US20030200721A1 - Fiber-cement/gypsum laminate composite building material - Google Patents
Fiber-cement/gypsum laminate composite building material Download PDFInfo
- Publication number
- US20030200721A1 US20030200721A1 US10/437,344 US43734403A US2003200721A1 US 20030200721 A1 US20030200721 A1 US 20030200721A1 US 43734403 A US43734403 A US 43734403A US 2003200721 A1 US2003200721 A1 US 2003200721A1
- Authority
- US
- United States
- Prior art keywords
- gypsum
- fiber
- cement
- panel
- wallboard
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000010440 gypsum Substances 0.000 title claims abstract description 98
- 229910052602 gypsum Inorganic materials 0.000 title claims abstract description 98
- 239000004568 cement Substances 0.000 title claims abstract description 75
- 239000002131 composite material Substances 0.000 title claims abstract description 43
- 239000004566 building material Substances 0.000 title claims abstract description 22
- 239000000835 fiber Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 21
- 239000000853 adhesive Substances 0.000 claims description 20
- 230000001070 adhesive effect Effects 0.000 claims description 20
- 239000002023 wood Substances 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims 1
- 238000009434 installation Methods 0.000 abstract description 10
- 238000012360 testing method Methods 0.000 description 41
- 239000010410 layer Substances 0.000 description 30
- 239000000463 material Substances 0.000 description 14
- 238000005299 abrasion Methods 0.000 description 10
- 238000007373 indentation Methods 0.000 description 9
- 230000009970 fire resistant effect Effects 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 238000009432 framing Methods 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 238000009433 steel framing Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 239000011118 polyvinyl acetate Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 238000007655 standard test method Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 229920003043 Cellulose fiber Polymers 0.000 description 2
- 241000256602 Isoptera Species 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- -1 for example Substances 0.000 description 2
- 238000012812 general test Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000010455 vermiculite Substances 0.000 description 2
- 229910052902 vermiculite Inorganic materials 0.000 description 2
- 235000019354 vermiculite Nutrition 0.000 description 2
- 101100008047 Caenorhabditis elegans cut-3 gene Proteins 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009435 building construction Methods 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000011499 joint compound Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000013008 moisture curing Methods 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000013102 re-test Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000011122 softwood Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 239000011885 synergistic combination Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000009431 timber framing Methods 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B13/00—Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B13/00—Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
- B32B13/02—Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material with fibres or particles being present as additives in the layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B13/00—Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
- B32B13/04—Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material comprising such water setting substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B13/08—Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material comprising such water setting substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B13/00—Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
- B32B13/14—Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/02—Layered products comprising a layer of synthetic resin in the form of fibres or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/10—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B29/00—Layered products comprising a layer of paper or cardboard
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B29/00—Layered products comprising a layer of paper or cardboard
- B32B29/02—Layered products comprising a layer of paper or cardboard next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/04—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
- E04C2/043—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of plaster
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/04—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
- E04C2/049—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres completely or partially of insulating material, e.g. cellular concrete or foamed plaster
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
- B32B2307/3065—Flame resistant or retardant, fire resistant or retardant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2329/00—Polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2419/00—Buildings or parts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00612—Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
- C04B2111/0062—Gypsum-paper board like materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
- Y10T428/24959—Thickness [relative or absolute] of adhesive layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/249932—Fiber embedded in a layer derived from a water-settable material [e.g., cement, gypsum, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249967—Inorganic matrix in void-containing component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2904—Staple length fiber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
Definitions
- This invention relates to abuse resistant, impact resistant and fire resistant building materials, and more particularly, to a single piece laminate composite building material of fiber-cement and gypsum.
- the interior wallboard market has been dominated by the use of gypsum wallboard products for many years.
- the gypsum wallboard typically comprises thin paper layers wrapped around a gypsum core.
- one paper layer covers the face and long edges of the board, and the second paper layer usually covers the back surface of the board.
- the core is predominantly gypsum, and can be modified with additives such as glass fiber, vermiculite and mica to improve fire resistance.
- Gypsum In addition to fire resistance, abuse resistance is another desired quality in wallboards. Gypsum has poor abuse resistance compared to other wallboard materials such as wood or masonry. The paper surface of gypsum wallboard is easily damaged by impact such as scuffing, indentation, cracking or penetration with hard or soft body objects such as furniture, trolleys, toys, sports equipment and other industrial or residential furnishings. Such wall abuse is typical in high traffic rooms such as corridors, family living areas, gymnasiums or change rooms.
- Gypsum wallboard manufacturers have made modifications to their gypsum wallboards to improve their abuse resistance.
- One method was to bond a plastic film to the back of the wall panel to resist penetration of the impact bodies into the framed wall cavity.
- Another method was to make a fiber-gypsum wall panel with fiber-gypsum outer layers formed onto a gypsum-based core. These products typically have improved surface abuse resistance to the paper surface of normal gypsum wallboard.
- Similar gypsum-based or cement gypsum-based compositions are typically described in U.S. Pat. Nos. 5,817,262 and 5,718,759.
- Fiber cement has an advantage over gypsum panel with respect to surface abuse resistance such as wear and abrasion.
- One disadvantage of fiber cement by itself as a wall panel is that it does not have a fire resistance rating comparable to gypsum wall panels of equal thickness.
- Another disadvantage of fiber cement by itself is that it is significantly heavier than gypsum wall panels of equivalent thickness. For example, a 1 hour fire resistance-rated wall system with fiber cement requires mineral insulation in the wall cavity or a sub-layer of fire rated gypsum wall panel to achieve a 1 hour fire resistance rating when tested in accordance with ASTM E-119.
- a 2-layer system of 1 ⁇ 4′′ fiber cement over 5 ⁇ 8′′ type X fire rated gypsum wallboard has been used to achieve both fire resistance and abuse resistance.
- Such a system is described in Gypsum Association—Fire Resistance Design Manual—GA FILE NO. WP) 1295—Gypsum wallboard, steel studs, fiber-cement board proprietary system.
- This two piece system is disadvantageous because it is significantly heavier than single-layer gypsum wallboards.
- the 2-layer wallboards require nearly double the amount of labor for installation because two separate wall panels must be installed instead of a single panel.
- a building material comprising fiber-cement laminated to gypsum to form a single piece laminate composite.
- This single piece laminate composite exhibits improved fire resistance and surface abuse resistance, but achieves these properties without the excessive weight and thickness of two piece systems. Additionally, because of the reduced thickness, the preferred laminate building material is easier to cut and is quicker and easier to install than two piece systems. Furthermore, forming the fiber-cement and gypsum into a single piece laminate eliminates the need to install two separate pieces of building material, thereby simplifying installation.
- One object of the invention is to provide a building board product suitable for applications requiring surface abuse resistance, improved impact resistance and a 1-hour fire resistance rating (as measured, for example, by ASTM E-119) without cavity insulation at a panel thickness of 5 ⁇ 8′′, installed on each side of a wall frame.
- the surface abuse resistance is measured by abrasion tests such as ASTM D4977-98b (Standard Test Method for Granule Adhesion to Mineral Surfaced roofing) and also indentation tests such as ASTM D5420 (Impact Resistance of Flat, Rigid Plastic Specimen by Means of a Striker by a Falling Weight (Gardner Impact)).
- the panel impact resistance is typically measured by, for example, ASTM E695 (Measuring Relative Resistance of Wall, Floor and Roof Construction to Impact Loading), and ISO 7892 (Vertical Building Elements—Impact Resistance Tests—Impact Bodies and General Test Procedures), or other suitable impact or abrasion tests.
- FIG. 1 is a perspective view of a single piece laminate composite comprising fiber-cement laminated to gypsum.
- FIG. 2 is a cross-sectional view of the single piece laminate composite of FIG. 1, showing the fiber-cement and gypsum adhered together using an adhesive.
- a preferred building material 40 is comprised of a fiber-cement layer 10 laminated to gypsum layer 20 , creating a single piece laminate composite.
- FIG. 2 illustrates that the fiber cement layer 10 may be laminated to the gypsum layer 20 using an adhesive 30 , the thickness of which is exaggerated in FIG. 2 for illustration purposes, as described in further detail below.
- the fiber-cement and gypsum components can take any form necessary, including, but not limited to, panels, sheets, skins, boards, or the like.
- the thickness of a fiber-cement sheet 10 is between about ⁇ fraction (1/32) ⁇ ′′ and 1 ⁇ 4′′.
- the fiber-cement sheet 10 is about 1 ⁇ 8′′ thick, plus or minus about ⁇ fraction (1/16) ⁇ ′′.
- a gypsum panel 20 typically has a thickness between about 1 ⁇ 4′′ to 3 ⁇ 4′′, more preferably about 1 ⁇ 2′′. It will be appreciated that other thicknesses for the fiber-cement sheet 10 and the gypsum panel 20 may be used.
- the preferred weight is about 2.5 to 3 lbs/square foot, more preferably about 2.77 lbs/square foot for a 5 ⁇ 8′′ thick composite wallboard.
- One preferred embodiment of the invention is a composite panel that is manufactured by bonding together a paper-faced 1 ⁇ 2′′ type X gypsum wallboard to 1 ⁇ 8′′ thick fiber cement panel.
- ASTM C 36 describes a type X gypsum board to have not less than 45 minutes fire resistance rating for boards 1 ⁇ 2′′ thick, applied parallel with and on each side of load bearing 2′′ ⁇ 4′′ wood studs spaced 16′′ on center with 6D coated nail, 1-7 ⁇ 8′′ long 0.095′′ diameter shank, 1 ⁇ 4′′ diameter head, spaced 7′′ on center with the gypsum joints staggered 16′′ on each side of the partition and tested in accordance with ASTM E 119.
- Type X gypsum panel is a 1 ⁇ 2′′ thick HARDIROCK® MAX “C”®, described in the table below.
- This gypsum panel has an improved Type X fire resistance rated core and is manufactured for commercial projects where building codes require specific levels of fire resistance and sound reduction.
- the 5 ⁇ 8′′ thick board is designed to provide greater fire resistance than standard Fire X® board and achieves fire and sound rating with less weight.
- Application information is available in the Gypsum Association Fire Resistance Design Manual GA -600 , Underwriter's Laboratories, Inc. Fire Resistance Directory .
- the face of the gypsum panel 20 bonded to the fiber-cement 10 does not necessarily require a paper face, and the gypsum panel 20 may be bonded directly to the fiber-cement 10 .
- a preferred gypsum panel 20 may also have a glass or polymeric fiber mat or woven mesh combined into the panel on either the front or back surface, either on the outside or the inside of the paper. This can be done for two reasons. First, it can be used to improve the impact resistance of the gypsum panel 20 by itself. Second, it can be used to improve the impact resistance of the gypsum panel as part of the composite wallboard 40 .
- the preferred composite wallboard 40 can be utilized in most interior wallboard installations.
- the preferred composite wallboard 40 is installed such that the fiber-cement side of the wallboard 40 faces outward to provide an abrasion and indentation resistant surface to traffic, and the gypsum side of the wallboard 40 is installed against the supporting framing, with the synergistic combination of the fiber-cement and the gypsum wallboard providing the fire resistance rating and strength of the panel.
- preferably gypsum panel 1 ⁇ 2′′ nor the preferably 1 ⁇ 8′′ fiber-cement sheet 10 provides the 1-hour fire resistance rating in isolation, but rather the combination of the two materials in a laminated composite 40 has been tested in a symmetrical wall system and achieved a 1 hour fire resistance rating on a typical steel framing used in commercial building partitions. Results of a fire resistance test conducted on this composite panel are provided below.
- the supporting framing is typically 20 or 25 gauge steel framing, or wood framing such as 2′′ ⁇ 4′′ Douglas Fir softwood.
- the wallboard 40 can be fastened to the steel studs with suitable screws such as 6 gauge ⁇ 1-1 ⁇ 8′′ Type S Bugle Head drywall or self-drilling screws.
- the wallboard 40 can be fastened to wood studs with suitable nails or screws such as 1-3 ⁇ 4′′ long cup-head gypsum wallboard nails or 6 gauge ⁇ 1-1 ⁇ 8′′ Type S Bugle Head drywall screws.
- the preferred wallboard 40 is designed for use in wall assemblies that are subject to surface abuse and penetration.
- Such wall assemblies are typically found in schools, public housing, public buildings, interior garage walls, corridors, gymnasiums, change rooms, and correctional and healthcare facilities.
- the material can be cut with a carbide-tipped score and snap knife, power shears or circular saw optionally with dust control.
- Fiber cement has the attributes of durability, resistance to moisture damage, low maintenance, resistance to cracking, rotting or delamination, resistance to termites and non-combustibility.
- the fiber cement layer 10 resists damage from extended exposure to humidity, rain, snow, salt air and termites.
- the layer is dimensionally stable and under normal conditions will not crack, rot or delaminate.
- the basic composition of a preferred fiber-cement panel 10 is about 20% to 60% Portland cement, about 20% to 70% ground silica sand, about 5% to 12% cellulose fiber, and about 0% to 6% select additives such as mineral oxides, mineral hydroxides and water. Platelet or fibrous additives, such as, for example, wollastonite, mica, glass fiber or mineral fiber, may be added to improve the thermal stability of the fiber-cement.
- the dry density of a preferred fiber-cement panel 10 is typically about 1.3 to 1.4 g/cm 3 but can be modified by pressing the material to dry densities up to 2.0 g/cm 3 or by addition of density modifiers such as unexpanded or expanded vermiculite, perlite, clay, shale or low bulk density (about 0.06 to 0.7 g/cm 3 ) calcium silicate hydrates.
- the flexural strength of a preferred fiber-cement panel 10 is 1850 psi along the panel, and 2500 psi across the panel.
- a preferred fiber-cement panel 10 has a non-combustible surface and shows no flame support or loss of integrity when tested in accordance with ASTM test method E136. When tested in accordance with ASTM test method E84, a preferred fiber-cement panel 10 exhibits the following surface burning capabilities:
- a preferred panel is comprised of a 1 ⁇ 8′′ nominal thickness fiber cement sheet laminated to a 1 ⁇ 2′′ thick type X fire resistant gypsum board.
- the gypsum panel is preferably manufactured with square edges.
- An adhesive 30 as shown in FIGS. 1 and 2 above such as polyvinyl acetate (PVA) is spread over the surface of the gypsum panel and 1 ⁇ 8′′ thick fiber cement is placed over the surface and is typically pressed at about 38 psi, in a stacked configuration, for approximately 30 minutes.
- PVA polyvinyl acetate
- One preferred adhesive is Sun Adhesives polyvinyl acetate (PVA) adhesive #54-3500 supplied by Sun Adhesives, a division of Patrick Industries.
- the adhesive is most preferably a low cost adhesive such as PVA
- other organic or inorganic adhesives may be used, such as water-based polymeric adhesives, solvent-based adhesives, thermoset adhesives, natural polymers such as modified starches, liquid moisture cure or reactive hot melt adhesives such as polyurethane, and heat or fire resistant adhesives.
- the adhesive 30 is preferably applied by a roll-coater process whereby the gypsum panel 20 is preferably cleaned to remove dust and debris before the adhesive 30 is applied to the smooth face.
- the adhesive 30 is preferably spread evenly over the entire surface of the gypsum panel 20 .
- the wet film thickness of the adhesive 30 when measured with a standard “wet film thickness gauge,” will preferably not be less than about 4.5 mil and preferably will not exceed about 6 mil.
- the fiber-cement panel 10 is placed on top of the gypsum panel 20 , which is coated with adhesive 30 , squared to the edges of the gypsum panel 20 , and then stacked.
- the completed stack is preferably cured in a press under a load of about 37.5 ⁇ 2.5 psi for preferably no less than about 30 minutes.
- the panels then preferably have the fiber cement surface sanded and the long edges machined with an abrasive wheel such as diamond grit to form a tapered edge.
- the machine sanding preferably utilizes three sanding heads.
- the grades of sanding belts preferably range from 40 grit to 220 grit.
- the long edges are machine tapered to allow for setting compound, joint reinforcing tape and finishing compounds during flush jointing on installation.
- the surface of the product is preferably sealed with an acrylic emulsion to reduce the surface water absorption to make it easier to paint and to improve paint adhesion.
- the fiber-cement surface of the composite wallboard 40 may be optionally sealed with an acrylic sealer such as UCAR 701 to facilitate on the job finishing. This can be achieved with a suitable latex paint which may be sprayed, rolled or brush applied for wallpaper or texture finishes. It will also be appreciated that sanding the fiber-cement panel 10 is optional in order to improve the finish of the fiber-cement surface. Furthermore, it will be appreciated that sanding can be done before or after the fiber-cement panel 10 is laminated to the gypsum panel 20 . It will be appreciated that a roll press lamination process may also be used, with a suitable pressure sensitive adhesive.
- an acrylic sealer such as UCAR 701
- a novel feature of the preferred embodiments of the present invention is that neither the 1 ⁇ 2′′ gypsum wallboard or the 1 ⁇ 8′′ fiber cement sheet, by themselves, provide altogether, the 1-hour fire resistance rating, surface abuse and impact resistance. However, laminating the two materials together provides the 1-hour fire resistance in a symmetrical wall system when tested to ASTM E119 and an improved level of surface abuse resistance and impact resistance.
- the preferred panel also has the advantages of improved flexural strength and nail pull through strength and less humidified deflection compared to the individual components of the preferred invention or a typical type X gypsum wallboard of the same thickness (5 ⁇ 8′′ thick).
- the preferred composite also has the novel features of fire and abuse characteristics in a single wallboard or a single piece system.
- Prior fire resistance rated and abuse resistant systems that utilize fiber cement required a two layer system over the supporting framework.
- There is considerable advantage with the preferred composite in reduced material and quicker installation of a single piece system versus a 2-layer system.
- the two layer system required installation of 5 ⁇ 8′′ type X gypsum wallboard followed by the installation of 1 ⁇ 4′′ fiber cement over the top.
- the total thickness of these 2 layers adds up to 7 ⁇ 8′′ of material versus 5 ⁇ 8′′ of material with the preferred laminated composite of the present invention.
- the present invention provides a single piece system that is at least about one hour fire resistance-rated and abuse resistant. This reduces the amount of time to install compared to the 2 layer system, lowers the mass of the wall unit per square foot compared to the 2 layer system, and requires less fixtures per wall for installing panel compared to the 2 layer system. Moreover, the material is easily cut with power shears, which is a quick and easy method of cutting.
- the material also is abrasion resistant, indentation resistant and impact resistant (soft body and hard body), as illustrated in the tables below.
- Surface-abuse and impact resistance can be determined by methods used in such tests as ASTM D 4977-98b (Standard Test Method for Granule Adhesion to Mineral Surfaced roofing by Abrasion), ASTM D 5420 (Impact Resistance of Flat, Rigid Plastic Specimen by Means of a Striker by a Falling Weight (Gardner Impact)), ASTM E 695 (Measuring Relative Resistance of Wall, Floor and Roof Construction to Impact Loading), ISO 7892 (Vertical Building Elements—Impact Resistance Tests—Impact Bodies and General Test Procedures), or other suitable impact or abrasion tests.
- Fire resistance can be measured by tests such as ASTM E 119 (Standard Test Methods for Fire Tests of Building Construction and Materials), UL263, UBC 7-1, NFPA 251, ANSI A2.1, or other suitable fire resistance tests.
- ASTM E 119 Standard Test Methods for Fire Tests of Building Construction and Materials
- UBC 7-1 UBC 7-1
- NFPA 251 ANSI A2.1
- the soft body impacter was fabricated according to the requirements of sections 5.2.1 through 5.2.4 of E695-79, filled to a gross weight of 60 lbs.
- the bag is supported as a pendulum, striking the panel midway between the stud and mid height of the test wall in 6′′ increments.
- the cumulative impact was defined as the energy needed to reach “failure mode” either by “set deflection”, face/back cracking, and/or stud deformation of >0.25′′.
- the weighted bag was raised an additional 6 inches in height to reach the “single impact energy” needed to reach a failure mode.
- the cumulative impact was defined as the energy needed to reach “failure mode” either by: “set deflection”, and face/back cracking, and/or stud deformation of >0.25′′.
- the weighted bag was raised an additional 6 inches in height to reach the “single impact energy” needed to reach a failure mode.
- the size of the panels was 4′ ⁇ 8′, and were fastened to 20-gauge steel framing at 24′′on center.
- the 1 ⁇ 4′′ fiber cement panel was fastened with 7 gauge ⁇ 1-1 ⁇ 4′′ C-Drill screw spaced at 8′′.
- the 5 ⁇ 8′′ Type X gypsum wallboard was fastened with 6 gauge ⁇ 1-1 ⁇ 8′′ Type S Bugle Head screws spaced at 8′′ and the 1 ⁇ 8′′ 0 fiber cement laminated on top of 1 ⁇ 2′′ Hardirock Max “C” gypsum wallboard was fastened with 6 gauge ⁇ 1-1 ⁇ 8′′ Type S Bugle Head screws spaced at 12′′.
- Results in the table are an average of 3 panels of each material tested.
- One embodiment of the present invention was tested for fire resistance according to ASTM E 119-98. This embodiment was tested as a dual wall assembly, comprising a cold side and hot side. Each test assembly consisted of a 10 ft ⁇ 10 ft non-loadbearing wall of 20 GA ⁇ 3-5 ⁇ 8′′ steel studs spaced 24′′ o.c. On the cold side, one layer of 1 ⁇ 8′′ thick Hardiboard® fiber-cement face skin laminated to 1 ⁇ 2′′ thick Hardirock® “Max C”® gypsum board was applied perpendicular (horizontally) to 20 GA. ⁇ 3-5 ⁇ 8′′ steel studs 24′′ o.c. with minimum 1′′ long Type S drywall screws 12′′ o.c.
- Framing members in fire-rated wall assemblies are cut 3 ⁇ 4′′ shorter than full height of wall thereby creating a floating frame wall.
- fasteners were placed through the wall panels into framing members at floor and ceiling runner tracks to provide racking resistance to facilitate specimens handling. This modification does not change the sound transmission characteristics of the wall assembly.
- the ambient temperature at the start of the test was 80° F., with a relative humidity of 84%.
- the pressure differential between the inside of the furnace (measured at a point 1 ⁇ 3′′ of the way down from the top center of the wall specimen) and the laboratory ambient air was maintained at ⁇ 0.03 inches of water column, which resulted in a neutral pressure at the top of the test article.
- Hose Stream The wall was exposed to the standard hose stream test for at a pressure of 30 psi from 20 feet away, from the exposed surface for a period of 60 seconds. The test article failed the hose stream test when the hose stream penetrated the wall after 19 seconds.
- the wall was measured for deflection at three points along its vertical centerline: at 30′′ (position #1), 60′′ (position #2) and 90′′ (position #3) from the left side of the wall. Measurements were made from a taut string to the wall surface at each location. Position TIME (min) #1 (in.) #2 (in.) #3 (in.) 0 5-3/8 5-3/8 5-1/2 10 5-5/8 5-5/58 5-7/8 20 6-1/4 6-1/2 6-1/2 30 6-3/4 6-3/4 6-7/8 40 6-1/2 6-1/4 6-1/2 50 6-1/4 5-7/8 6-1/4 60 6-1/4 6 6-1/2
- the preferred embodiments of the present invention combine fire resistance of at least 1 hour and significant abuse and impact resistance in a prefabricated single piece laminate composite comprising fiber-cement laminated to gypsum. These properties are achieved in a laminate composite which in one embodiment is only about 5 ⁇ 8′′ thick that is not excessively heavy, is easy to cut and is quick and easy to install.
- One disadvantage of the two layer systems of the prior art is that the individual pieces of fiber-cement and gypsum must be self-supporting in order to facilitate their individual installation.
- the layers of fiber-cement and gypsum therefore, are limited in how thin they can be in order to remain self-supporting.
- the preferred embodiments of the present invention combine the fiber-cement and gypsum layers into a prefabricated single piece laminate composite for installation.
- the individuals layers of fiber-cement and gypsum need not be self-supporting, and the thickness of the fiber-cement layer, for instance, can be significantly reduced. This reduces the overall thickness of the single piece laminate composite as compared to the two piece systems.
- one embodiment of the present invention incorporates a 1 ⁇ 8′′ fiber-cement layer and a 1 ⁇ 2′′ gypsum layer to create a single piece laminate composite about 5 ⁇ 8′′ thick, that simultaneously achieves a one hour fire resistance rating and abuse and impact resistance.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Architecture (AREA)
- Chemical & Material Sciences (AREA)
- Civil Engineering (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
- Building Environments (AREA)
- Panels For Use In Building Construction (AREA)
Abstract
Description
- This application is a continuation of prior U.S. application Ser. No. 09/685,637, filed Oct. 10, 2000 and also claims the benefit of Provisional Application Serial No. 60/158,600, filed Oct. 8, 1999.
- 1. Field of the Invention
- This invention relates to abuse resistant, impact resistant and fire resistant building materials, and more particularly, to a single piece laminate composite building material of fiber-cement and gypsum.
- 2. Description of the Related Art
- The interior wallboard market has been dominated by the use of gypsum wallboard products for many years. The gypsum wallboard typically comprises thin paper layers wrapped around a gypsum core. For example, one paper layer covers the face and long edges of the board, and the second paper layer usually covers the back surface of the board. The core is predominantly gypsum, and can be modified with additives such as glass fiber, vermiculite and mica to improve fire resistance.
- In addition to fire resistance, abuse resistance is another desired quality in wallboards. Gypsum has poor abuse resistance compared to other wallboard materials such as wood or masonry. The paper surface of gypsum wallboard is easily damaged by impact such as scuffing, indentation, cracking or penetration with hard or soft body objects such as furniture, trolleys, toys, sports equipment and other industrial or residential furnishings. Such wall abuse is typical in high traffic rooms such as corridors, family living areas, gymnasiums or change rooms.
- Gypsum wallboard manufacturers have made modifications to their gypsum wallboards to improve their abuse resistance. One method was to bond a plastic film to the back of the wall panel to resist penetration of the impact bodies into the framed wall cavity. Another method was to make a fiber-gypsum wall panel with fiber-gypsum outer layers formed onto a gypsum-based core. These products typically have improved surface abuse resistance to the paper surface of normal gypsum wallboard. Similar gypsum-based or cement gypsum-based compositions are typically described in U.S. Pat. Nos. 5,817,262 and 5,718,759.
- One material having significant abuse resistance is fiber-cement. Fiber cement has an advantage over gypsum panel with respect to surface abuse resistance such as wear and abrasion. One disadvantage of fiber cement by itself as a wall panel is that it does not have a fire resistance rating comparable to gypsum wall panels of equal thickness. Another disadvantage of fiber cement by itself is that it is significantly heavier than gypsum wall panels of equivalent thickness. For example, a 1 hour fire resistance-rated wall system with fiber cement requires mineral insulation in the wall cavity or a sub-layer of fire rated gypsum wall panel to achieve a 1 hour fire resistance rating when tested in accordance with ASTM E-119.
- A 2-layer system of ¼″ fiber cement over ⅝″ type X fire rated gypsum wallboard has been used to achieve both fire resistance and abuse resistance. Such a system is described in Gypsum Association—Fire Resistance Design Manual—GA FILE NO. WP) 1295—Gypsum wallboard, steel studs, fiber-cement board proprietary system. This two piece system is disadvantageous because it is significantly heavier than single-layer gypsum wallboards. Additionally, the 2-layer wallboards require nearly double the amount of labor for installation because two separate wall panels must be installed instead of a single panel. Also, the extra thickness of the 2-layer systems (⅝″+¼″=⅞″) is not compatible with most door jamb widths.
- Accordingly, what is needed is a single piece building material that has good abuse resistance, impact resistance and fire resistance. This building material should also be light, easy to manufacture and compatible with standard building material sizes. With respect to fire resistance, it would be especially advantageous for such a material to have a fire resistance rating of at least one hour as measured by ASTM E119.
- Briefly stated, the needs addressed above are satisfied in one embodiment by a building material comprising fiber-cement laminated to gypsum to form a single piece laminate composite. This single piece laminate composite exhibits improved fire resistance and surface abuse resistance, but achieves these properties without the excessive weight and thickness of two piece systems. Additionally, because of the reduced thickness, the preferred laminate building material is easier to cut and is quicker and easier to install than two piece systems. Furthermore, forming the fiber-cement and gypsum into a single piece laminate eliminates the need to install two separate pieces of building material, thereby simplifying installation.
- One object of the invention is to provide a building board product suitable for applications requiring surface abuse resistance, improved impact resistance and a 1-hour fire resistance rating (as measured, for example, by ASTM E-119) without cavity insulation at a panel thickness of ⅝″, installed on each side of a wall frame. The surface abuse resistance is measured by abrasion tests such as ASTM D4977-98b (Standard Test Method for Granule Adhesion to Mineral Surfaced Roofing) and also indentation tests such as ASTM D5420 (Impact Resistance of Flat, Rigid Plastic Specimen by Means of a Striker by a Falling Weight (Gardner Impact)). The panel impact resistance is typically measured by, for example, ASTM E695 (Measuring Relative Resistance of Wall, Floor and Roof Construction to Impact Loading), and ISO 7892 (Vertical Building Elements—Impact Resistance Tests—Impact Bodies and General Test Procedures), or other suitable impact or abrasion tests.
- FIG. 1 is a perspective view of a single piece laminate composite comprising fiber-cement laminated to gypsum.
- FIG. 2 is a cross-sectional view of the single piece laminate composite of FIG. 1, showing the fiber-cement and gypsum adhered together using an adhesive.
- The preferred embodiments of the present invention illustrated below describe a single piece laminate composite wallboard system. It will be appreciated, however, that the present invention is not limited to wallboards, but can be utilized for any application where an abuse resistant, impact resistant and fire resistant building material is desired.
- As seen in FIG. 1, a preferred
building material 40 is comprised of a fiber-cement layer 10 laminated togypsum layer 20, creating a single piece laminate composite. FIG. 2 illustrates that thefiber cement layer 10 may be laminated to thegypsum layer 20 using an adhesive 30, the thickness of which is exaggerated in FIG. 2 for illustration purposes, as described in further detail below. It will be appreciated that the fiber-cement and gypsum components can take any form necessary, including, but not limited to, panels, sheets, skins, boards, or the like. In one preferred embodiment, the thickness of a fiber-cement sheet 10 is between about {fraction (1/32)}″ and ¼″. More preferably, the fiber-cement sheet 10 is about ⅛″ thick, plus or minus about {fraction (1/16)}″. Agypsum panel 20 typically has a thickness between about ¼″ to ¾″, more preferably about ½″. It will be appreciated that other thicknesses for the fiber-cement sheet 10 and thegypsum panel 20 may be used. The preferred weight is about 2.5 to 3 lbs/square foot, more preferably about 2.77 lbs/square foot for a ⅝″ thick composite wallboard. - One preferred embodiment of the invention is a composite panel that is manufactured by bonding together a paper-faced ½″ type X gypsum wallboard to ⅛″ thick fiber cement panel. ASTM C 36 describes a type X gypsum board to have not less than 45 minutes fire resistance rating for boards ½″ thick, applied parallel with and on each side of load bearing 2″×4″ wood studs spaced 16″ on center with 6D coated nail, 1-⅞″ long 0.095″ diameter shank, ¼″ diameter head, spaced 7″ on center with the gypsum joints staggered 16″ on each side of the partition and tested in accordance with ASTM E 119. One preferred ½″ Type X gypsum panel is a ½″ thick HARDIROCK® MAX “C”®, described in the table below. This gypsum panel has an improved Type X fire resistance rated core and is manufactured for commercial projects where building codes require specific levels of fire resistance and sound reduction. The ⅝″ thick board is designed to provide greater fire resistance than standard Fire X® board and achieves fire and sound rating with less weight. Application information is available in theGypsum Association Fire Resistance Design Manual GA-600, Underwriter's Laboratories, Inc. Fire Resistance Directory.
HARDIROCK ® MAX “C” ™ THICKNESS 1/2″ (12.7 mm) inches (mm) WIDTH 4′ (1219 mm) feet (mm) STANDARD LENGTHS 8′, 9′, 10′ feet STANDARD EDGES Tapered or square APPROX WEIGHT 1.8 lbs/sq ft (8.8 kg/m2) lbs/sq ft (kg/m2) ASTM SPECS C 36 - It will be appreciated that the face of the
gypsum panel 20 bonded to the fiber-cement 10 does not necessarily require a paper face, and thegypsum panel 20 may be bonded directly to the fiber-cement 10. Apreferred gypsum panel 20 may also have a glass or polymeric fiber mat or woven mesh combined into the panel on either the front or back surface, either on the outside or the inside of the paper. This can be done for two reasons. First, it can be used to improve the impact resistance of thegypsum panel 20 by itself. Second, it can be used to improve the impact resistance of the gypsum panel as part of thecomposite wallboard 40. - The preferred
composite wallboard 40 can be utilized in most interior wallboard installations. The preferredcomposite wallboard 40 is installed such that the fiber-cement side of thewallboard 40 faces outward to provide an abrasion and indentation resistant surface to traffic, and the gypsum side of thewallboard 40 is installed against the supporting framing, with the synergistic combination of the fiber-cement and the gypsum wallboard providing the fire resistance rating and strength of the panel. Neither the preferably gypsum panel ½″ nor the preferably ⅛″ fiber-cement sheet 10 provides the 1-hour fire resistance rating in isolation, but rather the combination of the two materials in alaminated composite 40 has been tested in a symmetrical wall system and achieved a 1 hour fire resistance rating on a typical steel framing used in commercial building partitions. Results of a fire resistance test conducted on this composite panel are provided below. - The supporting framing is typically 20 or 25 gauge steel framing, or wood framing such as 2″×4″ Douglas Fir softwood. The
wallboard 40 can be fastened to the steel studs with suitable screws such as 6 gauge×1-⅛″ Type S Bugle Head drywall or self-drilling screws. Thewallboard 40 can be fastened to wood studs with suitable nails or screws such as 1-¾″ long cup-head gypsum wallboard nails or 6 gauge×1-⅛″ Type S Bugle Head drywall screws. Thepreferred wallboard 40 is designed for use in wall assemblies that are subject to surface abuse and penetration. Such wall assemblies are typically found in schools, public housing, public buildings, interior garage walls, corridors, gymnasiums, change rooms, and correctional and healthcare facilities. The material can be cut with a carbide-tipped score and snap knife, power shears or circular saw optionally with dust control. - Fiber Cement
- The art of manufacturing cellulose fiber reinforced cement for use in a fiber-cement sheet or
skin 10 is described in the Australian Patent AU 515151 and U.S. Pat. No. 6,030,447, the entirety of which is incorporated by reference. Fiber cement has the attributes of durability, resistance to moisture damage, low maintenance, resistance to cracking, rotting or delamination, resistance to termites and non-combustibility. Thus, thefiber cement layer 10 resists damage from extended exposure to humidity, rain, snow, salt air and termites. The layer is dimensionally stable and under normal conditions will not crack, rot or delaminate. - The basic composition of a preferred fiber-
cement panel 10 is about 20% to 60% Portland cement, about 20% to 70% ground silica sand, about 5% to 12% cellulose fiber, and about 0% to 6% select additives such as mineral oxides, mineral hydroxides and water. Platelet or fibrous additives, such as, for example, wollastonite, mica, glass fiber or mineral fiber, may be added to improve the thermal stability of the fiber-cement. - The dry density of a preferred fiber-
cement panel 10 is typically about 1.3 to 1.4 g/cm3 but can be modified by pressing the material to dry densities up to 2.0 g/cm3 or by addition of density modifiers such as unexpanded or expanded vermiculite, perlite, clay, shale or low bulk density (about 0.06 to 0.7 g/cm3) calcium silicate hydrates. - The flexural strength of a preferred fiber-
cement panel 10, typically based on Equilibrium Moisture Content in accordance with ASTM test method C 1185, is 1850 psi along the panel, and 2500 psi across the panel. - A preferred fiber-
cement panel 10 has a non-combustible surface and shows no flame support or loss of integrity when tested in accordance with ASTM test method E136. When tested in accordance with ASTM test method E84, a preferred fiber-cement panel 10 exhibits the following surface burning capabilities: - Flame spread: 0
- Fuel Contributed: 0
- Smoke Developed: 5.
- Lamination Process
- A preferred panel is comprised of a ⅛″ nominal thickness fiber cement sheet laminated to a ½″ thick type X fire resistant gypsum board. The gypsum panel is preferably manufactured with square edges. An adhesive30 as shown in FIGS. 1 and 2 above such as polyvinyl acetate (PVA) is spread over the surface of the gypsum panel and ⅛″ thick fiber cement is placed over the surface and is typically pressed at about 38 psi, in a stacked configuration, for approximately 30 minutes. One preferred adhesive is Sun Adhesives polyvinyl acetate (PVA) adhesive #54-3500 supplied by Sun Adhesives, a division of Patrick Industries. While the adhesive is most preferably a low cost adhesive such as PVA, other organic or inorganic adhesives may be used, such as water-based polymeric adhesives, solvent-based adhesives, thermoset adhesives, natural polymers such as modified starches, liquid moisture cure or reactive hot melt adhesives such as polyurethane, and heat or fire resistant adhesives.
- The adhesive30 is preferably applied by a roll-coater process whereby the
gypsum panel 20 is preferably cleaned to remove dust and debris before the adhesive 30 is applied to the smooth face. The adhesive 30 is preferably spread evenly over the entire surface of thegypsum panel 20. The wet film thickness of the adhesive 30, when measured with a standard “wet film thickness gauge,” will preferably not be less than about 4.5 mil and preferably will not exceed about 6 mil. The fiber-cement panel 10 is placed on top of thegypsum panel 20, which is coated with adhesive 30, squared to the edges of thegypsum panel 20, and then stacked. The completed stack is preferably cured in a press under a load of about 37.5±2.5 psi for preferably no less than about 30 minutes. The panels then preferably have the fiber cement surface sanded and the long edges machined with an abrasive wheel such as diamond grit to form a tapered edge. The machine sanding preferably utilizes three sanding heads. The grades of sanding belts preferably range from 40 grit to 220 grit. The long edges are machine tapered to allow for setting compound, joint reinforcing tape and finishing compounds during flush jointing on installation. The surface of the product is preferably sealed with an acrylic emulsion to reduce the surface water absorption to make it easier to paint and to improve paint adhesion. - The fiber-cement surface of the
composite wallboard 40 may be optionally sealed with an acrylic sealer such as UCAR 701 to facilitate on the job finishing. This can be achieved with a suitable latex paint which may be sprayed, rolled or brush applied for wallpaper or texture finishes. It will also be appreciated that sanding the fiber-cement panel 10 is optional in order to improve the finish of the fiber-cement surface. Furthermore, it will be appreciated that sanding can be done before or after the fiber-cement panel 10 is laminated to thegypsum panel 20. It will be appreciated that a roll press lamination process may also be used, with a suitable pressure sensitive adhesive. - Testing
- Abuse resistance tests were conducted on one preferred laminate composite panel. This preferred panel provided superior impact resistance to the common type X fire resistant gypsum wallboard. The preferred panel also has superior abrasion resistance to both the common type X fire resistant gypsum wallboard and the abuse resistant gypsum based panels.
- A novel feature of the preferred embodiments of the present invention is that neither the ½″ gypsum wallboard or the ⅛″ fiber cement sheet, by themselves, provide altogether, the 1-hour fire resistance rating, surface abuse and impact resistance. However, laminating the two materials together provides the 1-hour fire resistance in a symmetrical wall system when tested to ASTM E119 and an improved level of surface abuse resistance and impact resistance.
- It is believed that the preferred panel also has the advantages of improved flexural strength and nail pull through strength and less humidified deflection compared to the individual components of the preferred invention or a typical type X gypsum wallboard of the same thickness (⅝″ thick).
- The preferred composite also has the novel features of fire and abuse characteristics in a single wallboard or a single piece system. Prior fire resistance rated and abuse resistant systems that utilize fiber cement required a two layer system over the supporting framework. There is considerable advantage with the preferred composite in reduced material and quicker installation of a single piece system versus a 2-layer system. The two layer system required installation of ⅝″ type X gypsum wallboard followed by the installation of ¼″ fiber cement over the top. The total thickness of these 2 layers adds up to ⅞″ of material versus ⅝″ of material with the preferred laminated composite of the present invention.
- Thus, in one embodiment the present invention provides a single piece system that is at least about one hour fire resistance-rated and abuse resistant. This reduces the amount of time to install compared to the 2 layer system, lowers the mass of the wall unit per square foot compared to the 2 layer system, and requires less fixtures per wall for installing panel compared to the 2 layer system. Moreover, the material is easily cut with power shears, which is a quick and easy method of cutting.
- The material also is abrasion resistant, indentation resistant and impact resistant (soft body and hard body), as illustrated in the tables below.
- Surface-abuse and impact resistance can be determined by methods used in such tests as ASTM D 4977-98b (Standard Test Method for Granule Adhesion to Mineral Surfaced Roofing by Abrasion), ASTM D 5420 (Impact Resistance of Flat, Rigid Plastic Specimen by Means of a Striker by a Falling Weight (Gardner Impact)), ASTM E 695 (Measuring Relative Resistance of Wall, Floor and Roof Construction to Impact Loading), ISO 7892 (Vertical Building Elements—Impact Resistance Tests—Impact Bodies and General Test Procedures), or other suitable impact or abrasion tests. Fire resistance can be measured by tests such as ASTM E 119 (Standard Test Methods for Fire Tests of Building Construction and Materials), UL263, UBC 7-1, NFPA 251, ANSI A2.1, or other suitable fire resistance tests. One ⅝″ thick laminate composite embodiment, comprising ⅛″ fiber-cement laminated on top of a ½″ Hardirock Max “C” Gypsum panel, achieved superior abrasion and impact resistance as illustrated in the tables below.
TABLE 1 ASTM D4977-Wire Brush Surface Abrasion Test (Modified to have a total of 25 lbs load on brush) Abraded Depth Abraded Depth Product (mm) (inches) 5/8″ laminate composite 0.000 0.000 5/8″ Type X Gypsum Board 0.016 0.001 -
TABLE 2 ISO 7892 Section 4.3-Hard Body/Impact Resistance Test (Single Impact @ 10 ft. Height-22 ft.-lb. force) Indentation Indentation Diameter Depth Product (inches) (inches) 5/8″ laminated composite 1.270 0.275 5/8″ Type X Gypsum Board 1.788 0.275 - The hard body impact test was conducted with a 1 kg ball bearing as outlined in Section 4.3.1 through 4.3.5 of ISO 7892.
- The panels tested were fastened to 20 gauge steel framing with studs at 16″ on center. The ¼″ fiber cement panel was fastened with 7 gauge×1-¼ C-Drill screw spaced at 8″. The ⅝″ Type X gypsum wallboard was fastened with 6 gauge×1-⅛″ Type S Bugle Head screws spaced at 8″ and the ⅛″ fiber cement laminated on top of ½″ Hardirock Max “C” gypsum wallboard was fastened with 6 gauge×1-⅛″ Type S Bugle Head screws spaced at 12″.
TABLE 3 ASTM D5420-Indentation Test/Gardner Impact Test Product Indentation Dpeth (inches) 5/8″ laminated composite 0.101 5/8″ Type X Gypsum Board 0.149 - For the indentation test, ASTM D5420-96 Method GC was followed which specifies a 0.625 mm diameter striker orifice with a support plate hole close to the diameter of the striker, and a 2 lb. weight falling a distance of 36 inches giving a single energy impact of (72±1.8) ft.-lbs. Ten specimens were tested from each product and values in the table have been averaged for all 10
TABLE 4 ASTM E675-79-Soft Body Impact Resistance Test Cumulative Impact Single Impact Force Force Product (ft.-lbs.) (ft.-lbs.) 5/8″ laminated composite 180 210 5/8″ Type X Gypsum Board 60 90 ¼″ Fiber-cement Panel 60 90 - The soft body impacter was fabricated according to the requirements of sections 5.2.1 through 5.2.4 of E695-79, filled to a gross weight of 60 lbs. The bag is supported as a pendulum, striking the panel midway between the stud and mid height of the test wall in 6″ increments.
- The cumulative impact was defined as the energy needed to reach “failure mode” either by “set deflection”, face/back cracking, and/or stud deformation of >0.25″. Upon reaching any of the previously defined failure mode(s), the weighted bag was raised an additional 6 inches in height to reach the “single impact energy” needed to reach a failure mode.
- The cumulative impact was defined as the energy needed to reach “failure mode” either by: “set deflection”, and face/back cracking, and/or stud deformation of >0.25″. Upon reaching any of the previously defined failure mode(s), the weighted bag was raised an additional 6 inches in height to reach the “single impact energy” needed to reach a failure mode.
- The size of the panels was 4′×8′, and were fastened to 20-gauge steel framing at 24″on center. The ¼″ fiber cement panel was fastened with 7 gauge×1-¼″ C-Drill screw spaced at 8″. The ⅝″ Type X gypsum wallboard was fastened with 6 gauge×1-⅛″ Type S Bugle Head screws spaced at 8″ and the ⅛″0 fiber cement laminated on top of ½″ Hardirock Max “C” gypsum wallboard was fastened with 6 gauge×1-⅛″ Type S Bugle Head screws spaced at 12″.
- Results in the table are an average of 3 panels of each material tested.
- Fire Resistance Testing
- One embodiment of the present invention was tested for fire resistance according to ASTM E 119-98. This embodiment was tested as a dual wall assembly, comprising a cold side and hot side. Each test assembly consisted of a 10 ft×10 ft non-loadbearing wall of 20 GA×3-⅝″ steel studs spaced 24″ o.c. On the cold side, one layer of ⅛″ thick Hardiboard® fiber-cement face skin laminated to ½″ thick Hardirock® “Max C”® gypsum board was applied perpendicular (horizontally) to 20 GA.×3-⅝″ steel studs 24″ o.c. with minimum 1″ long Type S drywall screws 12″ o.c. at floor and ceiling runners and intermediate studs. Fasteners were placed approximately 3″ in from panel comers and approximately ⅜″ in from panel edges. On the fire side, one layer of ⅛″ thick Hardiboard® fiber-cement face skin laminated to ½″ thick Hardirock® “Max C”® gypsum board was applied perpendicular (horizontally) to 20 GA.×3-⅝″ steel studs 24″ o.c. with minimum 1″ long Type S drywall screws 12″ o.c. at floor and ceiling runners and intermediate studs. Fire side horizontal panel joints were offset from cold side horizontal panel joints by 24″. Fasteners were placed approximately 3″ in from framing comers and approximately ⅜″ in from panel edges.
- Framing members in fire-rated wall assemblies are cut ¾″ shorter than full height of wall thereby creating a floating frame wall. In order to transport these walls from the fire test facility to the sound test facility, fasteners were placed through the wall panels into framing members at floor and ceiling runner tracks to provide racking resistance to facilitate specimens handling. This modification does not change the sound transmission characteristics of the wall assembly.
- Joints were treated with chemically-setting powder gypsum joint compound (USG® Durabond® 90), complying with ASTM Specification C 475, for flush joining the panel edges. Setting-type compound was mixed in accordance with manufacturer's written instructions. Compound was applied to fastener heads and joint recess was formed by adjoining sheets. Perforated paper reinforcing tape was immediately imbedded centrally into the joints. Perforated paper reinforcing tape was immediately imbedded with additional compound and allowed to dry.
- The ambient temperature at the start of the test was 80° F., with a relative humidity of 84%. Throughout the fire test, the pressure differential between the inside of the furnace (measured at a point ⅓″ of the way down from the top center of the wall specimen) and the laboratory ambient air was maintained at −0.03 inches of water column, which resulted in a neutral pressure at the top of the test article.
- Observations made during the test were as follows:
Time (min:sec) Observation 0:00 Furnace fired at 8:52 a.m. 1:43 Applicant's laminated composite panel separating out-of- plane (OOPS) at top horizontal joint on the fire side 2:20 Surface of Applicant's laminated composite panel crack- ing and turning black 3:25 Laminate peeling and falling off exposed surface 4:15 Much of the laminate has fallen away; exposed gypsum paper flaming 7:13 Gypsum paper black/gray and flaking on fire side 10:30 All of the laminate has fallen off exposed surface 32:30 ˜1/8″ gap at the bottom horizontal joint on the exposed side 39:00 ˜1/2″ OOPS at the bottom horizontal joint near center of wall on the exposed side. 60:00 The furnace was extinguished and the test article re- moved and exposed to the standard hose stream test. Hose Stream The wall was exposed to the standard hose stream test for at a pressure of 30 psi from 20 feet away, from the exposed surface for a period of 60 seconds. The test article failed the hose stream test when the hose stream penetrated the wall after 19 seconds. - During the fire test, the wall was measured for deflection at three points along its vertical centerline: at 30″ (position #1), 60″ (position #2) and 90″ (position #3) from the left side of the wall. Measurements were made from a taut string to the wall surface at each location.
Position TIME (min) #1 (in.) #2 (in.) #3 (in.) 0 5-3/8 5-3/8 5-1/2 10 5-5/8 5-5/58 5-7/8 20 6-1/4 6-1/2 6-1/2 30 6-3/4 6-3/4 6-7/8 40 6-1/2 6-1/4 6-1/2 50 6-1/4 5-7/8 6-1/4 60 6-1/4 6 6-1/2 - Hose Stream Retest
- In accordance with the standard, a duplicate specimen was subjected to a fire exposure test for a period equal to one half of that indicated as the resistance period in the fire endurance test, immediately followed by the hose stream test.
- Observations made during the test were as follows:
Time (min:sec) Observation 0:00 Furnace fired at 1:37 p.m. 0:53 Applicant's laminated composite panel craking on the ex- posed side 1:20 Applicant's laminated composite panel turning black 2:40 Gypsum paper turning brown where laminate has fallen off 3:00 Exposed gypsum paper ignited 4:25 Exposed gypsum paper stopped flaming 11:00 Much of the laminate is gone, gypsum paper turning white 30:00 The furnace was extinguished and the test article remov- ed and exposed to the standard hose stream test. Hose Stream The wall was exposed to the standard hose stream test for 60 seconds at a pressure of 30 psi from 20 feet away from the exposed surface. The test article withstood the hose stream test without allowing passage of water through the wall. - Conclusions from Fire Testing
- The 20 GA., 3-⅝″ galvanized steel stud wall with Applicant's laminated composite panels (⅛″ thick Hardiboard® fiber-cement face skin laminated to ½″ thick Hardirock® “Max C”® gypsum wallboard) on both surfaces, constructed and tested as described in this report, achieved a non-loadbearing fire resistance rating of 60 minutes for a symmetrical wall assembly according to the ASTM E119 standard.
- Summary of Advantages
- The preferred embodiments of the present invention combine fire resistance of at least 1 hour and significant abuse and impact resistance in a prefabricated single piece laminate composite comprising fiber-cement laminated to gypsum. These properties are achieved in a laminate composite which in one embodiment is only about ⅝″ thick that is not excessively heavy, is easy to cut and is quick and easy to install.
- One disadvantage of the two layer systems of the prior art is that the individual pieces of fiber-cement and gypsum must be self-supporting in order to facilitate their individual installation. The layers of fiber-cement and gypsum, therefore, are limited in how thin they can be in order to remain self-supporting. The preferred embodiments of the present invention, however, combine the fiber-cement and gypsum layers into a prefabricated single piece laminate composite for installation. Thus, the individuals layers of fiber-cement and gypsum need not be self-supporting, and the thickness of the fiber-cement layer, for instance, can be significantly reduced. This reduces the overall thickness of the single piece laminate composite as compared to the two piece systems. As a result, one embodiment of the present invention incorporates a ⅛″ fiber-cement layer and a ½″ gypsum layer to create a single piece laminate composite about ⅝″ thick, that simultaneously achieves a one hour fire resistance rating and abuse and impact resistance.
- The embodiments illustrated and described above are provided merely as examples of certain preferred embodiments of the present invention. Various changes and modifications can be made from the embodiments presented herein by those skilled in the art without departing from the spirit and scope of the invention.
Claims (11)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/437,344 US20030200721A1 (en) | 1999-10-08 | 2003-05-13 | Fiber-cement/gypsum laminate composite building material |
US11/125,813 US20050262799A1 (en) | 1999-10-08 | 2005-05-09 | Fiber-cement/gypsum laminate composite building material |
US11/825,870 US20080022627A1 (en) | 1999-10-08 | 2007-07-10 | Fiber-cement/gypsum laminate |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15860099P | 1999-10-08 | 1999-10-08 | |
US09/685,637 US6562444B1 (en) | 1999-10-08 | 2000-10-10 | Fiber-cement/gypsum laminate composite building material |
US10/437,344 US20030200721A1 (en) | 1999-10-08 | 2003-05-13 | Fiber-cement/gypsum laminate composite building material |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/685,637 Continuation US6562444B1 (en) | 1999-10-08 | 2000-10-10 | Fiber-cement/gypsum laminate composite building material |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/125,813 Continuation US20050262799A1 (en) | 1999-10-08 | 2005-05-09 | Fiber-cement/gypsum laminate composite building material |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030200721A1 true US20030200721A1 (en) | 2003-10-30 |
Family
ID=22568886
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/685,637 Expired - Lifetime US6562444B1 (en) | 1999-10-08 | 2000-10-10 | Fiber-cement/gypsum laminate composite building material |
US10/437,344 Abandoned US20030200721A1 (en) | 1999-10-08 | 2003-05-13 | Fiber-cement/gypsum laminate composite building material |
US11/125,813 Abandoned US20050262799A1 (en) | 1999-10-08 | 2005-05-09 | Fiber-cement/gypsum laminate composite building material |
US11/825,870 Abandoned US20080022627A1 (en) | 1999-10-08 | 2007-07-10 | Fiber-cement/gypsum laminate |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/685,637 Expired - Lifetime US6562444B1 (en) | 1999-10-08 | 2000-10-10 | Fiber-cement/gypsum laminate composite building material |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/125,813 Abandoned US20050262799A1 (en) | 1999-10-08 | 2005-05-09 | Fiber-cement/gypsum laminate composite building material |
US11/825,870 Abandoned US20080022627A1 (en) | 1999-10-08 | 2007-07-10 | Fiber-cement/gypsum laminate |
Country Status (16)
Country | Link |
---|---|
US (4) | US6562444B1 (en) |
EP (1) | EP1235681A1 (en) |
JP (2) | JP2003511274A (en) |
KR (1) | KR100806973B1 (en) |
CN (1) | CN100522595C (en) |
AU (1) | AU781043B2 (en) |
BR (1) | BR0014589A (en) |
CA (1) | CA2386631C (en) |
CZ (1) | CZ20021203A3 (en) |
HK (1) | HK1046517A1 (en) |
MX (1) | MXPA02003487A (en) |
MY (1) | MY125251A (en) |
NZ (1) | NZ518442A (en) |
PL (1) | PL355107A1 (en) |
TW (1) | TW449632B (en) |
WO (1) | WO2001026894A1 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060138279A1 (en) * | 2004-12-23 | 2006-06-29 | Nathan Pisarski | Aircraft floor panel |
US20060144005A1 (en) * | 2004-12-30 | 2006-07-06 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for flooring |
EP1688553A1 (en) * | 2005-02-08 | 2006-08-09 | Placoplatre | Facing panel provided with sound insulation |
US20060174572A1 (en) * | 2005-01-27 | 2006-08-10 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for shear walls |
US20060185267A1 (en) * | 2005-01-27 | 2006-08-24 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for roofing |
US20070175126A1 (en) * | 2005-12-29 | 2007-08-02 | United States Gypsum Company | Reinforced Cementitious Shear Panels |
US20090282759A1 (en) * | 2008-05-14 | 2009-11-19 | Porter William H | Relocatable building wall construction |
US7713615B2 (en) | 2001-04-03 | 2010-05-11 | James Hardie International Finance B.V. | Reinforced fiber cement article and methods of making and installing the same |
US7721500B2 (en) | 2002-10-31 | 2010-05-25 | Jeld-Wen, Inc. | Multi-layered fire door and method for making the same |
US7849650B2 (en) * | 2005-01-27 | 2010-12-14 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for a fire wall and other fire resistive assemblies |
US7870698B2 (en) * | 2006-06-27 | 2011-01-18 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for building foundations |
US20110056163A1 (en) * | 2008-03-04 | 2011-03-10 | Rockwool International A/S | Fire protection of a structural element |
US7993570B2 (en) | 2002-10-07 | 2011-08-09 | James Hardie Technology Limited | Durable medium-density fibre cement composite |
US7998571B2 (en) | 2004-07-09 | 2011-08-16 | James Hardie Technology Limited | Composite cement article incorporating a powder coating and methods of making same |
AU2011213881B2 (en) * | 2005-01-27 | 2012-05-17 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for roofing |
US8281535B2 (en) | 2002-07-16 | 2012-10-09 | James Hardie Technology Limited | Packaging prefinished fiber cement articles |
US8297018B2 (en) | 2002-07-16 | 2012-10-30 | James Hardie Technology Limited | Packaging prefinished fiber cement products |
US20150007515A1 (en) * | 2013-07-08 | 2015-01-08 | Specified Technologies Inc. | Head-of-wall firestopping insulation construction for fluted deck |
US8993462B2 (en) | 2006-04-12 | 2015-03-31 | James Hardie Technology Limited | Surface sealed reinforced building element |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY125251A (en) * | 1999-10-08 | 2006-07-31 | James Hardie Int Finance B V | Fiber-cement/gypsum laminate composite building material |
AUPQ468299A0 (en) * | 1999-12-15 | 2000-01-20 | James Hardie Research Pty Limited | Method and apparatus for extruding cementitious articles |
US6539643B1 (en) | 2000-02-28 | 2003-04-01 | James Hardie Research Pty Limited | Surface groove system for building sheets |
PL358677A1 (en) * | 2000-03-14 | 2004-08-09 | James Hardie Research Pty Limited | Fiber cement building materials with low density additives |
AU2002211394B2 (en) | 2000-10-10 | 2007-02-08 | James Hardie Technology Limited | Composite building material |
KR20030021588A (en) * | 2001-09-06 | 2003-03-15 | (주)청진건설산업 | Method of producing complex panel for construction |
US7770354B2 (en) * | 2002-08-29 | 2010-08-10 | Bui Thuan H | Lightweight modular cementitious panel/tile for use in construction |
WO2005042843A1 (en) * | 2003-10-24 | 2005-05-12 | National Gypsum Properties, Llc | Process for making abrasion resistant paper and paper and paper products made by the process |
NZ548221A (en) * | 2004-01-12 | 2010-06-25 | Hardie James Technology Ltd | Composite fibre cement article with radiation curable component |
CA2584203A1 (en) * | 2004-10-14 | 2006-04-20 | James Hardie International Finance B.V. | Cavity wall system |
US20060124853A1 (en) * | 2004-12-10 | 2006-06-15 | Andrew Corporation | Non-contact surface coating monitor and method of use |
KR20070103475A (en) * | 2005-02-15 | 2007-10-23 | 제임스 하디 인터내셔널 파이낸스 비.브이. | Floorboard Sheets and Modular Floorboard Systems |
US7635657B2 (en) * | 2005-04-25 | 2009-12-22 | Georgia-Pacific Gypsum Llc | Interior wallboard and method of making same |
AT502200B1 (en) * | 2005-11-08 | 2007-02-15 | Otmar Mag Oehlinger | Billboard for use in room, has self-supporting, non-combustible plate with support layer for printing inks that are hardened under ultraviolet light, and manufactured from fiber-cement, where plate is provided with acrylate coating |
HUE041507T2 (en) * | 2005-11-09 | 2019-05-28 | Yoshino Gypsum Co | A wall, a partition, a ceiling or a floor comprising gypsum boards for shielding radioactive rays |
US20070197114A1 (en) * | 2006-02-23 | 2007-08-23 | Grove Dale A | Wear resistant coating composition for a veil product |
EP1867800A1 (en) * | 2006-05-25 | 2007-12-19 | Eugenio Del Castillo Cabello | Lightweight formwork plate and its use for the formation of ceilings and walls |
US20080173541A1 (en) * | 2007-01-22 | 2008-07-24 | Eal Lee | Target designs and related methods for reduced eddy currents, increased resistance and resistivity, and enhanced cooling |
CL2009000373A1 (en) | 2008-03-03 | 2009-10-30 | United States Gypsum Co | Method to make an explosive resistant panel, with the steps of preparing an aqueous cementitious mixture of cement, inorganic fillers and pozzolanic, polycarboxylate self-leveling agent, and forming the mixture into a panel with fiber reinforcement, then curing, polishing, cutting and cure the panel. |
US8061257B2 (en) * | 2008-03-03 | 2011-11-22 | United States Gypsum Company | Cement based armor panel system |
CL2009000372A1 (en) | 2008-03-03 | 2009-11-13 | United States Gypsum Co | Fiber-reinforced armored cementitious panel, comprising a cured phase cementitious core made up of inorganic cement, inorganic mineral, pozzolanic filler, polycarboxylate and water, and a coating layer bonded to a surface of the cured phase. |
CL2009000371A1 (en) | 2008-03-03 | 2009-10-30 | United States Gypsum Co | Cementitious composition, containing a continuous phase that results from the curing of a cementitious mixture, in the absence of silica flour, and comprising inorganic cement, inorganic mineral, pozzolanic filler, polycarboxylate and water; and use of the composition in a cementitious panel and barrier. |
JP4961377B2 (en) * | 2008-03-25 | 2012-06-27 | パナソニック株式会社 | Humidity control panel |
AU2009253835B2 (en) * | 2008-06-02 | 2014-09-25 | James Hardie Technology Limited | Fibre cement lining board and uses thereof |
EP2196589A1 (en) * | 2008-12-09 | 2010-06-16 | Lafarge Gypsum International | Acoustic fire-resisting insulating partition, ceiling or lining |
JP5973917B2 (en) | 2009-11-05 | 2016-08-23 | ウィンストン ウォールボーズ リミテッド | Heating panel and method for the panel |
EP2374959B1 (en) * | 2010-04-09 | 2014-10-22 | KNAUF AQUAPANEL GmbH | Sandwich element for construction and method for producing same |
DK2385030T3 (en) * | 2010-05-03 | 2014-12-08 | Nolax Ag | Emission-adhesive composition |
US20130318904A1 (en) * | 2012-06-04 | 2013-12-05 | United States Gypsum Company | Conventional fire-rated one-sided construction |
KR101255329B1 (en) | 2012-07-17 | 2013-04-16 | (주)민예 | Panel for raised access floor |
EP2743419A1 (en) * | 2012-12-12 | 2014-06-18 | Saint-Gobain Placo SAS | Soundproofing panel |
US9567742B2 (en) * | 2013-05-13 | 2017-02-14 | James Hardie Technology Limited | Acoustic damping building material |
JP6412431B2 (en) * | 2014-02-08 | 2018-10-24 | 吉野石膏株式会社 | Bearing wall structure of wooden outer wall and its construction method |
JP7222713B2 (en) * | 2016-03-10 | 2023-02-15 | カーライル・インタンジブル・エルエルシー | Heat Compensating Roofing Board |
WO2018031666A1 (en) * | 2016-08-09 | 2018-02-15 | Liberman Barnet L | Fire-resistant wall assembly |
CN106442107B (en) * | 2016-09-28 | 2019-08-02 | 同济大学 | Rock-like materials and its preparation method and application for stress test |
CN109844239A (en) * | 2016-10-18 | 2019-06-04 | 吉野石膏株式会社 | With magnetospheric gypsum base building materials, magnetic joint treatment material, with the manufacturing method of magnetospheric gypsum base building materials |
JP2017155583A (en) * | 2017-03-16 | 2017-09-07 | 吉野石膏株式会社 | Interior building material |
FI3687791T3 (en) * | 2017-09-26 | 2023-12-12 | Certainteed Gypsum Inc | Plaster boards having internal layers and methods for making them |
US11203864B2 (en) | 2017-09-28 | 2021-12-21 | Certainteed Gypsum, Inc. | Plaster boards and methods for making them |
WO2020005235A1 (en) * | 2018-06-27 | 2020-01-02 | Boral Ip Holdings (Australia) Pty Limited | Composites comprising cementitious coatings including fibers |
DE202019005348U1 (en) * | 2018-12-14 | 2020-04-08 | Lambert Dustin Dinzinger | Cup made of cellulose hydrate and / or cardboard / cellulose / starch mix with cellulose hydrate coating |
US20230272612A1 (en) * | 2022-02-25 | 2023-08-31 | United States Gypsum Company | Load bearing wall construction system using hollow structural sections |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3974024A (en) * | 1973-03-23 | 1976-08-10 | Onoda Cement Company, Ltd. | Process for producing board of cement-like material reinforced by glass fiber |
US4104103A (en) * | 1974-09-20 | 1978-08-01 | Tarullo John A | Method for making cork wall covering |
US4343127A (en) * | 1979-02-07 | 1982-08-10 | Georgia-Pacific Corporation | Fire door |
US4361616A (en) * | 1979-03-01 | 1982-11-30 | Stamicarbon, B.V. | Laminated board |
US4392336A (en) * | 1981-03-13 | 1983-07-12 | Ganssle Jack L | Drywall construction and article of manufacture therefor |
US4748771A (en) * | 1985-07-30 | 1988-06-07 | Georgia-Pacific Corporation | Fire door |
US4811538A (en) * | 1987-10-20 | 1989-03-14 | Georgia-Pacific Corporation | Fire-resistant door |
US4841702A (en) * | 1988-02-22 | 1989-06-27 | Huettemann Erik W | Insulated concrete building panels and method of making the same |
US4937993A (en) * | 1984-07-19 | 1990-07-03 | Hitchins William G | Composite building panel |
US5305577A (en) * | 1989-10-12 | 1994-04-26 | Georgia-Pacific Corporation | Fire-resistant structure containing gypsum fiberboard |
US5395685A (en) * | 1989-11-10 | 1995-03-07 | Gebruder Knauf Westdeutsche Gipswerke Kg | Gypsum board comprisiing linings made of glass fiber non-wovens coated with an inorganic cement binder |
US5697189A (en) * | 1995-06-30 | 1997-12-16 | Miller; John F. | Lightweight insulated concrete wall |
US5718759A (en) * | 1995-02-07 | 1998-02-17 | National Gypsum Company | Cementitious gypsum-containing compositions and materials made therefrom |
US5735092A (en) * | 1996-09-23 | 1998-04-07 | Bridgestone/Firestone, Inc. | Composite roofing members having improved dimensional stability and related methods |
US5743056A (en) * | 1992-04-10 | 1998-04-28 | Balla-Goddard; Michael Steven Andrew | Building panel and buildings made therefrom |
US5791109A (en) * | 1984-02-27 | 1998-08-11 | Georgia-Pacific Corporation | Gypsum board and finishing system containing same |
US5817262A (en) * | 1996-12-20 | 1998-10-06 | United States Gypsum Company | Process of producing gypsum wood fiber product having improved water resistance |
US5848508A (en) * | 1996-09-26 | 1998-12-15 | Albrecht; Ronald | Core for a patio enclosure wall and method of forming thereof |
US5945208A (en) * | 1989-10-12 | 1999-08-31 | G-P Gypsum Corporation | Fire-resistant gypsum building materials |
US6562444B1 (en) * | 1999-10-08 | 2003-05-13 | James Hardie Research Pty Limited | Fiber-cement/gypsum laminate composite building material |
Family Cites Families (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US575074A (en) * | 1897-01-12 | Molder s core | ||
US815801A (en) * | 1905-02-10 | 1906-03-20 | Pumice Stone Construction Company | Building material. |
US1698557A (en) * | 1927-04-28 | 1929-01-08 | Denis J O'brien | Concrete structure |
US1943663A (en) * | 1929-10-30 | 1934-01-16 | United States Gypsum Co | Tile board and method of manufacturing same |
US1976984A (en) * | 1931-03-02 | 1934-10-16 | Gleason Works | Gear cutting machine |
US1995393A (en) * | 1933-03-15 | 1935-03-26 | United States Gypsum Co | Self-furring plaster board |
US2324325A (en) * | 1939-04-29 | 1943-07-13 | Carbide & Carbon Chem Corp | Surfaced cement fiber product |
US2317634A (en) * | 1940-01-13 | 1943-04-27 | Anders C Olsen | Building construction |
US2276170A (en) * | 1940-10-26 | 1942-03-10 | Elmendorf Armin | Siding for buildings |
US2413794A (en) * | 1944-10-26 | 1947-01-07 | Elden P Reising | Securement means for shingle and siding units |
US2782463A (en) * | 1951-05-01 | 1957-02-26 | Bergvall Knut Lennart | Prefabricated wooden building |
US2694025A (en) * | 1951-06-27 | 1954-11-09 | Owens Corning Fiberglass Corp | Structural panel |
US2624298A (en) * | 1951-09-04 | 1953-01-06 | Farren Roy | Tile roof structure |
US2928143A (en) * | 1956-09-26 | 1960-03-15 | Building Products Ltd | Ventilated siding and panel clip |
US3173229A (en) * | 1961-02-16 | 1965-03-16 | Weber Elmer | Siding structure |
US3235039A (en) * | 1962-07-30 | 1966-02-15 | Johns Manville | Curtain wall support system |
US3236932A (en) * | 1963-02-19 | 1966-02-22 | Daniel P Grigas | Apparatus for applying metallic siding |
US3421281A (en) * | 1965-10-04 | 1969-01-14 | Fibreboard Corp | Resilient channel member |
US3635742A (en) * | 1969-08-14 | 1972-01-18 | Fujimasu Ind International | Calcining alkaline earth metal chlorides with cellulose and admixing with portland cement |
US3869295A (en) * | 1970-03-30 | 1975-03-04 | Andrew D Bowles | Uniform lightweight concrete and plaster |
US3708943A (en) * | 1970-04-22 | 1973-01-09 | Olin Corp | Aluminum facing and roofing sheet system |
US3797179A (en) * | 1971-06-25 | 1974-03-19 | N Jackson | Mansard roof structure |
US3866378A (en) * | 1971-10-12 | 1975-02-18 | Gerald Kessler | Siding with loose plastic film facing |
US3921346A (en) * | 1971-11-12 | 1975-11-25 | Nat Gypsum Co | Fire retardant shaft wall |
US3782985A (en) * | 1971-11-26 | 1974-01-01 | Cadcom Inc | Lightweight,high strength concrete and method for manufacturing the same |
US4076884A (en) * | 1972-03-22 | 1978-02-28 | The Governing Council Of The University Of Toronto | Fibre reinforcing composites |
US3797190A (en) * | 1972-08-10 | 1974-03-19 | Smith E Division Cyclops Corp | Prefabricated, insulated, metal wall panel |
US3852934A (en) * | 1973-01-10 | 1974-12-10 | W Kirkhuff | Interlocking shingle arrangement |
JPS49116445U (en) * | 1973-02-05 | 1974-10-04 | ||
US4377977A (en) * | 1974-08-26 | 1983-03-29 | The Mosler Safe Company | Concrete security structures and method for making same |
US4132555A (en) * | 1975-01-02 | 1979-01-02 | Cape Boards & Panels Ltd. | Building board |
US4079562A (en) * | 1975-04-30 | 1978-03-21 | Englert Metals Corporation | Siding starter clip for securing to the side of a structure and engaging a siding starter panel |
CA1024716A (en) * | 1975-07-18 | 1978-01-24 | Charles F. Gross | Panel mounting |
JPS5251719A (en) * | 1975-10-20 | 1977-04-25 | Kanebo Ltd | Fireeproof heat insulating structure material |
JPS5252429A (en) * | 1975-10-27 | 1977-04-27 | Kanebo Ltd | Composite panel for building material |
US4047355A (en) * | 1976-05-03 | 1977-09-13 | Studco, Inc. | Shaftwall |
US4187658A (en) * | 1976-05-20 | 1980-02-12 | Illinois Tool Works Inc. | Panel clamp |
US4274239A (en) * | 1976-09-03 | 1981-06-23 | Carroll Research, Inc. | Building structure |
US4010587A (en) * | 1976-09-07 | 1977-03-08 | Larsen Glen D | Nailable flooring construction |
US4070843A (en) * | 1976-12-16 | 1978-01-31 | Robert Leggiere | Simulated shingle arrangement |
US4152878A (en) * | 1977-06-03 | 1979-05-08 | United States Gypsum Company | Stud for forming fire-rated wall and structure formed therewith |
US4183188A (en) * | 1977-07-12 | 1980-01-15 | Goldsby Claude W | Simulated brick panel, composition and method |
DK63179A (en) * | 1979-02-14 | 1980-08-15 | Rockwool Int | FIBER ARMED CEMENT PRODUCT AND PROCEDURES FOR PRODUCING THE SAME |
US4321780A (en) * | 1979-07-12 | 1982-03-30 | Atlantic Building Systems, Inc. | Snap cap for architectural wall panel |
US4366657A (en) * | 1980-03-05 | 1983-01-04 | Fred Hopman | Method and form for mechanically pouring adobe structures |
US4370166A (en) * | 1980-09-04 | 1983-01-25 | Standard Oil Company (Indiana) | Low density cement slurry and its use |
JPS5758615U (en) * | 1980-09-24 | 1982-04-06 | ||
DE3134973C2 (en) * | 1981-01-23 | 1983-12-29 | Veith Pirelli AG, 6128 Höchst | Device for attaching a flexible sheet to a wall |
US4730398A (en) * | 1981-02-17 | 1988-03-15 | Stanton Carl A | Preliminary recording activity by guide and point |
FI822075L (en) * | 1981-06-19 | 1982-12-20 | Cape Universal Claddings | BYGGNADSSKIVOR |
US4373955A (en) * | 1981-11-04 | 1983-02-15 | Chicago Bridge & Iron Company | Lightweight insulating concrete |
US4506486A (en) * | 1981-12-08 | 1985-03-26 | Culpepper & Wilson, Inc. | Composite siding panel |
US4424261A (en) * | 1982-09-23 | 1984-01-03 | American Cyanamid Company | Hydroxyisopropylmelamine modified melamine-formaldehyde resin |
US4429214A (en) * | 1982-09-27 | 1984-01-31 | National Gypsum Company | Electrical heating panel |
US4670079A (en) * | 1982-11-26 | 1987-06-02 | Thompson Thomas L | Method of forming a walking-surface panel |
US4504320A (en) * | 1983-09-26 | 1985-03-12 | Research One Limited Partnership | Light-weight cementitious product |
SE453181B (en) * | 1983-10-05 | 1988-01-18 | Bengt Hedberg | SET TO MAKE LIGHT BALL CONCRETE |
US4501830A (en) * | 1984-01-05 | 1985-02-26 | Research One Limited Partnership | Rapid set lightweight cement product |
DE3409597A1 (en) * | 1984-03-15 | 1985-09-26 | Baierl & Demmelhuber GmbH & Co Akustik & Trockenbau KG, 8121 Pähl | ASBEST-FREE BUILDING MATERIAL PARTS AND METHOD FOR THEIR PRODUCTION |
US4642137A (en) * | 1985-03-06 | 1987-02-10 | Lone Star Industries, Inc. | Mineral binder and compositions employing the same |
US4640715A (en) * | 1985-03-06 | 1987-02-03 | Lone Star Industries, Inc. | Mineral binder and compositions employing the same |
US4641469A (en) * | 1985-07-18 | 1987-02-10 | Wood Edward F | Prefabricated insulating panels |
DK337186D0 (en) * | 1986-07-15 | 1986-07-15 | Densit As | PROCEDURE AND MATERIALS FOR THE MANUFACTURE OF A FORMATED ITEM |
US4803105A (en) * | 1987-02-13 | 1989-02-07 | Essex Specialty Products, Inc. | Reinforcing sheet for the reinforcement of panel and method of reinforcing panel |
US4995605A (en) * | 1987-06-29 | 1991-02-26 | Conlab Inc. | Panel fastener clip and method of panel assembly |
US4985119A (en) * | 1987-07-01 | 1991-01-15 | The Procter & Gamble Cellulose Company | Cellulose fiber-reinforced structure |
US5080022A (en) * | 1987-10-23 | 1992-01-14 | Aerex International Corporation | Composite material and method |
CA1341084C (en) * | 1987-11-16 | 2000-08-15 | George W. Green | Coated fibrous mat-faced gypsum board resistant to water and humidity |
FR2624301B1 (en) * | 1987-12-02 | 1990-03-30 | Commissariat Energie Atomique | DEVICE FOR CONDITIONING RADIOACTIVE OR TOXIC WASTE CONTAINING BORATE IONS, AND MANUFACTURING METHOD THEREOF |
US5077952A (en) * | 1989-10-12 | 1992-01-07 | Monier Roof Tile Inc. | Roof tile clip |
FR2660218B1 (en) * | 1990-04-02 | 1992-06-05 | Philippe Pichat | PROCESS FOR THE INCINERATION OF WASTE. |
FR2665698B1 (en) * | 1990-08-10 | 1993-09-10 | Conroy Michel | COMPLETE CEMENT MIXTURE WITH SELECTED AGGREGATES, FOR OBTAINING MORTAR OR CONCRETE WITHOUT WITHDRAWAL, SELF-SMOOTHING AND SELF-LEVELING. |
US5198052A (en) * | 1990-10-22 | 1993-03-30 | Domtar, Inc. | Method of reshaping a gypsum board core and products made by same |
US5245811A (en) * | 1991-03-14 | 1993-09-21 | William L. Knorr | Wall framing clip system |
FR2679381B1 (en) * | 1991-07-19 | 1993-10-08 | Alcatel Alsthom Cie Gle Electric | OPTO-ELECTRONIC CONVERTER. |
US5198275A (en) * | 1991-08-15 | 1993-03-30 | Klein Gerald B | Card stock sheets with improved severance means |
JPH0540473U (en) * | 1991-08-30 | 1993-06-01 | 石川島建材工業株式会社 | Composite interior board |
US5482550A (en) * | 1991-12-27 | 1996-01-09 | Strait; Mark C. | Structural building unit and method of making the same |
US5475961A (en) * | 1992-03-27 | 1995-12-19 | National Gypsum Company | Vertical post assembly |
US5297370A (en) * | 1992-04-23 | 1994-03-29 | John Greenstreet | Panel system and clean rooms constructed therefrom |
US5282317A (en) * | 1992-05-19 | 1994-02-01 | Doris Carter | Tissue pattern paper |
US5391245A (en) * | 1992-09-21 | 1995-02-21 | Turner; Terry A. | Fire-resistant building component |
CN1071654A (en) * | 1992-10-19 | 1993-05-05 | 刘光辉 | The preparation of multi-function plaster composite board and technology |
US5768841A (en) * | 1993-04-14 | 1998-06-23 | Swartz & Kulpa, Structural Design And Engineering | Wallboard structure |
US5394672A (en) * | 1993-07-26 | 1995-03-07 | Insulok Corp. | Interlocking insulated roof panel system |
US5501050A (en) * | 1993-10-18 | 1996-03-26 | Ruel; Raymond | Shingled tile block siding facade for buildings |
US5724783A (en) * | 1993-12-27 | 1998-03-10 | Mandish; Theodore O. | Building panel apparatus and method |
US6679011B2 (en) * | 1994-05-13 | 2004-01-20 | Certainteed Corporation | Building panel as a covering for building surfaces and method of applying |
US5857303A (en) * | 1994-05-13 | 1999-01-12 | Certainteed Corporation | Apparatus and method of applying building panels to surfaces |
US5729946A (en) * | 1994-05-13 | 1998-03-24 | Certainteed Corporation | Apparatus and method of applying building panels to surfaces |
JPH0874358A (en) * | 1994-09-02 | 1996-03-19 | Yoshino Sekko Kk | Partition wall |
JPH08151246A (en) * | 1994-11-24 | 1996-06-11 | Ask:Kk | Spray refractory coating composition and method for applying the same |
US5725652A (en) * | 1994-12-19 | 1998-03-10 | Shulman; David M. | Lightweight, low water content expanded shale, clay and slate cementitious compositions and methods of their production and use |
US5598671A (en) * | 1995-02-09 | 1997-02-04 | Ting; Raymond M. L. | Externally drained wall joint |
US5718758A (en) * | 1995-08-21 | 1998-02-17 | Breslauer; Charles S. | Ultra-light high moisture retention title mortar |
AUPN504095A0 (en) * | 1995-08-25 | 1995-09-21 | James Hardie Research Pty Limited | Cement formulation |
US5603758A (en) * | 1995-10-06 | 1997-02-18 | Boral Concrete Products, Inc. | Composition useful for lightweight roof tiles and method of producing said composition |
USD388884S (en) * | 1996-01-11 | 1998-01-06 | Wayne Karnoski | Corner molding trim piece |
AUPO303296A0 (en) * | 1996-10-16 | 1996-11-14 | James Hardie International Finance B.V. | Wall member and method of construction thereof |
US6110575A (en) * | 1996-11-12 | 2000-08-29 | Yoshino Sangyo Co., Ltd. | Gypsum-based composite article and method for producing same |
US5732520A (en) * | 1996-12-10 | 1998-03-31 | Multicoat Corporation | Synthetic stucco system |
US5714002A (en) * | 1997-02-12 | 1998-02-03 | Mineral Resource Technologies, Llc | Process for making a blended hydraulic cement |
AUPO612097A0 (en) * | 1997-04-10 | 1997-05-08 | James Hardie Research Pty Limited | Building products |
US6018924A (en) * | 1997-08-21 | 2000-02-01 | Tamlyn; John Thomas | Adjustable reveal strip and related method of construction |
US6012255A (en) * | 1997-09-09 | 2000-01-11 | Smid; Dennis M. | Construction board having a number of marks for facilitating the installation thereof and a method for fabricating such construction board |
US6029415A (en) * | 1997-10-24 | 2000-02-29 | Abco, Inc. | Laminated vinyl siding |
US6170212B1 (en) * | 1998-02-23 | 2001-01-09 | Certainteed Corporation | Deck system |
US6026616A (en) * | 1998-05-20 | 2000-02-22 | Gibson; J. W. | Eave Cladding |
US6170214B1 (en) * | 1998-06-09 | 2001-01-09 | Kenneth Treister | Cladding system |
US6176920B1 (en) * | 1998-06-12 | 2001-01-23 | Smartboard Building Products Inc. | Cementitious structural panel and method of its manufacture |
US6170215B1 (en) * | 1999-09-10 | 2001-01-09 | Evert Edward Nasi | Siding panel with interlock |
US6689451B1 (en) * | 1999-11-19 | 2004-02-10 | James Hardie Research Pty Limited | Pre-finished and durable building material |
JP3388437B2 (en) * | 2000-02-18 | 2003-03-24 | 大日本印刷株式会社 | Decorative sheet |
US6539643B1 (en) * | 2000-02-28 | 2003-04-01 | James Hardie Research Pty Limited | Surface groove system for building sheets |
PL365829A1 (en) * | 2000-10-04 | 2005-01-10 | James Hardie Research Pty Limited | Fiber cement composite materials using sized cellulose fibers |
AU2002211394B2 (en) * | 2000-10-10 | 2007-02-08 | James Hardie Technology Limited | Composite building material |
JP4153300B2 (en) * | 2000-10-26 | 2008-09-24 | ジェイムズ ハーディー インターナショナル ファイナンス ベスローテン フェンノートシャップ | ARCHITECTURE PANEL ASSEMBLY HAVING PROTECTIVE FILM, METHOD FOR PRODUCING THE SAME, AND ADHESIVE SYSTEM FOR BINDING PROTECTIVE FILM |
US6516580B1 (en) * | 2000-11-13 | 2003-02-11 | Multicoat Corporation | Synthetic stucco system with moisture absorption control |
US6550203B1 (en) * | 2001-04-19 | 2003-04-22 | Radiation Protection Products, Inc. | Leak-proof lead barrier system |
US6901713B2 (en) * | 2002-01-03 | 2005-06-07 | Erich Jason Axsom | Multipurpose composite wallboard panel |
US8453399B2 (en) * | 2002-03-13 | 2013-06-04 | Battens Plus, Inc. | Roof batten |
US7028436B2 (en) * | 2002-11-05 | 2006-04-18 | Certainteed Corporation | Cementitious exterior sheathing product with rigid support member |
US6913819B2 (en) * | 2002-12-27 | 2005-07-05 | Christine E. Wallner | Cementitious veneer and laminate material |
-
2000
- 2000-10-03 MY MYPI20004607 patent/MY125251A/en unknown
- 2000-10-05 BR BR0014589A patent/BR0014589A/en active Search and Examination
- 2000-10-05 JP JP2001529932A patent/JP2003511274A/en active Pending
- 2000-10-05 CA CA 2386631 patent/CA2386631C/en not_active Expired - Lifetime
- 2000-10-05 AU AU11919/01A patent/AU781043B2/en not_active Expired
- 2000-10-05 EP EP20000973412 patent/EP1235681A1/en not_active Withdrawn
- 2000-10-05 WO PCT/US2000/027451 patent/WO2001026894A1/en active Application Filing
- 2000-10-05 MX MXPA02003487A patent/MXPA02003487A/en active IP Right Grant
- 2000-10-05 PL PL00355107A patent/PL355107A1/en unknown
- 2000-10-05 NZ NZ518442A patent/NZ518442A/en not_active IP Right Cessation
- 2000-10-05 KR KR1020027004521A patent/KR100806973B1/en not_active IP Right Cessation
- 2000-10-05 CN CNB008139687A patent/CN100522595C/en not_active Expired - Fee Related
- 2000-10-05 CZ CZ20021203A patent/CZ20021203A3/en unknown
- 2000-10-10 US US09/685,637 patent/US6562444B1/en not_active Expired - Lifetime
- 2000-12-18 TW TW89120965A patent/TW449632B/en not_active IP Right Cessation
-
2002
- 2002-11-02 HK HK02107993.0A patent/HK1046517A1/en unknown
-
2003
- 2003-05-13 US US10/437,344 patent/US20030200721A1/en not_active Abandoned
-
2005
- 2005-05-09 US US11/125,813 patent/US20050262799A1/en not_active Abandoned
-
2007
- 2007-01-11 JP JP2007003021A patent/JP2007162460A/en active Pending
- 2007-07-10 US US11/825,870 patent/US20080022627A1/en not_active Abandoned
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3974024A (en) * | 1973-03-23 | 1976-08-10 | Onoda Cement Company, Ltd. | Process for producing board of cement-like material reinforced by glass fiber |
US4104103A (en) * | 1974-09-20 | 1978-08-01 | Tarullo John A | Method for making cork wall covering |
US4343127A (en) * | 1979-02-07 | 1982-08-10 | Georgia-Pacific Corporation | Fire door |
US4361616A (en) * | 1979-03-01 | 1982-11-30 | Stamicarbon, B.V. | Laminated board |
US4392336A (en) * | 1981-03-13 | 1983-07-12 | Ganssle Jack L | Drywall construction and article of manufacture therefor |
US5791109A (en) * | 1984-02-27 | 1998-08-11 | Georgia-Pacific Corporation | Gypsum board and finishing system containing same |
US4937993A (en) * | 1984-07-19 | 1990-07-03 | Hitchins William G | Composite building panel |
US4748771A (en) * | 1985-07-30 | 1988-06-07 | Georgia-Pacific Corporation | Fire door |
US4811538A (en) * | 1987-10-20 | 1989-03-14 | Georgia-Pacific Corporation | Fire-resistant door |
US4841702A (en) * | 1988-02-22 | 1989-06-27 | Huettemann Erik W | Insulated concrete building panels and method of making the same |
US5305577A (en) * | 1989-10-12 | 1994-04-26 | Georgia-Pacific Corporation | Fire-resistant structure containing gypsum fiberboard |
US5945208A (en) * | 1989-10-12 | 1999-08-31 | G-P Gypsum Corporation | Fire-resistant gypsum building materials |
US5395685A (en) * | 1989-11-10 | 1995-03-07 | Gebruder Knauf Westdeutsche Gipswerke Kg | Gypsum board comprisiing linings made of glass fiber non-wovens coated with an inorganic cement binder |
US5743056A (en) * | 1992-04-10 | 1998-04-28 | Balla-Goddard; Michael Steven Andrew | Building panel and buildings made therefrom |
US5718759A (en) * | 1995-02-07 | 1998-02-17 | National Gypsum Company | Cementitious gypsum-containing compositions and materials made therefrom |
US5697189A (en) * | 1995-06-30 | 1997-12-16 | Miller; John F. | Lightweight insulated concrete wall |
US5735092A (en) * | 1996-09-23 | 1998-04-07 | Bridgestone/Firestone, Inc. | Composite roofing members having improved dimensional stability and related methods |
US5848508A (en) * | 1996-09-26 | 1998-12-15 | Albrecht; Ronald | Core for a patio enclosure wall and method of forming thereof |
US5817262A (en) * | 1996-12-20 | 1998-10-06 | United States Gypsum Company | Process of producing gypsum wood fiber product having improved water resistance |
US6562444B1 (en) * | 1999-10-08 | 2003-05-13 | James Hardie Research Pty Limited | Fiber-cement/gypsum laminate composite building material |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8409380B2 (en) | 2001-04-03 | 2013-04-02 | James Hardie Technology Limited | Reinforced fiber cement article and methods of making and installing the same |
US7713615B2 (en) | 2001-04-03 | 2010-05-11 | James Hardie International Finance B.V. | Reinforced fiber cement article and methods of making and installing the same |
US8297018B2 (en) | 2002-07-16 | 2012-10-30 | James Hardie Technology Limited | Packaging prefinished fiber cement products |
US8281535B2 (en) | 2002-07-16 | 2012-10-09 | James Hardie Technology Limited | Packaging prefinished fiber cement articles |
US7993570B2 (en) | 2002-10-07 | 2011-08-09 | James Hardie Technology Limited | Durable medium-density fibre cement composite |
US7721500B2 (en) | 2002-10-31 | 2010-05-25 | Jeld-Wen, Inc. | Multi-layered fire door and method for making the same |
US7998571B2 (en) | 2004-07-09 | 2011-08-16 | James Hardie Technology Limited | Composite cement article incorporating a powder coating and methods of making same |
US20060138279A1 (en) * | 2004-12-23 | 2006-06-29 | Nathan Pisarski | Aircraft floor panel |
US7849648B2 (en) * | 2004-12-30 | 2010-12-14 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for flooring |
US20060144005A1 (en) * | 2004-12-30 | 2006-07-06 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for flooring |
US8069633B2 (en) * | 2004-12-30 | 2011-12-06 | U.S. Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for flooring |
US20110056159A1 (en) * | 2004-12-30 | 2011-03-10 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for flooring |
US7849650B2 (en) * | 2005-01-27 | 2010-12-14 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for a fire wall and other fire resistive assemblies |
AU2006208213B2 (en) * | 2005-01-27 | 2011-03-17 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for a fire wall and other fire resistive assemblies |
US8065852B2 (en) * | 2005-01-27 | 2011-11-29 | U.S. Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for roofing |
AU2011213881B2 (en) * | 2005-01-27 | 2012-05-17 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for roofing |
US20110041443A1 (en) * | 2005-01-27 | 2011-02-24 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for roofing |
US8122679B2 (en) | 2005-01-27 | 2012-02-28 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for a fire wall and other fire resistive assemblies |
US7841148B2 (en) * | 2005-01-27 | 2010-11-30 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for roofing |
US8079198B2 (en) * | 2005-01-27 | 2011-12-20 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for shear walls |
US20060185267A1 (en) * | 2005-01-27 | 2006-08-24 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for roofing |
US7849649B2 (en) * | 2005-01-27 | 2010-12-14 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for shear walls |
US20110113715A1 (en) * | 2005-01-27 | 2011-05-19 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for shear walls |
AU2006208319B2 (en) * | 2005-01-27 | 2011-05-26 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for roofing |
AU2006208213C1 (en) * | 2005-01-27 | 2011-09-29 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for a fire wall and other fire resistive assemblies |
US20110192100A1 (en) * | 2005-01-27 | 2011-08-11 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for a fire wall and other fire resistive assemblies |
US20060174572A1 (en) * | 2005-01-27 | 2006-08-10 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for shear walls |
FR2881768A1 (en) * | 2005-02-08 | 2006-08-11 | Placoplatre Sa | PLATE PLATE PROVIDING ACOUSTIC INSULATION |
EP1688553A1 (en) * | 2005-02-08 | 2006-08-09 | Placoplatre | Facing panel provided with sound insulation |
US8065853B2 (en) * | 2005-12-29 | 2011-11-29 | U.S. Gypsum Company | Reinforced cementitious shear panels |
US20110056156A1 (en) * | 2005-12-29 | 2011-03-10 | United States Gypsum Company | Reinforced cementitious shear panels |
US7845130B2 (en) * | 2005-12-29 | 2010-12-07 | United States Gypsum Company | Reinforced cementitious shear panels |
US20070175126A1 (en) * | 2005-12-29 | 2007-08-02 | United States Gypsum Company | Reinforced Cementitious Shear Panels |
US8993462B2 (en) | 2006-04-12 | 2015-03-31 | James Hardie Technology Limited | Surface sealed reinforced building element |
US8061108B2 (en) * | 2006-06-27 | 2011-11-22 | U.S. Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for building foundations |
US20110061316A1 (en) * | 2006-06-27 | 2011-03-17 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for building foundations |
US7870698B2 (en) * | 2006-06-27 | 2011-01-18 | United States Gypsum Company | Non-combustible reinforced cementitious lightweight panels and metal frame system for building foundations |
US20110056163A1 (en) * | 2008-03-04 | 2011-03-10 | Rockwool International A/S | Fire protection of a structural element |
US20090282759A1 (en) * | 2008-05-14 | 2009-11-19 | Porter William H | Relocatable building wall construction |
US20150007515A1 (en) * | 2013-07-08 | 2015-01-08 | Specified Technologies Inc. | Head-of-wall firestopping insulation construction for fluted deck |
US8955275B2 (en) * | 2013-07-08 | 2015-02-17 | Specified Technologies Inc. | Head-of-wall firestopping insulation construction for fluted deck |
Also Published As
Publication number | Publication date |
---|---|
US6562444B1 (en) | 2003-05-13 |
CN100522595C (en) | 2009-08-05 |
WO2001026894A1 (en) | 2001-04-19 |
EP1235681A1 (en) | 2002-09-04 |
AU1191901A (en) | 2001-04-23 |
CA2386631A1 (en) | 2001-04-19 |
US20050262799A1 (en) | 2005-12-01 |
TW449632B (en) | 2001-08-11 |
US20080022627A1 (en) | 2008-01-31 |
PL355107A1 (en) | 2004-04-05 |
JP2003511274A (en) | 2003-03-25 |
AU781043B2 (en) | 2005-05-05 |
KR20020075859A (en) | 2002-10-07 |
CN1384781A (en) | 2002-12-11 |
BR0014589A (en) | 2002-08-20 |
CA2386631C (en) | 2012-09-18 |
NZ518442A (en) | 2003-10-31 |
HK1046517A1 (en) | 2003-01-17 |
MXPA02003487A (en) | 2004-04-21 |
CZ20021203A3 (en) | 2003-01-15 |
KR100806973B1 (en) | 2008-02-25 |
MY125251A (en) | 2006-07-31 |
JP2007162460A (en) | 2007-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6562444B1 (en) | Fiber-cement/gypsum laminate composite building material | |
US6119422A (en) | Impact resistant building panels | |
US6711872B2 (en) | Lightweight panel construction | |
US8122679B2 (en) | Non-combustible reinforced cementitious lightweight panels and metal frame system for a fire wall and other fire resistive assemblies | |
WO2008124430A1 (en) | Gypsum wood fiber structural insulated panel arrangement | |
CA2594163A1 (en) | Non-combustible reinforced cementitious lightweight panels and metal frame system for flooring | |
JPS63501807A (en) | Methods of constructing modular building structures and assemblies | |
WO2018063930A1 (en) | One hour fire rated wooden frame members using lightweight gypsum wallboard | |
WO2013052427A2 (en) | Modular building construction system using light weight panels | |
McMorrough | The Architecture Reference & Specification Book: Everything Architects Need to Know Every Day | |
US20090288360A1 (en) | Sound proofing system and method | |
US20240376711A1 (en) | Clt building acoustic sprinkler drop flooring system | |
AU2011202916A1 (en) | Non-combustible reinforced cementitious lightweight panels and metal frame system for a fire wall and other fire resistive assemblies | |
US20230250634A1 (en) | Fire-resistant wall assembly | |
WO2024238194A1 (en) | Clt building acoustic sprinkler drop flooring system | |
GB2379675A (en) | Prefabricated separating (party) floor | |
Panel | Autoclaved aerated concrete | |
JPH0688416A (en) | Sound insulation floor base |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: JAMES HARDIE INTERNATIONAL FINANCE B.V., NETHERLAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JAMES HARDIE RESEARCH PTY LIMITED;REEL/FRAME:015980/0271 Effective date: 20050207 Owner name: JAMES HARDIE INTERNATIONAL FINANCE B.V.,NETHERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JAMES HARDIE RESEARCH PTY LIMITED;REEL/FRAME:015980/0271 Effective date: 20050207 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |