018-03-20 | Trimble Inc. | Mobile ionospheric data capture system |
US9396663B2 (en) * | 2014-07-14 | 2016-07-19 | The Boeing Company | Systems and methods of airport traffic control |
US10139819B2 (en) | 2014-08-22 | 2018-11-27 | Innovative Signal Analysis, Inc. | Video enabled inspection using unmanned aerial vehicles |
US20160086493A1 (en) * | 2014-09-18 | 2016-03-24 | Edgar Dennis McGehee, IV | Runway incursion prevention system and method |
US9818305B2 (en) * | 2015-09-18 | 2017-11-14 | The Boeing Company | Method and apparatus for monitoring compliance with a non-transgression zone between aircraft approach corridors |
US9706242B2 (en) * | 2015-11-05 | 2017-07-11 | The Boeing Company | System for caching and distribution of cloud based spatial imagery to multiple view ports |
US9904867B2 (en) * | 2016-01-29 | 2018-02-27 | Pointivo, Inc. | Systems and methods for extracting information about objects from scene information |
CN105929416B (en) * | 2016-04-13 | 2018-11-27 | 中国民航大学 | ADS-B autonomous type anti-fraud method based on GNSS integrity information |
FR3050291B1 (en) * | 2016-04-15 | 2020-02-28 | Thales | METHOD FOR DISPLAYING DATA FOR AIRCRAFT FLIGHT MANAGEMENT, COMPUTER PROGRAM PRODUCT AND ASSOCIATED SYSTEM |
CN105905315B (en) * | 2016-06-14 | 2017-12-29 | 苏州环球电梯机械传动有限公司 | A kind of depopulated helicopter test monitoring control cabinet |
EP3273424B1 (en) * | 2016-07-21 | 2019-03-13 | The Boeing Company | System and method of aircraft surveillance and tracking |
US10650688B1 (en) * | 2016-07-22 | 2020-05-12 | Rockwell Collins, Inc. | Air traffic situational awareness using HF communication |
US10176721B2 (en) * | 2016-12-06 | 2019-01-08 | Honeywell International Inc. | System and method to depict geodetic reference datum non-compliance regions, airports, and flight planning elements on avionics based displays |
KR20190072834A (en) * | 2017-12-18 | 2019-06-26 | 삼성전자주식회사 | Method and device to control longitudinal velocity of vehicle |
US10410530B1 (en) * | 2018-02-27 | 2019-09-10 | Honeywell International Inc. | Systems and methods for detecting potential surface collisions and providing warnings onboard an aircraft or airport vehicle |
US10569898B2 (en) * | 2018-03-26 | 2020-02-25 | Honeywell International Inc. | Method and system for generating an alert for an aircraft potentially exceeding speed limits in restricted airspace |
US11145214B2 (en) | 2018-05-07 | 2021-10-12 | Honeywell International Inc. | Determining aircraft orientation |
US10820477B2 (en) | 2018-07-30 | 2020-11-03 | Cnh Industrial America Llc | System and method for automatic implement depth measurement control |
US10446041B1 (en) * | 2018-08-23 | 2019-10-15 | Kitty Hawk Corporation | User interfaces for mutually exclusive three dimensional flying spaces |
AT522205B1 (en) * | 2019-03-08 | 2021-05-15 | Frequentis Ag | Method for recognizing and reproducing voice radio messages emitted by a plurality of transmitters via radio, as well as a device for this purpose |
US10704919B1 (en) * | 2019-06-21 | 2020-07-07 | Lyft, Inc. | Systems and methods for using a directional indicator on a personal mobility vehicle |
CN111152933B (en) * | 2019-12-31 | 2021-03-16 | 洛阳安怀达智能科技有限公司 | Electromagnetic compatibility design method for steering engine control driving system of unmanned aerial vehicle |
US11128368B1 (en) * | 2020-05-06 | 2021-09-21 | The Boeing Company | Identifying locations of items in aircraft |
US12112649B2 (en) * | 2021-06-22 | 2024-10-08 | Honeywell International Inc. | Automatic autoland activation methods and systems |
US11835633B1 (en) * | 2021-07-20 | 2023-12-05 | Spectrum Co, Llc | High power grid global navigation satellite systems corrections |
CN117746692B (en) * | 2024-02-19 | 2024-05-10 | 中国民用航空飞行学院 | Airport modularization adjustment method based on capacity envelope curve |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5200902A (en) * | 1990-10-09 | 1993-04-06 | Pilley Harold R | Airport control/management system |
US5323322A (en) * | 1992-03-05 | 1994-06-21 | Trimble Navigation Limited | Networked differential GPS system |
US5361212A (en) * | 1992-11-02 | 1994-11-01 | Honeywell Inc. | Differential GPS landing assistance system |
US5548515A (en) * | 1990-10-09 | 1996-08-20 | Pilley; Harold R. | Method and system for airport control and management |
US5574648A (en) * | 1990-10-09 | 1996-11-12 | Pilley; Harold R. | Airport control/management system using GNSS-based methods and equipment for the control of surface and airborne traffic |
US5677841A (en) * | 1994-03-11 | 1997-10-14 | Kabushiki Kaisha Toshiba | Control target surveillance system |
US5714948A (en) * | 1993-05-14 | 1998-02-03 | Worldwide Notifications Systems, Inc. | Satellite based aircraft traffic control system |
US5786773A (en) * | 1996-10-02 | 1998-07-28 | The Boeing Company | Local-area augmentation system for satellite navigation precision-approach system |
US5867804A (en) * | 1993-09-07 | 1999-02-02 | Harold R. Pilley | Method and system for the control and management of a three dimensional space envelope |
US6067484A (en) * | 1998-03-23 | 2000-05-23 | Airsys Atm, Inc. | Differential GPS landing system |
US6208289B1 (en) * | 1999-05-14 | 2001-03-27 | Rockwell Collins, Inc. | System and method for monitoring and reporting GPS pseudo range correction data |
US6282488B1 (en) * | 1996-02-29 | 2001-08-28 | Siemens Aktiengesellschaft | Airport surface movement guidance and control system |
US6501424B1 (en) * | 2000-01-28 | 2002-12-31 | Rockwell Collins | Use of GPS correction data on trans-oceanic routes |
US6694249B1 (en) * | 2002-01-11 | 2004-02-17 | Rockwell Collins | Integrated surface moving map advisory system |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5375058A (en) * | 1991-12-20 | 1994-12-20 | University Of Central Florida | Surface detection system for airports |
US5519618A (en) * | 1993-08-02 | 1996-05-21 | Massachusetts Institute Of Technology | Airport surface safety logic |
US5629691A (en) * | 1995-05-26 | 1997-05-13 | Hughes Electronics | Airport surface monitoring and runway incursion warning system |
US5732384A (en) * | 1995-09-08 | 1998-03-24 | Hughes Aircraft | Graphical user interface for air traffic control flight data management |
JPH10241100A (en) * | 1997-02-27 | 1998-09-11 | Oki Electric Ind Co Ltd | Approach control area aircraft individual guiding system under automatic subordinate monitoring environment |
JP3406478B2 (en) * | 1997-06-06 | 2003-05-12 | 沖電気工業株式会社 | Aircraft position display device for terminal control console |
-
1998
- 1998-02-27 US US09/032,313 patent/US6195609B1/en not_active Expired - Lifetime
-
2000
- 2000-06-20 US US09/598,001 patent/US6314363B1/en not_active Expired - Lifetime
-
2001
- 2001-05-31 US US09/871,328 patent/US20030083804A1/en not_active Abandoned
-
2003
- 2003-12-11 US US10/733,968 patent/US20040225432A1/en not_active Abandoned
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5200902A (en) * | 1990-10-09 | 1993-04-06 | Pilley Harold R | Airport control/management system |
US5548515A (en) * | 1990-10-09 | 1996-08-20 | Pilley; Harold R. | Method and system for airport control and management |
US5574648A (en) * | 1990-10-09 | 1996-11-12 | Pilley; Harold R. | Airport control/management system using GNSS-based methods and equipment for the control of surface and airborne traffic |
US5323322A (en) * | 1992-03-05 | 1994-06-21 | Trimble Navigation Limited | Networked differential GPS system |
US5361212A (en) * | 1992-11-02 | 1994-11-01 | Honeywell Inc. | Differential GPS landing assistance system |
US5714948A (en) * | 1993-05-14 | 1998-02-03 | Worldwide Notifications Systems, Inc. | Satellite based aircraft traffic control system |
US5867804A (en) * | 1993-09-07 | 1999-02-02 | Harold R. Pilley | Method and system for the control and management of a three dimensional space envelope |
US5677841A (en) * | 1994-03-11 | 1997-10-14 | Kabushiki Kaisha Toshiba | Control target surveillance system |
US6282488B1 (en) * | 1996-02-29 | 2001-08-28 | Siemens Aktiengesellschaft | Airport surface movement guidance and control system |
US5786773A (en) * | 1996-10-02 | 1998-07-28 | The Boeing Company | Local-area augmentation system for satellite navigation precision-approach system |
US6067484A (en) * | 1998-03-23 | 2000-05-23 | Airsys Atm, Inc. | Differential GPS landing system |
US6208289B1 (en) * | 1999-05-14 | 2001-03-27 | Rockwell Collins, Inc. | System and method for monitoring and reporting GPS pseudo range correction data |
US6501424B1 (en) * | 2000-01-28 | 2002-12-31 | Rockwell Collins | Use of GPS correction data on trans-oceanic routes |
US6694249B1 (en) * | 2002-01-11 | 2004-02-17 | Rockwell Collins | Integrated surface moving map advisory system |
Cited By (156)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040083035A1 (en) * | 1996-09-25 | 2004-04-29 | Ellis Christ G. | Apparatus and method for automatic vision enhancement in a traffic complex |
US20070005245A1 (en) * | 1996-09-25 | 2007-01-04 | Ellis Christ G | Biometric apparatus and method |
US7477193B2 (en) | 1999-03-05 | 2009-01-13 | Era Systems Corporation | Method and system for elliptical-based surveillance |
US8446321B2 (en) | 1999-03-05 | 2013-05-21 | Omnipol A.S. | Deployable intelligence and tracking system for homeland security and search and rescue |
US7739167B2 (en) | 1999-03-05 | 2010-06-15 | Era Systems Corporation | Automated management of airport revenues |
US20070040734A1 (en) * | 1999-03-05 | 2007-02-22 | Evers Carl A | Method and system for elliptical-based surveillance |
US7777675B2 (en) | 1999-03-05 | 2010-08-17 | Era Systems Corporation | Deployable passive broadband aircraft tracking |
US7782256B2 (en) | 1999-03-05 | 2010-08-24 | Era Systems Corporation | Enhanced passive coherent location techniques to track and identify UAVs, UCAVs, MAVs, and other objects |
US8203486B1 (en) | 1999-03-05 | 2012-06-19 | Omnipol A.S. | Transmitter independent techniques to extend the performance of passive coherent location |
US7667647B2 (en) | 1999-03-05 | 2010-02-23 | Era Systems Corporation | Extension of aircraft tracking and positive identification from movement areas into non-movement areas |
US7126534B2 (en) | 1999-03-05 | 2006-10-24 | Rannoch Corporation | Minimum safe altitude warning |
US7889133B2 (en) | 1999-03-05 | 2011-02-15 | Itt Manufacturing Enterprises, Inc. | Multilateration enhancements for noise and operations management |
US20040222916A1 (en) * | 1999-03-05 | 2004-11-11 | Smith Alexander E. | Minimum safe altitude warning |
US8072382B2 (en) | 1999-03-05 | 2011-12-06 | Sra International, Inc. | Method and apparatus for ADS-B validation, active and passive multilateration, and elliptical surveillance |
US7123192B2 (en) * | 2000-02-29 | 2006-10-17 | Rannoch Corporation | Correlation of flight track data with other data sources |
US7248219B2 (en) | 2000-02-29 | 2007-07-24 | Era Systems Corporation | Correlation of flight track data with other data sources |
US20050007272A1 (en) * | 2000-02-29 | 2005-01-13 | Smith Alexander E. | Correlation of flight track data with other data sources |
US20030009280A1 (en) * | 2001-01-05 | 2003-01-09 | Alcatel | Navigation method and navigation system |
US7143083B2 (en) * | 2001-06-12 | 2006-11-28 | Lucent Technologies Inc. | Method and apparatus for retrieving multimedia data through spatio-temporal activity maps |
US20030023595A1 (en) * | 2001-06-12 | 2003-01-30 | Carlbom Ingrid Birgitta | Method and apparatus for retrieving multimedia data through spatio-temporal activity maps |
US7690603B2 (en) * | 2003-03-19 | 2010-04-06 | Airbus France | Method and device to assist in the piloting of an aircraft in a non-precision approach during a landing phase |
US20040245408A1 (en) * | 2003-03-19 | 2004-12-09 | Airbus France | Method and device to assist in the piloting of an aircraft in a non-precision approach during a landing phase |
US7908077B2 (en) | 2003-06-10 | 2011-03-15 | Itt Manufacturing Enterprises, Inc. | Land use compatibility planning software |
US20050131639A1 (en) * | 2003-12-11 | 2005-06-16 | International Business Machines Corporation | Methods, systems, and media for providing a location-based service |
US7428450B1 (en) * | 2003-12-16 | 2008-09-23 | Garmin International, Inc | Method and system for using a database and GPS position data to generate bearing data |
US20080103644A1 (en) * | 2003-12-16 | 2008-05-01 | Garmin International, Inc. | Method and system for using database and gps data to linearize vor and ils navigation data |
US20080297397A1 (en) * | 2003-12-16 | 2008-12-04 | Garmin International, Inc. | Method and system for using a database and gps position data to generate bearing data |
US7337063B1 (en) * | 2003-12-16 | 2008-02-26 | Garmin International, Inc. | Method and system for using database and GPS data to linearize VOR and ILS navigation data |
US8059030B2 (en) | 2003-12-16 | 2011-11-15 | Garmin Switzerland Gmbh | Method and system for using a database and GPS position data to generate bearing data |
US20080163093A1 (en) * | 2005-02-18 | 2008-07-03 | Tales | Onboard Device for Managing Data Exchanged by an Aircraft with the Ground or Other Aircraft |
WO2006087276A1 (en) * | 2005-02-18 | 2006-08-24 | Thales | Onboard device for managing data exchanged by an aircraft with the ground or other aircraft |
FR2882439A1 (en) * | 2005-02-18 | 2006-08-25 | Thales Sa | ONBOARD DEVICE FOR MANAGING DATA EXCHANGED BY AN AIRCRAFT WITH THE SOIL OR OTHER AIRCRAFT |
US20080163057A1 (en) * | 2005-04-29 | 2008-07-03 | Tracker Oy | Method For Displaying Objects to be Positioned on a Display of a Positioning Device, a Positioning Device and an Application |
WO2006117437A1 (en) * | 2005-04-29 | 2006-11-09 | Tracker Oy | Method for displaying objects to be positioned on a display of a positioning device, a positioning device and an application |
WO2006135923A2 (en) * | 2005-06-10 | 2006-12-21 | Aviation Communication & Surveillance Systems Llc | System and method for enhancing situational awareness of an aircraft on the ground |
US8242950B2 (en) | 2005-06-10 | 2012-08-14 | Aviation Communication & Surveillance Systems, Llc | Systems and methods for enhancing situational awareness of an aircraft on the ground |
WO2006135923A3 (en) * | 2005-06-10 | 2007-03-01 | Aviat Comm & Surveillance Sys | System and method for enhancing situational awareness of an aircraft on the ground |
US20070080848A1 (en) * | 2005-06-10 | 2007-04-12 | Aviation Communication & Surveillance Systems, Llc | Systems and methods for enhancing situational awareness of an aircraft on the ground |
FR2888363A1 (en) * | 2005-07-07 | 2007-01-12 | Frederic Aberlenc | Observation terminal e.g. telephone, for monitoring system, has cartographic memory with information to identify monitoring zones as authorized/prohibited zones, and microcontroller verifying if geographical marks appear in prohibited zones |
US7680597B2 (en) * | 2005-07-14 | 2010-03-16 | Murata Kikai Kabushiki Kaisha | Guided vehicle system and travel route map creation method for guided vehicle system |
US20070016369A1 (en) * | 2005-07-14 | 2007-01-18 | Murata Kikai Kabushiki Kaisha | Guided vehicle system and travel route map creation method for guided vehicle system |
US7616149B2 (en) * | 2005-09-28 | 2009-11-10 | Raytheon Company | Methods and apparatus for radar time sensor |
US20070159378A1 (en) * | 2005-09-28 | 2007-07-12 | Powers Stanley J | Methods and apparatus for radar time sensor |
US20070078592A1 (en) * | 2005-09-30 | 2007-04-05 | Hugues Meunier | Method and device for evaluating the licitness of the situation of a craft on the surface of an airport |
US7739047B2 (en) * | 2005-09-30 | 2010-06-15 | Thales | Method and device for evaluating the licitness of the situation of a craft on the surface of an airport |
FR2891645A1 (en) * | 2005-09-30 | 2007-04-06 | Thales Sa | Airport craft`s e.g. vehicle, situation licitness evaluating method for use by aircraft pilot, involves modeling licitness cost surface covering surface of airport in which craft is deployed |
US20070083302A1 (en) * | 2005-10-07 | 2007-04-12 | Delemarre Louis C | Object locating arrangements, and in particular, aircraft geometric height measurement arrangements |
WO2007053262A2 (en) * | 2005-10-07 | 2007-05-10 | The Government Of The United States Of America, As Represented By The Secretary, Department Of Transportation | Object locating arrangements, and in particular, aircraft geometric height measurement arrangements |
WO2007053262A3 (en) * | 2005-10-07 | 2009-04-23 | Us Gov Sec Transportation | Object locating arrangements, and in particular, aircraft geometric height measurement arrangements |
WO2007048237A1 (en) * | 2005-10-27 | 2007-05-03 | Marcia Consulting Ltd. | System and method for use in air traffic management |
US20080270020A1 (en) * | 2005-11-09 | 2008-10-30 | Siemens Aktiengesellschaft | Method, Arrangement and Monitoring Device for Navigation of Aircraft and Ground Vehicles Using Satellite-Assisted Positioning |
DE102005053499A1 (en) * | 2005-11-09 | 2007-05-24 | Siemens Ag | Method, arrangement and control device for navigating aircraft and ground vehicles using satellite-based positioning |
US20090012661A1 (en) * | 2005-12-02 | 2009-01-08 | Thales | Device and method for changing the zones prohibited to an aircraft |
US20150377413A1 (en) * | 2005-12-22 | 2015-12-31 | Pilz Gmbh & Co.Kg | Method and system for configuring a monitoring device for monitoring a spatial area |
US8271150B2 (en) * | 2005-12-22 | 2012-09-18 | The Boeing Company | Methods and systems for displaying enroute moving maps |
US20090015663A1 (en) * | 2005-12-22 | 2009-01-15 | Dietmar Doettling | Method and system for configuring a monitoring device for monitoring a spatial area |
US20070150124A1 (en) * | 2005-12-22 | 2007-06-28 | Patrick Wipplinger | Methods and systems for displaying enroute moving maps |
US9695980B2 (en) * | 2005-12-22 | 2017-07-04 | Pilz Gmbh & Co. Kg | Method and system for configuring a monitoring device for monitoring a spatial area |
US9151446B2 (en) * | 2005-12-22 | 2015-10-06 | Pilz Gmbh & Co. Kg | Method and system for configuring a monitoring device for monitoring a spatial area |
US20090005960A1 (en) * | 2005-12-23 | 2009-01-01 | Alison Laura Udal Roberts | Air Traffic Control |
US9245451B2 (en) * | 2005-12-23 | 2016-01-26 | Nats (En Route) Plc | Air traffic control system |
US7714773B2 (en) * | 2006-03-28 | 2010-05-11 | Omron Corporation | RFID tag distance measuring system and reader |
US20070241904A1 (en) * | 2006-03-28 | 2007-10-18 | Tomohiro Ozaki | RFID tag distance measuring system and reader |
US7965227B2 (en) | 2006-05-08 | 2011-06-21 | Era Systems, Inc. | Aircraft tracking using low cost tagging as a discriminator |
US20100256840A1 (en) * | 2006-05-22 | 2010-10-07 | Call Curtis J | Methods and systems for radar aided aircraft positioning for approaches and landings |
US8160758B2 (en) * | 2006-05-22 | 2012-04-17 | Honeywell International Inc. | Methods and systems for radar aided aircraft positioning for approaches and landings |
US20080004756A1 (en) * | 2006-06-02 | 2008-01-03 | Innovative Solutions & Support, Inc. | Method and apparatus for display of current aircraft position and operating parameters on a graphically-imaged chart |
US20070299598A1 (en) * | 2006-06-08 | 2007-12-27 | Airbus France | Method and device for assisting in the navigation of an airplane on the ground at an airport |
US7499795B2 (en) * | 2006-06-08 | 2009-03-03 | Airbus France | Method and device for assisting in the navigation of an airplane on the ground at an airport |
US7963618B2 (en) | 2006-06-12 | 2011-06-21 | Aviation Communication & Surveillance Systems Llc | Systems and methods for providing aircraft runway guidance |
US20080109163A1 (en) * | 2006-06-12 | 2008-05-08 | Stone Cyro A | Systems and methods for providing aircraft runway guidance |
CN100415606C (en) * | 2006-07-14 | 2008-09-03 | 深圳市伊爱多维科技有限公司 | Airport vehicle managing system and method |
EP1903351A1 (en) | 2006-09-21 | 2008-03-26 | Deere & Company | System and method for providing authorization to use corrections provided by an RTK base station |
US20080122687A1 (en) * | 2006-09-21 | 2008-05-29 | Nelson Fredrick W | System and method for providing authorization to use corrections provided by an RTK base station |
US20100109936A1 (en) * | 2006-11-28 | 2010-05-06 | Israel Aerospace Industries Ltd. | Aircraft anti-collision system and method |
WO2008065658A1 (en) * | 2006-11-28 | 2008-06-05 | Israel Aerospace Industries Ltd. | Aircraft anti-collision system and method |
US7966125B2 (en) * | 2006-11-29 | 2011-06-21 | The Boeing Company | System and method for terminal charts, airport maps and aeronautical context display |
US8645056B2 (en) | 2006-11-29 | 2014-02-04 | The Boeing Company | System and method for electronic moving map and aeronautical context display |
US20080125960A1 (en) * | 2006-11-29 | 2008-05-29 | Patrick Ralf Wipplinger | System and method for terminal charts, airport maps and aeronautical context display |
US8234066B2 (en) * | 2006-11-29 | 2012-07-31 | The Boeing Company | System and method for terminal charts, airport maps and aeronautical context display |
US20080140727A1 (en) * | 2006-12-07 | 2008-06-12 | Karl Christian Pschierer | Method and apparatus for managing geographic information system data |
US8930458B2 (en) | 2007-04-04 | 2015-01-06 | Pathfinders International, Llc | GPS pathfinder cell phone and method |
US9002944B2 (en) | 2007-04-04 | 2015-04-07 | Pathfinders International, Llc | Virtual badge, device and method |
US20090182587A1 (en) * | 2007-04-04 | 2009-07-16 | Scott Lewis | GPS Pathfinder Cell Phone And Method |
US20080246652A1 (en) * | 2007-04-04 | 2008-10-09 | Scott Lewis | Gps pathfinder method and device |
WO2008124433A1 (en) * | 2007-04-04 | 2008-10-16 | Scott Lewis | Gps pathfinder method and device |
US8154440B2 (en) | 2007-04-04 | 2012-04-10 | Pathfinders International, Llc | GPS pathfinder cell phone and method |
EP1988365A3 (en) * | 2007-05-04 | 2011-06-08 | The Boeing Company | Methods and systems for displaying airport moving map information |
US8306745B1 (en) | 2007-05-04 | 2012-11-06 | The Boeing Company | Methods and systems for displaying airport moving map information |
US20100017127A1 (en) * | 2007-05-23 | 2010-01-21 | Honeywell International, Inc. | Methods and systems for detecting a potential conflict between aircraft on an airport surface |
EP1995708A1 (en) * | 2007-05-23 | 2008-11-26 | Honeywell International Inc. | Methods and systems for detecting a potential conflict between aircraft on an airport surface |
US8825365B2 (en) | 2007-05-23 | 2014-09-02 | Honeywell International Inc. | Methods and systems for detecting a potential conflict between aircraft on an airport surface |
US8533180B2 (en) | 2007-06-13 | 2013-09-10 | The Boeing Company | Method and apparatus for enhancing a geographic information system database with operational data |
US20080313129A1 (en) * | 2007-06-13 | 2008-12-18 | Christian Pschierer | Method and apparatus for enhancing a geographic information system database with operational data |
US20080312942A1 (en) * | 2007-06-15 | 2008-12-18 | Suresh Katta | Method and system for displaying predictions on a spatial map |
US7856370B2 (en) * | 2007-06-15 | 2010-12-21 | Saama Technologies, Inc. | Method and system for displaying predictions on a spatial map |
WO2009000732A2 (en) * | 2007-06-25 | 2008-12-31 | Siemens Aktiengesellschaft | Method and system to improve accuracy when determining a position |
WO2009000732A3 (en) * | 2007-06-25 | 2009-02-19 | Siemens Ag | Method and system to improve accuracy when determining a position |
US20100231721A1 (en) * | 2007-11-30 | 2010-09-16 | Searidge Technologies Inc. | Airport target tracking system |
US9417310B2 (en) * | 2007-11-30 | 2016-08-16 | Searidge Technologies Inc. | Airport target tracking system |
US20150131860A1 (en) * | 2007-11-30 | 2015-05-14 | Searidge Technologies Inc. | Airport target tracking system |
US8942425B2 (en) * | 2007-11-30 | 2015-01-27 | Searidge Technologies Inc. | Airport target tracking system |
US8737684B2 (en) * | 2007-11-30 | 2014-05-27 | Searidge Technologies Inc. | Airport target tracking system |
US7940210B2 (en) * | 2008-06-26 | 2011-05-10 | Honeywell International Inc. | Integrity of differential GPS corrections in navigation devices using military type GPS receivers |
US20090322598A1 (en) * | 2008-06-26 | 2009-12-31 | Honeywell International, Inc. | Integrity of differential gps corrections in navigation devices using military type gps receivers |
US8788128B1 (en) * | 2008-08-01 | 2014-07-22 | Rockwell Collins, Inc. | Precision navigation for landing |
US8401775B2 (en) * | 2009-01-30 | 2013-03-19 | The Boeing Company | Systems and method for managing airport ground traffic |
US20100198489A1 (en) * | 2009-01-30 | 2010-08-05 | David Rozovski | Systems and method for managing airport ground traffic |
US9189964B1 (en) * | 2009-02-03 | 2015-11-17 | Rockwell Collins, Inc. | System, module, and method for presenting runway traffic information |
US8296065B2 (en) | 2009-06-08 | 2012-10-23 | Ansaldo Sts Usa, Inc. | System and method for vitally determining position and position uncertainty of a railroad vehicle employing diverse sensors including a global positioning system sensor |
US20100312461A1 (en) * | 2009-06-08 | 2010-12-09 | Haynie Michael B | System and method for vitally determining position and position uncertainty of a railroad vehicle employing diverse sensors including a global positioning system sensor |
US20110010026A1 (en) * | 2009-07-13 | 2011-01-13 | Utah State University | Calibration Method for Aerial Vehicles |
US20110032124A1 (en) * | 2009-08-10 | 2011-02-10 | John Baskin | Taxiway aircraft location monitoring system |
US8417448B1 (en) | 2010-04-14 | 2013-04-09 | Jason Adam Denise | Electronic direction technology |
US8554457B2 (en) * | 2010-07-15 | 2013-10-08 | Passur Aerospace, Inc. | System and method for airport surface management |
US20120245836A1 (en) * | 2010-07-15 | 2012-09-27 | Thomas White | System and Method for Airport Surface Management |
US20120136562A1 (en) * | 2010-11-30 | 2012-05-31 | Airbus Operations (S.A.S.) | Method And System For Aiding The Taxiing Of An Aircraft On An Airport Domain |
US8527190B2 (en) * | 2010-11-30 | 2013-09-03 | Airbus Operations (Sas) | Method and system for aiding the taxiing of an aircraft on an airport domain |
RU2476897C2 (en) * | 2011-02-15 | 2013-02-27 | Тимур Георгиевич Келин | Method of controlling data receiving and transmitting devices in navigation receiver and device for realising said method |
US8855906B2 (en) * | 2011-05-27 | 2014-10-07 | Avidyne Corporation | Database augmented surveillance |
US20120303252A1 (en) * | 2011-05-27 | 2012-11-29 | Avidyne Corporation | Database augmented surveillance |
US20130036376A1 (en) * | 2011-08-02 | 2013-02-07 | The Boeing Company | Management System for Aeronautical Information |
US9410819B2 (en) * | 2011-08-02 | 2016-08-09 | The Boeing Company | Management system for aeronautical information |
US9000976B2 (en) * | 2011-08-05 | 2015-04-07 | National Tsing Hua University | Positioning method for long-thin fleet |
US20130033396A1 (en) * | 2011-08-05 | 2013-02-07 | Chen Lien-Wu | Positioning method for long-thin fleet |
US9202380B1 (en) * | 2011-09-27 | 2015-12-01 | Rockwell Collins Inc. | System and method for electronically recording a taxi clearance on an aircraft display unit |
US20130090842A1 (en) * | 2011-10-08 | 2013-04-11 | James R. Stabile | Energy Resource Geographical Overlay |
US9759577B2 (en) * | 2011-10-08 | 2017-09-12 | James R. Stabile | Energy resource geographical overlay |
US9141113B1 (en) | 2012-04-26 | 2015-09-22 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Probabilistic surface characterization for safe landing hazard detection and avoidance (HDA) |
US8712609B2 (en) * | 2012-05-14 | 2014-04-29 | Honeywell International Inc. | Methods and systems for representing missed approach information in perspective view on a cockpit display |
RU2500990C1 (en) * | 2012-06-05 | 2013-12-10 | Открытое акционерное общество "Завод им. В.А. Дегтярева" | Method for automated generation of local geodetic networks of high class of accuracy |
US20150187232A1 (en) * | 2012-07-31 | 2015-07-02 | Google Inc. | System and method for displaying real-time flight information on an airport map |
US9443447B2 (en) * | 2012-07-31 | 2016-09-13 | Google Inc. | System and method for displaying real-time flight information on an airport map |
US9354078B2 (en) * | 2012-09-12 | 2016-05-31 | Honeywell International Inc. | Methods and systems for indicating whether an aircraft is within distance and altitude criteria for an IFR procedure turn |
US20140074324A1 (en) * | 2012-09-12 | 2014-03-13 | Honeywell International Inc. | Methods and systems for indicating whether an aircraft is within distance and altitude criteria for an ifr procedure turn |
WO2014189561A1 (en) * | 2013-04-09 | 2014-11-27 | Raytheon Company | Coherent aggregation from multiple diverse sources on a single display |
US9429643B2 (en) | 2013-04-09 | 2016-08-30 | Thales-Raytheon Systems Company Llc | Coherent aggregation from multiple diverse sources on a single display |
US20150277441A1 (en) * | 2014-03-25 | 2015-10-01 | The Boeing Company | Method for Controlling Aircraft Time of Arrival |
US9213335B2 (en) * | 2014-03-25 | 2015-12-15 | The Boeing Company | Method for controlling aircraft time of arrival |
US9589472B2 (en) * | 2014-09-23 | 2017-03-07 | Raytheon Company | Runway incursion detection and indication using an electronic flight strip system |
US20160086496A1 (en) * | 2014-09-23 | 2016-03-24 | Raytheon Company | Runway incursion detection and indication using an electronic flight strip system |
US9886040B1 (en) * | 2014-09-24 | 2018-02-06 | Rockwell Collins, Inc. | System and method for platform alignment, navigation or targeting |
US9470528B1 (en) * | 2015-03-26 | 2016-10-18 | Honeywell International Inc. | Aircraft synthetic vision systems utilizing data from local area augmentation systems, and methods for operating such aircraft synthetic vision systems |
US10234568B2 (en) * | 2016-05-12 | 2019-03-19 | GM Global Technology Operations LLC | GNSS vehicle location involving overlapping roads |
US20170329019A1 (en) * | 2016-05-12 | 2017-11-16 | GM Global Technology Operations LLC | Gnss vehicle location involving overlapping roads |
US20180040252A1 (en) * | 2016-08-05 | 2018-02-08 | Honeywell International Inc. | Monitor and control of surface traffic at airport |
US10679503B2 (en) * | 2016-08-05 | 2020-06-09 | Honeywell International Inc. | Monitor and control of surface traffic at airport |
US20180218620A1 (en) * | 2017-02-01 | 2018-08-02 | Honeywell International Inc. | Air traffic control flight management |
US10810892B2 (en) * | 2017-02-01 | 2020-10-20 | Honeywell International Inc. | Air traffic control flight management |
EP3444791A2 (en) | 2017-08-13 | 2019-02-20 | IATAS Automatic Air Traffic Control Ltd | System and methods for automated airport air traffic control services |
GB2580787A (en) * | 2018-12-20 | 2020-07-29 | Bosch Gmbh Robert | Method of identifying a UERE, method of determining a UERE, computer-implemented data structure, use, device and computer-implemented program |
US11333771B2 (en) | 2018-12-20 | 2022-05-17 | Robert Bosch Gmbh | Method for ascertaining a UERE, method for determining a UERE, computer-implemented data structure, use, device and computer-implemented program |
GB2580787B (en) * | 2018-12-20 | 2023-09-20 | Bosch Gmbh Robert | Method of identifying a UERE, method of determining a UERE, computer-implemented data structure, use, device and computer-implemented program |
US20220084414A1 (en) * | 2019-01-08 | 2022-03-17 | Suzhou Eavision Robotic Technologies Co., Ltd. | Aircraft operation path planning method, control device and control equipment |
KR20220123705A (en) | 2020-02-05 | 2022-09-08 | 지.케이. 싸우전즈 | Aircraft landing guidance support system and aircraft landing integrated support system including the same |
JP7454848B2 (en) | 2020-02-05 | 2024-03-25 | 合同会社サウザンズ | Aircraft landing guidance support system and aircraft landing integrated support system including the same |
Also Published As
Publication number | Publication date |
---|---|
US6195609B1 (en) | 2001-02-27 |
US20030083804A1 (en) | 2003-05-01 |
US6314363B1 (en) | 2001-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6314363B1 (en) | Computer human method and system for the control and management of an airport | |
US5867804A (en) | Method and system for the control and management of a three dimensional space envelope | |
US6006158A (en) | Airport guidance and safety system incorporating lighting control using GNSS compatible methods | |
US5740047A (en) | GNSS based, seamless, multi-dimensional control and management system for vehicles operating in a multi-dimensional environment | |
US6314366B1 (en) | Satellite based collision avoidance system | |
EP0544830B1 (en) | A universal dynamic navigation, surveillance, emergency location, and collision avoidance system and method | |
US5111400A (en) | Automatic integrated real-time flight crew information system | |
US5714948A (en) | Satellite based aircraft traffic control system | |
EP0346461B1 (en) | Vehicle location system accuracy enhancement for airborne vehicles | |
Skrypnik | Radio Navigation Systems for Airports and Airways | |
EP0774148A1 (en) | Satellite based aircraft traffic control system | |
EP0175967B1 (en) | Navigation, communication, and surveillance system based on dme | |
Daskalakis et al. | A technical assessment of ADS-B and multilateration technology in the Gulf of Mexico | |
Campbell | Characteristics of a real-time digital terrain database integrity monitor for a synthetic vision system | |
Hoffman et al. | Forecast of the general aviation air traffic control environment for the 1980's | |
Pilley | Using GPS and ADS in the Central Atlantic Metroplex for Seamless Air and Ground Terminal Area Control and Management | |
Zimmerman | Development and test of a pilot display for surface operations | |
JP2004157887A (en) | Position recognition system for commercial airplane | |
Swider et al. | The FAA's Local Area Augmentation System (LAAS) | |
Bayliss et al. | Aircraft Surveillance Based on GPS Position Broadcasts from Mode S Beacon Transponders | |
Jones et al. | Flight Demonstration of Integrated Airport Surface Technologies for Increased Capacity and Safety | |
Baburov et al. | General Description of Flight Safety Problems | |
Durand | Satellite Navigation: GPS Inadequacies: Comparative Study into Solutions for Civil Aviation | |
Pilley et al. | GPS, 3-D maps and ADS provide a seamless airport control and management environment | |
TTN et al. | ASSESSMENT REPORT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PILLEY, HAROLD R., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WORTLEY, LOIS V. AKA LOIS V. PILLEY;REEL/FRAME:015608/0309 Effective date: 19970719 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |