Nothing Special   »   [go: up one dir, main page]

US20040155731A1 - Low-loss tunable ferro-electric device and method of characterization - Google Patents

Low-loss tunable ferro-electric device and method of characterization Download PDF

Info

Publication number
US20040155731A1
US20040155731A1 US10/750,304 US75030403A US2004155731A1 US 20040155731 A1 US20040155731 A1 US 20040155731A1 US 75030403 A US75030403 A US 75030403A US 2004155731 A1 US2004155731 A1 US 2004155731A1
Authority
US
United States
Prior art keywords
capacitor
ferroelectric
loss
tunable
degrees celsius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/750,304
Other versions
US6927644B2 (en
Inventor
Stanley Toncich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/750,304 priority Critical patent/US6927644B2/en
Publication of US20040155731A1 publication Critical patent/US20040155731A1/en
Priority to US10/974,391 priority patent/US7221243B2/en
Application granted granted Critical
Publication of US6927644B2 publication Critical patent/US6927644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2688Measuring quality factor or dielectric loss, e.g. loss angle, or power factor
    • G01R27/2694Measuring dielectric loss, e.g. loss angle, loss factor or power factor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/06Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture having a dielectric selected for the variation of its permittivity with applied voltage, i.e. ferroelectric capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0805Capacitors only
    • H01L27/0808Varactor diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20336Comb or interdigital filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20363Linear resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20381Special shape resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/2039Galvanic coupling between Input/Output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • H01P1/2056Comb filters or interdigital filters with metallised resonator holes in a dielectric block
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/04Coupling devices of the waveguide type with variable factor of coupling
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/02Details
    • H03B5/04Modifications of generator to compensate for variations in physical values, e.g. power supply, load, temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/1262Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising switched elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/1293Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator having means for achieving a desired tuning characteristic, e.g. linearising the frequency characteristic across the tuning voltage range
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/18Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
    • H03B5/1841Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/36Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device
    • H03B5/362Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device the amplifier being a single transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/191Tuned amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/18Networks for phase shifting
    • H03H7/20Two-port phase shifters providing an adjustable phase shift
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J5/00Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner
    • H03J5/24Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner with a number of separate pretuned tuning circuits or separate tuning elements selectively brought into circuit, e.g. for waveband selection or for television channel selection
    • H03J5/246Discontinuous tuning; Selecting predetermined frequencies; Selecting frequency bands with or without continuous tuning in one or more of the bands, e.g. push-button tuning, turret tuner with a number of separate pretuned tuning circuits or separate tuning elements selectively brought into circuit, e.g. for waveband selection or for television channel selection using electronic means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/111Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/372Noise reduction and elimination in amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0123Frequency selective two-port networks comprising distributed impedance elements together with lumped impedance elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/12Bandpass or bandstop filters with adjustable bandwidth and fixed centre frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band

Definitions

  • the field of the present invention is ferro-electric tunable electronic devices and components.
  • Variable capacitors are advantageous as different electronic responses can be obtained by variation of the capacitance.
  • the structures presently used to implement variable or tunable capacitors have significant performance and practical limitations.
  • Movable parallel plates while providing variable capacitance for radio tuning, are bulky, lossy, noisy, generally operate over only a limited range of frequencies, or have any number of these limitations.
  • a “lossy” component or device has a high insertion loss (IL), which is the ratio of power dissipated in the component to power delivered to a load.
  • An electronic varactor is a semiconductor device that adjusts capacitance responsive to an applied voltage. Varactors are typically lossy and noisy, and are therefore generally ineffective for high-frequency applications, particularly those above 200 MHz.
  • MEMS micro-electro-mechanical system
  • ferroelectric materials are good candidates for making tunable capacitors or other tunable components.
  • tunable ferroelectric components have gained the reputation of being consistently and substantially lossy, regardless of the processing, doping or other fabrication techniques used to improve their loss properties. They have therefore not been widely used.
  • Ferroelectric tunable components operating in RF or microwave regions are perceived as being particularly lossy. This observation is supported by experience in RADAR applications where, for example, high RF or microwave loss is the conventional rule for bulk (thickness greater than about 1.0 mm) f-e materials especially when maximum tuning is desired. In general, most f-e materials are lossy unless steps are taken to improve (reduce) their loss. Such steps include, but are not limited to: (1) pre and post deposition annealing or both to compensate for O 2 vacancies, (2) use of buffer layers to reduce surfaces stresses, (3) alloying or buffering with other materials and (4) selective doping.
  • a broadband measurement of the capacitance value of a ferroelectric capacitor is typically obtained using a device such as an LRC meter, impedance analyzer or a network analyzer. From power measurements, one can calculate the lossiness of the capacitor. The inverse of lossiness is referred to as the Quality Factor (“Q”). Thus, a lossy device will have a low Q and a more efficient device will have a high Q. Q measurements for ferroelectric capacitors with capacitances in the range of about 0.5 pF to 1.0 pF operating in a frequency range of 1.8 GHz to 2.0 GHz, obtained using conventional measurement techniques, are typically claimed to be in the range of 10-50. This is unacceptably inefficient, and ferroelectric tunable components are therefore considered undesirable for widespread use. In wireless communications, for example, a Q of greater than 80, and preferably greater than 180, and more preferably greater than 350, is necessary at frequencies of about 2 GHz.
  • the invention provides for narrowband testing methods and integration of components. All loss mechanisms are accounted for and eliminated or minimized. This results in more accurate test results, showing that some f-e materials are much less lossy than previously thought.
  • f-e materials can be successfully investigated to find ideal tradeoffs between loss, tunability and other parameters.
  • Low loss tunable f-e devices can be built.
  • a low loss, f-e tunable capacitor can be built.
  • Such a capacitor can be used as a building block in many applications where tunability is desired, but low loss requirements had been preventing the use of any other tunable devices.
  • An example application is in wireless communication devices.
  • FIG. 1 is a top view of an interdigital capacitor fabricated with a thin ferroelectric film
  • FIG. 2 is a sectional view of a tunable ferroelectric gap capacitor according to the present invention.
  • FIG. 3 is a table showing the relationship between gap width, ferroelectric layer thickness and capacitance
  • FIG. 4 is a top view of a ferroelectric overlay capacitor according to the present invention.
  • FIG. 5 is an exploded view of a portion of the overlay capacitor of FIG. 4.
  • FIG. 6 is a second order narrowband resonant testing circuit according to the present invention.
  • FIG. 7 is a table comparing data obtained with the testing circuit of FIG. 6 with data obtained using conventional test methods
  • FIG. 8 is another embodiment of a second order narrowband resonant testing circuit according to the present invention.
  • FIG. 9 is a single resonator narrowband testing circuit according to the present invention.
  • FIG. 10 a is a schematic of another embodiment of a single resonator narrowband testing circuit according to the present invention.
  • FIG. 10 b is a planar realization of the circuit schematic of FIG. 10 a.
  • the present invention provides test methods utilizing narrowband resonant circuits that accurately measure and characterize the efficiency of tunable ferroelectric components in the frequency range in which they will be used, and with topologies that will be used. These test methods and circuits establish that tunable ferroelectric components are not as uniformly lossy as previously thought and that they may advantageously be used in low-loss applications and devices, such as wireless handsets. With an accurate determination of loss, tunable ferroelectric components can be properly optimized and designed. Specific loss mechanisms can be identified and eliminated, or otherwise reduced and bounded.
  • Tunable ferroelectric components can be employed in a wide variety of frequency agile circuits. Tunable components are desirable because they can provide smaller component size and height, lower insertion loss or better rejection for the same insertion loss, lower cost and the ability to tune over more than one frequency band. The ability of a tunable component that can cover multiple bands potentially reduces the number of necessary components, such as switches that would be necessary to select between discrete bands were multiple fixed frequency components used. These advantages are particularly important in wireless handset design, where the need for increased functionality and lower cost and size are seemingly contradictory requirements. In CDMA handsets, for example, performance of individual components is highly stressed. Ferroelectric materials may also permit integration of RF components that to-date have resisted shrinkage, such as an antenna interface unit (AIU) for a wireless device.
  • AIU antenna interface unit
  • an AIU could integrate one or more tunable duplexers (US PCS and cellular in a dual band wireless communication device), diplexers, PA's and LNA's. Some or all of these components could be advantageously integrated, their total size or volume or both being reduced and their electronic performance improved. Further applications for tunable ferroelectric components are set forth in the latter portion of this specification.
  • ferroelectric material has two primary loss mechanisms, conductivity loss and damping from lattice vibrations in the dielectric.
  • the combination of the two effects is referred to as the material's loss tangent (tan( ⁇ )).
  • tan( ⁇ ) loss tangent
  • any method which measures tan( ⁇ ) will include effects of finite conductivity if present. This is because the loss effects of the two machanisms are indistinguishable as far as rf/microwave properties are concerned.
  • a primary component in RF circuits is the capacitor.
  • F-E tunability will now be discussed in terms of f-e capacitors.
  • the total loss of a capacitor, whether tunable or not, is given by its quality factor (Q) which is expressed as a ratio of its stored to dissipated energy, where the energy is stored in the electric field and dissipated in resistance.
  • Q quality factor
  • the unloaded Q (Q u ) is given by:
  • Q c is the conductor Q
  • Q d is the dielectric Q
  • Q r is the radiation Q.
  • the dielectric loss is the effect of the loss tangent, tan( ⁇ ), including conductivity loss attributable to the dielectric, if the latter loss is present.
  • Cavity resonator methods are conventionally used to measure a material's dielectric constant and loss tangent. These methods are difficult, especially at lower microwave frequencies ( ⁇ 2 GHz) where cellular phones operate, as the size of the cavity is quite large. Use of cavity resonator methods on thin ferroelectric films poses a greater problem, as it is very difficult to measure the perturbation introduced to a cavity from a structure having a thickness in the range of one micron. The potential for error is significant.
  • Interdigital capacitors are usually used to measure ferroelectric film quality.
  • a ferroelectric interdigital capacitor (IDC) 100 in a conventional microstrip configuration is depicted in FIG. 1.
  • Interdigital capacitor 100 comprises base substrate 110 ; thin film ferroelectric layer 120 ; and first and second conductors 130 and 140 .
  • Interdigital capacitors are typically used in applications such as monolithic microwave integrated circuits (MMICs) and in applications where small footprints and capacitances in the range of 0.1-6 pF are needed.
  • MMICs monolithic microwave integrated circuits
  • the capacitance is created between conductive parallel lines or fingers in the structure.
  • Base substrate 110 typically comprises a low loss material such as magnesium oxide (MgO), sapphire or high purity aluminum, for example.
  • the substrate is chosen based on its inherent low loss tangent and its ability to accept the direct deposition of a wide range of f-e films without additional buffer layers.
  • a thin ferroelectric film 120 is deposited on base substrate 110 .
  • Ferroelectric film 120 typically has a thickness in the range of 0.15-1.5 microns.
  • a conductive layer is then deposited onto ferroelectric film 120 . Sometimes an adhesion layer is needed.
  • the conductive layer is preferably a metallic material such as copper, gold or silver. These metals are advantageous due to their relatively low loss at room temperature. For purposes of this specification, room temperature is defined as being in the range from ⁇ 30° C.
  • the conductive layer typically has a thickness in the range of 0.5 to 6.0 microns, with a thickness in the range of 0.5 to 1.5 microns being most common. Thickness requirements vary based on skin depth which varies based on frequency.
  • thick film f-e material can be used as well.
  • thick film is defined to be t f-e greater than about 1.5 ⁇ pm and less than about 1.0 mm. Bulk is greater than about 1.0 mm.
  • the fabrication and application of thick film f-e material is quite different than that of thin film f-e material. It usually involves a paste or a sol-gel technique, and the f-e materials to produce the significantly added thickness. The added thickness and especially reduced cost comes at the price of somewhat degraded f-e performance, notably, reduced tunability.
  • Interdigital capacitor 100 is then fabricated using either etch-back or lift-off techniques to form first conductor 130 and second conductor 140 .
  • First conductor 130 has fingers 132 and spaces 134 that are proximate fingers 142 and spaces 144 of second conductor 140 .
  • the conductors are arranged so that fingers 132 of first conductor 130 are in spaces 144 of second conductor 140 , and so that fingers 142 of second conductor 140 are in spaces 134 of first conductor 130 .
  • IDC's with fingers typically 1-5 microns wide, and the gap or space between the fingers typically 1-5 microns wide.
  • the capacitance is created primarily between fingers 132 and 142 .
  • small gap size ⁇ 5 microns
  • long fingers are required.
  • small gap size also assists in creating a large tuning field between the fingers. This is critical because much of the tuning field is lost in the air region above capacitor 100 .
  • the greatest loss component in this configuration is in the odd mode generated in the finger region.
  • the coupling between the parallel lines can be expressed in terms of an even mode and an odd mode.
  • the even mode occurs when both lines are excited in phase (usually taken to be zero), and the odd mode occurs when the lines are excited 180 degrees out of phase.
  • the velocities at which the even and odd modes propagate are different.
  • the loss further increases when a thin conductive layer (less than 1.5 microns), narrow finger width and gap spacing (either or both less than 5 microns) and sharp corners are used.
  • the standard procedure for measuring thin ferroelectric film loss via an interdigital capacitor is as follows. As described above, approximately 0.5 microns of ferroelectric film is deposited on a low loss substrate such as magnesium oxide. Then, a conductive layer having a thickness of 1 micron or less is deposited to permit fabrication of an interdigital capacitor of the smallest possible size. Finger width and gap spacing are both typically in the 1 to 5 ⁇ m range. Etch-back or lift-back techniques are used to form narrow, long fingers with sharp corners. The resulting interdigital capacitor is characterized using a broadband measurement tool such as an LRC meter or an impedance or network analyzer with probe tips that contact the capacitor.
  • a broadband measurement tool such as an LRC meter or an impedance or network analyzer with probe tips that contact the capacitor.
  • capacitors in the range of 0.2 to 1.5 pF are obtained, with Q's in the range of 10-100 at an operating frequency of anywhere from approximately 500 MHz to approximately 2 GHz is typically measured. This loss is typically attributed entirely to the ferroelectric film. These Q values are considered quite low and, consequently, ferroelectric tunable components are commonly assumed to be high loss and unacceptable for many uses.
  • a Q of greater than 100 and preferably greater than 250 is necessary at frequencies in the range of 2 GHz for f-e capacitors in the vicinity of 1.0 pF.
  • conventional fabrication and loss measurement techniques do not yield a reliable indication of the actual loss attributable to the ferroelectric film.
  • capacitor loss (whether tunable or not) is proportional to the series loss R s at radio frequency (f>about 500 MHz) where the effect of the large parallel resistance that shunts the capacitance is negligible.
  • the capacitor does not care what the source of the series loss is, only that there is a source.
  • the series loss must be only 0.32 ⁇ .
  • the series loss includes the total loss from all sources arising from the capacitor's use. In order to minimize or eliminate the sources of series loss, one must first account for each loss mechanism that is present. This will permit a more accurate determination of the loss attributable specifically to the ferroelectric film.
  • L t L geom +L attach +L metal +L sub +L rad +L meas +L f-e ;
  • L metal is the total metal loss
  • L sub is the base substrate loss (if present)
  • L rad is the radiation loss, both desired and undesired
  • L meas is the total loss arising from measurement errors
  • L f-e is the f-e loss tangent.
  • This loss allocation can first be used to obtain an accurate value of L f-e (or f-e tan ⁇ ) at the desired operating frequency in the manner in which the f-e capacitor will be used.
  • L f-e the loss contribution sources just described.
  • L geom will vary according to topology, being best for an overlay capacitor, worse for a gap capacitor, and much worse for an IDC capacitor.
  • This loss can be reduced and controlled, it is inherent to a device. Consequently, the choice of topology for a given f-e capacitor will affect the best possible Q c attainable from the f-e capacitor.
  • Electromagnetic (EM) software can establish a baseline loss for a desired geometry, assuming a lossless f-e film. This baseline loss represents the best (lowest) loss for a given geometry.
  • a gap capacitor is easiest to fabricate An IDC is next easiest, and an overlay capacitor is hardest of these three. Compared to an IDC, the gap capacitor will have a better Q but lower capacitance per unit cross section (W in FIG. 1 a ). The IDC's capacitance is greater due to the use of a number of fingers per unit cross section. For many communication filter applications, however, large capacitance (C ⁇ 4.0 pF) is not needed. Thus, a gap capacitor often can provide adequate capacitance. The inherently high value of ⁇ for most f-e films helps provide relatively high capacitance per unit cross section, W, compared to a conventional gap capacitor.
  • L attach arises from discrete device attachment techniques, including, for example, solder, silver paint, or wire bonding. These attachment losses may be large and unpredictable. The lowest losses are achieved by direct fabrication of the f-e capacitor to the resonator or other RF circuitry, thus minimizing if not eliminating this loss component.
  • connection between the f-e capacitor and the resonator should provide the lowest added resistance.
  • the electric currents and charges associated with the f-e capacitor should see a minimum added loss.
  • Conventional bonding or mounting techniques such as (but not limited to) soldering, wire bonding or silver paint or paste do not provide for such a low loss, controllable bond.
  • the f-e capacitor structure should be directly fabricated onto or with the resonator it is meant to tune or onto other essential RF circuitry. Only by direct fabrication can there be a minimum loss transition for electromagnetic (EM) sources (currents) from the f-e tuning elements to the resonator. The desirable effects of direct f-e capacitor fabrication onto or with a resonator can be enhanced by the lack of sharp corners or transitions.
  • EM electromagnetic
  • Factors for L metal include the surface roughness (SR) of the metal, metal thickness as compared to skin depth, ⁇ s, and conductivity. SR may be effectively eliminated as a factor if SR is less than aproximately 10 micro inches root mean square (rms) for operating frequencies in the L and S band (1-4 GHz). The metal thickness may be reduced as a factor if the thickness is 1.5 ⁇ s or greater, or effectively eliminated if the thickness is ⁇ 5 ⁇ s. For electrode contacts, metal thickness (t m ) can be approximately 1.5 ⁇ s.
  • the metal thickness should be closer to about 5 ⁇ s or greater.
  • Conductivity is best for Au, Cu, or Ag.
  • L metal can be reduced and controlled, but not eliminated as a factor. Its effect, however, can be calculated by expressions well known to those skilled in the art, or by using line calculator tools available in commonly used circuit simulators, such as Eagleware or Touchstone. Further, precise fabrication control can bound geometric variations in L metal .
  • the loss contribution represented by L sub may be minimized by choosing a low loss substrate with a loss tangent less than 0.001 and preferably less than 0.0005 at the operating frequency of interest.
  • Suitable materials include >99% pure alumina, a best current choice for loss/cost benefits.
  • Sapphire or MgO are better than alumina in that they have lower loss tangents, but they are more expensive. All these materials will accept many f-e thin films without buffer layers and have a surface roughness that is acceptable with little or no further polishing.
  • Semiconductor substrates are poor choices because of their relatively high conductivity. In addition to the factors of loss tangent, surface roughness and price, suitable substrates should not be brittle, can be fabricated as larger area wafers, and can be easily metallized without extensive pre-processing.
  • Lsub Separating out Lsub from the total loss of a composite substrate (f-e film plus substrate) can be achieved by using EM field or circuit simulation software. For example, Sonnet, Momentum, or IE3D may be used. Thus, L sub can be reduced significantly and calculated precisely.
  • L rad can be eliminated by proper shielding and design, and so is typically not a factor. It should be noted that a wide variety of filters, especially planar filters such as combline or hairpin, depend upon radiative coupling to achieve their desired performance. In these cases, one should ensure that the unwanted, stray coupling is reduced, if not eliminated.
  • L meas can add significantly to the circuit loss error because small, added loss significantly reduces the measured Q of the device-under-test (DUT) or system thus obscuring the intrinsic Q of the DUT.
  • the conventional method for measuring dielectric constant and loss tangent in a material is the cavity perturbation technique, which is well known to anyone skilled in the art. At L-band, however, the size of the cavity becomes quite large.
  • f-e films When characterizing thin films (as opposed to bulk) with film thickness ⁇ 1.5 ⁇ m, such as f-e films, the problem becomes very difficult as measurement errors can be severe.
  • f-e capacitor or filter in a manner most similar to how it will be used.
  • the preferred way to characterize f-e compounds or films is by microstrip resonator techniques.
  • a network analyzer For measurements on resonant circuits, a network analyzer is the preferred choice. To minimize measurement loss and attain the most accurate measurement using a network analyzer, loss to DUT should be calibrated out, a full two port calibration of the analyzer should be performed and averaging should be used for calibration and measurement.
  • L tot is the total loss for a given ferroelectric capacitor geometry, and L geom and L metal are integral parts of that geometry. Their presence is appropriate for determining the actual loss of a specific device, but they can be quantified and removed in order to determine the loss due solely to the ferroelectric material.
  • L geom can be determined from an accurate electromagnetic simulation of the circuit assuming a lossless ferroelectric material; and L metal can be determined using the expressions for metal loss assuming conductivity, surface roughness (if applicable) and skin depth.
  • ⁇ L misc represents a combination of incomplete removal of the other loss mechanisms with the finite bounds on L geom and L metal .
  • Gap capacitor 200 comprises substrate layer 202 ; ferroelectric layer 204 and metal layer 206 defining capacitance-inducing gap 208 .
  • the following design implementation minimizes losses from other sources and permits an accurate determination of the loss due to the ferroelectric film 204 . It assumes an operating frequency in the L-band (1-2 GHz) for wireless handsets, though the same methods could be applied in other bands.
  • substrate 202 is a layer of 99.5% pure alumina having a thickness in the range of 20-40 mils. Surface roughness should be less than or equal to about 5 ⁇ inch rms.
  • Ferroelectric layer 204 is a film of barium strontium titanate, Ba x Sr l-x TiO 3 , (BSTO) having a thickness in the range of 0.15 to 2.0 microns. Using a film thickness >1.0 ⁇ m maximizes capacitance and tuning range.
  • Adjusting the Ba/Sr fraction, doping or annealing are preferably chosen to provide the minimum tan ⁇ while providing the required tuning range.
  • x 0.5 (in Ba x Sr l-x TiO 3 ) for room temperature operation.
  • Alternative ferroelectric materials could also be used.
  • Metal layer 206 has a thickness of approximately 2.5 ⁇ m, which makes it suitable for electrode application.
  • Gap 208 is 30-80 mils wide, and the edges should be rounded to maximize loss reduction. The capacitance demonstrated by gap 208 is in the range of 0.6 pF to 1.5 pF at 0 volts DC bias.
  • FIG. 3 is a table showing the relationship between gap width, ferroelectric layer thickness and capacitance. This data is very useful for target design of gap capacitor test circuits.
  • the results in FIG. 3 assume a 0.5 micron thick ferroelectric film with a dielectric constant of 1000 at 0V DC bias, a 40 mil thick substrate layer of 99.5% pure alumina, and a loss tangent of 0.002 for the f-e film.
  • Capacitor 300 comprises substrate 310 ; bias pad layer 320 ; ferroelectric layer 330 ; and capacitor pad layer 340 .
  • Bias pad layer 320 defines a DC bias pad and capacitor pad 340 defines capacitor pad 342 and DC blocking capacitor pad 344 .
  • base substrate 310 is alumina having a thickness in the range of 20-40 mils.
  • Bias pad layer 320 comprises a base electrode layer of silver having a thickness of approximately 2.0 microns covered by a layer of platinum having a thickness of approximately 100 nm. The platinum layer prevents the silver layer from oxidizing during growth of the ferroelectric layer.
  • Layer 320 has a pad built-in for connecting a resistance in the range of 0.5 to 1.0 M ⁇ to provide DC bias. If needed, a thin (10 nm) chromium layer may be interposed between the alumina and silver to provide better adhesion.
  • Ferroelectric layer 330 is a thin film of BSTO having a thickness of approximately one micron.
  • Capacitor pad 342 has a minimum area of 8.0 by 4.0 mils and is topped by electrodes of gold or silver that have an area of approximately 4.0 by 4.0 mils.
  • the DC blocking capacitor has a capacitance of at least 150-200 pF and an area of approximately 100 by 100 microns.
  • the total area of contact pad 344 is a minimum of 7.0 by 8.0 mils.
  • An overlay capacitor has a minimum capacitance in the range of 0.8-1.5 pF.
  • FIG. 5 which is an enlargement of a portion of capacitor 300 , the overlap area 350 of capacitor 300 is very small.
  • overlap area 350 has a size of 0.3 mil by 0.3 mil. This is based on a BSTO dielectric constant of about 1000 at 0 volts DC and a film thickness of about 1.0 microns.
  • the pads 342 and 320 taper to and from capacitor overlay area 350 . The taper is from 4.0 mils to about 0.25 mils in 1.0 mil distance.
  • the loss target for capacitor 300 is a Q of at least 350 at 2.0 GHz for 1.0 pF. If needed, the ferroelectric film 330 can be further optimized via doping, annealing or use of a buffer layer or layers. Finally, the change in capacitance should preferably be 2:1 (50%) or greater for a change in bias voltage of 0-2.5 volts.
  • One aspect of the present invention is optimal structures and design criteria for tunable ferroelectric components, of which the capacitor structures described above are one example.
  • Another aspect of the present invention is measurement methods and apparatus for accurately characterizing the losses in tunable ferroelectric components. These methods involve the use of resonators and narrowband resonant circuits. Narrowband measurements are appropriate since the devices being measured are designed to operate at a narrowband of frequencies. Narrowband (resonant) measurements are also preferred as the naturally enhance the effect of small losses making them easier to measure, and they make the measurement more accurate. Prior methods have involved broadband measurements that are inappropriate and inaccurate for narrowband devices. Two inventive implementations of these testing resonant circuits will be described: second order narrowband bandpass filters, and microstrip resonator circuits (halfwave or quarterwave).
  • FIG. 6 shows a resonant narrowband testing circuit 400 configured to test two ferroelectric capacitors 410 and 412 . It is a 2 nd order planar combline filter. Capacitors 410 and 412 are configured as described with respect to FIG. 1 and FIG. 2 and are implemented to minimize loss components.
  • Testing circuit 400 comprises a planar, second order combline bandpass filter and includes two resonators 402 and 404 coupled in series with, respectively, ferroelectric capacitors 410 and 412 . A DC bias voltage is applied to capacitors 410 and 412 .
  • Capacitors 410 and 412 may be fabricated and mounted for testing either as lumped elements or by printing directly on the substrate.
  • DC blocking capacitors (capacitance equal to about 180 pF) are not shown.
  • the capacitors are soldered or attached with silver paint or paste. This permits use of a wide variety of devices, however, there is an increased and unpredictable loss due to this mounting method.
  • the capacitors are printed directly on the substrate. Printing is advantageous in that no soldering or bonding is required and there is a lower loss due to the direct fabrication. The type of substrates that may be used is limited, however, due to the presence of the ferroelectric film. DC blocking capacitors are not shown.
  • the response is measured through input and output lines 406 and 408 connected to a network analyzer.
  • a measurement of the resonator center frequency f 0 permits determination of the actual capacitor value (see equation (1), above), and the insertion loss at f 0 determines the capacitor Q.
  • a circuit simulation can be used to obtain capacitance and Q values and the results compared.
  • FIG. 7 presents measurement data obtained from ferroelectric interdigital capacitor samples fabricated at the Naval Research Laboratory (NRL), Washington D.C., under contract to Kyocera Wireless Corporation (KWC), the assignee of the present invention. Capacitance and Q measurements taken from the interdigital capacitor samples at NRL using conventional test methods (in this case, an HP 4291B Impedance Analyzer and a Cascade Tech microwave probe) are compared to measurements taken from the same samples at KWC using the novel test methods described above.
  • NRL Naval Research Laboratory
  • KWC Kyocera Wireless Corporation
  • the interdigital capacitors were fabricated to have a capacitance in the range of 0.5-1.2 pF; a gap spacing of approximately 5.0 microns; a finger width of at least 150 microns; a ferroelectric film thickness of approximately 0.5 microns; a metal thickness in the range of 1.5-2.5 microns; and a finger length less than or equal to 100 microns.
  • the KWC testing circuit is configured in like fashion as circuit 400 . It is a second order planar Chebychev bandpass filter configured to resonate at approximately 1800 MHz.
  • High Q ATC and AVX chip capacitors in the range of 0.6 to 0.8 pF were used to establish a baseline passband insertion loss.
  • the Q's for these chip capacitors were in the range of 600-800 at the test frequency.
  • An Eagleware circuit simulator was used to determine actual capacitance and Q's for the interdigital capacitors to give the same resonant frequency and passband insertion loss as the measured data.
  • the data in FIG. 7 is essentially worst case Q data, as no attempt was made to remove (calibrate out) all possible loss components.
  • One such loss component includes bonding (attachment) losses which are different for each line and interdigital capacitor.
  • Another is the resulting resonator length mismatch; microstrip gap open end effects below the location of the capacitors; and losses arising from the basic interdigital capacitor geometry. This being the case, the difference in Q values obtained using the present invention relative to conventional methods is even more striking. Further reduction or elimination of error sources such as, for example, the direct fabrication of gap capacitors using an alumina or MgO substrate will only improve the Q data.
  • Capacitor data can be extracted at the operating frequency.
  • the topology is simple, repeatable and easily fabricated.
  • the measurements are simple and there is little added error by virtue of taking the measurements.
  • the results are easy to compare to the simulated results.
  • the potential for difference in capacitance values described above may show up in the measurement data as increased loss.
  • a small adjustment in one of the bias voltages can compensate for this discrepancy.
  • stray capacitance and coupling can effect the f 0 and Q values obtained. These effects can also be accounted for via the EM field simulator.
  • Unequal mounting of f-e capacitors results in slight differences in the two resonator electrical lengths, which directly adds to I.L. Misalignment of the f-e caps can also result in added loss, manifesting itself as lower Q.
  • Testing circuit 450 takes the form of a coaxial resonator tunable filter although other resonators, such as monoblock, stripline or microstrip can be used. Again, ferroelectric capacitors 452 and 454 may be lumped or printed. Test circuit 450 further comprises coaxial quarter wavelength resonators 462 and 464 . Non-ferroelectric capacitor 470 (C 2 ) is coupled between resonators 462 and 464 , and non-ferroelectric capacitors 472 and 474 (C 1 ) are coupled on the outsides of the resonators. This basic structure is a conventional fix-tuned 2 nd order top capacitively coupled BPF.
  • the measurement technique using circuit 450 is as follows. BPF performance is measured first without, then with f-e capacitors in place. In the first instance, the resonator center frequency f 01 and the insertion loss IL 1 of the filter is first measured without ferroelectric capacitors. In the second instance, the resonator center frequency f 02 and insertion loss IL 2 of the filter are measured with ferroelectric capacitors 452 and 454 . Notably, f 01 will always be greater than f 02 and IL 2 will always be greater than IL 1 as long as resonators 442 and 444 are the same length.
  • the capacitance C fe can be determined from f 01 -f 02 , and Q(C fe ) can be determined from IL 2 -IL 1 by comparison with simulations to great accuracy.
  • the f-e capacitors need not be added to the original circuit. Rather, the basic top capacitively coupled BPF can be fabricated with no f-e capacitors, and a second BPF fabricated with f-e capacitors directly. This would lead to a minimum-added-loss tunable test circuit as it allows for direct fabrication of f-e capacitors with the circuit.
  • An alternative testing circuit would involve the use of physically shorter resonators 442 and 444 when used in conjunction with f-e capacitors. This would cause the BPF to resonate at or near the same resonant frequency as the non f-e BPF. The same f-e capacitor Q extraction method would be used.
  • Second order test circuit 450 has several advantages over second order test circuit 400 . Both circuit 400 and circuit 450 are inherently narrowband structures but the coaxial resonators 462 and 464 can have a very high Q, resulting in a very low insertion loss. Very little stray coupling is involved due to the inherent shielding. Also, as with circuit 400 , test circuit 450 is not only a test circuit but could be used as a bandpass filter in real world applications. However, circuit 450 is a little harder to fabricate and test. Fixturing is critical and adding the ferroelectric capacitors results in extra losses due to mounting. This can be overcome via direct fabrication of the ferroelectric capacitors on the same circuit used to realize C 1 and C 2 , and then having an additional circuit without the ferroelectric capacitors.
  • the testing circuit and method can be further simplified by using a single resonator rather than two. This eliminates the problem of capacitor mismatch.
  • the resulting circuit is more robust, easier to model and less prone to errors. Note that though the results shown in FIG. 7, are the results of tests on interdigital capacitors, gap or overlay capacitors can be advantageously used, since they both can have higher Q's than interdigital capacitors.
  • a testing circuit 500 comprising a gap coupled microstrip resonator in its simplest form is depicted in FIG. 9.
  • Circuit 500 comprises a low loss substrate 502 , and a microstrip resonator 504 separated from input line 506 by a gap 508 .
  • a ferroelectric thin film is deposited in gap 508 to create the ferroelectric gap capacitor.
  • resonator 604 and the gap capacitor are fabricated as a single, integrated structure.
  • a ferroelectric material can be deposited underneath the resonator 504 , creating a tunable resonator.
  • Substrate 502 should be a high quality, low loss substrate such as magnesium oxide, alumina having a purity of greater than 99% and sapphire. Substrate 502 should also have a low S.R. (less than 5.0 ⁇ inch).
  • Resonator 504 can be either a half wavelength (open circuit) or quarter wavelength (short circuit) resonator. A half wavelength resonator is longer but easier to fabricate, while a quarter wavelength resonator is shorter but requires via. The width of gap 508 is chosen for near critical-coupling.
  • a network analyzer is preferably used for the capacitance and Q measurements.
  • the model for gap capacitance and expression for metal loss are used to extract the Q of the dielectric, which is now a composite of the Q of the base substrate and the Q of the ferroelectric thin film. Hence, the added loss over that of the base substrate represents the loss of the ferroelectric film.
  • proper analysis of the measured data such as that outlined in “Data Reduction Method for Q Measurements of Strip-Line Resonators,” IEEE Transactions in MTT, S. Toncich and R. E. Collin, Vol. 40, No. 9, September 1992, pp. 1833-1836, hereby incorporated by reference, is required to accurately extract the Q, or loss, of the capacitor under test.
  • the gap coupled single resonator is advantageous in that is small, simple and very easy to fabricate. It also requires no tuning for any possible mismatch of the input and output capacitors C 1 . However, it is more difficult to extract the ferroelectric loss tangent from the overall substrate and coupling capacitor loss.
  • the second order resonant circuits can be actual devices in addition to being testing circuits. Moreover, it is very easy to compare the measured data to either simulation data or data obtained using non-ferroelectric capacitors with high Qs. The drawbacks of the second order circuits and more tuning of the ferroelectric capacitors may be required to obtain minimum insertion loss.
  • FIGS. 10 a and 10 b depict a preferred narrowband resonant testing circuit 600 .
  • Circuit 600 takes the form of a single resonator bandpass filter.
  • FIG. 10 a which is a schematic of circuit 600
  • circuit 600 comprises ferrolectric capacitor 16 coupled to resonator 620 .
  • Capacitors 630 and 640 (C 1 ) are input and output capacitors connecting the resonators to the measurement instrument.
  • FIG. 10 b is a planar realization of circuit 600 .
  • capacitor 610 and resonator 620 are fabricated as an integrated component.
  • Ferroelectric film 616 is deposited on low loss substrate 602 .
  • Resonator 620 and conductive path 612 are separated by gap 614 over ferroelectric film 616 to define ferroelectric gap capacitor 610 .
  • a DC bias voltage is applied to pad 612 and may include a bias resistor 625 .
  • DC blocking capacitor 618 is connected between pad 612 and ground.
  • Capacitors 630 and 640 are realized by conductive strips 632 and 642 deposited on substrate 602 that are spaced from resonator 620 to form a capacitive gap.
  • substrate 602 is formed from 99.5% pure alumina and has a thickness of approximately 40 mils and an SR of approximately 5.0 ⁇ inch.
  • Ferroelectric film 616 has a thickness of approximately 1.0 ⁇ m and is deposited in the region of gap capacitor 610 only.
  • Microstrips 612 and 620 have a thickness of 4-6 ⁇ m and are spaced by approximately 10 ⁇ m to define gap 614 .
  • the length of resonator 620 is selected so that the overall structure (capacitor 610 and resonator 620 ) resonates in the desired frequency band.
  • resonator 620 is a quarter wave resonator. Further fabrication cycles can be used to fine tune the resonant frequency if a specific resonant frequency is desired or required.
  • Resonator 620 may be configured as a microstrip, coaxial or stripline resonator.
  • a planar microstrip configuration is preferred as it facilitates easier extraction of the capacitance and Q values from circuit 600 .
  • the use of an integrated component structure i.e., a resonator having an integrated gap capacitor, such as resonator 620 /capacitor 610 ) is advantageous relative to the use of a separate resonator and a lumped element capacitor as the unpredictable and hard to measure losses and errors introduced by a lumped element capacitor are eliminated.
  • a testing method using a single resonator bandpass testing circuit proceeds as follows. First, a single resonator bandpass filter test circuit having an integrated gap capacitor is fabricated as described above. Precise thin film fabrication and processing techniques should be used to ensure that the desired geometry and properties are attained. Preferably, a technique should be used with tolerances in the range of ⁇ 0.5 microns. Once the circuit is fabricated, the center frequency f 0 and insertion loss IL 0 are measured. Preferably, these measurements are obtained using a network analyzer calibrated by means of a full two port calibration and using averaging.
  • the same circuit is designed and analyzed on an electromagnetic field simulation tool such as Sonnet, IE3D or Momentum.
  • the simulation assumes no loss due to the ferroelectric film (i.e., a loss tangent of zero).
  • the ferroelectric dielectric constant is then adjusted in the gap region to give the same center frequency f 0 as measured in the test circuit.
  • IL 0 is then calculated for the ferroelectric gap capacitor alone. This value is then used in the simulation to account for the loss component L metal associated with the metal.
  • the baseline performance of the SR-BPF can be established by fabrication of the circuit with no f-e film.
  • the resulting resonant frequency will of course be higher as the loading capacitor 610 is smaller. This result will provide accurate information on overall shape and frequency response of the SR-BPF.
  • Circuit 600 is not only an accurate mechanism for measuring the loss introduced by a ferroelectric gap capacitor, it is also a basic building block for low loss tunable filters that may be implemented in a wide range of applications, such as wireless handsets.
  • Narrowband resonant circuits configured as taught herein can be used to enhance the efficiency of, and add tunability to, many components of a typical RF transceiver.
  • Examples of RF components in which the present invention could be implemented include, but are not limited to, duplexers, isolators, matching circuits, power amplifiers, multiplexers, bandpass filters and low noise amplifiers. With each element being tunable, it becomes unnecessary to use multiple circuitry blocks to accommodate multi-band modes. If necessary, the resonant circuits can be cascaded in an appropriate fashion to create desired filters and systems, vastly improving system performance while decreasing cost and size. Many of the components of a typical wireless handset would benefit from tunability.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguide Aerials (AREA)
  • Transceivers (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Filters And Equalizers (AREA)
  • Microwave Amplifiers (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

A tunable ferroelectric component and a narrowband resonant circuit for measuring the loss of the ferroelectric component. The ferroelectric component may be a capacitor integrated in the resonant circuit. The testing method eliminates other sources of loss to isolate the loss due to the ferroelectric material and to demonstrate that this loss is low.

Description

    RELATED APPLICATIONS
  • This application claims the benefit U.S. [0001] Provisional Application 60/283,093, filed Apr. 11, 2001, which is hereby incorporated by reference. Additionally, this application relates to U.S. application “Tunable Ferro-electric Filter,” filed on Jul. 13, 2001, and U.S. application “Tunable Ferro-electric Multiplexer,” filed on Jul. 24, 2001, which are hereby incorporated by reference.
  • FIELD OF THE INVENTION
  • The field of the present invention is ferro-electric tunable electronic devices and components. [0002]
  • BACKGROUND OF THE INVENTION
  • Variable capacitors are advantageous as different electronic responses can be obtained by variation of the capacitance. The structures presently used to implement variable or tunable capacitors, however, have significant performance and practical limitations. Movable parallel plates, while providing variable capacitance for radio tuning, are bulky, lossy, noisy, generally operate over only a limited range of frequencies, or have any number of these limitations. A “lossy” component or device has a high insertion loss (IL), which is the ratio of power dissipated in the component to power delivered to a load. An electronic varactor is a semiconductor device that adjusts capacitance responsive to an applied voltage. Varactors are typically lossy and noisy, and are therefore generally ineffective for high-frequency applications, particularly those above 200 MHz. Hence, they are not suited for tuning insertion loss-critical devices such as filters and multiplexers in wireless applications, particularly where Code Division Multiple Access (CDMA) is used. Another implementation providing variable capacitance is a micro-electro-mechanical system (MEMS). This is a miniature switching device that physically selects a different capacitor responsive to an applied signal. MEMS, however, is typically costly, unreliable, requires a substantial control voltage, and enables only a discrete set of pre-selected capacitance values. [0003]
  • Because of their variable dielectric constant, ferroelectric materials are good candidates for making tunable capacitors or other tunable components. Under presently used measurement and characterization techniques, however, tunable ferroelectric components have gained the reputation of being consistently and substantially lossy, regardless of the processing, doping or other fabrication techniques used to improve their loss properties. They have therefore not been widely used. Ferroelectric tunable components operating in RF or microwave regions are perceived as being particularly lossy. This observation is supported by experience in RADAR applications where, for example, high RF or microwave loss is the conventional rule for bulk (thickness greater than about 1.0 mm) f-e materials especially when maximum tuning is desired. In general, most f-e materials are lossy unless steps are taken to improve (reduce) their loss. Such steps include, but are not limited to: (1) pre and post deposition annealing or both to compensate for O[0004] 2 vacancies, (2) use of buffer layers to reduce surfaces stresses, (3) alloying or buffering with other materials and (4) selective doping.
  • As demand for limited range tuning of lower power components has increased in recent years, the interest in ferroelectric materials has turned to the use of thin film rather than bulk materials. The assumption of high ferroelectric loss, however, has carried over into thin film work as well. Conventional broadband measurement techniques have bolstered the assumption that tunable ferroelectric components, whether bulk or thin film, have substantial loss. [0005]
  • A broadband measurement of the capacitance value of a ferroelectric capacitor is typically obtained using a device such as an LRC meter, impedance analyzer or a network analyzer. From power measurements, one can calculate the lossiness of the capacitor. The inverse of lossiness is referred to as the Quality Factor (“Q”). Thus, a lossy device will have a low Q and a more efficient device will have a high Q. Q measurements for ferroelectric capacitors with capacitances in the range of about 0.5 pF to 1.0 pF operating in a frequency range of 1.8 GHz to 2.0 GHz, obtained using conventional measurement techniques, are typically claimed to be in the range of 10-50. This is unacceptably inefficient, and ferroelectric tunable components are therefore considered undesirable for widespread use. In wireless communications, for example, a Q of greater than 80, and preferably greater than 180, and more preferably greater than 350, is necessary at frequencies of about 2 GHz. [0006]
  • As will be shown below, conventional ferroelectric components have been wrongly fabricated, measured and characterized. As a result, it is commonly assumed that ferroelectric tunable components are very lossy with Qs in the range of 10-50 in the L-band. Ferroelectric tunable devices operating in other frequency bands have also been labeled as having Qs unacceptable for most applications. [0007]
  • SUMMARY OF THE INVENTION
  • The methods of testing the loss, or its inverse, Q, of f-e films are flawed in the prior art. The prior art methods typically use broadband testing methods and non-integrated components. All of the loss mechanisms of the testing methods and devices under test are typically not accounted for. This has led investigators to believe that f-e materials are lossy. [0008]
  • The invention provides for narrowband testing methods and integration of components. All loss mechanisms are accounted for and eliminated or minimized. This results in more accurate test results, showing that some f-e materials are much less lossy than previously thought. [0009]
  • With this testing method, f-e materials can be successfully investigated to find ideal tradeoffs between loss, tunability and other parameters. Low loss tunable f-e devices can be built. A low loss, f-e tunable capacitor can be built. Such a capacitor can be used as a building block in many applications where tunability is desired, but low loss requirements had been preventing the use of any other tunable devices. An example application is in wireless communication devices.[0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The details of the present invention, both as to its structure and operation, may be gleaned in part by study of the accompanying drawings, in which like reference numerals refer to like parts, and in which: [0011]
  • FIG. 1 is a top view of an interdigital capacitor fabricated with a thin ferroelectric film; [0012]
  • FIG. 2 is a sectional view of a tunable ferroelectric gap capacitor according to the present invention; [0013]
  • FIG. 3 is a table showing the relationship between gap width, ferroelectric layer thickness and capacitance; [0014]
  • FIG. 4 is a top view of a ferroelectric overlay capacitor according to the present invention. [0015]
  • FIG. 5 is an exploded view of a portion of the overlay capacitor of FIG. 4. [0016]
  • FIG. 6 is a second order narrowband resonant testing circuit according to the present invention; [0017]
  • FIG. 7 is a table comparing data obtained with the testing circuit of FIG. 6 with data obtained using conventional test methods; [0018]
  • FIG. 8 is another embodiment of a second order narrowband resonant testing circuit according to the present invention; [0019]
  • FIG. 9 is a single resonator narrowband testing circuit according to the present invention; [0020]
  • FIG. 10[0021] a is a schematic of another embodiment of a single resonator narrowband testing circuit according to the present invention; and
  • FIG. 10[0022] b is a planar realization of the circuit schematic of FIG. 10a.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides test methods utilizing narrowband resonant circuits that accurately measure and characterize the efficiency of tunable ferroelectric components in the frequency range in which they will be used, and with topologies that will be used. These test methods and circuits establish that tunable ferroelectric components are not as uniformly lossy as previously thought and that they may advantageously be used in low-loss applications and devices, such as wireless handsets. With an accurate determination of loss, tunable ferroelectric components can be properly optimized and designed. Specific loss mechanisms can be identified and eliminated, or otherwise reduced and bounded. [0023]
  • Tunable ferroelectric components, especially those using thin films, can be employed in a wide variety of frequency agile circuits. Tunable components are desirable because they can provide smaller component size and height, lower insertion loss or better rejection for the same insertion loss, lower cost and the ability to tune over more than one frequency band. The ability of a tunable component that can cover multiple bands potentially reduces the number of necessary components, such as switches that would be necessary to select between discrete bands were multiple fixed frequency components used. These advantages are particularly important in wireless handset design, where the need for increased functionality and lower cost and size are seemingly contradictory requirements. In CDMA handsets, for example, performance of individual components is highly stressed. Ferroelectric materials may also permit integration of RF components that to-date have resisted shrinkage, such as an antenna interface unit (AIU) for a wireless device. [0024]
  • For example, an AIU could integrate one or more tunable duplexers (US PCS and cellular in a dual band wireless communication device), diplexers, PA's and LNA's. Some or all of these components could be advantageously integrated, their total size or volume or both being reduced and their electronic performance improved. Further applications for tunable ferroelectric components are set forth in the latter portion of this specification. [0025]
  • As with any dielectric, ferroelectric material has two primary loss mechanisms, conductivity loss and damping from lattice vibrations in the dielectric. The combination of the two effects is referred to as the material's loss tangent (tan(δ)). For ferroelectric materials considered in tunable RF or microwave circuits, damping from lattice vibrations dominate, as there are no free charge carriers. However, any method which measures tan(δ) will include effects of finite conductivity if present. This is because the loss effects of the two machanisms are indistinguishable as far as rf/microwave properties are concerned. [0026]
  • A primary component in RF circuits is the capacitor. F-E tunability will now be discussed in terms of f-e capacitors. The total loss of a capacitor, whether tunable or not, is given by its quality factor (Q) which is expressed as a ratio of its stored to dissipated energy, where the energy is stored in the electric field and dissipated in resistance. For a lumped element capacitor, the unloaded Q (Q[0027] u) is given by:
  • Q u =X/R s=1/((ω*R s *C)  (1)
  • where ω=radian frequency; R[0028] s=the series resistance of the capacitor; and C=the capacitance of the capacitor. Rs is measured and given that C and ω are known, Qu can be calculated. The series resistance arises from both the conductor and dissipative loss in the dielectric, i.e. tan(δ).
  • If a tunable capacitor is integrated into a resonant circuit, the total Q (Q[0029] t) of the system is now given by:
  • 1/Q t=1/Q c+1/Q d+1/Q r  (2)
  • where Q[0030] c is the conductor Q; Qd is the dielectric Q and Qr is the radiation Q. For a well designed non-radiating system, there is no radiation loss. Hence, the conductor loss and the dielectric loss determine the total loss. The dielectric loss is the effect of the loss tangent, tan(δ), including conductivity loss attributable to the dielectric, if the latter loss is present. Hence, for both the unloaded Q and the total Q, a correct measurement of tan (δ) is crucial in determining whether a tunable device can be fabricated with acceptable loss characteristics.
  • Cavity resonator methods are conventionally used to measure a material's dielectric constant and loss tangent. These methods are difficult, especially at lower microwave frequencies (˜2 GHz) where cellular phones operate, as the size of the cavity is quite large. Use of cavity resonator methods on thin ferroelectric films poses a greater problem, as it is very difficult to measure the perturbation introduced to a cavity from a structure having a thickness in the range of one micron. The potential for error is significant. [0031]
  • Because of this difficulty with resonator methods, interdigital capacitors (IDC's) are usually used to measure ferroelectric film quality. A ferroelectric interdigital capacitor (IDC) [0032] 100 in a conventional microstrip configuration is depicted in FIG. 1. Interdigital capacitor 100 comprises base substrate 110; thin film ferroelectric layer 120; and first and second conductors 130 and 140. Interdigital capacitors are typically used in applications such as monolithic microwave integrated circuits (MMICs) and in applications where small footprints and capacitances in the range of 0.1-6 pF are needed. In an interdigital capacitor, the capacitance is created between conductive parallel lines or fingers in the structure.
  • [0033] Base substrate 110 typically comprises a low loss material such as magnesium oxide (MgO), sapphire or high purity aluminum, for example. The substrate is chosen based on its inherent low loss tangent and its ability to accept the direct deposition of a wide range of f-e films without additional buffer layers. A thin ferroelectric film 120 is deposited on base substrate 110. Ferroelectric film 120 typically has a thickness in the range of 0.15-1.5 microns. A conductive layer is then deposited onto ferroelectric film 120. Sometimes an adhesion layer is needed. The conductive layer is preferably a metallic material such as copper, gold or silver. These metals are advantageous due to their relatively low loss at room temperature. For purposes of this specification, room temperature is defined as being in the range from −30° C. to +85° C. which covers the typical operating temperature range for most commercial components. The conductive layer typically has a thickness in the range of 0.5 to 6.0 microns, with a thickness in the range of 0.5 to 1.5 microns being most common. Thickness requirements vary based on skin depth which varies based on frequency.
  • While thin film (t[0034] f-e less than about 1.5 μm) f-e materials have been discussed, thick film f-e material can be used as well. Here, “thick film” is defined to be tf-e greater than about 1.5 μpm and less than about 1.0 mm. Bulk is greater than about 1.0 mm. The fabrication and application of thick film f-e material is quite different than that of thin film f-e material. It usually involves a paste or a sol-gel technique, and the f-e materials to produce the significantly added thickness. The added thickness and especially reduced cost comes at the price of somewhat degraded f-e performance, notably, reduced tunability.
  • Interdigital capacitor [0035] 100 is then fabricated using either etch-back or lift-off techniques to form first conductor 130 and second conductor 140. First conductor 130 has fingers 132 and spaces 134 that are proximate fingers 142 and spaces 144 of second conductor 140. The conductors are arranged so that fingers 132 of first conductor 130 are in spaces 144 of second conductor 140, and so that fingers 142 of second conductor 140 are in spaces 134 of first conductor 130. To date, most researchers and other practitioners in f-e film fabrication and characterization have designed IDC's with fingers typically 1-5 microns wide, and the gap or space between the fingers typically 1-5 microns wide.
  • The capacitance is created primarily between [0036] fingers 132 and 142. To generate a high level of capacitance, small gap size (<5 microns) and long fingers are required. When used as a ferroelectric tuning capacitor, small gap size also assists in creating a large tuning field between the fingers. This is critical because much of the tuning field is lost in the air region above capacitor 100.
  • The greatest loss component in this configuration is in the odd mode generated in the finger region. The coupling between the parallel lines can be expressed in terms of an even mode and an odd mode. The even mode occurs when both lines are excited in phase (usually taken to be zero), and the odd mode occurs when the lines are excited 180 degrees out of phase. In microstrip circuits, the velocities at which the even and odd modes propagate are different. The loss further increases when a thin conductive layer (less than 1.5 microns), narrow finger width and gap spacing (either or both less than 5 microns) and sharp corners are used. [0037]
  • The standard procedure for measuring thin ferroelectric film loss via an interdigital capacitor is as follows. As described above, approximately 0.5 microns of ferroelectric film is deposited on a low loss substrate such as magnesium oxide. Then, a conductive layer having a thickness of 1 micron or less is deposited to permit fabrication of an interdigital capacitor of the smallest possible size. Finger width and gap spacing are both typically in the 1 to 5 μm range. Etch-back or lift-back techniques are used to form narrow, long fingers with sharp corners. The resulting interdigital capacitor is characterized using a broadband measurement tool such as an LRC meter or an impedance or network analyzer with probe tips that contact the capacitor. [0038]
  • Using this procedure, capacitors in the range of 0.2 to 1.5 pF are obtained, with Q's in the range of 10-100 at an operating frequency of anywhere from approximately 500 MHz to approximately 2 GHz is typically measured. This loss is typically attributed entirely to the ferroelectric film. These Q values are considered quite low and, consequently, ferroelectric tunable components are commonly assumed to be high loss and unacceptable for many uses. In wireless communications, for example, a Q of greater than [0039] 100 and preferably greater than 250 is necessary at frequencies in the range of 2 GHz for f-e capacitors in the vicinity of 1.0 pF. As will be described below, however, conventional fabrication and loss measurement techniques do not yield a reliable indication of the actual loss attributable to the ferroelectric film.
  • As indicated in Equation (1), capacitor loss (whether tunable or not) is proportional to the series loss R[0040] s at radio frequency (f>about 500 MHz) where the effect of the large parallel resistance that shunts the capacitance is negligible. The capacitor does not care what the source of the series loss is, only that there is a source. For example, for a 1 pF ferroelectric tunable capacitor to have an acceptably low loss (Qu=250) at 2 GHz, the series loss must be only 0.32Ω. The series loss includes the total loss from all sources arising from the capacitor's use. In order to minimize or eliminate the sources of series loss, one must first account for each loss mechanism that is present. This will permit a more accurate determination of the loss attributable specifically to the ferroelectric film.
  • For f-e devices, the total loss is governed by summing each source contribution as follows:[0041]
  • L t =L geom +L attach +L metal +L sub +L rad +L meas +L f-e;
  • where L[0042] geom is derived from the topology of the capacitor,
  • L[0043] attach is loss due to device attachment,
  • L[0044] metal is the total metal loss,
  • L[0045] sub is the base substrate loss (if present),
  • L[0046] rad is the radiation loss, both desired and undesired,
  • L[0047] meas is the total loss arising from measurement errors, and
  • L[0048] f-e is the f-e loss tangent.
  • This loss allocation can first be used to obtain an accurate value of L[0049] f-e (or f-e tan δ) at the desired operating frequency in the manner in which the f-e capacitor will be used. To correctly derive Lf-e, one must eliminate or constrain all of the other loss contribution sources just described. For example, Lgeom will vary according to topology, being best for an overlay capacitor, worse for a gap capacitor, and much worse for an IDC capacitor. Although this loss can be reduced and controlled, it is inherent to a device. Consequently, the choice of topology for a given f-e capacitor will affect the best possible Qc attainable from the f-e capacitor. Electromagnetic (EM) software can establish a baseline loss for a desired geometry, assuming a lossless f-e film. This baseline loss represents the best (lowest) loss for a given geometry.
  • In general, a gap capacitor is easiest to fabricate An IDC is next easiest, and an overlay capacitor is hardest of these three. Compared to an IDC, the gap capacitor will have a better Q but lower capacitance per unit cross section (W in FIG. 1[0050] a). The IDC's capacitance is greater due to the use of a number of fingers per unit cross section. For many communication filter applications, however, large capacitance (C≧4.0 pF) is not needed. Thus, a gap capacitor often can provide adequate capacitance. The inherently high value of κ for most f-e films helps provide relatively high capacitance per unit cross section, W, compared to a conventional gap capacitor.
  • L[0051] attach arises from discrete device attachment techniques, including, for example, solder, silver paint, or wire bonding. These attachment losses may be large and unpredictable. The lowest losses are achieved by direct fabrication of the f-e capacitor to the resonator or other RF circuitry, thus minimizing if not eliminating this loss component.
  • The inherent loss of a stand-alone f-e capacitor is of little consequence. What is of much greater consequence is any added loss arising from the attachment of the f-e capacitor to a circuit. Even if the f-e capacitor were lossless, should a large loss connection be used, the overall effect is that of a lossy f-e device. For example, if a Q≧250 at 2.0 GHz is desired for a capacitance of 1.0 pF, then the total series resistance R[0052] s must be ≦0.32 ohm. Any additional loss will thus further reduce the Q of this capacitor. That this additional loss is external to the actual capacitor is irrelevant. Even unavoidable loss mechanisms, such as those due to mounting, for example, lower the effective Q of the capacitor from the perspective of its effect on the system.
  • For minimum added loss, the connection between the f-e capacitor and the resonator should provide the lowest added resistance. Thus, the electric currents and charges associated with the f-e capacitor should see a minimum added loss. Conventional bonding or mounting techniques, such as (but not limited to) soldering, wire bonding or silver paint or paste do not provide for such a low loss, controllable bond. [0053]
  • The added, unpredictable loss arising from the use of such bonding methods degrade the realized Q regardless of whether or not the f-e capacitor is being used for resonator tuning purposes or characterization of an f-e film. Thus, for best performance (lowest loss) the f-e capacitor structure should be directly fabricated onto or with the resonator it is meant to tune or onto other essential RF circuitry. Only by direct fabrication can there be a minimum loss transition for electromagnetic (EM) sources (currents) from the f-e tuning elements to the resonator. The desirable effects of direct f-e capacitor fabrication onto or with a resonator can be enhanced by the lack of sharp corners or transitions. [0054]
  • Factors for L[0055] metal include the surface roughness (SR) of the metal, metal thickness as compared to skin depth, δs, and conductivity. SR may be effectively eliminated as a factor if SR is less than aproximately 10 micro inches root mean square (rms) for operating frequencies in the L and S band (1-4 GHz). The metal thickness may be reduced as a factor if the thickness is 1.5δs or greater, or effectively eliminated if the thickness is ≧5δs. For electrode contacts, metal thickness (tm) can be approximately 1.5δs. For the case of electromagnetic resonators, where a travelling or standing wave must be supported, i.e., where the metal in question extends for an appreciable fraction of a wavelength (about 10% or greater), the metal thickness should be closer to about 5δs or greater.
  • Conductivity is best for Au, Cu, or Ag. Thus, L[0056] metal can be reduced and controlled, but not eliminated as a factor. Its effect, however, can be calculated by expressions well known to those skilled in the art, or by using line calculator tools available in commonly used circuit simulators, such as Eagleware or Touchstone. Further, precise fabrication control can bound geometric variations in Lmetal.
  • The loss contribution represented by L[0057] sub may be minimized by choosing a low loss substrate with a loss tangent less than 0.001 and preferably less than 0.0005 at the operating frequency of interest. Suitable materials include >99% pure alumina, a best current choice for loss/cost benefits. Sapphire or MgO are better than alumina in that they have lower loss tangents, but they are more expensive. All these materials will accept many f-e thin films without buffer layers and have a surface roughness that is acceptable with little or no further polishing. Semiconductor substrates are poor choices because of their relatively high conductivity. In addition to the factors of loss tangent, surface roughness and price, suitable substrates should not be brittle, can be fabricated as larger area wafers, and can be easily metallized without extensive pre-processing.
  • Separating out Lsub from the total loss of a composite substrate (f-e film plus substrate) can be achieved by using EM field or circuit simulation software. For example, Sonnet, Momentum, or IE3D may be used. Thus, L[0058] sub can be reduced significantly and calculated precisely.
  • L[0059] rad can be eliminated by proper shielding and design, and so is typically not a factor. It should be noted that a wide variety of filters, especially planar filters such as combline or hairpin, depend upon radiative coupling to achieve their desired performance. In these cases, one should ensure that the unwanted, stray coupling is reduced, if not eliminated.
  • L[0060] meas can add significantly to the circuit loss error because small, added loss significantly reduces the measured Q of the device-under-test (DUT) or system thus obscuring the intrinsic Q of the DUT. The conventional method for measuring dielectric constant and loss tangent in a material is the cavity perturbation technique, which is well known to anyone skilled in the art. At L-band, however, the size of the cavity becomes quite large. When characterizing thin films (as opposed to bulk) with film thickness ≦1.5 μm, such as f-e films, the problem becomes very difficult as measurement errors can be severe. Furthermore, one should characterize an f-e capacitor (or filter) in a manner most similar to how it will be used. Thus, the preferred way to characterize f-e compounds or films is by microstrip resonator techniques.
  • For measurements on resonant circuits, a network analyzer is the preferred choice. To minimize measurement loss and attain the most accurate measurement using a network analyzer, loss to DUT should be calibrated out, a full two port calibration of the analyzer should be performed and averaging should be used for calibration and measurement. [0061]
  • Through minimization or elimination of the device attachment, substrate, radiation and measurement error loss components, the total loss becomes:[0062]
  • L tot =L geom +L metal +L f-e +ΔL misc  (4)
  • L[0063] tot is the total loss for a given ferroelectric capacitor geometry, and Lgeom and Lmetal are integral parts of that geometry. Their presence is appropriate for determining the actual loss of a specific device, but they can be quantified and removed in order to determine the loss due solely to the ferroelectric material. Lgeom can be determined from an accurate electromagnetic simulation of the circuit assuming a lossless ferroelectric material; and Lmetal can be determined using the expressions for metal loss assuming conductivity, surface roughness (if applicable) and skin depth. ΔLmisc represents a combination of incomplete removal of the other loss mechanisms with the finite bounds on Lgeom and Lmetal.
  • This two-step process of (a) accounting for all loss mechanisms; and (b) eliminating or bounding these losses not only permits an accurate determination of the ferroelectric loss, it also helps establish correct design guidelines for low loss tunable components. Correct knowledge of L[0064] f-e allows one to first determine whether or not the film under consideration can be used for a proposed application. Knowledge of Lf-e further provides a necessary baseline for any type of optimum design using ferroelectric films. This knowledge is necessary if one is to effectively trade-off loss tangent for tunability. In short, accurate fabrication and measurement techniques result in consistent ferroelectric film loss characterization.
  • Based on this loss analysis, low loss tunable ferroelectric components, and in particular tunable ferroelectric capacitors, can be designed, tested and implemented in a wide variety of applications. Design procedure and implementation based on this loss analysis for three common types of capacitors—(1) gap capacitors, (2) overlay capacitors and (3) interdigital capacitors—will now be discussed. [0065]
  • A ferroelectric [0066] tunable gap capacitor 200 is illustrated in FIG. 2. Gap capacitor 200 comprises substrate layer 202; ferroelectric layer 204 and metal layer 206 defining capacitance-inducing gap 208. The following design implementation minimizes losses from other sources and permits an accurate determination of the loss due to the ferroelectric film 204. It assumes an operating frequency in the L-band (1-2 GHz) for wireless handsets, though the same methods could be applied in other bands.
  • In one implementation, substrate [0067] 202 is a layer of 99.5% pure alumina having a thickness in the range of 20-40 mils. Surface roughness should be less than or equal to about 5 μinch rms. Ferroelectric layer 204 is a film of barium strontium titanate, BaxSrl-xTiO3, (BSTO) having a thickness in the range of 0.15 to 2.0 microns. Using a film thickness >1.0 μm maximizes capacitance and tuning range.
  • Adjusting the Ba/Sr fraction, doping or annealing are preferably chosen to provide the minimum tan δ while providing the required tuning range. In one embodiment, x=0.5 (in Ba[0068] xSrl-xTiO3) for room temperature operation. Alternative ferroelectric materials could also be used. Metal layer 206 has a thickness of approximately 2.5 μm, which makes it suitable for electrode application. Gap 208 is 30-80 mils wide, and the edges should be rounded to maximize loss reduction. The capacitance demonstrated by gap 208 is in the range of 0.6 pF to 1.5 pF at 0 volts DC bias.
  • EM simulations indicate that for a capacitance of approximately one pF at two GHz, a gap capacitor has Q≧700, assuming a loss tangent of 0.002, or Q>300, assuming a loss tangent of 0.005. FIG. 3 is a table showing the relationship between gap width, ferroelectric layer thickness and capacitance. This data is very useful for target design of gap capacitor test circuits. The results in FIG. 3 assume a 0.5 micron thick ferroelectric film with a dielectric constant of 1000 at 0V DC bias, a 40 mil thick substrate layer of 99.5% pure alumina, and a loss tangent of 0.002 for the f-e film. [0069]
  • A [0070] ferroelectric overlay capacitor 300 according to the present invention is illustrated in FIG. 4. Capacitor 300 comprises substrate 310; bias pad layer 320; ferroelectric layer 330; and capacitor pad layer 340. Bias pad layer 320 defines a DC bias pad and capacitor pad 340 defines capacitor pad 342 and DC blocking capacitor pad 344.
  • In one implementation, [0071] base substrate 310 is alumina having a thickness in the range of 20-40 mils. Bias pad layer 320 comprises a base electrode layer of silver having a thickness of approximately 2.0 microns covered by a layer of platinum having a thickness of approximately 100 nm. The platinum layer prevents the silver layer from oxidizing during growth of the ferroelectric layer. Layer 320 has a pad built-in for connecting a resistance in the range of 0.5 to 1.0 MΩ to provide DC bias. If needed, a thin (10 nm) chromium layer may be interposed between the alumina and silver to provide better adhesion. Ferroelectric layer 330 is a thin film of BSTO having a thickness of approximately one micron. Capacitor pad 342 has a minimum area of 8.0 by 4.0 mils and is topped by electrodes of gold or silver that have an area of approximately 4.0 by 4.0 mils. The DC blocking capacitor has a capacitance of at least 150-200 pF and an area of approximately 100 by 100 microns. The total area of contact pad 344 is a minimum of 7.0 by 8.0 mils.
  • An overlay capacitor has a minimum capacitance in the range of 0.8-1.5 pF. As can be seen in FIG. 5, which is an enlargement of a portion of [0072] capacitor 300, the overlap area 350 of capacitor 300 is very small. In one implementation, overlap area 350 has a size of 0.3 mil by 0.3 mil. This is based on a BSTO dielectric constant of about 1000 at 0 volts DC and a film thickness of about 1.0 microns. The pads 342 and 320 taper to and from capacitor overlay area 350. The taper is from 4.0 mils to about 0.25 mils in 1.0 mil distance.
  • The loss target for [0073] capacitor 300 is a Q of at least 350 at 2.0 GHz for 1.0 pF. If needed, the ferroelectric film 330 can be further optimized via doping, annealing or use of a buffer layer or layers. Finally, the change in capacitance should preferably be 2:1 (50%) or greater for a change in bias voltage of 0-2.5 volts.
  • One aspect of the present invention is optimal structures and design criteria for tunable ferroelectric components, of which the capacitor structures described above are one example. Another aspect of the present invention is measurement methods and apparatus for accurately characterizing the losses in tunable ferroelectric components. These methods involve the use of resonators and narrowband resonant circuits. Narrowband measurements are appropriate since the devices being measured are designed to operate at a narrowband of frequencies. Narrowband (resonant) measurements are also preferred as the naturally enhance the effect of small losses making them easier to measure, and they make the measurement more accurate. Prior methods have involved broadband measurements that are inappropriate and inaccurate for narrowband devices. Two inventive implementations of these testing resonant circuits will be described: second order narrowband bandpass filters, and microstrip resonator circuits (halfwave or quarterwave). [0074]
  • FIG. 6 shows a resonant [0075] narrowband testing circuit 400 configured to test two ferroelectric capacitors 410 and 412. It is a 2nd order planar combline filter. Capacitors 410 and 412 are configured as described with respect to FIG. 1 and FIG. 2 and are implemented to minimize loss components. Testing circuit 400 comprises a planar, second order combline bandpass filter and includes two resonators 402 and 404 coupled in series with, respectively, ferroelectric capacitors 410 and 412. A DC bias voltage is applied to capacitors 410 and 412. Capacitors 410 and 412 may be fabricated and mounted for testing either as lumped elements or by printing directly on the substrate. DC blocking capacitors (capacitance equal to about 180 pF) are not shown. In a lumped configuration, the capacitors are soldered or attached with silver paint or paste. This permits use of a wide variety of devices, however, there is an increased and unpredictable loss due to this mounting method. In a printed configuration, the capacitors are printed directly on the substrate. Printing is advantageous in that no soldering or bonding is required and there is a lower loss due to the direct fabrication. The type of substrates that may be used is limited, however, due to the presence of the ferroelectric film. DC blocking capacitors are not shown.
  • The response is measured through input and output lines [0076] 406 and 408 connected to a network analyzer. A measurement of the resonator center frequency f0 permits determination of the actual capacitor value (see equation (1), above), and the insertion loss at f0 determines the capacitor Q. After these measurements are obtained, a circuit simulation can be used to obtain capacitance and Q values and the results compared.
  • In order to demonstrate the dramatic difference in test results obtained using the test method of the present invention relative to conventional test methods, reference is made. to FIG. 7. The table in FIG. 7 presents measurement data obtained from ferroelectric interdigital capacitor samples fabricated at the Naval Research Laboratory (NRL), Washington D.C., under contract to Kyocera Wireless Corporation (KWC), the assignee of the present invention. Capacitance and Q measurements taken from the interdigital capacitor samples at NRL using conventional test methods (in this case, an HP 4291B Impedance Analyzer and a Cascade Tech microwave probe) are compared to measurements taken from the same samples at KWC using the novel test methods described above. [0077]
  • For purposes of this experiment, the interdigital capacitors were fabricated to have a capacitance in the range of 0.5-1.2 pF; a gap spacing of approximately 5.0 microns; a finger width of at least 150 microns; a ferroelectric film thickness of approximately 0.5 microns; a metal thickness in the range of 1.5-2.5 microns; and a finger length less than or equal to 100 microns. [0078]
  • The KWC testing circuit is configured in like fashion as [0079] circuit 400. It is a second order planar Chebychev bandpass filter configured to resonate at approximately 1800 MHz. The interdigital capacitor samples, lumped element capactitors, were “flip-chip” mounted and attached using silver paint. Bias was applied to correct for the fact that typically C1≠C2, where C1 and C2 are the two combline bandpass filter loading capacitors required for correct operation of the filter. While C1 is intended to be equal to C2, in practice C1=C2 is rarely achieved. The more common condition of C1≠C2 significantly increases passband insertion loss (as far as Q determination is concerned) if not corrected.
  • High Q ATC and AVX chip capacitors in the range of 0.6 to 0.8 pF were used to establish a baseline passband insertion loss. The Q's for these chip capacitors were in the range of 600-800 at the test frequency. An Eagleware circuit simulator was used to determine actual capacitance and Q's for the interdigital capacitors to give the same resonant frequency and passband insertion loss as the measured data. [0080]
  • The data in FIG. 7 is essentially worst case Q data, as no attempt was made to remove (calibrate out) all possible loss components. One such loss component includes bonding (attachment) losses which are different for each line and interdigital capacitor. Another is the resulting resonator length mismatch; microstrip gap open end effects below the location of the capacitors; and losses arising from the basic interdigital capacitor geometry. This being the case, the difference in Q values obtained using the present invention relative to conventional methods is even more striking. Further reduction or elimination of error sources such as, for example, the direct fabrication of gap capacitors using an alumina or MgO substrate will only improve the Q data. [0081]
  • Use of a second order bandpass filter as the narrowband resonant test circuit has several advantages. Capacitor data can be extracted at the operating frequency. The topology is simple, repeatable and easily fabricated. The measurements are simple and there is little added error by virtue of taking the measurements. The results are easy to compare to the simulated results. There are also several disadvantages that should be noted. The potential for difference in capacitance values described above may show up in the measurement data as increased loss. A small adjustment in one of the bias voltages, however, can compensate for this discrepancy. Also, stray capacitance and coupling can effect the f[0082] 0 and Q values obtained. These effects can also be accounted for via the EM field simulator. Unequal mounting of f-e capacitors results in slight differences in the two resonator electrical lengths, which directly adds to I.L. Misalignment of the f-e caps can also result in added loss, manifesting itself as lower Q.
  • Another embodiment of a second order narrowband resonant testing circuit [0083] 450 is depicted in FIG. 8. Testing circuit 450 takes the form of a coaxial resonator tunable filter although other resonators, such as monoblock, stripline or microstrip can be used. Again, ferroelectric capacitors 452 and 454 may be lumped or printed. Test circuit 450 further comprises coaxial quarter wavelength resonators 462 and 464. Non-ferroelectric capacitor 470 (C2) is coupled between resonators 462 and 464, and non-ferroelectric capacitors 472 and 474 (C1) are coupled on the outsides of the resonators. This basic structure is a conventional fix-tuned 2nd order top capacitively coupled BPF.
  • The measurement technique using circuit [0084] 450 is as follows. BPF performance is measured first without, then with f-e capacitors in place. In the first instance, the resonator center frequency f01 and the insertion loss IL1 of the filter is first measured without ferroelectric capacitors. In the second instance, the resonator center frequency f02 and insertion loss IL2 of the filter are measured with ferroelectric capacitors 452 and 454. Notably, f01 will always be greater than f02 and IL2 will always be greater than IL1 as long as resonators 442 and 444 are the same length. The capacitance Cfe can be determined from f01-f02, and Q(Cfe) can be determined from IL2-IL1 by comparison with simulations to great accuracy. The f-e capacitors need not be added to the original circuit. Rather, the basic top capacitively coupled BPF can be fabricated with no f-e capacitors, and a second BPF fabricated with f-e capacitors directly. This would lead to a minimum-added-loss tunable test circuit as it allows for direct fabrication of f-e capacitors with the circuit.
  • An alternative testing circuit would involve the use of physically [0085] shorter resonators 442 and 444 when used in conjunction with f-e capacitors. This would cause the BPF to resonate at or near the same resonant frequency as the non f-e BPF. The same f-e capacitor Q extraction method would be used.
  • Second order test circuit [0086] 450 has several advantages over second order test circuit 400. Both circuit 400 and circuit 450 are inherently narrowband structures but the coaxial resonators 462 and 464 can have a very high Q, resulting in a very low insertion loss. Very little stray coupling is involved due to the inherent shielding. Also, as with circuit 400, test circuit 450 is not only a test circuit but could be used as a bandpass filter in real world applications. However, circuit 450 is a little harder to fabricate and test. Fixturing is critical and adding the ferroelectric capacitors results in extra losses due to mounting. This can be overcome via direct fabrication of the ferroelectric capacitors on the same circuit used to realize C1 and C2, and then having an additional circuit without the ferroelectric capacitors.
  • The testing circuit and method can be further simplified by using a single resonator rather than two. This eliminates the problem of capacitor mismatch. The resulting circuit is more robust, easier to model and less prone to errors. Note that though the results shown in FIG. 7, are the results of tests on interdigital capacitors, gap or overlay capacitors can be advantageously used, since they both can have higher Q's than interdigital capacitors. [0087]
  • A testing circuit [0088] 500 comprising a gap coupled microstrip resonator in its simplest form is depicted in FIG. 9. Circuit 500 comprises a low loss substrate 502, and a microstrip resonator 504 separated from input line 506 by a gap 508. A ferroelectric thin film is deposited in gap 508 to create the ferroelectric gap capacitor. Hence, resonator 604 and the gap capacitor are fabricated as a single, integrated structure. Alternatively, a ferroelectric material can be deposited underneath the resonator 504, creating a tunable resonator.
  • [0089] Substrate 502 should be a high quality, low loss substrate such as magnesium oxide, alumina having a purity of greater than 99% and sapphire. Substrate 502 should also have a low S.R. (less than 5.0 μinch). Resonator 504 can be either a half wavelength (open circuit) or quarter wavelength (short circuit) resonator. A half wavelength resonator is longer but easier to fabricate, while a quarter wavelength resonator is shorter but requires via. The width of gap 508 is chosen for near critical-coupling.
  • A network analyzer is preferably used for the capacitance and Q measurements. The model for gap capacitance and expression for metal loss are used to extract the Q of the dielectric, which is now a composite of the Q of the base substrate and the Q of the ferroelectric thin film. Hence, the added loss over that of the base substrate represents the loss of the ferroelectric film. Finally, proper analysis of the measured data, such as that outlined in “Data Reduction Method for Q Measurements of Strip-Line Resonators,” IEEE Transactions in MTT, S. Toncich and R. E. Collin, Vol. 40, No. 9, September 1992, pp. 1833-1836, hereby incorporated by reference, is required to accurately extract the Q, or loss, of the capacitor under test. [0090]
  • It is useful now to compare the second order narrowband resonant test methods and circuits described with reference to FIGS. [0091] 6-8 with the gap coupled single resonator test method and circuit described with reference to FIG. 9. The gap coupled single resonator is advantageous in that is small, simple and very easy to fabricate. It also requires no tuning for any possible mismatch of the input and output capacitors C1. However, it is more difficult to extract the ferroelectric loss tangent from the overall substrate and coupling capacitor loss. The second order resonant circuits, on the other hand, can be actual devices in addition to being testing circuits. Moreover, it is very easy to compare the measured data to either simulation data or data obtained using non-ferroelectric capacitors with high Qs. The drawbacks of the second order circuits and more tuning of the ferroelectric capacitors may be required to obtain minimum insertion loss.
  • FIGS. 10[0092] a and 10 b depict a preferred narrowband resonant testing circuit 600. Circuit 600 takes the form of a single resonator bandpass filter. Referring to FIG. 10a, which is a schematic of circuit 600, circuit 600 comprises ferrolectric capacitor 16 coupled to resonator 620. Capacitors 630 and 640 (C1) are input and output capacitors connecting the resonators to the measurement instrument.
  • FIG. 10[0093] b is a planar realization of circuit 600. As can be seen, capacitor 610 and resonator 620 are fabricated as an integrated component. Ferroelectric film 616 is deposited on low loss substrate 602. Resonator 620 and conductive path 612 are separated by gap 614 over ferroelectric film 616 to define ferroelectric gap capacitor 610. A DC bias voltage is applied to pad 612 and may include a bias resistor 625. DC blocking capacitor 618 is connected between pad 612 and ground. Capacitors 630 and 640 are realized by conductive strips 632 and 642 deposited on substrate 602 that are spaced from resonator 620 to form a capacitive gap.
  • In one implementation, [0094] substrate 602 is formed from 99.5% pure alumina and has a thickness of approximately 40 mils and an SR of approximately 5.0 μinch. Ferroelectric film 616 has a thickness of approximately 1.0 μm and is deposited in the region of gap capacitor 610 only. Microstrips 612 and 620 have a thickness of 4-6 μm and are spaced by approximately 10 μm to define gap 614. The length of resonator 620 is selected so that the overall structure (capacitor 610 and resonator 620) resonates in the desired frequency band. In one implementation, resonator 620 is a quarter wave resonator. Further fabrication cycles can be used to fine tune the resonant frequency if a specific resonant frequency is desired or required.
  • [0095] Resonator 620 may be configured as a microstrip, coaxial or stripline resonator. A planar microstrip configuration is preferred as it facilitates easier extraction of the capacitance and Q values from circuit 600. The use of an integrated component structure (i.e., a resonator having an integrated gap capacitor, such as resonator 620/capacitor 610) is advantageous relative to the use of a separate resonator and a lumped element capacitor as the unpredictable and hard to measure losses and errors introduced by a lumped element capacitor are eliminated.
  • A testing method using a single resonator bandpass testing circuit, such as circuit [0096] 600, proceeds as follows. First, a single resonator bandpass filter test circuit having an integrated gap capacitor is fabricated as described above. Precise thin film fabrication and processing techniques should be used to ensure that the desired geometry and properties are attained. Preferably, a technique should be used with tolerances in the range of ±0.5 microns. Once the circuit is fabricated, the center frequency f0 and insertion loss IL0 are measured. Preferably, these measurements are obtained using a network analyzer calibrated by means of a full two port calibration and using averaging.
  • Next, the same circuit is designed and analyzed on an electromagnetic field simulation tool such as Sonnet, IE3D or Momentum. Initially, the simulation assumes no loss due to the ferroelectric film (i.e., a loss tangent of zero). The ferroelectric dielectric constant is then adjusted in the gap region to give the same center frequency f[0097] 0 as measured in the test circuit. IL0 is then calculated for the ferroelectric gap capacitor alone. This value is then used in the simulation to account for the loss component Lmetal associated with the metal.
  • Next, another circuit simulation is run, but this time using a non-zero loss tangent. In one implementation, a loss tangent of 0.003 is used and IL[0098] 0 is recalculated. This iterative process is continued until the measured insertion loss IL0 from the test circuit is obtained, thereby yielding a very accurate approximation of the loss tangent for the circuit, as well as the loss component Lgeom due to the particular structure being tested (in this case, a gap capacitor).
  • The baseline performance of the SR-BPF can be established by fabrication of the circuit with no f-e film. The resulting resonant frequency will of course be higher as the [0099] loading capacitor 610 is smaller. This result will provide accurate information on overall shape and frequency response of the SR-BPF.
  • Circuit [0100] 600 is not only an accurate mechanism for measuring the loss introduced by a ferroelectric gap capacitor, it is also a basic building block for low loss tunable filters that may be implemented in a wide range of applications, such as wireless handsets. Narrowband resonant circuits configured as taught herein can be used to enhance the efficiency of, and add tunability to, many components of a typical RF transceiver. Examples of RF components in which the present invention could be implemented include, but are not limited to, duplexers, isolators, matching circuits, power amplifiers, multiplexers, bandpass filters and low noise amplifiers. With each element being tunable, it becomes unnecessary to use multiple circuitry blocks to accommodate multi-band modes. If necessary, the resonant circuits can be cascaded in an appropriate fashion to create desired filters and systems, vastly improving system performance while decreasing cost and size. Many of the components of a typical wireless handset would benefit from tunability.
  • The description and drawings contained herein are particular embodiments of the invention and are representative of the subject matter broadly contemplated by the invention. However, the invention encompasses other embodiments that will be obvious to those skilled in the art. Accordingly, the scope of the invention is limited only by the appended claims. [0101]

Claims (41)

1. A method for determining loss associated with a ferroelectric circuit component comprising:
fabricating a circuit comprising the ferroelectric component;
measuring an insertion loss due to the ferroelectric component;
determining components of the insertion loss that are due to other loss sources; and
removing the components due to other loss sources from the measured insertion loss to determine the loss associated with the ferroelectric component.
2. A method as claimed in claim 1, wherein the ferroelectric component is a gap capacitor.
3. A method as claimed in claim 2, wherein the circuit comprises an integrated structure including a resonator integrated with the gap capacitor.
4. A method as claimed in claim 3, the integrated structure comprises conductive strips deposited on a low loss substrate separated by a gap, and a thin film of ferroelectric material underneath the gap.
5. A method as claimed in claim 1, wherein the ferroelectric component is selected from a group comprising an interdigital capacitor; a gap capacitor and an overlay capacitor.
6. A method as claimed in claim 1, wherein the circuit is a narrowband resonant circuit.
7. A method as claimed in claim 1, wherein the insertion loss due to the ferroelectric component is measured using a network analyzer.
8. A method as claimed in claim 1, wherein the components of the insertion loss that are due to other loss sources are determined using a circuit simulation tool.
9. A method as claimed in claim 1, wherein the components of the insertion loss that are due to other loss sources are determined using a electromagnetic field simulation tool.
10. A method as claimed in claim 1, wherein the ferroelectric component has a Q greater than 100.
11. A method as claimed in claim 1, wherein the ferroelectric component has a Q greater than 200.
12. A method for determining the loss associated with a ferroelectric capacitor comprising:
fabricating a narrowband resonant circuit that integrates the ferroelectric capacitor;
measuring the center frequency and insertion loss of the circuit with a network analyzer;
analyzing the circuit on a circuit simulation tool to determine the components of the insertion loss due to conductive metal components of the resonant circuit and due to the geometry of the ferroelectric capacitor;
removing these components from the measured insertion loss to determine the loss due to the ferroelectric capacitor.
13. A method as claimed in claim 12, wherein the narrowband resonant circuit comprises a microstrip resonator having a gap to define the capacitor.
14. A tunable thin film ferroelectric device fabricated using a method that isolates the loss due to the ferroelectric film.
15. A tunable device as claimed in claim 14, wherein the device comprises a ferroelectric capacitor and a resonator.
16. A tunable device as claimed in claim 14, wherein the device comprises a planar, second order combline bandpass filter coupled to a lumped element, interdigital capacitor.
17. A tunable device as claimed in claim 14, wherein the device comprises a microstrip resonator having an integrated gap capacitor.
18. A narrowband resonant circuit having an integrated ferroelectric capacitor, the circuit being configured to permit accurate testing of the loss associated with the capacitor and to facilitate its use as a building block in a tunable circuitry component.
19. A narrowband resonant circuit comprising a microstrip resonator having an integrated gap capacitor, wherein the resonator comprises thin metal strips separated by a gap on a low loss substrate, the gap capacitor comprises a ferroelectric film deposited proximate the gap between the strips.
20. A narrowband resonant circuit as in claim 19, wherein the gap capacitor has a Q greater than about 100.
20. A method of testing a tunable ferroelectric component configured to operate in a tunable frequency range comprising:
designing a resonant circuit configured to resonate in the tunable frequency range;
coupling the resonant circuit to the tunable ferroelectric component;
measuring the loss in the tunable ferroelectric component using the tunable circuit; and
determining non-ferroelectric sources of loss associated with the ferroelectric component to demonstrate that the ferroelectric loss associated with the component is acceptably low.
21. A tunable ferroelectric capacitor comprising:
a first conducting surface;
a second conducting surface, the first and second conducting surfaces comprising a capacitor;
a ferroelectric material proximate the first and second conducting surfaces;
a variable voltage line coupled to the ferroelectric material for changing a capacitance of the capacitor, responsive to a changing dielectric constant of the ferroelectric material, responsive to a voltage applied to the variable voltage line;
wherein a Q of the capacitor, when operated in a temperature range between about −50 degrees Celsius and 100 degrees Celsius, is greater than about 80 in a frequency range between 0.25 GHz and 7.0 GHz.
22. A tunable ferroelectric capacitor as in claim 21, wherein the quality factor, when operated in a temperature range between about −50 degrees Celsius and 100 degrees Celsius, is greater than about 80 in a frequency range between about 0.8 GHz and 7.0 GHz.
23. A tunable ferroelectric capacitor as in claim 21, wherein the quality factor, when operated in a temperature range between about −50 degrees Celsius and 100 degrees Celsius, is greater than about 80 in a frequency range between about 0.25 GHz and 2.5 GHz.
24. A tunable ferroelectric capacitor as in claim 21, wherein the quality factor, when operated in a temperature range between about −50 degrees Celsius and 100 degrees Celsius, is greater than about 80 in a frequency range between about 0.8 GHz and 2.5 GHz.
25. A tunable ferroelectric capacitor as in claim 21, wherein the quality factor, when operated in a temperature range between about −50 degrees Celsius and 100 degrees Celsius, is greater than about 180 in a frequency range between 0.25 GHz and 7.0 GHz.
26. A tunable ferroelectric capacitor as in claim 21, wherein the quality factor, when operated in a temperature range between about −50 degrees Celsius and 100 degrees Celsius, is greater than about 180 in a frequency range between about 0.8 GHz and 2.5 GHz.
27. A tunable ferroelectric capacitor as in claim 21, wherein the quality factor, when operated in a temperature range between about −50 degrees Celsius and 100 degrees Celsius, is greater than about 80 for a capacitance in a range between about 0.3 pF and 3.0 pF.
28. A tunable ferroelectric capacitor as in claim 21, wherein the quality factor, when operated in a temperature range between about −50 degrees Celsius and 100 degrees Celsius, is greater than about 80 for a capacitance in a range between about 0.5 pF and 1.0 pF.
29. A tunable ferroelectric capacitor as in claim 21, wherein the quality factor, when operated in a temperature range between about −50 degrees Celsius and 100 degrees Celsius, is greater than about 180 for a capacitance in a range between about 0.3 pF and 3.0 pF.
30. A tunable ferroelectric capacitor as in claim 21, wherein the quality factor, when operated in a temperature range between about −50 degrees Celsius and 100 degrees Celsius, is greater than about 180 for a capacitance in a range between about 0.5 pF and 1.0 pF.
31. A capacitor as claimed in claim 21, wherein the capacitor has a capacitance of about 0.8 to 1.5 pF when zero voltage is applied to the ferroelectric material.
32. A capacitor as claimed in claim 21, wherein the ferroelectric material comprises barium strontium titanate.
33. A capacitor as claimed in claim 21, wherein the ferroelectric material comprises a film having a thickness of approximately one micron.
34. A capacitor as claimed in claim 21, wherein the capacitor is a microstrip gap capacitor.
35. A capacitor as claimed in claim 26, wherein the first conducting surface and the second conducting surface are separated by a gap approximately 2.5 microns wide.
36. A capacitor as claimed in claim 21, wherein the conductors are metal strips having a thickness in the range of 2-3 microns.
37. A capacitor as claimed in claim 21, wherein the capacitor is an overlay capacitor.
38. A capacitor as claimed in claim 21, wherein the second conducting surface comprises either gold or silver.
39. A capacitor as claimed in claim 21 wherein:
a first taper to the ferroelectric capacitor from a ferroelectric capacitor bond pad comprises a contraction of the first conducting surface from about 4.0 mils wide to about 0.1 mils wide over a distance of about 1.0 mils; and
a second taper from the ferroelectric capacitor to a DC bias pad region comprises an expansion of the second conducting surface from about 0.1 mils wide to about 4.0 mils wide over a distance of about 1.0 mils.
40. A tunable ferroelectric filter comprising:
a first element having an inductance;
a second element having a capacitance, the first and second elements being electrically coupled in a filter configuration to produce a characteristic frequency;
a ferroelectric material positioned near either the first element or the second element; and
a control line coupled to the ferroelectric material for varying a dielectric constant of the ferroelectric material and the characteristic frequency;
wherein a Q of the tunable ferro-electric filter is greater than about 100.
US10/750,304 2001-04-11 2003-12-31 Low-loss tunable ferro-electric device and method of characterization Expired - Fee Related US6927644B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/750,304 US6927644B2 (en) 2001-04-11 2003-12-31 Low-loss tunable ferro-electric device and method of characterization
US10/974,391 US7221243B2 (en) 2001-04-11 2004-10-26 Apparatus and method for combining electrical signals

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US28309301P 2001-04-11 2001-04-11
US09/927,732 US6690176B2 (en) 2001-04-11 2001-08-08 Low-loss tunable ferro-electric device and method of characterization
US10/750,304 US6927644B2 (en) 2001-04-11 2003-12-31 Low-loss tunable ferro-electric device and method of characterization

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/927,732 Division US6690176B2 (en) 2001-04-11 2001-08-08 Low-loss tunable ferro-electric device and method of characterization

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/974,391 Continuation-In-Part US7221243B2 (en) 2001-04-11 2004-10-26 Apparatus and method for combining electrical signals

Publications (2)

Publication Number Publication Date
US20040155731A1 true US20040155731A1 (en) 2004-08-12
US6927644B2 US6927644B2 (en) 2005-08-09

Family

ID=36806192

Family Applications (29)

Application Number Title Priority Date Filing Date
US09/904,631 Expired - Fee Related US6690251B2 (en) 2001-04-11 2001-07-13 Tunable ferro-electric filter
US09/912,753 Expired - Fee Related US6639491B2 (en) 2001-04-11 2001-07-24 Tunable ferro-electric multiplexer
US09/927,732 Expired - Fee Related US6690176B2 (en) 2001-04-11 2001-08-08 Low-loss tunable ferro-electric device and method of characterization
US09/927,136 Expired - Lifetime US6825818B2 (en) 2001-04-11 2001-08-10 Tunable matching circuit
US10/044,522 Expired - Fee Related US6737930B2 (en) 2001-04-11 2002-01-11 Tunable planar capacitor
US10/075,507 Expired - Lifetime US6859104B2 (en) 2001-04-11 2002-02-12 Tunable power amplifier matching circuit
US10/075,896 Expired - Lifetime US6765540B2 (en) 2001-04-11 2002-02-12 Tunable antenna matching circuit
US10/076,171 Expired - Fee Related US6816714B2 (en) 2001-04-11 2002-02-12 Antenna interface unit
US10/075,727 Expired - Fee Related US6903612B2 (en) 2001-04-11 2002-02-12 Tunable low noise amplifier
US10/077,654 Expired - Lifetime US7265643B2 (en) 2001-04-11 2002-02-14 Tunable isolator
US10/117,628 Expired - Fee Related US6861985B2 (en) 2001-04-11 2002-04-04 Ferroelectric antenna and method for tuning same
US10/118,530 Abandoned US20020149443A1 (en) 2001-04-11 2002-04-08 Tunable voltage controlled oscillator
US10/120,596 Expired - Fee Related US6819194B2 (en) 2001-04-11 2002-04-09 Tunable voltage-controlled temperature-compensated crystal oscillator
US10/120,603 Expired - Fee Related US6885341B2 (en) 2001-04-11 2002-04-09 Inverted-F ferroelectric antenna
US10/120,646 Expired - Fee Related US6727786B2 (en) 2001-04-11 2002-04-10 Band switchable filter
US10/122,968 Expired - Fee Related US6741217B2 (en) 2001-04-11 2002-04-11 Tunable waveguide antenna
US10/122,399 Expired - Fee Related US6867744B2 (en) 2001-04-11 2002-04-11 Tunable horn antenna
US10/121,632 Expired - Fee Related US6833820B2 (en) 2001-04-11 2002-04-11 Tunable monopole antenna
US10/121,391 Expired - Fee Related US6756947B2 (en) 2001-04-11 2002-04-11 Tunable slot antenna
US10/121,773 Expired - Fee Related US6741211B2 (en) 2001-04-11 2002-04-11 Tunable dipole antenna
US10/670,075 Expired - Fee Related US6744327B2 (en) 2001-04-11 2003-09-24 Tunable voltage controlled oscillator
US10/685,239 Expired - Fee Related US6885263B2 (en) 2001-04-11 2003-10-14 Tunable ferro-electric filter
US10/750,304 Expired - Fee Related US6927644B2 (en) 2001-04-11 2003-12-31 Low-loss tunable ferro-electric device and method of characterization
US10/770,089 Expired - Fee Related US6970055B2 (en) 2001-04-11 2004-02-02 Tunable planar capacitor
US10/800,525 Expired - Lifetime US7009455B2 (en) 2001-04-11 2004-03-15 Tunable power amplifier matching circuit
US10/804,817 Expired - Fee Related US6909344B2 (en) 2001-04-11 2004-03-19 Band switchable filter
US10/982,494 Expired - Lifetime US7221327B2 (en) 2001-04-11 2004-11-05 Tunable matching circuit
US10/981,814 Expired - Lifetime US7116954B2 (en) 2001-04-11 2004-11-05 Tunable bandpass filter and method thereof
US11/538,019 Expired - Fee Related US7509100B2 (en) 2001-04-11 2006-10-02 Antenna interface unit

Family Applications Before (22)

Application Number Title Priority Date Filing Date
US09/904,631 Expired - Fee Related US6690251B2 (en) 2001-04-11 2001-07-13 Tunable ferro-electric filter
US09/912,753 Expired - Fee Related US6639491B2 (en) 2001-04-11 2001-07-24 Tunable ferro-electric multiplexer
US09/927,732 Expired - Fee Related US6690176B2 (en) 2001-04-11 2001-08-08 Low-loss tunable ferro-electric device and method of characterization
US09/927,136 Expired - Lifetime US6825818B2 (en) 2001-04-11 2001-08-10 Tunable matching circuit
US10/044,522 Expired - Fee Related US6737930B2 (en) 2001-04-11 2002-01-11 Tunable planar capacitor
US10/075,507 Expired - Lifetime US6859104B2 (en) 2001-04-11 2002-02-12 Tunable power amplifier matching circuit
US10/075,896 Expired - Lifetime US6765540B2 (en) 2001-04-11 2002-02-12 Tunable antenna matching circuit
US10/076,171 Expired - Fee Related US6816714B2 (en) 2001-04-11 2002-02-12 Antenna interface unit
US10/075,727 Expired - Fee Related US6903612B2 (en) 2001-04-11 2002-02-12 Tunable low noise amplifier
US10/077,654 Expired - Lifetime US7265643B2 (en) 2001-04-11 2002-02-14 Tunable isolator
US10/117,628 Expired - Fee Related US6861985B2 (en) 2001-04-11 2002-04-04 Ferroelectric antenna and method for tuning same
US10/118,530 Abandoned US20020149443A1 (en) 2001-04-11 2002-04-08 Tunable voltage controlled oscillator
US10/120,596 Expired - Fee Related US6819194B2 (en) 2001-04-11 2002-04-09 Tunable voltage-controlled temperature-compensated crystal oscillator
US10/120,603 Expired - Fee Related US6885341B2 (en) 2001-04-11 2002-04-09 Inverted-F ferroelectric antenna
US10/120,646 Expired - Fee Related US6727786B2 (en) 2001-04-11 2002-04-10 Band switchable filter
US10/122,968 Expired - Fee Related US6741217B2 (en) 2001-04-11 2002-04-11 Tunable waveguide antenna
US10/122,399 Expired - Fee Related US6867744B2 (en) 2001-04-11 2002-04-11 Tunable horn antenna
US10/121,632 Expired - Fee Related US6833820B2 (en) 2001-04-11 2002-04-11 Tunable monopole antenna
US10/121,391 Expired - Fee Related US6756947B2 (en) 2001-04-11 2002-04-11 Tunable slot antenna
US10/121,773 Expired - Fee Related US6741211B2 (en) 2001-04-11 2002-04-11 Tunable dipole antenna
US10/670,075 Expired - Fee Related US6744327B2 (en) 2001-04-11 2003-09-24 Tunable voltage controlled oscillator
US10/685,239 Expired - Fee Related US6885263B2 (en) 2001-04-11 2003-10-14 Tunable ferro-electric filter

Family Applications After (6)

Application Number Title Priority Date Filing Date
US10/770,089 Expired - Fee Related US6970055B2 (en) 2001-04-11 2004-02-02 Tunable planar capacitor
US10/800,525 Expired - Lifetime US7009455B2 (en) 2001-04-11 2004-03-15 Tunable power amplifier matching circuit
US10/804,817 Expired - Fee Related US6909344B2 (en) 2001-04-11 2004-03-19 Band switchable filter
US10/982,494 Expired - Lifetime US7221327B2 (en) 2001-04-11 2004-11-05 Tunable matching circuit
US10/981,814 Expired - Lifetime US7116954B2 (en) 2001-04-11 2004-11-05 Tunable bandpass filter and method thereof
US11/538,019 Expired - Fee Related US7509100B2 (en) 2001-04-11 2006-10-02 Antenna interface unit

Country Status (3)

Country Link
US (29) US6690251B2 (en)
KR (4) KR100798616B1 (en)
CN (3) CN101174507B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050002343A1 (en) * 2003-06-02 2005-01-06 Toncich Stanley S. System and method for filtering time division multiple access telephone communications
US20060145782A1 (en) * 2005-01-04 2006-07-06 Kai Liu Multiplexers employing bandpass-filter architectures

Families Citing this family (636)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446030B2 (en) * 1999-08-27 2008-11-04 Shocking Technologies, Inc. Methods for fabricating current-carrying structures using voltage switchable dielectric materials
AU6531600A (en) 1999-08-27 2001-03-26 Lex Kosowsky Current carrying structure using voltage switchable dielectric material
US20100044080A1 (en) * 1999-08-27 2010-02-25 Lex Kosowsky Metal Deposition
US20120195018A1 (en) * 2005-11-22 2012-08-02 Lex Kosowsky Wireless communication device using voltage switchable dielectric material
US7695644B2 (en) * 1999-08-27 2010-04-13 Shocking Technologies, Inc. Device applications for voltage switchable dielectric material having high aspect ratio particles
US7825491B2 (en) * 2005-11-22 2010-11-02 Shocking Technologies, Inc. Light-emitting device using voltage switchable dielectric material
US8744384B2 (en) 2000-07-20 2014-06-03 Blackberry Limited Tunable microwave devices with auto-adjusting matching circuit
US7865154B2 (en) 2000-07-20 2011-01-04 Paratek Microwave, Inc. Tunable microwave devices with auto-adjusting matching circuit
AU2001276986A1 (en) 2000-07-20 2002-02-05 Paratek Microwave, Inc. Tunable microwave devices with auto-adjusting matching circuit
US8064188B2 (en) 2000-07-20 2011-11-22 Paratek Microwave, Inc. Optimized thin film capacitors
EP1312132A1 (en) * 2000-08-22 2003-05-21 Paratek Microwave, Inc. Combline filters with tunable dielectric capacitors
US6683513B2 (en) * 2000-10-26 2004-01-27 Paratek Microwave, Inc. Electronically tunable RF diplexers tuned by tunable capacitors
TW503345B (en) * 2001-03-26 2002-09-21 Mediatec Inc Power controller
US7394430B2 (en) * 2001-04-11 2008-07-01 Kyocera Wireless Corp. Wireless device reconfigurable radiation desensitivity bracket systems and methods
US7174147B2 (en) * 2001-04-11 2007-02-06 Kyocera Wireless Corp. Bandpass filter with tunable resonator
US7164329B2 (en) * 2001-04-11 2007-01-16 Kyocera Wireless Corp. Tunable phase shifer with a control signal generator responsive to DC offset in a mixed signal
US7154440B2 (en) * 2001-04-11 2006-12-26 Kyocera Wireless Corp. Phase array antenna using a constant-gain phase shifter
US7746292B2 (en) 2001-04-11 2010-06-29 Kyocera Wireless Corp. Reconfigurable radiation desensitivity bracket systems and methods
US7221243B2 (en) * 2001-04-11 2007-05-22 Kyocera Wireless Corp. Apparatus and method for combining electrical signals
US6690251B2 (en) * 2001-04-11 2004-02-10 Kyocera Wireless Corporation Tunable ferro-electric filter
US7102480B2 (en) * 2001-04-17 2006-09-05 Telefonaktiebolaget Lm Ericsson (Publ) Printed circuit board integrated switch
US6897704B2 (en) * 2001-05-25 2005-05-24 Thunder Creative Technologies, Inc. Electronic isolator
TR200401020T4 (en) * 2001-07-11 2004-06-21 Ttpcom Limited Transmitter for a mobile telecommunication device
JP2003051751A (en) * 2001-08-07 2003-02-21 Hitachi Ltd Electronic component and wireless communication device
JP2003124754A (en) * 2001-10-18 2003-04-25 Hitachi Ltd High frequency amplifier
US6674321B1 (en) * 2001-10-31 2004-01-06 Agile Materials & Technologies, Inc. Circuit configuration for DC-biased capacitors
US20040259316A1 (en) * 2001-12-05 2004-12-23 Baki Acikel Fabrication of parallel plate capacitors using BST thin films
US6683341B1 (en) * 2001-12-05 2004-01-27 Agile Materials & Technologies, Inc. Voltage-variable capacitor with increased current conducting perimeter
US7236068B2 (en) * 2002-01-17 2007-06-26 Paratek Microwave, Inc. Electronically tunable combine filter with asymmetric response
JP3972663B2 (en) * 2002-01-22 2007-09-05 松下電器産業株式会社 High frequency signal receiver
US7184727B2 (en) * 2002-02-12 2007-02-27 Kyocera Wireless Corp. Full-duplex antenna system and method
US7176845B2 (en) * 2002-02-12 2007-02-13 Kyocera Wireless Corp. System and method for impedance matching an antenna to sub-bands in a communication band
US7180467B2 (en) * 2002-02-12 2007-02-20 Kyocera Wireless Corp. System and method for dual-band antenna matching
JP2003258520A (en) * 2002-02-28 2003-09-12 Toshiba Corp Electronic device and antenna mount method
US20040008140A1 (en) * 2002-04-15 2004-01-15 Sengupta Louise C. Frequency agile, directive beam patch antennas
US6842144B2 (en) * 2002-06-10 2005-01-11 University Of Florida Research Foundation, Inc. High gain integrated antenna and devices therefrom
JP4010881B2 (en) * 2002-06-13 2007-11-21 新光電気工業株式会社 Semiconductor module structure
US6784766B2 (en) * 2002-08-21 2004-08-31 Raytheon Company MEMS tunable filters
US7224366B2 (en) * 2002-10-17 2007-05-29 Amx, Llc Method and system for control system software
WO2004040693A1 (en) * 2002-11-01 2004-05-13 Fujitsu Limited Control device and control method
US7010279B2 (en) * 2002-11-27 2006-03-07 Broadcom Corporation Radio frequency integrated circuit electro-static discharge circuit
EP1579527B1 (en) * 2002-12-09 2012-04-25 Corridor Systems, Inc. Method and apparatus for launching a surface wave onto a single conductor transmission line
US6944427B2 (en) * 2003-01-31 2005-09-13 Motorola, Inc. Reduced crossmodulation operation of a multimode communication device
US20040183626A1 (en) * 2003-02-05 2004-09-23 Qinghua Kang Electronically tunable block filter with tunable transmission zeros
US20040178867A1 (en) * 2003-02-05 2004-09-16 Rahman Mohammed Mahbubur LTCC based electronically tunable multilayer microstrip-stripline combline filter
US20040224649A1 (en) * 2003-02-05 2004-11-11 Khosro Shamsaifar Electronically tunable power amplifier tuner
US20050116797A1 (en) * 2003-02-05 2005-06-02 Khosro Shamsaifar Electronically tunable block filter
US7048992B2 (en) * 2003-02-05 2006-05-23 Paratek Microwave, Inc. Fabrication of Parascan tunable dielectric chips
US6815958B2 (en) * 2003-02-07 2004-11-09 Multimetrixs, Llc Method and apparatus for measuring thickness of thin films with improved accuracy
ATE385069T1 (en) * 2003-03-19 2008-02-15 Nxp Bv SHORT LENGTH MICRO STRIP FILTER
ATE328400T1 (en) * 2003-03-19 2006-06-15 Sony Ericsson Mobile Comm Ab SWITCHABLE ANTENNA ARRANGEMENT
US7012483B2 (en) * 2003-04-21 2006-03-14 Agile Materials And Technologies, Inc. Tunable bridge circuit
JP2004328128A (en) * 2003-04-22 2004-11-18 Alps Electric Co Ltd Antenna system
US7049906B2 (en) * 2003-05-29 2006-05-23 Sony Ericsson Mobile Communications Ab Quad band antenna interface modules including matching network ports
US20040242289A1 (en) * 2003-06-02 2004-12-02 Roger Jellicoe Configuration driven automatic antenna impedance matching
JP3839421B2 (en) * 2003-07-03 2006-11-01 松下電器産業株式会社 High frequency amplifier circuit and mobile communication terminal using the same
JP3839001B2 (en) * 2003-07-28 2006-11-01 埼玉日本電気株式会社 Portable radio
JP4292914B2 (en) * 2003-08-07 2009-07-08 パナソニック株式会社 Portable receiver and duplexer used therefor
US7280590B1 (en) * 2003-09-11 2007-10-09 Xilinx, Inc. Receiver termination network and application thereof
US7030463B1 (en) 2003-10-01 2006-04-18 University Of Dayton Tuneable electromagnetic bandgap structures based on high resistivity silicon substrates
US7197291B2 (en) * 2003-10-03 2007-03-27 Motorola, Inc. Multimode receiver and method for controlling signal interference
US6989785B2 (en) * 2003-10-06 2006-01-24 General Motors Corporation Low-profile, multi-band antenna module
EP1678780A1 (en) * 2003-10-20 2006-07-12 University Of Dayton Ferroelectric varactors suitable for capacitive shunt switching
US20070069264A1 (en) * 2003-10-20 2007-03-29 Guru Subramanyam Ferroelectric varactors suitable for capacitive shunt switching and wireless sensing
US7719392B2 (en) * 2003-10-20 2010-05-18 University Of Dayton Ferroelectric varactors suitable for capacitive shunt switching
US7250626B2 (en) * 2003-10-22 2007-07-31 Cascade Microtech, Inc. Probe testing structure
DE10352642B4 (en) * 2003-11-11 2018-11-29 Snaptrack, Inc. Circuit with reduced insertion loss and device with the circuit
JP4412977B2 (en) * 2003-11-17 2010-02-10 京セラ株式会社 Variable capacitor
JP3917164B2 (en) * 2003-12-08 2007-05-23 松下電器産業株式会社 Duplexer and multiplexer
KR100549967B1 (en) * 2003-12-10 2006-02-08 한국전자통신연구원 Ferroelectric Epitaxial Film For High Freqeuncy Tunable Device and High Freqeuncy Tunable Device Using The Same
US7161440B2 (en) * 2003-12-11 2007-01-09 Seiko Epson Corporation Temperature compensation circuit
US7167058B2 (en) * 2003-12-11 2007-01-23 Seiko Epson Corporation Temperature compensation for a variable frequency oscillator without reducing pull range
FI121037B (en) * 2003-12-15 2010-06-15 Pulse Finland Oy Adjustable multiband antenna
EP1723696B1 (en) * 2004-02-10 2016-06-01 Optis Cellular Technology, LLC Tunable arrangements
DE602005008193D1 (en) * 2004-03-04 2008-08-28 Murata Manufacturing Co ANTENNA DEVICES AND THE SAME USING WIRELESS COMMUNICATION DEVICE
KR20050089604A (en) * 2004-03-05 2005-09-08 주식회사 팬택앤큐리텔 Radio frequency signal characteristic compensating apparatus in a mobile communication terminal
US20050195541A1 (en) * 2004-03-05 2005-09-08 Hsiao-Chin Chen Load and matching circuit having electrically controllable frequency range
US7257383B2 (en) 2004-03-08 2007-08-14 Broadcom Corporation Method and system for improving dynamic range for communication systems using upstream analog information
WO2005089051A2 (en) * 2004-03-15 2005-09-29 Energenius, Inc. Thin-film ferroelectric microwave components and devices on flexible metal foil substrates
EP1729413B1 (en) * 2004-03-16 2015-12-09 Hitachi Metals, Ltd. High-frequency circuit and high-frequency component
US20050206482A1 (en) * 2004-03-17 2005-09-22 Dutoit Nicolaas Electronically tunable switched-resonator filter bank
JP4499457B2 (en) * 2004-03-25 2010-07-07 日本電波工業株式会社 Crystal oscillator
US7058531B2 (en) * 2004-03-31 2006-06-06 International Business Machines Corporation Temperature compensation in maximum frequency measurement and speed sort
US7180646B2 (en) * 2004-03-31 2007-02-20 Intel Corporation High efficiency micro-display system
DE102004021153B3 (en) 2004-04-29 2005-09-15 Infineon Technologies Ag Ultra-wideband signal amplifier for radio receiver uses tunable narrow band amplifier connected to frequency control circuit with store for sequence of chosen bands
US20050255812A1 (en) * 2004-05-17 2005-11-17 Samsung Electronics Co., Ltd. RF front-end apparatus in a TDD wireless communication system
US7928914B2 (en) * 2004-06-21 2011-04-19 Motorola Mobility, Inc. Multi-frequency conductive-strip antenna system
JP2006050543A (en) * 2004-07-07 2006-02-16 Hitachi Metals Ltd Non-reciprocal circuit device
US7248845B2 (en) * 2004-07-09 2007-07-24 Kyocera Wireless Corp. Variable-loss transmitter and method of operation
JP4327218B2 (en) * 2004-07-26 2009-09-09 キョウセラ ワイヤレス コープ. Full-duplex antenna system and method
US7333057B2 (en) * 2004-07-31 2008-02-19 Harris Corporation Stacked patch antenna with distributed reactive network proximity feed
TWI239116B (en) * 2004-09-01 2005-09-01 Ind Tech Res Inst Dual-band bandpass filter
US20060055603A1 (en) * 2004-09-10 2006-03-16 Joseph Jesson Concealed planar antenna
EP1792271A1 (en) * 2004-09-14 2007-06-06 Koninklijke Philips Electronics N.V. Overvoltage protection device and radio frequency receiver and radio frequency identification tag comprising such a device
CN100578914C (en) * 2004-10-11 2010-01-06 Lm爱立信电话有限公司 The varactor device that temperature dependency reduces
KR100714163B1 (en) * 2004-10-12 2007-05-02 삼성전자주식회사 Antenna matching device and method for portable wireless terminal with built-in antenna
WO2006047294A1 (en) * 2004-10-22 2006-05-04 University Of Florida Research Foundation, Inc. Frequency tunable low noise amplifier
CA2586448A1 (en) * 2004-11-05 2006-05-18 Qualcomm Incorporated A frequency agile transceiver for use in a multi-band handheld communications device
KR100651724B1 (en) * 2004-12-13 2006-12-01 한국전자통신연구원 Lateral tunable capacitor and microwave tunable device having the same
US7769355B2 (en) * 2005-01-19 2010-08-03 Micro Mobio Corporation System-in-package wireless communication device comprising prepackaged power amplifier
KR100701310B1 (en) * 2005-02-03 2007-03-29 삼성전자주식회사 Antenna having Band Rejection Filter
US8396431B2 (en) * 2005-02-17 2013-03-12 Kyocera Corporation Mobile station traffic state antenna tuning systems and methods
US20060212176A1 (en) 2005-02-18 2006-09-21 Corum James F Use of electrical power multiplication for power smoothing in power distribution
US9118216B2 (en) * 2005-02-18 2015-08-25 Cpg Technologies, Llc Parametric power multiplication
US20060190511A1 (en) * 2005-02-18 2006-08-24 Corum James F Electrical power multiplication
EP1710926A1 (en) * 2005-04-05 2006-10-11 Stmicroelectronics Sa Receiving circuit for a multimode reconfigurable telephone
US20060274476A1 (en) * 2005-04-13 2006-12-07 Andrew Cervin-Lawry Low loss thin film capacitor and methods of manufacturing the same
TWI252605B (en) * 2005-05-31 2006-04-01 Ind Tech Res Inst Multilayered chip-type triplexer
JP2008544600A (en) * 2005-06-09 2008-12-04 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Tunable circuit configuration and method for providing such a circuit configuration
EA008787B1 (en) * 2005-06-10 2007-08-31 Общество С Ограниченной Ответственностью "Сэлма" Small-size ferroelectric antenna and method for manufacturing a working body of an antenna active element
US7453328B2 (en) * 2005-07-18 2008-11-18 Jue Martin F Bandwidth high-power T network tuner
FI20055420A0 (en) 2005-07-25 2005-07-25 Lk Products Oy Adjustable multi-band antenna
US7443269B2 (en) * 2005-07-27 2008-10-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Method and apparatus for selectively blocking radio frequency (RF) signals in a radio frequency (RF) switching circuit
US20070024393A1 (en) * 2005-07-27 2007-02-01 Forse Roger J Tunable notch duplexer
US7495886B2 (en) * 2005-07-27 2009-02-24 Agile Rf, Inc. Dampening of electric field-induced resonance in parallel plate capacitors
TWI267182B (en) * 2005-08-12 2006-11-21 Tatung Co Method for eliminating resonance effect of parallel capacitors
JP4441458B2 (en) * 2005-08-22 2010-03-31 アルプス電気株式会社 Electronic circuit unit
KR100696205B1 (en) * 2005-08-26 2007-03-20 한국전자통신연구원 Optical Module and Optical Module Package
US20070063777A1 (en) * 2005-08-26 2007-03-22 Mircea Capanu Electrostrictive devices
US7324043B2 (en) * 2005-09-02 2008-01-29 Delphi Technologies, Inc. Phase shifters deposited en masse for an electronically scanned antenna
US7304339B2 (en) * 2005-09-22 2007-12-04 Agile Rf, Inc. Passivation structure for ferroelectric thin-film devices
US7728377B2 (en) * 2005-09-23 2010-06-01 Agile Rf, Inc. Varactor design using area to perimeter ratio for improved tuning range
FI119009B (en) 2005-10-03 2008-06-13 Pulse Finland Oy Multiple-band antenna
FI118782B (en) 2005-10-14 2008-03-14 Pulse Finland Oy Adjustable antenna
US9406444B2 (en) 2005-11-14 2016-08-02 Blackberry Limited Thin film capacitors
WO2007073524A2 (en) * 2005-11-18 2007-06-28 Superconductor Technologies, Inc. Low-loss tunable radio frequency filter
EP1969627A4 (en) * 2005-11-22 2010-01-20 Shocking Technologies Inc Semiconductor devices including voltage switchable materials for over-voltage protection
JP4838572B2 (en) * 2005-11-24 2011-12-14 株式会社エヌ・ティ・ティ・ドコモ Stabilization circuit, multiband amplifier circuit
US7548762B2 (en) * 2005-11-30 2009-06-16 Kyocera Corporation Method for tuning a GPS antenna matching network
FR2894737B1 (en) * 2005-12-13 2008-03-14 Cnes Epic TEST BENCH, SIMULATOR AND METHOD FOR SIMULATING PHASE NOISE.
US7564316B2 (en) * 2005-12-23 2009-07-21 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Variable-frequency oscillator incorporating thin-film bulk acoustic resonators
US8018397B2 (en) * 2005-12-30 2011-09-13 Industrial Technology Research Institute High dielectric antenna substrate and antenna thereof
TWI351130B (en) * 2005-12-30 2011-10-21 Ind Tech Res Inst High dielectric antenna substrate and antenna thereof
US8125399B2 (en) 2006-01-14 2012-02-28 Paratek Microwave, Inc. Adaptively tunable antennas incorporating an external probe to monitor radiated power
US7711337B2 (en) 2006-01-14 2010-05-04 Paratek Microwave, Inc. Adaptive impedance matching module (AIMM) control architectures
US8325097B2 (en) 2006-01-14 2012-12-04 Research In Motion Rf, Inc. Adaptively tunable antennas and method of operation therefore
JP4195036B2 (en) * 2006-01-26 2008-12-10 Tdk株式会社 Multilayer resonator
US7899409B2 (en) * 2006-01-30 2011-03-01 Broadcom Corporation Apparatus for controlling impedance
US7675388B2 (en) * 2006-03-07 2010-03-09 Agile Rf, Inc. Switchable tunable acoustic resonator using BST material
CN102386877B (en) * 2006-03-08 2014-12-10 维斯普瑞公司 Micro-electro-mechanical system (MEMS) variable capacitors and actuation components and related methods
TWI326934B (en) * 2006-03-24 2010-07-01 Univ Nat Taiwan Active bandpass filter
JP4915130B2 (en) * 2006-04-18 2012-04-11 ソニー株式会社 Variable capacitor
FR2901061B1 (en) * 2006-05-12 2008-11-14 Centre Nat Rech Scient ELECTROMAGNETIC WAVE CONVERTER IN CONTINUOUS VOLTAGE
US7466269B2 (en) * 2006-05-24 2008-12-16 Wavebender, Inc. Variable dielectric constant-based antenna and array
US20070279159A1 (en) * 2006-06-02 2007-12-06 Heinz Georg Bachmann Techniques to reduce circuit non-linear distortion
JP4737288B2 (en) * 2006-06-12 2011-07-27 株式会社村田製作所 Surface mount antenna and antenna device
US7675369B2 (en) * 2006-06-12 2010-03-09 Honeywell International Inc. Frequency hopping oscillator circuit
US20080153451A1 (en) * 2006-06-14 2008-06-26 Knecht Thomas A RF Rx front end module for picocell and microcell base station transceivers
US7855983B2 (en) * 2006-06-14 2010-12-21 Cts Corporation Time division duplex front end module
US20080007365A1 (en) * 2006-06-15 2008-01-10 Jeff Venuti Continuous gain compensation and fast band selection in a multi-standard, multi-frequency synthesizer
US7672645B2 (en) 2006-06-15 2010-03-02 Bitwave Semiconductor, Inc. Programmable transmitter architecture for non-constant and constant envelope modulation
EA012794B1 (en) * 2006-07-05 2009-12-30 Сайнмет Ла, Инкорпорейтед Antenna (enbodiments) and method for managing antenna operation
US8618990B2 (en) 2011-04-13 2013-12-31 Pulse Finland Oy Wideband antenna and methods
US7981325B2 (en) 2006-07-29 2011-07-19 Shocking Technologies, Inc. Electronic device for voltage switchable dielectric material having high aspect ratio particles
US20080032049A1 (en) * 2006-07-29 2008-02-07 Lex Kosowsky Voltage switchable dielectric material having high aspect ratio particles
WO2008020382A2 (en) * 2006-08-14 2008-02-21 Nxp B.V. Antenna system
KR100802358B1 (en) * 2006-08-22 2008-02-13 주식회사 이엠따블유안테나 Transmission line
TWI312082B (en) * 2006-08-28 2009-07-11 Nat Chiao Tung Universit Tunable terahertz wavelength selector device using magnetically controlled birefringence of liquid crystals
US7649426B2 (en) * 2006-09-12 2010-01-19 Cts Corporation Apparatus and method for temperature compensation of crystal oscillators
MY145875A (en) 2006-09-24 2012-05-15 Shocking Technologies Inc Formulations for voltage switchable dielectric material having a stepped voltage response and methods for making the same
US8081940B2 (en) * 2006-09-29 2011-12-20 Broadcom Corporation Method and system for dynamically tuning and calibrating an antenna using an on-chip digitally controlled array of capacitors
US7583950B2 (en) * 2006-10-05 2009-09-01 Harris Corporation High linearity tunable bandpass filter
US8280323B2 (en) * 2006-10-11 2012-10-02 Bae Systems Information And Electronic Systems Integration Inc. Fuzzy logic control of an RF power amplifier for automatic self-tuning
US7376535B1 (en) * 2006-10-12 2008-05-20 The United States Of America As Represented By The Secretary Of The Navy Wideband matching circuit and method of effectuating same
US7800048B2 (en) * 2006-10-13 2010-09-21 Delphi Technologies, Inc. System and method for determining a change of temperature of a SBT pixel element
US8121568B2 (en) * 2006-10-17 2012-02-21 Telefonaktiebolaget Lm Ericsson (Publ) Radio frequency handling device
KR100828948B1 (en) * 2006-10-30 2008-05-13 주식회사 이엠따블유안테나 Interdigital capacitor, inductor, and transmission line and coupler using them
US8299867B2 (en) 2006-11-08 2012-10-30 Research In Motion Rf, Inc. Adaptive impedance matching module
US7535312B2 (en) 2006-11-08 2009-05-19 Paratek Microwave, Inc. Adaptive impedance matching apparatus, system and method with improved dynamic range
US7714676B2 (en) 2006-11-08 2010-05-11 Paratek Microwave, Inc. Adaptive impedance matching apparatus, system and method
FR2904911A1 (en) * 2006-11-10 2008-02-15 Thomson Licensing Sas Transmission and reception front end for e.g. multi-band cellular wireless telephone, has elements including selective transmission and reception band filters adjusted in selected channel frequency band belonging either to frequency bands
US7371005B1 (en) * 2006-11-16 2008-05-13 Intersil Americas Inc. Automatic circuit and method for temperature compensation of oscillator frequency variation over temperature for a real time clock chip
CN101536309A (en) * 2006-11-17 2009-09-16 诺基亚公司 An apparatus for enabling two elements to share a common feed
US20080122712A1 (en) * 2006-11-28 2008-05-29 Agile Rf, Inc. Tunable antenna including tunable capacitor inserted inside the antenna
US7589604B2 (en) * 2006-12-01 2009-09-15 Broadcom Corporation Selectable notch filter
US20080129610A1 (en) * 2006-12-01 2008-06-05 Texas Instruments Incorporated Adaptive antenna matching for portable radio operating at VHF with single-chip based implementation
US7813777B2 (en) * 2006-12-12 2010-10-12 Paratek Microwave, Inc. Antenna tuner with zero volts impedance fold back
US7646268B1 (en) * 2006-12-22 2010-01-12 Christos Tsironis Low frequency harmonic load pull tuner and method
WO2008084801A1 (en) * 2007-01-11 2008-07-17 Panasonic Corporation Wide-band slot antenna
US20080174936A1 (en) * 2007-01-19 2008-07-24 Western Lights Semiconductor Corp. Apparatus and Method to Store Electrical Energy
US7706759B2 (en) * 2007-01-30 2010-04-27 Broadcom Corporation RF reception system with programmable impedance matching networks and methods for use therewith
US7808124B2 (en) * 2007-02-02 2010-10-05 Cpg Technologies, Llc Electric power storage
US7969042B2 (en) 2007-02-02 2011-06-28 Cpg Technologies, Llc Application of power multiplication to electric power distribution
DE102007007579B4 (en) * 2007-02-15 2015-05-21 Infineon Technologies Ag transmitter circuit
US7674666B2 (en) * 2007-02-23 2010-03-09 Sensor Electronic Technology, Inc. Fabrication of semiconductor device having composite contact
US8027699B2 (en) * 2007-03-02 2011-09-27 Alcatel Lucent Systems and methods of band amplification with a shared amplifier
US7903592B2 (en) * 2007-03-02 2011-03-08 Alcatel Lucent Systems and methods of efficient band amplification
CN101017930B (en) * 2007-03-08 2011-03-16 西北工业大学 Electric tuning micro-band antenna
US8467169B2 (en) * 2007-03-22 2013-06-18 Research In Motion Rf, Inc. Capacitors adapted for acoustic resonance cancellation
JP5383653B2 (en) * 2007-04-03 2014-01-08 Tdk株式会社 Antenna, matching network, and antenna performance improving method
FI20075269A0 (en) 2007-04-19 2007-04-19 Pulse Finland Oy Method and arrangement for antenna matching
TW200843209A (en) * 2007-04-20 2008-11-01 Advanced Connectek Inc Wideband antenna
US7917104B2 (en) * 2007-04-23 2011-03-29 Paratek Microwave, Inc. Techniques for improved adaptive impedance matching
US8213886B2 (en) 2007-05-07 2012-07-03 Paratek Microwave, Inc. Hybrid techniques for antenna retuning utilizing transmit and receive power information
US8005448B1 (en) * 2007-05-10 2011-08-23 Rf Micro Devices, Inc. Radio frequency duplex filter for removing transmit signals from a receive path
WO2008147932A2 (en) * 2007-05-24 2008-12-04 Bitwave Semiconductor, Incorporated Reconfigurable tunable rf power amplifier
US7629860B2 (en) * 2007-06-08 2009-12-08 Stats Chippac, Ltd. Miniaturized wide-band baluns for RF applications
US7793236B2 (en) * 2007-06-13 2010-09-07 Shocking Technologies, Inc. System and method for including protective voltage switchable dielectric material in the design or simulation of substrate devices
DE112008001621T5 (en) * 2007-06-14 2010-04-22 Kyocera Corp. DC blocking circuit, hybrid circuit device, transmitter, receiver, transceiver and radar device
EP2168202B1 (en) 2007-06-27 2013-07-31 Superconductor Technologies, Inc. Low-loss tunable radio frequency filter
US7750739B2 (en) * 2007-07-19 2010-07-06 Intel Corporation Dual reactive shunt low noise amplifier
KR20130052679A (en) 2007-08-29 2013-05-22 에이저 시스템즈 엘엘시 Electronically steerable antenna
FI120427B (en) 2007-08-30 2009-10-15 Pulse Finland Oy Adjustable multiband antenna
US9173890B2 (en) * 2007-09-20 2015-11-03 Abbott Cardiovascular Systems Inc. Sustained release of Apo A-I mimetic peptides and methods of treatment
US20090088105A1 (en) * 2007-09-28 2009-04-02 Ahmadreza Rofougaran Method and system for utilizing a programmable coplanar waveguide or microstrip bandpass filter for undersampling in a receiver
WO2009047876A1 (en) * 2007-10-09 2009-04-16 Panasonic Corporation Circuit device
US8457697B2 (en) * 2007-11-14 2013-06-04 Telefonaktiebolaget Lm Ericsson (Publ) Antenna switching arrangement
US7991363B2 (en) 2007-11-14 2011-08-02 Paratek Microwave, Inc. Tuning matching circuits for transmitter and receiver bands as a function of transmitter metrics
US8206614B2 (en) 2008-01-18 2012-06-26 Shocking Technologies, Inc. Voltage switchable dielectric material having bonded particle constituents
US8355688B2 (en) * 2008-02-19 2013-01-15 Broadcom Corporation Method and system for frequency selection using microstrip transceivers for high-speed applications
KR101027970B1 (en) 2008-02-26 2011-04-13 전자부품연구원 Power Anmplifier With Internal Matching Network Using Ferroelectrics
US7917170B2 (en) * 2008-03-13 2011-03-29 Kyocera Corporation Multiple-band radio frequency (RF) circuit and method for a wireless communication device
US8203421B2 (en) 2008-04-14 2012-06-19 Shocking Technologies, Inc. Substrate device or package using embedded layer of voltage switchable dielectric material in a vertical switching configuration
CN107093995A (en) * 2008-04-25 2017-08-25 维斯普瑞公司 Tunable matching network circuit topology is selected
US8040190B2 (en) * 2008-05-01 2011-10-18 Csem Centre Suisse D'electronique Et De Microtechnique Sa-Recherche Et Developpement Phase-locked loop
US8310093B1 (en) 2008-05-08 2012-11-13 Corum James F Multiply-connected power processing
DE102008024482B4 (en) * 2008-05-21 2016-10-06 Qualcomm Technologies, Inc. (N.D.Ges.D. Staates Delaware) Circuit arrangement for impedance matching, electronic component and mobile device
KR200449198Y1 (en) * 2008-06-26 2010-06-24 유파인테크놀러지스 주식회사 Multiplexer Which Is Merged LNA
US7906839B2 (en) * 2008-07-02 2011-03-15 Stats Chippac, Ltd. Semiconductor device and method of shunt test measurement for passive circuits
US7922975B2 (en) * 2008-07-14 2011-04-12 University Of Dayton Resonant sensor capable of wireless interrogation
WO2010014904A1 (en) * 2008-07-31 2010-02-04 Medtronic, Inc. Adjustable impedance matching circuit
KR100986049B1 (en) * 2008-08-11 2010-10-07 주식회사 에이스테크놀로지 Module-type active antenna for receiving multiple broadcasting signals
WO2010025095A1 (en) * 2008-08-29 2010-03-04 Agile Rf, Inc. Tunable dual-band antenna using lc resonator
US8072285B2 (en) 2008-09-24 2011-12-06 Paratek Microwave, Inc. Methods for tuning an adaptive impedance matching network with a look-up table
US7934190B1 (en) 2008-09-25 2011-04-26 The United States Of America As Represented By The Secretary Of The Navy Multiple amplifier matching over lumped networks of arbitrary topology
JP2010258402A (en) 2008-09-26 2010-11-11 Sony Corp Capacitance element and resonance circuit
US9208931B2 (en) 2008-09-30 2015-12-08 Littelfuse, Inc. Voltage switchable dielectric material containing conductor-on-conductor core shelled particles
CN102246246A (en) * 2008-09-30 2011-11-16 肖克科技有限公司 Voltage switchable dielectric material containing conductive core shelled particles
US20100085130A1 (en) * 2008-10-03 2010-04-08 Toyota Motor Engineering & Manufacturing North America, Inc. Manufacturable tunable matching network for wire and ribbon bond compensation
US9375272B2 (en) * 2008-10-13 2016-06-28 Covidien Lp Antenna assemblies for medical applications
US8067858B2 (en) 2008-10-14 2011-11-29 Paratek Microwave, Inc. Low-distortion voltage variable capacitor assemblies
US8130054B1 (en) * 2008-10-14 2012-03-06 Rf Micro Devices, Inc. Frequency-adjustable radio frequency isolator circuitry
US20100096678A1 (en) * 2008-10-20 2010-04-22 University Of Dayton Nanostructured barium strontium titanate (bst) thin-film varactors on sapphire
US8362871B2 (en) * 2008-11-05 2013-01-29 Shocking Technologies, Inc. Geometric and electric field considerations for including transient protective material in substrate devices
WO2010068954A1 (en) * 2008-12-12 2010-06-17 Wavebender, Inc. Integrated waveguide cavity antenna and reflector dish
US8395392B2 (en) * 2008-12-23 2013-03-12 Sensor Electronic Technology, Inc. Parameter extraction using radio frequency signals
FR2940503B1 (en) * 2008-12-23 2011-03-04 Thales Sa MEMS COMPACT SWITCHING CAPACITOR
US8338871B2 (en) * 2008-12-23 2012-12-25 Sensor Electronic Technology, Inc. Field effect transistor with electric field and space-charge control contact
US8680952B2 (en) * 2008-12-30 2014-03-25 Tdk Corporation Bandpass filter with dual band response
KR101026414B1 (en) 2009-01-21 2011-04-07 한국과학기술원 Ultra wide band pulse generator using differential pulsed oscillator
DE102009024747A1 (en) * 2009-01-22 2010-07-29 Epcos Ag Adaptive impedance matching circuit and adaptation method for duplexing standards
US9226391B2 (en) 2009-01-27 2015-12-29 Littelfuse, Inc. Substrates having voltage switchable dielectric materials
US8272123B2 (en) 2009-01-27 2012-09-25 Shocking Technologies, Inc. Substrates having voltage switchable dielectric materials
US8399773B2 (en) 2009-01-27 2013-03-19 Shocking Technologies, Inc. Substrates having voltage switchable dielectric materials
US20100203922A1 (en) * 2009-02-10 2010-08-12 Knecht Thomas A Time Division Duplex Front End Module
US8197473B2 (en) 2009-02-20 2012-06-12 Vivant Medical, Inc. Leaky-wave antennas for medical applications
FR2942915A1 (en) * 2009-03-06 2010-09-10 Thomson Licensing COMPACT ANTENNA SYSTEM
WO2010110909A1 (en) 2009-03-26 2010-09-30 Shocking Technologies, Inc. Components having voltage switchable dielectric materials
US8106728B2 (en) * 2009-04-15 2012-01-31 International Business Machines Corporation Circuit structure and design structure for an optionally switchable on-chip slow wave transmission line band-stop filter and a method of manufacture
US8326233B2 (en) * 2009-05-11 2012-12-04 Broadcom Corporation Method and system for a configurable tuned MOS capacitor
WO2010132582A1 (en) * 2009-05-15 2010-11-18 Cts Corporation High performance rf rx module
US9143172B2 (en) * 2009-06-03 2015-09-22 Qualcomm Incorporated Tunable matching circuits for power amplifiers
US8963611B2 (en) * 2009-06-19 2015-02-24 Qualcomm Incorporated Power and impedance measurement circuits for a wireless communication device
CN101630769B (en) * 2009-06-24 2012-10-24 华东交通大学 Microwave double-frequency bandpass filtering device
JP5257719B2 (en) * 2009-07-02 2013-08-07 株式会社村田製作所 High frequency circuit for wireless communication and wireless communication device
KR101615760B1 (en) * 2009-07-22 2016-04-27 삼성전자주식회사 Fabrication method for antenna device of mobile communiction terminal
US8750810B2 (en) * 2009-07-24 2014-06-10 Qualcomm Incorporated Power amplifier with switched output matching for multi-mode operation
US8536950B2 (en) * 2009-08-03 2013-09-17 Qualcomm Incorporated Multi-stage impedance matching
US8102205B2 (en) 2009-08-04 2012-01-24 Qualcomm, Incorporated Amplifier module with multiple operating modes
US9559639B2 (en) * 2009-08-19 2017-01-31 Qualcomm Incorporated Protection circuit for power amplifier
US8072272B2 (en) * 2009-08-19 2011-12-06 Qualcomm, Incorporated Digital tunable inter-stage matching circuit
US8472888B2 (en) 2009-08-25 2013-06-25 Research In Motion Rf, Inc. Method and apparatus for calibrating a communication device
JP5370488B2 (en) * 2009-08-25 2013-12-18 株式会社村田製作所 Antenna device
US9053844B2 (en) 2009-09-09 2015-06-09 Littelfuse, Inc. Geometric configuration or alignment of protective material in a gap structure for electrical devices
US8653887B2 (en) * 2009-09-15 2014-02-18 Telefonaktieboleget L M Ericsson (publ) Method and arrangement in a mobile communication system
US9026062B2 (en) 2009-10-10 2015-05-05 Blackberry Limited Method and apparatus for managing operations of a communication device
JP5375521B2 (en) * 2009-10-27 2013-12-25 ソニー株式会社 High frequency amplifier and wireless communication device
FI20096134A0 (en) 2009-11-03 2009-11-03 Pulse Finland Oy Adjustable antenna
KR101097605B1 (en) 2009-11-04 2011-12-22 알.에프 에이치아이씨 주식회사 Doherty amplifier
FI20096251A0 (en) 2009-11-27 2009-11-27 Pulse Finland Oy MIMO antenna
GB2476035B (en) * 2009-12-08 2016-06-01 Microsoft Technology Licensing Llc Improvements relating to power amplifiers and antennas
KR101730139B1 (en) * 2009-12-14 2017-05-11 삼성전자주식회사 Battery pack with wireless power transmission resonator
US8847833B2 (en) 2009-12-29 2014-09-30 Pulse Finland Oy Loop resonator apparatus and methods for enhanced field control
US9654128B2 (en) 2010-01-05 2017-05-16 Syntropy Systems, Llc Multi-mode sampling/quantization converters
CN101777688B (en) * 2010-01-11 2013-04-17 南通大学 Microwave terminal short circuit half-wavelength tunable resonator and microwave tunable filter manufactured by same
CN102823129B (en) * 2010-01-15 2015-07-08 维斯普瑞公司 Tunable matching network circuit topology devices and methods
FI20105158A (en) 2010-02-18 2011-08-19 Pulse Finland Oy SHELL RADIATOR ANTENNA
DE102010008920A1 (en) * 2010-02-23 2011-08-25 Epcos Ag, 81669 Broadband operable impedance matching circuit
US9082622B2 (en) 2010-02-26 2015-07-14 Littelfuse, Inc. Circuit elements comprising ferroic materials
US9320135B2 (en) 2010-02-26 2016-04-19 Littelfuse, Inc. Electric discharge protection for surface mounted and embedded components
US9224728B2 (en) 2010-02-26 2015-12-29 Littelfuse, Inc. Embedded protection against spurious electrical events
DE102010011649B4 (en) * 2010-03-17 2019-01-24 Snaptrack, Inc. Front-end circuit for a mobile communication device with improved impedance matching
US8803631B2 (en) 2010-03-22 2014-08-12 Blackberry Limited Method and apparatus for adapting a variable impedance network
CN101814927B (en) * 2010-04-14 2014-07-02 中兴通讯股份有限公司 Multimode all-frequency-band radio-frequency emitting device and method
EP2561621A4 (en) 2010-04-20 2016-10-05 Blackberry Ltd Method and apparatus for managing interference in a communication device
US9406998B2 (en) 2010-04-21 2016-08-02 Pulse Finland Oy Distributed multiband antenna and methods
US8968609B2 (en) 2010-05-12 2015-03-03 General Electric Company Dielectric materials for power transfer system
US8586495B2 (en) 2010-05-12 2013-11-19 General Electric Company Dielectric materials
US9174876B2 (en) * 2010-05-12 2015-11-03 General Electric Company Dielectric materials for power transfer system
US8968603B2 (en) 2010-05-12 2015-03-03 General Electric Company Dielectric materials
US8686920B2 (en) * 2010-05-28 2014-04-01 The Regents Of The University Of Michigan Miniaturized radio repeater
US9209772B2 (en) * 2010-05-28 2015-12-08 Advantest Corporation Electrical filter structure
US8571489B2 (en) * 2010-06-03 2013-10-29 Broadcom Corporation Front end module with tone injection
US8416023B2 (en) * 2010-06-08 2013-04-09 Nxp B.V. System and method for compensating for changes in an output impedance of a power amplifier
ITRM20100391A1 (en) * 2010-07-15 2012-01-16 Clu Tech Srl MINIATURIZED PRINTED ANTENNA WITH COMBINED REACTIVE LOADS
IT1401585B1 (en) * 2010-07-15 2013-07-26 Clu Tech Srl DEVICE FOR THE CONVERSION OF CIRCUITS PRINTED IN RADIANT ELEMENTS.
KR20120031521A (en) 2010-07-22 2012-04-03 파나소닉 주식회사 Lighting circuit, lamp and illumination device
WO2012025946A1 (en) 2010-08-25 2012-03-01 Commscope Italy S.R.L. Tunable bandpass filter
US8502608B2 (en) * 2010-11-01 2013-08-06 Samsung Electronics Co., Ltd. Tunable power amplifier using laminate MEMS capacitors
US9379454B2 (en) 2010-11-08 2016-06-28 Blackberry Limited Method and apparatus for tuning antennas in a communication device
US8659496B1 (en) * 2010-11-24 2014-02-25 R.A. Miller Industries, Inc. Heat sink for a high power antenna
US10341038B2 (en) 2010-12-14 2019-07-02 Arris Enterprises Llc Multiplex conversion for a passive optical network
DE102010056048A1 (en) * 2010-12-23 2012-06-28 Kathrein-Werke Kg Tunable high frequency filter
CN102116804A (en) * 2010-12-29 2011-07-06 电子科技大学 Method for testing complex dielectric constant of microwave dielectric material
FR2970129B1 (en) * 2010-12-30 2013-01-18 Thales Sa CAPACITOR VARIABLE FILTER SWITCHED USING MEMS COMPONENTS
FI20115072A0 (en) 2011-01-25 2011-01-25 Pulse Finland Oy Multi-resonance antenna, antenna module and radio unit
US9673507B2 (en) 2011-02-11 2017-06-06 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US8648752B2 (en) 2011-02-11 2014-02-11 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US8586997B2 (en) 2011-02-15 2013-11-19 Sensor Electronic Technology, Inc. Semiconductor device with low-conducting field-controlling element
US8712340B2 (en) 2011-02-18 2014-04-29 Blackberry Limited Method and apparatus for radio antenna frequency tuning
US8655286B2 (en) 2011-02-25 2014-02-18 Blackberry Limited Method and apparatus for tuning a communication device
US8626083B2 (en) 2011-05-16 2014-01-07 Blackberry Limited Method and apparatus for tuning a communication device
US8594584B2 (en) 2011-05-16 2013-11-26 Blackberry Limited Method and apparatus for tuning a communication device
US8922315B2 (en) 2011-05-17 2014-12-30 Bae Systems Information And Electronic Systems Integration Inc. Flexible ultracapacitor cloth for feeding portable electronic device
GB2491111B (en) * 2011-05-19 2015-08-19 Oxford Instr Nanotechnology Tools Ltd Charge-sensitive amplifier
US9024701B1 (en) * 2011-06-08 2015-05-05 Marvell International Ltd. Method and apparatus for controlling a line side impedance in a network device
US8866689B2 (en) 2011-07-07 2014-10-21 Pulse Finland Oy Multi-band antenna and methods for long term evolution wireless system
US9450291B2 (en) 2011-07-25 2016-09-20 Pulse Finland Oy Multiband slot loop antenna apparatus and methods
EP2551988A3 (en) * 2011-07-28 2013-03-27 General Electric Company Dielectric materials for power transfer system
US9769826B2 (en) 2011-08-05 2017-09-19 Blackberry Limited Method and apparatus for band tuning in a communication device
RU2473889C1 (en) * 2011-09-05 2013-01-27 Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН Method of measuring physical quantity
US20130056753A1 (en) 2011-09-06 2013-03-07 Grigory Simin Semiconductor Device with Low-Conducting Field-controlling Element
DE202011105662U1 (en) * 2011-09-14 2012-05-09 IAD Gesellschaft für Informatik, Automatisierung und Datenverarbeitung mbH Reconfigurable bandpass filter based on planar comb filters with varactor diodes
US9048805B2 (en) 2011-10-04 2015-06-02 Rf Micro Devices, Inc. Tunable duplexer architecture
US9123990B2 (en) 2011-10-07 2015-09-01 Pulse Finland Oy Multi-feed antenna apparatus and methods
US8923794B2 (en) * 2011-11-02 2014-12-30 Triquint Semiconductor, Inc. Temperature compensation of acoustic resonators in the electrical domain
US9154851B2 (en) 2011-11-10 2015-10-06 Arris Technology, Inc. Tunable RF return path filter with automatic channel plan detection
US9673285B2 (en) 2011-11-21 2017-06-06 Sensor Electronic Technology, Inc. Semiconductor device with low-conducting buried and/or surface layers
US8994035B2 (en) 2011-11-21 2015-03-31 Sensor Electronic Technology, Inc. Semiconductor device with low-conducting buried and/or surface layers
DE102011088617A1 (en) 2011-12-14 2013-06-20 Forschungsverbund Berlin E.V. Electrically tunable impedance matching network of an RF power transistor
US9531058B2 (en) 2011-12-20 2016-12-27 Pulse Finland Oy Loosely-coupled radio antenna apparatus and methods
US9484619B2 (en) 2011-12-21 2016-11-01 Pulse Finland Oy Switchable diversity antenna apparatus and methods
US8639286B2 (en) * 2011-12-23 2014-01-28 Broadcom Corporation RF transmitter having broadband impedance matching for multi-band application support
US9048809B2 (en) 2012-01-03 2015-06-02 International Business Machines Corporation Method of manufacturing switchable filters
US8803615B2 (en) * 2012-01-23 2014-08-12 Qualcomm Incorporated Impedance matching circuit with tunable notch filters for power amplifier
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
RU2488200C1 (en) * 2012-02-03 2013-07-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" Miscrostrip diplexer
US9083518B2 (en) * 2012-02-07 2015-07-14 Rf Micro Devices, Inc. Tunable hybrid coupler
US9190979B2 (en) 2012-02-07 2015-11-17 Rf Micro Devices, Inc. Hybrid coupler
US9166640B2 (en) * 2012-02-10 2015-10-20 Infineon Technologies Ag Adjustable impedance matching network
US9184722B2 (en) * 2012-02-10 2015-11-10 Infineon Technologies Ag Adjustable impedance matching network
WO2013126952A1 (en) * 2012-02-29 2013-09-06 Micreo Limited An electronic gain shaper and a method for storing parameters
US8836587B2 (en) 2012-03-30 2014-09-16 Apple Inc. Antenna having flexible feed structure with components
KR101893187B1 (en) * 2012-04-04 2018-08-30 한국전자통신연구원 Apparatus for analyzing interference of wireless communication device, system and method for analyzing interference by using the same
US8988296B2 (en) 2012-04-04 2015-03-24 Pulse Finland Oy Compact polarized antenna and methods
US8742991B2 (en) * 2012-04-10 2014-06-03 Htc Corporation Handheld electronic devices and methods involving tunable dielectric materials
US8749312B2 (en) * 2012-04-18 2014-06-10 Qualcomm Incorporated Optimizing cascade gain stages in a communication system
US8868011B2 (en) * 2012-04-30 2014-10-21 Triquint Semiconductor, Inc. Power amplifier with fast loadline modulation
WO2013177543A1 (en) 2012-05-24 2013-11-28 The Board Of Trustees Of The University Of Alabama For And On Behalf Of The University Of Alabama Magnetic supercapacitors
US8948889B2 (en) 2012-06-01 2015-02-03 Blackberry Limited Methods and apparatus for tuning circuit components of a communication device
US8761296B2 (en) * 2012-06-01 2014-06-24 Qualcomm Incorporated Method and apparatus for antenna tuning and transmit path selection
US9000866B2 (en) 2012-06-26 2015-04-07 University Of Dayton Varactor shunt switches with parallel capacitor architecture
US9853363B2 (en) 2012-07-06 2017-12-26 Blackberry Limited Methods and apparatus to control mutual coupling between antennas
US9246223B2 (en) 2012-07-17 2016-01-26 Blackberry Limited Antenna tuning for multiband operation
US9350405B2 (en) 2012-07-19 2016-05-24 Blackberry Limited Method and apparatus for antenna tuning and power consumption management in a communication device
US9413066B2 (en) 2012-07-19 2016-08-09 Blackberry Limited Method and apparatus for beam forming and antenna tuning in a communication device
US9362891B2 (en) 2012-07-26 2016-06-07 Blackberry Limited Methods and apparatus for tuning a communication device
US9697951B2 (en) 2012-08-29 2017-07-04 General Electric Company Contactless power transfer system
US9773587B1 (en) * 2012-10-22 2017-09-26 Hrl Laboratories, Llc Tunable cavity for material measurement
US9979078B2 (en) 2012-10-25 2018-05-22 Pulse Finland Oy Modular cell antenna apparatus and methods
US9214967B2 (en) * 2012-10-29 2015-12-15 Skyworks Solutions, Inc. Circuits and methods for reducing insertion loss effects associated with radio-frequency power couplers
US8897734B2 (en) * 2012-10-30 2014-11-25 Ericsson Modems Sa Standing wave ratio meter for integrated antenna tuner
US10069209B2 (en) 2012-11-06 2018-09-04 Pulse Finland Oy Capacitively coupled antenna apparatus and methods
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US9374113B2 (en) 2012-12-21 2016-06-21 Blackberry Limited Method and apparatus for adjusting the timing of radio antenna tuning
US10404295B2 (en) 2012-12-21 2019-09-03 Blackberry Limited Method and apparatus for adjusting the timing of radio antenna tuning
US9490963B2 (en) 2013-02-04 2016-11-08 Kumu Networks, Inc. Signal cancellation using feedforward and feedback paths
US9093752B2 (en) * 2013-03-08 2015-07-28 Apple Inc. Electronic device with capacitively loaded antenna
US10079428B2 (en) 2013-03-11 2018-09-18 Pulse Finland Oy Coupled antenna structure and methods
US9647338B2 (en) 2013-03-11 2017-05-09 Pulse Finland Oy Coupled antenna structure and methods
US20140273887A1 (en) * 2013-03-15 2014-09-18 Motorola Mobility Llc Tunable ila and dila matching for simultaneous high and low band operation
CN105359408B (en) * 2013-03-15 2018-10-02 多康公司 Logafier with universal demodulation ability
US8963644B2 (en) * 2013-03-25 2015-02-24 Mitsubishi Electric Research Laboratories, Inc. Reconfigurable output matching network for multiple power mode power amplifiers
WO2014155862A1 (en) * 2013-03-29 2014-10-02 株式会社村田製作所 Variable-capacitance element and communication device
WO2014169954A1 (en) 2013-04-17 2014-10-23 Epcos Ag Circuit arrangement
WO2014176401A1 (en) 2013-04-24 2014-10-30 Purdue Research Foundation Band-reconfigurable and load-adaptive power amplifier
US9154094B2 (en) 2013-05-21 2015-10-06 Telefonaktiebolaget L M Ericsson (Publ) Efficient power amplification over large operating average power range
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9660607B2 (en) * 2013-05-31 2017-05-23 Maury Microwave, Inc. Solid state impedance tuners
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US20140375514A1 (en) * 2013-06-19 2014-12-25 Infineon Technologies Ag Antenna Tuning Circuit, Method for Tuning an Antenna, Antenna Arrangement and Method for Operating the Same
US9634383B2 (en) 2013-06-26 2017-04-25 Pulse Finland Oy Galvanically separated non-interacting antenna sector apparatus and methods
EP2830089B1 (en) * 2013-07-25 2017-07-12 Ampleon Netherlands B.V. RF power device
CN105556860B (en) 2013-08-09 2018-04-03 库姆网络公司 The system and method eliminated for non-linear, digital self-interference
WO2015021463A2 (en) 2013-08-09 2015-02-12 Kumu Networks, Inc. Systems and methods for frequency independent analog selfinterference cancellation
US9698860B2 (en) 2013-08-09 2017-07-04 Kumu Networks, Inc. Systems and methods for self-interference canceller tuning
US9054795B2 (en) 2013-08-14 2015-06-09 Kumu Networks, Inc. Systems and methods for phase noise mitigation
US9647631B2 (en) 2013-08-15 2017-05-09 Peregrine Semiconductor Corporation Tunable impedance matching network
EP3039798A4 (en) 2013-08-29 2017-05-03 Kumu Networks, Inc. Full-duplex relays
US10673519B2 (en) 2013-08-29 2020-06-02 Kuma Networks, Inc. Optically enhanced self-interference cancellation
FR3010263B1 (en) * 2013-09-04 2017-12-08 Commissariat Energie Atomique AUTOMATIC IMPEDANCE ADAPTATION METHOD AND CORRESPONDING TRANSMISSION CHAIN
US9520983B2 (en) 2013-09-11 2016-12-13 Kumu Networks, Inc. Systems for delay-matched analog self-interference cancellation
JP6341461B2 (en) * 2013-09-11 2018-06-13 株式会社村田製作所 Power amplifier
WO2015037693A1 (en) * 2013-09-13 2015-03-19 株式会社村田製作所 Non-reciprocal circuit element
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9425753B2 (en) 2013-11-07 2016-08-23 Qualcomm Incorporated Low-noise amplifier matching
US9680212B2 (en) 2013-11-20 2017-06-13 Pulse Finland Oy Capacitive grounding methods and apparatus for mobile devices
US9590308B2 (en) 2013-12-03 2017-03-07 Pulse Electronics, Inc. Reduced surface area antenna apparatus and mobile communications devices incorporating the same
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US10230422B2 (en) 2013-12-12 2019-03-12 Kumu Networks, Inc. Systems and methods for modified frequency-isolation self-interference cancellation
US9774405B2 (en) 2013-12-12 2017-09-26 Kumu Networks, Inc. Systems and methods for frequency-isolated self-interference cancellation
US9350081B2 (en) 2014-01-14 2016-05-24 Pulse Finland Oy Switchable multi-radiator high band antenna apparatus
US9712312B2 (en) 2014-03-26 2017-07-18 Kumu Networks, Inc. Systems and methods for near band interference cancellation
JP6305570B2 (en) 2014-06-16 2018-04-04 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Antenna adjustment method and related apparatus based on variable capacitor
US9634700B2 (en) 2014-08-11 2017-04-25 Syntropy Systems, Llc Distributed noise shaping apparatus
US9391656B2 (en) 2014-08-11 2016-07-12 Syntropy Systems, Llc Distributed noise shaping apparatus
DE102014111901B4 (en) 2014-08-20 2019-05-23 Snaptrack, Inc. duplexer
DE102014111909B3 (en) 2014-08-20 2016-02-04 Epcos Ag Tunable HF filter with series resonators
US9948002B2 (en) 2014-08-26 2018-04-17 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9973228B2 (en) 2014-08-26 2018-05-15 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9722308B2 (en) 2014-08-28 2017-08-01 Pulse Finland Oy Low passive intermodulation distributed antenna system for multiple-input multiple-output systems and methods of use
WO2016033756A1 (en) 2014-09-03 2016-03-10 华为技术有限公司 Composite right/left-handed transmission line antenna
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9521023B2 (en) * 2014-10-17 2016-12-13 Kumu Networks, Inc. Systems for analog phase shifting
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9712313B2 (en) 2014-11-03 2017-07-18 Kumu Networks, Inc. Systems for multi-peak-filter-based analog self-interference cancellation
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9438319B2 (en) 2014-12-16 2016-09-06 Blackberry Limited Method and apparatus for antenna selection
US9673854B2 (en) 2015-01-29 2017-06-06 Kumu Networks, Inc. Method for pilot signal based self-inteference cancellation tuning
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9793599B2 (en) 2015-03-06 2017-10-17 Apple Inc. Portable electronic device with antenna
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
CN104882277B (en) * 2015-05-04 2017-12-29 北京大学 The method of the controllable electric capacity of layered composite structure and piezoelectric stress regulation and control dielectric
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
KR102324960B1 (en) 2015-06-25 2021-11-12 삼성전자 주식회사 Communication device and electronic device including the same
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10439290B2 (en) 2015-07-14 2019-10-08 At&T Intellectual Property I, L.P. Apparatus and methods for wireless communications
US10511346B2 (en) 2015-07-14 2019-12-17 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on an uninsulated conductor
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10790593B2 (en) 2015-07-14 2020-09-29 At&T Intellectual Property I, L.P. Method and apparatus including an antenna comprising a lens and a body coupled to a feedline having a structure that reduces reflections of electromagnetic waves
US10129057B2 (en) 2015-07-14 2018-11-13 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on a cable
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9906260B2 (en) 2015-07-30 2018-02-27 Pulse Finland Oy Sensor-based closed loop antenna swapping apparatus and methods
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10566689B2 (en) * 2015-09-25 2020-02-18 Apple Inc. Antenna system
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US9634823B1 (en) 2015-10-13 2017-04-25 Kumu Networks, Inc. Systems for integrated self-interference cancellation
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US9800275B2 (en) 2015-12-16 2017-10-24 Kumu Networks, Inc. Systems and methods for out-of band-interference mitigation
US9819325B2 (en) 2015-12-16 2017-11-14 Kumu Networks, Inc. Time delay filters
US10666305B2 (en) 2015-12-16 2020-05-26 Kumu Networks, Inc. Systems and methods for linearized-mixer out-of-band interference mitigation
US9742593B2 (en) 2015-12-16 2017-08-22 Kumu Networks, Inc. Systems and methods for adaptively-tuned digital self-interference cancellation
WO2017115579A1 (en) * 2015-12-28 2017-07-06 株式会社村田製作所 Multiplexer
JP6430974B2 (en) * 2016-01-27 2018-11-28 太陽誘電株式会社 Resonant circuit and filter circuit
US9979374B2 (en) 2016-04-25 2018-05-22 Kumu Networks, Inc. Integrated delay modules
US10454444B2 (en) 2016-04-25 2019-10-22 Kumu Networks, Inc. Integrated delay modules
CN109417378B (en) * 2016-06-14 2023-03-14 株式会社村田制作所 Multi-channel modulator, high-frequency front-end circuit, and communication device
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10044087B2 (en) 2016-10-14 2018-08-07 Microelectronics Technology, Inc. Switchable radiators and operating method for the same
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10382976B2 (en) * 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
DE102017100264A1 (en) * 2017-01-09 2018-07-12 Endress + Hauser Wetzer Gmbh + Co. Kg Apparatus and method for in situ calibration of a thermometer
US10069464B1 (en) * 2017-02-21 2018-09-04 The Boeing Company 3D low flux, high-powered MMIC amplifiers
US10608311B2 (en) 2017-02-23 2020-03-31 Intel Corporation Cable assembly comprising a single wire coupled to a signal launcher and housed in a first cover portion and in a second ferrite cover portion
US10847859B2 (en) * 2017-02-23 2020-11-24 Intel Corporation Single wire communication arrangement
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
JP2018157242A (en) * 2017-03-15 2018-10-04 株式会社デンソーウェーブ Antenna device
JP2020512770A (en) 2017-03-27 2020-04-23 クム ネットワークス, インコーポレイテッドKumu Networks, Inc. Adjustable out-of-band interference mitigation system and method
WO2018183384A1 (en) 2017-03-27 2018-10-04 Kumu Networks, Inc. Systems and methods for intelligently-tunded digital self-interference cancellation
KR102145700B1 (en) 2017-03-27 2020-08-19 쿠무 네트웍스, 아이엔씨. Improved Linearity Mixer
US10366035B2 (en) * 2017-03-29 2019-07-30 Intel Corporation Single wire communication board-to-board interconnect
CN111133682B (en) * 2017-05-05 2022-06-10 意法半导体有限公司 Method for controlling the matching of an antenna to a transmission path and corresponding device
US10071605B1 (en) * 2017-07-20 2018-09-11 Keycore Technology Corp. Specific multi-band antenna impedance matching circuit and tire-pressure monitoring device using same
US10200076B1 (en) 2017-08-01 2019-02-05 Kumu Networks, Inc. Analog self-interference cancellation systems for CMTS
US10332687B2 (en) 2017-10-23 2019-06-25 Blackberry Limited Tunable coplanar capacitor with vertical tuning and lateral RF path and methods for manufacturing thereof
US10497774B2 (en) 2017-10-23 2019-12-03 Blackberry Limited Small-gap coplanar tunable capacitors and methods for manufacturing thereof
US10141971B1 (en) 2017-11-17 2018-11-27 Silicon Laboratories Inc. Transceiver circuit having a single impedance matching network
JP6835358B2 (en) 2017-11-24 2021-02-24 森田テック 株式会社 Antenna device, antenna system, and measurement system
JP7096346B2 (en) 2018-02-27 2022-07-05 クム ネットワークス,インコーポレイテッド Configurable hybrid self-interference cancellation system and method
US10735045B2 (en) 2018-04-23 2020-08-04 Qorvo Us, Inc. Diplexer circuit
CN110556925B (en) 2018-05-31 2022-12-27 华为技术有限公司 Wireless charger and control method
JP7498177B2 (en) * 2018-12-26 2024-06-11 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション System and method for controlling a voltage adjustable stacked capacitor - Patents.com
US11245432B2 (en) * 2019-03-06 2022-02-08 Skyworks Solutions, Inc. Radio frequency device with integrated antenna tuner and multiplexer
US11621269B2 (en) * 2019-03-11 2023-04-04 Globalfoundries U.S. Inc. Multi-level ferroelectric memory cell
US10868661B2 (en) 2019-03-14 2020-12-15 Kumu Networks, Inc. Systems and methods for efficiently-transformed digital self-interference cancellation
WO2020198349A1 (en) * 2019-03-25 2020-10-01 The Texas A&M University System Millimeter-wave fully-integrated full duplexer modules with and without internal low noise amplifier and power amplifier for 5g applications
CN110113858B (en) * 2019-05-29 2023-04-18 中国科学院近代物理研究所 Minimum Q value self-excitation tuning system and tuning method
CN110224707A (en) * 2019-05-31 2019-09-10 惠州Tcl移动通信有限公司 A kind of suppression circuit and intelligent terminal of band14 signal
CN112151954B (en) * 2019-06-26 2023-07-28 Oppo广东移动通信有限公司 Housing assembly, electronic device, and method for adjusting dielectric constant of housing assembly
CN112151944A (en) * 2019-06-28 2020-12-29 Oppo广东移动通信有限公司 Antenna module, electronic equipment and antenna frequency band adjusting method of electronic equipment
US10658999B1 (en) 2019-07-09 2020-05-19 Silicon Laboratories Inc. On-chip harmonic filtering for radio frequency (RF) communications
US11349448B2 (en) 2019-09-27 2022-05-31 Silicon Laboratories Inc. Harmonic filtering for high power radio frequency (RF) communications
EP4052091A4 (en) * 2019-10-29 2023-11-22 Psiquantum, Corp. Method and system for formation of stabilized tetragonal barium titanate
JP2021072563A (en) * 2019-10-31 2021-05-06 株式会社村田製作所 Multiplexer
WO2021100246A1 (en) * 2019-11-20 2021-05-27 株式会社村田製作所 High-frequency module and communication device
US11296670B2 (en) * 2020-01-23 2022-04-05 Qualcomm Incorporated Impedance matching transceiver
US20230036705A1 (en) * 2020-01-31 2023-02-02 The Texas A&M University System An Ultra-Wide Bandwidth Ultra-Isolation DC-100 Gigahertz Front-End Module with Integrated Duplexer, Low Noise Amplifier, and Power Amplifier for Wireless Communication Applications
CN111326835B (en) * 2020-02-28 2021-03-05 西南电子技术研究所(中国电子科技集团公司第十研究所) Three-dimensional stacked SIW duplexer
JP7234177B2 (en) 2020-03-17 2023-03-07 株式会社東芝 semiconductor equipment
US11258412B2 (en) 2020-05-28 2022-02-22 Eagle Technology, Llc Radio frequency (RF) device having tunable RF power amplifier and associated methods
JP2022002364A (en) * 2020-06-19 2022-01-06 株式会社村田製作所 High frequency module and communication device
US11631938B2 (en) 2020-10-13 2023-04-18 Eagle Technology, Llc Multi-band tunable strip antenna with dynamic bandwidth selection
CN112964936B (en) * 2021-01-30 2023-03-21 天津理工大学 Miniature antenna sensor sensitive to dielectric constant of surrounding environment
CN113271078B (en) * 2021-05-19 2023-10-24 上海鸿晔电子科技股份有限公司 Manufacturing method of filter
US11699990B2 (en) 2021-07-19 2023-07-11 Txc Corporation Oscillating device
TWI831374B (en) * 2022-09-15 2024-02-01 特崴光波導股份有限公司 Multi-band filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525630B1 (en) * 1999-11-04 2003-02-25 Paratek Microwave, Inc. Microstrip tunable filters tuned by dielectric varactors
US6727535B1 (en) * 1998-11-09 2004-04-27 Paratek Microwave, Inc. Ferroelectric varactor with built-in DC blocks

Family Cites Families (180)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US608659A (en) * 1898-08-09 Folding pedestal
US3239838A (en) * 1963-05-29 1966-03-08 Kenneth S Kelleher Dipole antenna mounted in open-faced resonant cavity
US3413543A (en) 1965-04-23 1968-11-26 Gen Motors Corp Compensated ferroelectric hysteresiscope employing ground reference
US3680135A (en) * 1968-02-05 1972-07-25 Joseph M Boyer Tunable radio antenna
US3569795A (en) * 1969-05-29 1971-03-09 Us Army Voltage-variable, ferroelectric capacitor
US3673803A (en) 1969-10-06 1972-07-04 Rohr Corp Method and apparatus for suppressing the noise of a fan-jet engine
US3678305A (en) 1970-02-06 1972-07-18 Aviat Supply Uk Acoustic surface wave devices
US3676803A (en) 1970-05-01 1972-07-11 Communications Satellite Corp Electronically tunable matching circuit for circulators
US3737814A (en) * 1971-10-06 1973-06-05 Hughes Aircraft Co Crystal filter circuit with sharply defined passband edge
US3739299A (en) * 1972-04-20 1973-06-12 Zenith Radio Corp Adjustable piezoelectric tunable oscillator for acoustic signal generating system
US3836874A (en) 1973-06-25 1974-09-17 Hitachi Ltd Lumped element circulator
FR2239813B1 (en) 1973-08-03 1978-04-21 Commissariat Energie Atomique
US4122400A (en) 1976-11-08 1978-10-24 Rca Corporation Amplifier protection circuit
FR2434495A1 (en) * 1978-07-10 1980-03-21 Lignes Telegraph Telephon BROADBAND POWER CIRCULATOR FOR VERY HIGH AND ULTRA HIGH FREQUENCY WAVES
FR2501434B1 (en) 1981-03-03 1985-10-11 Cepe CONTROLLED FREQUENCY OSCILLATOR COMPRISING A PIEZOELECTRIC ELEMENT AND HAVING AN EXTENDED FREQUENCY VARIATION RANGE
US4494081A (en) * 1982-05-24 1985-01-15 Rca Corporation Variable frequency U. H. F. local oscillator for a television receiver
US4475108A (en) 1982-08-04 1984-10-02 Allied Corporation Electronically tunable microstrip antenna
US4525720A (en) * 1982-10-15 1985-06-25 The United States Of America As Represented By The Secretary Of The Navy Integrated spiral antenna and printed circuit balun
JPH0770918B2 (en) * 1984-06-05 1995-07-31 ソニー株式会社 Tuned oscillator
EP0175988A2 (en) 1984-09-24 1986-04-02 Allied Corporation Process of manufacturing capacitive devices and capacitive devices manufactured by the process
GB2178616B (en) 1985-07-26 1989-04-26 Marconi Co Ltd Impedance matching arrangement
US4746925A (en) * 1985-07-31 1988-05-24 Toyota Jidosha Kabushiki Kaisha Shielded dipole glass antenna with coaxial feed
US4604593A (en) 1985-08-20 1986-08-05 The United States Of America As Represented By The Secretary Of The Air Force π-section digital phase shifter apparatus
US4835540A (en) * 1985-09-18 1989-05-30 Mitsubishi Denki Kabushiki Kaisha Microstrip antenna
US4792939A (en) * 1986-01-24 1988-12-20 Hitachi Denshi Kabushiki Kaisha Duplex radio communication transceiver
US4737797A (en) * 1986-06-26 1988-04-12 Motorola, Inc. Microstrip balun-antenna apparatus
US4736169A (en) * 1986-09-29 1988-04-05 Hughes Aircraft Company Voltage controlled oscillator with frequency sensitivity control
JPS63128618A (en) * 1986-11-18 1988-06-01 日本電気株式会社 Variable capacitor
US4975604A (en) 1987-05-29 1990-12-04 Triquint Semiconductor, Inc. Automatic return-loss optimization of a variable fet attenuator
JPS63300655A (en) 1987-05-29 1988-12-07 Canon Inc Dialing equipment
US4847626A (en) * 1987-07-01 1989-07-11 Motorola, Inc. Microstrip balun-antenna
US4835499A (en) 1988-03-09 1989-05-30 Motorola, Inc. Voltage tunable bandpass filter
US6026311A (en) * 1993-05-28 2000-02-15 Superconductor Technologies, Inc. High temperature superconducting structures and methods for high Q, reduced intermodulation resonators and filters
US5231407A (en) * 1989-04-18 1993-07-27 Novatel Communications, Ltd. Duplexing antenna for portable radio transceiver
FR2653430B1 (en) * 1989-10-23 1991-12-20 Pf Medicament NEW DIHYDRO-1,2 OXO-2 QUINOXALINE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION.
US5045821A (en) 1989-11-03 1991-09-03 Motorola, Inc. Broadband multi-phase hybrid
JPH0394841U (en) 1990-01-18 1991-09-27
US5160870A (en) * 1990-06-25 1992-11-03 Carson Paul L Ultrasonic image sensing array and method
GB2247125B (en) * 1990-08-16 1995-01-11 Technophone Ltd Tunable bandpass filter
CN1019590B (en) * 1990-09-03 1992-12-23 张学明 High-efficiency hydrogen and oxygen production device by water electrolysis
US5164358A (en) 1990-10-22 1992-11-17 Westinghouse Electric Corp. Superconducting filter with reduced electromagnetic leakage
DE4036868A1 (en) 1990-11-19 1992-05-21 Windmoeller & Hoelscher Thickness meter for blown film tubing - is mounted on ring round tubing and above extruder nozzle, and is rotated independently of speed of rotating or reversing extruder head
US5173709A (en) 1991-06-03 1992-12-22 Motorola, Inc. Electronic direction finder
US5392018A (en) 1991-06-27 1995-02-21 Applied Materials, Inc. Electronically tuned matching networks using adjustable inductance elements and resonant tank circuits
US5216392A (en) 1991-07-05 1993-06-01 Motorola, Inc. Automatically controlled varactor tuned matching networks for a crystal filter
DE4129353A1 (en) 1991-09-04 1993-06-17 Wandel & Goltermann CALIBRATION LINE TO REALIZE ADJUSTABLE GROUP RUNNING TIMES
FR2681994B1 (en) * 1991-09-26 1994-09-30 Alcatel Telspace DIGITAL TRANSMISSION DEVICE COMPRISING A RECEIVER WITH CONSISTENT DEMODULATION DIRECTLY MADE IN MICROWAVE.
JPH0590827A (en) * 1991-09-27 1993-04-09 Pioneer Electron Corp Variable tuned microstrip antenna
US5293408A (en) * 1991-10-14 1994-03-08 Matsushita Electric Industrial Co., Ltd. FSK data receiving system
JP3045419B2 (en) * 1991-11-08 2000-05-29 ローム株式会社 Dielectric film capacitors
US5166857A (en) 1991-12-24 1992-11-24 Motorola Inc. Electronically tunable capacitor switch
JPH05182857A (en) * 1991-12-27 1993-07-23 Rohm Co Ltd Thin film capacitor
KR950003713B1 (en) 1992-05-29 1995-04-17 삼성전자 주식회사 Band pass filter
US5212463A (en) 1992-07-22 1993-05-18 The United States Of America As Represented By The Secretary Of The Army Planar ferro-electric phase shifter
JP3407204B2 (en) * 1992-07-23 2003-05-19 オリンパス光学工業株式会社 Ferroelectric integrated circuit and method of manufacturing the same
US5388021A (en) * 1992-09-18 1995-02-07 The United States Of America As Represented By The Secretary Of The Navy Voltage surge suppression power circuits
KR960700533A (en) 1992-12-01 1996-01-20 스티븐 에이취 앤드레이드 Tunable MICROWAVE DEVICES INCORPORATING HIFH RWMPWEruew SUPERCONDUCTING AND FERROELECTRIC FILMS
US5472935A (en) 1992-12-01 1995-12-05 Yandrofski; Robert M. Tuneable microwave devices incorporating high temperature superconducting and ferroelectric films
US5307033A (en) 1993-01-19 1994-04-26 The United States Of America As Represented By The Secretary Of The Army Planar digital ferroelectric phase shifter
US5450092A (en) 1993-04-26 1995-09-12 Das; Satyendranath Ferroelectric scanning RF antenna
US5325099A (en) * 1993-04-28 1994-06-28 Itt Corporation Modular solid-state radar transmitter apparatus and method for producing variable waveforms
DE69424968T2 (en) 1993-04-28 2000-10-19 Casio Computer Co., Ltd. Antenna device for generating desired radiation patterns without changing the antenna structure
US5451915A (en) * 1993-05-26 1995-09-19 Hittite Microwave Corporation Active filter resonator and system and negative resistance generator usable therein
US5312790A (en) 1993-06-09 1994-05-17 The United States Of America As Represented By The Secretary Of The Army Ceramic ferroelectric material
JPH0746064A (en) 1993-07-29 1995-02-14 Nec Corp Load matching circuit variable high-efficiency microwave amplifier
JPH0758506A (en) 1993-08-09 1995-03-03 Oki Electric Ind Co Ltd Lc type dielectric filter and antenna multicoupler using it
US5583524A (en) 1993-08-10 1996-12-10 Hughes Aircraft Company Continuous transverse stub element antenna arrays using voltage-variable dielectric material
US5564086A (en) 1993-11-29 1996-10-08 Motorola, Inc. Method and apparatus for enhancing an operating characteristic of a radio transmitter
US5459123A (en) * 1994-04-08 1995-10-17 Das; Satyendranath Ferroelectric electronically tunable filters
JP3316713B2 (en) 1994-04-26 2002-08-19 株式会社村田製作所 Antenna duplexer
GB2289989B (en) 1994-05-25 1999-01-06 Nokia Mobile Phones Ltd Adaptive antenna matching
US5557286A (en) 1994-06-15 1996-09-17 The Penn State Research Foundation Voltage tunable dielectric ceramics which exhibit low dielectric constants and applications thereof to antenna structure
US5502422A (en) * 1994-08-12 1996-03-26 Motorola, Inc. Filter with an adjustable shunt zero
US5496795A (en) 1994-08-16 1996-03-05 Das; Satyendranath High TC superconducting monolithic ferroelectric junable b and pass filter
JPH0879069A (en) * 1994-09-08 1996-03-22 Mitsubishi Electric Corp Vco circuit and pll circuit
US5649306A (en) * 1994-09-16 1997-07-15 Motorola, Inc. Portable radio housing incorporating diversity antenna structure
US5495215A (en) * 1994-09-20 1996-02-27 Motorola, Inc. Coaxial resonator filter with variable reactance circuitry for adjusting bandwidth
US5496796A (en) * 1994-09-20 1996-03-05 Das; Satyendranath High Tc superconducting band reject ferroelectric filter (TFF)
US5561407A (en) 1995-01-31 1996-10-01 The United States Of America As Represented By The Secretary Of The Army Single substrate planar digital ferroelectric phase shifter
US5617104A (en) 1995-03-28 1997-04-01 Das; Satyendranath High Tc superconducting tunable ferroelectric transmitting system
US5479139A (en) 1995-04-19 1995-12-26 The United States Of America As Represented By The Secretary Of The Army System and method for calibrating a ferroelectric phase shifter
JP3568621B2 (en) * 1995-04-20 2004-09-22 株式会社日立製作所 Map display device
US5701595A (en) * 1995-05-04 1997-12-23 Nippondenso Co., Ltd. Half duplex RF transceiver having low transmit path signal loss
US5965494A (en) * 1995-05-25 1999-10-12 Kabushiki Kaisha Toshiba Tunable resonance device controlled by separate permittivity adjusting electrodes
US6384785B1 (en) * 1995-05-29 2002-05-07 Nippon Telegraph And Telephone Corporation Heterogeneous multi-lamination microstrip antenna
US5703020A (en) * 1995-05-30 1997-12-30 Das; Satyendranath High Tc superconducting ferroelectric MMIC phase shifters
US5673001A (en) * 1995-06-07 1997-09-30 Motorola, Inc. Method and apparatus for amplifying a signal
US5577025A (en) 1995-06-30 1996-11-19 Qualcomm Incorporated Signal acquisition in a multi-user communication system using multiple walsh channels
US5717772A (en) 1995-08-07 1998-02-10 Motorola, Inc. Method and apparatus for suppressing acoustic feedback in an audio system
US6104934A (en) * 1995-08-09 2000-08-15 Spectral Solutions, Inc. Cryoelectronic receiver front end
US5729239A (en) 1995-08-31 1998-03-17 The United States Of America As Represented By The Secretary Of The Navy Voltage controlled ferroelectric lens phased array
US5652599A (en) * 1995-09-11 1997-07-29 Qualcomm Incorporated Dual-band antenna system
US5907665A (en) * 1995-10-11 1999-05-25 Hewlett-Packard Company Method and apparatus for transforming image data
US5710984A (en) * 1995-10-20 1998-01-20 Sharp Microelectronics Technology, Inc. Radio transceiver with impedance matched test port
US5640042A (en) 1995-12-14 1997-06-17 The United States Of America As Represented By The Secretary Of The Army Thin film ferroelectric varactor
US5874926A (en) 1996-03-11 1999-02-23 Murata Mfg Co. Ltd Matching circuit and antenna apparatus
US6008659A (en) * 1996-03-15 1999-12-28 Ramtron International Corporation Method of measuring retention performance and imprint degradation of ferroelectric films
US5673188A (en) * 1996-03-25 1997-09-30 Hughes Electronic Zero voltage switching series resonant half bridge VHF inverter
US5830591A (en) 1996-04-29 1998-11-03 Sengupta; Louise Multilayered ferroelectric composite waveguides
UA41477C2 (en) * 1996-05-21 2001-09-17 Сіменс Акцієнгезельшафт Multilayer capacitor with thin-layer structure and method of its production
DE19620932C1 (en) * 1996-05-24 1997-08-21 Bosch Gmbh Robert Electrically tuned planar filter with ferroelectric and antiferroelectric elements
US6216020B1 (en) * 1996-05-31 2001-04-10 The Regents Of The University Of California Localized electrical fine tuning of passive microwave and radio frequency devices
JP3296189B2 (en) * 1996-06-03 2002-06-24 三菱電機株式会社 Antenna device
JPH1013181A (en) 1996-06-21 1998-01-16 Nec Corp System for automatic matching if filter
US6097263A (en) * 1996-06-28 2000-08-01 Robert M. Yandrofski Method and apparatus for electrically tuning a resonating device
US5764190A (en) * 1996-07-15 1998-06-09 The Hong Kong University Of Science & Technology Capacitively loaded PIFA
EP0837504A3 (en) * 1996-08-20 1999-01-07 Ramtron International Corporation Partially or completely encapsulated ferroelectric device
US5864932A (en) * 1996-08-20 1999-02-02 Ramtron International Corporation Partially or completely encapsulated top electrode of a ferroelectric capacitor
SG54559A1 (en) * 1996-09-13 1998-11-16 Hitachi Ltd Power transmission system ic card and information communication system using ic card
US5870670A (en) * 1996-09-23 1999-02-09 Motorola, Inc. Integrated image reject mixer
US5892486A (en) * 1996-10-11 1999-04-06 Channel Master Llc Broad band dipole element and array
JPH10209714A (en) 1996-11-19 1998-08-07 Sharp Corp Voltage-controlled pass band variable filter and high-frequency circuit module using the same
US5777524A (en) 1997-07-29 1998-07-07 Motorola, Inc. Temperature compensation circuit for a crystal oscillator and associated circuitry
US5986515A (en) 1997-01-14 1999-11-16 Citizen Watch Co., Ltd. Temperature compensation crystal oscillator
US5889852A (en) 1997-02-10 1999-03-30 Nokia Mobile Phones Limited Photo screen scroll graphic user interface
US5908811A (en) * 1997-03-03 1999-06-01 Das; Satyendranath High Tc superconducting ferroelectric tunable filters
JP3684285B2 (en) 1997-03-10 2005-08-17 株式会社日立製作所 Tunable slot antenna
US5834975A (en) 1997-03-12 1998-11-10 Rockwell Science Center, Llc Integrated variable gain power amplifier and method
JPH10327003A (en) 1997-03-21 1998-12-08 Murata Mfg Co Ltd Irreversible circuit element and composite electronic component
JPH10276112A (en) * 1997-03-28 1998-10-13 Sanyo Electric Co Ltd Radio receiver
US5880921A (en) 1997-04-28 1999-03-09 Rockwell Science Center, Llc Monolithically integrated switched capacitor bank using micro electro mechanical system (MEMS) technology
US6658239B1 (en) * 1997-05-09 2003-12-02 Micrel Incorporated Fully integrated ALL-CMOS AM transmitter with automatic antenna tuning
EP0880108A1 (en) 1997-05-23 1998-11-25 Koninklijke Philips Electronics N.V. Image processing method including a chaining step and medical imaging apparatus including means for carrying out this method
US6094588A (en) * 1997-05-23 2000-07-25 Northrop Grumman Corporation Rapidly tunable, high-temperature superconductor, microwave filter apparatus and method and radar receiver employing such filter in a simplified configuration with full dynamic range
JPH1146102A (en) 1997-05-30 1999-02-16 Murata Mfg Co Ltd Dielectric filter, dielectric duplexer and communication equipment
US5973567A (en) 1997-06-16 1999-10-26 Hughes Electronics Corporation Tunable impedance matching network for a mic power amplifier module
JPH11111566A (en) 1997-10-07 1999-04-23 Sharp Corp Impedance matching box
US6052036A (en) 1997-10-31 2000-04-18 Telefonaktiebolaget L M Ericsson Crystal oscillator with AGC and on-chip tuning
US6054908A (en) * 1997-12-12 2000-04-25 Trw Inc. Variable bandwidth filter
WO1999050932A1 (en) * 1998-03-31 1999-10-07 Matsushita Electric Industrial Co., Ltd. Antenna unit and digital television receiver
US5973568A (en) 1998-06-01 1999-10-26 Motorola Inc. Power amplifier output module for dual-mode digital systems
FI106894B (en) * 1998-06-02 2001-04-30 Nokia Mobile Phones Ltd resonator structures
JP2000036702A (en) 1998-07-21 2000-02-02 Hitachi Ltd Radio terminal
US6600456B2 (en) * 1998-09-21 2003-07-29 Tantivy Communications, Inc. Adaptive antenna for use in wireless communication systems
US6100843A (en) * 1998-09-21 2000-08-08 Tantivy Communications Inc. Adaptive antenna for use in same frequency networks
US6281534B1 (en) * 1998-10-13 2001-08-28 Symetrix Corporation Low imprint ferroelectric material for long retention memory and method of making the same
ATE244459T1 (en) * 1998-10-16 2003-07-15 Paratek Microwave Inc VOLTAGE CONTROLLED VARACTORS AND TUNABLE DEVICES COMPRISING SUCH VARACTORS
KR20010089305A (en) * 1998-10-16 2001-09-29 추후기재 Voltage tunable laminated dielectric materials for microwave applications
EP1650865B1 (en) * 1998-10-27 2009-10-21 Murata Manufacturing Co., Ltd. Composite high frequency component and mobile communication device including the same
EA003062B1 (en) 1998-11-09 2002-12-26 Паратек Майкровэйв, Инк. Ferroelectric varactor with built-in blocks
US6181777B1 (en) * 1998-11-19 2001-01-30 Excelsus Technologies, Inc. Impedance blocking filter circuit
AU1843400A (en) 1998-12-11 2000-06-26 Paratek Microwave, Inc. Electrically tunable filters with dielectric varactors
US6272336B1 (en) * 1998-12-30 2001-08-07 Samsung Electronics Co., Ltd. Traffic-weighted closed loop power detection system for use with an RF power amplifier and method of operation
JP3283493B2 (en) * 1999-02-02 2002-05-20 東洋通信機株式会社 High stability piezoelectric oscillator
SE521870C2 (en) * 1999-02-24 2003-12-16 Ericsson Telefon Ab L M Ferroelectric modulator
US6721293B1 (en) * 1999-03-10 2004-04-13 Nokia Corporation Unsupervised adaptive chip separation filter for CDMA terminal
US6347237B1 (en) * 1999-03-16 2002-02-12 Superconductor Technologies, Inc. High temperature superconductor tunable filter
US6160524A (en) 1999-03-17 2000-12-12 The United States Of America As Represented By The Secretary Of The Army Apparatus and method for reducing the temperature sensitivity of ferroelectric microwave devices
DE19915247A1 (en) 1999-04-03 2000-10-05 Philips Corp Intellectual Pty Voltage dependent thin film capacitor
SE513809C2 (en) 1999-04-13 2000-11-06 Ericsson Telefon Ab L M Tunable microwave appliances
US6101102A (en) * 1999-04-28 2000-08-08 Raytheon Company Fixed frequency regulation circuit employing a voltage variable dielectric capacitor
US6359444B1 (en) * 1999-05-28 2002-03-19 University Of Kentucky Research Foundation Remote resonant-circuit analyte sensing apparatus with sensing structure and associated method of sensing
JP3475858B2 (en) * 1999-06-03 2003-12-10 株式会社村田製作所 Antenna duplexer and communication device
WO2000079648A1 (en) 1999-06-17 2000-12-28 The Penn State Research Foundation Tunable dual-band ferroelectric antenna
SE516235C2 (en) * 1999-06-18 2001-12-03 Ericsson Telefon Ab L M Tunable coil antenna
CN1319277A (en) * 1999-07-29 2001-10-24 Tdk株式会社 Isolator with built-in power amplifier
US6842086B1 (en) * 1999-08-20 2005-01-11 Eagle Comtronics, Inc. Two-pole notch filter
KR100344790B1 (en) * 1999-10-07 2002-07-19 엘지전자주식회사 Super-high frequency tunable filter using micromechanical systems
US6987966B1 (en) * 1999-10-21 2006-01-17 Broadcom Corporation Adaptive radio transceiver with polyphase calibration
US6362785B1 (en) * 1999-10-29 2002-03-26 The United States Of America As Repesented By The Secretary Of The Army Compact cylindrical microstrip antenna
US6559737B1 (en) * 1999-11-24 2003-05-06 The Regents Of The University Of California Phase shifters using transmission lines periodically loaded with barium strontium titanate (BST) capacitors
JP3818624B2 (en) * 2000-02-23 2006-09-06 株式会社ルネサステクノロジ Wireless communication system
JP3570375B2 (en) * 2000-04-19 2004-09-29 株式会社村田製作所 Frequency variable filter, antenna duplexer and communication device
US6292143B1 (en) 2000-05-04 2001-09-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multi-mode broadband patch antenna
JP2001338839A (en) 2000-05-29 2001-12-07 Kyocera Corp Variable capacitance capacitor
JP3363870B2 (en) * 2000-05-29 2003-01-08 沖電気工業株式会社 Surface acoustic wave duplexer
US6525691B2 (en) * 2000-06-28 2003-02-25 The Penn State Research Foundation Miniaturized conformal wideband fractal antennas on high dielectric substrates and chiral layers
AU2001276986A1 (en) * 2000-07-20 2002-02-05 Paratek Microwave, Inc. Tunable microwave devices with auto-adjusting matching circuit
AU2001283217A1 (en) * 2000-08-08 2002-02-18 Advanced Power Technology, Inc. Power mos device with asymmetrical channel structure
US6285337B1 (en) * 2000-09-05 2001-09-04 Rockwell Collins Ferroelectric based method and system for electronically steering an antenna
JP2002135828A (en) * 2000-10-24 2002-05-10 Nec Corp Mobile telephone set, mobile telephone system and base station to be used therefor
US6344823B1 (en) * 2000-11-21 2002-02-05 Accton Technology Corporation Structure of an antenna and method for manufacturing the same
US6686817B2 (en) * 2000-12-12 2004-02-03 Paratek Microwave, Inc. Electronic tunable filters with dielectric varactors
US6362789B1 (en) * 2000-12-22 2002-03-26 Rangestar Wireless, Inc. Dual band wideband adjustable antenna assembly
CN1233100C (en) * 2000-12-27 2005-12-21 松下电器产业株式会社 High-frequency switch, Dual-frequency band high-frequency switch, three-frequency band high-frequenc switch and mobile communication equipment
JP2002314372A (en) * 2001-02-07 2002-10-25 Murata Mfg Co Ltd Surface acoustic wave filter device
US6690251B2 (en) * 2001-04-11 2004-02-10 Kyocera Wireless Corporation Tunable ferro-electric filter
US6456236B1 (en) * 2001-04-24 2002-09-24 Rockwell Collins, Inc. Ferroelectric/paraelectric/composite material loaded phased array network
DE60232945D1 (en) * 2001-11-22 2009-08-27 Yamaha Corp Electronic device
US7176845B2 (en) * 2002-02-12 2007-02-13 Kyocera Wireless Corp. System and method for impedance matching an antenna to sub-bands in a communication band

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727535B1 (en) * 1998-11-09 2004-04-27 Paratek Microwave, Inc. Ferroelectric varactor with built-in DC blocks
US6525630B1 (en) * 1999-11-04 2003-02-25 Paratek Microwave, Inc. Microstrip tunable filters tuned by dielectric varactors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050002343A1 (en) * 2003-06-02 2005-01-06 Toncich Stanley S. System and method for filtering time division multiple access telephone communications
US7720443B2 (en) * 2003-06-02 2010-05-18 Kyocera Wireless Corp. System and method for filtering time division multiple access telephone communications
US20060145782A1 (en) * 2005-01-04 2006-07-06 Kai Liu Multiplexers employing bandpass-filter architectures
US7606184B2 (en) 2005-01-04 2009-10-20 Tdk Corporation Multiplexers employing bandpass-filter architectures

Also Published As

Publication number Publication date
KR100942134B1 (en) 2010-02-16
US20020167454A1 (en) 2002-11-14
US20040056730A1 (en) 2004-03-25
US20020163400A1 (en) 2002-11-07
US20020149535A1 (en) 2002-10-17
US20020163475A1 (en) 2002-11-07
US20020149439A1 (en) 2002-10-17
KR20040002911A (en) 2004-01-07
CN1795584A (en) 2006-06-28
US6639491B2 (en) 2003-10-28
US6737930B2 (en) 2004-05-18
US20020175863A1 (en) 2002-11-28
US20020149526A1 (en) 2002-10-17
US6727786B2 (en) 2004-04-27
US6927644B2 (en) 2005-08-09
US7221327B2 (en) 2007-05-22
US20020151291A1 (en) 2002-10-17
US7116954B2 (en) 2006-10-03
US6690251B2 (en) 2004-02-10
US20020167451A1 (en) 2002-11-14
US20020149428A1 (en) 2002-10-17
US20020149434A1 (en) 2002-10-17
KR100798616B1 (en) 2008-01-28
US6970055B2 (en) 2005-11-29
US20020167447A1 (en) 2002-11-14
US6819194B2 (en) 2004-11-16
US20020149443A1 (en) 2002-10-17
US6741217B2 (en) 2004-05-25
CN101174507A (en) 2008-05-07
CN101136618B (en) 2012-04-25
US20050085200A1 (en) 2005-04-21
US20050128032A1 (en) 2005-06-16
US20040174220A1 (en) 2004-09-09
CN101136618A (en) 2008-03-05
US7009455B2 (en) 2006-03-07
CN101174507B (en) 2011-06-29
US6867744B2 (en) 2005-03-15
US6859104B2 (en) 2005-02-22
US6909344B2 (en) 2005-06-21
US7265643B2 (en) 2007-09-04
KR20030096315A (en) 2003-12-24
US6744327B2 (en) 2004-06-01
US6885341B2 (en) 2005-04-26
US6885263B2 (en) 2005-04-26
US20070207748A1 (en) 2007-09-06
US20020158717A1 (en) 2002-10-31
KR100976339B1 (en) 2010-08-16
US20020151279A1 (en) 2002-10-17
US6833820B2 (en) 2004-12-21
KR20040014493A (en) 2004-02-14
US20020149448A1 (en) 2002-10-17
US20020149533A1 (en) 2002-10-17
US6816714B2 (en) 2004-11-09
US6861985B2 (en) 2005-03-01
CN100499264C (en) 2009-06-10
US20040095211A1 (en) 2004-05-20
US6825818B2 (en) 2004-11-30
US20020149444A1 (en) 2002-10-17
US7509100B2 (en) 2009-03-24
US6765540B2 (en) 2004-07-20
US6690176B2 (en) 2004-02-10
US20040196121A1 (en) 2004-10-07
US6756947B2 (en) 2004-06-29
US20030062971A1 (en) 2003-04-03
KR101110382B1 (en) 2012-02-24
KR20040004584A (en) 2004-01-13
US20020175878A1 (en) 2002-11-28
US6903612B2 (en) 2005-06-07
US20050095998A1 (en) 2005-05-05
US6741211B2 (en) 2004-05-25

Similar Documents

Publication Publication Date Title
US6690176B2 (en) Low-loss tunable ferro-electric device and method of characterization
EP1377839B1 (en) Low-loss tunable ferro-electric device and method of characterization
WO2002087123A1 (en) Methods and systems for load sharing signaling messages among signaling links

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20130809