US20040024371A1 - Catheter system for performing intramyocardiac therapeutic treatment - Google Patents
Catheter system for performing intramyocardiac therapeutic treatment Download PDFInfo
- Publication number
- US20040024371A1 US20040024371A1 US10/622,644 US62264403A US2004024371A1 US 20040024371 A1 US20040024371 A1 US 20040024371A1 US 62264403 A US62264403 A US 62264403A US 2004024371 A1 US2004024371 A1 US 2004024371A1
- Authority
- US
- United States
- Prior art keywords
- catheter
- needle
- catheter system
- external
- helical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/056—Transvascular endocardial electrode systems
- A61N1/057—Anchoring means; Means for fixing the head inside the heart
- A61N1/0573—Anchoring means; Means for fixing the head inside the heart chacterised by means penetrating the heart tissue, e.g. helix needle or hook
- A61N1/0575—Anchoring means; Means for fixing the head inside the heart chacterised by means penetrating the heart tissue, e.g. helix needle or hook with drug delivery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1477—Needle-like probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0067—Catheters; Hollow probes characterised by the distal end, e.g. tips
- A61M25/0082—Catheter tip comprising a tool
- A61M25/0084—Catheter tip comprising a tool being one or more injection needles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3478—Endoscopic needles, e.g. for infusion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1435—Spiral
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0067—Catheters; Hollow probes characterised by the distal end, e.g. tips
- A61M25/0082—Catheter tip comprising a tool
- A61M25/0084—Catheter tip comprising a tool being one or more injection needles
- A61M2025/0089—Single injection needle protruding axially, i.e. along the longitudinal axis of the catheter, from the distal tip
Definitions
- the invention relates to a method and the associated apparatus for performing intramyocardiac therapeutic treatment by means of the controlled infusion, in this anatomical location, of therapeutic fluids of varying nature and composition.
- This method and apparatus it is possible to treat patients who suffer from cardiac ischaemia and who are not able to tolerate surgical therapy involving a coronary bypass or coronary angioplasty using catheters.
- At present there are many patients suffering from heart disease which is advanced to the point where it can no longer be treated using the solutions mentioned. Complete re-vascularization is not possible in 20% of the patients who undergo bypass surgery.
- the patients who cannot be treated with the abovementioned solutions belong, for example, to the following categories: patients with extensive heart disease affecting the distal vessels; patients with symptomatic ischaemia resulting from a diseased vessel which is too small to be bypassed; patients who do not have adequate ducts for bypassing; patients with total chronic occlusion and with distal vessels which are small and/or cannot be viewed.
- a new therapy which is currently becoming more widespread for the treatment of this type of patient consists in the percutaneous injection, into the cardiac muscle, of genic substances, for example DNA plasmids, which induce the formation of new blood vessels.
- genic substances for example DNA plasmids
- At least six different carrier systems have been used for genic transfer to the heart muscle cells, namely: DNA devoid of viral or physical adjuvants which increase the genic release; DNA encapsulated in modified liposomes; DNA complexed with cationic liposomes; retroviral carriers; adeno-associated viral carriers.
- This therapy is currently performed by making a small incision in the chest in order to inject the abovementioned plasmids into the myocardium, continuously monitoring the patient by means of transoesophageal echocardiography in order to check the movement of the cardiac wall during the percutaneous injection, in order to prevent the plasmid being injected into the blood, inside the cavity of the left-hand ventricle.
- the recent clinical experiments involving injection of plasmids into the myocardium, during surgical treatment or a mini-thoracotomy are very interesting, but are unable to solve many problems when this procedure is used as the one and only therapy, in particular problems relating to optimization of the most suitable site for injection and the number and dosing of the intramyocardial injections. It is also obvious that the surgical solution limits very much the possibility of performing multiple treatment or treatment which is repeated over time.
- Injection catheters have been studied in order to improve the injection of a drug into an area inside the human body.
- Injection catheters have for example been produced by Wilson Cook Medical Inc. (Cook Italia Srl), said catheters being specifically designed for the sclerotherapeutic endoscopic treatment of oesophageal varices.
- Wilson Cook Medical Inc. Cook Italia Srl
- the Boston Scientific Corporation markets needles for liquid injection therapy using a dedicated twin-lumen catheter and associated extendable and retractable needle with an ample washing lumen for ensuring vision with an endoscope in bleeding conditions.
- a helical electrode screwed into the wall of the endocardium in order to ensure immediate stability of the implant pending the growth of tissue thereon, is used.
- the use of a helical and hollow electrode for the injection of liquids into the human body has been described in U.S. Pat. No. 5,431,649 for a purpose different from that of the present invention, namely for the hyperthermic treatment of neoplasia of the prostate and for treatment of myocardiac ablation by means of radiofrequency, using a perfusion of saline solution through the cavity of the helical electrode.
- a tracer substance is injected via a lumen of the catheter in order to map, by means of fluoroscopy, the point of injection of the needle into the myocardium of the left-hand ventricle, while a fluid mixture with ethanol is subsequently injected through the second lumen of the catheter in order to perform a chemical ablation of a volume of the myocardium.
- U.S. Pat. No. 5,354,279 (“Plural Needle Injection Catheter”) envisages a catheter provided at its terminal end with a plurality of thin pre-formed metal needles emerging in a ray-like arrangement and designed to release pharmaceutical substances onto the arteries.
- the lumina of these needles communicate, however, with a single lumen of the catheter so that this apparatus may not be used for the purposes of the present invention, either.
- a hollow catheter body provided on its terminal end with a needle system for the injection of fluids through the said catheter
- said body of the catheter having at least two longitudinal lumina which are connected at one end to external means for administering fluids,
- the needle system having at least two longitudinal lumina connected to the corresponding lumina of the catheter.
- the known art with the procedures and the devices described based on a catheter system with injection needle, does not allow the practical realization of an apparatus and a method for injecting plasmids solely using the intramyocardiac method, owing to problems associated with the movement of the endocardium and the impossibility of separating completely injection of the therapeutic fluids from injection of the tracer fluid.
- the object of the invention is to solve these and other problems of the already known art by means of a catheter provided with two or more longitudinal lumina and provided at its terminal end with a multilumen needle system, each lumen of this needle system having its own discharge opening and being connected to a corresponding lumen of the catheter.
- the lumina of the catheter are connected to external systems for releasing separately tracer fluids for external image diagnostics systems by means of which it is possible to verify the correct position of the needle in the cardium tissue and release therapeutic fluids, for example DNA plasmids.
- the needle system in question may be formed by a multilumen needle or by several single-lumen needles arranged alongside each other and each connected to a corresponding lumen of the catheter.
- the present invention relates to a catheter system of the type as disclosed above with reference to the cited document U.S. Pat. No. 5,322,510 A, further characterised by the fact that the said longitudinal lumina are provided with respective lateral discharge openings.
- FIG. 1 is an overall side view, with parts shown in cross section, of the catheter system according to a preferred embodiment of the invention
- FIG. 2 shows a cross section through the middle of the catheter, along the line II-II of FIG. 1;
- FIGS. 3 and 4 show further details of the end part of the catheter with a multilumen needle, which is sectioned respectively along the lines III-III and IV-IV of FIG. 2 and with parts being visible;
- FIG. 3 a is a variation of embodiment of the straight needle
- FIGS. 5 and 6 are cross sections through the multilumen needle along the lines V-V and VI-VI of FIG. 3, respectively;
- FIG. 7 shows, longitudinally sectioned, the end part of a multilumen catheter, with the multilumen needle system being formed by two single-lumen and straight needles arranged alongside each other;
- FIGS. 8 and 9 show possible cross sections through the needles of the needle system according to FIG. 7, sectioned along the line VIII-VIII;
- FIG. 10 shows, cross sectioned and with parts visible, a needle system formed by two straight and coaxial needles
- FIGS. 11 and 12 show details of the needle system according to FIG. 10, sectioned along the lines XI-XI and XII-XII, respectively;
- FIG. 13 shows, cross sectioned and with parts visible, a needle system formed by two helical needles arranged alongside each other;
- FIG. 14 shows, cross sectioned and with parts visible, a needle system formed by two straight needles coaxial with each other and of different length and with the projecting needle portion having a helical shape;
- FIGS. 15 and 16 show, cross sectioned and with parts visible, further needle systems formed by a straight axial needle circumscribed by a helical needle which may be, respectively, projecting or retracted with respect to the said axial needle.
- the numeral 1 designates schematically a catheter guide of the known type which is pre-formed or steerable and which is inserted into the blood circulation which leads to the left ventricle of the heart and inside which the catheter system in question is then inserted, said catheter system comprising a catheter 2 which has a suitable length and cross section and is made of any material suitable for this purpose, for example Polyimide, and is provided internally with a meshwork braiding 102 and/or other suitable means (see also FIG. 3) which allow a twisting torque to be applied to the said catheter, without the latter being deformed, such that a rotation applied to the front end of the catheter results in an identical rotation of the terminal end of this catheter.
- a catheter guide of the known type which is pre-formed or steerable and which is inserted into the blood circulation which leads to the left ventricle of the heart and inside which the catheter system in question is then inserted
- said catheter system comprising a catheter 2 which has a suitable length and cross section and is made of any material suitable for this purpose, for example Polyimide, and
- the catheter 2 is provided internally with several longitudinal lumina, for example a pair of main and opposite lumina 3 and 4 , for example having a cross section in the form of a circle segment, and has between said lumina, in a symmetrical arrangement, arranged alongside each other and aligned along the diametral plane of the catheter, three secondary lumina 5 , 6 and 7 , for example with a round cross section, one of which is located preferably coaxially in the catheter, for receiving the guide spindle 8 which is of the type usually used for operating traditional pacing catheters.
- several longitudinal lumina for example a pair of main and opposite lumina 3 and 4 , for example having a cross section in the form of a circle segment, and has between said lumina, in a symmetrical arrangement, arranged alongside each other and aligned along the diametral plane of the catheter, three secondary lumina 5 , 6 and 7 , for example with a round cross section, one of which is located preferably coaxially in the catheter, for receiving the guide spindle 8 which is of the type usually used for
- a multilumen needle system is fixed onto the terminal end of the catheter 2 by means of a special insert 12 , in a position of longitudinal alignment with the said catheter, said needle system being formed by a needle which may be straight as indicated by 9 ′ in FIG. 3 a or may preferably have a cylindrical helical shape, as indicated for example by 9 in FIGS. 3 and 4. It is understood that the scope of the invention also includes helical needles other than that illustrated, for example which are of the straight type and have one or more external helices, for example similar to wood screws. From FIG. 5 it can be seen that the needle has two longitudinal lumina 10 and 11 which are arranged closely alongside each other and divided by a common wall 309 over the whole length of the body of this needle. The base of the needle has a fork-shaped configuration and the corresponding branches 109 and 209 , which form a continuation of the respective lumina 10 and 11 of the said needle, are engaged in the corresponding lumina 3 and 4 of the catheter.
- the internal lumina of the needle are provided with respective lateral discharge openings, one of which is indicated by 110 and is located at a short distance from the needle tip, while the other one indicated by 111 is located further upstream, in the middle part or at the base of the said needle (see also FIG. 6).
- the terminal end of the catheter is provided with a retractable device, which is useful as an end-of-travel stop, for stopping penetration of the needle 9 or 9 ′ into the wall of the myocardium which has to be treated.
- a retractable device which is useful as an end-of-travel stop, for stopping penetration of the needle 9 or 9 ′ into the wall of the myocardium which has to be treated.
- a torus-shaped balloon 13 which is made of impermeable and flexible material and which is fixed laterally onto the terminal end of the catheter 2 and has at least one internal duct 113 which passes through the insert 12 and is designed to engage into one of the secondary lumina of the catheter, for example into the lumen 6 (FIG. 2).
- an electrical conductor 14 which runs along the whole length of the catheter and is housed inside one of the secondary lumina, for example the lumen 7 in FIG. 2, is connected to the body of the needle 9 or 9 ′, together with an optional additional electrical conductor 15 connected to an optional ring 16 which is made of electrically conducting material and is fixed on the outside of the terminal end of the catheter and is useful as a reference electrode for the various operations where the needle acts as a conductor of electrical impulses.
- the conductors 14 and 15 are suitably insulated from each other. If the braiding 102 of the catheter is made of an electrically conducting material, it may replace either one of the said electrical conductors 14 or 15 . It is understood that the function of reference electrode may be performed by means other than the ring 16 mentioned above, for example using solutions known in the sector of cardiac electro-stimulation.
- the front ends of the electrical conductors 14 and 15 are connected to small electrically conducting rings 21 and 22 which are fixed externally to different points of the catheter body, are insulated with respect to each other and with which brushes 23 and 24 of the distributor 17 co-operate, said brushes being in turn connected via respective conductors to a composite, external, fixed apparatus 25 , which will be described in greater detail below.
- the lumina 3 , 4 and 6 of the catheter are closed at the outer front end and are provided along the section which passes through the distributor 17 with respective radial openings which are situated at mutually distant points of the catheter and lead into respective annular chambers 26 , 27 and 28 of said distributor and which are insulated from each other and from the exterior by annular sealing gaskets 29 , 30 , 31 and 32 .
- These chambers lead to cable connectors 33 , 34 and 35 to which flexible pipes 36 , 37 , 38 may be connected, said flexible pipes being provided at the other end with Luer connectors to which syringes 39 , 40 , 41 may be connected, the first thereof being useful, for example, for injecting or drawing liquid into/from the balloon 13 , i.e.
- the syringe 40 is useful for example for injecting tracer liquid which will emerge, for example, from the opening 111 of the needle 9 or 9 ′, and the syringe 41 is used, for example, for injecting DNA plasmids which for example will be discharged from the end opening 110 of the said needle.
- the catheter system as described functions and is used in the following manner. After positioning the catheter guide 1 in the patient, the catheter 2 is inserted inside said guide by means of the special guide spindle 8 . The end balloon 13 is in the collapsed condition. After insertion of the catheter, the balloon 13 is activated by means of the syringe 39 and, by means of the external knob 20 , the catheter itself is rotated in the direction for screwing of the helical needle 9 into the myocardium, until this needle has been completely screwed in.
- the correct position of the needle may be verified from the outside by means of the apparatus 25 which detects, for example, a bioelectrical impedance and/or ECG, using the electrical conductor 14 connected to the needle and the conductor 15 connected to the annular reference electrode 16 .
- the needle 9 or 9 ′ may be advantageously lined with a thin layer of electrically insulating material, for example, Parylene, over practically the whole length, as schematically indicated by the broken lines and by 45 in FIGS. 3 a and 4 , except for an appropriate tip portion which remains electrically conducting.
- a correct quantity of tracer is injected into this wall and, if the needle is correctly inserted, remains for a relatively long period of time in the said wall and may be easily detected by external image diagnostics systems of the known type, in the form of a persistent spherical-shaped mark. Should the needle not be correctly inserted into the myocardium, the injected tracer would become dispersed in the blood stream.
- the injected tracer may for example be of the type which is useful for detection by means of X-rays or using ultrasound image or magnetic nuclear resonance systems. If a dual-lumen needle as shown in FIGS.
- the tracer fluid is preferably discharged from the orifice 111 of the needle itself since, if it is subsequently established using the abovementioned procedure that the needle is correctly inserted in the myocardium, there is the absolute certainty that the other discharge orifice 110 , intended for the discharge of therapeutic fluid, is also correctly inserted into the myocardium itself.
- the external apparatus 25 may be arranged so as to transmit into the tissue itself, via the electrical circuit connected to the needle 9 , electrical impulses which have suitable characteristics and are synchronized with the beat R of the spontaneous activity of the heart.
- the external apparatus 25 may be designed to generate ultrasounds which are conveyed to the needle 9 and therefore to the perfused zone of the myocardium, via a conductor with suitable characteristics, which is indicated schematically in FIG. 1 by 42 and which is for example connected to the needle via the axial lumen 5 , after removal of the guide spindle 8 .
- the catheter may have a secondary lumen specifically designed to contain an ultrasound conductor connected to the needle 9 or 9 ′.
- the catheter 2 illustrated in FIG. 7 is identical to the multilumen catheter illustrated in FIG. 1 and its lumina 3 and 4 , which are respectively connected to the external systems for injection of the therapeutic fluid and the tracer fluid, are joined to the end sections 109 , 209 of respective straight and single-lumen needles 9 ′ a and 9 ′ b which are preferably of different length, preferably arranged in axial alignment with the catheter and preferably fixed together by means of welds 43 , as can be seen from FIG. 8.
- FIG. 9 illustrates a variation according to which the needles 9 ′ a and 9 ′ b have a flattened—for example semi-circular—cross section so that the needle system 9 ′ formed by them can be made to assume a substantially round cross section.
- the longer needle 9 ′ a is partly inside and coaxial with the shorter needle 9 ′ b , the end part of which is closed, converging onto the needle 9 ′ a , and may be provided with several lateral openings 111 for discharging the tracer fluid.
- the needle 9 ′ a emerges in a sealed manner from the needle 9 ′ b at the start of the bifurcation which forms the end sections 109 and 209 for connection to the lumina 3 and 4 of the catheter.
- the solution according to FIG. 13 is equivalent to that of FIG. 7, but envisages a needle system 9 which is formed by two helical needles 9 a and 9 b which are arranged alongside each other and preferably fixed by means of welding and which extend around the axis of the catheter 2 .
- the comments made with reference to FIGS. 8 and 9 for the solution of FIG. 7 are also applicable here.
- the needles enter preferably into the catheter being closely arranged around its axis and then diverge away from each other and engage into the lumina 3 , 4 with the end sections 109 , 209 .
- the scope of the invention also includes the variant, not shown, whereby the helical needles 9 a and 9 b are staggered and distant from each other, with the tip of the shorter needle being distant from the body of the longer needle.
- the needles may enter into the catheter with sections which are distant from the axis of the said catheter.
- the solution according to FIG. 14 is derived from that of FIG. 10 and envisages a needle system 9 formed by a short needle 9 ′ b of the straight type from which a needle 9 a terminating in a helical shape projects coaxially.
- the solution according to FIG. 15 illustrates a needle system 9 formed by a straight short needle 9 ′ b which is aligned axially with the catheter and by a long helically shaped needle 9 a which extends concentrically around the said central needle 9 ′ b.
- the solution according to FIG. 16 is a variation of the solution according to FIG. 15 and envisages a needle system 9 formed by a long straight central needle 9 ′ a and by a helically shaped external needle 9 b which extends concentrically around the said central needle.
- This solution could be preferred to that of FIG. 15 since the straight central needle 9 ′ a is inserted firstly into the myocardium and acts as a centring element and a rotational pivot for the helical needle 9 b .
- the helical needle is able to enter into the catheter with an arrangement close to the straight needle, as illustrated by continuous lines, or is able to enter into the catheter with an arrangement offset from the axis of the straight central needle, as indicated by A and B, in order to favour, if necessary, automatic stopping of the screwing action of the needle system.
- FIGS. 7 to 16 44 denotes in broken lines the location, if necessary, on the terminal end, of the catheter, of an ultrasound generator which is integral with the base of one or both needles and connected to an electrical supply circuit, not shown, which passes through a secondary longitudinal lumen of the catheter for connection to an external power supply unit.
- the catheter will also be provided on the terminal end with the electrically conducting ring 16 having the function of a reference electrode for all the operations which the needle system performs as a conductor of electrical impulses.
- the catheter will also be provided with the internal anti-twisting braiding 102 and on the terminal end of the said catheter the already mentioned retractable device 13 , with external activation and deactivation controls, for stopping penetration of the needle system into the myocardium will be provided.
- the catheter 2 may, for example, have an external diameter of about 7 French, that is to say about 2.1 mm, while the external diameter of the helix of the needle system with at least one helical needle, may for example be about 2 mm.
- the projecting part of the longer needle must not, for example, exceed the length of about 5 mm, while the projecting part of the shorter needle will have for example a length of about 2.5-3 mm.
- the needles which form the needle system may for example each have an external diameter of about 0.30 mm.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Cardiology (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Radiology & Medical Imaging (AREA)
- Hematology (AREA)
- Medicinal Chemistry (AREA)
- Anesthesiology (AREA)
- Vascular Medicine (AREA)
- Pulmonology (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Otolaryngology (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
The multilumen catheter (2) is provided at one end with a needle system (9, 9′) formed by two or more single-lumen needles which are provided with respective discharge openings (110, 111) and which, via their longitudinal lumina (10, 11), are connected to corresponding lumina (3, 4) of the catheter for separate release of a tracer fluid for external image diagnostics systems and therapeutic fluids, for example DNA plasmids. The needles may be both straight or both helical or one of these needles may be straight and the other needle may be helical.
Description
- This application is a divisional or of application Ser. No. 09/831,493, which is the National Stage of International Application No. PCT/ep99/08686, filed Nov. 11, 1999.
- The invention relates to a method and the associated apparatus for performing intramyocardiac therapeutic treatment by means of the controlled infusion, in this anatomical location, of therapeutic fluids of varying nature and composition. With this method and apparatus it is possible to treat patients who suffer from cardiac ischaemia and who are not able to tolerate surgical therapy involving a coronary bypass or coronary angioplasty using catheters. At present there are many patients suffering from heart disease which is advanced to the point where it can no longer be treated using the solutions mentioned. Complete re-vascularization is not possible in 20% of the patients who undergo bypass surgery. The patients who cannot be treated with the abovementioned solutions belong, for example, to the following categories: patients with extensive heart disease affecting the distal vessels; patients with symptomatic ischaemia resulting from a diseased vessel which is too small to be bypassed; patients who do not have adequate ducts for bypassing; patients with total chronic occlusion and with distal vessels which are small and/or cannot be viewed.
- A new therapy which is currently becoming more widespread for the treatment of this type of patient consists in the percutaneous injection, into the cardiac muscle, of genic substances, for example DNA plasmids, which induce the formation of new blood vessels. At least six different carrier systems have been used for genic transfer to the heart muscle cells, namely: DNA devoid of viral or physical adjuvants which increase the genic release; DNA encapsulated in modified liposomes; DNA complexed with cationic liposomes; retroviral carriers; adeno-associated viral carriers. This therapy is currently performed by making a small incision in the chest in order to inject the abovementioned plasmids into the myocardium, continuously monitoring the patient by means of transoesophageal echocardiography in order to check the movement of the cardiac wall during the percutaneous injection, in order to prevent the plasmid being injected into the blood, inside the cavity of the left-hand ventricle. The recent clinical experiments involving injection of plasmids into the myocardium, during surgical treatment or a mini-thoracotomy, are very interesting, but are unable to solve many problems when this procedure is used as the one and only therapy, in particular problems relating to optimization of the most suitable site for injection and the number and dosing of the intramyocardial injections. It is also obvious that the surgical solution limits very much the possibility of performing multiple treatment or treatment which is repeated over time.
- It was thought that a catheter system suitable for the intramyocardiac injection of plasmids may be able to overcome the limitations of the present surgical solution indicated above.
- According to the publication “Percutaneous Transluminal Gene Transfer into Canine Myocardium in Vivo by Replication-Defective Adenovirus” Jian Jun Li et. al. (Cardiovascular Research 1995; 30: 97-105), previous experiments involving the percutaneous injection of genes into the myocardium of dogs, by means of adenovirus, were performed using an injection catheter composed of a catheter guide and a guided catheter, with a needle at its terminal end, inserted into the left-hand ventricle of the heart. Under a fluoroscope, the needle was inserted into the myocardium and its correct position of insertion was confirmed by suction of the blood. If the needle is inserted into the wall of the cardiac muscle, its lumen is closed by the muscle itself and therefore the suction of blood is prevented.
- Various injection catheters have been studied in order to improve the injection of a drug into an area inside the human body. Injection catheters have for example been produced by Wilson Cook Medical Inc. (Cook Italia Srl), said catheters being specifically designed for the sclerotherapeutic endoscopic treatment of oesophageal varices. The Boston Scientific Corporation markets needles for liquid injection therapy using a dedicated twin-lumen catheter and associated extendable and retractable needle with an ample washing lumen for ensuring vision with an endoscope in bleeding conditions.
- None of the catheters with injection needles proposed by the current technology has been specifically developed and can neither be adapted to solve the problem of percutaneous and transvascular injection of plasmids into the human myocardium. With a needle catheter of the known type it is difficult to maintain a fixed position inside the moving wall of the myocardium and it is therefore difficult to inject, in a reliable manner, plasmids into the said wall. Similar difficulties have been encountered with the catheters of pacemakers when they have to be positioned in a different point of the apex of the right-hand ventricle, for example in the interatrial or interventricular septum. In these cases, a helical electrode screwed into the wall of the endocardium, in order to ensure immediate stability of the implant pending the growth of tissue thereon, is used. The use of a helical and hollow electrode for the injection of liquids into the human body has been described in U.S. Pat. No. 5,431,649 for a purpose different from that of the present invention, namely for the hyperthermic treatment of neoplasia of the prostate and for treatment of myocardiac ablation by means of radiofrequency, using a perfusion of saline solution through the cavity of the helical electrode.
- An important factor which prevents the use of the abovementioned catheter perfusion systems for the function in question is the fact that they are not able to provide a safe, reproducible and recordable method for demonstrating that the injection of the plasmids is performed in a selected area of the myocardium and not in the blood stream; in fact the aforementioned solution of confirming the position of the needle by suction is not suitable for this purpose on account of the high risk of false situations created by the closure of the needle lumen by blood clots.
- A recent publication “Transcatheter Subendocardial Infusion. A Novel Technique for Mapping and Ablation of Ventricular Myocardium”, Andreas Goette et. al. (Circulation 1996; 94: 1149-1455) described an infusion catheter equipped with an electrode corresponding to the injection needle located on the distal end of said catheter and provided with a second ring electrode in the vicinity of the same needle. Two lumina which are formed inside the catheter and by means of which it is possible to perform a sequential administration of fluid mixtures converge towards this needle. A tracer substance is injected via a lumen of the catheter in order to map, by means of fluoroscopy, the point of injection of the needle into the myocardium of the left-hand ventricle, while a fluid mixture with ethanol is subsequently injected through the second lumen of the catheter in order to perform a chemical ablation of a volume of the myocardium. By means of this method, with the associated catheter, it is possible to identify with reasonable certainty the area of the myocardium into which the needle is inserted, but the problems, as described in the abovementioned publication, resulting from the difficulty of keeping a straight needle in the correct position in a beating myocardium and preventing remixing between the fluids introduced through the two catheter lumina, the latter intercommunicating via the common lumen of the injection needle, cannot be solved. Owing to the inherent elasticity of the material from which the lumina of the catheter may be made and the notable curvature to which the catheter itself is subject during insertion into the human body, it cannot be ruled out that the pressure exerted on a fluid which is to be injected may cause a partial transfer of this fluid from its lumen under pressure to the other lumen which is at a lower pressure, with the result of unexpected and constant mixing of the two fluids and possible limitation of the volume of,the fluid actually injected into the myocardium, since a part of this fluid, instead of being discharged from the needle, flows back into the lumen of the catheter which is at a pressure less than that of the active lumen.
- U.S. Pat. No. 5,354,279 (“Plural Needle Injection Catheter”) envisages a catheter provided at its terminal end with a plurality of thin pre-formed metal needles emerging in a ray-like arrangement and designed to release pharmaceutical substances onto the arteries. The lumina of these needles communicate, however, with a single lumen of the catheter so that this apparatus may not be used for the purposes of the present invention, either.
- Document U.S. Pat. No. 5,322,510 A (Lindner et al), which constitutes the closest prior art, discloses a catheter system for performing a therapeutic treatment, comprising
- a hollow catheter body provided on its terminal end with a needle system for the injection of fluids through the said catheter,
- said body of the catheter having at least two longitudinal lumina which are connected at one end to external means for administering fluids,
- the needle system having at least two longitudinal lumina connected to the corresponding lumina of the catheter.
- By way of conclusion, the known art, with the procedures and the devices described based on a catheter system with injection needle, does not allow the practical realization of an apparatus and a method for injecting plasmids solely using the intramyocardiac method, owing to problems associated with the movement of the endocardium and the impossibility of separating completely injection of the therapeutic fluids from injection of the tracer fluid.
- The object of the invention is to solve these and other problems of the already known art by means of a catheter provided with two or more longitudinal lumina and provided at its terminal end with a multilumen needle system, each lumen of this needle system having its own discharge opening and being connected to a corresponding lumen of the catheter. The lumina of the catheter are connected to external systems for releasing separately tracer fluids for external image diagnostics systems by means of which it is possible to verify the correct position of the needle in the cardium tissue and release therapeutic fluids, for example DNA plasmids. The needle system in question may be formed by a multilumen needle or by several single-lumen needles arranged alongside each other and each connected to a corresponding lumen of the catheter.
- More particularly, the present invention relates to a catheter system of the type as disclosed above with reference to the cited document U.S. Pat. No. 5,322,510 A, further characterised by the fact that the said longitudinal lumina are provided with respective lateral discharge openings.
- Further characteristic features and advantages arising therefrom will appear more clearly from the following description of certain preferred embodiments thereof, illustrated purely by way of a non-limiting example in the accompanying sheets of drawings, in which:
- FIG. 1 is an overall side view, with parts shown in cross section, of the catheter system according to a preferred embodiment of the invention;
- FIG. 2 shows a cross section through the middle of the catheter, along the line II-II of FIG. 1;
- FIGS. 3 and 4 show further details of the end part of the catheter with a multilumen needle, which is sectioned respectively along the lines III-III and IV-IV of FIG. 2 and with parts being visible;
- FIG. 3a is a variation of embodiment of the straight needle;
- FIGS. 5 and 6 are cross sections through the multilumen needle along the lines V-V and VI-VI of FIG. 3, respectively;
- FIG. 7 shows, longitudinally sectioned, the end part of a multilumen catheter, with the multilumen needle system being formed by two single-lumen and straight needles arranged alongside each other;
- FIGS. 8 and 9 show possible cross sections through the needles of the needle system according to FIG. 7, sectioned along the line VIII-VIII;
- FIG. 10 shows, cross sectioned and with parts visible, a needle system formed by two straight and coaxial needles;
- FIGS. 11 and 12 show details of the needle system according to FIG. 10, sectioned along the lines XI-XI and XII-XII, respectively;
- FIG. 13 shows, cross sectioned and with parts visible, a needle system formed by two helical needles arranged alongside each other;
- FIG. 14 shows, cross sectioned and with parts visible, a needle system formed by two straight needles coaxial with each other and of different length and with the projecting needle portion having a helical shape;
- FIGS. 15 and 16 show, cross sectioned and with parts visible, further needle systems formed by a straight axial needle circumscribed by a helical needle which may be, respectively, projecting or retracted with respect to the said axial needle.
- In FIGS. 1 and 2 the numeral1 designates schematically a catheter guide of the known type which is pre-formed or steerable and which is inserted into the blood circulation which leads to the left ventricle of the heart and inside which the catheter system in question is then inserted, said catheter system comprising a
catheter 2 which has a suitable length and cross section and is made of any material suitable for this purpose, for example Polyimide, and is provided internally with ameshwork braiding 102 and/or other suitable means (see also FIG. 3) which allow a twisting torque to be applied to the said catheter, without the latter being deformed, such that a rotation applied to the front end of the catheter results in an identical rotation of the terminal end of this catheter. Thecatheter 2 is provided internally with several longitudinal lumina, for example a pair of main andopposite lumina secondary lumina guide spindle 8 which is of the type usually used for operating traditional pacing catheters. - A multilumen needle system is fixed onto the terminal end of the
catheter 2 by means of aspecial insert 12, in a position of longitudinal alignment with the said catheter, said needle system being formed by a needle which may be straight as indicated by 9′ in FIG. 3a or may preferably have a cylindrical helical shape, as indicated for example by 9 in FIGS. 3 and 4. It is understood that the scope of the invention also includes helical needles other than that illustrated, for example which are of the straight type and have one or more external helices, for example similar to wood screws. From FIG. 5 it can be seen that the needle has twolongitudinal lumina common wall 309 over the whole length of the body of this needle. The base of the needle has a fork-shaped configuration and the correspondingbranches corresponding lumina - Both in the case of FIG. 3 and in the case of FIG. 3a, the internal lumina of the needle are provided with respective lateral discharge openings, one of which is indicated by 110 and is located at a short distance from the needle tip, while the other one indicated by 111 is located further upstream, in the middle part or at the base of the said needle (see also FIG. 6).
- The terminal end of the catheter is provided with a retractable device, which is useful as an end-of-travel stop, for stopping penetration of the
needle balloon 13 which is made of impermeable and flexible material and which is fixed laterally onto the terminal end of thecatheter 2 and has at least oneinternal duct 113 which passes through theinsert 12 and is designed to engage into one of the secondary lumina of the catheter, for example into the lumen 6 (FIG. 2). - From FIG. 4 it can be seen that the end of an
electrical conductor 14 which runs along the whole length of the catheter and is housed inside one of the secondary lumina, for example thelumen 7 in FIG. 2, is connected to the body of theneedle electrical conductor 15 connected to anoptional ring 16 which is made of electrically conducting material and is fixed on the outside of the terminal end of the catheter and is useful as a reference electrode for the various operations where the needle acts as a conductor of electrical impulses. Theconductors braiding 102 of the catheter is made of an electrically conducting material, it may replace either one of the saidelectrical conductors ring 16 mentioned above, for example using solutions known in the sector of cardiac electro-stimulation. - From FIG. 1 it can be seen that the initial section of the catheter passes through the body of a
distributor 17 with respect to which the said catheter may rotate, but not move axially, for example owing to the presence of end stops 18 and 19. Theknob 20 by means of which a rotation may be imparted to the said catheter is fixed onto the front end of the catheter, whereas, with regard to that stated above, thedistributor 17 may remain at a standstill. The front ends of theelectrical conductors distributor 17 co-operate, said brushes being in turn connected via respective conductors to a composite, external, fixedapparatus 25, which will be described in greater detail below. - The
lumina distributor 17 with respective radial openings which are situated at mutually distant points of the catheter and lead into respectiveannular chambers annular sealing gaskets cable connectors flexible pipes syringes balloon 13, i.e. for filling it and activating it as shown in FIG. 4 or for reducing it into the collapsed condition as shown in FIG. 3, while thesyringe 40 is useful for example for injecting tracer liquid which will emerge, for example, from theopening 111 of theneedle syringe 41 is used, for example, for injecting DNA plasmids which for example will be discharged from the end opening 110 of the said needle. - The catheter system as described functions and is used in the following manner. After positioning the catheter guide1 in the patient, the
catheter 2 is inserted inside said guide by means of thespecial guide spindle 8. Theend balloon 13 is in the collapsed condition. After insertion of the catheter, theballoon 13 is activated by means of thesyringe 39 and, by means of theexternal knob 20, the catheter itself is rotated in the direction for screwing of thehelical needle 9 into the myocardium, until this needle has been completely screwed in. The correct position of the needle may be verified from the outside by means of theapparatus 25 which detects, for example, a bioelectrical impedance and/or ECG, using theelectrical conductor 14 connected to the needle and theconductor 15 connected to theannular reference electrode 16. In order to improve the results of this test, theneedle - Once screwing of the needle into the myocardium has been performed, via the
syringe 40, a correct quantity of tracer is injected into this wall and, if the needle is correctly inserted, remains for a relatively long period of time in the said wall and may be easily detected by external image diagnostics systems of the known type, in the form of a persistent spherical-shaped mark. Should the needle not be correctly inserted into the myocardium, the injected tracer would become dispersed in the blood stream. The injected tracer may for example be of the type which is useful for detection by means of X-rays or using ultrasound image or magnetic nuclear resonance systems. If a dual-lumen needle as shown in FIGS. 3 and 3a is used, the tracer fluid is preferably discharged from theorifice 111 of the needle itself since, if it is subsequently established using the abovementioned procedure that the needle is correctly inserted in the myocardium, there is the absolute certainty that theother discharge orifice 110, intended for the discharge of therapeutic fluid, is also correctly inserted into the myocardium itself. - After verifying and documenting with appropriate means that the needle has been correctly inserted, DNA plasmids are injected into the myocardium via the
syringe 41. In order to reinforce the transfer of the abovementioned plasmids into the cells of the cardiac tissue, theexternal apparatus 25 may be arranged so as to transmit into the tissue itself, via the electrical circuit connected to theneedle 9, electrical impulses which have suitable characteristics and are synchronized with the beat R of the spontaneous activity of the heart. Again for this purpose, theexternal apparatus 25 may be designed to generate ultrasounds which are conveyed to theneedle 9 and therefore to the perfused zone of the myocardium, via a conductor with suitable characteristics, which is indicated schematically in FIG. 1 by 42 and which is for example connected to the needle via theaxial lumen 5, after removal of theguide spindle 8. It is understood that the catheter may have a secondary lumen specifically designed to contain an ultrasound conductor connected to theneedle - With reference to FIGS.7 to 16, variations of embodiment of the needle system mounted on the catheter will now be described, said catheter, unlike the one previously considered, being composed of two single-lumen needles. The
catheter 2 illustrated in FIG. 7 is identical to the multilumen catheter illustrated in FIG. 1 and its lumina 3 and 4, which are respectively connected to the external systems for injection of the therapeutic fluid and the tracer fluid, are joined to theend sections lumen needles 9′a and 9′b which are preferably of different length, preferably arranged in axial alignment with the catheter and preferably fixed together by means ofwelds 43, as can be seen from FIG. 8. 10 and 11 indicate the lumina of the needles which terminate inrespective openings needle system 9′ thus formed. FIG. 9 illustrates a variation according to which theneedles 9′a and 9′b have a flattened—for example semi-circular—cross section so that theneedle system 9′ formed by them can be made to assume a substantially round cross section. - In the solution according to FIGS. 10, 11 and12, again relating to a
needle system 9′ of the straight type, thelonger needle 9′a is partly inside and coaxial with theshorter needle 9′b, the end part of which is closed, converging onto theneedle 9′a, and may be provided with severallateral openings 111 for discharging the tracer fluid. Theneedle 9′a emerges in a sealed manner from theneedle 9′b at the start of the bifurcation which forms theend sections lumina - The solution according to FIG. 13 is equivalent to that of FIG. 7, but envisages a
needle system 9 which is formed by twohelical needles catheter 2. The comments made with reference to FIGS. 8 and 9 for the solution of FIG. 7 are also applicable here. The needles enter preferably into the catheter being closely arranged around its axis and then diverge away from each other and engage into thelumina end sections helical needles - The solution according to FIG. 14 is derived from that of FIG. 10 and envisages a
needle system 9 formed by ashort needle 9′b of the straight type from which aneedle 9 a terminating in a helical shape projects coaxially. - The solution according to FIG. 15 illustrates a
needle system 9 formed by a straightshort needle 9′b which is aligned axially with the catheter and by a long helically shapedneedle 9 a which extends concentrically around the saidcentral needle 9′b. - The solution according to FIG. 16 is a variation of the solution according to FIG. 15 and envisages a
needle system 9 formed by a long straightcentral needle 9′a and by a helically shapedexternal needle 9 b which extends concentrically around the said central needle. This solution could be preferred to that of FIG. 15 since the straightcentral needle 9′a is inserted firstly into the myocardium and acts as a centring element and a rotational pivot for thehelical needle 9 b. In both solutions according to FIGS. 15 and 16, the helical needle is able to enter into the catheter with an arrangement close to the straight needle, as illustrated by continuous lines, or is able to enter into the catheter with an arrangement offset from the axis of the straight central needle, as indicated by A and B, in order to favour, if necessary, automatic stopping of the screwing action of the needle system. - In FIGS.7 to 16, 44 denotes in broken lines the location, if necessary, on the terminal end, of the catheter, of an ultrasound generator which is integral with the base of one or both needles and connected to an electrical supply circuit, not shown, which passes through a secondary longitudinal lumen of the catheter for connection to an external power supply unit. With this solution it is possible to transmit to the needle system, and therefore to the perfused zone of the myocardium, the ultrasounds which are necessary for reinforcing the transfer of the therapeutic fluid into the cells of the myocardium tissue. It is understood that the same comments made in respect of the preceding solutions are applicable to the variations according to FIGS. 7 to 16, with regard to the possibility of electrical connection of the needle system to external apparatus and partial insulation of the said needle system, except for a suitable section of its terminal part, using electrical insulation material, for example based on “Parylene”. The catheter will also be provided on the terminal end with the electrically conducting
ring 16 having the function of a reference electrode for all the operations which the needle system performs as a conductor of electrical impulses. The catheter will also be provided with the internalanti-twisting braiding 102 and on the terminal end of the said catheter the already mentionedretractable device 13, with external activation and deactivation controls, for stopping penetration of the needle system into the myocardium will be provided. - It is understood that the dimensions and the proportions indicated in the drawings are purely exemplary and do not limit the scope of the invention. Purely by way of a non-limiting example, some dimensional characteristics for the construction of the apparatus according to the invention are now described. The
catheter 2 may, for example, have an external diameter of about 7 French, that is to say about 2.1 mm, while the external diameter of the helix of the needle system with at least one helical needle, may for example be about 2 mm. The projecting part of the longer needle must not, for example, exceed the length of about 5 mm, while the projecting part of the shorter needle will have for example a length of about 2.5-3 mm. The needles which form the needle system may for example each have an external diameter of about 0.30 mm.
Claims (39)
1. Catheter system for performing intramyocardiac therapeutic treatment comprising:
a catheter having a hollow catheter body provided on its terminal end with a needle system for the injection of fluids through said catheter;
the body of the catheter having at least two longitudinal lumina which are connected at one end to external means for administering fluids;
the needle system having at least two longitudinal lumina connected to the corresponding lumina of the catheter;
wherein said longitudinal lumina are provided with respective lateral discharge openings.
2. Catheter system according to claim 1 , in which the terminal end needle system of the catheter consists of a multilumen needle.
3. Catheter system according to claim 1 , in which the at least one of said longitudinal lumina of the needle system is obtained in a needle of helical type.
4. Catheter system according to claim 2 , in which the multilumen needle is of the helical type.
5. Catheter system according to claim 1 , in which the terminal end needle system of the catheter is formed by at least two single-lumen needles.
6. Catheter system according to claim 5 , in which the needles which form the needle system are of different lengths.
7. Catheter system according to claim 1 , in which the discharge openings of the lumina of the needle system are in different longitudinal positions of the needle itself.
10. Catheter system according to claim 6 , in which the shorter needle is provided with several lateral discharge openings.
11. Catheter system according to claim 5 , in which the needle system is formed by two helical needles of different length which are centered with respect to the axis of the catheter.
12. Catheter system according to claim 11 , in which the helical needles are arranged alongside each other and fixed with welds, the tip of the shorter needle being integral with and connected to the body of the longer needle.
13. Catheter system according to claim 12 , in which the helical needles have a cross section which is flattened and such that the needle system formed by it has a substantially round cross section.
14. Catheter system according to claim 12 , in which the helical needles enter into the catheter with straight sections arranged along the axis of the said catheter.
16. Catheter system according to claim 1 , in which the needle system is formed by a straight needle aligned with the axis of the catheter and by a helical needle arranged concentrically around said central needle.
17. Catheter system according to claim 16 , in which the central straight needle is shorter than the helical needle.
18. Catheter system according to claim 16 , in which the central straight needle is longer than the helical needle so as to act as a centering device and rotational pivot for said helical needle.
19. Catheter system according to claim 16 , in which the helical needle enters into the catheter with a section located alongside the central needle.
20. Catheter system according to claim 16 , in which the helical needle enters into the catheter with a section distant from the central needle so as to prevent the rotation of the catheter when this section comes into contact with the wall of the myocardium.
22. Catheter system according to claim 1 , in which the needle system is electrically conducting.
23. Catheter system according to claim 22 , in which the electrically conducting needle system is lined with a thin film of electrically insulating material over nearly the whole of its length, except for a suitable tip section which remains electrically conducting.
24. Catheter system according to claim 23 , in which the electrically insulating material which partly lines the needle system comprises material known as “Parylene”.
25. Catheter system according to claim 22 , in which the body of the catheter comprises a first longitudinal electrical conductor connected at one end to the needle system and designed for connection at the external end to an external electrical apparatus.
26. Catheter system according to claim 1 , characterized in that the body of the catheter has an internal longitudinal structure of meshwork braiding, which allows a twisting torque to be applied to the external end of the catheter and to ensure that this causes a corresponding rotation of the multilumen needle system fixed onto the terminal end of said catheter.
27. Catheter system according to claim, 25 in which the body of the catheter is provided with a second longitudinal electrical conductor which is electrically insulated from the conductor connected to the needle system and designed for connection of the external end to an external electrical apparatus and for connection of its terminal end to an electrically conducting ring located on the terminal end of the catheter and having the function of a reference electrode for all the operations where the needle system performs the function of a conductor of electrical impulses.
28. Catheter system according to claim 27 , in which the said first and second electrical conductors are seated, with suitable mutual insulation, in at least one longitudinal secondary lumen in the body of the catheter.
29. Catheter system according to claim 28 , in which any one of the said electrical conductors may be constituted by the said twisting braiding if made of electrically conducting material.
30. Catheter system according to claim 25 , in which the external electrical apparatus comprises a source of electric energy and electrical impulses.
31. Catheter system according to claim 25 , in which the external electrical apparatus comprises an apparatus for monitoring electro-physiological signals.
32. Catheter system according to claim 25 , in which the external electrical apparatus comprises an apparatus for measuring the electrical impedance.
33. Catheter system according to claim 1 , in which the body of the catheter comprises at least one filament-like, longitudinally extending, flexible conductor of ultrasound energy which is acoustically coupled to the needle system and designed for connection at its external end to an external apparatus supplying ultrasounds.
34. Catheter system according to claim 1 , in which the body of the catheter comprises on its terminal end, at the base of the needle system, a stopping device of the retractable type, with an external activating and deactivating control device, for limiting the penetration of said needle system into the myocardium.
35. Catheter system according to claim 34 , in which the stopping system comprises a torus-shaped balloon which is made of flexible and impermeable material and which, via a connection duct of its internal chamber, is connected to the terminal end of a secondary longitudinal lumen in the body of the catheter, the external end of which is designed for connection to an external system for supplying and drawing fluid into and from said balloon, respectively so as to fill it and activate it for the end-of-travel function which it must perform, or so as to neutralize it and ensure that it remains in the retracted condition, which is useful during insertion and extraction of the catheter.
36. Catheter system according to claim 35 , in which the main lumina in the body of the catheter are intended to convey the tracer fluid, have the form of a circle segment and are arranged opposite each other in specular fashion, these lumina having, arranged between them in a symmetrical manner, a first axial secondary lumen for receiving the spindle guiding the catheter during use and there being provided, laterally with respect to this lumen, on the one hand a second secondary lumen for conveying the fluid filling and emptying the end-of-travel balloon (13) and, on the other hand, a third secondary lumen for receiving the electrical conductors, the ends of which are connected to the needle system and to the annular reference electrode.
37. Catheter system according to claim 36 , in which the lumina of the catheter, except for the first axial lumen, are closed at the external front end and the front section of the said catheter having, mounted on it without the possibility of axial displacement, a rotating distributor or header provided around the said catheter with annular chambers which are isolated from each other and with respect to the exterior by annular sealing gaskets and into which chambers there lead, via respective radial holes, the two main lumina which are connected to the base connecting sections of the needle system and the secondary lumen leading to the end-of-travel balloon, these chambers being provided with respective hollow connectors for connection to flexible pipes and to syringes containing respectively the fluid for filling and emptying said balloon, the tracer fluid and the therapeutic fluid.
38. Catheter system according to claim 37 , in which the distributor or header is made of electrically insulating material and is provided with electrical conductors having brushes which allow an external electrical apparatus to be connected to the electrical conductors which are connected to the needle system and to the annular reference electrode, the said brushes making contact with electrically conducting rings which are fixed onto the body of the catheter, arranged at a suitable distance from each other and insulated and fixed to the terminals of the said electrical conductors which emerge from the associated guide lumen through lateral holes.
39. Catheter system according to claim 5 , characterized in that, an ultrasound generator is mounted on the terminal end of the catheter, said ultrasound generator being integral with the base of one or both the needles of the needle system and connected to an electrical circuit which passes through a secondary lumen of the catheter for connection to external power supply systems.
40. Catheter system according to claim 1 , in which the body of the catheter has, an external diameter of about 7 French, that is about 2.1 mm.
41. Catheter system according to claim 1 , in which the diameter of the helix of the needle system with at least one helical needle is about 2 mm.
42. Catheter system according to claim 6 , in which the length of the projecting section of the longer needle of the needle system does not exceed, 5 mm, while the length of the projecting section of the shorter needle is about 2.5 mm.
43. Catheter system according to claim 5 , in which the external diameter of each of the needles which form the needle system is about 0.30 mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/622,644 US20040024371A1 (en) | 1998-12-14 | 2003-07-21 | Catheter system for performing intramyocardiac therapeutic treatment |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT1998BO000691 IT1304783B1 (en) | 1998-12-14 | 1998-12-14 | Multilumen catheter for performing intramyocardiac treatment, has dual lumen system to separately release diagnostic tracer and therapeutic fluids |
ITBO98A000691 | 1998-12-14 | ||
IT1999BO000050 IT1310330B1 (en) | 1999-02-05 | 1999-02-05 | Multilumen catheter for performing intramyocardiac treatment, has dual lumen system to separately release diagnostic tracer and therapeutic fluids |
ITBO99A000050 | 1999-02-05 | ||
US09/831,493 US6620139B1 (en) | 1998-12-14 | 1999-11-11 | Catheter system for performing intramyocardiac therapeutic treatment |
US10/622,644 US20040024371A1 (en) | 1998-12-14 | 2003-07-21 | Catheter system for performing intramyocardiac therapeutic treatment |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/831,493 Division US6620139B1 (en) | 1998-12-14 | 1999-11-11 | Catheter system for performing intramyocardiac therapeutic treatment |
PCT/EP1999/008686 Division WO2000035531A1 (en) | 1998-12-14 | 1999-11-11 | Catheter system for performing intramyocardiac therapeutic treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040024371A1 true US20040024371A1 (en) | 2004-02-05 |
Family
ID=26330382
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/831,493 Expired - Fee Related US6620139B1 (en) | 1998-12-14 | 1999-11-11 | Catheter system for performing intramyocardiac therapeutic treatment |
US10/622,644 Abandoned US20040024371A1 (en) | 1998-12-14 | 2003-07-21 | Catheter system for performing intramyocardiac therapeutic treatment |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/831,493 Expired - Fee Related US6620139B1 (en) | 1998-12-14 | 1999-11-11 | Catheter system for performing intramyocardiac therapeutic treatment |
Country Status (5)
Country | Link |
---|---|
US (2) | US6620139B1 (en) |
EP (1) | EP1140278B1 (en) |
AT (1) | ATE267032T1 (en) |
DE (1) | DE69917484T2 (en) |
WO (1) | WO2000035531A1 (en) |
Cited By (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050197557A1 (en) * | 2004-03-08 | 2005-09-08 | Mediguide Ltd. | Automatic guidewire maneuvering system and method |
US20060106338A1 (en) * | 2004-11-18 | 2006-05-18 | Chang David W | Endoluminal delivery of anesthesia |
DE102005019371A1 (en) * | 2005-04-26 | 2006-11-09 | Siemens Ag | Ultrasonic catheter, comprises integrated ducts dispensing contrast media for ultrasonic inspection as well as for X-raying |
WO2006138109A1 (en) * | 2005-06-14 | 2006-12-28 | Tengiz Tkebuchava | Catheter for introduction of medications to the tissues of a heart or other organ |
US20070088244A1 (en) * | 2005-10-18 | 2007-04-19 | Biocardia, Inc. | Bio-interventional therapeutic treatments for cardiovascular diseases |
WO2007067324A1 (en) * | 2005-12-02 | 2007-06-14 | Abbott Cardiovascular Systems Inc. | Echogenic needle catheter configured to produce an improved ultrasound image |
US20070265516A1 (en) * | 2006-05-15 | 2007-11-15 | Wang Edwin Y | Echogenic needle catheter configured to produce an improved ultrasound image |
US20090131910A1 (en) * | 2005-12-02 | 2009-05-21 | Abbott Cardiovascular Systems Inc. | Visualization of a catheter viewed under ultrasound imaging |
US20100004723A1 (en) * | 2008-07-03 | 2010-01-07 | Foster Arthur J | Helical fixation member with chemical elution capabilities |
US20100174243A1 (en) * | 2009-01-05 | 2010-07-08 | Warsaw Orthopedic, Inc. | Apparatus for Delivery of Therapeutic Material to an Intervertebral Disc and Method of Use |
US20110034986A1 (en) * | 2007-07-18 | 2011-02-10 | Chou Tony M | Systems and methods for treating a carotid artery |
EP2535079A2 (en) * | 2005-01-18 | 2012-12-19 | Acclarent, Inc. | Paranasal sinus lavage device |
US8382674B2 (en) | 2005-12-02 | 2013-02-26 | Abbott Cardiovascular Systems Inc. | Visualization of a catheter viewed under ultrasound imaging |
US20130165860A1 (en) * | 2011-09-16 | 2013-06-27 | Darren Doud | Fluid exchange apparatus and methods |
US8512796B2 (en) | 2009-05-13 | 2013-08-20 | Si02 Medical Products, Inc. | Vessel inspection apparatus and methods |
US8795712B2 (en) | 2009-01-29 | 2014-08-05 | Forsight Vision4, Inc. | Posterior segment drug delivery |
US20140277314A1 (en) * | 2013-03-13 | 2014-09-18 | Boston Scientific Neuromodulation Corporation | Systems and methods for inputting fluid into a lead of an electrical stimulation system |
US8880185B2 (en) | 2010-06-11 | 2014-11-04 | Boston Scientific Scimed, Inc. | Renal denervation and stimulation employing wireless vascular energy transfer arrangement |
US8905963B2 (en) * | 2010-08-05 | 2014-12-09 | Forsight Vision4, Inc. | Injector apparatus and method for drug delivery |
US8939970B2 (en) | 2004-09-10 | 2015-01-27 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US8951251B2 (en) | 2011-11-08 | 2015-02-10 | Boston Scientific Scimed, Inc. | Ostial renal nerve ablation |
US8974451B2 (en) | 2010-10-25 | 2015-03-10 | Boston Scientific Scimed, Inc. | Renal nerve ablation using conductive fluid jet and RF energy |
US9023034B2 (en) | 2010-11-22 | 2015-05-05 | Boston Scientific Scimed, Inc. | Renal ablation electrode with force-activatable conduction apparatus |
US9028472B2 (en) | 2011-12-23 | 2015-05-12 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9028485B2 (en) | 2010-11-15 | 2015-05-12 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
US9050106B2 (en) | 2011-12-29 | 2015-06-09 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
US9060761B2 (en) | 2010-11-18 | 2015-06-23 | Boston Scientific Scime, Inc. | Catheter-focused magnetic field induced renal nerve ablation |
US9079000B2 (en) | 2011-10-18 | 2015-07-14 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
US9084609B2 (en) | 2010-07-30 | 2015-07-21 | Boston Scientific Scime, Inc. | Spiral balloon catheter for renal nerve ablation |
US9089350B2 (en) | 2010-11-16 | 2015-07-28 | Boston Scientific Scimed, Inc. | Renal denervation catheter with RF electrode and integral contrast dye injection arrangement |
US9119632B2 (en) | 2011-11-21 | 2015-09-01 | Boston Scientific Scimed, Inc. | Deflectable renal nerve ablation catheter |
US9119600B2 (en) | 2011-11-15 | 2015-09-01 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
US9125666B2 (en) | 2003-09-12 | 2015-09-08 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
US9125667B2 (en) | 2004-09-10 | 2015-09-08 | Vessix Vascular, Inc. | System for inducing desirable temperature effects on body tissue |
US9155589B2 (en) | 2010-07-30 | 2015-10-13 | Boston Scientific Scimed, Inc. | Sequential activation RF electrode set for renal nerve ablation |
US9162046B2 (en) | 2011-10-18 | 2015-10-20 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
US9173696B2 (en) | 2012-09-17 | 2015-11-03 | Boston Scientific Scimed, Inc. | Self-positioning electrode system and method for renal nerve modulation |
US9180046B2 (en) | 2001-06-12 | 2015-11-10 | The Johns Hopkins University School Of Medicine | Reservoir device for intraocular drug delivery |
US9186209B2 (en) | 2011-07-22 | 2015-11-17 | Boston Scientific Scimed, Inc. | Nerve modulation system having helical guide |
US9186210B2 (en) | 2011-10-10 | 2015-11-17 | Boston Scientific Scimed, Inc. | Medical devices including ablation electrodes |
US9192435B2 (en) | 2010-11-22 | 2015-11-24 | Boston Scientific Scimed, Inc. | Renal denervation catheter with cooled RF electrode |
US9192790B2 (en) | 2010-04-14 | 2015-11-24 | Boston Scientific Scimed, Inc. | Focused ultrasonic renal denervation |
US9220558B2 (en) | 2010-10-27 | 2015-12-29 | Boston Scientific Scimed, Inc. | RF renal denervation catheter with multiple independent electrodes |
US9220561B2 (en) | 2011-01-19 | 2015-12-29 | Boston Scientific Scimed, Inc. | Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury |
US9265969B2 (en) | 2011-12-21 | 2016-02-23 | Cardiac Pacemakers, Inc. | Methods for modulating cell function |
US9272095B2 (en) | 2011-04-01 | 2016-03-01 | Sio2 Medical Products, Inc. | Vessels, contact surfaces, and coating and inspection apparatus and methods |
US9277955B2 (en) | 2010-04-09 | 2016-03-08 | Vessix Vascular, Inc. | Power generating and control apparatus for the treatment of tissue |
US9289255B2 (en) | 2002-04-08 | 2016-03-22 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for renal neuromodulation |
US9297845B2 (en) | 2013-03-15 | 2016-03-29 | Boston Scientific Scimed, Inc. | Medical devices and methods for treatment of hypertension that utilize impedance compensation |
US9327100B2 (en) | 2008-11-14 | 2016-05-03 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US9326751B2 (en) | 2010-11-17 | 2016-05-03 | Boston Scientific Scimed, Inc. | Catheter guidance of external energy for renal denervation |
US9358365B2 (en) | 2010-07-30 | 2016-06-07 | Boston Scientific Scimed, Inc. | Precision electrode movement control for renal nerve ablation |
US9364284B2 (en) | 2011-10-12 | 2016-06-14 | Boston Scientific Scimed, Inc. | Method of making an off-wall spacer cage |
US9408661B2 (en) | 2010-07-30 | 2016-08-09 | Patrick A. Haverkost | RF electrodes on multiple flexible wires for renal nerve ablation |
US9420955B2 (en) | 2011-10-11 | 2016-08-23 | Boston Scientific Scimed, Inc. | Intravascular temperature monitoring system and method |
US9433760B2 (en) | 2011-12-28 | 2016-09-06 | Boston Scientific Scimed, Inc. | Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements |
US9452017B2 (en) | 2012-05-11 | 2016-09-27 | Medtronic Ardian Luxembourg S.A.R.L. | Multi-electrode catheter assemblies for renal neuromodulation and associated systems and methods |
US9458536B2 (en) | 2009-07-02 | 2016-10-04 | Sio2 Medical Products, Inc. | PECVD coating methods for capped syringes, cartridges and other articles |
US9463062B2 (en) | 2010-07-30 | 2016-10-11 | Boston Scientific Scimed, Inc. | Cooled conductive balloon RF catheter for renal nerve ablation |
US9474756B2 (en) | 2014-08-08 | 2016-10-25 | Forsight Vision4, Inc. | Stable and soluble formulations of receptor tyrosine kinase inhibitors, and methods of preparation thereof |
US9486355B2 (en) | 2005-05-03 | 2016-11-08 | Vessix Vascular, Inc. | Selective accumulation of energy with or without knowledge of tissue topography |
US9486270B2 (en) | 2002-04-08 | 2016-11-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for bilateral renal neuromodulation |
US9526654B2 (en) | 2013-03-28 | 2016-12-27 | Forsight Vision4, Inc. | Ophthalmic implant for delivering therapeutic substances |
US9545360B2 (en) | 2009-05-13 | 2017-01-17 | Sio2 Medical Products, Inc. | Saccharide protective coating for pharmaceutical package |
US9554968B2 (en) | 2013-03-11 | 2017-01-31 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging |
US9554848B2 (en) | 1999-04-05 | 2017-01-31 | Medtronic, Inc. | Ablation catheters and associated systems and methods |
US9579030B2 (en) | 2011-07-20 | 2017-02-28 | Boston Scientific Scimed, Inc. | Percutaneous devices and methods to visualize, target and ablate nerves |
US9649156B2 (en) | 2010-12-15 | 2017-05-16 | Boston Scientific Scimed, Inc. | Bipolar off-wall electrode device for renal nerve ablation |
US9662450B2 (en) | 2013-03-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus |
US9664626B2 (en) | 2012-11-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Coating inspection method |
US9668811B2 (en) | 2010-11-16 | 2017-06-06 | Boston Scientific Scimed, Inc. | Minimally invasive access for renal nerve ablation |
US9687166B2 (en) | 2013-10-14 | 2017-06-27 | Boston Scientific Scimed, Inc. | High resolution cardiac mapping electrode array catheter |
US9693821B2 (en) | 2013-03-11 | 2017-07-04 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9707036B2 (en) | 2013-06-25 | 2017-07-18 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation using localized indifferent electrodes |
US9707035B2 (en) | 2002-04-08 | 2017-07-18 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for catheter-based renal neuromodulation |
US9713730B2 (en) | 2004-09-10 | 2017-07-25 | Boston Scientific Scimed, Inc. | Apparatus and method for treatment of in-stent restenosis |
US9757193B2 (en) | 2002-04-08 | 2017-09-12 | Medtronic Ardian Luxembourg S.A.R.L. | Balloon catheter apparatus for renal neuromodulation |
US9764093B2 (en) | 2012-11-30 | 2017-09-19 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US9770606B2 (en) | 2013-10-15 | 2017-09-26 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
US9808300B2 (en) | 2006-05-02 | 2017-11-07 | Boston Scientific Scimed, Inc. | Control of arterial smooth muscle tone |
US9808311B2 (en) | 2013-03-13 | 2017-11-07 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
US9827039B2 (en) | 2013-03-15 | 2017-11-28 | Boston Scientific Scimed, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9827040B2 (en) | 2002-04-08 | 2017-11-28 | Medtronic Adrian Luxembourg S.a.r.l. | Methods and apparatus for intravascularly-induced neuromodulation |
US9833283B2 (en) | 2013-07-01 | 2017-12-05 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
US9863042B2 (en) | 2013-03-15 | 2018-01-09 | Sio2 Medical Products, Inc. | PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases |
US9878101B2 (en) | 2010-11-12 | 2018-01-30 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US9888961B2 (en) | 2013-03-15 | 2018-02-13 | Medtronic Ardian Luxembourg S.A.R.L. | Helical push wire electrode |
US9895194B2 (en) | 2013-09-04 | 2018-02-20 | Boston Scientific Scimed, Inc. | Radio frequency (RF) balloon catheter having flushing and cooling capability |
US9903782B2 (en) | 2012-11-16 | 2018-02-27 | Sio2 Medical Products, Inc. | Method and apparatus for detecting rapid barrier coating integrity characteristics |
US9907609B2 (en) | 2014-02-04 | 2018-03-06 | Boston Scientific Scimed, Inc. | Alternative placement of thermal sensors on bipolar electrode |
US9919144B2 (en) | 2011-04-08 | 2018-03-20 | Medtronic Adrian Luxembourg S.a.r.l. | Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery |
US9925001B2 (en) | 2013-07-19 | 2018-03-27 | Boston Scientific Scimed, Inc. | Spiral bipolar electrode renal denervation balloon |
US9937099B2 (en) | 2013-03-11 | 2018-04-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging with low oxygen transmission rate |
US9943365B2 (en) | 2013-06-21 | 2018-04-17 | Boston Scientific Scimed, Inc. | Renal denervation balloon catheter with ride along electrode support |
US9956033B2 (en) | 2013-03-11 | 2018-05-01 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9962223B2 (en) | 2013-10-15 | 2018-05-08 | Boston Scientific Scimed, Inc. | Medical device balloon |
US9968603B2 (en) | 2013-03-14 | 2018-05-15 | Forsight Vision4, Inc. | Systems for sustained intraocular delivery of low solubility compounds from a port delivery system implant |
US9974607B2 (en) | 2006-10-18 | 2018-05-22 | Vessix Vascular, Inc. | Inducing desirable temperature effects on body tissue |
US10022182B2 (en) | 2013-06-21 | 2018-07-17 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation having rotatable shafts |
US10076382B2 (en) | 2010-10-25 | 2018-09-18 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter apparatuses having multi-electrode arrays for renal neuromodulation and associated systems and methods |
US10085799B2 (en) | 2011-10-11 | 2018-10-02 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
US10166142B2 (en) | 2010-01-29 | 2019-01-01 | Forsight Vision4, Inc. | Small molecule delivery with implantable therapeutic device |
US10189603B2 (en) | 2011-11-11 | 2019-01-29 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US10201660B2 (en) | 2012-11-30 | 2019-02-12 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like |
US10265122B2 (en) | 2013-03-15 | 2019-04-23 | Boston Scientific Scimed, Inc. | Nerve ablation devices and related methods of use |
US10271898B2 (en) | 2013-10-25 | 2019-04-30 | Boston Scientific Scimed, Inc. | Embedded thermocouple in denervation flex circuit |
US10293190B2 (en) | 2002-04-08 | 2019-05-21 | Medtronic Ardian Luxembourg S.A.R.L. | Thermally-induced renal neuromodulation and associated systems and methods |
US10321946B2 (en) | 2012-08-24 | 2019-06-18 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices with weeping RF ablation balloons |
US10335280B2 (en) | 2000-01-19 | 2019-07-02 | Medtronic, Inc. | Method for ablating target tissue of a patient |
US10342609B2 (en) | 2013-07-22 | 2019-07-09 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
EP3530220A1 (en) * | 2018-02-15 | 2019-08-28 | Biosense Webster (Israel) Ltd. | System(s) and device(s) for the prevention of esophageal fistula during catheter ablation |
US10398592B2 (en) | 2011-06-28 | 2019-09-03 | Forsight Vision4, Inc. | Diagnostic methods and apparatus |
US10398464B2 (en) | 2012-09-21 | 2019-09-03 | Boston Scientific Scimed, Inc. | System for nerve modulation and innocuous thermal gradient nerve block |
US10413357B2 (en) | 2013-07-11 | 2019-09-17 | Boston Scientific Scimed, Inc. | Medical device with stretchable electrode assemblies |
US10549127B2 (en) | 2012-09-21 | 2020-02-04 | Boston Scientific Scimed, Inc. | Self-cooling ultrasound ablation catheter |
US10588682B2 (en) | 2011-04-25 | 2020-03-17 | Medtronic Ardian Luxembourg S.A.R.L. | Apparatus and methods related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls |
US10589130B2 (en) | 2006-05-25 | 2020-03-17 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US10660698B2 (en) | 2013-07-11 | 2020-05-26 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation |
US10660703B2 (en) | 2012-05-08 | 2020-05-26 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices |
US10695124B2 (en) | 2013-07-22 | 2020-06-30 | Boston Scientific Scimed, Inc. | Renal nerve ablation catheter having twist balloon |
US10709490B2 (en) | 2014-05-07 | 2020-07-14 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods |
CN111432868A (en) * | 2017-12-05 | 2020-07-17 | 马奎特紧急护理公司 | Piercing assembly and respiratory catheter kit |
US10722300B2 (en) | 2013-08-22 | 2020-07-28 | Boston Scientific Scimed, Inc. | Flexible circuit having improved adhesion to a renal nerve modulation balloon |
US10736690B2 (en) | 2014-04-24 | 2020-08-11 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation catheters and associated systems and methods |
US10835305B2 (en) | 2012-10-10 | 2020-11-17 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices and methods |
US10874548B2 (en) | 2010-11-19 | 2020-12-29 | Forsight Vision4, Inc. | Therapeutic agent formulations for implanted devices |
US10945786B2 (en) | 2013-10-18 | 2021-03-16 | Boston Scientific Scimed, Inc. | Balloon catheters with flexible conducting wires and related methods of use and manufacture |
US10952790B2 (en) | 2013-09-13 | 2021-03-23 | Boston Scientific Scimed, Inc. | Ablation balloon with vapor deposited cover layer |
US11000679B2 (en) | 2014-02-04 | 2021-05-11 | Boston Scientific Scimed, Inc. | Balloon protection and rewrapping devices and related methods of use |
US11066745B2 (en) | 2014-03-28 | 2021-07-20 | Sio2 Medical Products, Inc. | Antistatic coatings for plastic vessels |
US11077233B2 (en) | 2015-08-18 | 2021-08-03 | Sio2 Medical Products, Inc. | Pharmaceutical and other packaging with low oxygen transmission rate |
US11116695B2 (en) | 2011-11-11 | 2021-09-14 | Sio2 Medical Products, Inc. | Blood sample collection tube |
US11202671B2 (en) | 2014-01-06 | 2021-12-21 | Boston Scientific Scimed, Inc. | Tear resistant flex circuit assembly |
US11213678B2 (en) | 2013-09-09 | 2022-01-04 | Medtronic Ardian Luxembourg S.A.R.L. | Method of manufacturing a medical device for neuromodulation |
US11246654B2 (en) | 2013-10-14 | 2022-02-15 | Boston Scientific Scimed, Inc. | Flexible renal nerve ablation devices and related methods of use and manufacture |
US11419759B2 (en) | 2017-11-21 | 2022-08-23 | Forsight Vision4, Inc. | Fluid exchange apparatus for expandable port delivery system and methods of use |
US11432959B2 (en) | 2015-11-20 | 2022-09-06 | Forsight Vision4, Inc. | Porous structures for extended release drug delivery devices |
US11624115B2 (en) | 2010-05-12 | 2023-04-11 | Sio2 Medical Products, Inc. | Syringe with PECVD lubrication |
USD1033637S1 (en) | 2022-01-24 | 2024-07-02 | Forsight Vision4, Inc. | Fluid exchange device |
Families Citing this family (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6051008A (en) | 1996-12-02 | 2000-04-18 | Angiotrax, Inc. | Apparatus having stabilization members for percutaneously performing surgery and methods of use |
US6120520A (en) | 1997-05-27 | 2000-09-19 | Angiotrax, Inc. | Apparatus and methods for stimulating revascularization and/or tissue growth |
US6102926A (en) | 1996-12-02 | 2000-08-15 | Angiotrax, Inc. | Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use |
US6749617B1 (en) | 1997-11-04 | 2004-06-15 | Scimed Life Systems, Inc. | Catheter and implants for the delivery of therapeutic agents to tissues |
US6623473B1 (en) | 1998-06-04 | 2003-09-23 | Biosense Webster, Inc. | Injection catheter with multi-directional delivery injection needle |
US7416547B2 (en) | 1999-03-29 | 2008-08-26 | Biosense Webster Inc. | Injection catheter |
US8079982B1 (en) | 1998-06-04 | 2011-12-20 | Biosense Webster, Inc. | Injection catheter with needle electrode |
US6478776B1 (en) * | 2000-04-05 | 2002-11-12 | Biocardia, Inc. | Implant delivery catheter system and methods for its use |
US7686799B2 (en) * | 2000-07-13 | 2010-03-30 | Abbott Cardiovascular Systems Inc. | Deployment system for myocardial cellular material |
DE60142584D1 (en) * | 2000-11-08 | 2010-08-26 | Boston Scient Ltd | MULTILUMEN CATHETERS AND IMPLANTS FOR THE ADMINISTRATION OF THERAPEUTIC SUBSTANCES OF TISSUE |
US7204828B2 (en) * | 2001-09-14 | 2007-04-17 | Zymequest, Inc. | Collection needle |
US6860516B2 (en) * | 2001-12-07 | 2005-03-01 | Pentax Corporation | Channel tube coupling structure for anti-pollution type endoscope |
US6758828B2 (en) | 2001-12-10 | 2004-07-06 | Regents Of The University Of Minnesota | Catheter for cell delivery in tissue |
US7169127B2 (en) * | 2002-02-21 | 2007-01-30 | Boston Scientific Scimed, Inc. | Pressure apron direct injection catheter |
US7108685B2 (en) * | 2002-04-15 | 2006-09-19 | Boston Scientific Scimed, Inc. | Patch stabilization of rods for treatment of cardiac muscle |
US7998062B2 (en) | 2004-03-29 | 2011-08-16 | Superdimension, Ltd. | Endoscope structures and techniques for navigating to a target in branched structure |
US8574195B2 (en) * | 2002-06-10 | 2013-11-05 | Advanced Cardiovascular Systems, Inc. | Systems and methods for detecting tissue contact and needle penetration depth using static fluid pressure measurements |
US7364567B2 (en) * | 2002-06-10 | 2008-04-29 | Abbott Cardiovascular Systems Inc. | Systems and methods for detecting tissue contact and needle penetration depth |
US9655676B2 (en) | 2003-05-16 | 2017-05-23 | Trod Medical | Method of percutaneous localized or focal treatment of prostate lesions using radio frequency |
ES2324613T5 (en) | 2003-05-16 | 2016-01-28 | Trod Medical | Medical device using a spiral electrode |
US8308708B2 (en) | 2003-07-15 | 2012-11-13 | Abbott Cardiovascular Systems Inc. | Deployment system for myocardial cellular material |
EP2316328B1 (en) | 2003-09-15 | 2012-05-09 | Super Dimension Ltd. | Wrap-around holding device for use with bronchoscopes |
DE602004022432D1 (en) | 2003-09-15 | 2009-09-17 | Super Dimension Ltd | SYSTEM FROM ACCESSORIES FOR USE WITH BRONCHOSCOPES |
WO2005028872A2 (en) | 2003-09-18 | 2005-03-31 | Myrakelle, Llc | Rotary blood pump |
US8764725B2 (en) | 2004-02-09 | 2014-07-01 | Covidien Lp | Directional anchoring mechanism, method and applications thereof |
US7465286B2 (en) * | 2004-03-03 | 2008-12-16 | C. R. Bard, Inc. | Loop-tip catheter |
US9333321B2 (en) | 2004-04-12 | 2016-05-10 | Aegis Medical Technologies, Llc | Multi-lumen catheter |
US7517338B2 (en) * | 2005-01-21 | 2009-04-14 | Boston Scientific Scimed, Inc. | Delivery of therapeutic through multiple delivery members |
US20070225610A1 (en) * | 2006-03-27 | 2007-09-27 | Boston Scientific Scimed, Inc. | Capturing electrical signals with a catheter needle |
KR20090074110A (en) | 2006-03-31 | 2009-07-06 | 오퀴스 메디컬 코포레이션 | Rotary blood pump |
US20070255270A1 (en) * | 2006-04-27 | 2007-11-01 | Medtronic Vascular, Inc. | Intraluminal guidance system using bioelectric impedance |
WO2008119676A1 (en) * | 2007-04-02 | 2008-10-09 | Solvay Advanced Polymers, L.L.C. | New flexible pipe |
US8292873B2 (en) | 2007-08-09 | 2012-10-23 | Boston Scientific Scimed, Inc. | Catheter devices for myocardial injections or other uses |
US8905920B2 (en) | 2007-09-27 | 2014-12-09 | Covidien Lp | Bronchoscope adapter and method |
US9575140B2 (en) | 2008-04-03 | 2017-02-21 | Covidien Lp | Magnetic interference detection system and method |
US20090264771A1 (en) * | 2008-04-22 | 2009-10-22 | Medtronic Vascular, Inc. | Ultrasonic Based Characterization of Plaque in Chronic Total Occlusions |
WO2009147671A1 (en) | 2008-06-03 | 2009-12-10 | Superdimension Ltd. | Feature-based registration method |
US8218847B2 (en) | 2008-06-06 | 2012-07-10 | Superdimension, Ltd. | Hybrid registration method |
US8932207B2 (en) | 2008-07-10 | 2015-01-13 | Covidien Lp | Integrated multi-functional endoscopic tool |
US20100145306A1 (en) * | 2008-07-24 | 2010-06-10 | Boston Scientific Scimed, Inc. | Various Catheter Devices for Myocardial Injections or Other Uses |
US8611984B2 (en) | 2009-04-08 | 2013-12-17 | Covidien Lp | Locatable catheter |
US10582834B2 (en) | 2010-06-15 | 2020-03-10 | Covidien Lp | Locatable expandable working channel and method |
US8696620B2 (en) * | 2010-07-30 | 2014-04-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter with a mechanism for omni-directional deflection of a catheter shaft |
EP2841146A4 (en) * | 2012-04-23 | 2016-08-31 | Aegis Medical Technologies Llc | Multi-lumen catheter |
EP2674109A1 (en) * | 2012-06-15 | 2013-12-18 | Endo Tools Therapeutics S.A. | Endoscopic surgical apparatus |
US11013858B2 (en) * | 2016-01-12 | 2021-05-25 | David S. Goldsmith | Nonjacketing side-entry connectors and prosthetic disorder response systems |
US10952593B2 (en) | 2014-06-10 | 2021-03-23 | Covidien Lp | Bronchoscope adapter |
US10806922B2 (en) * | 2015-02-12 | 2020-10-20 | Medtronic, Inc | Medical access tools, assemblies, and methods |
US10426555B2 (en) | 2015-06-03 | 2019-10-01 | Covidien Lp | Medical instrument with sensor for use in a system and method for electromagnetic navigation |
KR101678069B1 (en) * | 2016-03-18 | 2016-11-22 | (주) 더아이엔지메디칼 | Needle catheter for injecting medicine |
US10478254B2 (en) | 2016-05-16 | 2019-11-19 | Covidien Lp | System and method to access lung tissue |
US10792106B2 (en) | 2016-10-28 | 2020-10-06 | Covidien Lp | System for calibrating an electromagnetic navigation system |
US10751126B2 (en) | 2016-10-28 | 2020-08-25 | Covidien Lp | System and method for generating a map for electromagnetic navigation |
US10517505B2 (en) | 2016-10-28 | 2019-12-31 | Covidien Lp | Systems, methods, and computer-readable media for optimizing an electromagnetic navigation system |
US10722311B2 (en) | 2016-10-28 | 2020-07-28 | Covidien Lp | System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map |
US10418705B2 (en) | 2016-10-28 | 2019-09-17 | Covidien Lp | Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same |
US10615500B2 (en) | 2016-10-28 | 2020-04-07 | Covidien Lp | System and method for designing electromagnetic navigation antenna assemblies |
US10446931B2 (en) | 2016-10-28 | 2019-10-15 | Covidien Lp | Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same |
US10638952B2 (en) | 2016-10-28 | 2020-05-05 | Covidien Lp | Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system |
IT201600112526A1 (en) * | 2016-11-08 | 2018-05-08 | Mario Moronesi | Multiple hole catheter needle |
CN106983928B (en) * | 2017-04-28 | 2020-07-10 | 宁波迪创医疗科技有限公司 | System for delivering therapeutic agents |
US11219489B2 (en) | 2017-10-31 | 2022-01-11 | Covidien Lp | Devices and systems for providing sensors in parallel with medical tools |
US10667855B1 (en) | 2019-05-10 | 2020-06-02 | Trod Medical Us, Llc | Dual coil ablation devices |
CN114681018B (en) * | 2020-12-30 | 2024-07-02 | 杭州德晋医疗科技有限公司 | Endocardial injection device and endocardial injection system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4134402A (en) * | 1976-02-11 | 1979-01-16 | Mahurkar Sakharam D | Double lumen hemodialysis catheter |
US5464395A (en) * | 1994-04-05 | 1995-11-07 | Faxon; David P. | Catheter for delivering therapeutic and/or diagnostic agents to the tissue surrounding a bodily passageway |
US5891114A (en) * | 1997-09-30 | 1999-04-06 | Target Therapeutics, Inc. | Soft-tip high performance braided catheter |
US6280441B1 (en) * | 1997-12-15 | 2001-08-28 | Sherwood Services Ag | Apparatus and method for RF lesioning |
US6309370B1 (en) * | 1998-02-05 | 2001-10-30 | Biosense, Inc. | Intracardiac drug delivery |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5328470A (en) * | 1989-03-31 | 1994-07-12 | The Regents Of The University Of Michigan | Treatment of diseases by site-specific instillation of cells or site-specific transformation of cells and kits therefor |
US5084016A (en) * | 1989-09-05 | 1992-01-28 | Freeman Andrew B | Epidural catheter apparatus with an inflation fitting |
ATE106758T1 (en) * | 1989-11-21 | 1994-06-15 | Andreas Lindner | INJECTION DEVICE. |
US5447533A (en) * | 1992-09-03 | 1995-09-05 | Pacesetter, Inc. | Implantable stimulation lead having an advanceable therapeutic drug delivery system |
DE4235506A1 (en) | 1992-10-21 | 1994-04-28 | Bavaria Med Tech | Drug injection catheter |
US5300022A (en) * | 1992-11-12 | 1994-04-05 | Martin Klapper | Urinary catheter and bladder irrigation system |
NL9300670A (en) * | 1993-04-20 | 1994-11-16 | Cordis Europ | Catheter with electrically conductive wire reinforcement. |
US5385148A (en) * | 1993-07-30 | 1995-01-31 | The Regents Of The University Of California | Cardiac imaging and ablation catheter |
US5431649A (en) | 1993-08-27 | 1995-07-11 | Medtronic, Inc. | Method and apparatus for R-F ablation |
DE4408108A1 (en) * | 1994-03-10 | 1995-09-14 | Bavaria Med Tech | Catheter for injecting a fluid or a drug |
US5609151A (en) * | 1994-09-08 | 1997-03-11 | Medtronic, Inc. | Method for R-F ablation |
US5797870A (en) * | 1995-06-07 | 1998-08-25 | Indiana University Foundation | Pericardial delivery of therapeutic and diagnostic agents |
US5672174A (en) * | 1995-08-15 | 1997-09-30 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method |
DE19621099C2 (en) * | 1996-05-24 | 1999-05-20 | Sulzer Osypka Gmbh | Device with a catheter and a needle that can be inserted into the heart wall from the inside as a high-frequency electrode |
US6102926A (en) * | 1996-12-02 | 2000-08-15 | Angiotrax, Inc. | Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use |
JP4535468B2 (en) * | 1998-02-05 | 2010-09-01 | バイオセンス・ウエブスター・インコーポレーテツド | Intracardiac drug delivery |
-
1999
- 1999-11-11 AT AT99957299T patent/ATE267032T1/en not_active IP Right Cessation
- 1999-11-11 US US09/831,493 patent/US6620139B1/en not_active Expired - Fee Related
- 1999-11-11 DE DE69917484T patent/DE69917484T2/en not_active Expired - Fee Related
- 1999-11-11 EP EP99957299A patent/EP1140278B1/en not_active Expired - Lifetime
- 1999-11-11 WO PCT/EP1999/008686 patent/WO2000035531A1/en active IP Right Grant
-
2003
- 2003-07-21 US US10/622,644 patent/US20040024371A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4134402A (en) * | 1976-02-11 | 1979-01-16 | Mahurkar Sakharam D | Double lumen hemodialysis catheter |
US4134402B1 (en) * | 1976-02-11 | 1989-07-25 | ||
US5464395A (en) * | 1994-04-05 | 1995-11-07 | Faxon; David P. | Catheter for delivering therapeutic and/or diagnostic agents to the tissue surrounding a bodily passageway |
US5891114A (en) * | 1997-09-30 | 1999-04-06 | Target Therapeutics, Inc. | Soft-tip high performance braided catheter |
US6280441B1 (en) * | 1997-12-15 | 2001-08-28 | Sherwood Services Ag | Apparatus and method for RF lesioning |
US6309370B1 (en) * | 1998-02-05 | 2001-10-30 | Biosense, Inc. | Intracardiac drug delivery |
Cited By (238)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9554848B2 (en) | 1999-04-05 | 2017-01-31 | Medtronic, Inc. | Ablation catheters and associated systems and methods |
US10335280B2 (en) | 2000-01-19 | 2019-07-02 | Medtronic, Inc. | Method for ablating target tissue of a patient |
US9522082B2 (en) | 2001-06-12 | 2016-12-20 | The Johns Hopkins University | Reservoir device for intraocular drug delivery |
US10470924B2 (en) | 2001-06-12 | 2019-11-12 | The Johns Hopkins University | Reservoir device for intraocular drug delivery |
US9180046B2 (en) | 2001-06-12 | 2015-11-10 | The Johns Hopkins University School Of Medicine | Reservoir device for intraocular drug delivery |
US10105180B2 (en) | 2002-04-08 | 2018-10-23 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for intravascularly-induced neuromodulation |
US10420606B2 (en) | 2002-04-08 | 2019-09-24 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen |
US9827041B2 (en) | 2002-04-08 | 2017-11-28 | Medtronic Ardian Luxembourg S.A.R.L. | Balloon catheter apparatuses for renal denervation |
US9486270B2 (en) | 2002-04-08 | 2016-11-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for bilateral renal neuromodulation |
US9757193B2 (en) | 2002-04-08 | 2017-09-12 | Medtronic Ardian Luxembourg S.A.R.L. | Balloon catheter apparatus for renal neuromodulation |
US9289255B2 (en) | 2002-04-08 | 2016-03-22 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for renal neuromodulation |
US9707035B2 (en) | 2002-04-08 | 2017-07-18 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for catheter-based renal neuromodulation |
US10376311B2 (en) | 2002-04-08 | 2019-08-13 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for intravascularly-induced neuromodulation |
US9675413B2 (en) | 2002-04-08 | 2017-06-13 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for renal neuromodulation |
US10293190B2 (en) | 2002-04-08 | 2019-05-21 | Medtronic Ardian Luxembourg S.A.R.L. | Thermally-induced renal neuromodulation and associated systems and methods |
US9827040B2 (en) | 2002-04-08 | 2017-11-28 | Medtronic Adrian Luxembourg S.a.r.l. | Methods and apparatus for intravascularly-induced neuromodulation |
US9125666B2 (en) | 2003-09-12 | 2015-09-08 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
US10188457B2 (en) | 2003-09-12 | 2019-01-29 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation |
US9510901B2 (en) | 2003-09-12 | 2016-12-06 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation |
US8055327B2 (en) | 2004-03-08 | 2011-11-08 | Mediguide Ltd. | Automatic guidewire maneuvering system and method |
US20050197557A1 (en) * | 2004-03-08 | 2005-09-08 | Mediguide Ltd. | Automatic guidewire maneuvering system and method |
US20050197566A1 (en) * | 2004-03-08 | 2005-09-08 | Mediguide Ltd. | Automatic guidewire maneuvering system and method |
US7811294B2 (en) * | 2004-03-08 | 2010-10-12 | Mediguide Ltd. | Automatic guidewire maneuvering system and method |
US20100331670A1 (en) * | 2004-03-08 | 2010-12-30 | Gera Strommer | Automatic guidewire maneuvering system and method |
US9492103B2 (en) | 2004-03-08 | 2016-11-15 | Mediguide Ltd. | Automatic guidewire maneuvering system and method |
US8939970B2 (en) | 2004-09-10 | 2015-01-27 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US9125667B2 (en) | 2004-09-10 | 2015-09-08 | Vessix Vascular, Inc. | System for inducing desirable temperature effects on body tissue |
US9713730B2 (en) | 2004-09-10 | 2017-07-25 | Boston Scientific Scimed, Inc. | Apparatus and method for treatment of in-stent restenosis |
EP1827555A2 (en) * | 2004-11-18 | 2007-09-05 | David W. Chang | Endoluminal delivery of anesthesia |
US20110125131A1 (en) * | 2004-11-18 | 2011-05-26 | Silk Road Medical, Inc. | Endoluminal delivery of anesthesia |
US7879011B2 (en) | 2004-11-18 | 2011-02-01 | Silk Road Medical, Inc. | Endoluminal delivery of anesthesia |
US9669183B2 (en) | 2004-11-18 | 2017-06-06 | Silk Road Medical, Inc. | Endoluminal delivery of anesthesia |
EP1827555A4 (en) * | 2004-11-18 | 2010-03-10 | David W Chang | Endoluminal delivery of anesthesia |
US8308709B2 (en) | 2004-11-18 | 2012-11-13 | Silk Road Medical, Inc. | Endoluminal delivery of anesthesia |
US9295817B2 (en) | 2004-11-18 | 2016-03-29 | Silk Road Medical, Inc. | Endoluminal delivery of anesthesia |
US12053590B2 (en) | 2004-11-18 | 2024-08-06 | Silk Road Medical, Inc. | Endoluminal delivery of anesthesia |
US10328232B2 (en) | 2004-11-18 | 2019-06-25 | Silk Road Medical, Inc. | Endoluminal delivery of anesthesia |
US20060106338A1 (en) * | 2004-11-18 | 2006-05-18 | Chang David W | Endoluminal delivery of anesthesia |
US10828460B2 (en) | 2004-11-18 | 2020-11-10 | Silk Road Medical, Inc. | Endoluminal delivery of anesthesia |
EP2535079A2 (en) * | 2005-01-18 | 2012-12-19 | Acclarent, Inc. | Paranasal sinus lavage device |
US8506492B2 (en) | 2005-04-26 | 2013-08-13 | Siemens Aktiengesellschaft | Ultrasound catheter and imaging device for recording ultra-sound images |
DE102005019371B4 (en) * | 2005-04-26 | 2009-04-09 | Siemens Ag | Image recording device for recording ultrasound images |
DE102005019371A1 (en) * | 2005-04-26 | 2006-11-09 | Siemens Ag | Ultrasonic catheter, comprises integrated ducts dispensing contrast media for ultrasonic inspection as well as for X-raying |
US20060264757A1 (en) * | 2005-04-26 | 2006-11-23 | Michael Maschke | Ultrasound catheter and imaging device for recording ultra-sound images |
US9486355B2 (en) | 2005-05-03 | 2016-11-08 | Vessix Vascular, Inc. | Selective accumulation of energy with or without knowledge of tissue topography |
US20100168713A1 (en) * | 2005-06-14 | 2010-07-01 | Tengiz Tkebuchava | Catheter for introduction of medications to the tissues of a heart or other organ |
US7691086B2 (en) | 2005-06-14 | 2010-04-06 | Tengiz Tkebuchava | Catheter for introduction of medications to the tissues of a heart or other organ |
WO2006138109A1 (en) * | 2005-06-14 | 2006-12-28 | Tengiz Tkebuchava | Catheter for introduction of medications to the tissues of a heart or other organ |
US20070005018A1 (en) * | 2005-06-14 | 2007-01-04 | Tengiz Tekbuchava | Catheter for introduction of medications to the tissues of a heart or other organ |
US9011380B2 (en) | 2005-06-14 | 2015-04-21 | Tengiz Tkebuchava | Catheter for introduction of medications to the tissues of a heart or other organ |
US7736346B2 (en) | 2005-10-18 | 2010-06-15 | Biocardia, Inc. | Bio-interventional therapeutic treatments for cardiovascular diseases |
US20070088244A1 (en) * | 2005-10-18 | 2007-04-19 | Biocardia, Inc. | Bio-interventional therapeutic treatments for cardiovascular diseases |
US8382674B2 (en) | 2005-12-02 | 2013-02-26 | Abbott Cardiovascular Systems Inc. | Visualization of a catheter viewed under ultrasound imaging |
US7867169B2 (en) * | 2005-12-02 | 2011-01-11 | Abbott Cardiovascular Systems Inc. | Echogenic needle catheter configured to produce an improved ultrasound image |
US20100331697A1 (en) * | 2005-12-02 | 2010-12-30 | Webler William E | Echogenic needle catheter configured to produce an improved ultrasound image |
US20070167822A1 (en) * | 2005-12-02 | 2007-07-19 | Webler William E | Echogenic needle catheter configured to produce an improved ultrasound image |
WO2007067324A1 (en) * | 2005-12-02 | 2007-06-14 | Abbott Cardiovascular Systems Inc. | Echogenic needle catheter configured to produce an improved ultrasound image |
US20090131910A1 (en) * | 2005-12-02 | 2009-05-21 | Abbott Cardiovascular Systems Inc. | Visualization of a catheter viewed under ultrasound imaging |
US8303509B2 (en) | 2005-12-02 | 2012-11-06 | Abbott Cardiovascular Systems Inc. | Echogenic needle catheter configured to produce an improved ultrasound image |
US8430863B2 (en) | 2005-12-02 | 2013-04-30 | Abbott Cardiovascular Systems Inc. | Visualization of a catheter viewed under ultrasound imaging |
US9808300B2 (en) | 2006-05-02 | 2017-11-07 | Boston Scientific Scimed, Inc. | Control of arterial smooth muscle tone |
US7794402B2 (en) | 2006-05-15 | 2010-09-14 | Advanced Cardiovascular Systems, Inc. | Echogenic needle catheter configured to produce an improved ultrasound image |
US20070265516A1 (en) * | 2006-05-15 | 2007-11-15 | Wang Edwin Y | Echogenic needle catheter configured to produce an improved ultrasound image |
US10589130B2 (en) | 2006-05-25 | 2020-03-17 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US9974607B2 (en) | 2006-10-18 | 2018-05-22 | Vessix Vascular, Inc. | Inducing desirable temperature effects on body tissue |
US10213252B2 (en) | 2006-10-18 | 2019-02-26 | Vessix, Inc. | Inducing desirable temperature effects on body tissue |
US10413356B2 (en) | 2006-10-18 | 2019-09-17 | Boston Scientific Scimed, Inc. | System for inducing desirable temperature effects on body tissue |
US9655755B2 (en) | 2007-07-18 | 2017-05-23 | Silk Road Medical, Inc. | Systems and methods for treating a carotid artery |
US20110034986A1 (en) * | 2007-07-18 | 2011-02-10 | Chou Tony M | Systems and methods for treating a carotid artery |
US10952882B2 (en) | 2007-07-18 | 2021-03-23 | Silk Road Medical, Inc. | Systems and methods for treating a carotid artery |
US10085864B2 (en) | 2007-07-18 | 2018-10-02 | Silk Road Medical, Inc. | Systems and methods for treating a carotid artery |
US8858490B2 (en) | 2007-07-18 | 2014-10-14 | Silk Road Medical, Inc. | Systems and methods for treating a carotid artery |
US9259215B2 (en) | 2007-07-18 | 2016-02-16 | Silk Road Medical, Inc. | Systems and methods for treating a carotid artery |
US20100004723A1 (en) * | 2008-07-03 | 2010-01-07 | Foster Arthur J | Helical fixation member with chemical elution capabilities |
WO2010002633A1 (en) * | 2008-07-03 | 2010-01-07 | Cardiac Pacemakers, Inc. | Helical fixation member with chemical elution capabilities |
US8275468B2 (en) | 2008-07-03 | 2012-09-25 | Cardiac Pacemakers, Inc. | Helical fixation member with chemical elution capabilities |
US9327100B2 (en) | 2008-11-14 | 2016-05-03 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US20100174243A1 (en) * | 2009-01-05 | 2010-07-08 | Warsaw Orthopedic, Inc. | Apparatus for Delivery of Therapeutic Material to an Intervertebral Disc and Method of Use |
WO2010078406A3 (en) * | 2009-01-05 | 2010-09-30 | Warsaw Orthopedic, Inc. | Apparatus for delivery of therapeutic material to an intervertebral disc and method of use |
US8808727B2 (en) | 2009-01-29 | 2014-08-19 | Forsight Vision4, Inc. | Posterior segment drug delivery |
US8795712B2 (en) | 2009-01-29 | 2014-08-05 | Forsight Vision4, Inc. | Posterior segment drug delivery |
US9851351B2 (en) | 2009-01-29 | 2017-12-26 | Forsight Vision4, Inc. | Posterior segment drug delivery |
US10656152B2 (en) | 2009-01-29 | 2020-05-19 | Forsight Vision4, Inc. | Posterior segment drug delivery |
US11642310B2 (en) | 2009-01-29 | 2023-05-09 | Forsight Vision4, Inc. | Posterior segment drug delivery |
US9417238B2 (en) | 2009-01-29 | 2016-08-16 | Forsight Vision4, Inc. | Posterior segment drug delivery |
US9545360B2 (en) | 2009-05-13 | 2017-01-17 | Sio2 Medical Products, Inc. | Saccharide protective coating for pharmaceutical package |
US9572526B2 (en) | 2009-05-13 | 2017-02-21 | Sio2 Medical Products, Inc. | Apparatus and method for transporting a vessel to and from a PECVD processing station |
US8512796B2 (en) | 2009-05-13 | 2013-08-20 | Si02 Medical Products, Inc. | Vessel inspection apparatus and methods |
US10537273B2 (en) | 2009-05-13 | 2020-01-21 | Sio2 Medical Products, Inc. | Syringe with PECVD lubricity layer |
US10390744B2 (en) | 2009-05-13 | 2019-08-27 | Sio2 Medical Products, Inc. | Syringe with PECVD lubricity layer, apparatus and method for transporting a vessel to and from a PECVD processing station, and double wall plastic vessel |
US8834954B2 (en) | 2009-05-13 | 2014-09-16 | Sio2 Medical Products, Inc. | Vessel inspection apparatus and methods |
US9458536B2 (en) | 2009-07-02 | 2016-10-04 | Sio2 Medical Products, Inc. | PECVD coating methods for capped syringes, cartridges and other articles |
US10166142B2 (en) | 2010-01-29 | 2019-01-01 | Forsight Vision4, Inc. | Small molecule delivery with implantable therapeutic device |
US9277955B2 (en) | 2010-04-09 | 2016-03-08 | Vessix Vascular, Inc. | Power generating and control apparatus for the treatment of tissue |
US9192790B2 (en) | 2010-04-14 | 2015-11-24 | Boston Scientific Scimed, Inc. | Focused ultrasonic renal denervation |
US11624115B2 (en) | 2010-05-12 | 2023-04-11 | Sio2 Medical Products, Inc. | Syringe with PECVD lubrication |
US8880185B2 (en) | 2010-06-11 | 2014-11-04 | Boston Scientific Scimed, Inc. | Renal denervation and stimulation employing wireless vascular energy transfer arrangement |
US9463062B2 (en) | 2010-07-30 | 2016-10-11 | Boston Scientific Scimed, Inc. | Cooled conductive balloon RF catheter for renal nerve ablation |
US9408661B2 (en) | 2010-07-30 | 2016-08-09 | Patrick A. Haverkost | RF electrodes on multiple flexible wires for renal nerve ablation |
US9084609B2 (en) | 2010-07-30 | 2015-07-21 | Boston Scientific Scime, Inc. | Spiral balloon catheter for renal nerve ablation |
US9358365B2 (en) | 2010-07-30 | 2016-06-07 | Boston Scientific Scimed, Inc. | Precision electrode movement control for renal nerve ablation |
US9155589B2 (en) | 2010-07-30 | 2015-10-13 | Boston Scientific Scimed, Inc. | Sequential activation RF electrode set for renal nerve ablation |
US9033911B2 (en) | 2010-08-05 | 2015-05-19 | Forsight Vision4, Inc. | Injector apparatus and method for drug delivery |
US9861521B2 (en) | 2010-08-05 | 2018-01-09 | Forsight Vision4, Inc. | Injector apparatus and method for drug delivery |
US10265215B2 (en) | 2010-08-05 | 2019-04-23 | Forsight Vision4, Inc. | Injector apparatus and method for drug delivery |
US8905963B2 (en) * | 2010-08-05 | 2014-12-09 | Forsight Vision4, Inc. | Injector apparatus and method for drug delivery |
US11786396B2 (en) | 2010-08-05 | 2023-10-17 | Forsight Vision4, Inc. | Injector apparatus and method for drug delivery |
US10076382B2 (en) | 2010-10-25 | 2018-09-18 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter apparatuses having multi-electrode arrays for renal neuromodulation and associated systems and methods |
US8974451B2 (en) | 2010-10-25 | 2015-03-10 | Boston Scientific Scimed, Inc. | Renal nerve ablation using conductive fluid jet and RF energy |
US11116572B2 (en) | 2010-10-25 | 2021-09-14 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter apparatuses having multi-electrode arrays for renal neuromodulation and associated systems and methods |
US9220558B2 (en) | 2010-10-27 | 2015-12-29 | Boston Scientific Scimed, Inc. | RF renal denervation catheter with multiple independent electrodes |
US9878101B2 (en) | 2010-11-12 | 2018-01-30 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US11123491B2 (en) | 2010-11-12 | 2021-09-21 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US9028485B2 (en) | 2010-11-15 | 2015-05-12 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
US9848946B2 (en) | 2010-11-15 | 2017-12-26 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
US9089350B2 (en) | 2010-11-16 | 2015-07-28 | Boston Scientific Scimed, Inc. | Renal denervation catheter with RF electrode and integral contrast dye injection arrangement |
US9668811B2 (en) | 2010-11-16 | 2017-06-06 | Boston Scientific Scimed, Inc. | Minimally invasive access for renal nerve ablation |
US9326751B2 (en) | 2010-11-17 | 2016-05-03 | Boston Scientific Scimed, Inc. | Catheter guidance of external energy for renal denervation |
US9060761B2 (en) | 2010-11-18 | 2015-06-23 | Boston Scientific Scime, Inc. | Catheter-focused magnetic field induced renal nerve ablation |
US10874548B2 (en) | 2010-11-19 | 2020-12-29 | Forsight Vision4, Inc. | Therapeutic agent formulations for implanted devices |
US11065151B2 (en) | 2010-11-19 | 2021-07-20 | Forsight Vision4, Inc. | Therapeutic agent formulations for implanted devices |
US9023034B2 (en) | 2010-11-22 | 2015-05-05 | Boston Scientific Scimed, Inc. | Renal ablation electrode with force-activatable conduction apparatus |
US9192435B2 (en) | 2010-11-22 | 2015-11-24 | Boston Scientific Scimed, Inc. | Renal denervation catheter with cooled RF electrode |
US9649156B2 (en) | 2010-12-15 | 2017-05-16 | Boston Scientific Scimed, Inc. | Bipolar off-wall electrode device for renal nerve ablation |
US9220561B2 (en) | 2011-01-19 | 2015-12-29 | Boston Scientific Scimed, Inc. | Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury |
US9272095B2 (en) | 2011-04-01 | 2016-03-01 | Sio2 Medical Products, Inc. | Vessels, contact surfaces, and coating and inspection apparatus and methods |
US9919144B2 (en) | 2011-04-08 | 2018-03-20 | Medtronic Adrian Luxembourg S.a.r.l. | Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery |
US10588682B2 (en) | 2011-04-25 | 2020-03-17 | Medtronic Ardian Luxembourg S.A.R.L. | Apparatus and methods related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls |
US10398592B2 (en) | 2011-06-28 | 2019-09-03 | Forsight Vision4, Inc. | Diagnostic methods and apparatus |
US11813196B2 (en) | 2011-06-28 | 2023-11-14 | Forsight Vision4, Inc. | Diagnostic methods and apparatus |
US9579030B2 (en) | 2011-07-20 | 2017-02-28 | Boston Scientific Scimed, Inc. | Percutaneous devices and methods to visualize, target and ablate nerves |
US9186209B2 (en) | 2011-07-22 | 2015-11-17 | Boston Scientific Scimed, Inc. | Nerve modulation system having helical guide |
US10653554B2 (en) | 2011-09-16 | 2020-05-19 | Forsight Vision4, Inc. | Fluid exchange apparatus and methods |
US20130165860A1 (en) * | 2011-09-16 | 2013-06-27 | Darren Doud | Fluid exchange apparatus and methods |
US9883968B2 (en) * | 2011-09-16 | 2018-02-06 | Forsight Vision4, Inc. | Fluid exchange apparatus and methods |
US9186210B2 (en) | 2011-10-10 | 2015-11-17 | Boston Scientific Scimed, Inc. | Medical devices including ablation electrodes |
US9420955B2 (en) | 2011-10-11 | 2016-08-23 | Boston Scientific Scimed, Inc. | Intravascular temperature monitoring system and method |
US10085799B2 (en) | 2011-10-11 | 2018-10-02 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
US9364284B2 (en) | 2011-10-12 | 2016-06-14 | Boston Scientific Scimed, Inc. | Method of making an off-wall spacer cage |
US9079000B2 (en) | 2011-10-18 | 2015-07-14 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
US9162046B2 (en) | 2011-10-18 | 2015-10-20 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
US8951251B2 (en) | 2011-11-08 | 2015-02-10 | Boston Scientific Scimed, Inc. | Ostial renal nerve ablation |
US11116695B2 (en) | 2011-11-11 | 2021-09-14 | Sio2 Medical Products, Inc. | Blood sample collection tube |
US10577154B2 (en) | 2011-11-11 | 2020-03-03 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US10189603B2 (en) | 2011-11-11 | 2019-01-29 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US11148856B2 (en) | 2011-11-11 | 2021-10-19 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US11884446B2 (en) | 2011-11-11 | 2024-01-30 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US11724860B2 (en) | 2011-11-11 | 2023-08-15 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US9119600B2 (en) | 2011-11-15 | 2015-09-01 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
US9119632B2 (en) | 2011-11-21 | 2015-09-01 | Boston Scientific Scimed, Inc. | Deflectable renal nerve ablation catheter |
US9265969B2 (en) | 2011-12-21 | 2016-02-23 | Cardiac Pacemakers, Inc. | Methods for modulating cell function |
US9037259B2 (en) | 2011-12-23 | 2015-05-19 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9402684B2 (en) | 2011-12-23 | 2016-08-02 | Boston Scientific Scimed, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9174050B2 (en) | 2011-12-23 | 2015-11-03 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9592386B2 (en) | 2011-12-23 | 2017-03-14 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9028472B2 (en) | 2011-12-23 | 2015-05-12 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9072902B2 (en) | 2011-12-23 | 2015-07-07 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9186211B2 (en) | 2011-12-23 | 2015-11-17 | Boston Scientific Scimed, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9433760B2 (en) | 2011-12-28 | 2016-09-06 | Boston Scientific Scimed, Inc. | Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements |
US9050106B2 (en) | 2011-12-29 | 2015-06-09 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
US10660703B2 (en) | 2012-05-08 | 2020-05-26 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices |
US10512504B2 (en) | 2012-05-11 | 2019-12-24 | Medtronic Ardian Luxembourg S.A.R.L. | Multi-electrode catheter assemblies for renal neuromodulation and associated systems and methods |
US9452017B2 (en) | 2012-05-11 | 2016-09-27 | Medtronic Ardian Luxembourg S.A.R.L. | Multi-electrode catheter assemblies for renal neuromodulation and associated systems and methods |
US9855096B2 (en) | 2012-05-11 | 2018-01-02 | Medtronic Ardian Luxembourg S.A.R.L. | Multi-electrode catheter assemblies for renal neuromodulation and associated systems and methods |
US10321946B2 (en) | 2012-08-24 | 2019-06-18 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices with weeping RF ablation balloons |
US9173696B2 (en) | 2012-09-17 | 2015-11-03 | Boston Scientific Scimed, Inc. | Self-positioning electrode system and method for renal nerve modulation |
US10398464B2 (en) | 2012-09-21 | 2019-09-03 | Boston Scientific Scimed, Inc. | System for nerve modulation and innocuous thermal gradient nerve block |
US10549127B2 (en) | 2012-09-21 | 2020-02-04 | Boston Scientific Scimed, Inc. | Self-cooling ultrasound ablation catheter |
US10835305B2 (en) | 2012-10-10 | 2020-11-17 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices and methods |
US9664626B2 (en) | 2012-11-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Coating inspection method |
US9903782B2 (en) | 2012-11-16 | 2018-02-27 | Sio2 Medical Products, Inc. | Method and apparatus for detecting rapid barrier coating integrity characteristics |
US9764093B2 (en) | 2012-11-30 | 2017-09-19 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US10201660B2 (en) | 2012-11-30 | 2019-02-12 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like |
US11406765B2 (en) | 2012-11-30 | 2022-08-09 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US10363370B2 (en) | 2012-11-30 | 2019-07-30 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US9662450B2 (en) | 2013-03-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus |
US9693821B2 (en) | 2013-03-11 | 2017-07-04 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US10016338B2 (en) | 2013-03-11 | 2018-07-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging |
US11298293B2 (en) | 2013-03-11 | 2022-04-12 | Sio2 Medical Products, Inc. | PECVD coated pharmaceutical packaging |
US9956033B2 (en) | 2013-03-11 | 2018-05-01 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US11344473B2 (en) | 2013-03-11 | 2022-05-31 | SiO2Medical Products, Inc. | Coated packaging |
US9937099B2 (en) | 2013-03-11 | 2018-04-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging with low oxygen transmission rate |
US10537494B2 (en) | 2013-03-11 | 2020-01-21 | Sio2 Medical Products, Inc. | Trilayer coated blood collection tube with low oxygen transmission rate |
US11684546B2 (en) | 2013-03-11 | 2023-06-27 | Sio2 Medical Products, Inc. | PECVD coated pharmaceutical packaging |
US10912714B2 (en) | 2013-03-11 | 2021-02-09 | Sio2 Medical Products, Inc. | PECVD coated pharmaceutical packaging |
US9554968B2 (en) | 2013-03-11 | 2017-01-31 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging |
US9205251B2 (en) * | 2013-03-13 | 2015-12-08 | Boston Scientific Neuromodulation Corporation | Systems and methods for inputting fluid into a lead of an electrical stimulation system |
US20140277314A1 (en) * | 2013-03-13 | 2014-09-18 | Boston Scientific Neuromodulation Corporation | Systems and methods for inputting fluid into a lead of an electrical stimulation system |
US9808311B2 (en) | 2013-03-13 | 2017-11-07 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
US9968603B2 (en) | 2013-03-14 | 2018-05-15 | Forsight Vision4, Inc. | Systems for sustained intraocular delivery of low solubility compounds from a port delivery system implant |
US9888961B2 (en) | 2013-03-15 | 2018-02-13 | Medtronic Ardian Luxembourg S.A.R.L. | Helical push wire electrode |
US9863042B2 (en) | 2013-03-15 | 2018-01-09 | Sio2 Medical Products, Inc. | PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases |
US10265122B2 (en) | 2013-03-15 | 2019-04-23 | Boston Scientific Scimed, Inc. | Nerve ablation devices and related methods of use |
US9827039B2 (en) | 2013-03-15 | 2017-11-28 | Boston Scientific Scimed, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US10792098B2 (en) | 2013-03-15 | 2020-10-06 | Medtronic Ardian Luxembourg S.A.R.L. | Helical push wire electrode |
US9297845B2 (en) | 2013-03-15 | 2016-03-29 | Boston Scientific Scimed, Inc. | Medical devices and methods for treatment of hypertension that utilize impedance compensation |
US10398593B2 (en) | 2013-03-28 | 2019-09-03 | Forsight Vision4, Inc. | Ophthalmic implant for delivering therapeutic substances |
US9526654B2 (en) | 2013-03-28 | 2016-12-27 | Forsight Vision4, Inc. | Ophthalmic implant for delivering therapeutic substances |
US11510810B2 (en) | 2013-03-28 | 2022-11-29 | Forsight Vision4, Inc. | Ophthalmic implant for delivering therapeutic substances |
US12115102B2 (en) | 2013-03-28 | 2024-10-15 | Forsight Vision4, Inc. | Ophthalmic implant for delivering therapeutic substances |
US9943365B2 (en) | 2013-06-21 | 2018-04-17 | Boston Scientific Scimed, Inc. | Renal denervation balloon catheter with ride along electrode support |
US10022182B2 (en) | 2013-06-21 | 2018-07-17 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation having rotatable shafts |
US9707036B2 (en) | 2013-06-25 | 2017-07-18 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation using localized indifferent electrodes |
US9833283B2 (en) | 2013-07-01 | 2017-12-05 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
US10413357B2 (en) | 2013-07-11 | 2019-09-17 | Boston Scientific Scimed, Inc. | Medical device with stretchable electrode assemblies |
US10660698B2 (en) | 2013-07-11 | 2020-05-26 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation |
US9925001B2 (en) | 2013-07-19 | 2018-03-27 | Boston Scientific Scimed, Inc. | Spiral bipolar electrode renal denervation balloon |
US10695124B2 (en) | 2013-07-22 | 2020-06-30 | Boston Scientific Scimed, Inc. | Renal nerve ablation catheter having twist balloon |
US10342609B2 (en) | 2013-07-22 | 2019-07-09 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
US10722300B2 (en) | 2013-08-22 | 2020-07-28 | Boston Scientific Scimed, Inc. | Flexible circuit having improved adhesion to a renal nerve modulation balloon |
US9895194B2 (en) | 2013-09-04 | 2018-02-20 | Boston Scientific Scimed, Inc. | Radio frequency (RF) balloon catheter having flushing and cooling capability |
US11213678B2 (en) | 2013-09-09 | 2022-01-04 | Medtronic Ardian Luxembourg S.A.R.L. | Method of manufacturing a medical device for neuromodulation |
US10952790B2 (en) | 2013-09-13 | 2021-03-23 | Boston Scientific Scimed, Inc. | Ablation balloon with vapor deposited cover layer |
US9687166B2 (en) | 2013-10-14 | 2017-06-27 | Boston Scientific Scimed, Inc. | High resolution cardiac mapping electrode array catheter |
US11246654B2 (en) | 2013-10-14 | 2022-02-15 | Boston Scientific Scimed, Inc. | Flexible renal nerve ablation devices and related methods of use and manufacture |
US9962223B2 (en) | 2013-10-15 | 2018-05-08 | Boston Scientific Scimed, Inc. | Medical device balloon |
US9770606B2 (en) | 2013-10-15 | 2017-09-26 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
US10945786B2 (en) | 2013-10-18 | 2021-03-16 | Boston Scientific Scimed, Inc. | Balloon catheters with flexible conducting wires and related methods of use and manufacture |
US10271898B2 (en) | 2013-10-25 | 2019-04-30 | Boston Scientific Scimed, Inc. | Embedded thermocouple in denervation flex circuit |
US11202671B2 (en) | 2014-01-06 | 2021-12-21 | Boston Scientific Scimed, Inc. | Tear resistant flex circuit assembly |
US9907609B2 (en) | 2014-02-04 | 2018-03-06 | Boston Scientific Scimed, Inc. | Alternative placement of thermal sensors on bipolar electrode |
US11000679B2 (en) | 2014-02-04 | 2021-05-11 | Boston Scientific Scimed, Inc. | Balloon protection and rewrapping devices and related methods of use |
US11066745B2 (en) | 2014-03-28 | 2021-07-20 | Sio2 Medical Products, Inc. | Antistatic coatings for plastic vessels |
US11464563B2 (en) | 2014-04-24 | 2022-10-11 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation catheters and associated systems and methods |
US10736690B2 (en) | 2014-04-24 | 2020-08-11 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation catheters and associated systems and methods |
US10709490B2 (en) | 2014-05-07 | 2020-07-14 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods |
US10765677B2 (en) | 2014-08-08 | 2020-09-08 | Forsight Vision4, Inc. | Stable and soluble formulations of receptor tyrosine kinase inhibitors, and methods of preparation thereof |
US9895369B2 (en) | 2014-08-08 | 2018-02-20 | Forsight Vision4, Inc | Stable and soluble formulations of receptor tyrosine kinase inhibitors, and methods of preparation thereof |
US9474756B2 (en) | 2014-08-08 | 2016-10-25 | Forsight Vision4, Inc. | Stable and soluble formulations of receptor tyrosine kinase inhibitors, and methods of preparation thereof |
US10363255B2 (en) | 2014-08-08 | 2019-07-30 | Forsight Vision4, Inc. | Stable and soluble formulations of receptor tyrosine kinase inhibitors, and methods of preparation thereof |
US11077233B2 (en) | 2015-08-18 | 2021-08-03 | Sio2 Medical Products, Inc. | Pharmaceutical and other packaging with low oxygen transmission rate |
US11432959B2 (en) | 2015-11-20 | 2022-09-06 | Forsight Vision4, Inc. | Porous structures for extended release drug delivery devices |
US11419759B2 (en) | 2017-11-21 | 2022-08-23 | Forsight Vision4, Inc. | Fluid exchange apparatus for expandable port delivery system and methods of use |
CN111432868A (en) * | 2017-12-05 | 2020-07-17 | 马奎特紧急护理公司 | Piercing assembly and respiratory catheter kit |
US20200376224A1 (en) * | 2017-12-05 | 2020-12-03 | Maquet Critical Care Ab | Piercing assembly and breathing conduit kit |
US11179216B2 (en) | 2018-02-15 | 2021-11-23 | Ethicon, Inc. | System(s), method(s) and device(s) for the prevention of esophageal fistula during catheter ablation |
EP3530220A1 (en) * | 2018-02-15 | 2019-08-28 | Biosense Webster (Israel) Ltd. | System(s) and device(s) for the prevention of esophageal fistula during catheter ablation |
USD1033637S1 (en) | 2022-01-24 | 2024-07-02 | Forsight Vision4, Inc. | Fluid exchange device |
Also Published As
Publication number | Publication date |
---|---|
EP1140278A1 (en) | 2001-10-10 |
US6620139B1 (en) | 2003-09-16 |
EP1140278B1 (en) | 2004-05-19 |
ATE267032T1 (en) | 2004-06-15 |
DE69917484D1 (en) | 2004-06-24 |
WO2000035531A1 (en) | 2000-06-22 |
DE69917484T2 (en) | 2005-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1140278B1 (en) | Catheter system for performing intramyocardiac therapeutic treatment | |
US11937872B2 (en) | Epicardial ablation catheter and method of use | |
JP4653918B2 (en) | Drug delivery catheter attached to tissue and method of use thereof | |
AU676767B2 (en) | Apparatus for ablation | |
US7736346B2 (en) | Bio-interventional therapeutic treatments for cardiovascular diseases | |
US6547787B1 (en) | Drug delivery catheters that attach to tissue and methods for their use | |
JP5086240B2 (en) | Dual needle feeding system | |
US20150290428A1 (en) | Catheter for introduction of medications to the tissues of a heart or other organ | |
CN111202581A (en) | Radio frequency ablation catheter for hypertrophic cardiomyopathy operation | |
EP4458291A1 (en) | Sleeve, injection device, injection system, ablation device and ablation system | |
WO1999049926A2 (en) | Delivery of an angiogenic substance | |
CN113693716A (en) | Radiofrequency electrode ablation catheter with cooling function for interventricular therapy | |
ITBO980691A1 (en) | METHOD AND APPARATUS TO PERFORM AN INTRAMIOCARDIC THERAPEUTIC TREATMENT. | |
KR102406833B1 (en) | RF ablation catheter for Septal reduction theraphy having cooling effect | |
WO2001010315A9 (en) | Gene therapy platformed needle and method of administering a therapeutic solution to a heart | |
US20090118673A1 (en) | Needle injection catheter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |