US20040187309A1 - Methods of forming pluralities of microelectronic lids - Google Patents
Methods of forming pluralities of microelectronic lids Download PDFInfo
- Publication number
- US20040187309A1 US20040187309A1 US10/823,117 US82311704A US2004187309A1 US 20040187309 A1 US20040187309 A1 US 20040187309A1 US 82311704 A US82311704 A US 82311704A US 2004187309 A1 US2004187309 A1 US 2004187309A1
- Authority
- US
- United States
- Prior art keywords
- lid
- microelectronic
- lids
- package
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/04—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/10—Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
- H01L23/3675—Cooling facilitated by shape of device characterised by the shape of the housing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73253—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01019—Potassium [K]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/161—Cap
- H01L2924/1615—Shape
- H01L2924/16152—Cap comprising a cavity for hosting the device, e.g. U-shaped cap
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/4913—Assembling to base an electrical component, e.g., capacitor, etc.
Definitions
- This invention pertains to microelectronic lid designs, heat spreader designs, and semiconductor packaging.
- Modem semiconductor device packaging typically involves provision of a microelectronic lid over a semiconductor die (also referred to as a chip) to protect the die during transport.
- the microelectronic lid can be thermally conducted with the die so that heat generated from the die is dispersed into the lid. Accordingly, the lid can function as a heat spreader in addition to functioning as a protective cover for the die.
- the package comprises a base 10 and a lid 30 , which are initially provided as separate pieces.
- Base 10 can comprise a substrate 12 , which can be a circuit-retaining construction, such as, for example, a circuit board.
- a semiconductor chip 14 is provided in electrical connection with the circuit of circuit-retaining construction 12 , and can, for example, be connected to such circuit through solder bead electrical interconnects (not visible in the view of FIG. 1).
- a sealant material 16 is provided around an outer periphery of circuit-retaining construction 12 , and can comprise, for example, an epoxy.
- the surface of base 10 that is shown in FIG. 1 will ultimately be an inner surface in a package construction formed with lid 30 .
- lid 30 such comprises a recessed surface 32 surrounded by a non-recessed peripheral portion 34 .
- Lid 30 also comprises a surface 36 that is in opposing relationship to surface 32 , and accordingly that is a hidden underside of lid 30 in the view of FIG. 1.
- the surface 32 of lid 30 will ultimately be an inner surface of the lid in a package formed with lid 30 and base 10 , and the surface 36 will be an outer surface of such package.
- FIG. 2 shows a top view of a package 40 comprising lid 30 and base 10 .
- a process step in formation of package 40 is to invert lid 30 from the configuration shown in FIG. 1, and to press the lid over base 10 .
- Lid 30 is sealed to base 10 by sealing peripheral portion 34 of lid 30 to the base with sealant material 16 .
- FIG. 3 shows a cross-sectional view through the package 40 of FIG. 2, and illustrates lid 30 joined with base 10 . Also visible in FIG. 3 are electrical interconnects 42 extending downwardly from chip 14 to electrically connect the chip with circuitry (not shown) retained in substrate 12 . Additionally, FIG. 3 shows a thermally conductive interface material 44 provided on chip 14 and thermally connecting lid 30 with chip 14 to allow heat dispersion from chip 14 into lid 30 . If material 44 were not present, or were replaced with a non-thermally conductive material, lid 30 would simply be a microelectronic lid. However, if material 44 is a thermally conductive material, lid 30 functions as a heat spreader, with the term heat spreader understood to indicate a construction that primarily spreads heat in two dimensions, rather than in three dimensions.
- FIG. 4 illustrates the package 40 of FIG. 3 attached to a heat sink 50 through a thermally conductive interface material 52 .
- Material 52 can comprise, for example, GELVETTM, which is commercially available from Honeywell International, Inc.
- Heat sink 50 can comprise, for example, aluminum having a shape which incorporates numerous projecting fins and/or posts. The heat sink 50 is distinguished from a heat spreader, in that heat sink 50 disperses heat in three dimensions, rather than two.
- a microelectronic lid comprises a material having a rectangular peripheral shape that defines 4 peripheral sides. Further, the lid has projecting peripheral rails along less than all of the peripheral edge. For instance, the lid can have projecting peripheral rails along only 2 of the sides. Alternatively, such microelectronic lid can be described as comprising a generally rectangular shape defining 4 peripheral edges, with 2 of the edges having a greater thickness than the other 2 edges.
- the invention also encompasses heat spreaders having the above-described shapes of the microelectronic lids, and comprising materials with a thermal conductivity of at least 100 watts/meter-kelvin, preferably at least 150 watts/meter-kelvin and more preferably greater than 200 watts/meter-kelvin.
- the heat spreaders can comprise, consist or, or consist essentially of copper, and can have a thermal conductivity of about 350 watts/meter-Kelvin.
- the heat spreaders can comprise, consist of, or consist essentially of aluminum and can have a thermal conductivity of about 220 watts/meter-kelvin.
- FIG. 1 is a diagrammatic view of a microelectronic package at a preliminary step of a prior art method for forming a package, and is shown comprising a lid which is separate from a base. The lid is shown in a bottom view, and the base is shown in top view.
- FIG. 2 is a view of a package comprising the lid and base of FIG. 1, and is shown in top view.
- FIG. 3 is a view of the FIG. 2 package shown along the line 3 - 3 .
- FIG. 4 is a view of the FIG. 2 package shown along the cross sectional view of FIG. 3, and shown at a processing step subsequent to that of FIG. 3.
- FIG. 5 is a diagrammatic bottom view of a microelectronic lid, or alternatively a heat spreader, encompassed by the present invention.
- FIG. 6 is a side view of the FIG. 5 lid.
- FIG. 7 is a view of the FIG. 5 lid in combination with a base, and shown at a preliminary step of forming a microelectronic package encompassed by the present invention.
- the base of FIG. 7 is shown in top view, while the lid is shown in bottom view.
- FIG. 8 is a top view of a package assembled utilizing the lid and base of FIG. 7.
- FIG. 9 is a cross-sectional view of the package of FIG. 8 shown along the line 9 - 9 .
- FIG. 10 is a cross-sectional view of the FIG. 8 package shown along the line 9 - 9 , and shown at a processing step subsequent to that of FIG. 9.
- FIG. 11 is a sideview of the FIG. 8 package.
- FIG. 12 is a sideview of the FIG. 8 package, and shown in accordance with an embodiment of the present invention different than that of FIG. 11.
- FIG. 13 is an isometric view of a piece of lid stock at a preliminary step of forming lids in accordance with a method of the present invention.
- FIG. 14 is an isometric view of the lid stock of FIG. 13 shown at a processing step subsequent to that of FIG. 13.
- Lid 100 comprises a generally rectangular shape (although other shapes are encompassed by the present invention, with such other shapes including, for example, circular, triangular, pentagonal, or other polygonal shapes).
- Lid 100 comprises a periphery defined by the four edges 102 , 104 , 106 and 108 .
- Lid 100 also comprises a recessed surface 110 , which is coextensive with the surface of edges 102 and 106 ; and raised rails 112 and 114 which extend along edges 108 and 104 .
- lid 100 comprises a surface 120 (not visible in the view of FIG. 5) which is in opposing relation to surface 110 .
- lid 100 of FIG. 5 A difference between the lid 100 of FIG. 5 and the prior art lid 30 (shown in FIG. 1) is in lid 100 having raised portions ( 112 and 114 ) extending along only a part of the periphery of the lid.
- the prior art lid 30 has a raised portion ( 34 ) extending along its entire periphery.
- lid 100 comprises a rectangular shape, and the raised peripheral portions are along two opposing sides ( 104 and 108 ) of the peripheral shape, while the remaining two sides ( 102 and 106 ) do not have raised portions extending along the predominate extent of such edges.
- the only raised portions associated with edges 102 and 106 are the terminal ends of raised portions 112 and 114 , with such ends being the regions of portions 112 and 114 that contact edges 102 and 106 .
- Such terminal portions of rails 112 and 114 are identified in FIG. 5 by the label 115 .
- edge 102 has an expanse 126 extending along the edge between terminal ends 115 of rails 112 and 114 , and such expanse 126 is not raised relative to surface 110 .
- edge 106 has an expanse 128 extending between terminal ends 115 which is not raised relative to surface 110 .
- FIG. 6 shows a side view of lid 100 along the side 106 .
- Such side view illustrates the relationship of rails 112 and 114 relative to surface 110 , and further shows expanse 128 extending between rails 112 and 114 .
- Rails 112 and 114 define a groove 119 extending therebetween.
- Exemplary dimensions of the lid 100 of FIGS. 5 and 6 are a width “W” of about 35 ⁇ 0.35 millimeters; a length “L” of about 35 ⁇ 0.35 millimeters, and a thickness “T” of about 4.6 ⁇ 0.05 millimeters. Further, groove 119 can have a depth “D” of about 0.6 ⁇ 0.025 millimeters.
- lid 100 is shown adjacent a base 150 , which is ultimately to be capped by lid 100 to form a package.
- Base 150 comprises four peripheral edges ( 151 , 153 , 155 and 157 ), and is similar to the base 10 of FIG. 1 in that it comprises a die 14 over a substrate 12 .
- base 150 comprises a sealant 16 provided along peripheral edges of the substrate.
- a difference between base 150 of FIG. 7 and base 10 is that the sealant 16 is provided along only two of the peripheral edges of substrate 12 of base 150 , rather than along the four peripheral edges as was done with base 10 . Sealant 16 is provided along the two peripheral edges of the substrate 12 of base 150 that will ultimately contact raised edges associated with lid 100 .
- lid 1 00 is placed over base 150 , and rails 112 and 114 are sealed against the base with sealant 16 to form a package.
- Such package is shown in FIG. 8 as a package 200 , aid specifically is shown in top view, with surface 120 of lid 100 being visible.
- package 200 is shown in cross-sectional view along the line 9 - 9 of FIG. 8.
- Such cross-sectional view shows solder beads 42 connecting die 14 with substrate 12 .
- the cross-sectional view shows a layer 202 formed between die 14 and lid 100 .
- Laver 202 can comprise, for example, a thermally conductive material. If layer 202 comprises a thermally conductive material, then lid 100 can function as a heat spreader to dissipate heat generated by die 14 . In alternative embodiments, layer 202 can be omitted, or can be replaced with a non-thermally conductive material. In either of such alternative embodiments, lid 100 will function as a microelectronic lid to protect die 14 , but will generally not effectively dissipate heat from die 14 , and accordingly will not be utilized as a heat spreader.
- lid 100 is utilized as a heat spreader, it preferably comprises a material with a thermal conductivity of at least 100 watts/meter-kelvin, and more perfectly at least 150 watts/meter-kelvin.
- lid 100 can comprise a material having a thermal conductivity in excess of 200 watts/meter-kelvin, such as, for example, copper or aluminum.
- the lid can be nickel-plated. For instance, if lid 100 comprises copper or aluminum, it can be provided with a nickel-plating having a thickness of at least about 3 microns. The nickel plating can protect the underlying lid material from corrosion, and further can provide a reproducible surface for adherence to one or more thermal interface materials, as well as for adherence to epoxy.
- package 200 is illustrated after formation of a heat sink 50 over the package, and a thermal interface 52 connecting heat sink 50 with package 200 .
- Heat sink 50 and thermal interface 52 can comprise, for example, the materials described above with reference to the prior art construction of FIG. 4.
- the package 200 of FIG. 8 is shown in a side view.
- the chip ( 14 ) is not shown in the side view of FIG. 11 to simplify the drawing, although it is to be understood that chip 14 would be in the center of package 200 as illustrated by, for example, FIG. 9.
- the view of FIG. 11 shows that there is a gap 250 at the end of package 200 corresponding to a space between rails 112 and 114 .
- Such gap will typically be narrow, and in particular embodiments of the present invention can be left unfilled.
- it is desired to fill gap 250 to prevent dirt or other contaminants from penetrating between lid 100 and substrate 150 such can be accomplished by providing a filler material within the gap. Such is illustrated in FIG.
- gap 250 is filled with a filler material 260 .
- Filler material 260 can comprise, for example, epoxy.
- Filler material 260 can be provided after formation of package 200 by applying the filler material into gap 250 .
- filler material 250 can be provided before formation of package 200 at, for example, the processing step of FIG. 7, by providing the filler material at edges 151 and 153 of substrate 150 .
- the lid 100 of the present invention can be advantageous relative to prior art lids (such as, for example, the lid 30 of FIG. 1) in that lid 100 can be simpler to manufacture than the prior art lids.
- Lid 100 can be formed by, for example, the processing of FIGS. 13 and 14. Referring initially to FIG. 13, a bar 300 of lid stock is provided. The bar comprises dimensions “A”, “X”, and “Y”. Dimension “X” corresponds to a width along edge 106 of a finished lid 100 (FIGS. 5 and 6), and dimension “Y” corresponds to a thickness of rails 112 and 114 of a finished lid 100 .
- the dimension “A” is preferably longer than several integral lengths of edge 108 of a finished lid 100 .
- bar 300 is machined to form a groove 302 extending along a surface of the bar.
- Groove 302 defines rails 112 and 114 extending along edges of the lid stock.
- the stock can subsequently be cut along dashed lines 304 and 306 to define separated lids 100 , 400 and 500 .
- the lids separated lids can subsequently be subjected to electroplating if a metal plating is desired over the material of the lids.
- FIGS. 13 and 14 illustrate a process wherein a lid stock bar 300 is machined to form groove 302 , it is to be understood that the invention encompasses alternative processing wherein the grooved material of FIG. 14 is formed by extruding a lid material into the shown shape.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
The invention encompasses microelectronic package lids, heat spreaders, and semiconductor packages comprising microelectronic lids or heat spreaders. In particular aspects of the present invention, a microelectronic lid comprises a material having a rectangular peripheral shape that defines 4 peripheral sides. Further, the lid has projecting peripheral rails along less than all of the peripheral edge. For instance, the lid can have projecting peripheral rails along only 2 of the sides. Alternatively, such microelectronic lid can be described as comprising a generally rectangular shape defining four peripheral edges, with two of the edges having a greater thickness than the other two edges.
Description
- This invention pertains to microelectronic lid designs, heat spreader designs, and semiconductor packaging.
- Modem semiconductor device packaging typically involves provision of a microelectronic lid over a semiconductor die (also referred to as a chip) to protect the die during transport. The microelectronic lid can be thermally conducted with the die so that heat generated from the die is dispersed into the lid. Accordingly, the lid can function as a heat spreader in addition to functioning as a protective cover for the die.
- A prior art semiconductor package is described with reference to FIGS. 1-4. Referring initially to FIG. 1, the package comprises a
base 10 and alid 30, which are initially provided as separate pieces.Base 10 can comprise asubstrate 12, which can be a circuit-retaining construction, such as, for example, a circuit board. Asemiconductor chip 14 is provided in electrical connection with the circuit of circuit-retainingconstruction 12, and can, for example, be connected to such circuit through solder bead electrical interconnects (not visible in the view of FIG. 1). Asealant material 16 is provided around an outer periphery of circuit-retainingconstruction 12, and can comprise, for example, an epoxy. The surface ofbase 10 that is shown in FIG. 1 will ultimately be an inner surface in a package construction formed withlid 30. - Referring next to
lid 30, such comprises arecessed surface 32 surrounded by a non-recessedperipheral portion 34.Lid 30 also comprises asurface 36 that is in opposing relationship tosurface 32, and accordingly that is a hidden underside oflid 30 in the view of FIG. 1. Thesurface 32 oflid 30 will ultimately be an inner surface of the lid in a package formed withlid 30 andbase 10, and thesurface 36 will be an outer surface of such package. - FIG. 2 shows a top view of a
package 40 comprisinglid 30 andbase 10. A process step in formation ofpackage 40 is to invertlid 30 from the configuration shown in FIG. 1, and to press the lid overbase 10.Lid 30 is sealed tobase 10 by sealingperipheral portion 34 oflid 30 to the base withsealant material 16. - FIG. 3 shows a cross-sectional view through the
package 40 of FIG. 2, and illustrateslid 30 joined withbase 10. Also visible in FIG. 3 areelectrical interconnects 42 extending downwardly fromchip 14 to electrically connect the chip with circuitry (not shown) retained insubstrate 12. Additionally, FIG. 3 shows a thermallyconductive interface material 44 provided onchip 14 and thermally connectinglid 30 withchip 14 to allow heat dispersion fromchip 14 intolid 30. Ifmaterial 44 were not present, or were replaced with a non-thermally conductive material,lid 30 would simply be a microelectronic lid. However, ifmaterial 44 is a thermally conductive material,lid 30 functions as a heat spreader, with the term heat spreader understood to indicate a construction that primarily spreads heat in two dimensions, rather than in three dimensions. - FIG. 4 illustrates the
package 40 of FIG. 3 attached to aheat sink 50 through a thermallyconductive interface material 52.Material 52 can comprise, for example, GELVET™, which is commercially available from Honeywell International, Inc.Heat sink 50 can comprise, for example, aluminum having a shape which incorporates numerous projecting fins and/or posts. Theheat sink 50 is distinguished from a heat spreader, in that heat sink 50 disperses heat in three dimensions, rather than two. - It can be problematic and costly to fabricate a lid having the complexity of
lid 30. Accordingly, it would be desired to develop improved microelectronic lid designs. - The invention encompasses microelectronic package lids, heat spreaders, and semiconductor packages comprising microelectronic lids or heat spreaders. In particular aspects of the present invention, a microelectronic lid comprises a material having a rectangular peripheral shape that defines 4 peripheral sides. Further, the lid has projecting peripheral rails along less than all of the peripheral edge. For instance, the lid can have projecting peripheral rails along only 2 of the sides. Alternatively, such microelectronic lid can be described as comprising a generally rectangular shape defining4 peripheral edges, with 2 of the edges having a greater thickness than the other 2 edges.
- The invention also encompasses heat spreaders having the above-described shapes of the microelectronic lids, and comprising materials with a thermal conductivity of at least 100 watts/meter-kelvin, preferably at least 150 watts/meter-kelvin and more preferably greater than 200 watts/meter-kelvin. In particular embodiments, the heat spreaders can comprise, consist or, or consist essentially of copper, and can have a thermal conductivity of about 350 watts/meter-Kelvin. In other embodiments, the heat spreaders can comprise, consist of, or consist essentially of aluminum and can have a thermal conductivity of about 220 watts/meter-kelvin.
- Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
- FIG. 1 is a diagrammatic view of a microelectronic package at a preliminary step of a prior art method for forming a package, and is shown comprising a lid which is separate from a base. The lid is shown in a bottom view, and the base is shown in top view.
- FIG. 2 is a view of a package comprising the lid and base of FIG. 1, and is shown in top view.
- FIG. 3 is a view of the FIG. 2 package shown along the line3-3.
- FIG. 4 is a view of the FIG. 2 package shown along the cross sectional view of FIG. 3, and shown at a processing step subsequent to that of FIG. 3.
- FIG. 5 is a diagrammatic bottom view of a microelectronic lid, or alternatively a heat spreader, encompassed by the present invention.
- FIG. 6 is a side view of the FIG. 5 lid.
- FIG. 7 is a view of the FIG. 5 lid in combination with a base, and shown at a preliminary step of forming a microelectronic package encompassed by the present invention. The base of FIG. 7 is shown in top view, while the lid is shown in bottom view.
- FIG. 8 is a top view of a package assembled utilizing the lid and base of FIG. 7.
- FIG. 9 is a cross-sectional view of the package of FIG. 8 shown along the line9-9.
- FIG. 10 is a cross-sectional view of the FIG. 8 package shown along the line9-9, and shown at a processing step subsequent to that of FIG. 9.
- FIG. 11 is a sideview of the FIG. 8 package.
- FIG. 12 is a sideview of the FIG. 8 package, and shown in accordance with an embodiment of the present invention different than that of FIG. 11.
- FIG. 13 is an isometric view of a piece of lid stock at a preliminary step of forming lids in accordance with a method of the present invention.
- FIG. 14 is an isometric view of the lid stock of FIG. 13 shown at a processing step subsequent to that of FIG. 13.
- A microelectronic lid or alternatively a heat sink encompassed by the present invention is described with reference to FIG. 5, and is shown generally as a
lid 100.Lid 100 comprises a generally rectangular shape (although other shapes are encompassed by the present invention, with such other shapes including, for example, circular, triangular, pentagonal, or other polygonal shapes).Lid 100 comprises a periphery defined by the fouredges Lid 100 also comprises arecessed surface 110, which is coextensive with the surface ofedges rails edges lid 100 comprises a surface 120 (not visible in the view of FIG. 5) which is in opposing relation tosurface 110. - A difference between the
lid 100 of FIG. 5 and the prior art lid 30 (shown in FIG. 1) is inlid 100 having raised portions (112 and 114) extending along only a part of the periphery of the lid. In contrast, theprior art lid 30 has a raised portion (34) extending along its entire periphery. - In the shown embodiment,
lid 100 comprises a rectangular shape, and the raised peripheral portions are along two opposing sides (104 and 108) of the peripheral shape, while the remaining two sides (102 and 106) do not have raised portions extending along the predominate extent of such edges. In fact, the only raised portions associated withedges portions portions rails label 115. Accordingly,edge 102 has anexpanse 126 extending along the edge between terminal ends 115 ofrails such expanse 126 is not raised relative tosurface 110. Similarly,edge 106 has anexpanse 128 extending between terminal ends 115 which is not raised relative tosurface 110. - FIG. 6 shows a side view of
lid 100 along theside 106. Such side view illustrates the relationship ofrails expanse 128 extending betweenrails Rails groove 119 extending therebetween. - Exemplary dimensions of the
lid 100 of FIGS. 5 and 6 are a width “W” of about 35 ±0.35 millimeters; a length “L” of about 35 ±0.35 millimeters, and a thickness “T” of about 4.6 ±0.05 millimeters. Further, groove 119 can have a depth “D” of about 0.6 ±0.025 millimeters. - Referring next to FIG. 7,
lid 100 is shown adjacent abase 150, Which is ultimately to be capped bylid 100 to form a package.Base 150 comprises four peripheral edges (151, 153, 155 and 157), and is similar to thebase 10 of FIG. 1 in that it comprises a die 14 over asubstrate 12. Further,base 150 comprises asealant 16 provided along peripheral edges of the substrate. However, a difference betweenbase 150 of FIG. 7 andbase 10 is that thesealant 16 is provided along only two of the peripheral edges ofsubstrate 12 ofbase 150, rather than along the four peripheral edges as was done withbase 10.Sealant 16 is provided along the two peripheral edges of thesubstrate 12 ofbase 150 that will ultimately contact raised edges associated withlid 100. - In a processing step subsequent to that of FIG. 7, lid1 00 is placed over
base 150, and rails 112 and 114 are sealed against the base withsealant 16 to form a package. Such package is shown in FIG. 8 as apackage 200, aid specifically is shown in top view, withsurface 120 oflid 100 being visible. - Referring next to FIG. 9,
package 200 is shown in cross-sectional view along the line 9-9 of FIG. 8. Such cross-sectional view showssolder beads 42 connectingdie 14 withsubstrate 12. Also, the cross-sectional view shows alayer 202 formed betweendie 14 andlid 100.Laver 202 can comprise, for example, a thermally conductive material. Iflayer 202 comprises a thermally conductive material, thenlid 100 can function as a heat spreader to dissipate heat generated bydie 14. In alternative embodiments,layer 202 can be omitted, or can be replaced with a non-thermally conductive material. In either of such alternative embodiments,lid 100 will function as a microelectronic lid to protect die 14, but will generally not effectively dissipate heat fromdie 14, and accordingly will not be utilized as a heat spreader. - If
lid 100 is utilized as a heat spreader, it preferably comprises a material with a thermal conductivity of at least 100 watts/meter-kelvin, and more perfectly at least 150 watts/meter-kelvin. In particular embodiments,lid 100 can comprise a material having a thermal conductivity in excess of 200 watts/meter-kelvin, such as, for example, copper or aluminum. In embodiments in whichlid 100 comprises a metallic material, the lid can be nickel-plated. For instance, iflid 100 comprises copper or aluminum, it can be provided with a nickel-plating having a thickness of at least about 3 microns. The nickel plating can protect the underlying lid material from corrosion, and further can provide a reproducible surface for adherence to one or more thermal interface materials, as well as for adherence to epoxy. - Referring next to FIG. 10,
package 200 is illustrated after formation of aheat sink 50 over the package, and athermal interface 52 connectingheat sink 50 withpackage 200.Heat sink 50 andthermal interface 52 can comprise, for example, the materials described above with reference to the prior art construction of FIG. 4. - Referring next to FIG. 11, the
package 200 of FIG. 8 is shown in a side view. The chip (14) is not shown in the side view of FIG. 11 to simplify the drawing, although it is to be understood thatchip 14 would be in the center ofpackage 200 as illustrated by, for example, FIG. 9. The view of FIG. 11 shows that there is agap 250 at the end ofpackage 200 corresponding to a space betweenrails gap 250 to prevent dirt or other contaminants from penetrating betweenlid 100 andsubstrate 150, such can be accomplished by providing a filler material within the gap. Such is illustrated in FIG. 12, whereingap 250 is filled with afiller material 260.Filler material 260 can comprise, for example, epoxy.Filler material 260 can be provided after formation ofpackage 200 by applying the filler material intogap 250. Alternatively,filler material 250 can be provided before formation ofpackage 200 at, for example, the processing step of FIG. 7, by providing the filler material atedges substrate 150. - The
lid 100 of the present invention can be advantageous relative to prior art lids (such as, for example, thelid 30 of FIG. 1) in thatlid 100 can be simpler to manufacture than the prior art lids.Lid 100 can be formed by, for example, the processing of FIGS. 13 and 14. Referring initially to FIG. 13, abar 300 of lid stock is provided. The bar comprises dimensions “A”, “X”, and “Y”. Dimension “X” corresponds to a width alongedge 106 of a finished lid 100 (FIGS. 5 and 6), and dimension “Y” corresponds to a thickness ofrails finished lid 100. The dimension “A” is preferably longer than several integral lengths ofedge 108 of afinished lid 100. - Referring next to FIG. 14,
bar 300 is machined to form agroove 302 extending along a surface of the bar.Groove 302 definesrails lines lids - Although FIGS. 13 and 14 illustrate a process wherein a
lid stock bar 300 is machined to formgroove 302, it is to be understood that the invention encompasses alternative processing wherein the grooved material of FIG. 14 is formed by extruding a lid material into the shown shape.
Claims (7)
1-50. (canceled).
51. (previously presented): A method of forming a plurality of microelectronic lids, comprising:
forming a lid stock material into a shape of a bar having a side, and a groove extending along the side;
after forming the lid stock material into the shape, cutting the bar into a plurality of separated microelectronic lids; and
wherein the lid stock material comprises aluminum or copper, and further comprising electroplating the separated microelectronic lids with nickel.
52. (previously presented): The method of claim 51 wherein the forming the lid stock material into the shape comprises extruding the lid stock material into the shape.
53. (previously presented): The method of claim 51 wherein the forming the lid stock material into the shape comprises:
providing a bar of the lid stock material that lacks the groove in the side; and
machining the groove into the side of the bar.
54. (previously presented): The method of claim 51 wherein the lid stock material comprises aluminum.
55. (previously presented): The method of claim 51 wherein the lid stock material comprises copper.
56. (previously presented): The method of claim 51 further comprising incorporating at least one of the microelectronic lids into a microelectronic package, the incorporating comprising:
providing a chip supported by a base; and
adhering the microelectronic lid to the base and over the chip; the chip accordingly being packaged between the microelectronic lid and the base.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/823,117 US20040187309A1 (en) | 2000-11-14 | 2004-04-12 | Methods of forming pluralities of microelectronic lids |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24904300P | 2000-11-14 | 2000-11-14 | |
US10/416,824 US6958536B2 (en) | 2000-11-14 | 2001-10-30 | Microelectronic packages having rail along portion of lid periphery |
US10/823,117 US20040187309A1 (en) | 2000-11-14 | 2004-04-12 | Methods of forming pluralities of microelectronic lids |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/416,824 Division US6958536B2 (en) | 2000-11-14 | 2001-10-30 | Microelectronic packages having rail along portion of lid periphery |
PCT/US2001/044849 Division WO2002041394A2 (en) | 2000-11-14 | 2001-10-30 | Lid and heat spreader design for a semiconductor package |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040187309A1 true US20040187309A1 (en) | 2004-09-30 |
Family
ID=22941809
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/416,824 Expired - Fee Related US6958536B2 (en) | 2000-11-14 | 2001-10-30 | Microelectronic packages having rail along portion of lid periphery |
US10/823,117 Abandoned US20040187309A1 (en) | 2000-11-14 | 2004-04-12 | Methods of forming pluralities of microelectronic lids |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/416,824 Expired - Fee Related US6958536B2 (en) | 2000-11-14 | 2001-10-30 | Microelectronic packages having rail along portion of lid periphery |
Country Status (7)
Country | Link |
---|---|
US (2) | US6958536B2 (en) |
EP (1) | EP1336199A2 (en) |
JP (1) | JP2004528702A (en) |
KR (1) | KR20040014412A (en) |
CN (1) | CN1575520A (en) |
AU (1) | AU2002217965A1 (en) |
WO (1) | WO2002041394A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023196189A1 (en) * | 2022-04-05 | 2023-10-12 | Honeywell International Inc. | Integrated heat spreader |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6888238B1 (en) * | 2003-07-09 | 2005-05-03 | Altera Corporation | Low warpage flip chip package solution-channel heat spreader |
WO2005086217A1 (en) | 2004-02-03 | 2005-09-15 | Infineon Technologies Ag | Matrix-type semiconductor package with heat spreader |
KR100799614B1 (en) | 2006-05-23 | 2008-01-30 | 삼성전기주식회사 | MEMS module package with heat dissipation |
JP2011514663A (en) * | 2008-01-31 | 2011-05-06 | レイセオン カンパニー | Method and apparatus for heat transfer of parts |
WO2012074775A1 (en) * | 2010-11-19 | 2012-06-07 | Analog Devices, Inc. | Packaged integrated device with electrically conductive lid |
CN104192790A (en) * | 2014-09-15 | 2014-12-10 | 华东光电集成器件研究所 | Thermal stress isolation structure for MEMS (micro-electromechanical system) device |
US9837333B1 (en) | 2016-09-21 | 2017-12-05 | International Business Machines Corporation | Electronic package cover having underside rib |
US10622282B2 (en) * | 2017-07-28 | 2020-04-14 | Qualcomm Incorporated | Systems and methods for cooling an electronic device |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5482898A (en) * | 1993-04-12 | 1996-01-09 | Amkor Electronics, Inc. | Method for forming a semiconductor device having a thermal dissipator and electromagnetic shielding |
US5658831A (en) * | 1993-03-31 | 1997-08-19 | Unisys Corporation | Method of fabricating an integrated circuit package having a liquid metal-aluminum/copper joint |
US5831836A (en) * | 1992-01-30 | 1998-11-03 | Lsi Logic | Power plane for semiconductor device |
US5956576A (en) * | 1996-09-13 | 1999-09-21 | International Business Machines Corporation | Enhanced protection of semiconductors with dual surface seal |
US6068051A (en) * | 1998-03-23 | 2000-05-30 | Intel Corporation | Channeled heat sink |
US6075289A (en) * | 1996-10-24 | 2000-06-13 | Tessera, Inc. | Thermally enhanced packaged semiconductor assemblies |
US6091603A (en) * | 1999-09-30 | 2000-07-18 | International Business Machines Corporation | Customizable lid for improved thermal performance of modules using flip chips |
US6118177A (en) * | 1998-11-17 | 2000-09-12 | Lucent Technologies, Inc. | Heatspreader for a flip chip device, and method for connecting the heatspreader |
US6222263B1 (en) * | 1999-10-19 | 2001-04-24 | International Business Machines Corporation | Chip assembly with load-bearing lid in thermal contact with the chip |
US6271058B1 (en) * | 1998-01-06 | 2001-08-07 | Nec Corporation | Method of manufacturing semiconductor device in which semiconductor chip is mounted facedown on board |
US6309909B1 (en) * | 1998-07-02 | 2001-10-30 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device and method of manufacturing the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR860002865A (en) | 1984-09-04 | 1986-04-30 | 로버어트 티이 오어너 | Integrated circuit package with integrated heat dissipation device |
TW359863B (en) | 1997-11-28 | 1999-06-01 | Utron Technology Inc | Multi-chip stack package |
US6784540B2 (en) * | 2001-10-10 | 2004-08-31 | International Rectifier Corp. | Semiconductor device package with improved cooling |
-
2001
- 2001-10-30 US US10/416,824 patent/US6958536B2/en not_active Expired - Fee Related
- 2001-10-30 EP EP01996884A patent/EP1336199A2/en not_active Withdrawn
- 2001-10-30 JP JP2002543696A patent/JP2004528702A/en not_active Withdrawn
- 2001-10-30 KR KR10-2003-7006558A patent/KR20040014412A/en not_active Application Discontinuation
- 2001-10-30 CN CNA018219918A patent/CN1575520A/en active Pending
- 2001-10-30 WO PCT/US2001/044849 patent/WO2002041394A2/en not_active Application Discontinuation
- 2001-10-30 AU AU2002217965A patent/AU2002217965A1/en not_active Abandoned
-
2004
- 2004-04-12 US US10/823,117 patent/US20040187309A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5831836A (en) * | 1992-01-30 | 1998-11-03 | Lsi Logic | Power plane for semiconductor device |
US5658831A (en) * | 1993-03-31 | 1997-08-19 | Unisys Corporation | Method of fabricating an integrated circuit package having a liquid metal-aluminum/copper joint |
US5482898A (en) * | 1993-04-12 | 1996-01-09 | Amkor Electronics, Inc. | Method for forming a semiconductor device having a thermal dissipator and electromagnetic shielding |
US5956576A (en) * | 1996-09-13 | 1999-09-21 | International Business Machines Corporation | Enhanced protection of semiconductors with dual surface seal |
US6075289A (en) * | 1996-10-24 | 2000-06-13 | Tessera, Inc. | Thermally enhanced packaged semiconductor assemblies |
US6271058B1 (en) * | 1998-01-06 | 2001-08-07 | Nec Corporation | Method of manufacturing semiconductor device in which semiconductor chip is mounted facedown on board |
US6068051A (en) * | 1998-03-23 | 2000-05-30 | Intel Corporation | Channeled heat sink |
US6309909B1 (en) * | 1998-07-02 | 2001-10-30 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device and method of manufacturing the same |
US6118177A (en) * | 1998-11-17 | 2000-09-12 | Lucent Technologies, Inc. | Heatspreader for a flip chip device, and method for connecting the heatspreader |
US6091603A (en) * | 1999-09-30 | 2000-07-18 | International Business Machines Corporation | Customizable lid for improved thermal performance of modules using flip chips |
US6222263B1 (en) * | 1999-10-19 | 2001-04-24 | International Business Machines Corporation | Chip assembly with load-bearing lid in thermal contact with the chip |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023196189A1 (en) * | 2022-04-05 | 2023-10-12 | Honeywell International Inc. | Integrated heat spreader |
Also Published As
Publication number | Publication date |
---|---|
WO2002041394A2 (en) | 2002-05-23 |
JP2004528702A (en) | 2004-09-16 |
KR20040014412A (en) | 2004-02-14 |
CN1575520A (en) | 2005-02-02 |
US6958536B2 (en) | 2005-10-25 |
US20040070069A1 (en) | 2004-04-15 |
WO2002041394A3 (en) | 2003-05-15 |
EP1336199A2 (en) | 2003-08-20 |
AU2002217965A1 (en) | 2002-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3640557B2 (en) | Lead frame having heat spread and semiconductor package using the lead frame | |
US6188130B1 (en) | Exposed heat spreader with seal ring | |
US8133759B2 (en) | Leadframe | |
KR100214549B1 (en) | Bottom Lead Semiconductor Package | |
US20070226996A1 (en) | Hybrid integrated circuit device and method of manufacturing the same | |
EP3226311B1 (en) | Lead frame and package, and methods for manufacturing lead frame, package, and light-emitting device | |
US9941233B2 (en) | Electronic device and mounting structure of the same | |
US6958536B2 (en) | Microelectronic packages having rail along portion of lid periphery | |
KR20110015047A (en) | Foil-Based Semiconductor Packages | |
JP2006510221A (en) | Micro mold lock for heat sink or flag for overmolded plastic package | |
US10707154B2 (en) | Semiconductor device and method for manufacturing the same | |
CN102194799A (en) | Unit in collection of units and its manufacture method | |
JPH0223640A (en) | Resin sealed type semiconductor device | |
US6284570B1 (en) | Method of manufacturing a semiconductor component from a conductive substrate containing a plurality of vias | |
US20030082852A1 (en) | Flip chip package and method for forming the same | |
JPH03218658A (en) | Lead frame and semiconductor device | |
US7514769B1 (en) | Micro surface mount die package and method | |
JP6533766B2 (en) | Package molded body for light emitting device and light emitting device using the same | |
JP3313009B2 (en) | Heat dissipation member, lead frame and semiconductor device | |
JP2008034728A (en) | Circuit device and manufacturing method thereof | |
CN222261038U (en) | Heat dissipation packaging structure | |
US20220301983A1 (en) | Semiconductor device | |
JPH0870087A (en) | Lead frame | |
JPH09289260A (en) | Semiconductor device | |
JP2001144035A (en) | Producing method for semiconductor device and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |