BACKGROUND OF THE INVENTION
-
The present invention relates generally to the identification and isolation of novel DNA and to the recombinant production of novel polypeptides. [0001]
-
Extracellular proteins play important roles in, among other things, the formation, differentiation and maintenance of multicellular organisms. The fate of many individual cells, e.g., proliferation, migration, differentiation, or interaction with other cells, is typically governed by information received from other cells and/or the immediate environment. This information is often transmitted by secreted polypeptides (for instance, mitogenic factors, survival factors, cytotoxic factors, differentiation factors, neuropeptides, and hormones) which are, in turn, received and interpreted by diverse cell receptors or membrane-bound proteins. These secreted polypeptides or signaling molecules normally pass through the cellular secretory pathway to reach their site of action in the extracellular environment. [0002]
-
Secreted proteins have various industrial applications, including as pharmaceuticals, diagnostics, biosensors and bioreactors. Most protein drugs available at present, such as thrombolytic agents, interferons, interleukins, erythropoietins, colony stimulating factors, and various other cytokines, are secretory proteins. Their receptors, which are membrane proteins, also have potential as therapeutic or diagnostic agents. Efforts are being undertaken by both industry and academia to identify new, native secreted proteins. Many efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel secreted proteins. Examples of screening methods and techniques are described in the literature [see, for example, Klein et al., Proc. Natl. Acad. Sci. 93:7108-7113 (1996); U.S. Pat. No. 5,536,637)]. [0003]
-
Membrane-bound proteins and receptors can play important roles in, among other things, the formation, differentiation and maintenance of multicellular organisms. The fate of many individual cells, e.g., proliferation, migration, differentiation, or interaction with other cells, is typically governed by information received from other cells and/or the immediate environment. This information is often transmitted by secreted polypeptides (for instance, mitogenic factors, survival factors, cytotoxic factors, differentiation factors, neuropeptides, and hormones) which are, in turn, received and interpreted by diverse cell receptors or membrane-bound proteins. Such membrane-bound proteins and cell receptors include, but are not limited to, cytokine receptors, receptor kinases, receptor phosphatases, receptors involved in cell-cell interactions, and cellular adhesin molecules like selectins and integrins. For instance, transduction of signals that regulate cell growth and differentiation is regulated in part by phosphorylation of various cellular proteins. Protein tyrosine kinases, enzymes that catalyze that process, can also act as growth factor receptors. Examples include fibroblast growth factor receptor and nerve growth factor receptor. [0004]
-
Membrane-bound proteins and receptor molecules have various industrial applications, including as pharmaceutical and diagnostic agents. Receptor immunoadhesins, for instance, can be employed as therapeutic agents to block receptor-ligand interactions. The membrane-bound proteins can also be employed for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. [0005]
-
Efforts are being undertaken by both industry and academia to identify new, native receptor or membrane-bound proteins. Many efforts are focused on the screening of mammalian recombinant DNA libraries to identify the coding sequences for novel receptor or membrane-bound proteins. [0006]
SUMMARY OF THE INVENTION
-
In one embodiment, the invention provides an isolated nucleic acid molecule comprising a nucleotide sequence that encodes a PRO polypeptide. [0007]
-
In one aspect, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule encoding a PRO polypeptide having a full-length amino acid sequence as disclosed herein, an amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a transmembrane protein, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of the full-length amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a). [0008]
-
In other aspects, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule comprising the coding sequence of a full-length PRO polypeptide cDNA as disclosed herein, the coding sequence of a PRO polypeptide lacking the signal peptide as disclosed herein, the coding sequence of an extracellular domain of a transmembrane PRO polypeptide, with or without the signal peptide, as disclosed herein or the coding sequence of any other specifically defined fragment of the full-length amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a). [0009]
-
In a further aspect, the invention concerns an isolated nucleic acid molecule comprising a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule that encodes the same mature polypeptide encoded by any of the human protein cDNAs deposited with the ATCC as disclosed herein, or (b) the complement of the DNA molecule of (a). [0010]
-
Another aspect the invention provides an isolated nucleic acid molecule comprising a nucleotide sequence encoding a PRO polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated, or is complementary to such encoding nucleotide sequence, wherein the transmembrane domain(s) of such polypeptide are disclosed herein. Therefore, soluble extracellular domains of the herein described PRO polypeptides are contemplated. [0011]
-
Another embodiment is directed to fragments of a PRO polypeptide coding sequence, or the complement thereof, that may find use as, for example, hybridization probes, for encoding fragments of a PRO polypeptide that may optionally encode a polypeptide comprising a binding site for an anti-PRO antibody or as antisense oligonucleotide probes. Such nucleic acid fragments are usually at least about 20 nucleotides in length, alternatively at least about 30 nucleotides in length, alternatively at least about 40 nucleotides in length, alternatively at least about 50 nucleotides in length, alternatively at least about 60 nucleotides in length, alternatively at least about 70 nucleotides in length, alternatively at least about 80 nucleotides in length, alternatively at least about 90 nucleotides in length, alternatively at least about 100 nucleotides in length, alternatively at least about 110 nucleotides in length, alternatively at least about 120 nucleotides in length, alternatively at least about 130 nucleotides in length, alternatively at least about 140 nucleotides in length, alternatively at least about 150 nucleotides in length, alternatively at least about 160 nucleotides in length, alternatively at least about 170 nucleotides in length, alternatively at least about 180 nucleotides in length, alternatively at least about 190 nucleotides in length, alternatively at least about 200 nucleotides in length, alternatively at least about 250 nucleotides in length, alternatively at least about 300 nucleotides in length, alternatively at least about 350 nucleotides in length, alternatively at least about 400 nucleotides in length, alternatively at least about 450 nucleotides in length, alternatively at least about 500 nucleotides in length, alternatively at least about 600 nucleotides in length, alternatively at least about 700 nucleotides in length, alternatively at least about 800 nucleotides in length, alternatively at least about 900 nucleotides in length and alternatively at least about 1000 nucleotides in length, wherein in this context the term “about” means the referenced nucleotide sequence length plus or minus 10% of that referenced length. It is noted that novel fragments of a PRO polypeptide-encoding nucleotide sequence may be determined in a routine manner by aligning the PRO polypeptide-encoding nucleotide sequence with other known nucleotide sequences using any of a number of well known sequence alignment programs and determining which PRO polypeptide-encoding nucleotide sequence fragment(s) are novel. All of such PRO polypeptide-encoding nucleotide sequences are contemplated herein. Also contemplated are the PRO polypeptide fragments encoded by these nucleotide molecule fragments, preferably those PRO polypeptide fragments that comprise a binding site for an anti-PRO antibody. [0012]
-
In another embodiment, the invention provides isolated PRO polypeptide encoded by any of the isolated nucleic acid sequences hereinabove identified. [0013]
-
In a certain aspect, the invention concerns an isolated PRO polypeptide, comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81% amino acid sequence identity, alternatively at least about 82% amino acid sequence identity, alternatively at least about 83% amino acid sequence identity, alternatively at least about 84% amino acid sequence identity, alternatively at least about 85% amino acid sequence identity, alternatively at least about 86% amino acid sequence identity, alternatively at least about 87% amino acid sequence identity, alternatively at least about 88% amino acid sequence identity, alternatively at least about 89% amino acid sequence identity, alternatively at least about 90% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 92% amino acid sequence identity, alternatively at least about 93% amino acid sequence identity, alternatively at least about 94% amino acid sequence identity, alternatively at least about 95% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 97% amino acid sequence identity, alternatively at least about 98% amino acid sequence identity and alternatively at least about 99% amino acid sequence identity to a PRO polypeptide having a full-length amino acid sequence as disclosed herein, an amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a transmembrane protein, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of the full-length amino acid sequence as disclosed herein. [0014]
-
In a further aspect, the invention concerns an isolated PRO polypeptide comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81% amino acid sequence identity, alternatively at least about 82% amino acid sequence identity, alternatively at least about 83% amino acid sequence identity, alternatively at least about 84% amino acid sequence identity, alternatively at least about 85% amino acid sequence identity, alternatively at least about 86% amino acid sequence identity, alternatively at least about 87% amino acid sequence identity, alternatively at least about 88% amino acid sequence identity, alternatively at least about 89% amino acid sequence identity, alternatively at least about 90% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 92% amino acid sequence identity, alternatively at least about 93% amino acid sequence identity, alternatively at least about 94% amino acid sequence identity, alternatively at least about 95% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 97% amino acid sequence identity, alternatively at least about 98% amino acid sequence identity and alternatively at least about 99% amino acid sequence identity to an amino acid sequence encoded by any of the human protein cDNAs deposited with the ATCC as disclosed herein. [0015]
-
In a specific aspect, the invention provides an isolated PRO polypeptide without the N-terminal signal sequence and/or the initiating methionine and is encoded by a nucleotide sequence that encodes such an amino acid sequence as hereinbefore described. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the PRO polypeptide and recovering the PRO polypeptide from the cell culture. [0016]
-
Another aspect the invention provides an isolated PRO polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the PRO polypeptide and recovering the PRO polypeptide from the cell culture. [0017]
-
In yet another embodiment, the invention concerns agonists and antagonists of a native PRO polypeptide as defined herein. In a particular embodiment, the agonist or antagonist is an anti-PRO antibody or a small molecule. [0018]
-
In a further embodiment, the invention concerns a method of identifying agonists or antagonists to a PRO polypeptide which comprise contacting the PRO polypeptide with a candidate molecule and monitoring a biological activity mediated by said PRO polypeptide. Preferably, the PRO polypeptide is a native PRO polypeptide. [0019]
-
In a still further embodiment, the invention concerns a composition of matter comprising a PRO polypeptide, or an agonist or antagonist of a PRO polypeptide as herein described, or an anti-PRO antibody, in combination with a carrier. Optionally, the carrier is a pharmaceutically acceptable carrier. [0020]
-
Another embodiment of the present invention is directed to the use of a PRO polypeptide, or an agonist or antagonist thereof as hereinbefore described, or an anti-PRO antibody, for the preparation of a medicament useful in the treatment of a condition which is responsive to the PRO polypeptide, an agonist or antagonist thereof or an anti-PRO antibody. [0021]
-
In other embodiments of the present invention, the invention provides vectors comprising DNA encoding any of the herein described polypeptides. Host cell comprising any such vector are also provided. By way of example, the host cells may be CHO cells, [0022] E. coli, or yeast. A process for producing any of the herein described polypeptides is further provided and comprises culturing host cells under conditions suitable for expression of the desired polypeptide and recovering the desired polypeptide from the cell culture.
-
In other embodiments, the invention provides chimeric molecules comprising any of the herein described polypeptides fused to a heterologous polypeptide or amino acid sequence. Example of such chimeric molecules comprise any of the herein described polypeptides fused to an epitope tag sequence or a Fc region of an immunoglobulin. [0023]
-
In another embodiment, the invention provides an antibody which binds, preferably specifically, to any of the above or below described polypeptides. Optionally, the antibody is a monoclonal antibody, humanized antibody, antibody fragment or single-chain antibody. [0024]
-
In yet other embodiments, the invention provides oligonucleotide probes useful for isolating genomic and cDNA nucleotide sequences or as antisense probes, wherein those probes may be derived from any of the above or below described nucleotide sequences. [0025]
-
In yet other embodiments, the present invention is directed to methods of using the PRO polypeptides of the present invention for a variety of uses based upon the functional biological assay data presented in the Examples below.[0026]
BRIEF DESCRIPTION OF DRAWINGS
-
FIG. 1 shows a nucleotide sequence (SEQ ID NO:1) of a native sequence PRO180 cDNA, wherein SEQ ID NO:1 is a clone designated herein as “DNA26843-1389”. [0027]
-
FIG. 2 shows the amino acid sequence (SEQ ID NO:2) derived from the coding sequence of SEQ ID NO:1 shown in FIG. 1. [0028]
-
FIG. 3 shows a nucleotide sequence (SEQ ID NO:3) of a native sequence PRO218 cDNA, wherein SEQ ID NO:3 is a clone designated herein as “DNA30867-1335”. [0029]
-
FIG. 4 shows the amino acid sequence (SEQ ID NO:4) derived from the coding sequence of SEQ ID NO:3 shown in FIG. 3. [0030]
-
FIG. 5 shows a nucleotide sequence (SEQ ID NO:5) of a native sequence PRO263 cDNA, wherein SEQ ID NO:5 is a clone designated herein as “DNA34431-1177”. [0031]
-
FIG. 6 shows the amino acid sequence (SEQ ID NO:6) derived from the coding sequence of SEQ ID NO:5 shown in FIG. 5. [0032]
-
FIG. 7 shows a nucleotide sequence (SEQ ID NO:7) of a native sequence PRO295 cDNA, wherein SEQ ID NO:7 is a clone designated herein as “DNA38268-1188”. [0033]
-
FIG. 8 shows the amino acid sequence (SEQ ID NO:8) derived from the coding sequence of SEQ ID NO:7 shown in FIG. 7. [0034]
-
FIG. 9 shows a nucleotide sequence (SEQ ID NO:9) of a native sequence PRO874 cDNA, wherein SEQ ID NO:9 is a clone designated herein as “DNA40621-1440”. [0035]
-
FIG. 10 shows the amino acid sequence (SEQ ID NO:10) derived from the coding sequence of SEQ ID NO:9 shown in FIG. 9. [0036]
-
FIG. 11 shows a nucleotide sequence (SEQ ID NO:11) of a native sequence PRO300 cDNA, wherein SEQ ID NO:11 is a clone designated herein as “DNA40625-1189”. [0037]
-
FIG. 12 shows the amino acid sequence (SEQ ID NO:12) derived from the coding sequence of SEQ ID NO:11 shown in FIG. 11. [0038]
-
FIG. 13 shows a nucleotide sequence (SEQ ID NO:13) of a native sequence PRO1864 cDNA, wherein SEQ ID NO:13 is a clone designated herein as “DNA45409-2511”. [0039]
-
FIG. 14 shows the amino acid sequence (SEQ ID NO:14) derived from the coding sequence of SEQ ID NO:13 shown in FIG. 13. [0040]
-
FIG. 15 shows a nucleotide sequence (SEQ ID NO:15) of a native sequence PRO1282 cDNA, wherein SEQ ID NO:15 is a clone designated herein as “DNA45495-1550”. [0041]
-
FIG. 16 shows the amino acid sequence (SEQ ID NO:16) derived from the coding sequence of SEQ ID NO:15 shown in FIG. 15. [0042]
-
FIG. 17 shows a nucleotide sequence (SEQ ID NO:17) of a native sequence PRO1063 cDNA, wherein SEQ ID NO:17 is a clone designated herein as “DNA49820-1427”. [0043]
-
FIG. 18 shows the amino acid sequence (SEQ ID NO:18) derived from the coding sequence of SEQ ID NO:17 shown in FIG. 17. [0044]
-
FIG. 19 shows a nucleotide sequence (SEQ ID NO:19) of a native sequence PRO1773 cDNA, wherein SEQ ID NO:19 is a clone designated herein as “DNA56406-1704”. [0045]
-
FIG. 20 shows the amino acid sequence (SEQ ID NO:20) derived from the coding sequence of SEQ ID NO:19 shown in FIG. 19. [0046]
-
FIG. 21 shows a nucleotide sequence (SEQ ID NO:21) of a native sequence PRO1013 cDNA, wherein SEQ ID NO:21 is a clone designated herein as “DNA56410-1414”. [0047]
-
FIG. 22 shows the amino acid sequence (SEQ ID NO:22) derived from the coding sequence of SEQ ID NO:21 shown in FIG. 21. [0048]
-
FIG. 23 shows a nucleotide sequence (SEQ ID NO:23) of a native sequence PRO937 cDNA, wherein SEQ ID NO:23 is a clone designated herein as “DNA56436-1448”. [0049]
-
FIG. 24 shows the amino acid sequence (SEQ ID NO:24) derived from the coding sequence of SEQ ID NO:23 shown in FIG. 23. [0050]
-
FIG. 25 shows a nucleotide sequence (SEQ ID NO:25) of a native sequence PRO842 cDNA, wherein SEQ ID NO:25 is a clone designated herein as “DNA56855-1447”. [0051]
-
FIG. 26 shows the amino acid sequence (SEQ ID NO:26) derived from the coding sequence of SEQ ID NO:25 shown in FIG. 25. [0052]
-
FIG. 27 shows a nucleotide sequence (SEQ ID NO:27) of a native sequence PRO1180 cDNA, wherein SEQ ID NO:27 is a clone designated herein as “DNA56860-1510”. [0053]
-
FIG. 28 shows the amino acid sequence (SEQ ID NO:28) derived from the coding sequence of SEQ ID NO:27 shown in FIG. 27. [0054]
-
FIG. 29 shows a nucleotide sequence (SEQ ID NO:29) of a native sequence PRO831 cDNA, wherein SEQ ID NO:29 is a clone designated herein as “DNA56862-1343”. [0055]
-
FIG. 30 shows the amino acid sequence (SEQ ID NO:30) derived from the coding sequence of SEQ ID NO:29 shown in FIG. 29. [0056]
-
FIG. 31 shows a nucleotide sequence (SEQ ID NO:31) of a native sequence PRO1115 cDNA, wherein SEQ ID NO:31 is a clone designated herein as “DNA56868-1478”. [0057]
-
FIG. 32 shows the amino acid sequence (SEQ ID NO:32) derived from the coding sequence of SEQ ID NO:31 shown in FIG. 31. [0058]
-
FIG. 33 shows a nucleotide sequence (SEQ ID NO:33) of a native sequence PRO1277 cDNA, wherein SEQ ID NO:33 is a clone designated herein as “DNA56869-1545”. [0059]
-
FIG. 34 shows the amino acid sequence (SEQ ID NO:34) derived from the coding sequence of SEQ ID NO:33 shown in FIG. 33. [0060]
-
FIG. 35 shows a nucleotide sequence (SEQ ID NO:35) of a native sequence PRO1074 cDNA, wherein SEQ ID NO:35 is a clone designated herein as “DNA57704-1452”. [0061]
-
FIG. 36 shows the amino acid sequence (SEQ ID NO:36) derived from the coding sequence of SEQ ID NO:35 shown in FIG. 35. [0062]
-
FIG. 37 shows a nucleotide sequence (SEQ ID NO:37) of a native sequence PRO1344 cDNA, wherein SEQ ID NO:37 is a clone designated herein as “DNA58723-1588”. [0063]
-
FIG. 38 shows the amino acid sequence (SEQ ID NO:38) derived from the coding sequence of SEQ ID NO:37 shown in FIG. 37. [0064]
-
FIG. 39 shows a nucleotide sequence (SEQ ID NO:39) of a native sequence PRO1136 cDNA, wherein SEQ ID NO:39 is a clone designated herein as “DNA57827-1493”. [0065]
-
FIG. 40 shows the amino acid sequence (SEQ ID NO:40) derived from the coding sequence of SEQ ID NO:39 shown in FIG. 39. [0066]
-
FIG. 41 shows a nucleotide sequence (SEQ ID NO:41) of a native sequence PRO1109 cDNA, wherein SEQ ID NO:41 is a clone designated herein as “DNA58737-1473”. [0067]
-
FIG. 42 shows the amino acid sequence (SEQ ID NO:42) derived from the coding sequence of SEQ ID NO:41 shown in FIG. 41. [0068]
-
FIG. 43 shows a nucleotide sequence (SEQ ID NO:43) of a native sequence PRO1003 cDNA, wherein SEQ ID NO:43 is a clone designated herein as “DNA58846-1409”. [0069]
-
FIG. 44 shows the amino acid sequence (SEQ ID NO:44) derived from the coding sequence of SEQ ID NO:43 shown in FIG. 43. [0070]
-
FIG. 45 shows a nucleotide sequence (SEQ ID NO:45) of a native sequence PRO1138 cDNA, wherein SEQ ID NO:45 is a clone designated herein as “DNA58850-1495”. [0071]
-
FIG. 46 shows the amino acid sequence (SEQ ID NO:46) derived from the coding sequence of SEQ ID NO:45 shown in FIG. 45. [0072]
-
FIG. 47 shows a nucleotide sequence (SEQ ID NO:47) of a native sequence PRO994 cDNA, wherein SEQ ID NO:47 is a clone designated herein as “DNA58855-1422”. [0073]
-
FIG. 48 shows the amino acid sequence (SEQ ID NO:48) derived from the coding sequence of SEQ ID NO:47 shown in FIG. 47. [0074]
-
FIG. 49 shows a nucleotide sequence (SEQ ID NO:49) of a native sequence PRO1069 cDNA, wherein SEQ ID NO:49 is a clone designated herein as “DNA59211-1450”. [0075]
-
FIG. 50 shows the amino acid sequence (SEQ ID NO:50) derived from the coding sequence of SEQ ID NO:49 shown in FIG. 49. [0076]
-
FIG. 51 shows a nucleotide sequence (SEQ ID NO:51) of a native sequence PRO1411 cDNA, wherein SEQ ID NO:51 is a clone designated herein as “DNA59212-1627”. [0077]
-
FIG. 52 shows the amino acid sequence (SEQ ID NO:52) derived from the coding sequence of SEQ ID NO:51 shown in FIG. 51. [0078]
-
FIG. 53 shows a nucleotide sequence (SEQ ID NO:53) of a native sequence PRO1129 cDNA, wherein SEQ ID NO:53 is a clone designated herein as “DNA59213-1487”. [0079]
-
FIG. 54 shows the amino acid sequence (SEQ ID NO:54) derived from the coding sequence of SEQ ID NO:53 shown in FIG. 53. [0080]
-
FIG. 55 shows a nucleotide sequence (SEQ ID NO:55) of a native sequence PRO1027 cDNA, wherein SEQ ID NO:55 is a clone designated herein as “DNA59605-1418”. [0081]
-
FIG. 56 shows the amino acid sequence (SEQ ID NO:56) derived from the coding sequence of SEQ ID NO:55 shown in FIG. 55. [0082]
-
FIG. 57 shows a nucleotide sequence (SEQ ID NO:57) of a native sequence PRO1106 cDNA, wherein SEQ ID NO:57 is a clone designated herein as “DNA59609-1470”. [0083]
-
FIG. 58 shows the amino acid sequence (SEQ ID NO:58) derived from the coding sequence of SEQ ID NO:57 shown in FIG. 57. [0084]
-
FIG. 59 shows a nucleotide sequence (SEQ ID NO:59) of a native sequence PRO1291 cDNA, wherein SEQ ID NO:59 is a clone designated herein as “DNA59610-1556”. [0085]
-
FIG. 60 shows the amino acid sequence (SEQ ID NO:60) derived from the coding sequence of SEQ ID NO:59 shown in FIG. 59. [0086]
-
FIG. 61 shows a nucleotide sequence (SEQ ID NO:61) of a native sequence PRO3573 cDNA, wherein SEQ ID NO:61 is a clone designated herein as “DNA59837-2545”. [0087]
-
FIG. 62 shows the amino acid sequence (SEQ ID NO:62) derived from the coding sequence of SEQ ID NO:61 shown in FIG. 61. [0088]
-
FIG. 63 shows a nucleotide sequence (SEQ ID NO:63) of a native sequence PRO3566 cDNA, wherein SEQ ID NO:63 is a clone designated herein as “DNA59844-2542”. [0089]
-
FIG. 64 shows the amino acid sequence (SEQ ID NO:64) derived from the coding sequence of SEQ ID NO:63 shown in FIG. 63. [0090]
-
FIG. 65 shows a nucleotide sequence (SEQ ID NO:65) of a native sequence PRO1098 cDNA, wherein SEQ ID NO:65 is a clone designated herein as “DNA59854-1459”. [0091]
-
FIG. 66 shows the amino acid sequence (SEQ ID NO:66) derived from the coding sequence of SEQ ID NO:65 shown in FIG. 65. [0092]
-
FIG. 67 shows a nucleotide sequence (SEQ ID NO:67) of a native sequence PRO1158 cDNA, wherein SEQ ID NO:67 is a clone designated herein as “DNA60625-1507”. [0093]
-
FIG. 68 shows the amino acid sequence (SEQ ID NO:68) derived from the coding sequence of SEQ ID NO:67 shown in FIG. 67. [0094]
-
FIG. 69 shows a nucleotide sequence (SEQ ID NO:69) of a native sequence PRO1124 cDNA, wherein SEQ ID NO:69 is a clone designated herein as “DNA60629-1481”. [0095]
-
FIG. 70 shows the amino acid sequence (SEQ ID NO:70) derived from the coding sequence of SEQ ID NO:69 shown in FIG. 69. [0096]
-
FIG. 71 shows a nucleotide sequence (SEQ ID NO:71) of a native sequence PRO1287 cDNA, wherein SEQ ID NO:71 is a clone designated herein as “DNA61755-1554”. [0097]
-
FIG. 72 shows the amino acid sequence (SEQ ID NO:72) derived from the coding sequence of SEQ ID NO:71 shown in FIG. 71. [0098]
-
FIG. 73 shows a nucleotide sequence (SEQ ID NO:73) of a native sequence PRO1335 cDNA, wherein SEQ ID NO:73 is a clone designated herein as “DNA62812-1594”. [0099]
-
FIG. 74 shows the amino acid sequence (SEQ ID NO:74) derived from the coding sequence of SEQ ID NO:73 shown in FIG. 73. [0100]
-
FIG. 75 shows a nucleotide sequence (SEQ ID NO:75) of a native sequence PRO1315 cDNA, wherein SEQ ID NO:75 is a clone designated herein as “DNA62815-1576”. [0101]
-
FIG. 76 shows the amino acid sequence (SEQ ID NO:76) derived from the coding sequence of SEQ ID NO:75 shown in FIG. 75. [0102]
-
FIG. 77 shows a nucleotide sequence (SEQ ID NO:77) of a native sequence PRO1357 cDNA, wherein SEQ ID NO:77 is a clone designated herein as “DNA64881-1602”. [0103]
-
FIG. 78 shows the amino acid sequence (SEQ ID NO:78) derived from the coding sequence of SEQ ID NO:77 shown in FIG. 77. [0104]
-
FIG. 79 shows a nucleotide sequence (SEQ ID NO:79) of a native sequence PRO1356 cDNA, wherein SEQ ID NO:79 is a clone designated herein as “DNA64886-1601”. [0105]
-
FIG. 80 shows the amino acid sequence (SEQ ID NO:80) derived from the coding sequence of SEQ ID NO:79 shown in FIG. 79. [0106]
-
FIG. 81 shows a nucleotide sequence (SEQ ID NO:81) of a native sequence PRO1557 cDNA, wherein SEQ ID NO:81 is a clone designated herein as “DNA64902-1667”. [0107]
-
FIG. 82 shows the amino acid sequence (SEQ ID NO:82) derived from the coding sequence of SEQ ID NO:81 shown in FIG. 81. [0108]
-
FIG. 83 shows a nucleotide sequence (SEQ ID NO:83) of a native sequence PRO1347 cDNA, wherein SEQ ID NO:83 is a clone designated herein as “DNA64950-1590”. [0109]
-
FIG. 84 shows the amino acid sequence (SEQ ID NO:84) derived from the coding sequence of SEQ ID NO:83 shown in FIG. 83. [0110]
-
FIG. 85 shows a nucleotide sequence (SEQ ID NO:85) of a native sequence PRO1302 cDNA, wherein SEQ ID NO:85 is a clone designated herein as “DNA65403-1565”. [0111]
-
FIG. 86 shows the amino acid sequence (SEQ ID NO:86) derived from the coding sequence of SEQ ID NO:85 shown in FIG. 85. [0112]
-
FIG. 87 shows a nucleotide sequence (SEQ ID NO:87) of a native sequence PRO1270 cDNA, wherein SEQ ID NO:87 is a clone designated herein as “DNA66308-1537”. [0113]
-
FIG. 88 shows the amino acid sequence (SEQ ID NO:88) derived from the coding sequence of SEQ ID NO:87 shown in FIG. 87. [0114]
-
FIG. 89 shows a nucleotide sequence (SEQ ID NO:89) of a native sequence PRO1268 cDNA, wherein SEQ ID NO:89 is a clone designated herein as “DNA66519-1535”. [0115]
-
FIG. 90 shows the amino acid sequence (SEQ ID NO:90) derived from the coding sequence of SEQ ID NO:89 shown in FIG. 89. [0116]
-
FIG. 91 shows a nucleotide sequence (SEQ ID NO:91) of a native sequence PRO1327 cDNA, wherein SEQ ID NO:91 is a clone designated herein as “DNA66521-1583”. [0117]
-
FIG. 92 shows the amino acid sequence (SEQ ID NO:92) derived from the coding sequence of SEQ ID NO:91 shown in FIG. 91. [0118]
-
FIG. 93 shows a nucleotide sequence (SEQ ID NO:93) of a native sequence PRO1328 cDNA, wherein SEQ ID NO:93 is a clone designated herein as “DNA66658-1584”. [0119]
-
FIG. 94 shows the amino acid sequence (SEQ ID NO:94) derived from the coding sequence of SEQ ID NO:93 shown in FIG. 93. [0120]
-
FIG. 95 shows a nucleotide sequence (SEQ ID NO:95) of a native sequence PRO1329 cDNA, wherein SEQ ID NO:95 is a clone designated herein as “DNA66660-1585”. [0121]
-
FIG. 96 shows the amino acid sequence (SEQ ID NO:96) derived from the coding sequence of SEQ ID NO:95 shown in FIG. 95. [0122]
-
FIG. 97 shows a nucleotide sequence (SEQ ID NO:97) of a native sequence PRO1340 cDNA, wherein SEQ ID NO:97 is a clone designated herein as “DNA66663-1598”. [0123]
-
FIG. 98 shows the amino acid sequence (SEQ ID NO:98) derived from the coding sequence of SEQ ID NO:97 shown in FIG. 97. [0124]
-
FIG. 99 shows a nucleotide sequence (SEQ ID NO:99) of a native sequence PRO1342 cDNA, wherein SEQ ID NO:99 is a clone designated herein as “DNA66674-1599”. [0125]
-
FIG. 100 shows the amino acid sequence (SEQ ID NO:100) derived from the coding sequence of SEQ ID NO:99 shown in FIG. 99. [0126]
-
FIG. 101 shows a nucleotide sequence (SEQ ID NO:101) of a native sequence PRO3579 cDNA, wherein SEQ ID NO:101 is a clone designated herein as “DNA68862-2546”. [0127]
-
FIG. 102 shows the amino acid sequence (SEQ ID NO:102) derived from the coding sequence of SEQ ID NO:101 shown in FIG. 101. [0128]
-
FIG. 103 shows a nucleotide sequence (SEQ ID NO:103) of a native sequence PRO1472 cDNA, wherein SEQ ID NO:103 is a clone designated herein as “DNA68866-1644”. [0129]
-
FIG. 104 shows the amino acid sequence (SEQ ID NO:104) derived from the coding sequence of SEQ ID NO:103 shown in FIG. 103. [0130]
-
FIG. 105 shows a nucleotide sequence (SEQ ID NO:105) of a native sequence PRO1461 cDNA, wherein SEQ ID NO:105 is a clone designated herein as “DNA68871-1638”. [0131]
-
FIG. 106 shows the amino acid sequence (SEQ ID NO:106) derived from the coding sequence of SEQ ID NO:105 shown in FIG. 105. [0132]
-
FIG. 107 shows a nucleotide sequence (SEQ ID NO:107) of a native sequence PRO1568 cDNA, wherein SEQ ID NO:107 is a clone designated herein as “DNA68880-1676”. [0133]
-
FIG. 108 shows the amino acid sequence (SEQ ID NO:108) derived from the coding sequence of SEQ ID NO:107 shown in FIG. 107. [0134]
-
FIG. 109 shows a nucleotide sequence (SEQ ID NO:109) of a native sequence PRO1753 cDNA, wherein SEQ ID NO:109 is a clone designated herein as “DNA68883-1691”. [0135]
-
FIG. 110 shows the amino acid sequence (SEQ ID NO:110) derived from the coding sequence of SEQ ID NO:109 shown in FIG. 109. [0136]
-
FIG. 111 shows a nucleotide sequence (SEQ ID NO:111) of a native sequence PRO1570 cDNA, wherein SEQ ID NO:111 is a clone designated herein as “DNA68885-1678”. [0137]
-
FIG. 112 shows the amino acid sequence (SEQ ID NO:112) derived from the coding sequence of SEQ ID NO:111 shown in FIG. 111. [0138]
-
FIG. 113 shows a nucleotide sequence (SEQ ID NO:113) of a native sequence PRO1446 cDNA, wherein SEQ ID NO:113 is a clone designated herein as “DNA71277-1636”. [0139]
-
FIG. 114 shows the amino acid sequence (SEQ ID NO:114) derived from the coding sequence of SEQ ID NO:113 shown in FIG. 113. [0140]
-
FIG. 115 shows a nucleotide sequence (SEQ ID NO:115) of a native sequence PRO1565 cDNA, wherein SEQ ID NO:115 is a clone designated herein as “DNA73727-1673”. [0141]
-
FIG. 116 shows the amino acid sequence (SEQ ID NO:116) derived from the coding sequence of SEQ ID NO:115 shown in FIG. 115. [0142]
-
FIG. 117 shows a nucleotide sequence (SEQ ID NO:117) of a native sequence PRO1572 cDNA, wherein SEQ ID NO:117 is a clone designated herein as “DNA73734-1680”. [0143]
-
FIG. 118 shows the amino acid sequence (SEQ ID NO:118) derived from the coding sequence of SEQ ID NO:117 shown in FIG. 117. [0144]
-
FIG. 119 shows a nucleotide sequence (SEQ ID NO:119) of a native sequence PRO1573 cDNA, wherein SEQ ID NO:119 is a clone designated herein as “DNA73735-1681”. [0145]
-
FIG. 120 shows the amino acid sequence (SEQ ID NO:120) derived from the coding sequence of SEQ ID NO:119 shown in FIG. 119. [0146]
-
FIG. 121 shows a nucleotide sequence (SEQ ID NO:121) of a native sequence PRO1550 cDNA, wherein SEQ ID NO:121 is a clone designated herein as “DNA76393-1664”. [0147]
-
FIG. 122 shows the amino acid sequence (SEQ ID NO:122) derived from the coding sequence of SEQ ID NO:121 shown in FIG. 121. [0148]
-
FIG. 123 shows a nucleotide sequence (SEQ ID NO:123) of a native sequence PRO1693 cDNA, wherein SEQ ID NO:123 is a clone designated herein as “DNA77301-1708”. [0149]
-
FIG. 124 shows the amino acid sequence (SEQ ID NO:124) derived from the coding sequence of SEQ ID NO:123 shown in FIG. 123. [0150]
-
FIG. 125 shows a nucleotide sequence (SEQ ID NO:125) of a native sequence PRO1566 cDNA, wherein SEQ ID NO:125 is a clone designated herein as “DNA77568-1626”. [0151]
-
FIG. 126 shows the amino acid sequence (SEQ ID NO:126) derived from the coding sequence of SEQ ID NO:125 shown in FIG. 125. [0152]
-
FIG. 127 shows a nucleotide sequence (SEQ ID NO:127) of a native sequence PRO1774 cDNA, wherein SEQ ID NO:127 is a clone designated herein as “DNA77626-1705”. [0153]
-
FIG. 128 shows the amino acid sequence (SEQ ID NO:128) derived from the coding sequence of SEQ ID NO:127 shown in FIG. 127. [0154]
-
FIG. 129 shows a nucleotide sequence (SEQ ID NO:129) of a native sequence PRO1928 cDNA, wherein SEQ ID NO:129 is a clone designated herein as “DNA81754-2532”. [0155]
-
FIG. 130 shows the amino acid sequence (SEQ ID NO:130) derived from the coding sequence of SEQ ID NO:129 shown in FIG. 129. [0156]
-
FIG. 131 shows a nucleotide sequence (SEQ ID NO:131) of a native sequence PRO1865 cDNA, wherein SEQ ID NO:131 is a clone designated herein as “DNA81757-2512”. [0157]
-
FIG. 132 shows the amino acid sequence (SEQ ID NO:132) derived from the coding sequence of SEQ ID NO:131 shown in FIG. 131. [0158]
-
FIG. 133 shows a nucleotide sequence (SEQ ID NO:133) of a native sequence PRO1925 cDNA, wherein SEQ ID NO:133 is a clone designated herein as “DNA82302-2529”. [0159]
-
FIG. 134 shows the amino acid sequence (SEQ ID NO:134) derived from the coding sequence of SEQ ID NO:133 shown in FIG. 133. [0160]
-
FIG. 135 shows a nucleotide sequence (SEQ ID NO:135) of a native sequence PRO1926 cDNA, wherein SEQ ID NO:135 is a clone designated herein as “DNA82340-2530”. [0161]
-
FIG. 136 shows the amino acid sequence (SEQ ID NO:136) derived from the coding sequence of SEQ ID NO:135 shown in FIG. 135. [0162]
-
FIG. 137 shows a nucleotide sequence (SEQ ID NO:137) of a native sequence PRO1801 cDNA, wherein SEQ ID NO:137 is a clone designated herein as “DNA83500-2506”. [0163]
-
FIG. 138 shows the amino acid sequence (SEQ ID NO:138) derived from the coding sequence of SEQ ID NO:137 shown in FIG. 137. [0164]
-
FIG. 139 shows a nucleotide sequence (SEQ ID NO:139) of a native sequence PRO4405 cDNA, wherein SEQ ID NO:139 is a clone designated herein as “DNA84920-2614”. [0165]
-
FIG. 140 shows the amino acid sequence (SEQ ID NO:140) derived from the coding sequence of SEQ ID NO:139 shown in FIG. 139. [0166]
-
FIG. 141 shows a nucleotide sequence (SEQ ID NO:141) of a native sequence PRO3435 cDNA, wherein SEQ ID NO:141 is a clone designated herein as “DNA85066-2534”. [0167]
-
FIG. 142 shows the amino acid sequence (SEQ ID NO:142) derived from the coding sequence of SEQ ID NO:141 shown in FIG. 141. [0168]
-
FIG. 143 shows a nucleotide sequence (SEQ ID NO:143) of a native sequence PRO3543 cDNA, wherein SEQ ID NO:143 is a clone designated herein as “DNA86571-2551”. [0169]
-
FIG. 144 shows the amino acid sequence (SEQ ID NO:144) derived from the coding sequence of SEQ ID NO:143 shown in FIG. 143. [0170]
-
FIG. 145 shows a nucleotide sequence (SEQ ID NO:145) of a native sequence PRO3443 cDNA, wherein SEQ ID NO:145 is a clone designated herein as “DNA87991-2540”. [0171]
-
FIG. 146 shows the amino acid sequence (SEQ ID NO:146) derived from the coding sequence of SEQ ID NO:145 shown in FIG. 145. [0172]
-
FIG. 147 shows a nucleotide sequence (SEQ ID NO:147) of a native sequence PRO3442 cDNA, wherein SEQ ID NO:147 is a clone designated herein as “DNA92238-2539”. [0173]
-
FIG. 148 shows the amino acid sequence (SEQ ID NO:148) derived from the coding sequence of SEQ ID NO:147 shown in FIG. 147. [0174]
-
FIG. 149 shows a nucleotide sequence (SEQ ID NO:149) of a native sequence PRO5990 cDNA, wherein SEQ ID NO:149 is a clone designated herein as “DNA96042-2682”. [0175]
-
FIG. 150 shows the amino acid sequence (SEQ ID NO:150) derived from the coding sequence of SEQ ID NO:149 shown in FIG. 149. [0176]
-
FIG. 151 shows a nucleotide sequence (SEQ ID NO:151) of a native sequence PRO4342 cDNA, wherein SEQ ID NO:151 is a clone designated herein as “DNA96787-2534”. [0177]
-
FIG. 152 shows the amino acid sequence (SEQ ID NO:152) derived from the coding sequence of SEQ ID NO:151 shown in FIG. 151. [0178]
-
FIG. 153 shows a nucleotide sequence (SEQ ID NO:153) of a native sequence PRO10096 cDNA, wherein SEQ ID NO:153 is a clone designated herein as “DNA125185-2806”. [0179]
-
FIG. 154 shows the amino acid sequence (SEQ ID NO:154) derived from the coding sequence of SEQ ID NO:153 shown in FIG. 153. [0180]
-
FIG. 155 shows a nucleotide sequence (SEQ ID NO:155) of a native sequence PRO10272 cDNA, wherein SEQ ID NO:155 is a clone designated herein as “DNA147531-2821”. [0181]
-
FIG. 156 shows the amino acid sequence (SEQ ID NO:156) derived from the coding sequence of SEQ ID NO:155 shown in FIG. 155. [0182]
-
FIG. 157 shows a nucleotide sequence (SEQ ID NO:157) of a native sequence PRO5801 cDNA, wherein SEQ ID NO:157 is a clone designated herein as “DNA115291-2681”. [0183]
-
FIG. 158 shows the amino acid sequence (SEQ ID NO:158) derived from the coding sequence of SEQ ID NO:157 shown in FIG. 157. [0184]
-
FIG. 159 shows a nucleotide sequence (SEQ ID NO:159) of a native sequence PRO20110 cDNA, wherein SEQ ID NO:159 is a clone designated herein as “DNA166819”. [0185]
-
FIG. 160 shows the amino acid sequence (SEQ ID NO:160) derived from the coding sequence of SEQ ID NO:159 shown in FIG. 159. [0186]
-
FIG. 161 shows a nucleotide sequence (SEQ ID NO:161) of a native sequence PRO20040 cDNA, wherein SEQ ID NO:161 is a clone designated herein as “DNA164625-2890”. [0187]
-
FIG. 162 shows the amino acid sequence (SEQ ID NO:162) derived from the coding sequence of SEQ ID NO:161 shown in FIG. 161. [0188]
-
FIG. 163 shows a nucleotide sequence (SEQ ID NO:163) of a native sequence PRO20233 cDNA, wherein SEQ ID NO:163 is a clone designated herein as “DNA165608”. [0189]
-
FIG. 164 shows the amino acid sequence (SEQ ID NO:164) derived from the coding sequence of SEQ ID NO:163 shown in FIG. 163. [0190]
-
FIG. 165 shows a nucleotide sequence (SEQ ID NO:165) of a native sequence PRO19670 cDNA, wherein SEQ ID NO:165 is a clone designated herein as “DNA131639-2874”. [0191]
-
FIG. 166 shows the amino acid sequence (SEQ ID NO:166) derived from the coding sequence of SEQ ID NO:165 shown in FIG. 165. [0192]
-
FIG. 167 shows a nucleotide sequence (SEQ ID NO:167) of a native sequence PRO1890 cDNA, wherein SEQ ID NO:167 is a clone designated herein as “DNA79230-2525”. [0193]
-
FIG. 168 shows the amino acid sequence (SEQ ID NO:168) derived from the coding sequence of SEQ ID NO:167 shown in FIG. 167.[0194]
DETAILED DESCRIPTION
-
I. Definitions [0195]
-
The terms “PRO polypeptide” and “PRO” as used herein and when immediately followed by a numerical designation refer to various polypeptides, wherein the complete designation (i.e., PRO/number) refers to specific polypeptide sequences as described herein. The terms “PRO/number polypeptide” and “PRO/number” wherein the term “number” is provided as an actual numerical designation as used herein encompass native sequence polypeptides and polypeptide variants (which are further defined herein). The PRO polypeptides described herein may be isolated from a variety of sources, such as from human tissue types or from another source, or prepared by recombinant or synthetic methods. The term “PRO polypeptide” refers to each individual PRO/number polypeptide disclosed herein. All disclosures in this specification which refer to the “PRO polypeptide” refer to each of the polypeptides individually as well as jointly. For example, descriptions of the preparation of, purification of, derivation of, formation of antibodies to or against, administration of, compositions containing, treatment of a disease with, etc., pertain to each polypeptide of the invention individually. The term “PRO polypeptide” also includes variants of the PRO/number polypeptides disclosed herein. [0196]
-
A “native sequence PRO polypeptide” comprises a polypeptide having the same amino acid sequence as the corresponding PRO polypeptide derived from nature. Such native sequence PRO polypeptides can be isolated from nature or can be produced by recombinant or synthetic means. The term “native sequence PRO polypeptide” specifically encompasses naturally-occurring truncated or secreted forms of the specific PRO polypeptide (e.g., an extracellular domain sequence), naturally-occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants of the polypeptide. In various embodiments of the invention, the native sequence PRO polypeptides disclosed herein are mature or full-length native sequence polypeptides comprising the full-length amino acids sequences shown in the accompanying figures. Start and stop codons are shown in bold font and underlined in the figures. However, while the PRO polypeptide disclosed in the accompanying figures are shown to begin with methionine residues designated herein as [0197] amino acid position 1 in the figures, it is conceivable and possible that other methionine residues located either upstream or downstream from the amino acid position 1 in the figures may be employed as the starting amino acid residue for the PRO polypeptides.
-
The PRO polypeptide “extracellular domain” or “ECD” refers to a form of the PRO polypeptide which is essentially free of the transmembrane and cytoplasmic domains. Ordinarily, a PRO polypeptide ECD will have less than 1% of such transmembrane and/or cytoplasmic domains and preferably, will have less than 0.5% of such domains. It will be understood that any transmembrane domains identified for the PRO polypeptides of the present invention are identified pursuant to criteria routinely employed in the art for identifying that type of hydrophobic domain. The exact boundaries of a transmembrane domain may vary but most likely by no more than about 5 amino acids at either end of the domain as initially identified herein. Optionally, therefore, an extracellular domain of a PRO polypeptide may contain from about 5 or fewer amino acids on either side of the transmembrane domain/extracellular domain boundary as identified in the Examples or specification and such polypeptides, with or without the associated signal peptide, and nucleic acid encoding them, are comtemplated by the present invention. [0198]
-
The approximate location of the “signal peptides” of the various PRO polypeptides disclosed herein are shown in the present specification and/or the accompanying figures. It is noted, however, that the C-terminal boundary of a signal peptide may vary, but most likely by no more than about 5 amino acids on either side of the signal peptide C-terminal boundary as initially identified herein, wherein the C-terminal boundary of the signal peptide may be identified pursuant to criteria routinely employed in the art for identifying that type of amino acid sequence element (e.g., Nielsen et al., Prot. Eng. 10:1 -6 (1997) and von Heinje et al., Nucl. Acids. Res. 14:4683-4690 (1986)). Moreover, it is also recognized that, in some cases, cleavage of a signal sequence from a secreted polypeptide is not entirely uniform, resulting in more than one secreted species. These mature polypeptides, where the signal peptide is cleaved within no more than about 5 amino acids on either side of the C-terminal boundary of the signal peptide as identified herein, and the polynucleotides encoding them, are contemplated by the present invention. [0199]
-
“PRO polypeptide variant” means an active PRO polypeptide as defined above or below having at least about 80% amino acid sequence identity with a full-length native sequence PRO polypeptide sequence as disclosed herein, a PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence as disclosed herein. Such PRO polypeptide variants include, for instance, PRO polypeptides wherein one or more amino acid residues are added, or deleted, at the N- or C-terminus of the full-length native amino acid sequence. Ordinarily, a PRO polypeptide variant will have at least about 80% amino acid sequence identity, alternatively at least about 81% amino acid sequence identity, alternatively at least about 82% amino acid sequence identity, alternatively at least about 83% amino acid sequence identity, alternatively at least about 84% amino acid sequence identity, alternatively at least about 85% amino acid sequence identity, alternatively at least about 86% amino acid sequence identity, alternatively at least about 87% amino acid sequence identity, alternatively at least about 88% amino acid sequence identity, alternatively at least about 89% amino acid sequence identity, alternatively at least about 90% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 92% amino acid sequence identity, alternatively at least about 93% amino acid sequence identity, alternatively at least about 94% amino acid sequence identity, alternatively at least about 95% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 97% amino acid sequence identity, alternatively at least about 98% amino acid sequence identity and alternatively at least about 99% amino acid sequence identity to a full-length native sequence PRO polypeptide sequence as disclosed herein, a PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of a full-length PRO polypeptide sequence as disclosed herein. Ordinarily, PRO variant polypeptides are at least about 10 amino acids in length, alternatively at least about 20 amino acids in length, alternatively at least about 30 amino acids in length, alternatively at least about 40 amino acids in length, alternatively at least about 50 amino acids in length, alternatively at least about 60 amino acids in length, alternatively at least about 70 amino acids in length, alternatively at least about 80 amino acids in length, alternatively at least about 90 amino acids in length, alternatively at least about 100 amino acids in length, alternatively at least about 150 amino acids in length, alternatively at least about 200 amino acids in length, alternatively at least about 300 amino acids in length, or more. [0200]
-
“Percent (%) amino acid sequence identity” with respect to the PRO polypeptide sequences identified herein is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the specific PRO polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For purposes herein, however, % amino acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1 below. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, Calif. or may be compiled from the source code provided in Table 1 below. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary. [0201]
-
In situations where ALIGN-2 is employed for amino acid sequence comparisons, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows: [0202]
-
100 times the fraction X/Y [0203]
-
where X is the number of amino acid residues scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A. As examples of % amino acid sequence identity calculations using this method, Tables 2 and 3 demonstrate how to calculate the % amino acid sequence identity of the amino acid sequence designated “Comparison Protein” to the amino acid sequence designated “PRO”, wherein “PRO” represents the amino acid sequence of a hypothetical PRO polypeptide of interest, “Comparison Protein” represents the amino acid sequence of a polypeptide against which the “PRO” polypeptide of interest is being compared, and “X”, “Y” and “Z” each represent different hypothetical amino acid residues. [0204]
-
Unless specifically stated otherwise, all % amino acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program. However, % amino acid sequence identity values may also be obtained as described below by using the WU-BLAST-2 computer program (Altschul et al., Methods in Enzymology 266:460-480 (1996)). Most of the WU-BLAST-2 search parameters are set to the default values. Those not set to default values, i.e., the adjustable parameters, are set with the following values: overlap span=1, overlap fraction=0.125, word threshold (T)=11, and scoring matrix=BLOSUM62. When WU-BLAST-2 is employed, a % amino acid sequence identity value is determined by dividing (a) the number of matching identical amino acid residues between the amino acid sequence of the PRO polypeptide of interest having a sequence derived from the native PRO polypeptide and the comparison amino acid sequence of interest (i.e., the sequence against which the PRO polypeptide of interest is being compared which may be a PRO variant polypeptide) as determined by WU-BLAST-2 by (b) the total number of amino acid residues of the PRO polypeptide of interest. For example, in the statement “a polypeptide comprising an the amino acid sequence A which has or having at least 80% amino acid sequence identity to the amino acid sequence B”, the amino acid sequence A is the comparison amino acid sequence of interest and the amino acid sequence B is the amino acid sequence of the PRO polypeptide of interest. [0205]
-
Percent amino acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997)). The NCBI-BLAST2 sequence comparison program may be downloaded from http://www.ncbi.nlm.nih.gov or otherwise obtained from the National Institute of Health, Bethesda, Md. NCBI-BLAST2 uses several search parameters, wherein all of those search parameters are set to default values including, for example, unmask=yes, strand=all, expected occurrences=10, minimum low complexity length=15/5, multi-pass e-value=0.01, constant for multi-pass=25, dropoff for final gapped alignment=25 and scoring matrix=BLOSUM62. [0206]
-
In situations where NCBI-BLAST2 is employed for amino acid sequence comparisons, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows: [0207]
-
100 times the fraction X/Y [0208]
-
where X is the number of amino acid residues scored as identical matches by the sequence alignment program NCBI-BLAST2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A. [0209]
-
“PRO variant polynucleotide” or “PRO variant nucleic acid sequence” means a nucleic acid molecule which encodes an active PRO polypeptide as defined below and which has at least about 80% nucleic acid sequence identity with a nucleotide acid sequence encoding a full-length native sequence PRO polypeptide sequence as disclosed herein, a full-length native sequence PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence as disclosed herein. Ordinarily, a PRO variant polynucleotide will have at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity with a nucleic acid sequence encoding a full-length native sequence PRO polypeptide sequence as disclosed herein, a full-length native sequence PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal sequence, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence as disclosed herein. Variants do not encompass the native nucleotide sequence. [0210]
-
Ordinarily, PRO variant polynucleotides are at least about 30 nucleotides in length, alternatively at least about 60 nucleotides in length, alternatively at least about 90 nucleotides in length, alternatively at least about 120 nucleotides in length, alternatively at least about 150 nucleotides in length, alternatively at least about 180 nucleotides in length, alternatively at least about 210 nucleotides in length, alternatively at least about 240 nucleotides in length, alternatively at least about 270 nucleotides in length, alternatively at least about 300 nucleotides in length, alternatively at least about 450 nucleotides in length, alternatively at least about 600 nucleotides in length, alternatively at least about 900 nucleotides in length, or more. [0211]
-
“Percent (%) nucleic acid sequence identity” with respect to PRO-encoding nucleic acid sequences identified herein is defined as the percentage of nucleotides in a candidate sequence that are identical with the nucleotides in the PRO nucleic acid sequence of interest, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent nucleic acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. For purposes herein, however, % nucleic acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1 below. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, Calif. or may be compiled from the source code provided in Table 1 below. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.OD. All sequence comparison parameters are set by the ALIGN-2 program and do not vary. [0212]
-
In situations where ALIGN-2 is employed for nucleic acid sequence comparisons, the % nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D (which can alternatively be phrased as a given nucleic acid sequence C that has or comprises a certain % nucleic acid sequence identity to, with, or against a given nucleic acid sequence D) is calculated as follows: [0213]
-
100 times the fraction W/Z [0214]
-
where W is the number of nucleotides scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of C and D, and where Z is the total number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C. As examples of % nucleic acid sequence identity calculations, Tables 4 and 5, demonstrate how to calculate the % nucleic acid sequence identity of the nucleic acid sequence designated “Comparison DNA” to the nucleic acid sequence designated “PRO-DNA”, wherein “PRO-DNA” represents a hypothetical PRO-encoding nucleic acid sequence of interest, “Comparison DNA” represents the nucleotide sequence of a nucleic acid molecule against which the “PRO-DNA” nucleic acid molecule of interest is being compared, and “N”, “L” and “V” each represent different hypothetical nucleotides. [0215]
-
Unless specifically stated otherwise, all % nucleic acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program. However, % nucleic acid sequence identity values may also be obtained as described below by using the WU-BLAST-2 computer program (Altschul et al., Methods in Enzymology 266:460-480 (1996)). Most of the WU-BLAST-2 search parameters are set to the default values. Those not set to default values, i.e., the adjustable parameters, are set with the following values: overlap span=1, overlap fraction=0.125, word threshold (T)=11, and scoring matrix=BLOSUM62. When WU-BLAST-2 is employed, a % nucleic acid sequence identity value is determined by dividing (a) the number of matching identical nucleotides between the nucleic acid sequence of the PRO polypeptide-encoding nucleic acid molecule of interest having a sequence derived from the native sequence PRO polypeptide-encoding nucleic acid and the comparison nucleic acid molecule of interest (i.e., the sequence against which the PRO polypeptide-encoding nucleic acid molecule of interest is being compared which may be a variant PRO polynucleotide) as determined by WU-BLAST-2 by (b) the total number of nucleotides of the PRO polypeptide-encoding nucleic acid molecule of interest. For example, in the statement “an isolated nucleic acid molecule comprising a nucleic acid sequence A which has or having at least 80% nucleic acid sequence identity to the nucleic acid sequence B”, the nucleic acid sequence A is the comparison nucleic acid molecule of interest and the nucleic acid sequence B is the nucleic acid sequence of the PRO polypeptide-encoding nucleic acid molecule of interest. [0216]
-
Percent nucleic acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997)). The NCBI-BLAST2 sequence comparison program may be downloaded from http://www.ncbi.nlm.nih.gov or otherwise obtained from the National Institute of Health, Bethesda, Md. NCBI-BLAST2 uses several search parameters, wherein all of those search parameters are set to default values including, for example, unmask=yes, strand=all, expected occurrences=10, minimum low complexity length=15/5, multi-pass e-value=0.01, constant for multi-pass=25, dropoff for final gapped alignment=25 and scoring matrix=BLOSUM62. [0217]
-
In situations where NCBI-BLAST2 is employed for sequence comparisons, the % nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D (which can alternatively be phrased as a given nucleic acid sequence C that has or comprises a certain % nucleic acid sequence identity to, with, or against a given nucleic acid sequence D) is calculated as follows: [0218]
-
100 times the fraction W/Z [0219]
-
where W is the number of nucleotides scored as identical matches by the sequence alignment program NCBI-BLAST2 in that program's alignment of C and D, and where Z is the total number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C. [0220]
-
In other embodiments, PRO variant polynucleotides are nucleic acid molecules that encode an active PRO polypeptide and which are capable of hybridizing, preferably under stringent hybridization and wash conditions, to nucleotide sequences encoding a full-length PRO polypeptide as disclosed herein. PRO variant polypeptides may be those that are encoded by a PRO variant polynucleotide. [0221]
-
“Isolated,” when used to describe the various polypeptides disclosed herein, means polypeptide that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In preferred embodiments, the polypeptide will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Isolated polypeptide includes polypeptide in situ within recombinant cells, since at least one component of the PRO polypeptide natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step. [0222]
-
An “isolated” PRO polypeptide-encoding nucleic acid or other polypeptide-encoding nucleic acid is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the polypeptide-encoding nucleic acid. An isolated polypeptide-encoding nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated polypeptide-encoding nucleic acid molecules therefore are distinguished from the specific polypeptide-encoding nucleic acid molecule as it exists in natural cells. However, an isolated polypeptide-encoding nucleic acid molecule includes polypeptide-encoding nucleic acid molecules contained in cells that ordinarily express the polypeptide where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells. [0223]
-
The term “control sequences” refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers. [0224]
-
Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. [0225]
-
The term “antibody” is used in the broadest sense and specifically covers, for example, single anti-PRO monoclonal antibodies (including agonist, antagonist, and neutralizing antibodies), anti-PRO antibody compositions with polyepitopic specificity, single chain anti-PRO antibodies, and fragments of anti-PRO antibodies (see below). The term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts. [0226]
-
“Stringency” of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley lnterscience Publishers, (1995). [0227]
-
“Stringent conditions” or “high stringency condition”, as defined herein, may be identified by those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50° C.; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42° C.; or (3) employ 50% formamide, 5× SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5× Denhardt's solution, sonicated salmon sperm DNA (50 μg/ml), 0.1% SDS, and 10% dextran sulfate at 42° C., with washes at 42° C. in 0.2× SSC (sodium chloride/sodium citrate) and 50% formamide at 55° C., followed by a high-stringency wash consisting of 0.1× SSC containing EDTA at 55° C. [0228]
-
“Moderately stringent conditions” may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and % SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37° C. in a solution comprising: 20% formamide, 5× SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5× Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1× SSC at about 37-50° C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like. [0229]
-
The term “epitope tagged” when used herein refers to a chimeric polypeptide comprising a PRO polypeptide fused to a “tag polypeptide”. The tag polypeptide has enough residues to provide an epitope against which an antibody can be made, yet is short enough such that it does not interfere with activity of the polypeptide to which it is fused. The tag polypeptide preferably also is fairly unique so that the antibody does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8 and 50 amino acid residues (preferably, between about 10 and 20 amino acid residues). [0230]
-
As used herein, the term “immunoadhesin” designates antibody-like molecules which combine the binding specificity of a heterologous protein (an “adhesin”) with the effector functions of immunoglobulin constant domains. Structurally, the immunoadhesins comprise a fusion of an amino acid sequence with the desired binding specificity which is other than the antigen recognition and binding site of an antibody (i.e., is “heterologous”), and an immunoglobulin constant domain sequence. The adhesin part of an immunoadhesin molecule typically is a contiguous amino acid sequence comprising at least the binding site of a receptor or a ligand. The immunoglobulin constant domain sequence in the immunoadhesin may be obtained from any immunoglobulin, such as IgG-1, IgG-2, IgG-3, or IgG-4 subtypes, IgA (including IgA-1 and IgA-2), IgE, IgD or IgM. [0231]
-
“Active” or “activity” for the purposes herein refers to form(s) of a PRO polypeptide which retain a biological and/or an immunological activity of native or naturally-occurring PRO, wherein “biological” activity refers to a biological function (either inhibitory or stimulatory) caused by a native or naturally-occurring PRO other than the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring PRO and an “immunological” activity refers to the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring PRO. [0232]
-
The term “antagonist” is used in the broadest sense, and includes any molecule that partially or fully blocks, inhibits, or neutralizes a biological activity of a native PRO polypeptide disclosed herein. In a similar manner, the term “agonist” is used in the broadest sense and includes any molecule that mimics a biological activity of a native PRO polypeptide disclosed herein. Suitable agonist or antagonist molecules specifically include agonist or antagonist antibodies or antibody fragments, fragments or amino acid sequence variants of native PRO polypeptides, peptides, antisense oligonucleotides, small organic molecules, etc. Methods for identifying agonists or antagonists of a PRO polypeptide may comprise contacting a PRO polypeptide with a candidate agonist or antagonist molecule and measuring a detectable change in one or more biological activities normally associated with the PRO polypeptide. [0233]
-
“Treatment” refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in whom the disorder is to be prevented. [0234]
-
“Chronic” administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time. “Intermittent” administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature. [0235]
-
“Mammal” for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, cats, cattle, horses, sheep, pigs, goats, rabbits, etc. Preferably, the mammal is human. [0236]
-
Administration “in combination with” one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order. [0237]
-
“Carriers” as used herein include pharmaceutically acceptable carriers, excipients, or stabilizers which are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN™, polyethylene glycol (PEG), and PLURONICS™. [0238]
-
“Antibody fragments” comprise a portion of an intact antibody, preferably the antigen binding or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab′, F(ab′)[0239] 2 and Fv fragments; diabodies; linear antibodies (Zapata et al., Protein Eng. 8(10): 1057-1062[1995]); single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.
-
Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site, and a residual “Fc” fragment, a designation reflecting the ability to crystallize readily Pepsin treatment yields an F(ab′)[0240] 2 fragment that has two antigen-combining sites and is still capable of cross-linking antigen.
-
“Fv” is the minimum antibody fragment which contains a complete antigen-recognition and—binding site. This region consists of a dimer of one heavy—and one light-chain variable domain in tight, non-covalent association. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the V[0241] H-VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
-
The Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab fragments differ from Fab′ fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. Fab′-SH is the designation herein for Fab′ in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab′)[0242] 2 antibody fragments originally were produced as pairs of Fab′ fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
-
The “light chains” of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa and lambda, based on the amino acid sequences of their constant domains. [0243]
-
Depending on the amino acid sequence of the constant domain of their heavy chains, immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2. [0244]
-
“Single-chain Fv” or “sFv” antibody fragments comprise the V[0245] H and VL domains of antibody, wherein these domains are present in a single polypeptide chain. Preferably, the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the sFv to form the desired structure for antigen binding. For a review of sFv, see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994).
-
The term “diabodies” refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy-chain variable domain (V[0246] H) connected to a light-chain variable domain (VL) in the same polypeptide chain (VH-VL). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993).
-
An “isolated” antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step. [0247]
-
An antibody that “specifically binds to” or is “specific for” a particular polypeptide or an epitope on a particular polypeptide is one that binds to that particular polypeptide or epitope on a particular polypeptide without substantially binding to any other polypeptide or polypeptide epitope. [0248]
-
The word “label” when used herein refers to a detectable compound or composition which is conjugated directly or indirectly to the antibody so as to generate a “labeled” antibody. The label may be detectable by itself (e.g. radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable. [0249]
-
By “solid phase” is meant a non-aqueous matrix to which the antibody of the present invention can adhere. Examples of solid phases encompassed herein include those formed partially or entirely of glass (e.g., controlled pore glass), polysaccharides (e.g., agarose), polyacrylamides, polystyrene, polyvinyl alcohol and silicones. In certain embodiments, depending on the context, the solid phase can comprise the well of an assay plate; in others it is a purification column (e.g., an affinity chromatography column). This term also includes a discontinuous solid phase of discrete particles, such as those described in U.S. Pat. No. 4,275,149. [0250]
-
A “liposome” is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug (such as a PRO polypeptide or antibody thereto) to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes. [0251]
-
A “small molecule” is defined herein to have a molecular weight below about 500 Daltons
[0252] TABLE 1 |
|
|
/* |
* |
* C—C increased from 12 to 15 |
* Z is average of EQ |
* B is average of ND |
* match with stop is _M; stop—stop = 0; J (joker) match = 0 |
*/ |
#define | _M | −8 | /* value of a match with a stop */ |
/* A B C D E F G H I J K L M N O P Q R S T U V W X Y Z */ |
/* A */ | {2, 0, −2, 0, 0, −4, 1, −1, −1, 0, −1, −2, −1, 0, _M, 1, 0, −2, 1, 1, 0, 0, −6, 0, −3, 0}, |
/* B */ | {0, 3, −4, 3, 2, −5, 0, 1, −2, 0, 0, −3, −2, 2, _M, −1, 1, 0, 0, 0, 0, −2, −5, 0, −3, 1}, |
/* C */ | {−2, −4, 15, −5, −5, −4, −3, −3, −2, 0, −5, −6, −5, −4, _M, −3, −5, −4, 0, −2, 0, −2, −8, 0, 0, −5}, |
/* D */ | {0, 3, −5, 4, 3, −6, 1, 1, −2, 0, 0, −4, −3, 2, _M, −1, 2, −1, 0, 0, 0, −2, −7, 0, −4, 2}, |
/* E */ | {0, 2, −5, 3, 4, −5, 0, 1, −2, 0, 0, −3, −2, 1, _M, −1, 2, −1, 0, 0, 0, −2, −7, 0, −4, 3}, |
/* F */ | {−4, −5, −4, −6, −5, 9, −5, −2, 1, 0, −5, 2, 0, −4, _M, −5, −5, −4, −3, −3, 0, −1, 0, 0, 7, −5}, |
/* G */ | {1, 0, −3, 1, 0, −5, 5, −2, −3, 0, −2, −4, −3, 0, _M, −1, −1, −3, 1, 0, 0, −1, −7, 0, −5, 0}, |
/* H */ | {−1, 1, −3, 1, 1, −2, −2, 6, −2, 0, 0, −2, −2, 2, _M, 0, 3, 2, −1, −1, 0, −2, −3, 0, 0, 2}, |
/* I */ | {−1, −2, −2, −2, −2, 1, −3, −2, 5, 0, −2, 2, 2, −2, _M, −2, −2, −2, −1, 0, 0, 4, −5, 0, −1, −2}, |
/* J */ | {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, _M, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
/* K */ | {−1, 0, −5, 0, 0, −5, −2, 0, −2, 0, 5, −3, 0, 1, _M, −1, 1, 3, 0, 0, 0, −2, −3, 0, −4, 0}, |
/* L */ | {−2, −3, −6, −4, −3, 2, −4, −2, 2, 0, −3, 6, 4, −3, _M, −3, −2, −3, −3 , −1, 0, 2, −2, 0, −1, −2} |
/* M */ | {−1, −2, −5, −3, −2, 0, −3, −2, 2, 0, 0, 4, 6, −2, _M, −2, −1, 0, −2, −1, 0, 2, −4, 0, −2, −1}, |
/* N */ | {0, 2, −4, 2, 1, −4, 0, 2, −2, 0, 1, −3, −2, 2, _M, −1, 1, 0, 1, 0, 0, −2, −4, 0, −2, 1}, |
/* O */ | {_M,_M,_M,_M,_M,_M,_M,_M,_M,_M,_M,_M,_M,_M, 0,_M,_M,_M,_M,_M,_M,_M,_M,_M,_M,_M,}, |
/* P */ | {1, −1, −3, −1, −1, −5, −1, 0, −2, 0, −1, −3, −2, −1,_M, 6, 0, 0, 1, 0, 0, −1, −6, 0, −5, 0}, |
/* Q */ | {0, 1, −5, 2, 2, −5, −1, 3, −2, 0, 1, −2, −1, 1, _M, 0, 4, 1, −1, −1, 0, −2, −5, 0, −4, 3}, |
/* R */ | {−2, 0, −4, −1, −1, −4, −3, 2, −2, 0, 3, −3, 0, 0, _M, 0, 1, 6, 0, −1, 0, −2, 2, 0, −4, 0}, |
/* S */ | {1, 0, 0, 0, 0, −3, 1, −1, −1, 0, 0, −3, −2, 1, _M, 1, −1, 0, 2, 1, 0, −1, −2, 0, −3, 0}, |
/* T */ | {1, 0, −2, 0, 0, −3, 0, −1, 0, 0, 0, −1, −1, 0, _M, 0, −1, −1, 1, 3, 0, 0, −5, 0, −3, 0}, |
/* U */ | {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,_M, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
/* V */ | {0, −2, −2, −2, −2, −1, −1, −2, 4, 0, −2, 2, 2, −2,_M, −1, −2, −2, −1, 0, 0, 4, −6, 0, −2, −2}, |
/* W */ | {−6, −5, −8, −7, −7, 0, −7, −3, −5, 0, −3, −2, −4, −4,_M, −6, −5, 2, −2, −5, 0, −6, 17, 0, 0, −6}, |
/* X */ | {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, _M, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
/* Y */ | {−3, −3, 0, −4, −4, 7, −5, 0, −1, 0, −4, −1, −2, −2, _M, −5, −4, −4, −3, −3, 0, −2, 0, 0, 10, −4}, |
/* Z */ | {0, 1, −5, 2, 3, −5, 0, 2, −2, 0, 0, −2, −1, 1,_M, 0, 3, 0, 0, 0, 0, −2, −6, 0, −4, 4}, |
}; |
/* |
*/ |
#include <stdio.h> |
#include <ctype.h> |
#define MAXJMP | 16 | /* max jumps in a diag */ |
#define MAXGAP | 24 | /* don't continue to penalize gaps larger than this */ |
#define JMPS | 1024 | /* max jmps in an path */ |
#define MX | 4 | /* save if there's at least MX-1 bases since last jmp */ |
#define DMAT | 3 | /* value of matching bases */ |
#define DMIS | 0 | /* penalty for mismatched bases */ |
#define DINS0 | 8 | /* penalty for a gap */ |
#define DINS1 | 1 | /* penalty per base */ |
#define PINS0 | 8 | /* penalty for a gap */ |
#define PINS1 | 4 | /* penalty per residue */ |
struct jmp { |
| short | n[MAXJMP]; | /* size of jmp (neg for dely) */ |
| unsigned short | x[MAXJMP]; | /* base no. of jmp in seq x */ |
| /* limits seq to 2{circumflex over ( )}16 −1 */ |
| int | score; | /* score at last jmp */ |
| long | offset; | /* offset of prev block */ |
| short | ijmp; | /* current jmp index */ |
| struct jmp | jp; | /* list of jmps */ |
| int | spc; | /* number of leading spaces */ |
| short | n[JMPS]; | /* size of jmp (gap) */ |
| int | x[JMPS]; | /* loc of jmp (last elem before gap) */ |
char | *ofile; | /* output file name */ |
char | *namex[2]; | /* seq names: getseqs() */ |
char | *prog; | /* prog name for err msgs */ |
char | *seqx[2]; | /* seqs: getseqs() */ |
int | dmax; | /* best diag: nw() */ |
int | dmax0; | /* final diag */ |
int | dna; | /* set if dna: main() */ |
int | endgaps; | /* set if penalizing end gaps */ |
int | gapx, gapy; | /* total gaps in seqs */ |
int | len0, len1; | /* seq lens */ |
int | ngapx, ngapy; | /* total size of gaps */ |
int | smax; | /* max score: nw() */ |
int | *xbm; | /* bitmap for matching */ |
long | offset; | /* current offset in jmp file */ |
struct diag | *dx; | /* holds diagonals */ |
struct path | pp[2]; | /* holds path for seqs */ |
char | *calloc(), *malloc(), *index(), *strcpy(); |
char | *getseq(), *g_calloc(); |
/* Needleman-Wunsch alignment program |
* |
* usage: progs file1 file2 |
* where file1 and file2 are two dna or two protein sequences. |
* The sequences can be in upper- or lower-case an may contain ambiguity |
* Any lines beginning with ‘;’, ‘>’ or ‘<’ are ignored |
* Max file length is 65535 (limited by unsigned short x in the jmp struct) |
* A sequence with ⅓ or more of its elements ACGTU is assumed to be DNA |
* Output is in the file “align.out” |
* |
* The program may create a tmp file in /tmp to hold info about traceback. |
* Original version developed under BSD 4.3 on a vax 8650 |
*/ |
#include “nw.h” |
#include “day.h” |
static | _dbval[26] = { |
| 1,14,2,13,0,0,4,11,0,0,12,0,3,15,0,0,0,5,6,8,8,7,9,0,10,0 |
}; |
static | _pbval[26] = { |
| 1, 2|(1<<(‘D’-‘A’))|(1<<(‘N’-‘A’)), 4, 8, 16, 32, 64, |
| 128, 256, 0×FFFFFFF, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, |
| 1<<15, 1<<16, 1< <17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, |
| 1<<23, 1<<24, 1<<25|(1<<(‘E’-‘A’))|(1<<(‘Q’-‘A’)) |
| prog = av[0]; |
| if(ac != 3) { |
| fprintf(stderr, “usage: %s file1 file2\n”, prog); |
| fprintf(stderr, “where file1 and file2 are two dna or two protein sequences.\n”); |
| fprintf(stderr, “The sequences can be in upper- or lower-case\n”); |
| fprintf(stderr, “Any lines beginning with ‘;’ or ‘<’ are ignored\n”); |
| fprintf(stderr, “Output is in the file \“align.out\”\n”); |
| exit(1); |
| } |
| namex[0] = av[1]; |
| namex[1] = av[2]; |
| seqx[0] = getseq(namex[0], &len0); |
| seqx[1] = getseq(namex[1], &len1); |
| xbm = (dna)? _dbval : _pbval; |
| endgaps = 0; | /* 1 to penalize endgaps */ |
| ofile = “align.out”; | /* output file */ |
| nw(); | /* fill in the matrix, get the possible jmps */ |
| readjmps(); | /* get the actual jmps */ |
| print(); | /* print stats, alignment */ |
| cleanup(0); | /* unlink any tmp files */ |
} |
/* do the alignment, return best score: main() |
* dna: values in Fitch and Smith, PNAS, 80, 1382-1386, 1983 |
* pro: PAM 250 values |
* When scores are equal, we prefer mismatches to any gap, prefer |
* a new gap to extending an ongoing gap, and prefer a gap in seqx |
* to a gap in seq y. |
*/ |
| char | *px, *py; | /* seqs and ptrs */ |
| int | *ndely, *dely; | /* keep track of dely */ |
| int | ndelx, delx; | /* keep track of delx */ |
| int | *tmp; | /* for swapping row0, row1 */ |
| int | mis; | /* score for each type */ |
| int | ins0, ins1; | /* insertion penalties */ |
| register | id; | /* diagonal index */ |
| register | ij; | /* jmp index */ |
| register | *col0, *col1; | /* score for curr, last row */ |
| register | xx, yy; | /* index into seqs */ |
| dx = (struct diag *)g_calloc(“to get diags”, len0+len1+1, sizeof(struct diag)); |
| ndely = (int *)g_calloc(“to get ndely”, len1+1, sizeof(int)); |
| dely = (int *)g_calloc(“to get dely”, len1+1, sizeof(int)); |
| col0 = (int *)g_calloc(“to get col0”, len1+1, sizeof(int)); |
| col1 = (int *)g_calloc(“to get col1”, len1+1, sizeof(int)); |
| ins0 = (dna)? DINS0 : PINS0; |
| ins1 = (dna)? DINS1 : PlNS1; |
| smax = −10000; |
| if (endgaps) { |
| for (col0[0] = dely[0] = −ins0, yy = 1; yy <= len1; yy++) { |
| col0[yy] = dely[yy] = col0[yy−1] − ins1; |
| ndely[yy] = yy; |
| } | |
| col0[0] = 0; | /* Waterman Bull Math Biol 84 */ |
| for (yy = 1; yy <= len1; yy++) |
| /* fill in match matrix |
| */ |
| for (px = seqx[0], xx = 1; xx <= len0; px++, xx++) { |
| /* initialize first entry in col |
| */ |
| if (endgaps) { |
| col1[0] = delx = −(ins0+ins1); |
| col1[0] = delx = col0[0]−ins1; |
| col1[0] = 0; |
| delx = −ins0; |
| ndelx = 0; |
| for (py = seqx[1], yy = 1; yy <= len1; py++, yy++) { |
| mis = col0[yy−1]; |
| if (dna) |
| mis += (xbm[*px−‘A’]&xbm[*py−‘A’])? DMAT : DMIS; |
| mis += _day[*px−‘A’][*py−‘A’]; |
| /* update penalty for del in x seq; |
| * favor new del over ongong del |
| * ignore MAXGAP if weighting endgaps |
| */ |
| if (endgaps || ndely[yy] < MAXGAP) { |
| if (col0[yy] − ins0 >= dely[yy]) { |
| dely[yy] = col0[yy] − (ins0+ins1); |
| ndely[yy] = 1; |
| dely[yy] −= ins1; |
| ndely[yy]++; |
| if (col0[yy] − (ins0+ins1) >= dely[yy]) { |
| dely[yy] = col0[yy] − (ins0+ins1); |
| ndely[yy] = 1; |
| } |
| /* update penalty for del in y seq; |
| * favor new del over ongong del |
| */ |
| if (endgaps || ndelx < MAXGAP) { |
| if(col1[yy−1] − ins0 >= delx) { |
| delx = col1[yy−1] − (ins0+ins1); |
| ndelx = 1; |
| if (col1[yy−1] − (ins0+ins1) >= delx) { |
| delx = col1[yy−1] − (ins0+ins1); |
| ndelx = 1; |
| } |
| /* pick the maximum score; we're favoring |
| * mis over any del and delx over dely |
| */ |
| id = xx − yy + len1 − 1; |
| if (mis >= delx && mis >= dely[yy]) |
| else if (delx >= dely[yy]) { |
| col1[yy] = delx; |
| ij = dx[id].ijmp; |
| if (dx[id].jp.n[0] && (!dna || (ndelx >= MAXJMP |
| && xx > dx[id].jp.x[ij]+MX) || mis > dx[id].score+DINS0)) { |
| dx[id].ijmp++; |
| if (++ij >= MAXJMP) { |
| writejmps(id); |
| ij = dx[id].ijmp = 0; |
| dx[id].offset = offset; |
| offset += sizeof(struct jmp) + sizeof(offset); |
| } |
| dx[id].jp.n[ij] = ndelx; |
| dx[id].jp.x[ij] = xx; |
| dx[id].score = delx; |
| col1[yy] = dely[yy]; |
| ij = dx[id].ijmp; |
if (dx[id].jp.n[0] && (!dna || (ndely[yy] >= MAXJMP |
| && xx > dx[id].jp.x[ij]+MX) || mis > dx[id].score+DINS0)) { |
| dx[id].ijmp++; |
| if (++ij >= MAXJMP) { |
| writejmps(id); |
| ij = dx[id].ijmp = 0; |
| dx[id].offset = offset; |
| offset += sizeof(struct jmp) + sizeof(offset); |
| } |
| dx[id].jp.n[ij] =− ndely[yy]; |
| dx[id].jp.x[ij] = xx; |
| dx[id].score = dely[yy]; |
| } |
| if (xx == len0 && yy < len1) { |
| /* last col |
| */ |
| if (endgaps) |
| col1[yy] −= ins0+ins1*(len1−yy); |
| smax = col1[yy]; |
| dmax = id; |
| } |
| if (endgaps && xx < len0) |
| col1[yy−1] −= ins0+ins1*(len0−xx); |
| smax = col1[yy−1]; |
| dmax = id; |
| } |
| tmp = col0; col0 = col1; col1 = tmp; |
| } |
| (void) free((char *)ndely); |
| (void) free((char *)dely); |
| (void) free((char *)col0); |
| (void) free((char *)col1); |
/* |
* |
* print() -- only routine visible outside this module |
* |
* static: |
* getmat() -- trace back best path, count matches: print() |
* pr_align() -- print alignment of described in array p[]: print() |
* dumpblock() -- dump a block of lines with numbers, stars: pr_align() |
* nums() -- put out a number line: dumpblock() |
* putline() -- put out a line (name, [num], seq, [num]): dumpblock() |
* stars() - -put a line of stars: dumpblock() |
* stripname() -- strip any path and prefix from a seqname |
*/ |
#include “nw.h” |
#define SPC | 3 | |
#define P_LINE | 256 | /* maximum output line */ |
#define P_SPC | 3 | /* space between name or num and seq */ |
extern | _day[26][26]; | |
int | olen; | /* set output line length */ |
FILE | *fx; | /* output file */ |
| int | lx, ly, firstgap, lastgap; /* overlap */ |
| if ((fx = | fopen(ofile, “w”)) == 0) { |
| | fprintf(stderr, “%s: can't write %s\n”, prog, ofile); |
| | cleanup(1); |
| } |
| fprintf(fx, “<first sequence: %s (length = %d)\n”, namex[0], len0); |
| fprintf(fx, “<second sequence: %s (length = %d)\n”, namex[1], len1); |
| olen = 60; |
| lx = len0; |
| ly = len1; |
| firstgap = lastgap = 0; |
| if (dmax < len1 − 1) { | /* leading gap in x */ |
| pp[0].spc = firstgap = len1 − dmax − 1; |
| ly −= pp[0].spc; |
| else if (dmax > len1 − 1) { | /* leading gap in y */ |
| pp[1].spc = firstgap = dmax − (len1 − 1); |
| lx −= pp[1].spc; |
| if (dmax0 < len0 − 1) { | /* trailing gap in x */ |
| lastgap = len0 − dmax0 −1; |
| lx −= lastgap; |
| else if (dmax0 > len0 − 1) { | /* trailing gap in y */ |
| lastgap = dmax0 − (len0 − 1); |
| ly −= lastgap; |
| } |
| getmat(lx, ly, firstgap, lastgap); |
| pr_align(); |
} |
/* |
* trace back the best path, count matches |
*/ |
static |
getmat(lx, ly, firstgap, lastgap) | getmat |
| int | lx, ly; | /* “core” (minus endgaps) */ |
| int | firstgap, lastgap; | /* leading trailing overlap */ |
| int | nm, i0, i1, siz0, siz1; |
| char | outx[32]; |
| double | pct; |
| register | n0, n1; |
| register char | *p0, *p1; |
| /* get total matches, score |
| */ |
| i0 = i1 = siz0 = siz1 = 0; |
| p0 = seqx[0] + pp[1].spc; |
| p1 = seqx[1] + pp[0].spc; |
| n0 = pp[1].spc + 1; |
| n1 = pp[0].spc + 1; |
| nm = 0; |
| while ( *p0 && *p1 ) { |
| if (xbm[*p0−‘A’]&xbm[*p1−‘A’]) |
| } |
| /* pct homology: |
| * if penalizing endgaps, base is the shorter seq |
| * else, knock off overhangs and take shorter core |
| */ |
| if (endgaps) |
| lx = (len0 < len1)? len0 : len1; |
| pct = 100.*(double)nm/(double)lx; |
| fprintf(fx, “\n”); |
| fprintf(fx, “<%d match%s in an overlap of %d: %.2f percent similarity\n”, |
| nm, (nm == 1)? “” : “es”, lx, pct); |
| fprintf(fx, “<gaps in first sequence: %d”, gapx); | ...getmat |
| if (gapx) { |
| (void) sprintf(outx, “(%d %s%s)”, |
| ngapx, (dna)? “base”: “residue”, (ngapx == 1)? “”:“s”); |
| fprintf(fx, “, gaps in second sequence: %d”, gapy); |
| if (gapy) { |
| (void) sprintf(outx, “(%d %s%s)”, |
| ngapy, (dna)? “base”:“residue”, (ngapy == 1)? “”:“s”); |
| fprintf(fx, |
| “\n<score: %d (match = %d, mismatch = %d, gap penalty = %d + %d per base)\n”, |
| smax, DMAT, DMIS, DINS0, DINS1); |
| fprintf(fx, |
| “\n<score: %d (Dayhoff PAM 250 matrix, gap penalty = %d + %d per residue)\n”, |
| smax, PINS0, PINS1); |
| fprintf(fx, |
| “<endgaps penalized. left endgap: %d %s%s, right endgap: %d %s%s\n”, |
| firstgap, (dna)? “base” : “residue”, (firstgap == 1)? “” : “s”, |
| lastgap, (dna)? “base” : “residue”, (lastgap == 1)? “” : “s”); |
| fprintf(fx, “<endgaps not penalized\n”); |
static | nm; | /* matches in core -- for checking */ |
static | lmax; | /* lengths of stripped file names */ |
static | ij[2]; | /* jmp index for a path */ |
static | nc[2]; | /* number at start of current line */ |
static | ni[2]; | /* current elem number -- for gapping */ |
static | siz[2]; |
static char | *ps[2]; | /* ptr to current element */ |
static char | *po[2]; | /* ptr to next output char slot */ |
static char | out[2][P_LINE]; | /* output line */ |
static char | star[P_LINE]; | /* set by stars() */ |
/* |
* print alignment of described in struct path pp[] |
*/ |
static |
| int | nn; | /* char count */ |
| int | more; |
| register | i; |
| for (i = 0, lmax = 0; i < 2;i++) { |
| nn = stripname(namex[i]); |
| nc[i] = 1; |
| ni[i] = 1; |
| siz[i] = ij[i] = 0; |
| ps[i] = seqx[i]; |
| po[i] = out[i]; |
| for (nn = nm = 0, more = 1; more;) { | ...pr_align |
| for (i = more = 0; i < 2; i++) { |
| /* |
| * do we have more of this sequence? |
| */ |
| if (!*ps[i]) |
| if (pp[i].spc) { | /* leading space */ |
| *po[i]++ = ‘ ’; |
| pp[i].spc−−; |
| else if (siz[i]) { | /* in a gap */ |
| *po[i]++ = ‘−’; |
| siz[i]−−; |
| else { | /* we're putting a seq element |
| *po[i] = *ps[i]; |
| if (islower(*ps[i])) |
| *ps[i] = toupper(*ps[i]); |
| po[i]++; |
| ps[i]++; |
| /* |
| * are we at next gap for this seq? |
| */ |
| if (ni[i] == pp[i].x[ij[i]]) { |
| /* |
| * we need to merge all gaps |
| * at this location |
| */ |
| siz[i] == pp[i].n[ij[i]++]; |
| while (ni[i] == pp[i].x[ij[i]]) |
| siz[i] += pp[i].n[ij[i]++]; |
| } |
| if (++nn == olen || !more && nn) { |
| dumpblock(); |
| for (i = 0; i < 2; i++) |
} |
/* |
* dump a block of lines, including numbers, stars: pr_align() |
*/ |
static |
| register i; |
| for(i = 0; i < 2; i++) |
| (void) putc(‘\n’, fx); |
| for (i = 0; i < 2; i++) { |
| if (*out[i] && (*out[i] != ‘ ’ || *(po[i]) != ‘ ’)) { |
| putline(i); |
| if (i == 0 && *out[1]) |
} |
/* |
* put out a number line: dumpblock() |
*/ |
static |
| int ix; | /* index in out[] holding seq line */ |
| char | nline[P_LINE]; |
| register | i, j; |
| register char | *pn, *px, *py; |
| for(pn = nline, i = 0; i < lmax+P_SPC; i++, pn++) |
| for (i = nc[ix], py = out[ix]; *py; py++, pn++) { |
| if (*py == ‘ ’ || *py == ‘−’) |
| if (i%10 == 0 || (i == 1 && nc[ix] != 1)) { |
| j = (i < 0)? −i : i; |
| for (px = pn; j; j/= 10, px−−) |
| } |
| *pn = ‘\0’; |
| nc[ix] = i; |
| for (pn = nline; *pn; pn++) |
} |
/* |
* put out a line (name, [num], seq. [num]): dumpblock() |
*/ |
static |
| int | i; |
| register char | *px; |
| for (px = namex[ix], i = 0; *px && *px != ‘:’; px++, i++) |
| for (;i < lmax+P_SPC; i++) |
| /* these count from 1: |
| * ni[] is current element (from 1) |
| * nc[] is number at start of current line |
| */ |
| for (px = out[ix]; *px; px++) |
| (void) putc(*px&0x7F, fx); |
} |
/* |
* put a line of stars (seqs always in out[0], out[1]): dumpblock() |
*/ |
static |
| int | i; |
| register char | *p0, *p1, cx, *px; |
| if | (!*out[0] || (*out[0] == ‘ ’ && *(p0[0]) == ‘ ’) || |
| | !*out[1] || (*out[1] == ‘ ’ && *(po[1]) == ‘ ’)) |
| px = star; |
| for (i = lmax+P_SPC; i; i−−) |
| for (p0 = out[0], p1 = out[1]; *p0 && *p1; p0++, p1++) { |
| if (isalpha(*p0) && isalpha(*p1)) { |
| if (xbm[*p0−‘A’]&xbm[*p1−‘A’]) { |
| } |
| else if (!dna && _day[*p0− ‘A’][*p1−‘A’] > 0) |
| } |
| *px++ = ‘\n’; |
| *px = ‘\0’; |
} |
/* |
* strip path or prefix from pn, return len: pr_align() |
*/ |
static |
| char | *pn; | /* file name (may be path) */ |
| py = 0; |
| for (px = pn; *px; px++) |
} |
/* |
* cleanup() -- cleanup any tmp file |
* getseq() -- read in seq, set dna, len, maxlen |
* g_calloc() -- calloc() with error checkin |
* readjmps() -- get the good jmps, from tmp file if necessary |
* writejmps() -- write a filled array of jmps to a tmp file: nw() |
*/ |
#include “nw.h” |
#include <sys/file.h> |
char | *jname = “/tmp/homgXXXXXX”; | /* tmp file for jmps */ |
FILE | *fj; |
int | cleanup(); | /* cleanup tmp file */ |
long | lseek(); |
/* |
* remove any tmp file if we blow |
*/ |
} |
/* |
* read, return ptr to seq, set dna, len, maxlen |
* skip lines starting with ‘;’, ‘<’, or ‘>’ |
* seq in upper or lower case |
*/ |
char * |
| char | *file; | /* file name */ |
| int | *len; | /* seq len */ |
| char | line[1024], *pseq; |
| register char | *px, *py; |
| int | natgc, tlen; |
| FILE | *fp; |
| if ((fp = fopen(file, “r”)) == 0) { |
| fprintf(stderr, “%s: can't read %s\n”, prog, file); |
| exit(1); |
| } |
| tlen = natgc = 0; |
| while (fgets(line, 1024, fp)) { |
| if (*line == ‘;’ || *line == ‘<’ || *line == ‘>’) |
| for (px = line; *px != ‘\n’; px++) |
| if (isupper(*px) || islower(*px)) |
| } |
| if ((pseq = malloc((unsigned)(tlen+6))) == 0) { |
| fprintf(stderr, “%s: malloc() failed to get %d bytes for %s\n”, prog, tlen+6, file); |
| exit(1); |
| } |
| pseq[0] = pseq[1] = pseq[2] = pseq[3] = ‘\0’; |
| py = pseq + 4; |
| *len = tlen; |
| rewind(fp); |
| while (fgets(line, 1024, fp)) { |
| if (*line == ‘;’ || *line == ‘<’ || *line == ‘>’) |
| for (px = line; *px != ‘\n’; px++) { |
| if (index(“ATGCU”, *(py−1))) |
| } |
| *py++ = ‘\0’; |
| *py = ‘\0’; |
| (void) fclose(fp); |
| dna = natgc > (tlen/3); |
| return(pseq+4); |
g_calloc(msg, nx, sz) | g_calloc |
| char | *msg; | /* program, calling routine */ |
| int | nx, sz; | /* number and size of elements */ |
| if ((px = calloc((unsigned)nx, (unsigned)sz)) == 0) { |
| fprintf(stderr, “%s: g_calloc() failed %s (n= %d, sz= %d)\n”, prog, msg, nx, sz); |
| exit(1); |
} |
/* |
* get final jmps from dx[] or tmp file, set pp[], reset dmax: main() |
*/ |
| int | fd = −1; |
| int | siz, i0, i1; |
| register i, j, xx; |
| if (fj) { |
| if ((fd = | open(jname, O_RDONLY, 0)) < 0) { |
| fprintf(stderr, “%s: can't open() %s\n”, prog, jname); |
| cleanup(1); |
| } |
| for (i = i0 = i1 = 0, dmax0 = dmax, xx = len0; ;i++) { |
| for (j = dx[dmax].ijmp; j >= 0 && dx[dmax].jp.x[j] >= xx; j−−) |
| if (j < 0 && dx[dmax].offset && fj) { |
| (void) lseek(fd, dx[dmax].offset, 0); |
| (void) read(fd, (char *)&dx[dmax].jp, sizeof(struct jmp)); |
| (void) read(fd, (char *)&dx[dmax].offset, sizeof(dx[dmax].offset)); |
| dx[dmax].ijmp = MAXJMP−1; |
| fprintf(stderr, “%s: too many gaps in alignment\n”, prog); |
| cleanup(1); |
| siz = dx[dmax].jp.n[j]; |
| xx = dx[dmax].jp.x[j]; |
| dmax += siz; |
| if (siz < 0) { | /* gap in second seq */ |
| pp[1].n[il] = −siz; |
| xx += siz; |
| /* id = xx − yy + len1 − 1 |
| */ |
| pp[1].x[il] = xx − dmax + len1 − 1; |
| gapy++; |
| ngapy −= siz; |
/* ignore MAXGAP when doing endgaps */ |
| siz = (−siz < MAXGAP || endgaps)? −siz : MAXGAP; |
| il++; |
| else if (siz > 0) { | /* gap in first seq */ |
| pp[0] .n[i0] = siz; |
| pp[0] .x[i0] = xx; |
| gapx++; |
| ngapx += siz; |
/* ignore MAXGAP when doing endgaps */ |
| siz = (siz < MAXGAP || endgaps)? siz : MAXGAP; |
| i0++; |
| } |
| /* reverse the order of jmps |
| */ |
| for (j = 0, i0−−; j < i0; j++, i0−−) { |
| i = pp[0].n[j]; pp[0].n[j] = pp[0].n[i0]; pp[0].n[i0] = i; |
| i = pp[0].x[j]; pp[0].x[j] = pp[0].x[i0]; pp[0].x[i0] = i; |
| } |
| for (j = 0, i1−−; j < i1; j++, i1−−) { |
| i = pp[1].n[j]; pp[1].n[j] = pp[1].n[i1]; pp[1].n[i1] = i; |
| i = pp[1].x[j]; pp[1].x[j] = pp[1].x[i1]; pp[1].x[i1] = i; |
| (void) unlink(jname); |
| fj = 0; |
| offset = 0; |
/* |
* write a filled jmp struct offset of the prev one (if any): nw() |
*/ |
| fprintf(stderr, “%s: can't mktemp() %s\n”, prog, jname); |
| cleanup(1); |
| } |
| if ((fj = fopen(jname, “w”)) == 0) { |
| fprintf(stderr, “%s: can't write %s\n”, prog, jname); |
| exit(1); |
| } |
| (void) fwrite((char *)&dx[ix].jp, sizeof(struct jmp), 1, fj); |
| (void) fwrite((char *)&dx[ix].offset, sizeof(dx[ix].offset), 1, fj); |
-
[0253] TABLE 2 |
|
|
PRO | XXXXXXXXXXXXXXX | (Length = 15 amino acids) |
Comparison | XXXXXYYYYYYY | (Length = 12 amino acids) |
Protein |
|
|
-
[0254] TABLE 3 |
|
|
PRO | XXXXXXXXXX | (Length = 10 amino acids) |
Comparison | XXXXXYYYYYYZZYZ | (Length = 15 amino acids) |
Protein |
|
|
-
[0255] TABLE 4 |
|
|
PRO-DNA | NNNNNNNNNNNNNN | (Length = 14 nucleotides) |
Comparison | NNNNNNLLLLLLLLLL | (Length = 16 nucleotides) |
DNA |
|
|
-
[0256] TABLE 5 |
|
|
PRO-DNA | NNNNNNNNNNNN | (Length = 12 nucleotides) |
Comparison DNA | NNNNLLLVV | (Length = 9 nucleotides) |
DNA |
|
|
-
II. Compositions and Methods of the Invention [0257]
-
A. Full-Length PRO Polypeptides [0258]
-
The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO polypeptides. In particular, cDNAs encoding various PRO polypeptides have been identified and isolated, as disclosed in further detail in the Examples below. It is noted that proteins produced in separate expression rounds may be given different PRO numbers but the UNQ number is unique for any given DNA and the encoded protein, and will not be changed. However, for sake of simplicity, in the present specification the protein encoded by the full length native nucleic acid molecules disclosed herein as well as all further native homologues and variants included in the foregoing definition of PRO, will be referred to as “PRO/number”, regardless of their origin or mode of preparation. [0259]
-
As disclosed in the Examples below, various cDNA clones have been deposited with the ATCC. The actual nucleotide sequences of those clones can readily be determined by the skilled artisan by sequencing of the deposited clone using routine methods in the art. The predicted amino acid sequence can be determined from the nucleotide sequence using routine skill. For the PRO polypeptides and encoding nucleic acids described herein, Applicants have identified what is believed to be the reading frame best identifiable with the sequence information available at the time. [0260]
-
B. PRO Polypeptide Variants [0261]
-
In addition to the full-length native sequence PRO polypeptides described herein, it is contemplated that PRO variants can be prepared. PRO variants can be prepared by introducing appropriate nucleotide changes into the PRO DNA, and/or by synthesis of the desired PRO polypeptide. Those skilled in the art will appreciate that amino acid changes may alter post-translational processes of the PRO, such as changing the number or position of glycosylation sites or altering the membrane anchoring characteristics. [0262]
-
Variations in the native full-length sequence PRO or in various domains of the PRO described herein, can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations set forth, for instance, in U.S. Pat. No. 5,364,934. Variations may be a substitution, deletion or insertion of one or more codons encoding the PRO that results in a change in the amino acid sequence of the PRO as compared with the native sequence PRO. Optionally the variation is by substitution of at least one amino acid with any other amino acid in one or more of the domains of the PRO. Guidance in determining which amino acid residue may be inserted, substituted or deleted without adversely affecting the desired activity may be found by comparing the sequence of the PRO with that of homologous known protein molecules and minimizing the number of amino acid sequence changes made in regions of high homology. Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a leucine with a serine, i.e., conservative amino acid replacements. Insertions or deletions may optionally be in the range of about 1 to 5 amino acids. The variation allowed may be determined by systematically making insertions, deletions or substitutions of amino acids in the sequence and testing the resulting variants for activity exhibited by the full-length or mature native sequence. [0263]
-
PRO polypeptide fragments are provided herein. Such fragments may be truncated at the N-terminus or C-terminus, or may lack internal residues, for example, when compared with a full length native protein. Certain fragments lack amino acid residues that are not essential for a desired biological activity of the PRO polypeptide. [0264]
-
PRO fragments may be prepared by any of a number of conventional techniques. Desired peptide fragments may be chemically synthesized. An alternative approach involves generating PRO fragments by enzymatic digestion, e.g., by treating the protein with an enzyme known to cleave proteins at sites defined by particular amino acid residues, or by digesting the DNA with suitable restriction enzymes and isolating the desired fragment. Yet another suitable technique involves isolating and amplifying a DNA fragment encoding a desired polypeptide fragment, by polymerase chain reaction (PCR). Oligonucleotides that define the desired termini of the DNA fragment are employed at the 5′ and 3′ primers in the PCR. Preferably, PRO polypeptide fragments share at least one biological and/or immunological activity with the native PRO polypeptide disclosed herein. [0265]
-
In particular embodiments, conservative substitutions of interest are shown in Table 6 under the heading of preferred substitutions. If such substitutions result in a change in biological activity, then more substantial changes, denominated exemplary substitutions in Table 6, or as further described below in reference to amino acid classes, are introduced and the products screened.
[0266] | TABLE 6 |
| |
| |
| Original | Exemplary | Preferred |
| Residue | Substitutions | Substitutions |
| |
| Ala (A) | val; leu; ile | val |
| Arg (R) | lys; gln; asn | lys |
| Asn (N) | gln; his; lys; arg | gln |
| Asp (D) | glu | glu |
| Cys (C) | ser | ser |
| Gln (Q) | asn | asn |
| Glu (E) | asp | asp |
| Gly (G) | pro; ala | ala |
| His (H) | asn; gln; lys; arg | arg |
| Ile (I) | leu; val; met; ala; phe; | leu |
| | norleucine |
| Leu (L) | norleucine; ile; val; | ile |
| | met; ala; phe |
| Lys (K) | arg; gln; asn | arg |
| Met (M) | leu; phe; ile | leu |
| Phe (F) | leu; val; ile; ala; tyr | leu |
| Pro (P) | ala | ala |
| Ser (S) | thr | thr |
| Thr (T) | ser | ser |
| Trp (W) | tyr; phe | tyr |
| Tyr (Y) | trp; phe; thr; ser | phe |
| Val (V) | ile; leu; met; phe; | leu |
| | ala; norleucine |
| |
-
Substantial modifications in function or immunological identity of the PRO polypeptide are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. [0267]
-
Naturally occurring residues are divided into groups based on common side-chain properties: [0268]
-
(1) hydrophobic: norleucine, met, ala, val, leu, ile; [0269]
-
(2) neutral hydrophilic: cys, ser, thr; [0270]
-
(3) acidic: asp, glu; [0271]
-
(4) basic: asn, gin, his, lys, arg; [0272]
-
(5) residues that influence chain orientation: gly, pro; and [0273]
-
(6) aromatic: trp, tyr, phe. [0274]
-
Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Such substituted residues also may be introduced into the conservative substitution sites or, more preferably, into the remaining (non-conserved) sites. [0275]
-
The variations can be made using methods known in the art such as oligonucleotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis. Site-directed mutagenesis [Carter et al., Nucl. Acids Res., 13:4331 (1986); Zoller et al., Nucl. Acids Res., 10:6487 (1987)], cassette mutagenesis [Wells et al., Gene, 34:315 (1985)], restriction selection mutagenesis [Wells et al., Philos. Trans. R. Soc. London SerA, 317:415 (1986)] or other known techniques can be performed on the cloned DNA to produce the PRO variant DNA. [0276]
-
Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence. Among the preferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, glycine, serine, and cysteine. Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta-carbon and is less likely to alter the main-chain conformation of the variant [Cunningham and Wells, Science, 244:1081-1085 (1989)]. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions [Creighton, The Proteins, (W. H. Freeman & Co., N.Y.); Chothia, J. Mol. Biol., 150:1 (1976)]. If alanine substitution does not yield adequate amounts of variant, an isoteric amino acid can be used. [0277]
-
C. Modifications of PRO [0278]
-
Covalent modifications of PRO are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a PRO -polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C- terminal residues of the PRO. Derivatization with bifunctional agents is useful, for instance, for crosslinking PRO to a water-insoluble support matrix or surface for use in the method for purifying anti-PRO antibodies, and vice-versa. Commonly used crosslinking agents include, e.g., 1,1-bis (diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3′-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate. [0279]
-
Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the α-amino groups of lysine, arginine, and histidine side chains [T. E. Creighton, Proteins: Structure and Molecular Properties, W. H. Freeman & Co., San Francisco, pp. 79-86 (1983)], acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group. [0280]
-
Another type of covalent modification of the PRO polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. “Altering the native glycosylation pattern” is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence PRO (either by removing the underlying glycosylation site or by deleting the glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence PRO. In addition, the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moieties present. [0281]
-
Addition of glycosylation sites to the PRO polypeptide may be accomplished by altering the amino acid sequence. The alteration may be made, for example, by the addition of, or substitution by, one or more serine or threonine residues to the native sequence PRO (for O-linked glycosylation sites). The PRO amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the PRO polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids. [0282]
-
Another means of increasing the number of carbohydrate moieties on the PRO polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330 published Sep. 11, 1987, and in Aplin and Wriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981). [0283]
-
Removal of carbohydrate moieties present on the PRO polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., Arch. Biochem. Biophys., 259:52 (1987) and by Edge et al., Anal. Biochem., 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., Meth. Enzymol., 138:350 (1987). [0284]
-
Another type of covalent modification of PRO comprises linking the PRO polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol (PEG), polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Pat. Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337. [0285]
-
The PRO of the present invention may also be modified in a way to form a chimeric molecule comprising PRO fused to another, heterologous polypeptide or amino acid sequence. [0286]
-
In one embodiment, such a chimeric molecule comprises a fusion of the PRO with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino- or carboxyl-terminus of the PRO. The presence of such epitope-tagged forms of the PRO can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the PRO to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; the flu HA tag polypeptide and its antibody 12CA5 [Field et al., Mol. Cell. Biol., 8:21 59-2165 (1988)]; the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto [Evan et al., Molecular and Cellular Biology, 5:3610-3616 (1985)]; and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody [Paborsky et al., Protein Engineering, 3(6):547-553 (1990)]. Other tag polypeptides include the Flag-peptide [Hopp et al., BioTechnology, 6:1204-1210 (1988)]; the KT3 epitope peptide [Martin et al., Science, 255:192-194 (1992)]; an α-tubulin epitope peptide [Skinner et al., J. Biol. Chem., 266:15163-15166 (1991)]; and the T7 gene 10 protein peptide tag [Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA, 87:6393-6397 (1990)]. [0287]
-
In an alternative embodiment, the chimeric molecule may comprise a fusion of the PRO with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule (also referred to as an “immunoadhesin”), such a fusion could be to the Fc region of an IgG molecule. The Ig fusions preferably include the substitution of a soluble (transmembrane domain deleted or inactivated) form of a PRO polypeptide in place of at least one variable region within an Ig molecule. In a particularly preferred embodiment, the immunoglobulin fusion includes the hinge, CH2 and CH3, or the hinge, CH1, CH2 and CH3 regions of an IgG1 molecule. For the production of immunoglobulin fusions see also U.S. Pat. No. 5,428,130 issued Jun. 27, 1995. [0288]
-
D. Preparation of PRO [0289]
-
The description below relates primarily to production of PRO by culturing cells transformed or transfected with a vector containing PRO nucleic acid. It is, of course, contemplated that alternative methods, which are well known in the art, may be employed to prepare PRO. For instance, the PRO sequence; or portions thereof, may be produced by direct peptide synthesis using solid-phase techniques [see, e.g., Stewart et al., Solid-Phase Peptide Synthesis, W. H. Freeman Co., San Francisco, Calif. (1969); Merrifield, J. Am. Chem. Soc., 85:2149-2154 (1963)]. In vitro protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be accomplished, for instance, using an Applied Biosystems Peptide Synthesizer (Foster City, Calif.) using manufacturer's instructions. Various portions of the PRO may be chemically synthesized separately and combined using chemical or enzymatic methods to produce the full-length PRO. [0290]
-
1. Isolation of DNA Encoding PRO [0291]
-
DNA encoding PRO may be obtained from a cDNA library prepared from tissue believed to possess the PRO mRNA and to express it at a detectable level. Accordingly, human PRO DNA can be conveniently obtained from a cDNA library prepared from human tissue, such as described in the Examples. The PRO-encoding gene may also be obtained from a genomic library or by known synthetic procedures (e.g., automated nucleic acid synthesis). [0292]
-
Libraries can be screened with probes (such as antibodies to the PRO or oligonucleotides of at least about 20-80 bases) designed to identify the gene of interest or the protein encoded by it. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures, such as described in Sambrook et al., Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989). An alternative means to isolate the gene encoding PRO is to use PCR methodology [Sambrook et al., supra; Dieffenbach et al., PCR Primer: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1995)]. [0293]
-
The Examples below describe techniques for screening a cDNA library. The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimized. The oligonucleotide is preferably labeled such that it can be detected upon hybridization to DNA in the library being screened. Methods of labeling are well known in the art, and include the use of radiolabels like [0294] 32P-labeled ATP, biotinylation or enzyme labeling. Hybridization conditions, including moderate stringency and high stringency, are provided in Sambrook et al., supra.
-
Sequences identified in such library screening methods can be compared and aligned to other known sequences deposited and available in public databases such as GenBank or other private sequence databases. Sequence identity (at either the amino acid or nucleotide level) within defined regions of the molecule or across the full-length sequence can be determined using methods known in the art and as described herein. [0295]
-
Nucleic acid having protein coding sequence may be obtained by screening selected cDNA or genomic libraries using the deduced amino acid sequence disclosed herein for the first time, and, if necessary, using conventional primer extension procedures as described in Sambrook et al., supra, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA. [0296]
-
2. Selection and Transformation of Host Cells [0297]
-
Host cells are transfected or transformed with expression or cloning vectors described herein for PRO production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. The culture conditions, such as media, temperature, pH and the like, can be selected by the skilled artisan without undue experimentation. In general, principles, protocols, and practical techniques for maximizing the productivity of cell cultures can be found in Mammalian Cell Biotechnology: a Practical Approach, M. Butler, ed. (IRL Press, 1991) and Sambrook et al., supra. [0298]
-
Methods of eukaryotic cell transfection and prokaryotic cell transformation are known to the ordinarily skilled artisan, for example, CaCl[0299] 2, CaPO4, liposome-mediated and electroporation. Depending on the host cell used, transformation is performed using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in Sambrook et al., supra, or electroporation is generally used for prokaryotes. Infection with Agrobacterium tumefaciens is used for transformation of certain plant cells, as described by Shaw et al., Gene, 23:315 (1983) and WO 89/05859 published Jun. 29, 1989. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, Virology, 52:456-457 (1978) can be employed. General aspects of mammalian cell host system transfections have been described in U.S. Pat. No. 4,399,216. Transformations into yeast are typically carried out according to the method of Van Solingen et al., J. Bact., 130:946 (1977) and Hsiao et al., Proc. Natl. Acad. Sci. (USA), 76:3829 (1979). However, other methods for introducing DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene, polyornithine, may also be used. For various techniques for transforming mammalian cells, see Keown et al., Methods in Enzymology, 185:527-537 (1990) and Mansour et al., Nature, 336:348-352 (1988).
-
Suitable host cells for cloning or expressing the DNA in the vectors herein include prokaryote, yeast, or higher eukaryote cells. Suitable prokaryotes include but are not limited to eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as [0300] E. coli. Various E. coli strains are publicly available, such as E coli K12 strain MM294 (ATCC 31,446); E coli X1776 (ATCC 31,537); E. coli strain W3110 (ATCC 27,325) and K5 772 (ATCC 53,635). Other suitable prokaryotic host cells include Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwlinla, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacili such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41 P disclosed in DD 266,710 published Apr. 12, 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. These examples are illustrative rather than limiting. Strain W3110 is one particularly preferred host or parent host because it is a common host strain for recombinant DNA product fermentations. Preferably, the host cell secretes minimal amounts of proteolytic enzymes. For example, strain W3110 may be modified to effect a genetic mutation in the genes encoding proteins endogenous to the host, with examples of such hosts including E. coli W3110 strain 1A2, which has the complete genotype tonA; E coli W3110 strain 9E4, which has the complete genotype tonA ptr3; E. coli W3110 strain 27C7 (ATCC 55,244), which has the complete genotype tonA ptr3 phoA E15 (argF-lac)769 degP ompT kanr ; E. coli W3110 strain 37D6, which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT rbs7 ilvG kanr ; E. coli W3110 strain 40B4, which is strain 37D6 with a non-kanamycin resistant degP deletion mutation; and an E. coli strain having mutant periplasmic protease disclosed in U.S. Pat. No. 4,946,783 issued Aug. 7, 1990. Alternatively, in vitro methods of cloning, e.g., PCR or other nucleic acid polymerase reactions, are suitable.
-
In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for PRO-encoding vectors. [0301] Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism. Others include Schizosaccharomyces pombe (Beach and Nurse, Nature, 290: 140 [1981]; EP 139,383 published May 2, 1985); Kluyveromyces hosts (U.S. Pat. No. 4,943,529; Fleer et al., Bio/Technology, 9:968-975 (1991)) such as, e.g., K. lactis (MW98-8C, CBS683, CBS4574; Louvencourt et al., J. Bacteriol., 154(2):737-742 [1983]), K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906; Van den Berg et al., Bio/Technology, 8:135 (1990)), K. thermotolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070; Sreekrishna et al., J. Basic Microbiol., 28:265-278 [1988]); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA, 76:5259-5263 [1979]); Schwanniomyces such as Schwanniomyces occidentalis (EP 394,538 published Oct. 31, 1990); and filamentous fungi such as, e.g., Neurospora, Penicilium, Tolypocladium(WO 91/00357 published Jan. 10, 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem. Biophys. Res. Commun., 112:284-289 [1983]; Tilburn et al., Gene, 26:205-221 [1983]; Yelton et al., Proc. Natl. Acad. Sci. USA, 81: 1470-1474 [1984]) and A. niger (Kelly and Hynes, EMBO J., 4:475-479 [1985]). Methylotropic yeasts are suitable herein and include, but are not limited to, yeast capable of growth on methanol selected from the genera consisting of Hansenula, Candida, Kloeckera, Pichia, Saccharomyces, Torulopsis, and Rhodotorula. A list of specific species that are exemplary of this class of yeasts may be found in C. Anthony, The Biochemistry of Methylotrophs, 269 (1982).
-
Suitable host cells for the expression of glycosylated PRO are derived from multicellular organisms. Examples of invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plant cells. Examples of useful mammalian host cell lines include Chinese hamster ovary (CHO) and COS cells. More specific examples include monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol., 36:59 (1977)); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77:4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod., 23:243-251 (1980)); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); and mouse mammary tumor (MMT 060562, ATCC CCL51). The selection of the appropriate host cell is deemed to be within the skill in the art. [0302]
-
3. Selection and Use of a Replicable Vector [0303]
-
The nucleic acid (e.g., cDNA or genomic DNA) encoding PRO may be inserted into a replicable vector for cloning (amplification of the DNA) or for expression. Various vectors are publicly available. The vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage. The appropriate nucleic acid sequence may be inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease site(s) using techniques known in the art. Vector components generally include, but are not limited to, one or more of a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of these components employs standard ligation techniques which are known to the skilled artisan. [0304]
-
The PRO may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the PRO-encoding DNA that is inserted into the vector. The signal sequence may be a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders. For yeast secretion the signal sequence may be, e.g., the yeast invertase leader, alpha factor leader (including Saccharomyces and Kluyveromyces α-factor leaders, the latter described in U.S. Pat. No. 5,010,182), or acid phosphatase leader, the [0305] C. albicans glucoamylase leader (EP 362,179 published Apr. 4, 1990), or the signal described in WO 90/13646 published Nov. 15, 1990. In mammalian cell expression, mammalian signal sequences may be used to direct secretion of the protein, such as signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders.
-
Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2μ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells. [0306]
-
Expression and cloning vectors will typically contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli. [0307]
-
An example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the PRO-encoding nucleic acid, such as DHFR or thymidine kinase. An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., Proc. Natl. Acad. Sci. USA, 77:4216 (1980). A suitable selection gene for use in yeast is the [0308] trp 1 gene present in the yeast plasmid YRp7 [Stinchcomb et al., Nature, 282:39 (1979); Kingsman et al., Gene, 7:141 (1979); Tschemper et al., Gene, 10:157 (1980)]. The trp 1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 [Jones, Genetics, 85:12 (1977)].
-
Expression and cloning vectors usually contain a promoter operably linked to the PRO-encoding nucleic acid sequence to direct mRNA synthesis. Promoters recognized by a variety of potential host cells are well known. Promoters suitable for use with prokaryotic hosts include the β-lactamase and lactose promoter systems [Chang et al., Nature, 275:615 (1978); Goeddel et al., Nature, 281:544 (1979)], alkaline phosphatase, a tryptophan (trp) promoter system [Goeddel, Nucleic Acids Res., 8:4057 (1980); EP 36,776], and hybrid promoters such as the tac promoter [deBoer et al., Proc. Natl. Acad. Sci. USA, 80:21-25 (1983)]. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding PRO. [0309]
-
Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase [Hitzeman et al., J. Biol. Chem., 255:2073 (1980)] or other glycolytic enzymes [Hess et al., J. Adv. Enzyme Reg., 7:149 (1968); Holland, Biochemistry, 17:4900 (1978)], such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. [0310]
-
Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for [0311] alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657.
-
PRO transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowipox virus (UK 2,211,504 published Jul. 5, 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, and from heat-shock promoters, provided such promoters are compatible with the host cell systems. [0312]
-
Transcription of a DNA encoding the PRO by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. The enhancer may be spliced into the vector at a position 5′ or 3′ to the PRO coding sequence, but is preferably located at a site 5′ from the promoter. [0313]
-
Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5′ and, occasionally 3′, untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding PRO. [0314]
-
Still other methods, vectors, and host cells suitable for adaptation to the synthesis of PRO in recombinant vertebrate cell culture are described in Gething et al., Nature, 293:620-625 (1981); Mantei et al., Nature, 281:40-46 (1979); EP 117,060; and EP 117,058. [0315]
-
4. Detecting Gene Amplification/Expression [0316]
-
Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA [Thomas, Proc. Natl. Acad. Sci. USA, 77:5201(1980)], dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected. [0317]
-
Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native sequence PRO polypeptide or against a synthetic peptide based on the DNA sequences provided herein or against exogenous sequence fused to PRO DNA and encoding a specific antibody epitope. [0318]
-
5. Purification of Polypeptide [0319]
-
Forms of PRO may be recovered from culture medium or from host cell lysates. If membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g. Triton-X 100) or by enzymatic cleavage. Cells employed in expression of PRO can be disrupted by various physical or chemical means, such as freeze-thaw cycling, sonication, mechanical disruption, or cell lysing agents. [0320]
-
It may be desired to purify PRO from recombinant cell proteins or polypeptides. The following procedures are exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; protein A Sepharose columns to remove contaminants such as IgG; and metal chelating columns to bind epitope-tagged forms of the PRO. Various methods of protein purification may be employed and such methods are known in the art and described for example in Deutscher, Methods in Enzymology, 182 (1990); Scopes, Protein Purification: Principles and Practice, Springer-Verlag, New York (1982). The purification step(s) selected will depend, for example, on the nature of the production process used and the particular PRO produced. [0321]
-
E. Uses for PRO [0322]
-
Nucleotide sequences (or their complement) encoding PRO have various applications in the art of molecular biology, including uses as hybridization probes, in chromosome and gene mapping and in the generation of anti-sense RNA and DNA. PRO nucleic acid will also be useful for the preparation of PRO polypeptides by the recombinant techniques described herein. [0323]
-
The full-length native sequence PRO gene, or portions thereof, may be used as hybridization probes for a cDNA library to isolate the full-length PRO cDNA or to isolate still other cDNAs (for instance, those encoding naturally-occurring variants of PRO or PRO from other species) which have a desired sequence identity to the native PRO sequence disclosed herein. Optionally, the length of the probes will be about 20 to about 50 bases. The hybridization probes may be derived from at least partially novel regions of the full length native nucleotide sequence wherein those regions may be determined without undue experimentation or from genomic sequences including promoters, enhancer elements and introns of native sequence PRO. By way of example, a screening method will comprise isolating the coding region of the PRO gene using the known DNA sequence to synthesize a selected probe of about 40 bases. Hybridization probes may be labeled by a variety of labels, including radionucleotides such as [0324] 32P or 35S, or enzymatic labels such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems. Labeled probes having a sequence complementary to that of the PRO gene of the present invention can be used to screen libraries of human cDNA, genomic DNA or mRNA to determine which members of such libraries the probe hybridizes to. Hybridization techniques are described in further detail in the Examples below.
-
Any EST sequences disclosed in the present application may similarly be employed as probes, using the methods disclosed herein. [0325]
-
Other useful fragments of the PRO nucleic acids include antisense or sense oligonucleotides comprising a singe-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target PRO mRNA (sense) or PRO DNA (antisense) sequences. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment of the coding region of PRO DNA. Such a fragment generally comprises at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, for example, Stein and Cohen (Cancer Res. 48:2659, 1988) and van der Krol et al. (BioTechniques 6:958, 1988). [0326]
-
Binding of antisense or sense oligonucleotides to target nucleic acid sequences results in the formation of duplexes that block transcription or translation of the target sequence by one of several means, including enhanced degradation of the duplexes, premature termination of transcription or translation, or by other means. The antisense oligonucleotides thus may be used to block expression of PRO proteins. Antisense or sense oligonucleotides further comprise oligonucleotides having modified sugar-phosphodiester backbones (or other sugar linkages, such as those described in WO 91/06629) and wherein such sugar linkages are resistant to endogenous nucleases. Such oligonucleotides with resistant sugar linkages are stable in vivo (i.e., capable of resisting enzymatic degradation) but retain sequence specificity to be able to bind to target nucleotide sequences. [0327]
-
Other examples of sense or antisense oligonucleotides include those oligonucleotides which are covalently linked to organic moieties, such as those described in WO 90/10048, and other moieties that increases affinity of the oligonucleotide for a target nucleic acid sequence, such as poly-(L-lysine). Further still, intercalating agents, such as ellipticine, and alkylating agents or metal complexes may be attached to sense or antisense oligonucleotides to modify binding specificities of the antisense or sense oligonucleotide for the target nucleotide sequence. [0328]
-
Antisense or sense oligonucleotides may be introduced into a cell containing the target nucleic acid sequence by any gene transfer method, including, for example, CaPO[0329] 4- mediated DNA transfection, electroporation, or by using gene transfer vectors such as Epstein-Barr virus. In a preferred procedure, an antisense or sense oligonucleotide is inserted into a suitable retroviral vector. A cell containing the target nucleic acid sequence is contacted with the recombinant retroviral vector, either in vivo or ex vivo. Suitable retroviral vectors include, but are not limited to, those derived from the murine retrovirus M-MuLV, N2 (a retrovirus derived from M-MuLV), or the double copy vectors designated DCT5A, DCT5B and DCT5C (see WO 90/13641).
-
Sense or antisense oligonucleotides also may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. [0330]
-
Alternatively, a sense or an antisense oligonucleotide may be introduced into a cell containing the target nucleic acid sequence by formation of an oligonucleotide-lipid complex, as described in WO 90/10448. The sense or antisense oligonucleotide-lipid complex is preferably dissociated within the cell by an endogenous lipase. [0331]
-
Antisense or sense RNA or DNA molecules are generally at least about 5 bases in length, about 10 bases in length, about 15 bases in length, about 20 bases in length, about 25 bases in length, about 30 bases in length, about 35 bases in length, about 40 bases in length, about 45 bases in length, about 50 bases in length, about 55 bases in length, about 60 bases in length, about 65 bases in length, about 70 bases in length, about 75 bases in length, about 80 bases in length, about 85 bases in length, about 90 bases in length, about 95 bases in length, about 100 bases in length, or more. [0332]
-
The probes may also be employed in PCR techniques to generate a pool of sequences for identification of closely related PRO coding sequences. [0333]
-
Nucleotide sequences encoding a PRO can also be used to construct hybridization probes for mapping the gene which encodes that PRO and for the genetic analysis of individuals with genetic disorders. The nucleotide sequences provided herein may be mapped to a chromosome and specific regions of a chromosome using known techniques, such as in situ hybridization, linkage analysis against known chromosomal markers, and hybridization screening with libraries. [0334]
-
When the coding sequences for PRO encode a protein which binds to another protein (example, where the PRO is a receptor), the PRO can be used in assays to identify the other proteins or molecules involved in the binding interaction. By such methods, inhibitors of the receptor/ligand binding interaction can be identified. Proteins involved in such binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction. Also, the receptor PRO can be used to isolate correlative ligand(s). Screening assays can be designed to find lead compounds that mimic the biological activity of a native PRO or a receptor for PRO. Such screening assays will include assays amenable to high-throughput screening of chemical libraries, making them particularly suitable for identifying small molecule drug candidates. Small molecules contemplated include synthetic organic or inorganic compounds. The assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays and cell based assays, which are well characterized in the art. [0335]
-
Nucleic acids which encode PRO or its modified forms can also be used to generate either transgenic animals or “knock out” animals which, in turn, are useful in the development and screening of therapeutically useful reagents. A transgenic animal (e.g., a mouse or rat) is an animal having cells that contain a transgene, which transgene was introduced into the animal or an ancestor of the animal at a prenatal, e.g., an embryonic stage. A transgene is a DNA which is integrated into the genome of a cell from which a transgenic animal develops. In one embodiment, cDNA encoding PRO can be used to clone genomic DNA encoding PRO in accordance with established techniques and the genomic sequences used to generate transgenic animals that contain cells which express DNA encoding PRO. Methods for generating transgenic animals, particularly animals such as mice or rats, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866 and 4,870,009. Typically, particular cells would be targeted for PRO transgene incorporation with tissue-specific enhancers. Transgenic animals that include a copy of a transgene encoding PRO introduced into the germ line of the animal at an embryonic stage can be used to examine the effect of increased expression of DNA encoding PRO. Such animals can be used as tester animals for reagents thought to confer protection from, for example, pathological conditions associated with its overexpression. In accordance with this facet of the invention, an animal is treated with the reagent and a reduced incidence of the pathological condition, compared to untreated animals bearing the transgene, would indicate a potential therapeutic intervention for the pathological condition. [0336]
-
Alternatively, non-human homologues of PRO can be used to construct a PRO “knock out” animal which has a defective or altered gene encoding PRO as a result of homologous recombination between the endogenous gene encoding PRO and altered genomic DNA encoding PRO introduced into an embryonic stem cell of the animal. For example, cDNA encoding PRO can be used to clone genomic DNA encoding PRO in accordance with established techniques. A portion of the genomic DNA encoding PRO can be deleted or replaced with another gene, such as a gene encoding a selectable marker which can be used to monitor integration. Typically, several kilobases of unaltered flanking DNA (both at the 5′ and 3′ ends) are included in the vector [see e.g., Thomas and Capecchi, Cell, 51:503 (1987) for a description of homologous recombination vectors]. The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected [see e.g., Li et al., Cell, 69:915 (1992)]. The selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras [see e.g., Bradley, in [0337] Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, E. J. Robertson, ed. (IRL, Oxford, 1987), pp. 113-152]. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term to create a “knock out” animal. Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain the homologously recombined DNA. Knockout animals can be characterized for instance, for their ability to defend against certain pathological conditions and for their development of pathological conditions due to absence of the PRO polypeptide.
-
Nucleic acid encoding the PRO polypeptides may also be used in gene therapy. In gene therapy applications, genes are introduced into cells in order to achieve in vivo synthesis of a therapeutically effective genetic product, for example for replacement of a defective gene. “Gene therapy” includes both conventional gene therapy where a lasting effect is achieved by a single treatment, and the administration of gene therapeutic agents, which involves the one time or repeated administration of a therapeutically effective DNA or mRNA. Antisense RNAs and DNAs can be used as therapeutic agents for blocking the expression of certain genes in vivo. It has already been shown that short antisense oligonucleotides can be imported into cells where they act as inhibitors, despite their low intracellular concentrations caused by their restricted uptake by the cell membrane. (Zamecnik et al., Proc. Natl. Acad. Sci. USA 83:4143-4146 [1986]). The oligonucleotides can be modified to enhance their uptake, e.g. by substituting their negatively charged phosphodiester groups by uncharged groups. [0338]
-
There are a variety of techniques available for introducing nucleic acids into viable cells. The techniques vary depending upon whether the nucleic acid is transferred into cultured cells in vitro, or in vivo in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate precipitation method, etc. The currently preferred in vivo gene transfer techniques include transfection with viral (typically retroviral) vectors and viral coat protein-liposome mediated transfection (Dzau et al., Trends in Biotechnology 11, 205-210 [1993]). In some situations it is desirable to provide the nucleic acid source with an agent that targets the target cells, such as an antibody specific for a cell surface membrane protein or the target cell, a ligand for a receptor on the target cell, etc. Where liposomes are employed, proteins which bind to a cell surface membrane protein associated with endocytosis may be used for targeting and/or to facilitate uptake, e.g. capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins which undergo internalization in cycling, proteins that target intracellular localization and enhance intracellular half-life. The technique of receptor-mediated endocytosis is described, for example, by Wu et al., J. Biol. Chem. 262, 4429-4432 (1987); and Wagner et al., Proc. Natl. Acad. Sci. USA 87, 3410-3414 (1990). For review of gene marking and gene therapy protocols see Anderson et al., Science 256, 808-813 (1992). [0339]
-
The PRO polypeptides described herein may also be employed as molecular weight markers for protein electrophoresis purposes and the isolated nucleic acid sequences may be used for recombinantly expressing those markers. [0340]
-
The nucleic acid molecules encoding the PRO polypeptides or fragments thereof described herein are useful for chromosome identification. In this regard, there exists an ongoing need to identify new chromosome markers, since relatively few chromosome marking reagents, based upon actual sequence data are presently available. Each PRO nucleic acid molecule of the present invention can be used as a chromosome marker. [0341]
-
The PRO polypeptides and nucleic acid molecules of the present invention may also be used diagnostically for tissue typing, wherein the PRO polypeptides of the present invention may be differentially expressed in one tissue as compared to another, preferably in a diseased tissue as compared to a normal tissue of the same tissue type. PRO nucleic acid molecules will find use for generating probes for PCR, Northern analysis, Southern analysis and Western analysis. [0342]
-
The PRO polypeptides described herein may also be employed as therapeutic agents. The PRO polypeptides of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby the PRO product hereof is combined in admixture with a pharmaceutically acceptable carrier vehicle. Therapeutic formulations are prepared for storage by mixing the active ingredient having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone, amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEEN™, PLURONICS™ or PEG. [0343]
-
The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution. [0344]
-
Therapeutic compositions herein generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle. [0345]
-
The route of administration is in accord with known methods, e.g. injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial or intralesional routes, topical administration, or by sustained release systems. [0346]
-
Dosages and desired drug concentrations of pharmaceutical compositions of the present invention may vary depending on the particular use envisioned. The determination of the appropriate dosage or route of administration is well within the skill of an ordinary physician. Animal experiments provide reliable guidance for the determination of effective doses for human therapy. Interspecies scaling of effective doses can be performed following the principles laid down by Mordenti, J. and Chappell, W. “The use of interspecies scaling in toxicokinetics” In Toxicokinetics and New Drug Development, Yacobi et al., Eds., Pergamon Press, New York 1989, pp. 42-96. [0347]
-
When in vivo administration of a PRO polypeptide or agonist or antagonist thereof is employed, normal dosage amounts may vary from about 10 ng/kg to up to 100 mg/kg of mammal body weight or more per day, preferably about 1 μg/kg/day to 10 mg/kg/day, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature; see, for example, U.S. Pat. Nos. 4,657,760; 5,206,344; or 5,225,212. It is anticipated that different formulations will be effective for different treatment compounds and different disorders, that administration targeting one organ or tissue, for example, may necessitate delivery in a manner different from that to another organ or tissue. [0348]
-
Where sustained-release administration of a PRO polypeptide is desired in a formulation with release characteristics suitable for the treatment of any disease or disorder requiring administration of the PRO polypeptide, microencapsulation of the PRO polypeptide is contemplated. Microencapsulation of recombinant proteins for sustained release has been successfully performed with human growth hormone (rhGH), interferon- (rhlFN-), interleukin-2, and MN rgp120. Johnson et al., Nat. Med., 2:795-799 (1996); Yasuda, Biomed. Ther., 27:1221-1223 (1993); Hora et al., Bio/Technology, 8:755-758 (1990); Cleland, “Design and Production of Single Immunization Vaccines Using Polylactide Polyglycolide Microsphere Systems,” in Vaccine Design: The Subunit and Adjuvant Approach, Powell and Newman, eds, (Plenum Press: New York, 1995), pp. 439-462; WO 97/03692, WO 96/40072, WO 96/07399; and U.S. Pat. No. 5,654,010. [0349]
-
The sustained-release formulations of these proteins were developed using poly-lactic-coglycolic acid (PLGA) polymer due to its biocompatibility and wide range of biodegradable properties. The degradation products of PLGA, lactic and glycolic acids, can be cleared quickly within the human body. Moreover, the degradability of this polymer can be adjusted from months to years depending on its molecular weight and composition. Lewis, “Controlled release of bioactive agents from lactide/glycolide polymer,” in: M. Chasin and R. Langer (Eds.), Biodegradable Polymers as Drug Delivery Systems (Marcel Dekker: New York, 1990), pp.1-41. [0350]
-
This invention encompasses methods of screening compounds to identify those that mimic the PRO polypeptide (agonists) or prevent the effect of the PRO polypeptide (antagonists). Screening assays for antagonist drug candidates are designed to identify compounds that bind or complex with the PRO polypeptides encoded by the genes identified herein, or otherwise interfere with the interaction of the encoded polypeptides with other cellular proteins. Such screening assays will include assays amenable to high-throughput screening of chemical libraries, making them particularly suitable for identifying small molecule drug candidates. [0351]
-
The assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays, and cell-based assays, which are well characterized in the art. [0352]
-
All assays for antagonists are common in that they call for contacting the drug candidate with a PRO polypeptide encoded by a nucleic acid identified herein under conditions and for a time sufficient to allow these two components to interact. [0353]
-
In binding assays, the interaction is binding and the complex formed can be isolated or detected in the reaction mixture. In a particular embodiment, the PRO polypeptide encoded by the gene identified herein or the drug candidate is immobilized on a solid phase, e.g., on a microtiter plate, by covalent or non-covalent attachments. Non-covalent attachment generally is accomplished by coating the solid surface with a solution of the PRO polypeptide and drying. Alternatively, an immobilized antibody, e.g., a monoclonal antibody, specific for the PRO polypeptide to be immobilized can be used to anchor it to a solid surface. The assay is performed by adding the non-immobilized component, which may be labeled by a detectable label, to the immobilized component, e.g., the coated surface containing the anchored component. When the reaction is complete, the non-reacted components are removed, e.g., by washing, and complexes anchored on the solid surface are detected. When the originally non-immobilized component carries a detectable label, the detection of label immobilized on the surface indicates that complexing occurred. Where the originally non-immobilized component does not carry a label, complexing can be detected, for example, by using a labeled antibody specifically binding the immobilized complex. [0354]
-
If the candidate compound interacts with but does not bind to a particular PRO polypeptide encoded by a gene identified herein, its interaction with that polypeptide can be assayed by methods well known for detecting protein-protein interactions. Such assays include traditional approaches, such as, e.g., cross-linking, co-immunoprecipitation, and co-purification through gradients or chromatographic columns. In addition, protein-protein interactions can be monitored by using a yeast-based genetic system described by Fields and co-workers (Fields and Song, Nature (London), 340:245-246 (1989); Chien et al., Proc. Natl. Acad. Sci. USA, 88:9578-9582 (1991)) as disclosed by Chevray and Nathans, Proc. Natl. Acad. Sci. USA, 89: 5789-5793 (1991). Many transcriptional activators, such as yeast GAL4, consist of two physically discrete modular domains, one acting as the DNA-binding domain, the other one functioning as the transcription-activation domain. The yeast expression system described in the foregoing publications (generally referred to as the “two-hybrid system”) takes advantage of this property, and employs two hybrid proteins, one in which the target protein is fused to the DNA-binding domain of GAL4, and another, in which candidate activating proteins are fused to the activation domain. The expression of a GAL1- lacZ reporter gene under control of a GAL4-activated promoter depends on reconstitution of GAL4 activity via protein-protein interaction. Colonies containing interacting polypeptides are detected with a chromogenic substrate for β-galactosidase. A complete kit (MATCHMAKER™) for identifying protein-protein interactions between two specific proteins using the two-hybrid technique is commercially available from Clontech. This system can also be extended to map protein domains involved in specific protein interactions as well as to pinpoint amino acid residues that are crucial for these interactions. [0355]
-
Compounds that interfere with the interaction of a gene encoding a PRO polypeptide identified herein and other intra- or extracellular components can be tested as follows: usually a reaction mixture is prepared containing the product of the gene and the intra- or extracellular component under conditions and for a time allowing for the interaction and binding of the two products. To test the ability of a candidate compound to inhibit binding, the reaction is run in the absence and in the presence of the test compound. In addition, a placebo may be added to a third reaction mixture, to serve as positive control. The binding (complex formation) between the test compound and the intra- or extracellular component present in the mixture is monitored as described hereinabove. The formation of a complex in the control reaction(s) but not in the reaction mixture containing the test compound indicates that the test compound interferes with the interaction of the test compound and its reaction partner. [0356]
-
To assay for antagonists, the PRO polypeptide may be added to a cell along with the compound to be screened for a particular activity and the ability of the compound to inhibit the activity of interest in the presence of the PRO polypeptide indicates that the compound is an antagonist to the PRO polypeptide. Alternatively, antagonists may be detected by combining the PRO polypeptide and a potential antagonist with membrane-bound PRO polypeptide receptors or recombinant receptors under appropriate conditions for a competitive inhibition assay. The PRO polypeptide can be labeled, such as by radioactivity, such that the number of PRO polypeptide molecules bound to the receptor can be used to determine the effectiveness of the potential antagonist. The gene encoding the receptor can be identified by numerous methods known to those of skill in the art, for example, ligand panning and FACS sorting. Coligan et al., Current Protocols in Immun., 1(2): Chapter 5 (1991). Preferably, expression cloning is employed wherein polyadenylated RNA is prepared from a cell responsive to the PRO polypeptide and a cDNA library created from this RNA is divided into pools and used to transfect COS cells or other cells that are not responsive to the PRO polypeptide. Transfected cells that are grown on glass slides are exposed to labeled PRO polypeptide. The PRO polypeptide can be labeled by a variety of means including iodination or inclusion of a recognition site for a site-specific protein kinase. Following fixation and incubation, the slides are subjected to autoradiographic analysis. Positive pools are identified and sub-pools are prepared and re-transfected using an interactive sub-pooling and re-screening process, eventually yielding a single clone that encodes the putative receptor. [0357]
-
As an alternative approach for receptor identification, labeled PRO polypeptide can be photoaffinity-linked with cell membrane or extract preparations that express the receptor molecule. Cross-linked material is resolved by PAGE and exposed to X-ray film. The labeled complex containing the receptor can be excised, resolved into peptide fragments, and subjected to protein micro-sequencing. The amino acid sequence obtained from micro- sequencing would be used to design a set of degenerate oligonucleotide probes to screen a cDNA library to identify the gene encoding the putative receptor. [0358]
-
In another assay for antagonists, mammalian cells or a membrane preparation expressing the receptor would be incubated with labeled PRO polypeptide in the presence of the candidate compound. The ability of the compound to enhance or block this interaction could then be measured. [0359]
-
More specific examples of potential antagonists include an oligonucleotide that binds to the fusions of immunoglobulin with PRO polypeptide, and, in particular, antibodies including, without limitation, poly- and monoclonal antibodies and antibody fragments, single-chain antibodies, anti-idiotypic antibodies, and chimeric or humanized versions of such antibodies or fragments, as well as human antibodies and antibody fragments. Alternatively, a potential antagonist may be a closely related protein, for example, a mutated form of the PRO polypeptide that recognizes the receptor but imparts no effect, thereby competitively inhibiting the action of the PRO polypeptide. [0360]
-
Another potential PRO polypeptide antagonist is an antisense RNA or DNA construct prepared using antisense technology, where, e.g., an antisense RNA or DNA molecule acts to block directly the translation of mRNA by hybridizing to targeted mRNA and preventing protein translation. Antisense technology can be used to control gene expression through triple-helix formation or antisense DNA or RNA, both of which methods are based on binding of a polynucleotide to DNA or RNA. For example, the 5′ coding portion of the polynucleotide sequence, which encodes the mature PRO polypeptides herein, is used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length. A DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription (triple helix—see Lee et al., Nucl. Acids Res., 6:3073 (1979); Cooney et al., Science, 241: 456 (1988); Dervan et al., Science, 251:1360 (1991)), thereby preventing transcription and the production of the PRO polypeptide. The antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into the PRO polypeptide (antisense—Okano, Neurochem., 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression (CRC Press: Boca Raton, Fla., 1988). The oligonucleotides described above can also be delivered to cells such that the antisense RNA or DNA may be expressed in vivo to inhibit production of the PRO polypeptide. When antisense DNA is used, oligodeoxyribonucleotides derived from the translation-initiation site, e.g., between about −10 and +10 positions of the target gene nucleotide sequence, are preferred. [0361]
-
Potential antagonists include small molecules that bind to the active site, the receptor binding site, or growth factor or other relevant binding site of the PRO polypeptide, thereby blocking the normal biological activity of the PRO polypeptide. Examples of small molecules include, but are not limited to, small peptides or peptide-like molecules, preferably soluble peptides, and synthetic non-peptidyl organic or inorganic compounds. [0362]
-
Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. Ribozymes act by sequence-specific hybridization to the complementary target RNA, followed by endonucleolytic cleavage. Specific ribozyme cleavage sites within a potential RNA target can be identified by known techniques. For further details see, e.g., Rossi, Current Biology, 4:469-471 (1994), and PCT publication No. WO 97/33551 (published Sep. 18, 1997). [0363]
-
Nucleic acid molecules in triple-helix formation used to inhibit transcription should be single-stranded and composed of deoxynucleotides. The base composition of these oligonucleotides is designed such that it promotes triple-helix formation via Hoogsteen base-pairing rules, which generally require sizeable stretches of purines or pyrimidines on one strand of a duplex. For further details see, e.g., PCT publication No. WO 97/33551, supra. [0364]
-
These small molecules can be identified by any one or more of the screening assays discussed hereinabove and/or by any other screening techniques well known for those skilled in the art. [0365]
-
Diagnostic and therapeutic uses of the herein disclosed molecules may also be based upon the positive functional assay hits disclosed and described below. [0366]
-
F. Anti-PRO Antibodies [0367]
-
The present invention further provides anti-PRO antibodies. Exemplary antibodies include polyclonal, monoclonal, humanized, bispecific, and heteroconjugate antibodies. [0368]
-
1. Polyclonal Antibodies [0369]
-
The anti-PRO antibodies may comprise polyclonal antibodies. Methods of preparing polyclonal antibodies are known to the skilled artisan. Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include the PRO polypeptide or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation. [0370]
-
2. Monoclonal Antibodies [0371]
-
The anti-PRO antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro. [0372]
-
The immunizing agent will typically include the PRO polypeptide or a fusion protein thereof. Generally, either peripheral blood lymphocytes (“PBLs”) are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell [Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103]. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (“HAT medium”), which substances prevent the growth of HGPRT-deficient cells. [0373]
-
Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Va. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies [Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63]. [0374]
-
The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against PRO. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). [0375]
-
After the desired hybridoma cells are identified, the clones may be subcloned by limiting dilution procedures and grown by standard methods [Goding, supra]. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI -1640 medium. Alternatively, the hybridoma cells may be grown in vivo as ascites in a mammal. [0376]
-
The monoclonal antibodies secreted by the subclones may be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography. [0377]
-
The monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also may be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences [U.S. Pat. No. 4,816,567; Morrison et al., supra] or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody. [0378]
-
The antibodies may be monovalent antibodies. Methods for preparing monovalent antibodies are well known in the art. For example, one method involves recombinant expression of immunoglobulin light chain and modified heavy chain. The heavy chain is truncated generally at any point in the Fc region so as to prevent heavy chain crosslinking. Alternatively, the relevant cysteine residues are substituted with another amino acid residue or are deleted so as to prevent crosslinking. [0379]
-
In vitro methods are also suitable for preparing monovalent antibodies. Digestion of antibodies to produce fragments thereof, particularly, Fab fragments, can be accomplished using routine techniques known in the art. [0380]
-
3. Human and Humanized Antibodies [0381]
-
The anti-PRO antibodies of the invention may further comprise humanized antibodies or human antibodies. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′)[0382] 2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin [ones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)].
-
Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. Humanization can be essentially performed following the method of Winter and co-workers [ones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1 534-1536 (1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such “humanized” antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies. [0383]
-
Human antibodies can also be produced using various techniques known in the art, including phage display libraries [Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)]. The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985) and Boerner et al., J. Immunol., 147(1):86-95 (1991)]. Similarly, human antibodies can be made by introducing of human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Pat. Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in the following scientific publications: Marks et al., Bio/Technology 10, 779-783 (1992); Lonberg et al., Nature 368 856-859 (1994); Morrison, Nature 368, 812-13 (1994); Fishwild et al., Nature Biotechnology 14, 845-51 (1996); Neuberger, Nature Biotechnology 14, 826 (1996); Lonberg and Huszar, Intern. Rev. Immunol. 1365-93 (1995). [0384]
-
The antibodies may also be affinity matured using known selection and/or mutagenesis methods as described above. Preferred affinity matured antibodies have an affinity which is five times, more preferably 10 times, even more preferably 20 or 30 times greater than the starting antibody (generally murine, humanized or human) from which the matured antibody is prepared. [0385]
-
4. Bispecific Antibodies [0386]
-
Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for the PRO, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit. [0387]
-
Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities [Milstein and Cuello, Nature, 305:537-539 (1983)]. Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published May 13, 1993, and in Traunecker et al., EMBO J., 10:3655-3659 (1991). [0388]
-
Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986). [0389]
-
According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory “cavities” of identical or similar size to the large side chain (s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers. [0390]
-
Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab′)[0391] 2 bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab′)2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab′ fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab′-TNB derivatives is then reconverted to the Fab′-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab′-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.
-
Fab′ fragments may be directly recovered from [0392] E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217(1992) describe the production of a fully humanized bispecific antibody F(ab′)2 molecule. Each Fab′ fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger-the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.
-
Various technique for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148 (5):1547-1553(1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab′ portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The “diabody” technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448(1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V[0393] H) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152:5368 (1994). Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991).
-
Exemplary bispecific antibodies may bind to two different epitopes on a given PRO polypeptide herein. Alternatively, an anti-PRO polypeptide arm may be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (Fc y R), such as Fc y RI (CD64), Fc y RII (CD32) and Fc y RIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular PRO polypeptide. Bispecific antibodies may also be used to localize cytotoxic agents to cells which express a particular PRO polypeptide. These antibodies possess a PRO-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the PRO polypeptide and further binds tissue factor (TF). [0394]
-
5. Heteroconjugate Antibodies [0395]
-
Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalentlyjoined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells [U.S. Pat. No. 4,676,980], and for treatment of HIV infection [WO 91/00360; WO 92/200373; EP 03089]. it is contemplated that the antibodies may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins may be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Pat. No. 4,676,980. [0396]
-
6. Effector Function Engineering [0397]
-
It may be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) may be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity may also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and may thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989). [0398]
-
7. Immunoconjugates [0399]
-
The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate). [0400]
-
Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from [0401] Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include 212Bi, 131I, 131In, 90Y, and 186Re. Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyidithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyidiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO 94/11026.
-
In another embodiment, the antibody may be conjugated to a “receptor” (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a “ligand” (e.g., avidin) that is conjugated to a cytotoxic agent (e.g., a radionucleotide). [0402]
-
8. Immunoliposomes [0403]
-
The antibodies disclosed herein may also be formulated as immunoliposomes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al., Proc. Natl Acad. Sci. USA, 77: 4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556. [0404]
-
Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab′ fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al., J. Biol. Chem., 257: 286-288 (1982) via a disulfide-interchange reaction. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome. See Gabizon et al., J. National Cancer Inst., 81(19): 1484 (1989). [0405]
-
9. Pharmaceutical Compositions of Antibodies [0406]
-
Antibodies specifically binding a PRO polypeptide identified herein, as well as other molecules identified by the screening assays disclosed hereinbefore, can be administered for the treatment of various disorders in the form of pharmaceutical compositions. [0407]
-
If the PRO polypeptide is intracellular and whole antibodies are used as inhibitors, internalizing antibodies are preferred. However, lipofections or liposomes can also be used to deliver the antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein is preferred. For example, based upon the variable-region sequences of an antibody, peptide molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. See, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993). The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition may comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended. [0408]
-
The active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methyl methacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's [0409] Pharmaceutical Sciences, supra.
-
The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes. [0410]
-
Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and y ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(−)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37° C., resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S-S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions. [0411]
-
G. Uses for anti-PRO Antibodies [0412]
-
The anti-PRO antibodies of the invention have various utilities. For example, anti-PRO antibodies may be used in diagnostic assays for PRO, e.g., detecting its expression (and in some cases, differential expression) in specific cells, tissues, or serum. Various diagnostic assay techniques known in the art may be used, such as competitive binding assays, direct or indirect sandwich assays and immunoprecipitation assays conducted in either heterogeneous or homogeneous phases [Zola, Monoclonal Antibodies: A Manual of Techniques, CRC Press, Inc. (1987) pp.147-158]. The antibodies used in the diagnostic assays can be labeled with a detectable moiety. The detectable moiety should be capable of producing, either directly or indirectly, a detectable signal. For example, the detectable moiety may be a radioisotope, such as [0413] 3H, 14C, 32P, 35S, or 125I, a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin, or an enzyme, such as alkaline phosphatase, beta-galactosidase or horseradish peroxidase. Any method known in the art for conjugating the antibody to the detectable moiety may be employed, including those methods described by Hunter et al., Nature, 144:945 (1962); David et al., Biochemistry, 13:1014 (1974); Pain et al., J. Immunol. Meth., 40:219 (1981); and Nygren, J. Histochem. and Cytochem., 30:407 (1982).
-
Anti-PRO antibodies also are useful for the affinity purification of PRO from recombinant cell culture or natural sources. In this process, the antibodies against PRO are immobilized on a suitable support, such as Sephadex resin or filter paper, using methods well known in the art. The immobilized antibody then is contacted with a sample containing the PRO to be purified, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the sample except the PRO, which is bound to the immobilized antibody. Finally, the support is washed with another suitable solvent that will release the PRO from the antibody. [0414]
-
The following examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way. [0415]
-
All patent and literature references cited in the present specification are hereby incorporated by reference in their entirety. [0416]
EXAMPLES
-
Commercially available reagents referred to in the examples were used according to manufacturer's instructions unless otherwise indicated. The source of those cells identified in the following examples, and throughout the specification, by ATCC accession numbers is the American Type Culture Collection, Manassas, Va. [0417]
EXAMPLE 1
Extracellular Domain Homology Screening to Identify Novel Polypeptides and cDNA Encoding Therefor
-
The extracellular domain (ECD) sequences (including the secretion signal sequence, if any) from about 950 known secreted proteins from the Swiss-Prot public database were used to search EST databases. The EST databases included public databases (e.g., Dayhoff, GenBank), and proprietary databases (e.g. LIFESEQ™, Incyte Pharmaceuticals, Palo Alto, Calif.). The search was performed using the computer program BLAST or BLAST-2 (Altschul et al., Methods in Enzymology 266:460-480 (1996)) as a comparison of the ECD protein sequences to a 6 frame translation of the EST sequences. Those comparisons with a BLAST score of 70 (or in some cases 90) or greater that did not encode known proteins were clustered and assembled into consensus DNA sequences with the program “phrap” (Phil Green, University of Washington, Seattle, Wash.). [0418]
-
Using this extracellular domain homology screen, consensus DNA sequences were assembled relative to the other identified EST sequences using phrap. In addition, the consensus DNA sequences obtained were often (but not always) extended using repeated cycles of BLAST or BLAST-2 and phrap to extend the consensus sequence as far as possible using the sources of EST sequences discussed above. [0419]
-
Based upon the consensus sequences obtained as described above, oligonucleotides were then synthesized and used to identify by PCR a cDNA library that contained the sequence of interest and for use as probes to isolate a clone of the full-length coding sequence for a PRO polypeptide. Forward and reverse PCR primers generally range from 20 to 30 nucleotides and are often designed to give a PCR product of about 100-1000 bp in length. The probe sequences are typically 40-55 bp in length. In some cases, additional oligonucleotides are synthesized when the consensus sequence is greater than about 1-1.5 kbp. In order to screen several libraries for a full-length clone, DNA from the libraries was screened by PCR amplification, as per Ausubel et al., Current Protocols in Molecular Biology, with the PCR primer pair. A positive library was then used to isolate clones encoding the gene of interest using the probe oligonucleotide and one of the primer pairs. [0420]
-
The cDNA libraries used to isolate the cDNA clones were constructed by standard methods using commercially available reagents such as those from Invitrogen, San Diego, Calif. The cDNA was primed with oligo dT containing a NotI site, linked with blunt to SalI hemikinased adaptors, cleaved with NotI, sized appropriately by gel electrophoresis, and cloned in a defined orientation into a suitable cloning vector (such as pRKB or pRKD; pRK5B is a precursor of pRK5D that does not contain the SfiI site; see, Holmes et al., Science, 253:1278-1280 (1991)) in the unique XhoI and NotI sites. [0421]
EXAMPLE 2
Isolation of cDNA clones by Amylase Screening
-
1. Preparation of oligo dT primed cDNA library [0422]
-
mRNA was isolated from a human tissue of interest using reagents and protocols from Invitrogen, San Diego, Calif. (Fast Track 2). This RNA was used to generate an oligo dT primed cDNA library in the vector pRK5D using reagents and protocols from Life Technologies, Gaithersburg, Md. (Super Script Plasmid System). In this procedure, the double stranded cDNA was sized to greater than 1000 bp and the SalI/NotI linkered cDNA was cloned into XhoI/NotI cleaved vector. pRK5D is a cloning vector that has an sp6 transcription initiation site followed by an SfiI restriction enzyme site preceding the XhoI/NotI cDNA cloning sites. [0423]
-
2. Preparation of random primed cDNA library [0424]
-
A secondary cDNA library was generated in order to preferentially represent the 5′ ends of the primary cDNA clones. Sp6 RNA was generated from the primary library (described above), and this RNA was used to generate a random primed cDNA library in the vector pSST-AMY.0 using reagents and protocols from Life Technologies (Super Script Plasmid System, referenced above). In this procedure the double stranded cDNA was sized to 500-1000 bp, Tinkered with blunt to NotI adaptors, cleaved with SfiI, and cloned into SfiI/NotI cleaved vector. pSST-AMY.0 is a cloning vector that has a yeast alcohol dehydrogenase promoter preceding the cDNA cloning sites and the mouse amylase sequence (the mature sequence without the secretion signal) followed by the yeast alcohol dehydrogenase terminator, after the cloning sites. Thus, cDNAs cloned into this vector that are fused in frame with amylase sequence will lead to the secretion of amylase from appropriately transfected yeast colonies. [0425]
-
3. Transformation and Detection [0426]
-
DNA from the library described in [0427] paragraph 2 above was chilled on ice to which was added electrocompetent DH10B bacteria (Life Technologies, 20 ml). The bacteria and vector mixture was then electroporated as recommended by the manufacturer. Subsequently, SOC media (Life Technologies, 1 ml) was added and the mixture was incubated at 37° C. for 30 minutes. The transformants were then plated onto 20 standard 150 mm LB plates containing ampicillin and incubated for 16 hours (37° C.). Positive colonies were scraped off the plates and the DNA was isolated from the bacterial pellet using standard protocols, e.g. CsCl-gradient. The purified DNA was then carried on to the yeast protocols below.
-
The yeast methods were divided into three categories: (1) Transformation of yeast with the plasmid/cDNA combined vector; (2) Detection and isolation of yeast clones secreting amylase; and (3) PCR amplification of the insert directly from the yeast colony and purification of the DNA for sequencing and further analysis. [0428]
-
The yeast strain used was HD56-5A (ATCC-90785). This strain has the following genotype: MAT alpha, ura3-52, leu2-3, leu2-112, his3-11, his3-15, MAL[0429] +, SUC+, GAL+. Preferably, yeast mutants can be employed that have deficient post-translational pathways. Such mutants may have translocation deficient alleles in sec 71, sec72, sec62, with truncated sec71 being most preferred. Alternatively, antagonists (including antisense nucleotides and/or ligands) which interfere with the normal operation of these genes, other proteins implicated in this post translation pathway (e.g., SEC61 p, SEC72p, SEC62p, SEC63p, TDJ1 p or SSA1p-4p) or the complex formation of these proteins may also be preferably employed in combination with the amylase-expressing yeast.
-
Transformation was performed based on the protocol outlined by Gietz et al., Nucl. Acid. Res., 20:1425 (1992). Transformed cells were then inoculated from agar into YEPD complex media broth (100 ml) and grown overnight at 30° C. The YEPD broth was prepared as described in Kaiser et al., Methods in Yeast Genetics, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., p. 207 (1994). The overnight culture was then diluted to about 2×10[0430] 6 cells/ml (approx. OD600=0.1) into fresh YEPD broth (500 ml) and regrown to 1×107 cells/ml (approx. OD=0.4-0.5).
-
The cells were then harvested and prepared for transformation by transfer into GS3 rotor bottles in a Sorval GS3 rotor at 5,000 rpm for 5 minutes, the supernatant discarded, and then resuspended into sterile water, and centrifuged again in 50 ml falcon tubes at 3,500 rpm in a Beckman GS-6KR centrifuge. The supernatant was discarded and the cells were subsequently washed with LiAc/TE (10 ml, 10 mM Tris-HCl, 1 mM EDTA pH 7.5, 100 mM Li[0431] 2OOCCH3), and resuspended into LiAc/TE (2.5 ml).
-
Transformation took place by mixing the prepared cells (100 μl) with freshly denatured single stranded salmon testes DNA (Lofstrand Labs, Gaithersburg, Md.) and transforming DNA (1 μg, vol. <10 μl) in microfuge tubes. The mixture was mixed briefly by vortexing, then 40% PEG/TE (600 μl, 40% polyethylene glycol-4000, 10 mM Tris-HCl, 1 mM EDTA, 100 mM Li[0432] 2OOCCH3, pH 7.5) was added. This mixture was gently mixed and incubated at 30° C. while agitating for 30 minutes. The cells were then heat shocked at 42° C. for 15 minutes, and the reaction vessel centrifuged in a microfuge at 12,000 rpm for 5-10 seconds, decanted and resuspended into TE (500 μl, 10 mM Tris-HCl, 1 mM EDTA pH 7.5) followed by recentrifugation. The cells were then diluted into TE (1 ml) and aliquots (200 μl) were spread onto the selective media previously prepared in 150 mm growth plates (VWR).
-
Alternatively, instead of multiple small reactions, the transformation was performed using a single, large scale reaction, wherein reagent amounts were scaled up accordingly. [0433]
-
The selective media used was a synthetic complete dextrose agar lacking uracil (SCD-Ura) prepared as described in Kaiser et al., Methods in Yeast Genetics, Cold Spring Harbor Press, Cold Spring Harbor, N.Y., p. 208-210 (1994). Transformants were grown at 30° C. for 2-3 days. [0434]
-
The detection of colonies secreting amylase was performed by including red starch in the selective growth media. Starch was coupled to the red dye (Reactive Red-120, Sigma) as per the procedure described by Biely et al., Anal. Biochem., 172:1 76-179 (1988). The coupled starch was incorporated into the SCD-Ura agar plates at a final concentration of 0.15% (w/v), and was buffered with potassium phosphate to a pH of 7.0 (50-100 mM final concentration). [0435]
-
The positive colonies were picked and streaked across fresh selective media (onto 150 mm plates) in order to obtain well isolated and identifiable single colonies. Well isolated single colonies positive for amylase secretion were detected by direct incorporation of red starch into buffered SCD-Ura agar. Positive colonies were determined by their ability to break down starch resulting in a clear halo around the positive colony visualized directly. [0436]
-
4. Isolation of DNA by PCR Amplification [0437]
-
When a positive colony was isolated, a portion of it was picked by a toothpick and diluted into sterile water (30 μl) in a 96 well plate. At this time, the positive colonies were either frozen and stored for subsequent analysis or immediately amplified. An aliquot of cells (5 μl) was used as a template for the PCR reaction in a 25 μl volume containing: 0.5 μl Klentaq (Clontech, Palo Alto, Calif.); 4.0 μl 10 mM dNTP's (Perkin Elmer-Cetus); 2.5 μl Kentaq buffer (Clontech); 0.25 μl
[0438] forward oligo 1; 0.25 μl
reverse oligo 2; 1 2.5 μl distilled water.
The sequence of the forward oligonucleotide 1 was: | |
5′-TGTAAAACGACGGCCAGTTAAATAGACCTGCAATTATTAATCT-3′ |
|
The sequence of reverse oligonucleotide 2 was: | |
5′-CAGGAAACAGCTATGACCACCTGCACACCTGCAAATCCATT-3′ |
-
PCR was then performed as follows:
[0439] |
|
a. | | Denature | 92° C., | 5 minutes |
b. | 3 cycles of: | Denature | 92° C., | 30 seconds |
| | Anneal | 59° C., | 30 seconds |
| | Extend | 72° C., | 60 seconds |
c. | 3 cycles of: | Denature | 92° C., | 30 seconds |
| | Anneal | 57° C., | 30 seconds |
| | Extend | 72° C., | 60 seconds |
d. | 25 cycles of: | Denature | 92° C., | 30 seconds |
| | Anneal | 55° C., | 30 seconds |
| | Extend | 72° C., | 60 seconds |
e. | | Hold | 4° C. |
|
-
The underlined regions of the oligonucleotides annealed to the ADH promoter region and the amylase region, respectively, and amplified a 307 bp region from vector pSST-AMY.0 when no insert was present. Typically, the first 18 nucleotides of the 5′ end of these oligonucleotides contained annealing sites for the sequencing primers. Thus, the total product of the PCR reaction from an empty vector was 343 bp. However, signal sequence-fused cDNA resulted in considerably longer nucleotide sequences. [0440]
-
Following the PCR, an aliquot of the reaction (5 μl) was examined by agarose gel electrophoresis in a 1% agarose gel using a Tris-Borate-EDTA (TBE) buffering system as described by Sambrook et al., supra. Clones resulting in a single strong PCR product larger than 400 bp were further analyzed by DNA sequencing after purification with a 96 Qiaquick PCR clean-up column (Qiagen Inc., Chatsworth, Calif.). [0441]
EXAMPLE 3
Isolation of cDNA Clones Using Signal Algorithm Analysis
-
Various polypeptide-encoding nucleic acid sequences were identified by applying a proprietary signal sequence finding algorithm developed by Genentech, Inc. (South San Francisco, Calif.) upon ESTs as well as clustered and assembled EST fragments from public (e.g., GenBank) and/or private (LIFESEQ®, Incyte Pharmaceuticals, Inc., Palo Alto, Calif.) databases. The signal sequence algorithm computes a secretion signal score based on the character of the DNA nucleotides surrounding the first and optionally the second methionine codon(s) (ATG) at the 5′-end of the sequence or sequence fragment under consideration. The nucleotides following the first ATG must code for at least 35 unambiguous amino acids without any stop codons. If the first ATG has the required amino acids, the second is not examined. If neither meets the requirement, the candidate sequence is not scored. In order to determine whether the EST sequence contains an authentic signal sequence, the DNA and corresponding amino acid sequences surrounding the ATG codon are scored using a set of seven sensors (evaluation parameters) known to be associated with secretion signals. Use of this algorithm resulted in the identification of numerous polypeptide-encoding nucleic acid sequences. [0442]
EXAMPLE 4
Isolation of cDNA Clones Encoding Human PRO Polypeptides
-
Using the techniques described in Examples 1 to 3 above, numerous full-length cDNA clones were identified as encoding PRO polypeptides as disclosed herein. These cDNAs were then deposited under the terms of the Budapest Treaty with the American Type Culture Collection, 10801 University Blvd., Manassas, Va. 20110-2209, USA (ATCC) as shown in Tabl 7 below.
[0443] | TABLE 7 |
| |
| |
| Material | ATCC Dep. No. | Deposit Date |
| |
| DNA26843-1389 | 203099 | Aug. 4,1998 |
| DNA30867-1335 | 209807 | Apr. 28, 1998 |
| DNA34431-1177 | 209399 | Oct. 17, 1997 |
| DNA38268-1188 | 209421 | Oct. 28, 1997 |
| DNA40621-1440 | 209922 | Jun. 2, 1998 |
| DNA40625-1189 | 209788 | Apr. 21, 1998 |
| DNA45409-2511 | 203579 | Jan. 12,1999 |
| DNA45495-1550 | 203156 | Aug. 25, 1998 |
| DNA49820-1427 | 209932 | Jun. 2, 1998 |
| DNA56406-1704 | 203478 | Nov. 17, 1998 |
| DNA56410-1414 | 209923 | Jun. 2, 1998 |
| DNA56436-1448 | 209902 | May 27, 1998 |
| DNA56855-1447 | 203004 | Jun. 23, 1998 |
| DNA56860-1510 | 209952 | Jun. 9, 1998 |
| DNA56862-1343 | 203174 | Sep. 1, 1998 |
| DNA56868-1478 | 203024 | Jun. 23, 1998 |
| DNA56869-1545 | 203161 | Aug. 25, 1998 |
| DNA57704-1452 | 209953 | Jun. 9, 1998 |
| DNA58723-1588 | 203133 | Aug. 18, 1998 |
| DNA57827-1493 | 203045 | Jul. 1, 1998 |
| DNA58737-1473 | 203136 | Aug. 18, 1998 |
| DNA58846-1409 | 209957 | Jun. 9, 1998 |
| DNA58850-1495 | 209956 | Jun. 9, 1998 |
| DNA58855-1422 | 203018 | Jun. 23, 1998 |
| DNA59211-1450 | 209960 | Jun. 9, 1998 |
| DNA59212-1627 | 203245 | Sep. 9, 1998 |
| DNA59213-1487 | 209959 | Jun. 9, 1998 |
| DNA59605-1418 | 203005 | Jun. 23, 1998 |
| DNA59609-1470 | 209963 | Jun. 9, 1998 |
| DNA59610-1556 | 209990 | Jun. 16, 1998 |
| DNA59837-2545 | 203658 | Feb. 9, 1999 |
| DNA59844-2542 | 203650 | Feb. 9, 1999 |
| DNA59854-1459 | 209974 | Jun. 16, 1998 |
| DNA60625-1507 | 209975 | Jun. 16, 1998 |
| DNA60629-1481 | 209979 | Jun. 16, 1998 |
| DNA61755-1554 | 203112 | Aug. 11, 1998 |
| DNA62812-1594 | 203248 | Sep. 9, 1998 |
| DNA62815-1576 | 203247 | Sep. 9, 1998 |
| DNA64881-1602 | 203240 | Sep. 9, 1998 |
| DNA64886-1601 | 203241 | Sep. 9, 1998 |
| DNA64902-1667 | 203317 | Oct. 6, 1998 |
| DNA64950-1590 | 203224 | Sep. 15, 1998 |
| DNA65403-1565 | 203230 | Sep. 15, 1998 |
| DNA66308-1537 | 203159 | Aug. 25, 1998 |
| DNA66519-1535 | 203236 | Sep. 15, 1998 |
| DNA66521-1583 | 203225 | Sep. 15, 1998 |
| DNA66658-1584 | 203229 | Sep. 15, 1998 |
| DNA66660-1585 | 203279 | Sep. 22, 1998 |
| DNA66663-1598 | 203268 | Sep. 22, 1998 |
| DNA66674-1599 | 203281 | Sep. 22, 1998 |
| DNA68862-2546 | 203652 | Feb. 9, 1999 |
| DNA68866-1644 | 203283 | Sep. 22, 1998 |
| DNA68871-1638 | 203280 | Sep. 22, 1998 |
| DNA68880-1676 | 203319 | Oct. 6, 1998 |
| DNA68883-1691 | 203535 | Dec. 15, 1998 |
| DNA68885-1678 | 203311 | Oct. 6,1998 |
| DNA71277-1636 | 203285 | Sep. 22, 1998 |
| DNA73727-1673 | 203459 | Nov. 3,1998 |
| DNA73734-1680 | 203363 | Oct. 20, 1998 |
| DNA73735-1681 | 203356 | Oct. 20, 1998 |
| DNA76393-1664 | 203323 | Oct. 6, 1998 |
| DNA77301-1708 | 203407 | Oct. 27, 1998 |
| DNA77568-1626 | 203134 | Aug. 18, 1998 |
| DNA77626-1705 | 203536 | Dec. 15, 1998 |
| DNA81754-2532 | 203542 | Dec. 15, 1998 |
| DNA81757-2512 | 203543 | Dec. 15, 1998 |
| DNA82302-2529 | 203534 | Dec. 15, 1998 |
| DNA82340-2530 | 203547 | Dec. 22, 1998 |
| DNA83500-2506 | 203391 | Oct. 29, 1998 |
| DNA84920-2614 | 203966 | Apr. 27, 1999 |
| DNA85066-2534 | 203588 | Jan. 12, 1999 |
| DNA86571-2551 | 203660 | Feb. 9, 1999 |
| DNA87991-2540 | 203656 | Feb. 9, 1999 |
| DNA92238-2539 | 203602 | Jan. 20, 1999 |
| DNA96042-2682 | PTA-382 | Jul. 20, 1999 |
| DNA96787-2534 | 203589 | Jan. 12, 1999 |
| DNA125185-2806 | PTA-1031 | Dec. 7, 1999 |
| DNA147531-2821 | PTA-1185 | Jan. 11, 2000 |
| DNA115291-2681 | PTA-202 | Jun. 8, 1999 |
| DNA164625-28890 | PTA-1535 | Mar. 21, 2000 |
| DNA131639-2874 | PTA-1784 | Apr. 25, 2000 |
| DNA79230-2525 | 203549 | Dec. 22, 1998 |
| |
-
These deposits were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture of the deposit for 30 years from the date of deposit. [0444]
-
The deposits will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures permanent and unrestricted availability of the progeny of the culture of the deposit to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures availability of the progeny to one determined by the U.S. Commissioner of Patents and Trademarks to be entitled thereto according to 35 USC § 122 and the Commissioner's rules pursuant thereto (including 37 CFR § 1.14 with particular reference to 886 OG 638). [0445]
-
The assignee of the present application has agreed that if a culture of the materials on deposit should die or be lost or destroyed when cultivated under suitable conditions, the materials will be promptly replaced on notification with another of the same. Availability of the deposited material is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws. [0446]
EXAMPLE 5
Use of PRO as a Hybridization Probe
-
The following method describes use of a nucleotide sequence encoding PRO as a hybridization probe. [0447]
-
DNA comprising the coding sequence of full-length or mature PRO as disclosed herein is employed as a probe to screen for homologous DNAs (such as those encoding naturally-occurring variants of PRO) in human tissue cDNA libraries or human tissue genomic libraries. [0448]
-
Hybridization and washing of filters containing either library DNAs is performed under the following high stringency conditions. Hybridization of radiolabeled PRO-derived probe to the filters is performed in a solution of 50% formamide, 5× SSC, 0.1% SDS, 0.1% sodium pyrophosphate, 50 mM sodium phosphate, pH 6.8, 2× Denhardt's solution, and 10% dextran sulfate at 42° C. for 20 hours. Washing of the filters is performed in an aqueous solution of 0.1× SSC and 0.1% SDS at 42° C. [0449]
-
DNAs having a desired sequence identity with the DNA encoding full-length native sequence PRO can then be identified using standard techniques known in the art. [0450]
EXAMPLE 6
Expression of PRO in E. coli
-
This example illustrates preparation of an unglycosylated form of PRO by recombinant expression in [0451] E. coli.
-
The DNA sequence encoding PRO is initially amplified using selected PCR primers. [0452]
-
The primers should contain restriction enzyme sites which correspond to the restriction enzyme sites on the selected expression vector. A variety of expression vectors may be employed. An example of a suitable vector is pBR322 (derived from [0453] E. coli; see Bolivar et al., Gene, 2:95 (1977)) which contains genes for ampicillin and tetracycline resistance. The vector is digested with restriction enzyme and dephosphorylated. The PCR amplified sequences are then ligated into the vector. The vector will preferably include sequences which encode for an antibiotic resistance gene, a trp promoter, a polyhis leader (including the first six STII codons, polyhis sequence, and enterokinase cleavage site), the PRO coding region, lambda transcriptional terminator, and an argU gene.
-
The ligation mixture is then used to transform a selected [0454] E. coli strain using the methods described in Sambrook et al., supra. Transformants are identified by their ability to grow on LB plates and antibiotic resistant colonies are then selected. Plasmid DNA can be isolated and confirmed by restriction analysis and DNA sequencing.
-
Selected clones can be grown overnight in liquid culture medium such as LB broth supplemented with antibiotics. The overnight culture may subsequently be used to inoculate a larger scale culture. The cells are then grown to a desired optical density, during which the expression promoter is turned on. [0455]
-
After culturing the cells for several more hours, the cells can be harvested by centrifugation. The cell pellet obtained by the centrifugation can be solubilized using various agents known in the art, and the solubilized PRO protein can then be purified using a metal chelating column under conditions that allow tight binding of the protein. [0456]
-
PRO may be expressed in [0457] E. coli in a poly-His tagged form, using the following procedure. The DNA encoding PRO is initially amplified using selected PCR primers. The primers will contain restriction enzyme sites which correspond to the restriction enzyme sites on the selected expression vector, and other useful sequences providing for efficient and reliable translation initiation, rapid purification on a metal chelation column, and proteolytic removal with enterokinase. The PCR-amplified, poly-His tagged sequences are then ligated into an expression vector, which is used to transform an E. coli host based on strain 52 (W3110 fuhA(tonA) Ion galE rpoHts (htpRts) cIpP(laclq). Transformants are first grown in LB containing 50 mg/ml carbenicillin at 30° C. with shaking until an O.D.600 of 3-5 is reached. Cultures are then diluted 50-100 fold into CRAP media (prepared by mixing 3.57 g (NH4)2SO4, 0.71 g sodium citrate-2H2O, 1.07 g KCl, 5.36 g Difco yeast extract, 5.36 g Sheffield hycase SF in 500 mL water, as well as 110 mM MPOS, pH 7.3, 0.55% (w/v) glucose and 7 mM MgSO4) and grown for approximately 20-30 hours at 30° C. with shaking. Samples are removed to verify expression by SDS-page analysis, and the bulk culture is centrifuged to pellet the cells. Cell pellets are frozen until purification and refolding.
-
[0458] E. coli paste from 0.5 to 1 L fermentations (6-10 g pellets) is resuspended in 10 volumes (w/v) in 7 M guanidine, 20 mM Tris, pH 8 buffer. Solid sodium sulfite and sodium tetrathionate is added to make final concentrations of 0.1 M and 0.02 M, respectively, and the solution is stirred overnight at 4° C. This step results in a denatured protein with all cysteine residues blocked by sulfitolization. The solution is centrifuged at 40,000 rpm in a Beckman Ultracentifuge for 30 min. The supernatant is diluted with 3-5 volumes of metal chelate column buffer (6 M guanidine, 20 mM Tris, pH 7.4) and filtered through 0.22 micron filters to clarify. The clarified extract is loaded onto a 5 ml Qiagen Ni-NTA metal chelate column equilibrated in the metal chelate column buffer. The column is washed with additional buffer containing 50 mM imidazole (Calbiochem, Utrol grade), pH 7.4. The protein is eluted with buffer containing 250 mM imidazole. Fractions containing the desired protein are pooled and stored at 4° C. Protein concentration is estimated by its absorbance at 280 nm using the calculated extinction coefficient based on its amino acid sequence.
-
The proteins are refolded by diluting the sample slowly into freshly prepared refolding buffer consisting of: 20 mM Tris, pH 8.6, 0.3 M NaCl, 2.5 M urea, 5 mM cysteine, 20 mM glycine and 1 mM EDTA. Refolding volumes are chosen so that the final protein concentration is between 50 to 100 micrograms/ml. The refolding solution is stirred gently at 4° C. for 12-36 hours. The refolding reaction is quenched by the addition of TFA to a final concentration of 0.4% (pH of approximately 3). Before further purification of the protein, the solution is filtered through a 0.22 micron filter and acetonitrile is added to 2-10% final concentration. The refolded protein is chromatographed on a Poros R1/H reversed phase column using a mobile buffer of 0.1% TFA with elution with a gradient of acetonitrile from 10 to 80%. Aliquots of fractions with A280 absorbance are analyzed on SDS polyacrylamide gels and fractions containing homogeneous refolded protein are pooled. Generally, the properly refolded species of most proteins are eluted at the lowest concentrations of acetonitrile since those species are the most compact with their hydrophobic interiors shielded from interaction with the reversed phase resin. Aggregated species are usually eluted at higher acetonitrile concentrations. In addition to resolving misfolded forms of proteins from the desired form, the reversed phase step also removes endotoxin from the samples. [0459]
-
Fractions containing the desired folded PRO polypeptide are pooled and the acetonitrile removed using a gentle stream of nitrogen directed at the solution. Proteins are formulated into 20 mM Hepes, pH 6.8 with 0.14 M sodium chloride and 4% mannitol by dialysis or by gel filtration using G25 Superfine (Pharmacia) resins equilibrated in the formulation buffer and sterile filtered. [0460]
-
Many of the PRO polypeptides disclosed herein were successfully expressed as described above. [0461]
EXAMPLE 7
Expression of PRO in Mammalian Cells
-
This example illustrates preparation of a potentially glycosylated form of PRO by recombinant expression in mammalian cells. [0462]
-
The vector, pRK5 (see EP 307,247, published Mar. 15, 1989), is employed as the expression vector. Optionally, the PRO DNA is ligated into pRK5 with selected restriction enzymes to allow insertion of the PRO DNA using ligation methods such as described in Sambrook et al., supra. The resulting vector is called pRK5-PRO. [0463]
-
In one embodiment, the selected host cells may be 293 cells. Human 293 cells (ATCC CCL 1573) are grown to confluence in tissue culture plates in medium such as DMEM supplemented with fetal calf serum and optionally, nutrient components and/or antibiotics. About 10 μg pRK5-PRO DNA is mixed with about 1 μg DNA encoding the VA RNA gene [Thimmappaya et al., Cell, 31:543 (1982)] and dissolved in 500 μl of 1 mM Tris-HCl, 0.1 mM EDTA, 0.227 M CaCl[0464] 2. To this mixture is added, dropwise, 500 μl of 50 mM HEPES (pH 7.35), 280 mM NaCl, 1.5 mM NaPO4, and a precipitate is allowed to form for 10 minutes at 25° C. The precipitate is suspended and added to the 293 cells and allowed to settle for about four hours at 37° C. The culture medium is aspirated off and 2 ml of 20% glycerol in PBS is added for 30 seconds. The 293 cells are then washed with serum free medium, fresh medium is added and the cells are incubated for about 5 days.
-
Approximately 24 hours after the transfections, the culture medium is removed and replaced with culture medium (alone) or culture medium containing 200 μCi/ml [0465] 35S-cysteine and 200 μCi/ml 35S-methionine. After a 12 hour incubation, the conditioned medium is collected, concentrated on a spin filter, and loaded onto a 1 5% SDS gel. The processed gel may be dried and exposed to film for a selected period of time to reveal the presence of PRO polypeptide. The cultures containing transfected cells may undergo further incubation (in serum free medium) and the medium is tested in selected bioassays.
-
In an alternative technique, PRO may be introduced into 293 cells transiently using the dextran sulfate method described by Somparyrac et al., Proc. Natl. Acad. Sci., 12:7575 (1981). 293 cells are grown to maximal density in a spinner flask and 700 μg pRK5-PRO DNA is added. The cells are first concentrated from the spinner flask by centrifugation and washed with PBS. The DNA-dextran precipitate is incubated on the cell pellet for four hours. The cells are treated with 20% glycerol for 90 seconds, washed with tissue culture medium, and re-introduced into the spinner flask containing tissue culture medium, 5 μg/ml bovine insulin and 0.1 μg/ml bovine transferrin. After about four days, the conditioned media is centrifuged and filtered to remove cells and debris. The sample containing expressed PRO can then be concentrated and purified by any selected method, such as dialysis and/or column chromatography. [0466]
-
In another embodiment, PRO can be expressed in CHO cells. The pRKS-PRO can be transfected into CHO cells using known reagents such as CaPO[0467] 4 or DEAE-dextran. As described above, the cell cultures can be incubated, and the medium replaced with culture medium (alone) or medium containing a radiolabel such as 35S-methionine. After determining the presence of PRO polypeptide, the culture medium may be replaced with serum free medium. Preferably, the cultures are incubated for about 6 days, and then the conditioned medium is harvested. The medium containing the expressed PRO can then be concentrated and purified by any selected method.
-
Epitope-tagged PRO may also be expressed in host CHO cells. The PRO may be subcloned out of the pRK5 vector. The subclone insert can undergo PCR to fuse in frame with a selected epitope tag such as a poly-his tag into a Baculovirus expression vector. The poly-his tagged PRO insert can then be subcloned into a SV40 driven vector containing a selection marker such as DHFR for selection of stable clones. Finally, the CHO cells can be transfected (as described above) with the SV40 driven vector. Labeling may be performed, as described above, to verify expression. The culture medium containing the expressed poly-His tagged PRO can then be concentrated and purified by any selected method, such as by Ni[0468] 2+-chelate affinity chromatography.
-
PRO may also be expressed in CHO and/or COS cells by a transient expression procedure or in CHO cells by another stable expression procedure. [0469]
-
Stable expression in CHO cells is performed using the following procedure. The proteins are expressed as an IgG construct (immunoadhesin), in which the coding sequences for the soluble forms (e.g. extracellular domains) of the respective proteins are fused to an IgG1 constant region sequence containing the hinge, CH2 and CH2 domains and/or is a poly-His tagged form. [0470]
-
Following PCR amplification, the respective DNAs are subcloned in a CHO expression vector using standard techniques as described in Ausubel et al., Current Protocols of Molecular Biology, Unit 3.16, John Wiley and Sons (1997). CHO expression vectors are constructed to have compatible restriction sites 5′ and 3′ of the DNA of interest to allow the convenient shuttling of cDNA's. The vector used expression in CHO cells is as described in Lucas et al., Nucl. Acids Res. 24:9 (1774-1779 (1996), and uses the SV40 early promoter/enhancer to drive expression of the cDNA of interest and dihydrofolate reductase (DHFR). DHFR expression permits selection for stable maintenance of the plasmid following transfection. [0471]
-
Twelve micrograms of the desired plasmid DNA is introduced into approximately 10 million CHO cells using commercially available transfection reagents Superfect® (Quiagen), Dosper® or Fugene® (Boehringer Mannheim). The cells are grown as described in Lucas et al., supra. Approximately 3×10[0472] −7 cells are frozen in an ampule for further growth and production as described below.
-
The ampules containing the plasmid DNA are thawed by placement into water bath and mixed by vortexing. The contents are pipetted into a centrifuge tube containing 10 mLs of media and centrifuged at 1000 rpm for 5 minutes. The supernatant is aspirated and the cells are resuspended in 10 mL of selective media (0.2 μm filtered PS20 with 5% 0.2 μm diafiltered fetal bovine serum). The cells are then aliquoted into a 100 mL spinner containing 90 mL of selective media. After 1-2 days, the cells are transferred into a 250 mL spinner filled with 150 mL selective growth medium and incubated at 37° C. After another 2-3 days, 250 mL, 500 mL and 2000 mL spinners are seeded with 3×10[0473] 5 cells/mL. The cell media is exchanged with fresh media by centrifugation and resuspension in production medium. Although any suitable CHO media may be employed, a production medium described in U.S. Pat. No. 5,122,469, issued Jun. 16, 1992 may actually be used. A 3L production spinner is seeded at 1.2×106 cells/mL. On day 0, the cell number pH is determined. On day 1, the spinner is sampled and sparging with filtered air is commenced. On day 2, the spinner is sampled, the temperature shifted to 33° C., and 30 mL of 500 g/L glucose and 0.6 mL of 10% antifoam (e.g., 35% polydimethylsiloxane emulsion, Dow Corning 365 Medical Grade Emulsion) taken. Throughout the production, the pH is adjusted as necessary to keep it at around 7.2. After 10 days, or until the viability dropped below 70%, the cell culture is harvested by centrifugation and filtering through a 0.22 μm filter. The filtrate was either stored at 4° C. or immediately loaded onto columns for purification.
-
For the poly-His tagged constructs, the proteins are purified using a Ni-NTA column (Qiagen). Before purification, imidazole is added to the conditioned media to a concentration of 5 mM. The conditioned media is pumped onto a 6 ml Ni-NTA column equilibrated in 20 mM Hepes, pH 7.4, buffer containing 0.3 M NaCl and 5 mM imidazole at a flow rate of 4-5 ml/min. at 4° C. After loading, the column is washed with additional equilibration buffer and the protein eluted with equilibration buffer containing 0.25 M imidazole. The highly purified protein is subsequently desalted into a storage buffer containing 10 mM Hepes, 0.14 M NaCl and 4% mannitol, pH 6.8, with a 25 ml G25 Superfine (Pharmacia) column and stored at −80° C. [0474]
-
Immunoadhesin (Fc-containing) constructs are purified from the conditioned media as follows. The conditioned medium is pumped onto a 5 ml Protein A column (Pharmacia) which had been equilibrated in 20 mM Na phosphate buffer, pH 6.8. After loading, the column is washed extensively with equilibration buffer before elution with 100 mM citric acid, pH 3.5. The eluted protein is immediately neutralized by collecting 1 ml fractions into tubes containing 275 μL of 1 M Tris buffer, pH 9. The highly purified protein is subsequently desalted into storage buffer as described above for the poly-His tagged proteins. The homogeneity is assessed by SDS polyacrylamide gels and by N-terminal amino acid sequencing by Edman degradation. [0475]
-
Many of the PRO polypeptides disclosed herein were successfully expressed as described above. [0476]
EXAMPLE 8
Expression of PRO in Yeast
-
The following method describes recombinant expression of PRO in yeast. [0477]
-
First, yeast expression vectors are constructed for intracellular production or secretion of PRO from the ADH2/GAPDH promoter. DNA encoding PRO and the promoter is inserted into suitable restriction enzyme sites in the selected plasmid to direct intracellular expression of PRO. For secretion, DNA encoding PRO can be cloned into the selected plasmid, together with DNA encoding the ADH2/GAPDH promoter, a native PRO signal peptide or other mammalian signal peptide, or, for example, a yeast alpha-factor or invertase secretory signal/leader sequence, and linker sequences (if needed) for expression of PRO. [0478]
-
Yeast cells, such as yeast strain AB110, can then be transformed with the expression plasmids described above and cultured in selected fermentation media. The transformed yeast supernatants can be analyzed by precipitation with 10% trichloroacetic acid and separation by SDS-PAGE, followed by staining of the gels with Coomassie Blue stain. [0479]
-
Recombinant PRO can subsequently be isolated and purified by removing the yeast cells from the fermentation medium by centrifugation and then concentrating the medium using selected cartridge filters. The concentrate containing PRO may further be purified using selected column chromatography resins. [0480]
-
Many of the PRO polypeptides disclosed herein were successfully expressed as described above. [0481]
EXAMPLE 9
Expression of PRO in Baculovirus-Infected Insect Cells
-
The following method describes recombinant expression of PRO in Baculovirus- infected insect cells. [0482]
-
The sequence coding for PRO is fused upstream of an epitope tag contained within a baculovirus expression vector. Such epitope tags include poly-his tags and immunoglobulin tags (like Fc regions of IgG). A variety of plasmids may be employed, including plasmids derived from commercially available plasmids such as pVL1393 (Novagen). Briefly, the sequence encoding PRO or the desired portion of the coding sequence of PRO such as the sequence encoding the extracellular domain of a transmembrane protein or the sequence encoding the mature protein if the protein is extracellular is amplified by PCR with primers complementary to the 5′ and 3′ regions. The 5′ primer may incorporate flanking (selected) restriction enzyme sites. The product is then digested with those selected restriction enzymes and subcloned into the expression vector. [0483]
-
Recombinant baculovirus is generated by co-transfecting the above plasmid and BaculoGold™ virus DNA (Pharmingen) into [0484] Spodoptera frugiperda (“Sf9”) cells (ATCC CRL 1711) using lipofectin (commercially available from GIBCO-BRL). After 4-5 days of incubation at 28° C., the released viruses are harvested and used for further amplifications. Viral infection and protein expression are performed as described by O'Reilley et al., Baculovirus expression vectors: A Laboratory Manual, Oxford: Oxford University Press (1994).
-
Expressed poly-his tagged PRO can then be purified, for example, by Ni[0485] 2+-chelate affinity chromatography as follows. Extracts are prepared from recombinant virus-infected Sf9 cells as described by Rupert et al., Nature, 362:175-179 (1993). Briefly, Sf9 cells are washed, resuspended in sonication buffer (25 mL Hepes, pH 7.9; 12.5 mM MgCl2; 0.1 mM EDTA; 10% glycerol; 0.1% NP-40; 0.4 M KCl), and sonicated twice for 20 seconds on ice. The sonicates are cleared by centrifugation, and the supernatant is diluted 50-fold in loading buffer (50 mM phosphate, 300 mM NaCl, 10% glycerol, pH 7.8) and filtered through a 0.45 μm filter. A Ni2+-NTA agarose column (commercially available from Qiagen) is prepared with a bed volume of 5 mL, washed with 25 mL of water and equilibrated with 25 mL of loading buffer. The filtered cell extract is loaded onto the column at 0.5 mL per minute. The column is washed to baseline A280 with loading buffer, at which point fraction collection is started. Next, the column is washed with a secondary wash buffer (50 mM phosphate; 300 mM NaCl, 10% glycerol, pH 6.0), which elutes nonspecifically bound protein. After reaching A280 baseline again, the column is developed with a 0 to 500 mM Imidazole gradient in the secondary wash buffer. One mL fractions are collected and analyzed by SDS-PAGE and silver staining or Western blot with Ni2+-NTA-conjugated to alkaline phosphatase (Qiagen). Fractions containing the eluted His10-tagged PRO are pooled and dialyzed against loading buffer.
-
Alternatively, purification of the IgG tagged (or Fc tagged) PRO can be performed using known chromatography techniques, including for instance, Protein A or protein G column chromatography. [0486]
-
Many of the PRO polypeptides disclosed herein were successfully expressed as described above. [0487]
EXAMPLE 10
Preparation of Antibodies that Bind PRO
-
This example illustrates preparation of monoclonal antibodies which can specifically bind PRO. [0488]
-
Techniques for producing the monoclonal antibodies are known in the art and are described, for instance, in Goding, supra. Immunogens that may be employed include purified PRO, fusion proteins containing PRO, and cells expressing recombinant PRO on the cell surface. Selection of the immunogen can be made by the skilled artisan without undue experimentation. [0489]
-
Mice, such as Balb/c, are immunized with the PRO immunogen emulsified in complete Freund's adjuvant and injected subcutaneously or intraperitoneally in an amount from 1-100 micrograms. Alternatively, the immunogen is emulsified in MPL-TDM adjuvant (Ribi Immunochemical Research, Hamilton, Mont.) and injected into the animal's hind foot pads. The immunized mice are then boosted 10 to 12 days later with additional immunogen emulsified in the selected adjuvant. Thereafter, for several weeks, the mice may also be boosted with additional immunization injections. Serum samples may be periodically obtained from the mice by retro-orbital bleeding for testing in ELISA assays to detect anti-PRO antibodies. [0490]
-
After a suitable antibody titer has been detected, the animals “positive” for antibodies can be injected with a final intravenous injection of PRO. Three to four days later, the mice are sacrificed and the spleen cells are harvested. The spleen cells are then fused (using 35% polyethylene glycol) to a selected murine myeloma cell line such as P3X63AgU.1, available from ATCC, No. CRL 1597. The fusions generate hybridoma cells which can then be plated in 96 well tissue culture plates containing HAT (hypoxanthine, aminopterin, and thymidine) medium to inhibit proliferation of non-fused cells, myeloma hybrids, and spleen cell hybrids. [0491]
-
The hybridoma cells will be screened in an ELISA for reactivity against PRO. Determination of “positive” hybridoma cells secreting the desired monoclonal antibodies against PRO is within the skill in the art. [0492]
-
The positive hybridoma cells can be injected intraperitoneally into syngeneic Balb/c mice to produce ascites containing the anti-PRO monoclonal antibodies. Alternatively, the hybridoma cells can be grown in tissue culture flasks or roller bottles. Purification of the monoclonal antibodies produced in the ascites can be accomplished using ammonium sulfate precipitation, followed by gel exclusion chromatography. Alternatively, affinity chromatography based upon binding of antibody to protein A or protein G can be employed. [0493]
EXAMPLE 11
Purification of PRO Polypeptides Using Specific Antibodies
-
Native or recombinant PRO polypeptides may be purified by a variety of standard techniques in the art of protein purification. For example, pro-PRO polypeptide, mature PRO polypeptide, or pre-PRO polypeptide is purified by immunoaffinity chromatography using antibodies specific for the PRO polypeptide of interest. In general, an immunoaffinity column is constructed by covalently coupling the anti-PRO polypeptide antibody to an activated chromatographic resin. [0494]
-
Polyclonal immunoglobulins are prepared from immune sera either by precipitation with ammonium sulfate or by purification on immobilized Protein A (Pharmacia LKB Biotechnology, Piscataway, N.J.). Likewise, monoclonal antibodies are prepared from mouse ascites fluid by ammonium sulfate precipitation or chromatography on immobilized Protein A. Partially purified immunoglobulin is covalently attached to a chromatographic resin such as CnBr-activated SEPHAROSE™ (Pharmacia LKB Biotechnology). The antibody is coupled to the resin, the resin is blocked, and the derivative resin is washed according to the manufacturer's instructions. [0495]
-
Such an immunoaffinity column is utilized in the purification of PRO polypeptide by preparing a fraction from cells containing PRO polypeptide in a soluble form. This preparation is derived by solubilization of the whole cell or of a subcellular fraction obtained via differential centrifugation by the addition of detergent or by other methods well known in the art. Alternatively, soluble PRO polypeptide containing a signal sequence may be secreted in useful quantity into the medium in which the cells are grown. [0496]
-
A soluble PRO polypeptide-containing preparation is passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of PRO polypeptide ( e.g. , high ionic strength buffers in the presence of detergent). Then, the column is eluted under conditions that disrupt antibody/PRO polypeptide binding (e.g., a low pH buffer such as approximately pH 2-3, or a high concentration of a chaotrope such as urea or thiocyanate ion), and PRO polypeptide is collected. [0497]
EXAMPLE 12
Drug Screening
-
This invention is particularly useful for screening compounds by using PRO polypeptides or binding fragment thereof in any of a variety of drug screening techniques. The PRO polypeptide or fragment employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the PRO polypeptide or fragment. Drugs are screened against such transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between PRO polypeptide or a fragment and the agent being tested. Alternatively, one can examine the diminution in complex formation between the PRO polypeptide and its target cell or target receptors caused by the agent being tested. [0498]
-
Thus, the present invention provides methods of screening for drugs or any other agents which can affect a PRO polypeptide-associated disease or disorder. These methods comprise contacting such an agent with a PRO polypeptide or fragment thereof and assaying (i) for the presence of a complex between the agent and the PRO polypeptide or fragment, or (ii) for the presence of a complex between the PRO polypeptide or fragment and the cell, by methods well known in the art. In such competitive binding assays, the PRO polypeptide or fragment is typically labeled. After suitable incubation, free PRO polypeptide or fragment is separated from that present in bound form, and the amount of free or uncomplexed label is a measure of the ability of the particular agent to bind to PRO polypeptide or to interfere with the PRO polypeptide/cell complex. [0499]
-
Another technique for drug screening provides high throughput screening for compounds having suitable binding affinity to a polypeptide and is described in detail in WO 84/03564, published on Sep. 13, 1984. Briefly stated, large numbers of different small peptide test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. As applied to a PRO polypeptide, the peptide test compounds are reacted with PRO polypeptide and washed. Bound PRO polypeptide is detected by methods well known in the art. Purified PRO polypeptide can also be coated directly onto plates for use in the aforementioned drug screening techniques. In addition, non-neutralizing antibodies can be used to capture the peptide and immobilize it on the solid support. [0500]
-
This invention also contemplates the use of competitive drug screening assays in which neutralizing antibodies capable of binding PRO polypeptide specifically compete with a test compound for binding to PRO polypeptide or fragments thereof. In this manner, the antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with PRO polypeptide. [0501]
EXAMPLE 13
Rational Drug Design
-
The goal of rational drug design is to produce structural analogs of biologically active polypeptide of interest (i.e., a PRO polypeptide) or of small molecules with which they interact, e.g., agonists, antagonists, or inhibitors. Any of these examples can be used to fashion drugs which are more active or stable forms of the PRO polypeptide or which enhance or interfere with the function of the PRO polypeptide in vivo (c.f., Hodgson, Bio/Technology, 9: 19-21(1991)). [0502]
-
In one approach, the three-dimensional structure of the PRO polypeptide, or of a PRO polypeptide-inhibitor complex, is determined by X-ray crystallography, by computer modeling or, most typically, by a combination of the two approaches. Both the shape and charges of the PRO polypeptide must be ascertained to elucidate the structure and to determine active site(s) of the molecule. Less often, useful information regarding the structure of the PRO polypeptide may be gained by modeling based on the structure of homologous proteins. In both cases, relevant structural information is used to design analogous PRO polypeptide-like molecules or to identify efficient inhibitors. Useful examples of rational drug design may include molecules which have improved activity or stability as shown by Braxton and Wells, Biochemistry, 31:7796-7801(1992) or which act as inhibitors, agonists, or antagonists of native peptides as shown by Athauda et al., J. Biochem., 113:742-746(1993). [0503]
-
It is also possible to isolate a target-specific antibody, selected by functional assay, as described above, and then to solve its crystal structure. This approach, in principle, yields a pharmacore upon which subsequent drug design can be based. It is possible to bypass protein crystallography altogether by generating anti-idiotypic antibodies (anti-ids) to a functional, pharmacologically active antibody. As a mirror image of a mirror image, the binding site of the anti-ids would be expected to be an analog of the original receptor. The anti-id could then be used to identify and isolate peptides from banks of chemically or biologically produced peptides. The isolated peptides would then act as the pharmacore. [0504]
-
By virtue of the present invention, sufficient amounts of the PRO polypeptide may be made available to perform such analytical studies as X-ray crystallography. In addition, knowledge of the PRO polypeptide amino acid sequence provided herein will provide guidance to those employing computer modeling techniques in place of or in addition to X-ray crystallography. [0505]
EXAMPLE 14
Pericyte c-Fos Induction (Assay 93)
-
This assay shows that certain polypeptides of the invention act to induce the expression of c-fos in pericyte cells and, therefore, are useful not only as diagnostic markers for particular types of pericyte-associated tumors but also for giving rise to antagonists which would be expected to be useful for the therapeutic treatment of pericyte-associated tumors. Induction of c-fos expression in pericytes is also indicative of the induction of angiogenesis and, as such, PRO polypeptides capable of inducing the expression of c-fos would be expected to be useful for the treatment of conditions where induced angiogenesis would be beneficial including, for example, wound healing, and the like. Specifically, on [0506] day 1, pericytes are received from VEC Technologies and all but 5 ml of media is removed from flask. On day 2, the pericytes are trypsinized, washed, spun and then plated onto 96 well plates. On day 7, the media is removed and the pericytes are treated with 100 μl of PRO polypeptide test samples and controls (positive control=DME+5% serum +/−PDGF at 500 ng/ml; negative control=protein 32). Replicates are averaged and SD/CV are determined. Fold increase over Protein 32 (buffer control) value indicated by chemiluminescence units (RLU) luminometer reading verses frequency is plotted on a histogram. Two-fold above Protein 32 value is considered positive for the assay. ASY Matrix: Growth media =low glucose DMEM=20% FBS+1× pen strep+1× fungizone. Assay Media=low glucose DMEM +5% FBS.
-
The following polypeptides tested positive in this assay: PRO1347 and PRO1340. [0507]
EXAMPLE 15
Ability of PRO Polypeptides to Stimulate the Release of Proteoglycans from Cartilage (Assay 97)
-
The ability of various PRO polypeptides to stimulate the release of proteoglycans from cartilage tissue was tested as follows. [0508]
-
The metacarphophalangeal joint of 4-6 month old pigs was aseptically dissected, and articular cartilage was removed by free hand slicing being careful to avoid the underlying bone. The cartilage was minced and cultured in bulk for 24 hours in a humidified atmosphere of 95% air, 5% CO[0509] 2 in serum free (SF) media (DME/F12 1:1) with 0.1% BSA and 100 U/ml penicillin and 100 μg/ml streptomycin. After washing three times, approximately 100 mg of articular cartilage was aliquoted into micronics tubes and incubated for an additional 24 hours in the above SF media. PRO polypeptides were then added at 1% either alone or in combination with 18 ng/ml interleukin-1 α, a known stimulator of proteoglycan release from cartilage tissue. The supernatant was then harvested and assayed for the amount of proteoglycans using the 1,9-dimethyl-methylene blue (DMB) colorimetric assay (Farndale and Buttle, Biochem. Biophys. Acta 883:173-177 (1985)). A positive result in this assay indicates that the test polypeptide will find use, for example, in the treatment of sports-related joint problems, articular cartilage defects, osteoarthritis or rheumatoid arthritis.
-
When various PRO polypeptides were tested in the above assay, the polypeptides demonstrated a marked ability to stimulate release of proteoglycans from cartilage tissue both basally and after stimulation with interleukin-1 α and at 24 and 72 hours after treatment, thereby indicating that these PRO polypeptides are useful for stimulating proteoglycan release from cartilage tissue. As such, these PRO polypeptides are useful for the treatment of sports-related joint problems, articular cartilage defects, osteoarthritis or rheumatoid arthritis. The polypeptides testing positive in this assay are: PRO1565, PRO1693, PRO1801 and PRO10096. [0510]
EXAMPLE 16
Detection of Polypeptides That Affect Glucose or FFA Uptake in Skeletal Muscle (Assay 706)
-
This assay is designed to determine whether PRO polypeptides show the ability to affect glucose or FFA uptake by skeletal muscle cells. PRO polypeptides testing positive in this assay would be expected to be useful for the therapeutic treatment of disorders where either the stimulation or inhibition of glucose uptake by skeletal muscle would be beneficial including, for example, diabetes or hyper- or hypo-insulinemia. [0511]
-
In a 96 well format, PRO polypeptides to be assayed are added to primary rat differentiated skeletal muscle, and allowed to incubate overnight. Then fresh media with the PRO polypeptide and +/−insulin are added to the wells. The sample media is then monitored to determine glucose and FFA uptake by the skeletal muscle cells. The insulin will stimulate glucose and FFA uptake by the skeletal muscle, and insulin in media without the PRO polypeptide is used as a positive control, and a limit for scoring. As the PRO polypeptide being tested may either stimulate or inhibit glucose and FFA uptake, results are scored as positive in the assay if greater than 1.5 times or less than 0.5 times the insulin control. [0512]
-
The following PRO polypeptides tested positive as either stimulators or inhibitors of glucose and/or FFA uptake in this assay: PRO4405. [0513]
EXAMPLE 17
Identification of PRO Polypeptides That Stimulate TNF-α Release In Human Blood (Assay 128)
-
This assay shows that certain PRO polypeptides of the present invention act to stimulate the release of TNF-α in human blood. PRO polypeptides testing positive in this assay are useful for, among other things, research purposes where stimulation of the release of TNF-α would be desired and for the therapeutic treatment of conditions wherein enhanced TNF-α release would be beneficial. Specifically, 200 μl of human blood supplemented with 50 mM Hepes buffer (pH 7.2) is aliquotted per well in a 96 well test plate. To each well is then added 300 μl of either the test PRO polypeptide in 50 mM Hepes buffer (at various concentrations) or 50 mM Hepes buffer alone (negative control) and the plates are incubated at 37° C. for 6 hours. The samples are then centrifuged and 50 μl of plasma is collected from each well and tested for the presence of TNF-α by ELISA assay. A positive in the assay is a higher amount of TNF-α in the PRO polypeptide treated samples as compared to the negative control samples. [0514]
-
The following PRO polypeptides tested positive in this assay: PRO263, PRO295, PRO1282, PRO1063, PRO1356, PRO3543, and PRO5990. [0515]
EXAMPLE 18
Tumor Versus Normal Differential Tissue Expression Distribution
-
Oligonucleotide probes were constructed from some of the PRO polypeptide-encoding nucleotide sequences shown in the accompanying figures for use in quantitative PCR amplification reactions. The oligonucleotide probes were chosen so as to give an approximately 200-600 base pair amplified fragment from the 3′ end of its associated template in a standard PCR reaction. The oligonucleotide probes were employed in standard quantitative PCR amplification reactions with cDNA libraries isolated from different human tumor and normal human tissue samples and analyzed by agarose gel electrophoresis so as to obtain a quantitative determination of the level of expression of the PRO polypeptide-encoding nucleic acid in the various tumor and normal tissues tested. β-actin was used as a control to assure that equivalent amounts of nucleic acid was used in each reaction. Identification of the differential expression of the PRO polypeptide-encoding nucleic acid in one or more tumor tissues as compared to one or more normal tissues of the same tissue type renders the molecule useful diagnostically for the determination of the presence or absence of tumor in a subject suspected of possessing a tumor as well as therapeutically as a target for the treatment of a tumor in a subject possessing such a tumor. These assays provided the following results.
[0516] |
|
Molecule | is more highly expressed in: | as compared to: |
|
DNA26843-1389 | normal lung | lung tumor |
| rectum tumor | normal rectum |
DNA30867-1335 | normal kidney | kidney tumor |
DNA40621-1440 | normal lung | lung rumor |
DNA40625-1189 | normal lung | lung tumor |
DNA45409-2511 | melanoma tumor | normal akin |
DNA56406-1704 | kidney tumor | normal kidney |
| normal skin | melanoma rumor |
DNA56410-1414 | normal stomach | stomach tumor |
DNA56436-1448 | normal skin | melanoma tumor |
DNA56855-1447 | normal esophagus | esophageal tumor |
| rectum tumor | normal rectum |
DNA56860-1510 | normal kidney | kidney rumor |
| rectum tumor | normal rectum |
DNA56862-1343 | kidney tumor | normal kidney |
| normal lung | lung rumor |
DNA56868-1478 | normal stomach | stomach tumor |
| normal lung | lung rumor |
DNA56869-1545 | normal esophagus | esophageal tumor |
| normal skin | melanoma tumor |
DNA57704-1452 | normal stomach | stomach tumor |
| rectum rumor | normal rectum |
DNA58723-1588 | normal stomach | stomach tumor |
| kidney rumor | normal kidney |
| normal akin | melanoma tumor |
DNA57827-1493 | normal stomach | stomach tumor |
| normal skin | melanoma tumor |
DNA58737-1473 | esophageal tumor | normal esophagus |
| normal stomach | stomach tumor |
DNA58846-1409 | lung tumor | normal lung |
DNA58850-1495 | esophageal tumor | normal esophagus |
| kidney tumor | normal kidney |
DNA58855-1422 | normal stomach | stomach tumor |
| rectum tumor | normal rectum |
DNA59211-1450 | normal kidney | kidney tumor |
DNA59212-1627 | normal skin | melanoma tumor |
DNA59213-1487 | normal stomach | stomach tumor |
| normal skin | melanoma tumor |
DNA59605-1418 | melanoma rumor | normal skin |
DNA59609-1470 | esophageal tumor | normal esophagus |
DNA59610-1556 | esophageal rumor | normal esophagus |
| lung tumor | normal lung |
| normal skin | melanoma tumor |
DNA59837-2545 | normal skin | melanoma tumor |
DNA59844-2542 | normal skin | melanoma tumor |
| esophageal tumor | normal esophagus |
DNA59854-1459 | normal esophagus | esophageal tumor |
| stomach tumor | normal stomach |
| normal lung | lung tumor |
DNA60625-1507 | normal lung | lung rumor |
DNA60629-1481 | normal esophagus | esophageal tumor |
| normal rectum | rectum tumor |
DNA61755-1554 | normal stomach | stomach tumor |
| kidney tumor | normal kidney |
DNA62812-1594 | normal stomach | stomach tumor |
| normal lung | lung tumor |
| normal rectum | rectum tumor |
| normal skin | melanoma tumor |
DNA62815-1576 | esophageal tumor | normal esophagus |
DNA64881-1602 | normal stomach | stomach tumor |
| normal lung | lung tumor |
DNA64902-1667 | esophageal tumor | normal esophagus |
| kidney tumor | normal kidney |
DNA65403-1565 | normal esophagus | esophageal tumor |
DNA66308-1537 | normal lung | lung tumor |
DNA66519-1535 | kidney tumor | normal kidney |
DNA66521-1583 | normal esophagus | esophageal tumor |
| normal stomach | stomach tumor |
| normal lung | lung tumor |
| normal rectum | rectum tumor |
| normal skin | melanoma tumor |
DNA66658-1584 | normal lung | lung rumor |
| melanoma tumor | normal skin |
DNA66660-1585 | lung rumor | normal lung |
DNA66674-1599 | kidney tumor | normal kidney |
| normal lung | lung tumor |
DNA68862-2546 | melanoma tumor | normal skin |
DNA68866-1644 | normal stomach | stomach tumor |
DNA68871-1638 | lung tumor | normal lung |
| normal skin | melanoma tumor |
DNA68880-1676 | normal lung | lung tumor |
| normal skin | melanoma tumor |
DNA68883-1691 | esophageal rumor | normal esophagus |
DNA68885-1678 | lung tumor | normal lung |
DNA71277-1636 | normal stomach | stomach tumor |
DNA73734-1680 | normal lung | lung tumor |
DNA73735-1681 | esophageal tumor | normal esophagus |
| normal kidney | kidney tumor |
| lung tumor | normal lung |
| normal skin | melanoma tumor |
DNA76393-1664 | esophageal rumor | normal esophagus |
| stomach rumor | normal stomach |
| lung tumor | normal lung |
| rectum rumor | normal rectum |
DNA77568-1626 | normal stomach | stomach rumor |
| lung rumor | normal lung |
DNA77626-1705 | normal rectum | rectum rumor |
DNA81754-2532 | normal skin | melanoma rumor |
DNA81757-2512 | esophageal tumor | normal esophagus |
| normal stomach | stomach rumor |
| melanoma tumor | normal skin |
DNA82302-2529 | normal stomach | stomach rumor |
| normal lung | lung rumor |
DNA82340-2530 | normal esophagus | esophageal rumor |
DNA85066-2534 | lung tumor | normal lung |
| normal skin | melanoma rumor |
DNA87991-2540 | esophageal rumor | normal esophagus |
DNA92238-2539 | normal skin | melanoma rumor |
DNA96787-2534 | normal kidney | kidney rumor |
|
EXAMPLE 19
Identification of Receptor/Ligand Interactions
-
In this assay, various PRO polypeptides are tested for ability to bind to a panel of potential receptor or ligand molecules for the purpose of identifying receptor/ligand interactions. The identification of a ligand for a known receptor, a receptor for a known ligand or a novel receptor/ligand pair is useful for a variety of indications including, for example, targeting bioactive molecules (linked to the ligand or receptor) to a cell known to express the receptor or ligand, use of the receptor or ligand as a reagent to detect the presence of the ligand or receptor in a composition suspected of containing the same, wherein the composition may comprise cells suspected of expressing the ligand or receptor, modulating the growth of or another biological or immunological activity of a cell known to express or respond to the receptor or ligand, modulating the immune response of cells or toward cells that express the receptor or ligand, allowing the preparation of agonists, antagonists and/or antibodies directed against the receptor or ligand which will modulate the growth of or a biological or immunological activity of a cell expressing the receptor or ligand, and various other indications which will be readily apparent to the ordinarily skilled artisan. [0517]
-
The assay is performed as follows. A PRO polypeptide of the present invention suspected of being a ligand for a receptor is expressed as a fusion protein containing the Fc domain of human IgG (an immunoadhesin). Receptor-ligand binding is detected by allowing interaction of the immunoadhesin polypeptide with cells (e.g. Cos cells) expressing candidate PRO polypeptide receptors and visualization of bound immunoadhesin with fluorescent reagents directed toward the Fc fusion domain and examination by microscope. Cells expressing candidate receptors are produced by transient transfection, in parallel, of defined subsets of a library of cDNA expression vectors encoding PRO polypeptides that may function as receptor molecules. Cells are the incubated for 1 hour in the presence of the PRO polypeptide immunoadhesin being tested for possible receptor binding. The cells are then washed and fixed with paraformaldehyde. The cells are then incubated with fluorescent conjugated antibody directed against the Fc portion of the PRO polypeptide immunoadhesin (e.g. FITC conjugated goat anti-human-Fc antibody). The cells are then washed again and examined by microscope. A positive interaction is judged by the presence of fluorescent labeling of cells transfected with cDNA encoding a particular PRO polypeptide receptor or pool of receptors and an absence of similar fluorescent labeling of similarly prepared cells that have been transfected with other cDNA or pools of cDNA, if a defined pool of cDNA expression vectors is judged to be positive for interaction with a PRO polypeptide immunoadhesin, the individual cDNA species that comprise the pool are tested individually (the pool is “broken down”) to determine the specific cDNA that encodes a receptor able to interact with the PRO polypeptide immunoadhesin. [0518]
-
In another embodiment of this assay, an epitope-tagged potential ligand PRO polypeptide (e.g. 8 histidine “His” tag) is allowed to interact with a panel of potential receptor PRO polypeptide molecules that have been expressed as fusions with the Fc domain of human IgG (immunoadhesins). Following a 1 hour co-incubation with the epitope tagged PRO polypeptide, the candidate receptors are each immunoprecipitated with protein A beads and the beads are washed. Potential ligand interaction is determined by western blot analysis of the immunoprecipitated complexes with antibody directed towards the epitope tag. An interaction is judged to occur if a band of the anticipated molecular weight of the epitope tagged protein is observed in the western blot analysis with a candidate receptor, but is not observed to occur with the other members of the panel of potential receptors. [0519]
-
Using these assays, the following receptor/ligand interactions have been herein identified: [0520]
-
(1) PRO10272 binds to PRO5801. [0521]
-
(2) PRO20110 binds to the human IL-17 receptor (Yao et al., Cytokine 9(11):794-800 (1997); also herein designated as PRO1) and to PRO20040. [0522]
-
(3) PRO10096 binds to PRO20233. [0523]
-
(4) PRO19670 binds to PRO1890. [0524]
-
The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by the construct deposited, since the deposited embodiment is intended as a single illustration of certain aspects of the invention and any constructs that are functionally equivalent are within the scope of this invention. The deposit of material herein does not constitute an admission that the written description herein contained is inadequate to enable the practice of any aspect of the invention, including the best mode thereof, nor is it to be construed as limiting the scope of the claims to the specific illustrations that it represents. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims. [0525]
-
1
170
1
1173
DNA
Homo Sapien
1
ggggcttcgg cgccagcggc cagcgctagt cggtctggta aggatttaca 50
aaaggtgcag gtatgagcag gtctgaagac taacattttg tgaagttgta 100
aaacagaaaa cctgttagaa atgtggtggt ttcagcaagg cctcagtttc 150
cttccttcag cccttgtaat ttggacatct gctgctttca tattttcata 200
cattactgca gtaacactcc accatataga cccggcttta ccttatatca 250
gtgacactgg tacagtagct ccagaaaaat gcttatttgg ggcaatgcta 300
aatattgcgg cagttttatg cattgctacc atttatgttc gttataagca 350
agttcatgct ctgagtcctg aagagaacgt tatcatcaaa ttaaacaagg 400
ctggccttgt acttggaata ctgagttgtt taggactttc tattgtggca 450
aacttccaga aaacaaccct ttttgctgca catgtaagtg gagctgtgct 500
tacctttggt atgggctcat tatatatgtt tgttcagacc atcctttcct 550
accaaatgca gcccaaaatc catggcaaac aagtcttctg gatcagactg 600
ttgttggtta tctggtgtgg agtaagtgca cttagcatgc tgacttgctc 650
atcagttttg cacagtggca attttgggac tgatttagaa cagaaactcc 700
attggaaccc cgaggacaaa ggttatgtgc ttcacatgat cactactgca 750
gcagaatggt ctatgtcatt ttccttcttt ggttttttcc tgacttacat 800
tcgtgatttt cagaaaattt ctttacgggt ggaagccaat ttacatggat 850
taaccctcta tgacactgca ccttgcccta ttaacaatga acgaacacgg 900
ctactttcca gagatatttg atgaaaggat aaaatatttc tgtaatgatt 950
atgattctca gggattgggg aaaggttcac agaagttgct tattcttctc 1000
tgaaattttc aaccacttaa tcaaggctga cagtaacact gatgaatgct 1050
gataatcagg aaacatgaaa gaagccattt gatagattat tctaaaggat 1100
atcatcaaga agactattaa aaacacctat gcctatactt ttttatctca 1150
gaaaataaag tcaaaagact atg 1173
2
266
PRT
Homo Sapien
2
Met Trp Trp Phe Gln Gln Gly Leu Ser Phe Leu Pro Ser Ala Leu
1 5 10 15
Val Ile Trp Thr Ser Ala Ala Phe Ile Phe Ser Tyr Ile Thr Ala
20 25 30
Val Thr Leu His His Ile Asp Pro Ala Leu Pro Tyr Ile Ser Asp
35 40 45
Thr Gly Thr Val Ala Pro Glu Lys Cys Leu Phe Gly Ala Met Leu
50 55 60
Asn Ile Ala Ala Val Leu Cys Ile Ala Thr Ile Tyr Val Arg Tyr
65 70 75
Lys Gln Val His Ala Leu Ser Pro Glu Glu Asn Val Ile Ile Lys
80 85 90
Leu Asn Lys Ala Gly Leu Val Leu Gly Ile Leu Ser Cys Leu Gly
95 100 105
Leu Ser Ile Val Ala Asn Phe Gln Lys Thr Thr Leu Phe Ala Ala
110 115 120
His Val Ser Gly Ala Val Leu Thr Phe Gly Met Gly Ser Leu Tyr
125 130 135
Met Phe Val Gln Thr Ile Leu Ser Tyr Gln Met Gln Pro Lys Ile
140 145 150
His Gly Lys Gln Val Phe Trp Ile Arg Leu Leu Leu Val Ile Trp
155 160 165
Cys Gly Val Ser Ala Leu Ser Met Leu Thr Cys Ser Ser Val Leu
170 175 180
His Ser Gly Asn Phe Gly Thr Asp Leu Glu Gln Lys Leu His Trp
185 190 195
Asn Pro Glu Asp Lys Gly Tyr Val Leu His Met Ile Thr Thr Ala
200 205 210
Ala Glu Trp Ser Met Ser Phe Ser Phe Phe Gly Phe Phe Leu Thr
215 220 225
Tyr Ile Arg Asp Phe Gln Lys Ile Ser Leu Arg Val Glu Ala Asn
230 235 240
Leu His Gly Leu Thr Leu Tyr Asp Thr Ala Pro Cys Pro Ile Asn
245 250 255
Asn Glu Arg Thr Arg Leu Leu Ser Arg Asp Ile
260 265
3
2037
DNA
Homo Sapien
3
cggacgcgtg ggcggacgcg tgggggagag ccgcagtccc ggctgcagca 50
cctgggagaa ggcagaccgt gtgagggggc ctgtggcccc agcgtgctgt 100
ggcctcgggg agtgggaagt ggaggcagga gccttcctta cacttcgcca 150
tgagtttcct catcgactcc agcatcatga ttacctccca gatactattt 200
tttggatttg ggtggctttt cttcatgcgc caattgttta aagactatga 250
gatacgtcag tatgttgtac aggtgatctt ctccgtgacg tttgcatttt 300
cttgcaccat gtttgagctc atcatctttg aaatcttagg agtattgaat 350
agcagctccc gttattttca ctggaaaatg aacctgtgtg taattctgct 400
gatcctggtt ttcatggtgc ctttttacat tggctatttt attgtgagca 450
atatccgact actgcataaa caacgactgc ttttttcctg tctcttatgg 500
ctgaccttta tgtatttctt ctggaaacta ggagatccct ttcccattct 550
cagcccaaaa catgggatct tatccataga acagctcatc agccgggttg 600
gtgtgattgg agtgactctc atggctcttc tttctggatt tggtgctgtc 650
aactgcccat acacttacat gtcttacttc ctcaggaatg tgactgacac 700
ggatattcta gccctggaac ggcgactgct gcaaaccatg gatatgatca 750
taagcaaaaa gaaaaggatg gcaatggcac ggagaacaat gttccagaag 800
ggggaagtgc ataacaaacc atcaggtttc tggggaatga taaaaagtgt 850
taccacttca gcatcaggaa gtgaaaatct tactcttatt caacaggaag 900
tggatgcttt ggaagaatta agcaggcagc tttttctgga aacagctgat 950
ctatatgcta ccaaggagag aatagaatac tccaaaacct tcaaggggaa 1000
atattttaat tttcttggtt actttttctc tatttactgt gtttggaaaa 1050
ttttcatggc taccatcaat attgtttttg atcgagttgg gaaaacggat 1100
cctgtcacaa gaggcattga gatcactgtg aattatctgg gaatccaatt 1150
tgatgtgaag ttttggtccc aacacatttc cttcattctt gttggaataa 1200
tcatcgtcac atccatcaga ggattgctga tcactcttac caagttcttt 1250
tatgccatct ctagcagtaa gtcctccaat gtcattgtcc tgctattagc 1300
acagataatg ggcatgtact ttgtctcctc tgtgctgctg atccgaatga 1350
gtatgccttt agaataccgc accataatca ctgaagtcct tggagaactg 1400
cagttcaact tctatcaccg ttggtttgat gtgatcttcc tggtcagcgc 1450
tctctctagc atactcttcc tctatttggc tcacaaacag gcaccagaga 1500
agcaaatggc accttgaact taagcctact acagactgtt agaggccagt 1550
ggtttcaaaa tttagatata agagggggga aaaatggaac cagggcctga 1600
cattttataa acaaacaaaa tgctatggta gcatttttca ccttcatagc 1650
atactccttc cccgtcaggt gatactatga ccatgagtag catcagccag 1700
aacatgagag ggagaactaa ctcaagacaa tactcagcag agagcatccc 1750
gtgtggatat gaggctggtg tagaggcgga gaggagccaa gaaactaaag 1800
gtgaaaaata cactggaact ctggggcaag acatgtctat ggtagctgag 1850
ccaaacacgt aggatttccg ttttaaggtt cacatggaaa aggttatagc 1900
tttgccttga gattgactca ttaaaatcag agactgtaac aaaaaaaaaa 1950
aaaaaaaaaa agggcggccg cgactctaga gtcgacctgc agaagcttgg 2000
ccgccatggc ccaacttgtt tattgcagct tataatg 2037
4
455
PRT
Homo Sapien
4
Met Ser Phe Leu Ile Asp Ser Ser Ile Met Ile Thr Ser Gln Ile
1 5 10 15
Leu Phe Phe Gly Phe Gly Trp Leu Phe Phe Met Arg Gln Leu Phe
20 25 30
Lys Asp Tyr Glu Ile Arg Gln Tyr Val Val Gln Val Ile Phe Ser
35 40 45
Val Thr Phe Ala Phe Ser Cys Thr Met Phe Glu Leu Ile Ile Phe
50 55 60
Glu Ile Leu Gly Val Leu Asn Ser Ser Ser Arg Tyr Phe His Trp
65 70 75
Lys Met Asn Leu Cys Val Ile Leu Leu Ile Leu Val Phe Met Val
80 85 90
Pro Phe Tyr Ile Gly Tyr Phe Ile Val Ser Asn Ile Arg Leu Leu
95 100 105
His Lys Gln Arg Leu Leu Phe Ser Cys Leu Leu Trp Leu Thr Phe
110 115 120
Met Tyr Phe Phe Trp Lys Leu Gly Asp Pro Phe Pro Ile Leu Ser
125 130 135
Pro Lys His Gly Ile Leu Ser Ile Glu Gln Leu Ile Ser Arg Val
140 145 150
Gly Val Ile Gly Val Thr Leu Met Ala Leu Leu Ser Gly Phe Gly
155 160 165
Ala Val Asn Cys Pro Tyr Thr Tyr Met Ser Tyr Phe Leu Arg Asn
170 175 180
Val Thr Asp Thr Asp Ile Leu Ala Leu Glu Arg Arg Leu Leu Gln
185 190 195
Thr Met Asp Met Ile Ile Ser Lys Lys Lys Arg Met Ala Met Ala
200 205 210
Arg Arg Thr Met Phe Gln Lys Gly Glu Val His Asn Lys Pro Ser
215 220 225
Gly Phe Trp Gly Met Ile Lys Ser Val Thr Thr Ser Ala Ser Gly
230 235 240
Ser Glu Asn Leu Thr Leu Ile Gln Gln Glu Val Asp Ala Leu Glu
245 250 255
Glu Leu Ser Arg Gln Leu Phe Leu Glu Thr Ala Asp Leu Tyr Ala
260 265 270
Thr Lys Glu Arg Ile Glu Tyr Ser Lys Thr Phe Lys Gly Lys Tyr
275 280 285
Phe Asn Phe Leu Gly Tyr Phe Phe Ser Ile Tyr Cys Val Trp Lys
290 295 300
Ile Phe Met Ala Thr Ile Asn Ile Val Phe Asp Arg Val Gly Lys
305 310 315
Thr Asp Pro Val Thr Arg Gly Ile Glu Ile Thr Val Asn Tyr Leu
320 325 330
Gly Ile Gln Phe Asp Val Lys Phe Trp Ser Gln His Ile Ser Phe
335 340 345
Ile Leu Val Gly Ile Ile Ile Val Thr Ser Ile Arg Gly Leu Leu
350 355 360
Ile Thr Leu Thr Lys Phe Phe Tyr Ala Ile Ser Ser Ser Lys Ser
365 370 375
Ser Asn Val Ile Val Leu Leu Leu Ala Gln Ile Met Gly Met Tyr
380 385 390
Phe Val Ser Ser Val Leu Leu Ile Arg Met Ser Met Pro Leu Glu
395 400 405
Tyr Arg Thr Ile Ile Thr Glu Val Leu Gly Glu Leu Gln Phe Asn
410 415 420
Phe Tyr His Arg Trp Phe Asp Val Ile Phe Leu Val Ser Ala Leu
425 430 435
Ser Ser Ile Leu Phe Leu Tyr Leu Ala His Lys Gln Ala Pro Glu
440 445 450
Lys Gln Met Ala Pro
455
5
2372
DNA
Homo Sapien
5
agcagggaaa tccggatgtc tcggttatga agtggagcag tgagtgtgag 50
cctcaacata gttccagaac tctccatccg gactagttat tgagcatctg 100
cctctcatat caccagtggc catctgaggt gtttccctgg ctctgaaggg 150
gtaggcacga tggccaggtg cttcagcctg gtgttgcttc tcacttccat 200
ctggaccacg aggctcctgg tccaaggctc tttgcgtgca gaagagcttt 250
ccatccaggt gtcatgcaga attatgggga tcacccttgt gagcaaaaag 300
gcgaaccagc agctgaattt cacagaagct aaggaggcct gtaggctgct 350
gggactaagt ttggccggca aggaccaagt tgaaacagcc ttgaaagcta 400
gctttgaaac ttgcagctat ggctgggttg gagatggatt cgtggtcatc 450
tctaggatta gcccaaaccc caagtgtggg aaaaatgggg tgggtgtcct 500
gatttggaag gttccagtga gccgacagtt tgcagcctat tgttacaact 550
catctgatac ttggactaac tcgtgcattc cagaaattat caccaccaaa 600
gatcccatat tcaacactca aactgcaaca caaacaacag aatttattgt 650
cagtgacagt acctactcgg tggcatcccc ttactctaca atacctgccc 700
ctactactac tcctcctgct ccagcttcca cttctattcc acggagaaaa 750
aaattgattt gtgtcacaga agtttttatg gaaactagca ccatgtctac 800
agaaactgaa ccatttgttg aaaataaagc agcattcaag aatgaagctg 850
ctgggtttgg aggtgtcccc acggctctgc tagtgcttgc tctcctcttc 900
tttggtgctg cagctggtct tggattttgc tatgtcaaaa ggtatgtgaa 950
ggccttccct tttacaaaca agaatcagca gaaggaaatg atcgaaacca 1000
aagtagtaaa ggaggagaag gccaatgata gcaaccctaa tgaggaatca 1050
aagaaaactg ataaaaaccc agaagagtcc aagagtccaa gcaaaactac 1100
cgtgcgatgc ctggaagctg aagtttagat gagacagaaa tgaggagaca 1150
cacctgaggc tggtttcttt catgctcctt accctgcccc agctggggaa 1200
atcaaaaggg ccaaagaacc aaagaagaaa gtccaccctt ggttcctaac 1250
tggaatcagc tcaggactgc cattggacta tggagtgcac caaagagaat 1300
gcccttctcc ttattgtaac cctgtctgga tcctatcctc ctacctccaa 1350
agcttcccac ggcctttcta gcctggctat gtcctaataa tatcccactg 1400
ggagaaagga gttttgcaaa gtgcaaggac ctaaaacatc tcatcagtat 1450
ccagtggtaa aaaggcctcc tggctgtctg aggctaggtg ggttgaaagc 1500
caaggagtca ctgagaccaa ggctttctct actgattccg cagctcagac 1550
cctttcttca gctctgaaag agaaacacgt atcccacctg acatgtcctt 1600
ctgagcccgg taagagcaaa agaatggcag aaaagtttag cccctgaaag 1650
ccatggagat tctcataact tgagacctaa tctctgtaaa gctaaaataa 1700
agaaatagaa caaggctgag gatacgacag tacactgtca gcagggactg 1750
taaacacaga cagggtcaaa gtgttttctc tgaacacatt gagttggaat 1800
cactgtttag aacacacaca cttacttttt ctggtctcta ccactgctga 1850
tattttctct aggaaatata cttttacaag taacaaaaat aaaaactctt 1900
ataaatttct atttttatct gagttacaga aatgattact aaggaagatt 1950
actcagtaat ttgtttaaaa agtaataaaa ttcaacaaac atttgctgaa 2000
tagctactat atgtcaagtg ctgtgcaagg tattacactc tgtaattgaa 2050
tattattcct caaaaaattg cacatagtag aacgctatct gggaagctat 2100
ttttttcagt tttgatattt ctagcttatc tacttccaaa ctaattttta 2150
tttttgctga gactaatctt attcattttc tctaatatgg caaccattat 2200
aaccttaatt tattattaac atacctaaga agtacattgt tacctctata 2250
taccaaagca cattttaaaa gtgccattaa caaatgtatc actagccctc 2300
ctttttccaa caagaaggga ctgagagatg cagaaatatt tgtgacaaaa 2350
aattaaagca tttagaaaac tt 2372
6
322
PRT
Homo Sapien
6
Met Ala Arg Cys Phe Ser Leu Val Leu Leu Leu Thr Ser Ile Trp
1 5 10 15
Thr Thr Arg Leu Leu Val Gln Gly Ser Leu Arg Ala Glu Glu Leu
20 25 30
Ser Ile Gln Val Ser Cys Arg Ile Met Gly Ile Thr Leu Val Ser
35 40 45
Lys Lys Ala Asn Gln Gln Leu Asn Phe Thr Glu Ala Lys Glu Ala
50 55 60
Cys Arg Leu Leu Gly Leu Ser Leu Ala Gly Lys Asp Gln Val Glu
65 70 75
Thr Ala Leu Lys Ala Ser Phe Glu Thr Cys Ser Tyr Gly Trp Val
80 85 90
Gly Asp Gly Phe Val Val Ile Ser Arg Ile Ser Pro Asn Pro Lys
95 100 105
Cys Gly Lys Asn Gly Val Gly Val Leu Ile Trp Lys Val Pro Val
110 115 120
Ser Arg Gln Phe Ala Ala Tyr Cys Tyr Asn Ser Ser Asp Thr Trp
125 130 135
Thr Asn Ser Cys Ile Pro Glu Ile Ile Thr Thr Lys Asp Pro Ile
140 145 150
Phe Asn Thr Gln Thr Ala Thr Gln Thr Thr Glu Phe Ile Val Ser
155 160 165
Asp Ser Thr Tyr Ser Val Ala Ser Pro Tyr Ser Thr Ile Pro Ala
170 175 180
Pro Thr Thr Thr Pro Pro Ala Pro Ala Ser Thr Ser Ile Pro Arg
185 190 195
Arg Lys Lys Leu Ile Cys Val Thr Glu Val Phe Met Glu Thr Ser
200 205 210
Thr Met Ser Thr Glu Thr Glu Pro Phe Val Glu Asn Lys Ala Ala
215 220 225
Phe Lys Asn Glu Ala Ala Gly Phe Gly Gly Val Pro Thr Ala Leu
230 235 240
Leu Val Leu Ala Leu Leu Phe Phe Gly Ala Ala Ala Gly Leu Gly
245 250 255
Phe Cys Tyr Val Lys Arg Tyr Val Lys Ala Phe Pro Phe Thr Asn
260 265 270
Lys Asn Gln Gln Lys Glu Met Ile Glu Thr Lys Val Val Lys Glu
275 280 285
Glu Lys Ala Asn Asp Ser Asn Pro Asn Glu Glu Ser Lys Lys Thr
290 295 300
Asp Lys Asn Pro Glu Glu Ser Lys Ser Pro Ser Lys Thr Thr Val
305 310 315
Arg Cys Leu Glu Ala Glu Val
320
7
2586
DNA
Homo Sapien
7
cgccgcgctc ccgcacccgc ggcccgccca ccgcgccgct cccgcatctg 50
cacccgcagc ccggcggcct cccggcggga gcgagcagat ccagtccggc 100
ccgcagcgca actcggtcca gtcggggcgg cggctgcggg cgcagagcgg 150
agatgcagcg gcttggggcc accctgctgt gcctgctgct ggcggcggcg 200
gtccccacgg cccccgcgcc cgctccgacg gcgacctcgg ctccagtcaa 250
gcccggcccg gctctcagct acccgcagga ggaggccacc ctcaatgaga 300
tgttccgcga ggttgaggaa ctgatggagg acacgcagca caaattgcgc 350
agcgcggtgg aagagatgga ggcagaagaa gctgctgcta aagcatcatc 400
agaagtgaac ctggcaaact tacctcccag ctatcacaat gagaccaaca 450
cagacacgaa ggttggaaat aataccatcc atgtgcaccg agaaattcac 500
aagataacca acaaccagac tggacaaatg gtcttttcag agacagttat 550
cacatctgtg ggagacgaag aaggcagaag gagccacgag tgcatcatcg 600
acgaggactg tgggcccagc atgtactgcc agtttgccag cttccagtac 650
acctgccagc catgccgggg ccagaggatg ctctgcaccc gggacagtga 700
gtgctgtgga gaccagctgt gtgtctgggg tcactgcacc aaaatggcca 750
ccaggggcag caatgggacc atctgtgaca accagaggga ctgccagccg 800
gggctgtgct gtgccttcca gagaggcctg ctgttccctg tgtgcacacc 850
cctgcccgtg gagggcgagc tttgccatga ccccgccagc cggcttctgg 900
acctcatcac ctgggagcta gagcctgatg gagccttgga ccgatgccct 950
tgtgccagtg gcctcctctg ccagccccac agccacagcc tggtgtatgt 1000
gtgcaagccg accttcgtgg ggagccgtga ccaagatggg gagatcctgc 1050
tgcccagaga ggtccccgat gagtatgaag ttggcagctt catggaggag 1100
gtgcgccagg agctggagga cctggagagg agcctgactg aagagatggc 1150
gctgggggag cctgcggctg ccgccgctgc actgctggga ggggaagaga 1200
tttagatctg gaccaggctg tgggtagatg tgcaatagaa atagctaatt 1250
tatttcccca ggtgtgtgct ttaggcgtgg gctgaccagg cttcttccta 1300
catcttcttc ccagtaagtt tcccctctgg cttgacagca tgaggtgttg 1350
tgcatttgtt cagctccccc aggctgttct ccaggcttca cagtctggtg 1400
cttgggagag tcaggcaggg ttaaactgca ggagcagttt gccacccctg 1450
tccagattat tggctgcttt gcctctacca gttggcagac agccgtttgt 1500
tctacatggc tttgataatt gtttgagggg aggagatgga aacaatgtgg 1550
agtctccctc tgattggttt tggggaaatg tggagaagag tgccctgctt 1600
tgcaaacatc aacctggcaa aaatgcaaca aatgaatttt ccacgcagtt 1650
ctttccatgg gcataggtaa gctgtgcctt cagctgttgc agatgaaatg 1700
ttctgttcac cctgcattac atgtgtttat tcatccagca gtgttgctca 1750
gctcctacct ctgtgccagg gcagcatttt catatccaag atcaattccc 1800
tctctcagca cagcctgggg agggggtcat tgttctcctc gtccatcagg 1850
gatctcagag gctcagagac tgcaagctgc ttgcccaagt cacacagcta 1900
gtgaagacca gagcagtttc atctggttgt gactctaagc tcagtgctct 1950
ctccactacc ccacaccagc cttggtgcca ccaaaagtgc tccccaaaag 2000
gaaggagaat gggatttttc ttgaggcatg cacatctgga attaaggtca 2050
aactaattct cacatccctc taaaagtaaa ctactgttag gaacagcagt 2100
gttctcacag tgtggggcag ccgtccttct aatgaagaca atgatattga 2150
cactgtccct ctttggcagt tgcattagta actttgaaag gtatatgact 2200
gagcgtagca tacaggttaa cctgcagaaa cagtacttag gtaattgtag 2250
ggcgaggatt ataaatgaaa tttgcaaaat cacttagcag caactgaaga 2300
caattatcaa ccacgtggag aaaatcaaac cgagcagggc tgtgtgaaac 2350
atggttgtaa tatgcgactg cgaacactga actctacgcc actccacaaa 2400
tgatgttttc aggtgtcatg gactgttgcc accatgtatt catccagagt 2450
tcttaaagtt taaagttgca catgattgta taagcatgct ttctttgagt 2500
tttaaattat gtataaacat aagttgcatt tagaaatcaa gcataaatca 2550
cttcaactgc aaaaaaaaaa aaaaaaaaaa aaaaaa 2586
8
350
PRT
Homo Sapien
8
Met Gln Arg Leu Gly Ala Thr Leu Leu Cys Leu Leu Leu Ala Ala
1 5 10 15
Ala Val Pro Thr Ala Pro Ala Pro Ala Pro Thr Ala Thr Ser Ala
20 25 30
Pro Val Lys Pro Gly Pro Ala Leu Ser Tyr Pro Gln Glu Glu Ala
35 40 45
Thr Leu Asn Glu Met Phe Arg Glu Val Glu Glu Leu Met Glu Asp
50 55 60
Thr Gln His Lys Leu Arg Ser Ala Val Glu Glu Met Glu Ala Glu
65 70 75
Glu Ala Ala Ala Lys Ala Ser Ser Glu Val Asn Leu Ala Asn Leu
80 85 90
Pro Pro Ser Tyr His Asn Glu Thr Asn Thr Asp Thr Lys Val Gly
95 100 105
Asn Asn Thr Ile His Val His Arg Glu Ile His Lys Ile Thr Asn
110 115 120
Asn Gln Thr Gly Gln Met Val Phe Ser Glu Thr Val Ile Thr Ser
125 130 135
Val Gly Asp Glu Glu Gly Arg Arg Ser His Glu Cys Ile Ile Asp
140 145 150
Glu Asp Cys Gly Pro Ser Met Tyr Cys Gln Phe Ala Ser Phe Gln
155 160 165
Tyr Thr Cys Gln Pro Cys Arg Gly Gln Arg Met Leu Cys Thr Arg
170 175 180
Asp Ser Glu Cys Cys Gly Asp Gln Leu Cys Val Trp Gly His Cys
185 190 195
Thr Lys Met Ala Thr Arg Gly Ser Asn Gly Thr Ile Cys Asp Asn
200 205 210
Gln Arg Asp Cys Gln Pro Gly Leu Cys Cys Ala Phe Gln Arg Gly
215 220 225
Leu Leu Phe Pro Val Cys Thr Pro Leu Pro Val Glu Gly Glu Leu
230 235 240
Cys His Asp Pro Ala Ser Arg Leu Leu Asp Leu Ile Thr Trp Glu
245 250 255
Leu Glu Pro Asp Gly Ala Leu Asp Arg Cys Pro Cys Ala Ser Gly
260 265 270
Leu Leu Cys Gln Pro His Ser His Ser Leu Val Tyr Val Cys Lys
275 280 285
Pro Thr Phe Val Gly Ser Arg Asp Gln Asp Gly Glu Ile Leu Leu
290 295 300
Pro Arg Glu Val Pro Asp Glu Tyr Glu Val Gly Ser Phe Met Glu
305 310 315
Glu Val Arg Gln Glu Leu Glu Asp Leu Glu Arg Ser Leu Thr Glu
320 325 330
Glu Met Ala Leu Gly Glu Pro Ala Ala Ala Ala Ala Ala Leu Leu
335 340 345
Gly Gly Glu Glu Ile
350
9
1395
DNA
Homo Sapien
9
cggacgcgtg ggcggacgcg tgggggctgt gagaaagtgc caataaatac 50
atcatgcaac cccacggccc accttgtgaa ctcctcgtgc ccagggctga 100
tgtgcgtctt ccagggctac tcatccaaag gcctaatcca acgttctgtc 150
ttcaatctgc aaatctatgg ggtcctgggg ctcttctgga cccttaactg 200
ggtactggcc ctgggccaat gcgtcctcgc tggagccttt gcctccttct 250
actgggcctt ccacaagccc caggacatcc ctaccttccc cttaatctct 300
gccttcatcc gcacactccg ttaccacact gggtcattgg catttggagc 350
cctcatcctg acccttgtgc agatagcccg ggtcatcttg gagtatattg 400
accacaagct cagaggagtg cagaaccctg tagcccgctg catcatgtgc 450
tgtttcaagt gctgcctctg gtgtctggaa aaatttatca agttcctaaa 500
ccgcaatgca tacatcatga tcgccatcta cgggaagaat ttctgtgtct 550
cagccaaaaa tgcgttcatg ctactcatgc gaaacattgt cagggtggtc 600
gtcctggaca aagtcacaga cctgctgctg ttctttggga agctgctggt 650
ggtcggaggc gtgggggtcc tgtccttctt ttttttctcc ggtcgcatcc 700
cggggctggg taaagacttt aagagccccc acctcaacta ttactggctg 750
cccatcatga cctccatcct gggggcctat gtcatcgcca gcggcttctt 800
cagcgttttc ggcatgtgtg tggacacgct cttcctctgc ttcctggaag 850
acctggagcg gaacaacggc tccctggacc ggccctacta catgtccaag 900
agccttctaa agattctggg caagaagaac gaggcgcccc cggacaacaa 950
gaagaggaag aagtgacagc tccggccctg atccaggact gcaccccacc 1000
cccaccgtcc agccatccaa cctcacttcg ccttacaggt ctccattttg 1050
tggtaaaaaa aggttttagg ccaggcgccg tggctcacgc ctgtaatcca 1100
acactttgag aggctgaggc gggcggatca cctgagtcag gagttcgaga 1150
ccagcctggc caacatggtg aaacctccgt ctctattaaa aatacaaaaa 1200
ttagccgaga gtggtggcat gcacctgtca tcccagctac tcgggaggct 1250
gaggcaggag aatcgcttga acccgggagg cagaggttgc agtgagccga 1300
gatcgcgcca ctgcactcca acctgggtga cagactctgt ctccaaaaca 1350
aaacaaacaa acaaaaagat tttattaaag atattttgtt aactc 1395
10
321
PRT
Homo Sapien
10
Arg Thr Arg Gly Arg Thr Arg Gly Gly Cys Glu Lys Val Pro Ile
1 5 10 15
Asn Thr Ser Cys Asn Pro Thr Ala His Leu Val Asn Ser Ser Cys
20 25 30
Pro Gly Leu Met Cys Val Phe Gln Gly Tyr Ser Ser Lys Gly Leu
35 40 45
Ile Gln Arg Ser Val Phe Asn Leu Gln Ile Tyr Gly Val Leu Gly
50 55 60
Leu Phe Trp Thr Leu Asn Trp Val Leu Ala Leu Gly Gln Cys Val
65 70 75
Leu Ala Gly Ala Phe Ala Ser Phe Tyr Trp Ala Phe His Lys Pro
80 85 90
Gln Asp Ile Pro Thr Phe Pro Leu Ile Ser Ala Phe Ile Arg Thr
95 100 105
Leu Arg Tyr His Thr Gly Ser Leu Ala Phe Gly Ala Leu Ile Leu
110 115 120
Thr Leu Val Gln Ile Ala Arg Val Ile Leu Glu Tyr Ile Asp His
125 130 135
Lys Leu Arg Gly Val Gln Asn Pro Val Ala Arg Cys Ile Met Cys
140 145 150
Cys Phe Lys Cys Cys Leu Trp Cys Leu Glu Lys Phe Ile Lys Phe
155 160 165
Leu Asn Arg Asn Ala Tyr Ile Met Ile Ala Ile Tyr Gly Lys Asn
170 175 180
Phe Cys Val Ser Ala Lys Asn Ala Phe Met Leu Leu Met Arg Asn
185 190 195
Ile Val Arg Val Val Val Leu Asp Lys Val Thr Asp Leu Leu Leu
200 205 210
Phe Phe Gly Lys Leu Leu Val Val Gly Gly Val Gly Val Leu Ser
215 220 225
Phe Phe Phe Phe Ser Gly Arg Ile Pro Gly Leu Gly Lys Asp Phe
230 235 240
Lys Ser Pro His Leu Asn Tyr Tyr Trp Leu Pro Ile Met Thr Ser
245 250 255
Ile Leu Gly Ala Tyr Val Ile Ala Ser Gly Phe Phe Ser Val Phe
260 265 270
Gly Met Cys Val Asp Thr Leu Phe Leu Cys Phe Leu Glu Asp Leu
275 280 285
Glu Arg Asn Asn Gly Ser Leu Asp Arg Pro Tyr Tyr Met Ser Lys
290 295 300
Ser Leu Leu Lys Ile Leu Gly Lys Lys Asn Glu Ala Pro Pro Asp
305 310 315
Asn Lys Lys Arg Lys Lys
320
11
1901
DNA
Homo Sapien
11
gccccgcgcc cggcgccggg cgcccgaagc cgggagccac cgccatgggg 50
gcctgcctgg gagcctgctc cctgctcagc tgcgcgtcct gcctctgcgg 100
ctctgccccc tgcatcctgt gcagctgctg ccccgccagc cgcaactcca 150
ccgtgagccg cctcatcttc acgttcttcc tcttcctggg ggtgctggtg 200
tccatcatta tgctgagccc gggcgtggag agtcagctct acaagctgcc 250
ctgggtgtgt gaggaggggg ccgggatccc caccgtcctg cagggccaca 300
tcgactgtgg ctccctgctt ggctaccgcg ctgtctaccg catgtgcttc 350
gccacggcgg ccttcttctt cttctttttc accctgctca tgctctgcgt 400
gagcagcagc cgggaccccc gggctgccat ccagaatggg ttttggttct 450
ttaagttcct gatcctggtg ggcctcaccg tgggtgcctt ctacatccct 500
gacggctcct tcaccaacat ctggttctac ttcggcgtcg tgggctcctt 550
cctcttcatc ctcatccagc tggtgctgct catcgacttt gcgcactcct 600
ggaaccagcg gtggctgggc aaggccgagg agtgcgattc ccgtgcctgg 650
tacgcaggcc tcttcttctt cactctcctc ttctacttgc tgtcgatcgc 700
ggccgtggcg ctgatgttca tgtactacac tgagcccagc ggctgccacg 750
agggcaaggt cttcatcagc ctcaacctca ccttctgtgt ctgcgtgtcc 800
atcgctgctg tcctgcccaa ggtccaggac gcccagccca actcgggtct 850
gctgcaggcc tcggtcatca ccctctacac catgtttgtc acctggtcag 900
ccctatccag tatccctgaa cagaaatgca acccccattt gccaacccag 950
ctgggcaacg agacagttgt ggcaggcccc gagggctatg agacccagtg 1000
gtgggatgcc ccgagcattg tgggcctcat catcttcctc ctgtgcaccc 1050
tcttcatcag tctgcgctcc tcagaccacc ggcaggtgaa cagcctgatg 1100
cagaccgagg agtgcccacc tatgctagac gccacacagc agcagcagca 1150
gcaggtggca gcctgtgagg gccgggcctt tgacaacgag caggacggcg 1200
tcacctacag ctactccttc ttccacttct gcctggtgct ggcctcactg 1250
cacgtcatga tgacgctcac caactggtac aagcccggtg agacccggaa 1300
gatgatcagc acgtggaccg ccgtgtgggt gaagatctgt gccagctggg 1350
cagggctgct cctctacctg tggaccctgg tagccccact cctcctgcgc 1400
aaccgcgact tcagctgagg cagcctcaca gcctgccatc tggtgcctcc 1450
tgccacctgg tgcctctcgg ctcggtgaca gccaacctgc cccctcccca 1500
caccaatcag ccaggctgag cccccacccc tgccccagct ccaggacctg 1550
cccctgagcc gggccttcta gtcgtagtgc cttcagggtc cgaggagcat 1600
caggctcctg cagagcccca tccccccgcc acacccacac ggtggagctg 1650
cctcttcctt cccctcctcc ctgttgccca tactcagcat ctcggatgaa 1700
agggctccct tgtcctcagg ctccacggga gcggggctgc tggagagagc 1750
ggggaactcc caccacagtg gggcatccgg cactgaagcc ctggtgttcc 1800
tggtcacgtc ccccagggga ccctgccccc ttcctggact tcgtgcctta 1850
ctgagtctct aagacttttt ctaataaaca agccagtgcg tgtaaaaaaa 1900
a 1901
12
457
PRT
Homo Sapien
12
Met Gly Ala Cys Leu Gly Ala Cys Ser Leu Leu Ser Cys Ala Ser
1 5 10 15
Cys Leu Cys Gly Ser Ala Pro Cys Ile Leu Cys Ser Cys Cys Pro
20 25 30
Ala Ser Arg Asn Ser Thr Val Ser Arg Leu Ile Phe Thr Phe Phe
35 40 45
Leu Phe Leu Gly Val Leu Val Ser Ile Ile Met Leu Ser Pro Gly
50 55 60
Val Glu Ser Gln Leu Tyr Lys Leu Pro Trp Val Cys Glu Glu Gly
65 70 75
Ala Gly Ile Pro Thr Val Leu Gln Gly His Ile Asp Cys Gly Ser
80 85 90
Leu Leu Gly Tyr Arg Ala Val Tyr Arg Met Cys Phe Ala Thr Ala
95 100 105
Ala Phe Phe Phe Phe Phe Phe Thr Leu Leu Met Leu Cys Val Ser
110 115 120
Ser Ser Arg Asp Pro Arg Ala Ala Ile Gln Asn Gly Phe Trp Phe
125 130 135
Phe Lys Phe Leu Ile Leu Val Gly Leu Thr Val Gly Ala Phe Tyr
140 145 150
Ile Pro Asp Gly Ser Phe Thr Asn Ile Trp Phe Tyr Phe Gly Val
155 160 165
Val Gly Ser Phe Leu Phe Ile Leu Ile Gln Leu Val Leu Leu Ile
170 175 180
Asp Phe Ala His Ser Trp Asn Gln Arg Trp Leu Gly Lys Ala Glu
185 190 195
Glu Cys Asp Ser Arg Ala Trp Tyr Ala Gly Leu Phe Phe Phe Thr
200 205 210
Leu Leu Phe Tyr Leu Leu Ser Ile Ala Ala Val Ala Leu Met Phe
215 220 225
Met Tyr Tyr Thr Glu Pro Ser Gly Cys His Glu Gly Lys Val Phe
230 235 240
Ile Ser Leu Asn Leu Thr Phe Cys Val Cys Val Ser Ile Ala Ala
245 250 255
Val Leu Pro Lys Val Gln Asp Ala Gln Pro Asn Ser Gly Leu Leu
260 265 270
Gln Ala Ser Val Ile Thr Leu Tyr Thr Met Phe Val Thr Trp Ser
275 280 285
Ala Leu Ser Ser Ile Pro Glu Gln Lys Cys Asn Pro His Leu Pro
290 295 300
Thr Gln Leu Gly Asn Glu Thr Val Val Ala Gly Pro Glu Gly Tyr
305 310 315
Glu Thr Gln Trp Trp Asp Ala Pro Ser Ile Val Gly Leu Ile Ile
320 325 330
Phe Leu Leu Cys Thr Leu Phe Ile Ser Leu Arg Ser Ser Asp His
335 340 345
Arg Gln Val Asn Ser Leu Met Gln Thr Glu Glu Cys Pro Pro Met
350 355 360
Leu Asp Ala Thr Gln Gln Gln Gln Gln Gln Val Ala Ala Cys Glu
365 370 375
Gly Arg Ala Phe Asp Asn Glu Gln Asp Gly Val Thr Tyr Ser Tyr
380 385 390
Ser Phe Phe His Phe Cys Leu Val Leu Ala Ser Leu His Val Met
395 400 405
Met Thr Leu Thr Asn Trp Tyr Lys Pro Gly Glu Thr Arg Lys Met
410 415 420
Ile Ser Thr Trp Thr Ala Val Trp Val Lys Ile Cys Ala Ser Trp
425 430 435
Ala Gly Leu Leu Leu Tyr Leu Trp Thr Leu Val Ala Pro Leu Leu
440 445 450
Leu Arg Asn Arg Asp Phe Ser
455
13
1572
DNA
Homo Sapien
13
cgggccagcc tggggcggcc ggccaggaac cacccgttaa ggtgtcttct 50
ctttagggat ggtgaggttg gaaaaagact cctgtaaccc tcctccagga 100
tgaaccacct gccagaagac atggagaacg ctctcaccgg gagccagagc 150
tcccatgctt ctctgcgcaa tatccattcc atcaacccca cacaactcat 200
ggccaggatt gagtcctatg aaggaaggga aaagaaaggc atatctgatg 250
tcaggaggac tttctgtttg tttgtcacct ttgacctctt attcgtaaca 300
ttactgtgga taatagagtt aaatgtgaat ggaggcattg agaacacatt 350
agagaaggag gtgatgcagt atgactacta ttcttcatat tttgatatat 400
ttcttctggc agtttttcga tttaaagtgt taatacttgc atatgctgtg 450
tgcagactgc gccattggtg ggcaatagcg ttgacaacgg cagtgaccag 500
tgccttttta ctagcaaaag tgatcctttc gaagcttttc tctcaagggg 550
cttttggcta tgtgctgccc atcatttcat tcatccttgc ctggattgag 600
acgtggttcc tggatttcaa agtgttacct caagaagcag aagaagaaaa 650
cagactcctg atagttcagg atgcttcaga gagggcagca cttatacctg 700
gtggtctttc tgatggtcag ttttattccc ctcctgaatc cgaagcagga 750
tctgaagaag ctgaagaaaa acaggacagt gagaaaccac ttttagaact 800
atgagtacta cttttgttaa atgtgaaaaa ccctcacaga aagtcatcga 850
ggcaaaaaga ggcaggcagt ggagtctccc tgtcgacagt aaagttgaaa 900
tggtgacgtc cactgctggc tttattgaac agctaataaa gatttattta 950
ttgtaatacc tcacaaacgt tgtaccatat ccatgcacat ttagttgcct 1000
gcctgtggct ggtaaggtaa tgtcatgatt catcctctct tcagtgagac 1050
tgagcctgat gtgttaacaa ataggtgaag aaagtcttgt gctgtattcc 1100
taatcaaaag acttaatata ttgaagtaac acttttttag taagcaagat 1150
acctttttat ttcaattcac agaatggaat ttttttgttt catgtctcag 1200
atttattttg tatttctttt ttaacactct acatttccct tgttttttaa 1250
ctcatgcaca tgtgctcttt gtacagtttt aaaaagtgta ataaaatctg 1300
acatgtcaat gtggctagtt ttatttttct tgttttgcat tatgtgtatg 1350
gcctgaagtg ttggacttgc aaaaggggaa gaaaggaatt gcgaatacat 1400
gtaaaatgtc accagacatt tgtattattt ttatcatgaa atcatgtttt 1450
tctctgattg ttctgaaatg ttctaaatac tcttattttg aatgcacaaa 1500
atgacttaaa ccattcatat catgtttcct ttgcgttcag ccaatttcaa 1550
ttaaaatgaa ctaaattaaa aa 1572
14
234
PRT
Homo Sapien
14
Met Asn His Leu Pro Glu Asp Met Glu Asn Ala Leu Thr Gly Ser
1 5 10 15
Gln Ser Ser His Ala Ser Leu Arg Asn Ile His Ser Ile Asn Pro
20 25 30
Thr Gln Leu Met Ala Arg Ile Glu Ser Tyr Glu Gly Arg Glu Lys
35 40 45
Lys Gly Ile Ser Asp Val Arg Arg Thr Phe Cys Leu Phe Val Thr
50 55 60
Phe Asp Leu Leu Phe Val Thr Leu Leu Trp Ile Ile Glu Leu Asn
65 70 75
Val Asn Gly Gly Ile Glu Asn Thr Leu Glu Lys Glu Val Met Gln
80 85 90
Tyr Asp Tyr Tyr Ser Ser Tyr Phe Asp Ile Phe Leu Leu Ala Val
95 100 105
Phe Arg Phe Lys Val Leu Ile Leu Ala Tyr Ala Val Cys Arg Leu
110 115 120
Arg His Trp Trp Ala Ile Ala Leu Thr Thr Ala Val Thr Ser Ala
125 130 135
Phe Leu Leu Ala Lys Val Ile Leu Ser Lys Leu Phe Ser Gln Gly
140 145 150
Ala Phe Gly Tyr Val Leu Pro Ile Ile Ser Phe Ile Leu Ala Trp
155 160 165
Ile Glu Thr Trp Phe Leu Asp Phe Lys Val Leu Pro Gln Glu Ala
170 175 180
Glu Glu Glu Asn Arg Leu Leu Ile Val Gln Asp Ala Ser Glu Arg
185 190 195
Ala Ala Leu Ile Pro Gly Gly Leu Ser Asp Gly Gln Phe Tyr Ser
200 205 210
Pro Pro Glu Ser Glu Ala Gly Ser Glu Glu Ala Glu Glu Lys Gln
215 220 225
Asp Ser Glu Lys Pro Leu Leu Glu Leu
230
15
2768
DNA
Homo Sapien
15
actcgaacgc agttgcttcg ggacccagga ccccctcggg cccgacccgc 50
caggaaagac tgaggccgcg gcctgccccg cccggctccc tgcgccgccg 100
ccgcctcccg ggacagaaga tgtgctccag ggtccctctg ctgctgccgc 150
tgctcctgct actggccctg gggcctgggg tgcagggctg cccatccggc 200
tgccagtgca gccagccaca gacagtcttc tgcactgccc gccaggggac 250
cacggtgccc cgagacgtgc cacccgacac ggtggggctg tacgtctttg 300
agaacggcat caccatgctc gacgcaggca gctttgccgg cctgccgggc 350
ctgcagctcc tggacctgtc acagaaccag atcgccagcc tgcccagcgg 400
ggtcttccag ccactcgcca acctcagcaa cctggacctg acggccaaca 450
ggctgcatga aatcaccaat gagaccttcc gtggcctgcg gcgcctcgag 500
cgcctctacc tgggcaagaa ccgcatccgc cacatccagc ctggtgcctt 550
cgacacgctc gaccgcctcc tggagctcaa gctgcaggac aacgagctgc 600
gggcactgcc cccgctgcgc ctgccccgcc tgctgctgct ggacctcagc 650
cacaacagcc tcctggccct ggagcccggc atcctggaca ctgccaacgt 700
ggaggcgctg cggctggctg gtctggggct gcagcagctg gacgaggggc 750
tcttcagccg cttgcgcaac ctccacgacc tggatgtgtc cgacaaccag 800
ctggagcgag tgccacctgt gatccgaggc ctccggggcc tgacgcgcct 850
gcggctggcc ggcaacaccc gcattgccca gctgcggccc gaggacctgg 900
ccggcctggc tgccctgcag gagctggatg tgagcaacct aagcctgcag 950
gccctgcctg gcgacctctc gggcctcttc ccccgcctgc ggctgctggc 1000
agctgcccgc aaccccttca actgcgtgtg ccccctgagc tggtttggcc 1050
cctgggtgcg cgagagccac gtcacactgg ccagccctga ggagacgcgc 1100
tgccacttcc cgcccaagaa cgctggccgg ctgctcctgg agcttgacta 1150
cgccgacttt ggctgcccag ccaccaccac cacagccaca gtgcccacca 1200
cgaggcccgt ggtgcgggag cccacagcct tgtcttctag cttggctcct 1250
acctggctta gccccacagc gccggccact gaggccccca gcccgccctc 1300
cactgcccca ccgactgtag ggcctgtccc ccagccccag gactgcccac 1350
cgtccacctg cctcaatggg ggcacatgcc acctggggac acggcaccac 1400
ctggcgtgct tgtgccccga aggcttcacg ggcctgtact gtgagagcca 1450
gatggggcag gggacacggc ccagccctac accagtcacg ccgaggccac 1500
cacggtccct gaccctgggc atcgagccgg tgagccccac ctccctgcgc 1550
gtggggctgc agcgctacct ccaggggagc tccgtgcagc tcaggagcct 1600
ccgtctcacc tatcgcaacc tatcgggccc tgataagcgg ctggtgacgc 1650
tgcgactgcc tgcctcgctc gctgagtaca cggtcaccca gctgcggccc 1700
aacgccactt actccgtctg tgtcatgcct ttggggcccg ggcgggtgcc 1750
ggagggcgag gaggcctgcg gggaggccca tacaccccca gccgtccact 1800
ccaaccacgc cccagtcacc caggcccgcg agggcaacct gccgctcctc 1850
attgcgcccg ccctggccgc ggtgctcctg gccgcgctgg ctgcggtggg 1900
ggcagcctac tgtgtgcggc gggggcgggc catggcagca gcggctcagg 1950
acaaagggca ggtggggcca ggggctgggc ccctggaact ggagggagtg 2000
aaggtcccct tggagccagg cccgaaggca acagagggcg gtggagaggc 2050
cctgcccagc gggtctgagt gtgaggtgcc actcatgggc ttcccagggc 2100
ctggcctcca gtcacccctc cacgcaaagc cctacatcta agccagagag 2150
agacagggca gctggggccg ggctctcagc cagtgagatg gccagccccc 2200
tcctgctgcc acaccacgta agttctcagt cccaacctcg gggatgtgtg 2250
cagacagggc tgtgtgacca cagctgggcc ctgttccctc tggacctcgg 2300
tctcctcatc tgtgagatgc tgtggcccag ctgacgagcc ctaacgtccc 2350
cagaaccgag tgcctatgag gacagtgtcc gccctgccct ccgcaacgtg 2400
cagtccctgg gcacggcggg ccctgccatg tgctggtaac gcatgcctgg 2450
gtcctgctgg gctctcccac tccaggcgga ccctgggggc cagtgaagga 2500
agctcccgga aagagcagag ggagagcggg taggcggctg tgtgactcta 2550
gtcttggccc caggaagcga aggaacaaaa gaaactggaa aggaagatgc 2600
tttaggaaca tgttttgctt ttttaaaata tatatattta taagagatcc 2650
tttcccattt attctgggaa gatgtttttc aaactcagag acaaggactt 2700
tggtttttgt aagacaaacg atgatatgaa ggccttttgt aagaaaaaat 2750
aaaagatgaa gtgtgaaa 2768
16
673
PRT
Homo Sapien
16
Met Cys Ser Arg Val Pro Leu Leu Leu Pro Leu Leu Leu Leu Leu
1 5 10 15
Ala Leu Gly Pro Gly Val Gln Gly Cys Pro Ser Gly Cys Gln Cys
20 25 30
Ser Gln Pro Gln Thr Val Phe Cys Thr Ala Arg Gln Gly Thr Thr
35 40 45
Val Pro Arg Asp Val Pro Pro Asp Thr Val Gly Leu Tyr Val Phe
50 55 60
Glu Asn Gly Ile Thr Met Leu Asp Ala Gly Ser Phe Ala Gly Leu
65 70 75
Pro Gly Leu Gln Leu Leu Asp Leu Ser Gln Asn Gln Ile Ala Ser
80 85 90
Leu Pro Ser Gly Val Phe Gln Pro Leu Ala Asn Leu Ser Asn Leu
95 100 105
Asp Leu Thr Ala Asn Arg Leu His Glu Ile Thr Asn Glu Thr Phe
110 115 120
Arg Gly Leu Arg Arg Leu Glu Arg Leu Tyr Leu Gly Lys Asn Arg
125 130 135
Ile Arg His Ile Gln Pro Gly Ala Phe Asp Thr Leu Asp Arg Leu
140 145 150
Leu Glu Leu Lys Leu Gln Asp Asn Glu Leu Arg Ala Leu Pro Pro
155 160 165
Leu Arg Leu Pro Arg Leu Leu Leu Leu Asp Leu Ser His Asn Ser
170 175 180
Leu Leu Ala Leu Glu Pro Gly Ile Leu Asp Thr Ala Asn Val Glu
185 190 195
Ala Leu Arg Leu Ala Gly Leu Gly Leu Gln Gln Leu Asp Glu Gly
200 205 210
Leu Phe Ser Arg Leu Arg Asn Leu His Asp Leu Asp Val Ser Asp
215 220 225
Asn Gln Leu Glu Arg Val Pro Pro Val Ile Arg Gly Leu Arg Gly
230 235 240
Leu Thr Arg Leu Arg Leu Ala Gly Asn Thr Arg Ile Ala Gln Leu
245 250 255
Arg Pro Glu Asp Leu Ala Gly Leu Ala Ala Leu Gln Glu Leu Asp
260 265 270
Val Ser Asn Leu Ser Leu Gln Ala Leu Pro Gly Asp Leu Ser Gly
275 280 285
Leu Phe Pro Arg Leu Arg Leu Leu Ala Ala Ala Arg Asn Pro Phe
290 295 300
Asn Cys Val Cys Pro Leu Ser Trp Phe Gly Pro Trp Val Arg Glu
305 310 315
Ser His Val Thr Leu Ala Ser Pro Glu Glu Thr Arg Cys His Phe
320 325 330
Pro Pro Lys Asn Ala Gly Arg Leu Leu Leu Glu Leu Asp Tyr Ala
335 340 345
Asp Phe Gly Cys Pro Ala Thr Thr Thr Thr Ala Thr Val Pro Thr
350 355 360
Thr Arg Pro Val Val Arg Glu Pro Thr Ala Leu Ser Ser Ser Leu
365 370 375
Ala Pro Thr Trp Leu Ser Pro Thr Ala Pro Ala Thr Glu Ala Pro
380 385 390
Ser Pro Pro Ser Thr Ala Pro Pro Thr Val Gly Pro Val Pro Gln
395 400 405
Pro Gln Asp Cys Pro Pro Ser Thr Cys Leu Asn Gly Gly Thr Cys
410 415 420
His Leu Gly Thr Arg His His Leu Ala Cys Leu Cys Pro Glu Gly
425 430 435
Phe Thr Gly Leu Tyr Cys Glu Ser Gln Met Gly Gln Gly Thr Arg
440 445 450
Pro Ser Pro Thr Pro Val Thr Pro Arg Pro Pro Arg Ser Leu Thr
455 460 465
Leu Gly Ile Glu Pro Val Ser Pro Thr Ser Leu Arg Val Gly Leu
470 475 480
Gln Arg Tyr Leu Gln Gly Ser Ser Val Gln Leu Arg Ser Leu Arg
485 490 495
Leu Thr Tyr Arg Asn Leu Ser Gly Pro Asp Lys Arg Leu Val Thr
500 505 510
Leu Arg Leu Pro Ala Ser Leu Ala Glu Tyr Thr Val Thr Gln Leu
515 520 525
Arg Pro Asn Ala Thr Tyr Ser Val Cys Val Met Pro Leu Gly Pro
530 535 540
Gly Arg Val Pro Glu Gly Glu Glu Ala Cys Gly Glu Ala His Thr
545 550 555
Pro Pro Ala Val His Ser Asn His Ala Pro Val Thr Gln Ala Arg
560 565 570
Glu Gly Asn Leu Pro Leu Leu Ile Ala Pro Ala Leu Ala Ala Val
575 580 585
Leu Leu Ala Ala Leu Ala Ala Val Gly Ala Ala Tyr Cys Val Arg
590 595 600
Arg Gly Arg Ala Met Ala Ala Ala Ala Gln Asp Lys Gly Gln Val
605 610 615
Gly Pro Gly Ala Gly Pro Leu Glu Leu Glu Gly Val Lys Val Pro
620 625 630
Leu Glu Pro Gly Pro Lys Ala Thr Glu Gly Gly Gly Glu Ala Leu
635 640 645
Pro Ser Gly Ser Glu Cys Glu Val Pro Leu Met Gly Phe Pro Gly
650 655 660
Pro Gly Leu Gln Ser Pro Leu His Ala Lys Pro Tyr Ile
665 670
17
1672
DNA
Homo Sapien
17
gcagcggcga ggcggcggtg gtggctgagt ccgtggtggc agaggcgaag 50
gcgacagctc atgcgggtcc ggatagggct gacgctgctg ctgtgtgcgg 100
tgctgctgag cttggcctcg gcgtcctcgg atgaagaagg cagccaggat 150
gaatccttag attccaagac tactttgaca tcagatgagt cagtaaagga 200
ccatactact gcaggcagag tagttgctgg tcaaatattt cttgattcag 250
aagaatctga attagaatcc tctattcaag aagaggaaga cagcctcaag 300
agccaagagg gggaaagtgt cacagaagat atcagctttc tagagtctcc 350
aaatccagaa aacaaggact atgaagagcc aaagaaagta cggaaaccag 400
ctttgaccgc cattgaaggc acagcacatg gggagccctg ccacttccct 450
tttcttttcc tagataagga gtatgatgaa tgtacatcag atgggaggga 500
agatggcaga ctgtggtgtg ctacaaccta tgactacaaa gcagatgaaa 550
agtggggctt ttgtgaaact gaagaagagg ctgctaagag acggcagatg 600
caggaagcag aaatgatgta tcaaactgga atgaaaatcc ttaatggaag 650
caataagaaa agccaaaaaa gagaagcata tcggtatctc caaaaggcag 700
caagcatgaa ccataccaaa gccctggaga gagtgtcata tgctctttta 750
tttggtgatt acttgccaca gaatatccag gcagcgagag agatgtttga 800
gaagctgact gaggaaggct ctcccaaggg acagactgct cttggctttc 850
tgtatgcctc tggacttggt gttaattcaa gtcaggcaaa ggctcttgta 900
tattatacat ttggagctct tgggggcaat ctaatagccc acatggtttt 950
ggtaagtaga ctttagtgga aggctaataa tattaacatc agaagaattt 1000
gtggtttata gcggccacaa ctttttcagc tttcatgatc cagatttgct 1050
tgtattaaga ccaaatattc agttgaactt ccttcaaatt cttgttaatg 1100
gatataacac atggaatcta catgtaaatg aaagttggtg gagtccacaa 1150
tttttcttta aaatgattag tttggctgat tgcccctaaa aagagagatc 1200
tgataaatgg ctctttttaa attttctctg agttggaatt gtcagaatca 1250
ttttttacat tagattatca taattttaaa aatttttctt tagtttttca 1300
aaattttgta aatggtggct atagaaaaac aacatgaaat attatacaat 1350
attttgcaac aatgccctaa gaattgttaa aattcatgga gttatttgtg 1400
cagaatgact ccagagagct ctactttctg ttttttactt ttcatgattg 1450
gctgtcttcc catttattct ggtcatttat tgctagtgac actgtgcctg 1500
cttccagtag tctcattttc cctattttgc taatttgtta ctttttcttt 1550
gctaatttgg aagattaact catttttaat aaaattatgt ctaagattaa 1600
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1650
aaaaaaaaaa aaaaaaaaaa aa 1672
18
301
PRT
Homo Sapien
18
Met Arg Val Arg Ile Gly Leu Thr Leu Leu Leu Cys Ala Val Leu
1 5 10 15
Leu Ser Leu Ala Ser Ala Ser Ser Asp Glu Glu Gly Ser Gln Asp
20 25 30
Glu Ser Leu Asp Ser Lys Thr Thr Leu Thr Ser Asp Glu Ser Val
35 40 45
Lys Asp His Thr Thr Ala Gly Arg Val Val Ala Gly Gln Ile Phe
50 55 60
Leu Asp Ser Glu Glu Ser Glu Leu Glu Ser Ser Ile Gln Glu Glu
65 70 75
Glu Asp Ser Leu Lys Ser Gln Glu Gly Glu Ser Val Thr Glu Asp
80 85 90
Ile Ser Phe Leu Glu Ser Pro Asn Pro Glu Asn Lys Asp Tyr Glu
95 100 105
Glu Pro Lys Lys Val Arg Lys Pro Ala Leu Thr Ala Ile Glu Gly
110 115 120
Thr Ala His Gly Glu Pro Cys His Phe Pro Phe Leu Phe Leu Asp
125 130 135
Lys Glu Tyr Asp Glu Cys Thr Ser Asp Gly Arg Glu Asp Gly Arg
140 145 150
Leu Trp Cys Ala Thr Thr Tyr Asp Tyr Lys Ala Asp Glu Lys Trp
155 160 165
Gly Phe Cys Glu Thr Glu Glu Glu Ala Ala Lys Arg Arg Gln Met
170 175 180
Gln Glu Ala Glu Met Met Tyr Gln Thr Gly Met Lys Ile Leu Asn
185 190 195
Gly Ser Asn Lys Lys Ser Gln Lys Arg Glu Ala Tyr Arg Tyr Leu
200 205 210
Gln Lys Ala Ala Ser Met Asn His Thr Lys Ala Leu Glu Arg Val
215 220 225
Ser Tyr Ala Leu Leu Phe Gly Asp Tyr Leu Pro Gln Asn Ile Gln
230 235 240
Ala Ala Arg Glu Met Phe Glu Lys Leu Thr Glu Glu Gly Ser Pro
245 250 255
Lys Gly Gln Thr Ala Leu Gly Phe Leu Tyr Ala Ser Gly Leu Gly
260 265 270
Val Asn Ser Ser Gln Ala Lys Ala Leu Val Tyr Tyr Thr Phe Gly
275 280 285
Ala Leu Gly Gly Asn Leu Ile Ala His Met Val Leu Val Ser Arg
290 295 300
Leu
19
1508
DNA
Homo Sapien
19
aattcagatt ttaagcccat tctgcagtgg aatttcatga actagcaaga 50
ggacaccatc ttcttgtatt atacaagaaa ggagtgtacc tatcacacac 100
agggggaaaa atgctctttt gggtgctagg cctcctaatc ctctgtggtt 150
ttctgtggac tcgtaaagga aaactaaaga ttgaagacat cactgataag 200
tacattttta tcactggatg tgactcgggc tttggaaact tggcagccag 250
aacttttgat aaaaagggat ttcatgtaat cgctgcctgt ctgactgaat 300
caggatcaac agctttaaag gcagaaacct cagagagact tcgtactgtg 350
cttctggatg tgaccgaccc agagaatgtc aagaggactg cccagtgggt 400
gaagaaccaa gttggggaga aaggtctctg gggtctgatc aataatgctg 450
gtgttcccgg cgtgctggct cccactgact ggctgacact agaggactac 500
agagaaccta ttgaagtgaa cctgtttgga ctcatcagtg tgacactaaa 550
tatgcttcct ttggtcaaga aagctcaagg gagagttatt aatgtctcca 600
gtgttggagg tcgccttgca atcgttggag ggggctatac tccatccaaa 650
tatgcagtgg aaggtttcaa tgacagctta agacgggaca tgaaagcttt 700
tggtgtgcac gtctcatgca ttgaaccagg attgttcaaa acaaacttgg 750
cagatccagt aaaggtaatt gaaaaaaaac tcgccatttg ggagcagctg 800
tctccagaca tcaaacaaca atatggagaa ggttacattg aaaaaagtct 850
agacaaactg aaaggcaata aatcctatgt gaacatggac ctctctccgg 900
tggtagagtg catggaccac gctctaacaa gtctcttccc taagactcat 950
tatgccgctg gaaaagatgc caaaattttc tggatacctc tgtctcacat 1000
gccagcagct ttgcaagact ttttattgtt gaaacagaaa gcagagctgg 1050
ctaatcccaa ggcagtgtga ctcagctaac cacaaatgtc tcctccaggc 1100
tatgaaattg gccgatttca agaacacatc tccttttcaa ccccattcct 1150
tatctgctcc aacctggact catttagatc gtgcttattt ggattgcaaa 1200
agggagtccc accatcgctg gtggtatccc agggtccctg ctcaagtttt 1250
ctttgaaaag gagggctgga atggtacatc acataggcaa gtcctgccct 1300
gtatttaggc tttgcctgct tggtgtgatg taagggaaat tgaaagactt 1350
gcccattcaa aatgatcttt accgtggcct gccccatgct tatggtcccc 1400
agcatttaca gtaacttgtg aatgttaagt atcatctctt atctaaatat 1450
taaaagataa gtcaacccaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1500
aaaaaaaa 1508
20
319
PRT
Homo Sapien
20
Met Leu Phe Trp Val Leu Gly Leu Leu Ile Leu Cys Gly Phe Leu
1 5 10 15
Trp Thr Arg Lys Gly Lys Leu Lys Ile Glu Asp Ile Thr Asp Lys
20 25 30
Tyr Ile Phe Ile Thr Gly Cys Asp Ser Gly Phe Gly Asn Leu Ala
35 40 45
Ala Arg Thr Phe Asp Lys Lys Gly Phe His Val Ile Ala Ala Cys
50 55 60
Leu Thr Glu Ser Gly Ser Thr Ala Leu Lys Ala Glu Thr Ser Glu
65 70 75
Arg Leu Arg Thr Val Leu Leu Asp Val Thr Asp Pro Glu Asn Val
80 85 90
Lys Arg Thr Ala Gln Trp Val Lys Asn Gln Val Gly Glu Lys Gly
95 100 105
Leu Trp Gly Leu Ile Asn Asn Ala Gly Val Pro Gly Val Leu Ala
110 115 120
Pro Thr Asp Trp Leu Thr Leu Glu Asp Tyr Arg Glu Pro Ile Glu
125 130 135
Val Asn Leu Phe Gly Leu Ile Ser Val Thr Leu Asn Met Leu Pro
140 145 150
Leu Val Lys Lys Ala Gln Gly Arg Val Ile Asn Val Ser Ser Val
155 160 165
Gly Gly Arg Leu Ala Ile Val Gly Gly Gly Tyr Thr Pro Ser Lys
170 175 180
Tyr Ala Val Glu Gly Phe Asn Asp Ser Leu Arg Arg Asp Met Lys
185 190 195
Ala Phe Gly Val His Val Ser Cys Ile Glu Pro Gly Leu Phe Lys
200 205 210
Thr Asn Leu Ala Asp Pro Val Lys Val Ile Glu Lys Lys Leu Ala
215 220 225
Ile Trp Glu Gln Leu Ser Pro Asp Ile Lys Gln Gln Tyr Gly Glu
230 235 240
Gly Tyr Ile Glu Lys Ser Leu Asp Lys Leu Lys Gly Asn Lys Ser
245 250 255
Tyr Val Asn Met Asp Leu Ser Pro Val Val Glu Cys Met Asp His
260 265 270
Ala Leu Thr Ser Leu Phe Pro Lys Thr His Tyr Ala Ala Gly Lys
275 280 285
Asp Ala Lys Ile Phe Trp Ile Pro Leu Ser His Met Pro Ala Ala
290 295 300
Leu Gln Asp Phe Leu Leu Leu Lys Gln Lys Ala Glu Leu Ala Asn
305 310 315
Pro Lys Ala Val
21
1849
DNA
Homo Sapien
21
ctgaggcggc ggtagcatgg agggggagag tacgtcggcg gtgctctcgg 50
gctttgtgct cggcgcactc gctttccagc acctcaacac ggactcggac 100
acggaaggtt ttcttcttgg ggaagtaaaa ggtgaagcca agaacagcat 150
tactgattcc caaatggatg atgttgaagt tgtttataca attgacattc 200
agaaatatat tccatgctat cagcttttta gcttttataa ttcttcaggc 250
gaagtaaatg agcaagcact gaagaaaata ttatcaaatg tcaaaaagaa 300
tgtggtaggt tggtacaaat tccgtcgtca ttcagatcag atcatgacgt 350
ttagagagag gctgcttcac aaaaacttgc aggagcattt ttcaaaccaa 400
gaccttgttt ttctgctatt aacaccaagt ataataacag aaagctgctc 450
tactcatcga ctggaacatt ccttatataa acctcaaaaa ggactttttc 500
acagggtacc tttagtggtt gccaatctgg gcatgtctga acaactgggt 550
tataaaactg tatcaggttc ctgtatgtcc actggtttta gccgagcagt 600
acaaacacac agctctaaat tttttgaaga agatggatcc ttaaaggagg 650
tacataagat aaatgaaatg tatgcttcat tacaagagga attaaagagt 700
atatgcaaaa aagtggaaga cagtgaacaa gcagtagata aactagtaaa 750
ggatgtaaac agattaaaac gagaaattga gaaaaggaga ggagcacaga 800
ttcaggcagc aagagagaag aacatccaaa aagaccctca ggagaacatt 850
tttctttgtc aggcattacg gacctttttt ccaaattctg aatttcttca 900
ttcatgtgtt atgtctttaa aaaatagaca tgtttctaaa agtagctgta 950
actacaacca ccatctcgat gtagtagaca atctgacctt aatggtagaa 1000
cacactgaca ttcctgaagc tagtccagct agtacaccac aaatcattaa 1050
gcataaagcc ttagacttag atgacagatg gcaattcaag agatctcggt 1100
tgttagatac acaagacaaa cgatctaaag caaatactgg tagtagtaac 1150
caagataaag catccaaaat gagcagccca gaaacagatg aagaaattga 1200
aaagatgaag ggttttggtg aatattcacg gtctcctaca ttttgatcct 1250
tttaacctta caaggagatt tttttatttg gctgatgggt aaagccaaac 1300
atttctattg tttttactat gttgagctac ttgcagtaag ttcatttgtt 1350
tttactatgt tcacctgttt gcagtaatac acagataact cttagtgcat 1400
ttacttcaca aagtactttt tcaaacatca gatgctttta tttccaaacc 1450
tttttttcac ctttcactaa gttgttgagg ggaaggctta cacagacaca 1500
ttctttagaa ttggaaaagt gagaccaggc acagtggctc acacctgtaa 1550
tcccagcact tagggaagac aagtcaggag gattgattga agctaggagt 1600
tagagaccag cctgggcaac gtattgagac catgtctatt aaaaaataaa 1650
atggaaaagc aagaatagcc ttattttcaa aatatggaaa gaaatttata 1700
tgaaaattta tctgagtcat taaaattctc cttaagtgat acttttttag 1750
aagtacatta tggctagagt tgccagataa aatgctggat atcatgcaat 1800
aaatttgcaa aacatcatct aaaatttaaa aaaaaaaaaa aaaaaaaaa 1849
22
409
PRT
Homo Sapien
22
Met Glu Gly Glu Ser Thr Ser Ala Val Leu Ser Gly Phe Val Leu
1 5 10 15
Gly Ala Leu Ala Phe Gln His Leu Asn Thr Asp Ser Asp Thr Glu
20 25 30
Gly Phe Leu Leu Gly Glu Val Lys Gly Glu Ala Lys Asn Ser Ile
35 40 45
Thr Asp Ser Gln Met Asp Asp Val Glu Val Val Tyr Thr Ile Asp
50 55 60
Ile Gln Lys Tyr Ile Pro Cys Tyr Gln Leu Phe Ser Phe Tyr Asn
65 70 75
Ser Ser Gly Glu Val Asn Glu Gln Ala Leu Lys Lys Ile Leu Ser
80 85 90
Asn Val Lys Lys Asn Val Val Gly Trp Tyr Lys Phe Arg Arg His
95 100 105
Ser Asp Gln Ile Met Thr Phe Arg Glu Arg Leu Leu His Lys Asn
110 115 120
Leu Gln Glu His Phe Ser Asn Gln Asp Leu Val Phe Leu Leu Leu
125 130 135
Thr Pro Ser Ile Ile Thr Glu Ser Cys Ser Thr His Arg Leu Glu
140 145 150
His Ser Leu Tyr Lys Pro Gln Lys Gly Leu Phe His Arg Val Pro
155 160 165
Leu Val Val Ala Asn Leu Gly Met Ser Glu Gln Leu Gly Tyr Lys
170 175 180
Thr Val Ser Gly Ser Cys Met Ser Thr Gly Phe Ser Arg Ala Val
185 190 195
Gln Thr His Ser Ser Lys Phe Phe Glu Glu Asp Gly Ser Leu Lys
200 205 210
Glu Val His Lys Ile Asn Glu Met Tyr Ala Ser Leu Gln Glu Glu
215 220 225
Leu Lys Ser Ile Cys Lys Lys Val Glu Asp Ser Glu Gln Ala Val
230 235 240
Asp Lys Leu Val Lys Asp Val Asn Arg Leu Lys Arg Glu Ile Glu
245 250 255
Lys Arg Arg Gly Ala Gln Ile Gln Ala Ala Arg Glu Lys Asn Ile
260 265 270
Gln Lys Asp Pro Gln Glu Asn Ile Phe Leu Cys Gln Ala Leu Arg
275 280 285
Thr Phe Phe Pro Asn Ser Glu Phe Leu His Ser Cys Val Met Ser
290 295 300
Leu Lys Asn Arg His Val Ser Lys Ser Ser Cys Asn Tyr Asn His
305 310 315
His Leu Asp Val Val Asp Asn Leu Thr Leu Met Val Glu His Thr
320 325 330
Asp Ile Pro Glu Ala Ser Pro Ala Ser Thr Pro Gln Ile Ile Lys
335 340 345
His Lys Ala Leu Asp Leu Asp Asp Arg Trp Gln Phe Lys Arg Ser
350 355 360
Arg Leu Leu Asp Thr Gln Asp Lys Arg Ser Lys Ala Asn Thr Gly
365 370 375
Ser Ser Asn Gln Asp Lys Ala Ser Lys Met Ser Ser Pro Glu Thr
380 385 390
Asp Glu Glu Ile Glu Lys Met Lys Gly Phe Gly Glu Tyr Ser Arg
395 400 405
Ser Pro Thr Phe
23
2651
DNA
Homo Sapien
23
ggcacagccg cgcggcggag ggcagagtca gccgagccga gtccagccgg 50
acgagcggac cagcgcaggg cagcccaagc agcgcgcagc gaacgcccgc 100
cgccgcccac accctctgcg gtccccgcgg cgcctgccac ccttccctcc 150
ttccccgcgt ccccgcctcg ccggccagtc agcttgccgg gttcgctgcc 200
ccgcgaaacc ccgaggtcac cagcccgcgc ctctgcttcc ctgggccgcg 250
cgccgcctcc acgccctcct tctcccctgg cccggcgcct ggcaccgggg 300
accgttgcct gacgcgaggc ccagctctac ttttcgcccc gcgtctcctc 350
cgcctgctcg cctcttccac caactccaac tccttctccc tccagctcca 400
ctcgctagtc cccgactccg ccagccctcg gcccgctgcc gtagcgccgc 450
ttcccgtccg gtcccaaagg tgggaacgcg tccgccccgg cccgcaccat 500
ggcacggttc ggcttgcccg cgcttctctg caccctggca gtgctcagcg 550
ccgcgctgct ggctgccgag ctcaagtcga aaagttgctc ggaagtgcga 600
cgtctttacg tgtccaaagg cttcaacaag aacgatgccc ccctccacga 650
gatcaacggt gatcatttga agatctgtcc ccagggttct acctgctgct 700
ctcaagagat ggaggagaag tacagcctgc aaagtaaaga tgatttcaaa 750
agtgtggtca gcgaacagtg caatcatttg caagctgtct ttgcttcacg 800
ttacaagaag tttgatgaat tcttcaaaga actacttgaa aatgcagaga 850
aatccctgaa tgatatgttt gtgaagacat atggccattt atacatgcaa 900
aattctgagc tatttaaaga tctcttcgta gagttgaaac gttactacgt 950
ggtgggaaat gtgaacctgg aagaaatgct aaatgacttc tgggctcgcc 1000
tcctggagcg gatgttccgc ctggtgaact cccagtacca ctttacagat 1050
gagtatctgg aatgtgtgag caagtatacg gagcagctga agcccttcgg 1100
agatgtccct cgcaaattga agctccaggt tactcgtgct tttgtagcag 1150
cccgtacttt cgctcaaggc ttagcggttg cgggagatgt cgtgagcaag 1200
gtctccgtgg taaaccccac agcccagtgt acccatgccc tgttgaagat 1250
gatctactgc tcccactgcc ggggtctcgt gactgtgaag ccatgttaca 1300
actactgctc aaacatcatg agaggctgtt tggccaacca aggggatctc 1350
gattttgaat ggaacaattt catagatgct atgctgatgg tggcagagag 1400
gctagagggt cctttcaaca ttgaatcggt catggatccc atcgatgtga 1450
agatttctga tgctattatg aacatgcagg ataatagtgt tcaagtgtct 1500
cagaaggttt tccagggatg tggacccccc aagcccctcc cagctggacg 1550
aatttctcgt tccatctctg aaagtgcctt cagtgctcgc ttcagaccac 1600
atcaccccga ggaacgccca accacagcag ctggcactag tttggaccga 1650
ctggttactg atgtcaagga gaaactgaaa caggccaaga aattctggtc 1700
ctcccttccg agcaacgttt gcaacgatga gaggatggct gcaggaaacg 1750
gcaatgagga tgactgttgg aatgggaaag gcaaaagcag gtacctgttt 1800
gcagtgacag gaaatggatt agccaaccag ggcaacaacc cagaggtcca 1850
ggttgacacc agcaaaccag acatactgat ccttcgtcaa atcatggctc 1900
ttcgagtgat gaccagcaag atgaagaatg catacaatgg gaacgacgtg 1950
gacttctttg atatcagtga tgaaagtagt ggagaaggaa gtggaagtgg 2000
ctgtgagtat cagcagtgcc cttcagagtt tgactacaat gccactgacc 2050
atgctgggaa gagtgccaat gagaaagccg acagtgctgg tgtccgtcct 2100
ggggcacagg cctacctcct cactgtcttc tgcatcttgt tcctggttat 2150
gcagagagag tggagataat tctcaaactc tgagaaaaag tgttcatcaa 2200
aaagttaaaa ggcaccagtt atcacttttc taccatccta gtgactttgc 2250
tttttaaatg aatggacaac aatgtacagt ttttactatg tggccactgg 2300
tttaagaagt gctgactttg ttttctcatt cagttttggg aggaaaaggg 2350
actgtgcatt gagttggttc ctgctccccc aaaccatgtt aaacgtggct 2400
aacagtgtag gtacagaact atagttagtt gtgcatttgt gattttatca 2450
ctctattatt tgtttgtatg tttttttctc atttcgtttg tgggtttttt 2500
tttccaactg tgatctcgcc ttgtttctta caagcaaacc agggtccctt 2550
cttggcacgt aacatgtacg tatttctgaa atattaaata gctgtacaga 2600
agcaggtttt atttatcatg ttatcttatt aaaagaaaaa gcccaaaaag 2650
c 2651
24
556
PRT
Homo Sapien
24
Met Ala Arg Phe Gly Leu Pro Ala Leu Leu Cys Thr Leu Ala Val
1 5 10 15
Leu Ser Ala Ala Leu Leu Ala Ala Glu Leu Lys Ser Lys Ser Cys
20 25 30
Ser Glu Val Arg Arg Leu Tyr Val Ser Lys Gly Phe Asn Lys Asn
35 40 45
Asp Ala Pro Leu His Glu Ile Asn Gly Asp His Leu Lys Ile Cys
50 55 60
Pro Gln Gly Ser Thr Cys Cys Ser Gln Glu Met Glu Glu Lys Tyr
65 70 75
Ser Leu Gln Ser Lys Asp Asp Phe Lys Ser Val Val Ser Glu Gln
80 85 90
Cys Asn His Leu Gln Ala Val Phe Ala Ser Arg Tyr Lys Lys Phe
95 100 105
Asp Glu Phe Phe Lys Glu Leu Leu Glu Asn Ala Glu Lys Ser Leu
110 115 120
Asn Asp Met Phe Val Lys Thr Tyr Gly His Leu Tyr Met Gln Asn
125 130 135
Ser Glu Leu Phe Lys Asp Leu Phe Val Glu Leu Lys Arg Tyr Tyr
140 145 150
Val Val Gly Asn Val Asn Leu Glu Glu Met Leu Asn Asp Phe Trp
155 160 165
Ala Arg Leu Leu Glu Arg Met Phe Arg Leu Val Asn Ser Gln Tyr
170 175 180
His Phe Thr Asp Glu Tyr Leu Glu Cys Val Ser Lys Tyr Thr Glu
185 190 195
Gln Leu Lys Pro Phe Gly Asp Val Pro Arg Lys Leu Lys Leu Gln
200 205 210
Val Thr Arg Ala Phe Val Ala Ala Arg Thr Phe Ala Gln Gly Leu
215 220 225
Ala Val Ala Gly Asp Val Val Ser Lys Val Ser Val Val Asn Pro
230 235 240
Thr Ala Gln Cys Thr His Ala Leu Leu Lys Met Ile Tyr Cys Ser
245 250 255
His Cys Arg Gly Leu Val Thr Val Lys Pro Cys Tyr Asn Tyr Cys
260 265 270
Ser Asn Ile Met Arg Gly Cys Leu Ala Asn Gln Gly Asp Leu Asp
275 280 285
Phe Glu Trp Asn Asn Phe Ile Asp Ala Met Leu Met Val Ala Glu
290 295 300
Arg Leu Glu Gly Pro Phe Asn Ile Glu Ser Val Met Asp Pro Ile
305 310 315
Asp Val Lys Ile Ser Asp Ala Ile Met Asn Met Gln Asp Asn Ser
320 325 330
Val Gln Val Ser Gln Lys Val Phe Gln Gly Cys Gly Pro Pro Lys
335 340 345
Pro Leu Pro Ala Gly Arg Ile Ser Arg Ser Ile Ser Glu Ser Ala
350 355 360
Phe Ser Ala Arg Phe Arg Pro His His Pro Glu Glu Arg Pro Thr
365 370 375
Thr Ala Ala Gly Thr Ser Leu Asp Arg Leu Val Thr Asp Val Lys
380 385 390
Glu Lys Leu Lys Gln Ala Lys Lys Phe Trp Ser Ser Leu Pro Ser
395 400 405
Asn Val Cys Asn Asp Glu Arg Met Ala Ala Gly Asn Gly Asn Glu
410 415 420
Asp Asp Cys Trp Asn Gly Lys Gly Lys Ser Arg Tyr Leu Phe Ala
425 430 435
Val Thr Gly Asn Gly Leu Ala Asn Gln Gly Asn Asn Pro Glu Val
440 445 450
Gln Val Asp Thr Ser Lys Pro Asp Ile Leu Ile Leu Arg Gln Ile
455 460 465
Met Ala Leu Arg Val Met Thr Ser Lys Met Lys Asn Ala Tyr Asn
470 475 480
Gly Asn Asp Val Asp Phe Phe Asp Ile Ser Asp Glu Ser Ser Gly
485 490 495
Glu Gly Ser Gly Ser Gly Cys Glu Tyr Gln Gln Cys Pro Ser Glu
500 505 510
Phe Asp Tyr Asn Ala Thr Asp His Ala Gly Lys Ser Ala Asn Glu
515 520 525
Lys Ala Asp Ser Ala Gly Val Arg Pro Gly Ala Gln Ala Tyr Leu
530 535 540
Leu Thr Val Phe Cys Ile Leu Phe Leu Val Met Gln Arg Glu Trp
545 550 555
Arg
25
870
DNA
Homo Sapien
25
ctcgccctca aatgggaacg ctggcctggg actaaagcat agaccaccag 50
gctgagtatc ctgacctgag tcatccccag ggatcaggag cctccagcag 100
ggaaccttcc attatattct tcaagcaact tacagctgca ccgacagttg 150
cgatgaaagt tctaatctct tccctcctcc tgttgctgcc actaatgctg 200
atgtccatgg tctctagcag cctgaatcca ggggtcgcca gaggccacag 250
ggaccgaggc caggcttcta ggagatggct ccaggaaggc ggccaagaat 300
gtgagtgcaa agattggttc ctgagagccc cgagaagaaa attcatgaca 350
gtgtctgggc tgccaaagaa gcagtgcccc tgtgatcatt tcaagggcaa 400
tgtgaagaaa acaagacacc aaaggcacca cagaaagcca aacaagcatt 450
ccagagcctg ccagcaattt ctcaaacaat gtcagctaag aagctttgct 500
ctgcctttgt aggagctctg agcgcccact cttccaatta aacattctca 550
gccaagaaga cagtgagcac acctaccaga cactcttctt ctcccacctc 600
actctcccac tgtacccacc cctaaatcat tccagtgctc tcaaaaagca 650
tgtttttcaa gatcattttg tttgttgctc tctctagtgt cttcttctct 700
cgtcagtctt agcctgtgcc ctccccttac ccaggcttag gcttaattac 750
ctgaaagatt ccaggaaact gtagcttcct agctagtgtc atttaacctt 800
aaatgcaatc aggaaagtag caaacagaag tcaataaata tttttaaatg 850
tcaaaaaaaa aaaaaaaaaa 870
26
119
PRT
Homo Sapien
26
Met Lys Val Leu Ile Ser Ser Leu Leu Leu Leu Leu Pro Leu Met
1 5 10 15
Leu Met Ser Met Val Ser Ser Ser Leu Asn Pro Gly Val Ala Arg
20 25 30
Gly His Arg Asp Arg Gly Gln Ala Ser Arg Arg Trp Leu Gln Glu
35 40 45
Gly Gly Gln Glu Cys Glu Cys Lys Asp Trp Phe Leu Arg Ala Pro
50 55 60
Arg Arg Lys Phe Met Thr Val Ser Gly Leu Pro Lys Lys Gln Cys
65 70 75
Pro Cys Asp His Phe Lys Gly Asn Val Lys Lys Thr Arg His Gln
80 85 90
Arg His His Arg Lys Pro Asn Lys His Ser Arg Ala Cys Gln Gln
95 100 105
Phe Leu Lys Gln Cys Gln Leu Arg Ser Phe Ala Leu Pro Leu
110 115
27
1371
DNA
Homo Sapien
27
ggacgccagc gcctgcagag gctgagcagg gaaaaagcca gtgccccagc 50
ggaagcacag ctcagagctg gtctgccatg gacatcctgg tcccactcct 100
gcagctgctg gtgctgcttc ttaccctgcc cctgcacctc atggctctgc 150
tgggctgctg gcagcccctg tgcaaaagct acttccccta cctgatggcc 200
gtgctgactc ccaagagcaa ccgcaagatg gagagcaaga aacgggagct 250
cttcagccag ataaaggggc ttacaggagc ctccgggaaa gtggccctac 300
tggagctggg ctgcggaacc ggagccaact ttcagttcta cccaccgggc 350
tgcagggtca cctgcctaga cccaaatccc cactttgaga agttcctgac 400
aaagagcatg gctgagaaca ggcacctcca atatgagcgg tttgtggtgg 450
ctcctggaga ggacatgaga cagctggctg atggctccat ggatgtggtg 500
gtctgcactc tggtgctgtg ctctgtgcag agcccaagga aggtcctgca 550
ggaggtccgg agagtactga gaccgggagg tgtgctcttt ttctgggagc 600
atgtggcaga accatatgga agctgggcct tcatgtggca gcaagttttc 650
gagcccacct ggaaacacat tggggatggc tgctgcctca ccagagagac 700
ctggaaggat cttgagaacg cccagttctc cgaaatccaa atggaacgac 750
agccccctcc cttgaagtgg ctacctgttg ggccccacat catgggaaag 800
gctgtcaaac aatctttccc aagctccaag gcactcattt gctccttccc 850
cagcctccaa ttagaacaag ccacccacca gcctatctat cttccactga 900
gagggaccta gcagaatgag agaagacatt catgtaccac ctactagtcc 950
ctctctcccc aacctctgcc agggcaatct ctaacttcaa tcccgccttc 1000
gacagtgaaa aagctctact tctacgctga cccagggagg aaacactagg 1050
accctgttgt atcctcaact gcaagtttct ggactagtct cccaacgttt 1100
gcctcccaat gttgtccctt tccttcgttc ccatggtaaa gctcctctcg 1150
ctttcctcct gaggctacac ccatgcgtct ctaggaactg gtcacaaaag 1200
tcatggtgcc tgcatccctg ccaagccccc ctgaccctct ctccccacta 1250
ccaccttctt cctgagctgg gggcaccagg gagaatcaga gatgctgggg 1300
atgccagagc aagactcaaa gaggcagagg ttttgttctc aaatattttt 1350
taataaatag acgaaaccac g 1371
28
277
PRT
Homo Sapien
28
Met Asp Ile Leu Val Pro Leu Leu Gln Leu Leu Val Leu Leu Leu
1 5 10 15
Thr Leu Pro Leu His Leu Met Ala Leu Leu Gly Cys Trp Gln Pro
20 25 30
Leu Cys Lys Ser Tyr Phe Pro Tyr Leu Met Ala Val Leu Thr Pro
35 40 45
Lys Ser Asn Arg Lys Met Glu Ser Lys Lys Arg Glu Leu Phe Ser
50 55 60
Gln Ile Lys Gly Leu Thr Gly Ala Ser Gly Lys Val Ala Leu Leu
65 70 75
Glu Leu Gly Cys Gly Thr Gly Ala Asn Phe Gln Phe Tyr Pro Pro
80 85 90
Gly Cys Arg Val Thr Cys Leu Asp Pro Asn Pro His Phe Glu Lys
95 100 105
Phe Leu Thr Lys Ser Met Ala Glu Asn Arg His Leu Gln Tyr Glu
110 115 120
Arg Phe Val Val Ala Pro Gly Glu Asp Met Arg Gln Leu Ala Asp
125 130 135
Gly Ser Met Asp Val Val Val Cys Thr Leu Val Leu Cys Ser Val
140 145 150
Gln Ser Pro Arg Lys Val Leu Gln Glu Val Arg Arg Val Leu Arg
155 160 165
Pro Gly Gly Val Leu Phe Phe Trp Glu His Val Ala Glu Pro Tyr
170 175 180
Gly Ser Trp Ala Phe Met Trp Gln Gln Val Phe Glu Pro Thr Trp
185 190 195
Lys His Ile Gly Asp Gly Cys Cys Leu Thr Arg Glu Thr Trp Lys
200 205 210
Asp Leu Glu Asn Ala Gln Phe Ser Glu Ile Gln Met Glu Arg Gln
215 220 225
Pro Pro Pro Leu Lys Trp Leu Pro Val Gly Pro His Ile Met Gly
230 235 240
Lys Ala Val Lys Gln Ser Phe Pro Ser Ser Lys Ala Leu Ile Cys
245 250 255
Ser Phe Pro Ser Leu Gln Leu Glu Gln Ala Thr His Gln Pro Ile
260 265 270
Tyr Leu Pro Leu Arg Gly Thr
275
29
494
DNA
Homo Sapien
29
caatgtttgc ctatccacct cccccaagcc cctttaccta tgctgctgct 50
aacgctgctg ctgctgctgc tgctgcttaa aggctcatgc ttggagtggg 100
gactggtcgg tgcccagaaa gtctcttctg ccactgacgc ccccatcagg 150
gattgggcct tctttccccc ttcctttctg tgtctcctgc ctcatcggcc 200
tgccatgacc tgcagccaag cccagccccg tggggaaggg gagaaagtgg 250
gggatggcta agaaagctgg gagataggga acagaagagg gtagtgggtg 300
ggctaggggg gctgccttat ttaaagtggt tgtttatgat tcttatacta 350
atttatacaa agatattaag gccctgttca ttaagaaatt gttcccttcc 400
cctgtgttca atgtttgtaa agattgttct gtgtaaatat gtctttataa 450
taaacagtta aaagctgaaa aaaaaaaaaa aaaaaaaaaa aaaa 494
30
73
PRT
Homo Sapien
30
Met Leu Leu Leu Thr Leu Leu Leu Leu Leu Leu Leu Leu Lys Gly
1 5 10 15
Ser Cys Leu Glu Trp Gly Leu Val Gly Ala Gln Lys Val Ser Ser
20 25 30
Ala Thr Asp Ala Pro Ile Arg Asp Trp Ala Phe Phe Pro Pro Ser
35 40 45
Phe Leu Cys Leu Leu Pro His Arg Pro Ala Met Thr Cys Ser Gln
50 55 60
Ala Gln Pro Arg Gly Glu Gly Glu Lys Val Gly Asp Gly
65 70
31
1660
DNA
Homo Sapien
31
gtttgaattc cttcaactat acccacagtc caaaagcaga ctcactgtgt 50
cccaggctac cagttcctcc aagcaagtca tttcccttat ttaaccgatg 100
tgtccctcaa acacctgagt gctactccct atttgcatct gttttgataa 150
atgatgttga caccctccac cgaattctaa gtggaatcat gtcgggaaga 200
gatacaatcc ttggcctgtg tatcctcgca ttagccttgt ctttggccat 250
gatgtttacc ttcagattca tcaccaccct tctggttcac attttcattt 300
cattggttat tttgggattg ttgtttgtct gcggtgtttt atggtggctg 350
tattatgact ataccaacga cctcagcata gaattggaca cagaaaggga 400
aaatatgaag tgcgtgctgg ggtttgctat cgtatccaca ggcatcacgg 450
cagtgctgct cgtcttgatt tttgttctca gaaagagaat aaaattgaca 500
gttgagcttt tccaaatcac aaataaagcc atcagcagtg ctcccttcct 550
gctgttccag ccactgtgga catttgccat cctcattttc ttctgggtcc 600
tctgggtggc tgtgctgctg agcctgggaa ctgcaggagc tgcccaggtt 650
atggaaggcg gccaagtgga atataagccc ctttcgggca ttcggtacat 700
gtggtcgtac catttaattg gcctcatctg gactagtgaa ttcatccttg 750
cgtgccagca aatgactata gctggggcag tggttacttg ttatttcaac 800
agaagtaaaa atgatcctcc tgatcatccc atcctttcgt ctctctccat 850
tctcttcttc taccatcaag gaaccgttgt gaaagggtca tttttaatct 900
ctgtggtgag gattccgaga atcattgtca tgtacatgca aaacgcactg 950
aaagaacagc agcatggtgc attgtccagg tacctgttcc gatgctgcta 1000
ctgctgtttc tggtgtcttg acaaatacct gctccatctc aaccagaatg 1050
catatactac aactgctatt aatgggacag atttctgtac atcagcaaaa 1100
gatgcattca aaatcttgtc caagaactca agtcacttta catctattaa 1150
ctgctttgga gacttcataa tttttctagg aaaggtgtta gtggtgtgtt 1200
tcactgtttt tggaggactc atggctttta actacaatcg ggcattccag 1250
gtgtgggcag tccctctgtt attggtagct ttttttgcct acttagtagc 1300
ccatagtttt ttatctgtgt ttgaaactgt gctggatgca cttttcctgt 1350
gttttgctgt tgatctggaa acaaatgatg gatcgtcaga aaagccctac 1400
tttatggatc aagaatttct gagtttcgta aaaaggagca acaaattaaa 1450
caatgcaagg gcacagcagg acaagcactc attaaggaat gaggagggaa 1500
cagaactcca ggccattgtg agatagatac ccatttaggt atctgtacct 1550
ggaaaacatt tccttctaag agccatttac agaatagaag atgagaccac 1600
tagagaaaag ttagtgaatt tttttttaaa agacctaata aaccctattc 1650
ttcctcaaaa 1660
32
445
PRT
Homo Sapien
32
Met Ser Gly Arg Asp Thr Ile Leu Gly Leu Cys Ile Leu Ala Leu
1 5 10 15
Ala Leu Ser Leu Ala Met Met Phe Thr Phe Arg Phe Ile Thr Thr
20 25 30
Leu Leu Val His Ile Phe Ile Ser Leu Val Ile Leu Gly Leu Leu
35 40 45
Phe Val Cys Gly Val Leu Trp Trp Leu Tyr Tyr Asp Tyr Thr Asn
50 55 60
Asp Leu Ser Ile Glu Leu Asp Thr Glu Arg Glu Asn Met Lys Cys
65 70 75
Val Leu Gly Phe Ala Ile Val Ser Thr Gly Ile Thr Ala Val Leu
80 85 90
Leu Val Leu Ile Phe Val Leu Arg Lys Arg Ile Lys Leu Thr Val
95 100 105
Glu Leu Phe Gln Ile Thr Asn Lys Ala Ile Ser Ser Ala Pro Phe
110 115 120
Leu Leu Phe Gln Pro Leu Trp Thr Phe Ala Ile Leu Ile Phe Phe
125 130 135
Trp Val Leu Trp Val Ala Val Leu Leu Ser Leu Gly Thr Ala Gly
140 145 150
Ala Ala Gln Val Met Glu Gly Gly Gln Val Glu Tyr Lys Pro Leu
155 160 165
Ser Gly Ile Arg Tyr Met Trp Ser Tyr His Leu Ile Gly Leu Ile
170 175 180
Trp Thr Ser Glu Phe Ile Leu Ala Cys Gln Gln Met Thr Ile Ala
185 190 195
Gly Ala Val Val Thr Cys Tyr Phe Asn Arg Ser Lys Asn Asp Pro
200 205 210
Pro Asp His Pro Ile Leu Ser Ser Leu Ser Ile Leu Phe Phe Tyr
215 220 225
His Gln Gly Thr Val Val Lys Gly Ser Phe Leu Ile Ser Val Val
230 235 240
Arg Ile Pro Arg Ile Ile Val Met Tyr Met Gln Asn Ala Leu Lys
245 250 255
Glu Gln Gln His Gly Ala Leu Ser Arg Tyr Leu Phe Arg Cys Cys
260 265 270
Tyr Cys Cys Phe Trp Cys Leu Asp Lys Tyr Leu Leu His Leu Asn
275 280 285
Gln Asn Ala Tyr Thr Thr Thr Ala Ile Asn Gly Thr Asp Phe Cys
290 295 300
Thr Ser Ala Lys Asp Ala Phe Lys Ile Leu Ser Lys Asn Ser Ser
305 310 315
His Phe Thr Ser Ile Asn Cys Phe Gly Asp Phe Ile Ile Phe Leu
320 325 330
Gly Lys Val Leu Val Val Cys Phe Thr Val Phe Gly Gly Leu Met
335 340 345
Ala Phe Asn Tyr Asn Arg Ala Phe Gln Val Trp Ala Val Pro Leu
350 355 360
Leu Leu Val Ala Phe Phe Ala Tyr Leu Val Ala His Ser Phe Leu
365 370 375
Ser Val Phe Glu Thr Val Leu Asp Ala Leu Phe Leu Cys Phe Ala
380 385 390
Val Asp Leu Glu Thr Asn Asp Gly Ser Ser Glu Lys Pro Tyr Phe
395 400 405
Met Asp Gln Glu Phe Leu Ser Phe Val Lys Arg Ser Asn Lys Leu
410 415 420
Asn Asn Ala Arg Ala Gln Gln Asp Lys His Ser Leu Arg Asn Glu
425 430 435
Glu Gly Thr Glu Leu Gln Ala Ile Val Arg
440 445
33
2773
DNA
Homo Sapien
33
gttcgattag ctcctctgag aagaagagaa aaggttcttg gacctctccc 50
tgtttcttcc ttagaataat ttgtatggga tttgtgatgc aggaaagcct 100
aagggaaaaa gaatattcat tctgtgtggt gaaaattttt tgaaaaaaaa 150
attgccttct tcaaacaagg gtgtcattct gatatttatg aggactgttg 200
ttctcactat gaaggcatct gttattgaaa tgttccttgt tttgctggtg 250
actggagtac attcaaacaa agaaacggca aagaagatta aaaggcccaa 300
gttcactgtg cctcagatca actgcgatgt caaagccgga aagatcatcg 350
atcctgagtt cattgtgaaa tgtccagcag gatgccaaga ccccaaatac 400
catgtttatg gcactgacgt gtatgcatcc tactccagtg tgtgtggcgc 450
tgccgtacac agtggtgtgc ttgataattc aggagggaaa atacttgttc 500
ggaaggttgc tggacagtct ggttacaaag ggagttattc caacggtgtc 550
caatcgttat ccctaccacg atggagagaa tcctttatcg tcttagaaag 600
taaacccaaa aagggtgtaa cctacccatc agctcttaca tactcatcat 650
cgaaaagtcc agctgcccaa gcaggtgaga ccacaaaagc ctatcagagg 700
ccacctattc cagggacaac tgcacagccg gtcactctga tgcagcttct 750
ggctgtcact gtagctgtgg ccacccccac caccttgcca aggccatccc 800
cttctgctgc ttctaccacc agcatcccca gaccacaatc agtgggccac 850
aggagccagg agatggatct ctggtccact gccacctaca caagcagcca 900
aaacaggccc agagctgatc caggtatcca aaggcaagat ccttcaggag 950
ctgccttcca gaaacctgtt ggagcggatg tcagcctggg acttgttcca 1000
aaagaagaat tgagcacaca gtctttggag ccagtatccc tgggagatcc 1050
aaactgcaaa attgacttgt cgtttttaat tgatgggagc accagcattg 1100
gcaaacggcg attccgaatc cagaagcagc tcctggctga tgttgcccaa 1150
gctcttgaca ttggccctgc cggtccactg atgggtgttg tccagtatgg 1200
agacaaccct gctactcact ttaacctcaa gacacacacg aattctcgag 1250
atctgaagac agccatagag aaaattactc agagaggagg actttctaat 1300
gtaggtcggg ccatctcctt tgtgaccaag aacttctttt ccaaagccaa 1350
tggaaacaga agcggggctc ccaatgtggt ggtggtgatg gtggatggct 1400
ggcccacgga caaagtggag gaggcttcaa gacttgcgag agagtcagga 1450
atcaacattt tcttcatcac cattgaaggt gctgctgaaa atgagaagca 1500
gtatgtggtg gagcccaact ttgcaaacaa ggccgtgtgc agaacaaacg 1550
gcttctactc gctccacgtg cagagctggt ttggcctcca caagaccctg 1600
cagcctctgg tgaagcgggt ctgcgacact gaccgcctgg cctgcagcaa 1650
gacctgcttg aactcggctg acattggctt cgtcatcgac ggctccagca 1700
gtgtggggac gggcaacttc cgcaccgtcc tccagtttgt gaccaacctc 1750
accaaagagt ttgagatttc cgacacggac acgcgcatcg gggccgtgca 1800
gtacacctac gaacagcggc tggagtttgg gttcgacaag tacagcagca 1850
agcctgacat cctcaacgcc atcaagaggg tgggctactg gagtggtggc 1900
accagcacgg gggctgccat caacttcgcc ctggagcagc tcttcaagaa 1950
gtccaagccc aacaagagga agttaatgat cctcatcacc gacgggaggt 2000
cctacgacga cgtccggatc ccagccatgg ctgcccatct gaagggagtg 2050
atcacctatg cgataggcgt tgcctgggct gcccaagagg agctagaagt 2100
cattgccact caccccgcca gagaccactc cttctttgtg gacgagtttg 2150
acaacctcca tcagtatgtc cccaggatca tccagaacat ttgtacagag 2200
ttcaactcac agcctcggaa ctgaattcag agcaggcaga gcaccagcaa 2250
gtgctgcttt actaactgac gtgttggacc accccaccgc ttaatggggc 2300
acgcacggtg catcaagtct tgggcagggc atggagaaac aaatgtcttg 2350
ttattattct ttgccatcat gctttttcat attccaaaac ttggagttac 2400
aaagatgatc acaaacgtat agaatgagcc aaaaggctac atcatgttga 2450
gggtgctgga gattttacat tttgacaatt gttttcaaaa taaatgttcg 2500
gaatacagtg cagcccttac gacaggctta cgtagagctt ttgtgagatt 2550
tttaagttgt tatttctgat ttgaactctg taaccctcag caagtttcat 2600
ttttgtcatg acaatgtagg aattgctgaa ttaaatgttt agaaggatga 2650
aaaataaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2700
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2750
aaaaaaaaaa aaaaaaaaaa aag 2773
34
678
PRT
Homo Sapien
34
Met Arg Thr Val Val Leu Thr Met Lys Ala Ser Val Ile Glu Met
1 5 10 15
Phe Leu Val Leu Leu Val Thr Gly Val His Ser Asn Lys Glu Thr
20 25 30
Ala Lys Lys Ile Lys Arg Pro Lys Phe Thr Val Pro Gln Ile Asn
35 40 45
Cys Asp Val Lys Ala Gly Lys Ile Ile Asp Pro Glu Phe Ile Val
50 55 60
Lys Cys Pro Ala Gly Cys Gln Asp Pro Lys Tyr His Val Tyr Gly
65 70 75
Thr Asp Val Tyr Ala Ser Tyr Ser Ser Val Cys Gly Ala Ala Val
80 85 90
His Ser Gly Val Leu Asp Asn Ser Gly Gly Lys Ile Leu Val Arg
95 100 105
Lys Val Ala Gly Gln Ser Gly Tyr Lys Gly Ser Tyr Ser Asn Gly
110 115 120
Val Gln Ser Leu Ser Leu Pro Arg Trp Arg Glu Ser Phe Ile Val
125 130 135
Leu Glu Ser Lys Pro Lys Lys Gly Val Thr Tyr Pro Ser Ala Leu
140 145 150
Thr Tyr Ser Ser Ser Lys Ser Pro Ala Ala Gln Ala Gly Glu Thr
155 160 165
Thr Lys Ala Tyr Gln Arg Pro Pro Ile Pro Gly Thr Thr Ala Gln
170 175 180
Pro Val Thr Leu Met Gln Leu Leu Ala Val Thr Val Ala Val Ala
185 190 195
Thr Pro Thr Thr Leu Pro Arg Pro Ser Pro Ser Ala Ala Ser Thr
200 205 210
Thr Ser Ile Pro Arg Pro Gln Ser Val Gly His Arg Ser Gln Glu
215 220 225
Met Asp Leu Trp Ser Thr Ala Thr Tyr Thr Ser Ser Gln Asn Arg
230 235 240
Pro Arg Ala Asp Pro Gly Ile Gln Arg Gln Asp Pro Ser Gly Ala
245 250 255
Ala Phe Gln Lys Pro Val Gly Ala Asp Val Ser Leu Gly Leu Val
260 265 270
Pro Lys Glu Glu Leu Ser Thr Gln Ser Leu Glu Pro Val Ser Leu
275 280 285
Gly Asp Pro Asn Cys Lys Ile Asp Leu Ser Phe Leu Ile Asp Gly
290 295 300
Ser Thr Ser Ile Gly Lys Arg Arg Phe Arg Ile Gln Lys Gln Leu
305 310 315
Leu Ala Asp Val Ala Gln Ala Leu Asp Ile Gly Pro Ala Gly Pro
320 325 330
Leu Met Gly Val Val Gln Tyr Gly Asp Asn Pro Ala Thr His Phe
335 340 345
Asn Leu Lys Thr His Thr Asn Ser Arg Asp Leu Lys Thr Ala Ile
350 355 360
Glu Lys Ile Thr Gln Arg Gly Gly Leu Ser Asn Val Gly Arg Ala
365 370 375
Ile Ser Phe Val Thr Lys Asn Phe Phe Ser Lys Ala Asn Gly Asn
380 385 390
Arg Ser Gly Ala Pro Asn Val Val Val Val Met Val Asp Gly Trp
395 400 405
Pro Thr Asp Lys Val Glu Glu Ala Ser Arg Leu Ala Arg Glu Ser
410 415 420
Gly Ile Asn Ile Phe Phe Ile Thr Ile Glu Gly Ala Ala Glu Asn
425 430 435
Glu Lys Gln Tyr Val Val Glu Pro Asn Phe Ala Asn Lys Ala Val
440 445 450
Cys Arg Thr Asn Gly Phe Tyr Ser Leu His Val Gln Ser Trp Phe
455 460 465
Gly Leu His Lys Thr Leu Gln Pro Leu Val Lys Arg Val Cys Asp
470 475 480
Thr Asp Arg Leu Ala Cys Ser Lys Thr Cys Leu Asn Ser Ala Asp
485 490 495
Ile Gly Phe Val Ile Asp Gly Ser Ser Ser Val Gly Thr Gly Asn
500 505 510
Phe Arg Thr Val Leu Gln Phe Val Thr Asn Leu Thr Lys Glu Phe
515 520 525
Glu Ile Ser Asp Thr Asp Thr Arg Ile Gly Ala Val Gln Tyr Thr
530 535 540
Tyr Glu Gln Arg Leu Glu Phe Gly Phe Asp Lys Tyr Ser Ser Lys
545 550 555
Pro Asp Ile Leu Asn Ala Ile Lys Arg Val Gly Tyr Trp Ser Gly
560 565 570
Gly Thr Ser Thr Gly Ala Ala Ile Asn Phe Ala Leu Glu Gln Leu
575 580 585
Phe Lys Lys Ser Lys Pro Asn Lys Arg Lys Leu Met Ile Leu Ile
590 595 600
Thr Asp Gly Arg Ser Tyr Asp Asp Val Arg Ile Pro Ala Met Ala
605 610 615
Ala His Leu Lys Gly Val Ile Thr Tyr Ala Ile Gly Val Ala Trp
620 625 630
Ala Ala Gln Glu Glu Leu Glu Val Ile Ala Thr His Pro Ala Arg
635 640 645
Asp His Ser Phe Phe Val Asp Glu Phe Asp Asn Leu His Gln Tyr
650 655 660
Val Pro Arg Ile Ile Gln Asn Ile Cys Thr Glu Phe Asn Ser Gln
665 670 675
Pro Arg Asn
35
2095
DNA
Homo Sapien
35
ccgagcacag gagattgcct gcgtttagga ggtggctgcg ttgtgggaaa 50
agctatcaag gaagaaattg ccaaaccatg tctttttttc tgttttcaga 100
gtagttcaca acagatctga gtgttttaat taagcatgga atacagaaaa 150
caacaaaaaa cttaagcttt aatttcatct ggaattccac agttttctta 200
gctccctgga cccggttgac ctgttggctc ttcccgctgg ctgctctatc 250
acgtggtgct ctccgactac tcaccccgag tgtaaagaac cttcggctcg 300
cgtgcttctg agctgctgtg gatggcctcg gctctctgga ctgtccttcc 350
gagtaggatg tcactgagat ccctcaaatg gagcctcctg ctgctgtcac 400
tcctgagttt ctttgtgatg tggtacctca gccttcccca ctacaatgtg 450
atagaacgcg tgaactggat gtacttctat gagtatgagc cgatttacag 500
acaagacttt cacttcacac ttcgagagca ttcaaactgc tctcatcaaa 550
atccatttct ggtcattctg gtgacctccc acccttcaga tgtgaaagcc 600
aggcaggcca ttagagttac ttggggtgaa aaaaagtctt ggtggggata 650
tgaggttctt acatttttct tattaggcca agaggctgaa aaggaagaca 700
aaatgttggc attgtcctta gaggatgaac accttcttta tggtgacata 750
atccgacaag attttttaga cacatataat aacctgacct tgaaaaccat 800
tatggcattc aggtgggtaa ctgagttttg ccccaatgcc aagtacgtaa 850
tgaagacaga cactgatgtt ttcatcaata ctggcaattt agtgaagtat 900
cttttaaacc taaaccactc agagaagttt ttcacaggtt atcctctaat 950
tgataattat tcctatagag gattttacca aaaaacccat atttcttacc 1000
aggagtatcc tttcaaggtg ttccctccat actgcagtgg gttgggttat 1050
ataatgtcca gagatttggt gccaaggatc tatgaaatga tgggtcacgt 1100
aaaacccatc aagtttgaag atgtttatgt cgggatctgt ttgaatttat 1150
taaaagtgaa cattcatatt ccagaagaca caaatctttt ctttctatat 1200
agaatccatt tggatgtctg tcaactgaga cgtgtgattg cagcccatgg 1250
cttttcttcc aaggagatca tcactttttg gcaggtcatg ctaaggaaca 1300
ccacatgcca ttattaactt cacattctac aaaaagccta gaaggacagg 1350
ataccttgtg gaaagtgtta aataaagtag gtactgtgga aaattcatgg 1400
ggaggtcagt gtgctggctt acactgaact gaaactcatg aaaaacccag 1450
actggagact ggagggttac acttgtgatt tattagtcag gcccttcaaa 1500
gatgatatgt ggaggaatta aatataaagg aattggaggt ttttgctaaa 1550
gaaattaata ggaccaaaca atttggacat gtcattctgt agactagaat 1600
ttcttaaaag ggtgttactg agttataagc tcactaggct gtaaaaacaa 1650
aacaatgtag agttttattt attgaacaat gtagtcactt gaaggttttg 1700
tgtatatctt atgtggatta ccaatttaaa aatatatgta gttctgtgtc 1750
aaaaaacttc ttcactgaag ttatactgaa caaaatttta cctgtttttg 1800
gtcatttata aagtacttca agatgttgca gtatttcaca gttattatta 1850
tttaaaatta cttcaacttt gtgtttttaa atgttttgac gatttcaata 1900
caagataaaa aggatagtga atcattcttt acatgcaaac attttccagt 1950
tacttaactg atcagtttat tattgataca tcactccatt aatgtaaagt 2000
cataggtcat tattgcatat cagtaatctc ttggactttg ttaaatattt 2050
tactgtggta atatagagaa gaattaaagc aagaaaatct gaaaa 2095
36
331
PRT
Homo Sapien
36
Met Ala Ser Ala Leu Trp Thr Val Leu Pro Ser Arg Met Ser Leu
1 5 10 15
Arg Ser Leu Lys Trp Ser Leu Leu Leu Leu Ser Leu Leu Ser Phe
20 25 30
Phe Val Met Trp Tyr Leu Ser Leu Pro His Tyr Asn Val Ile Glu
35 40 45
Arg Val Asn Trp Met Tyr Phe Tyr Glu Tyr Glu Pro Ile Tyr Arg
50 55 60
Gln Asp Phe His Phe Thr Leu Arg Glu His Ser Asn Cys Ser His
65 70 75
Gln Asn Pro Phe Leu Val Ile Leu Val Thr Ser His Pro Ser Asp
80 85 90
Val Lys Ala Arg Gln Ala Ile Arg Val Thr Trp Gly Glu Lys Lys
95 100 105
Ser Trp Trp Gly Tyr Glu Val Leu Thr Phe Phe Leu Leu Gly Gln
110 115 120
Glu Ala Glu Lys Glu Asp Lys Met Leu Ala Leu Ser Leu Glu Asp
125 130 135
Glu His Leu Leu Tyr Gly Asp Ile Ile Arg Gln Asp Phe Leu Asp
140 145 150
Thr Tyr Asn Asn Leu Thr Leu Lys Thr Ile Met Ala Phe Arg Trp
155 160 165
Val Thr Glu Phe Cys Pro Asn Ala Lys Tyr Val Met Lys Thr Asp
170 175 180
Thr Asp Val Phe Ile Asn Thr Gly Asn Leu Val Lys Tyr Leu Leu
185 190 195
Asn Leu Asn His Ser Glu Lys Phe Phe Thr Gly Tyr Pro Leu Ile
200 205 210
Asp Asn Tyr Ser Tyr Arg Gly Phe Tyr Gln Lys Thr His Ile Ser
215 220 225
Tyr Gln Glu Tyr Pro Phe Lys Val Phe Pro Pro Tyr Cys Ser Gly
230 235 240
Leu Gly Tyr Ile Met Ser Arg Asp Leu Val Pro Arg Ile Tyr Glu
245 250 255
Met Met Gly His Val Lys Pro Ile Lys Phe Glu Asp Val Tyr Val
260 265 270
Gly Ile Cys Leu Asn Leu Leu Lys Val Asn Ile His Ile Pro Glu
275 280 285
Asp Thr Asn Leu Phe Phe Leu Tyr Arg Ile His Leu Asp Val Cys
290 295 300
Gln Leu Arg Arg Val Ile Ala Ala His Gly Phe Ser Ser Lys Glu
305 310 315
Ile Ile Thr Phe Trp Gln Val Met Leu Arg Asn Thr Thr Cys His
320 325 330
Tyr
37
2846
DNA
Homo Sapien
37
cgctcgggca ccagccgcgg caaggatgga gctgggttgc tggacgcagt 50
tggggctcac ttttcttcag ctccttctca tctcgtcctt gccaagagag 100
tacacagtca ttaatgaagc ctgccctgga gcagagtgga atatcatgtg 150
tcgggagtgc tgtgaatatg atcagattga gtgcgtctgc cccggaaaga 200
gggaagtcgt gggttatacc atcccttgct gcaggaatga ggagaatgag 250
tgtgactcct gcctgatcca cccaggttgt accatctttg aaaactgcaa 300
gagctgccga aatggctcat gggggggtac cttggatgac ttctatgtga 350
aggggttcta ctgtgcagag tgccgagcag gctggtacgg aggagactgc 400
atgcgatgtg gccaggttct gcgagcccca aagggtcaga ttttgttgga 450
aagctatccc ctaaatgctc actgtgaatg gaccattcat gctaaacctg 500
ggtttgtcat ccaactaaga tttgtcatgt tgagtctgga gtttgactac 550
atgtgccagt atgactatgt tgaggttcgt gatggagaca accgcgatgg 600
ccagatcatc aagcgtgtct gtggcaacga gcggccagct cctatccaga 650
gcataggatc ctcactccac gtcctcttcc actccgatgg ctccaagaat 700
tttgacggtt tccatgccat ttatgaggag atcacagcat gctcctcatc 750
cccttgtttc catgacggca cgtgcgtcct tgacaaggct ggatcttaca 800
agtgtgcctg cttggcaggc tatactgggc agcgctgtga aaatctcctt 850
gaagaaagaa actgctcaga ccctgggggc ccagtcaatg ggtaccagaa 900
aataacaggg ggccctgggc ttatcaacgg acgccatgct aaaattggca 950
ccgtggtgtc tttcttttgt aacaactcct atgttcttag tggcaatgag 1000
aaaagaactt gccagcagaa tggagagtgg tcagggaaac agcccatctg 1050
cataaaagcc tgccgagaac caaagatttc agacctggtg agaaggagag 1100
ttcttccgat gcaggttcag tcaagggaga caccattaca ccagctatac 1150
tcagcggcct tcagcaagca gaaactgcag agtgccccta ccaagaagcc 1200
agcccttccc tttggagatc tgcccatggg ataccaacat ctgcataccc 1250
agctccagta tgagtgcatc tcacccttct accgccgcct gggcagcagc 1300
aggaggacat gtctgaggac tgggaagtgg agtgggcggg caccatcctg 1350
catccctatc tgcgggaaaa ttgagaacat cactgctcca aagacccaag 1400
ggttgcgctg gccgtggcag gcagccatct acaggaggac cagcggggtg 1450
catgacggca gcctacacaa gggagcgtgg ttcctagtct gcagcggtgc 1500
cctggtgaat gagcgcactg tggtggtggc tgcccactgt gttactgacc 1550
tggggaaggt caccatgatc aagacagcag acctgaaagt tgttttgggg 1600
aaattctacc gggatgatga ccgggatgag aagaccatcc agagcctaca 1650
gatttctgct atcattctgc atcccaacta tgaccccatc ctgcttgatg 1700
ctgacatcgc catcctgaag ctcctagaca aggcccgtat cagcacccga 1750
gtccagccca tctgcctcgc tgccagtcgg gatctcagca cttccttcca 1800
ggagtcccac atcactgtgg ctggctggaa tgtcctggca gacgtgagga 1850
gccctggctt caagaacgac acactgcgct ctggggtggt cagtgtggtg 1900
gactcgctgc tgtgtgagga gcagcatgag gaccatggca tcccagtgag 1950
tgtcactgat aacatgttct gtgccagctg ggaacccact gccccttctg 2000
atatctgcac tgcagagaca ggaggcatcg cggctgtgtc cttcccggga 2050
cgagcatctc ctgagccacg ctggcatctg atgggactgg tcagctggag 2100
ctatgataaa acatgcagcc acaggctctc cactgccttc accaaggtgc 2150
tgccttttaa agactggatt gaaagaaata tgaaatgaac catgctcatg 2200
cactccttga gaagtgtttc tgtatatccg tctgtacgtg tgtcattgcg 2250
tgaagcagtg tgggcctgaa gtgtgatttg gcctgtgaac ttggctgtgc 2300
cagggcttct gacttcaggg acaaaactca gtgaagggtg agtagacctc 2350
cattgctggt aggctgatgc cgcgtccact actaggacag ccaattggaa 2400
gatgccaggg cttgcaagaa gtaagtttct tcaaagaaga ccatatacaa 2450
aacctctcca ctccactgac ctggtggtct tccccaactt tcagttatac 2500
gaatgccatc agcttgacca gggaagatct gggcttcatg aggccccttt 2550
tgaggctctc aagttctaga gagctgcctg tgggacagcc cagggcagca 2600
gagctgggat gtggtgcatg cctttgtgta catggccaca gtacagtctg 2650
gtccttttcc ttccccatct cttgtacaca ttttaataaa ataagggttg 2700
gcttctgaac tacaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2750
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2800
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa 2846
38
720
PRT
Homo Sapien
38
Met Glu Leu Gly Cys Trp Thr Gln Leu Gly Leu Thr Phe Leu Gln
1 5 10 15
Leu Leu Leu Ile Ser Ser Leu Pro Arg Glu Tyr Thr Val Ile Asn
20 25 30
Glu Ala Cys Pro Gly Ala Glu Trp Asn Ile Met Cys Arg Glu Cys
35 40 45
Cys Glu Tyr Asp Gln Ile Glu Cys Val Cys Pro Gly Lys Arg Glu
50 55 60
Val Val Gly Tyr Thr Ile Pro Cys Cys Arg Asn Glu Glu Asn Glu
65 70 75
Cys Asp Ser Cys Leu Ile His Pro Gly Cys Thr Ile Phe Glu Asn
80 85 90
Cys Lys Ser Cys Arg Asn Gly Ser Trp Gly Gly Thr Leu Asp Asp
95 100 105
Phe Tyr Val Lys Gly Phe Tyr Cys Ala Glu Cys Arg Ala Gly Trp
110 115 120
Tyr Gly Gly Asp Cys Met Arg Cys Gly Gln Val Leu Arg Ala Pro
125 130 135
Lys Gly Gln Ile Leu Leu Glu Ser Tyr Pro Leu Asn Ala His Cys
140 145 150
Glu Trp Thr Ile His Ala Lys Pro Gly Phe Val Ile Gln Leu Arg
155 160 165
Phe Val Met Leu Ser Leu Glu Phe Asp Tyr Met Cys Gln Tyr Asp
170 175 180
Tyr Val Glu Val Arg Asp Gly Asp Asn Arg Asp Gly Gln Ile Ile
185 190 195
Lys Arg Val Cys Gly Asn Glu Arg Pro Ala Pro Ile Gln Ser Ile
200 205 210
Gly Ser Ser Leu His Val Leu Phe His Ser Asp Gly Ser Lys Asn
215 220 225
Phe Asp Gly Phe His Ala Ile Tyr Glu Glu Ile Thr Ala Cys Ser
230 235 240
Ser Ser Pro Cys Phe His Asp Gly Thr Cys Val Leu Asp Lys Ala
245 250 255
Gly Ser Tyr Lys Cys Ala Cys Leu Ala Gly Tyr Thr Gly Gln Arg
260 265 270
Cys Glu Asn Leu Leu Glu Glu Arg Asn Cys Ser Asp Pro Gly Gly
275 280 285
Pro Val Asn Gly Tyr Gln Lys Ile Thr Gly Gly Pro Gly Leu Ile
290 295 300
Asn Gly Arg His Ala Lys Ile Gly Thr Val Val Ser Phe Phe Cys
305 310 315
Asn Asn Ser Tyr Val Leu Ser Gly Asn Glu Lys Arg Thr Cys Gln
320 325 330
Gln Asn Gly Glu Trp Ser Gly Lys Gln Pro Ile Cys Ile Lys Ala
335 340 345
Cys Arg Glu Pro Lys Ile Ser Asp Leu Val Arg Arg Arg Val Leu
350 355 360
Pro Met Gln Val Gln Ser Arg Glu Thr Pro Leu His Gln Leu Tyr
365 370 375
Ser Ala Ala Phe Ser Lys Gln Lys Leu Gln Ser Ala Pro Thr Lys
380 385 390
Lys Pro Ala Leu Pro Phe Gly Asp Leu Pro Met Gly Tyr Gln His
395 400 405
Leu His Thr Gln Leu Gln Tyr Glu Cys Ile Ser Pro Phe Tyr Arg
410 415 420
Arg Leu Gly Ser Ser Arg Arg Thr Cys Leu Arg Thr Gly Lys Trp
425 430 435
Ser Gly Arg Ala Pro Ser Cys Ile Pro Ile Cys Gly Lys Ile Glu
440 445 450
Asn Ile Thr Ala Pro Lys Thr Gln Gly Leu Arg Trp Pro Trp Gln
455 460 465
Ala Ala Ile Tyr Arg Arg Thr Ser Gly Val His Asp Gly Ser Leu
470 475 480
His Lys Gly Ala Trp Phe Leu Val Cys Ser Gly Ala Leu Val Asn
485 490 495
Glu Arg Thr Val Val Val Ala Ala His Cys Val Thr Asp Leu Gly
500 505 510
Lys Val Thr Met Ile Lys Thr Ala Asp Leu Lys Val Val Leu Gly
515 520 525
Lys Phe Tyr Arg Asp Asp Asp Arg Asp Glu Lys Thr Ile Gln Ser
530 535 540
Leu Gln Ile Ser Ala Ile Ile Leu His Pro Asn Tyr Asp Pro Ile
545 550 555
Leu Leu Asp Ala Asp Ile Ala Ile Leu Lys Leu Leu Asp Lys Ala
560 565 570
Arg Ile Ser Thr Arg Val Gln Pro Ile Cys Leu Ala Ala Ser Arg
575 580 585
Asp Leu Ser Thr Ser Phe Gln Glu Ser His Ile Thr Val Ala Gly
590 595 600
Trp Asn Val Leu Ala Asp Val Arg Ser Pro Gly Phe Lys Asn Asp
605 610 615
Thr Leu Arg Ser Gly Val Val Ser Val Val Asp Ser Leu Leu Cys
620 625 630
Glu Glu Gln His Glu Asp His Gly Ile Pro Val Ser Val Thr Asp
635 640 645
Asn Met Phe Cys Ala Ser Trp Glu Pro Thr Ala Pro Ser Asp Ile
650 655 660
Cys Thr Ala Glu Thr Gly Gly Ile Ala Ala Val Ser Phe Pro Gly
665 670 675
Arg Ala Ser Pro Glu Pro Arg Trp His Leu Met Gly Leu Val Ser
680 685 690
Trp Ser Tyr Asp Lys Thr Cys Ser His Arg Leu Ser Thr Ala Phe
695 700 705
Thr Lys Val Leu Pro Phe Lys Asp Trp Ile Glu Arg Asn Met Lys
710 715 720
39
2571
DNA
Homo Sapien
39
ggttcctaca tcctctcatc tgagaatcag agagcataat cttcttacgg 50
gcccgtgatt tattaacgtg gcttaatctg aaggttctca gtcaaattct 100
ttgtgatcta ctgattgtgg gggcatggca aggtttgctt aaaggagctt 150
ggctggtttg ggcccttgta gctgacagaa ggtggccagg gagaatgcag 200
cacactgctc ggagaatgaa ggcgcttctg ttgctggtct tgccttggct 250
cagtcctgct aactacattg acaatgtggg caacctgcac ttcctgtatt 300
cagaactctg taaaggtgcc tcccactacg gcctgaccaa agataggaag 350
aggcgctcac aagatggctg tccagacggc tgtgcgagcc tcacagccac 400
ggctccctcc ccagaggttt ctgcagctgc caccatctcc ttaatgacag 450
acgagcctgg cctagacaac cctgcctacg tgtcctcggc agaggacggg 500
cagccagcaa tcagcccagt ggactctggc cggagcaacc gaactagggc 550
acggcccttt gagagatcca ctattagaag cagatcattt aaaaaaataa 600
atcgagcttt gagtgttctt cgaaggacaa agagcgggag tgcagttgcc 650
aaccatgccg accagggcag ggaaaattct gaaaacacca ctgcccctga 700
agtctttcca aggttgtacc acctgattcc agatggtgaa attaccagca 750
tcaagatcaa tcgagtagat cccagtgaaa gcctctctat taggctggtg 800
ggaggtagcg aaaccccact ggtccatatc attatccaac acatttatcg 850
tgatggggtg atcgccagag acggccggct actgccagga gacatcattc 900
taaaggtcaa cgggatggac atcagcaatg tccctcacaa ctacgctgtg 950
cgtctcctgc ggcagccctg ccaggtgctg tggctgactg tgatgcgtga 1000
acagaagttc cgcagcagga acaatggaca ggccccggat gcctacagac 1050
cccgagatga cagctttcat gtgattctca acaaaagtag ccccgaggag 1100
cagcttggaa taaaactggt gcgcaaggtg gatgagcctg gggttttcat 1150
cttcaatgtg ctggatggcg gtgtggcata tcgacatggt cagcttgagg 1200
agaatgaccg tgtgttagcc atcaatggac atgatcttcg atatggcagc 1250
ccagaaagtg cggctcatct gattcaggcc agtgaaagac gtgttcacct 1300
cgtcgtgtcc cgccaggttc ggcagcggag ccctgacatc tttcaggaag 1350
ccggctggaa cagcaatggc agctggtccc cagggccagg ggagaggagc 1400
aacactccca agcccctcca tcctacaatt acttgtcatg agaaggtggt 1450
aaatatccaa aaagaccccg gtgaatctct cggcatgacc gtcgcagggg 1500
gagcatcaca tagagaatgg gatttgccta tctatgtcat cagtgttgag 1550
cccggaggag tcataagcag agatggaaga ataaaaacag gtgacatttt 1600
gttgaatgtg gatggggtcg aactgacaga ggtcagccgg agtgaggcag 1650
tggcattatt gaaaagaaca tcatcctcga tagtactcaa agctttggaa 1700
gtcaaagagt atgagcccca ggaagactgc agcagcccag cagccctgga 1750
ctccaaccac aacatggccc cacccagtga ctggtcccca tcctgggtca 1800
tgtggctgga attaccacgg tgcttgtata actgtaaaga tattgtatta 1850
cgaagaaaca cagctggaag tctgggcttc tgcattgtag gaggttatga 1900
agaatacaat ggaaacaaac cttttttcat caaatccatt gttgaaggaa 1950
caccagcata caatgatgga agaattagat gtggtgatat tcttcttgct 2000
gtcaatggta gaagtacatc aggaatgata catgcttgct tggcaagact 2050
gctgaaagaa cttaaaggaa gaattactct aactattgtt tcttggcctg 2100
gcactttttt atagaatcaa tgatgggtca gaggaaaaca gaaaaatcac 2150
aaataggcta agaagttgaa acactatatt tatcttgtca gtttttatat 2200
ttaaagaaag aatacattgt aaaaatgtca ggaaaagtat gatcatctaa 2250
tgaaagccag ttacacctca gaaaatatga ttccaaaaaa attaaaacta 2300
ctagtttttt ttcagtgtgg aggatttctc attactctac aacattgttt 2350
atattttttc tattcaataa aaagccctaa aacaactaaa atgattgatt 2400
tgtatacccc actgaattca agctgattta aatttaaaat ttggtatatg 2450
ctgaagtctg ccaagggtac attatggcca tttttaattt acagctaaaa 2500
tattttttaa aatgcattgc tgagaaacgt tgctttcatc aaacaagaat 2550
aaatattttt cagaagttaa a 2571
40
632
PRT
Homo Sapien
40
Met Lys Ala Leu Leu Leu Leu Val Leu Pro Trp Leu Ser Pro Ala
1 5 10 15
Asn Tyr Ile Asp Asn Val Gly Asn Leu His Phe Leu Tyr Ser Glu
20 25 30
Leu Cys Lys Gly Ala Ser His Tyr Gly Leu Thr Lys Asp Arg Lys
35 40 45
Arg Arg Ser Gln Asp Gly Cys Pro Asp Gly Cys Ala Ser Leu Thr
50 55 60
Ala Thr Ala Pro Ser Pro Glu Val Ser Ala Ala Ala Thr Ile Ser
65 70 75
Leu Met Thr Asp Glu Pro Gly Leu Asp Asn Pro Ala Tyr Val Ser
80 85 90
Ser Ala Glu Asp Gly Gln Pro Ala Ile Ser Pro Val Asp Ser Gly
95 100 105
Arg Ser Asn Arg Thr Arg Ala Arg Pro Phe Glu Arg Ser Thr Ile
110 115 120
Arg Ser Arg Ser Phe Lys Lys Ile Asn Arg Ala Leu Ser Val Leu
125 130 135
Arg Arg Thr Lys Ser Gly Ser Ala Val Ala Asn His Ala Asp Gln
140 145 150
Gly Arg Glu Asn Ser Glu Asn Thr Thr Ala Pro Glu Val Phe Pro
155 160 165
Arg Leu Tyr His Leu Ile Pro Asp Gly Glu Ile Thr Ser Ile Lys
170 175 180
Ile Asn Arg Val Asp Pro Ser Glu Ser Leu Ser Ile Arg Leu Val
185 190 195
Gly Gly Ser Glu Thr Pro Leu Val His Ile Ile Ile Gln His Ile
200 205 210
Tyr Arg Asp Gly Val Ile Ala Arg Asp Gly Arg Leu Leu Pro Gly
215 220 225
Asp Ile Ile Leu Lys Val Asn Gly Met Asp Ile Ser Asn Val Pro
230 235 240
His Asn Tyr Ala Val Arg Leu Leu Arg Gln Pro Cys Gln Val Leu
245 250 255
Trp Leu Thr Val Met Arg Glu Gln Lys Phe Arg Ser Arg Asn Asn
260 265 270
Gly Gln Ala Pro Asp Ala Tyr Arg Pro Arg Asp Asp Ser Phe His
275 280 285
Val Ile Leu Asn Lys Ser Ser Pro Glu Glu Gln Leu Gly Ile Lys
290 295 300
Leu Val Arg Lys Val Asp Glu Pro Gly Val Phe Ile Phe Asn Val
305 310 315
Leu Asp Gly Gly Val Ala Tyr Arg His Gly Gln Leu Glu Glu Asn
320 325 330
Asp Arg Val Leu Ala Ile Asn Gly His Asp Leu Arg Tyr Gly Ser
335 340 345
Pro Glu Ser Ala Ala His Leu Ile Gln Ala Ser Glu Arg Arg Val
350 355 360
His Leu Val Val Ser Arg Gln Val Arg Gln Arg Ser Pro Asp Ile
365 370 375
Phe Gln Glu Ala Gly Trp Asn Ser Asn Gly Ser Trp Ser Pro Gly
380 385 390
Pro Gly Glu Arg Ser Asn Thr Pro Lys Pro Leu His Pro Thr Ile
395 400 405
Thr Cys His Glu Lys Val Val Asn Ile Gln Lys Asp Pro Gly Glu
410 415 420
Ser Leu Gly Met Thr Val Ala Gly Gly Ala Ser His Arg Glu Trp
425 430 435
Asp Leu Pro Ile Tyr Val Ile Ser Val Glu Pro Gly Gly Val Ile
440 445 450
Ser Arg Asp Gly Arg Ile Lys Thr Gly Asp Ile Leu Leu Asn Val
455 460 465
Asp Gly Val Glu Leu Thr Glu Val Ser Arg Ser Glu Ala Val Ala
470 475 480
Leu Leu Lys Arg Thr Ser Ser Ser Ile Val Leu Lys Ala Leu Glu
485 490 495
Val Lys Glu Tyr Glu Pro Gln Glu Asp Cys Ser Ser Pro Ala Ala
500 505 510
Leu Asp Ser Asn His Asn Met Ala Pro Pro Ser Asp Trp Ser Pro
515 520 525
Ser Trp Val Met Trp Leu Glu Leu Pro Arg Cys Leu Tyr Asn Cys
530 535 540
Lys Asp Ile Val Leu Arg Arg Asn Thr Ala Gly Ser Leu Gly Phe
545 550 555
Cys Ile Val Gly Gly Tyr Glu Glu Tyr Asn Gly Asn Lys Pro Phe
560 565 570
Phe Ile Lys Ser Ile Val Glu Gly Thr Pro Ala Tyr Asn Asp Gly
575 580 585
Arg Ile Arg Cys Gly Asp Ile Leu Leu Ala Val Asn Gly Arg Ser
590 595 600
Thr Ser Gly Met Ile His Ala Cys Leu Ala Arg Leu Leu Lys Glu
605 610 615
Leu Lys Gly Arg Ile Thr Leu Thr Ile Val Ser Trp Pro Gly Thr
620 625 630
Phe Leu
41
1964
DNA
Homo Sapien
41
accaggcatt gtatcttcag ttgtcatcaa gttcgcaatc agattggaaa 50
agctcaactt gaagctttct tgcctgcagt gaagcagaga gatagatatt 100
attcacgtaa taaaaaacat gggcttcaac ctgactttcc acctttccta 150
caaattccga ttactgttgc tgttgacttt gtgcctgaca gtggttgggt 200
gggccaccag taactacttc gtgggtgcca ttcaagagat tcctaaagca 250
aaggagttca tggctaattt ccataagacc ctcattttgg ggaagggaaa 300
aactctgact aatgaagcat ccacgaagaa ggtagaactt gacaactgtc 350
cttctgtgtc tccttacctc agaggccaga gcaagctcat tttcaaacca 400
gatctcactt tggaagaggt acaggcagaa aatcccaaag tgtccagagg 450
ccggtatcgc cctcaggaat gtaaagcttt acagagggtc gccatcctcg 500
ttccccaccg gaacagagag aaacacctga tgtacctgct ggaacatctg 550
catcccttcc tgcagaggca gcagctggat tatggcatct acgtcatcca 600
ccaggctgaa ggtaaaaagt ttaatcgagc caaactcttg aatgtgggct 650
atctagaagc cctcaaggaa gaaaattggg actgctttat attccacgat 700
gtggacctgg tacccgagaa tgactttaac ctttacaagt gtgaggagca 750
tcccaagcat ctggtggttg gcaggaacag cactgggtac aggttacgtt 800
acagtggata ttttgggggt gttactgccc taagcagaga gcagtttttc 850
aaggtgaatg gattctctaa caactactgg ggatggggag gcgaagacga 900
tgacctcaga ctcagggttg agctccaaag aatgaaaatt tcccggcccc 950
tgcctgaagt gggtaaatat acaatggtct tccacactag agacaaaggc 1000
aatgaggtga acgcagaacg gatgaagctc ttacaccaag tgtcacgagt 1050
ctggagaaca gatgggttga gtagttgttc ttataaatta gtatctgtgg 1100
aacacaatcc tttatatatc aacatcacag tggatttctg gtttggtgca 1150
tgaccctgga tcttttggtg atgtttggaa gaactgattc tttgtttgca 1200
ataattttgg cctagagact tcaaatagta gcacacatta agaacctgtt 1250
acagctcatt gttgagctga atttttcctt tttgtatttt cttagcagag 1300
ctcctggtga tgtagagtat aaaacagttg taacaagaca gctttcttag 1350
tcattttgat catgagggtt aaatattgta atatggatac ttgaaggact 1400
ttatataaaa ggatgactca aaggataaaa tgaacgctat ttgaggactc 1450
tggttgaagg agatttattt aaatttgaag taatatatta tgggataaaa 1500
ggccacagga aataagactg ctgaatgtct gagagaacca gagttgttct 1550
cgtccaaggt agaaaggtac gaagatacaa tactgttatt catttatcct 1600
gtacaatcat ctgtgaagtg gtggtgtcag gtgagaaggc gtccacaaaa 1650
gaggggagaa aaggcgacga atcaggacac agtgaacttg ggaatgaaga 1700
ggtagcagga gggtggagtg tcggctgcaa aggcagcagt agctgagctg 1750
gttgcaggtg ctgatagcct tcaggggagg acctgcccag gtatgccttc 1800
cagtgatgcc caccagagaa tacattctct attagttttt aaagagtttt 1850
tgtaaaatga ttttgtacaa gtaggatatg aattagcagt ttacaagttt 1900
acatattaac taataataaa tatgtctatc aaatacctct gtagtaaaat 1950
gtgaaaaagc aaaa 1964
42
344
PRT
Homo Sapien
42
Met Gly Phe Asn Leu Thr Phe His Leu Ser Tyr Lys Phe Arg Leu
1 5 10 15
Leu Leu Leu Leu Thr Leu Cys Leu Thr Val Val Gly Trp Ala Thr
20 25 30
Ser Asn Tyr Phe Val Gly Ala Ile Gln Glu Ile Pro Lys Ala Lys
35 40 45
Glu Phe Met Ala Asn Phe His Lys Thr Leu Ile Leu Gly Lys Gly
50 55 60
Lys Thr Leu Thr Asn Glu Ala Ser Thr Lys Lys Val Glu Leu Asp
65 70 75
Asn Cys Pro Ser Val Ser Pro Tyr Leu Arg Gly Gln Ser Lys Leu
80 85 90
Ile Phe Lys Pro Asp Leu Thr Leu Glu Glu Val Gln Ala Glu Asn
95 100 105
Pro Lys Val Ser Arg Gly Arg Tyr Arg Pro Gln Glu Cys Lys Ala
110 115 120
Leu Gln Arg Val Ala Ile Leu Val Pro His Arg Asn Arg Glu Lys
125 130 135
His Leu Met Tyr Leu Leu Glu His Leu His Pro Phe Leu Gln Arg
140 145 150
Gln Gln Leu Asp Tyr Gly Ile Tyr Val Ile His Gln Ala Glu Gly
155 160 165
Lys Lys Phe Asn Arg Ala Lys Leu Leu Asn Val Gly Tyr Leu Glu
170 175 180
Ala Leu Lys Glu Glu Asn Trp Asp Cys Phe Ile Phe His Asp Val
185 190 195
Asp Leu Val Pro Glu Asn Asp Phe Asn Leu Tyr Lys Cys Glu Glu
200 205 210
His Pro Lys His Leu Val Val Gly Arg Asn Ser Thr Gly Tyr Arg
215 220 225
Leu Arg Tyr Ser Gly Tyr Phe Gly Gly Val Thr Ala Leu Ser Arg
230 235 240
Glu Gln Phe Phe Lys Val Asn Gly Phe Ser Asn Asn Tyr Trp Gly
245 250 255
Trp Gly Gly Glu Asp Asp Asp Leu Arg Leu Arg Val Glu Leu Gln
260 265 270
Arg Met Lys Ile Ser Arg Pro Leu Pro Glu Val Gly Lys Tyr Thr
275 280 285
Met Val Phe His Thr Arg Asp Lys Gly Asn Glu Val Asn Ala Glu
290 295 300
Arg Met Lys Leu Leu His Gln Val Ser Arg Val Trp Arg Thr Asp
305 310 315
Gly Leu Ser Ser Cys Ser Tyr Lys Leu Val Ser Val Glu His Asn
320 325 330
Pro Leu Tyr Ile Asn Ile Thr Val Asp Phe Trp Phe Gly Ala
335 340
43
485
DNA
Homo Sapien
43
gctcaagacc cagcagtggg acagccagac agacggcacg atggcactga 50
gctcccagat ctgggccgct tgcctcctgc tcctcctcct cctcgccagc 100
ctgaccagtg gctctgtttt cccacaacag acgggacaac ttgcagagct 150
gcaaccccag gacagagctg gagccagggc cagctggatg cccatgttcc 200
agaggcgaag gaggcgagac acccacttcc ccatctgcat tttctgctgc 250
ggctgctgtc atcgatcaaa gtgtgggatg tgctgcaaga cgtagaacct 300
acctgccctg cccccgtccc ctcccttcct tatttattcc tgctgcccca 350
gaacataggt cttggaataa aatggctggt tcttttgttt tccaaaaaaa 400
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 450
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaa 485
44
84
PRT
Homo Sapien
44
Met Ala Leu Ser Ser Gln Ile Trp Ala Ala Cys Leu Leu Leu Leu
1 5 10 15
Leu Leu Leu Ala Ser Leu Thr Ser Gly Ser Val Phe Pro Gln Gln
20 25 30
Thr Gly Gln Leu Ala Glu Leu Gln Pro Gln Asp Arg Ala Gly Ala
35 40 45
Arg Ala Ser Trp Met Pro Met Phe Gln Arg Arg Arg Arg Arg Asp
50 55 60
Thr His Phe Pro Ile Cys Ile Phe Cys Cys Gly Cys Cys His Arg
65 70 75
Ser Lys Cys Gly Met Cys Cys Lys Thr
80
45
1076
DNA
Homo Sapien
45
gtggcttcat ttcagtggct gacttccaga gagcaatatg gctggttccc 50
caacatgcct caccctcatc tatatccttt ggcagctcac agggtcagca 100
gcctctggac ccgtgaaaga gctggtcggt tccgttggtg gggccgtgac 150
tttccccctg aagtccaaag taaagcaagt tgactctatt gtctggacct 200
tcaacacaac ccctcttgtc accatacagc cagaaggggg cactatcata 250
gtgacccaaa atcgtaatag ggagagagta gacttcccag atggaggcta 300
ctccctgaag ctcagcaaac tgaagaagaa tgactcaggg atctactatg 350
tggggatata cagctcatca ctccagcagc cctccaccca ggagtacgtg 400
ctgcatgtct acgagcacct gtcaaagcct aaagtcacca tgggtctgca 450
gagcaataag aatggcacct gtgtgaccaa tctgacatgc tgcatggaac 500
atggggaaga ggatgtgatt tatacctgga aggccctggg gcaagcagcc 550
aatgagtccc ataatgggtc catcctcccc atctcctgga gatggggaga 600
aagtgatatg accttcatct gcgttgccag gaaccctgtc agcagaaact 650
tctcaagccc catccttgcc aggaagctct gtgaaggtgc tgctgatgac 700
ccagattcct ccatggtcct cctgtgtctc ctgttggtgc ccctcctgct 750
cagtctcttt gtactggggc tatttctttg gtttctgaag agagagagac 800
aagaagagta cattgaagag aagaagagag tggacatttg tcgggaaact 850
cctaacatat gcccccattc tggagagaac acagagtacg acacaatccc 900
tcacactaat agaacaatcc taaaggaaga tccagcaaat acggtttact 950
ccactgtgga aataccgaaa aagatggaaa atccccactc actgctcacg 1000
atgccagaca caccaaggct atttgcctat gagaatgtta tctagacagc 1050
agtgcactcc cctaagtctc tgctca 1076
46
335
PRT
Homo Sapien
46
Met Ala Gly Ser Pro Thr Cys Leu Thr Leu Ile Tyr Ile Leu Trp
1 5 10 15
Gln Leu Thr Gly Ser Ala Ala Ser Gly Pro Val Lys Glu Leu Val
20 25 30
Gly Ser Val Gly Gly Ala Val Thr Phe Pro Leu Lys Ser Lys Val
35 40 45
Lys Gln Val Asp Ser Ile Val Trp Thr Phe Asn Thr Thr Pro Leu
50 55 60
Val Thr Ile Gln Pro Glu Gly Gly Thr Ile Ile Val Thr Gln Asn
65 70 75
Arg Asn Arg Glu Arg Val Asp Phe Pro Asp Gly Gly Tyr Ser Leu
80 85 90
Lys Leu Ser Lys Leu Lys Lys Asn Asp Ser Gly Ile Tyr Tyr Val
95 100 105
Gly Ile Tyr Ser Ser Ser Leu Gln Gln Pro Ser Thr Gln Glu Tyr
110 115 120
Val Leu His Val Tyr Glu His Leu Ser Lys Pro Lys Val Thr Met
125 130 135
Gly Leu Gln Ser Asn Lys Asn Gly Thr Cys Val Thr Asn Leu Thr
140 145 150
Cys Cys Met Glu His Gly Glu Glu Asp Val Ile Tyr Thr Trp Lys
155 160 165
Ala Leu Gly Gln Ala Ala Asn Glu Ser His Asn Gly Ser Ile Leu
170 175 180
Pro Ile Ser Trp Arg Trp Gly Glu Ser Asp Met Thr Phe Ile Cys
185 190 195
Val Ala Arg Asn Pro Val Ser Arg Asn Phe Ser Ser Pro Ile Leu
200 205 210
Ala Arg Lys Leu Cys Glu Gly Ala Ala Asp Asp Pro Asp Ser Ser
215 220 225
Met Val Leu Leu Cys Leu Leu Leu Val Pro Leu Leu Leu Ser Leu
230 235 240
Phe Val Leu Gly Leu Phe Leu Trp Phe Leu Lys Arg Glu Arg Gln
245 250 255
Glu Glu Tyr Ile Glu Glu Lys Lys Arg Val Asp Ile Cys Arg Glu
260 265 270
Thr Pro Asn Ile Cys Pro His Ser Gly Glu Asn Thr Glu Tyr Asp
275 280 285
Thr Ile Pro His Thr Asn Arg Thr Ile Leu Lys Glu Asp Pro Ala
290 295 300
Asn Thr Val Tyr Ser Thr Val Glu Ile Pro Lys Lys Met Glu Asn
305 310 315
Pro His Ser Leu Leu Thr Met Pro Asp Thr Pro Arg Leu Phe Ala
320 325 330
Tyr Glu Asn Val Ile
335
47
766
DNA
Homo Sapien
47
ggctcgagcg tttctgagcc aggggtgacc atgacctgct gcgaaggatg 50
gacatcctgc aatggattca gcctgctggt tctactgctg ttaggagtag 100
ttctcaatgc gatacctcta attgtcagct tagttgagga agaccaattt 150
tctcaaaacc ccatctcttg ctttgagtgg tggttcccag gaattatagg 200
agcaggtctg atggccattc cagcaacaac aatgtccttg acagcaagaa 250
aaagagcgtg ctgcaacaac agaactggaa tgtttctttc atcatttttc 300
agtgtgatca cagtcattgg tgctctgtat tgcatgctga tatccatcca 350
ggctctctta aaaggtcctc tcatgtgtaa ttctccaagc aacagtaatg 400
ccaattgtga attttcattg aaaaacatca gtgacattca tccagaatcc 450
ttcaacttgc agtggttttt caatgactct tgtgcacctc ctactggttt 500
caataaaccc accagtaacg acaccatggc gagtggctgg agagcatcta 550
gtttccactt cgattctgaa gaaaacaaac ataggcttat ccacttctca 600
gtatttttag gtctattgct tgttggaatt ctggaggtcc tgtttgggct 650
cagtcagata gtcatcggtt tccttggctg tctgtgtgga gtctctaagc 700
gaagaagtca aattgtgtag tttaatggga ataaaatgta agtatcagta 750
gtttgaaaaa aaaaaa 766
48
229
PRT
Homo Sapien
48
Met Thr Cys Cys Glu Gly Trp Thr Ser Cys Asn Gly Phe Ser Leu
1 5 10 15
Leu Val Leu Leu Leu Leu Gly Val Val Leu Asn Ala Ile Pro Leu
20 25 30
Ile Val Ser Leu Val Glu Glu Asp Gln Phe Ser Gln Asn Pro Ile
35 40 45
Ser Cys Phe Glu Trp Trp Phe Pro Gly Ile Ile Gly Ala Gly Leu
50 55 60
Met Ala Ile Pro Ala Thr Thr Met Ser Leu Thr Ala Arg Lys Arg
65 70 75
Ala Cys Cys Asn Asn Arg Thr Gly Met Phe Leu Ser Ser Phe Phe
80 85 90
Ser Val Ile Thr Val Ile Gly Ala Leu Tyr Cys Met Leu Ile Ser
95 100 105
Ile Gln Ala Leu Leu Lys Gly Pro Leu Met Cys Asn Ser Pro Ser
110 115 120
Asn Ser Asn Ala Asn Cys Glu Phe Ser Leu Lys Asn Ile Ser Asp
125 130 135
Ile His Pro Glu Ser Phe Asn Leu Gln Trp Phe Phe Asn Asp Ser
140 145 150
Cys Ala Pro Pro Thr Gly Phe Asn Lys Pro Thr Ser Asn Asp Thr
155 160 165
Met Ala Ser Gly Trp Arg Ala Ser Ser Phe His Phe Asp Ser Glu
170 175 180
Glu Asn Lys His Arg Leu Ile His Phe Ser Val Phe Leu Gly Leu
185 190 195
Leu Leu Val Gly Ile Leu Glu Val Leu Phe Gly Leu Ser Gln Ile
200 205 210
Val Ile Gly Phe Leu Gly Cys Leu Cys Gly Val Ser Lys Arg Arg
215 220 225
Ser Gln Ile Val
49
636
DNA
Homo Sapien
49
atccgttctc tgcgctgcca gctcaggtga gccctcgcca aggtgacctc 50
gcaggacact ggtgaaggag cagtgaggaa cctgcagagt cacacagttg 100
ctgaccaatt gagctgtgag cctggagcag atccgtgggc tgcagacccc 150
cgccccagtg cctctccccc tgcagccctg cccctcgaac tgtgacatgg 200
agagagtgac cctggccctt ctcctactgg caggcctgac tgccttggaa 250
gccaatgacc catttgccaa taaagacgat cccttctact atgactggaa 300
aaacctgcag ctgagcggac tgatctgcgg agggctcctg gccattgctg 350
ggatcgcggc agttctgagt ggcaaatgca aatacaagag cagccagaag 400
cagcacagtc ctgtacctga gaaggccatc ccactcatca ctccaggctc 450
tgccactact tgctgagcac aggactggcc tccagggatg gcctgaagcc 500
taacactggc ccccagcacc tcctcccctg ggaggcctta tcctcaagga 550
aggacttctc tccaagggca ggctgttagg cccctttctg atcaggaggc 600
ttctttatga attaaactcg ccccaccacc ccctca 636
50
89
PRT
Homo Sapien
50
Met Glu Arg Val Thr Leu Ala Leu Leu Leu Leu Ala Gly Leu Thr
1 5 10 15
Ala Leu Glu Ala Asn Asp Pro Phe Ala Asn Lys Asp Asp Pro Phe
20 25 30
Tyr Tyr Asp Trp Lys Asn Leu Gln Leu Ser Gly Leu Ile Cys Gly
35 40 45
Gly Leu Leu Ala Ile Ala Gly Ile Ala Ala Val Leu Ser Gly Lys
50 55 60
Cys Lys Tyr Lys Ser Ser Gln Lys Gln His Ser Pro Val Pro Glu
65 70 75
Lys Ala Ile Pro Leu Ile Thr Pro Gly Ser Ala Thr Thr Cys
80 85
51
1734
DNA
Homo Sapien
51
gtggactctg agaagcccag gcagttgagg acaggagaga gaaggctgca 50
gacccagagg gagggaggac agggagtcgg aaggaggagg acagaggagg 100
gcacagagac gcagagcaag ggcggcaagg aggagaccct ggtgggagga 150
agacactctg gagagagagg gggctgggca gagatgaagt tccaggggcc 200
cctggcctgc ctcctgctgg ccctctgcct gggcagtggg gaggctggcc 250
ccctgcagag cggagaggaa agcactggga caaatattgg ggaggccctt 300
ggacatggcc tgggagacgc cctgagcgaa ggggtgggaa aggccattgg 350
caaagaggcc ggaggggcag ctggctctaa agtcagtgag gcccttggcc 400
aagggaccag agaagcagtt ggcactggag tcaggcaggt tccaggcttt 450
ggcgcagcag atgctttggg caacagggtc ggggaagcag cccatgctct 500
gggaaacact gggcacgaga ttggcagaca ggcagaagat gtcattcgac 550
acggagcaga tgctgtccgc ggctcctggc agggggtgcc tggccacagt 600
ggtgcttggg aaacttctgg aggccatggc atctttggct ctcaaggtgg 650
ccttggaggc cagggccagg gcaatcctgg aggtctgggg actccgtggg 700
tccacggata ccccggaaac tcagcaggca gctttggaat gaatcctcag 750
ggagctccct ggggtcaagg aggcaatgga gggccaccaa actttgggac 800
caacactcag ggagctgtgg cccagcctgg ctatggttca gtgagagcca 850
gcaaccagaa tgaagggtgc acgaatcccc caccatctgg ctcaggtgga 900
ggctccagca actctggggg aggcagcggc tcacagtcgg gcagcagtgg 950
cagtggcagc aatggtgaca acaacaatgg cagcagcagt ggtggcagca 1000
gcagtggcag cagcagtggc agcagcagtg gcggcagcag tggcggcagc 1050
agtggtggca gcagtggcaa cagtggtggc agcagaggtg acagcggcag 1100
tgagtcctcc tggggatcca gcaccggctc ctcctccggc aaccacggtg 1150
ggagcggcgg aggaaatgga cataaacccg ggtgtgaaaa gccagggaat 1200
gaagcccgcg ggagcgggga atctgggatt cagggcttca gaggacaggg 1250
agtttccagc aacatgaggg aaataagcaa agagggcaat cgcctccttg 1300
gaggctctgg agacaattat cgggggcaag ggtcgagctg gggcagtgga 1350
ggaggtgacg ctgttggtgg agtcaatact gtgaactctg agacgtctcc 1400
tgggatgttt aactttgaca ctttctggaa gaattttaaa tccaagctgg 1450
gtttcatcaa ctgggatgcc ataaacaagg accagagaag ctctcgcatc 1500
ccgtgacctc cagacaagga gccaccagat tggatgggag cccccacact 1550
ccctccttaa aacaccaccc tctcatcact aatctcagcc cttgcccttg 1600
aaataaacct tagctgcccc acaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1650
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1700
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 1734
52
440
PRT
Homo Sapien
52
Met Lys Phe Gln Gly Pro Leu Ala Cys Leu Leu Leu Ala Leu Cys
1 5 10 15
Leu Gly Ser Gly Glu Ala Gly Pro Leu Gln Ser Gly Glu Glu Ser
20 25 30
Thr Gly Thr Asn Ile Gly Glu Ala Leu Gly His Gly Leu Gly Asp
35 40 45
Ala Leu Ser Glu Gly Val Gly Lys Ala Ile Gly Lys Glu Ala Gly
50 55 60
Gly Ala Ala Gly Ser Lys Val Ser Glu Ala Leu Gly Gln Gly Thr
65 70 75
Arg Glu Ala Val Gly Thr Gly Val Arg Gln Val Pro Gly Phe Gly
80 85 90
Ala Ala Asp Ala Leu Gly Asn Arg Val Gly Glu Ala Ala His Ala
95 100 105
Leu Gly Asn Thr Gly His Glu Ile Gly Arg Gln Ala Glu Asp Val
110 115 120
Ile Arg His Gly Ala Asp Ala Val Arg Gly Ser Trp Gln Gly Val
125 130 135
Pro Gly His Ser Gly Ala Trp Glu Thr Ser Gly Gly His Gly Ile
140 145 150
Phe Gly Ser Gln Gly Gly Leu Gly Gly Gln Gly Gln Gly Asn Pro
155 160 165
Gly Gly Leu Gly Thr Pro Trp Val His Gly Tyr Pro Gly Asn Ser
170 175 180
Ala Gly Ser Phe Gly Met Asn Pro Gln Gly Ala Pro Trp Gly Gln
185 190 195
Gly Gly Asn Gly Gly Pro Pro Asn Phe Gly Thr Asn Thr Gln Gly
200 205 210
Ala Val Ala Gln Pro Gly Tyr Gly Ser Val Arg Ala Ser Asn Gln
215 220 225
Asn Glu Gly Cys Thr Asn Pro Pro Pro Ser Gly Ser Gly Gly Gly
230 235 240
Ser Ser Asn Ser Gly Gly Gly Ser Gly Ser Gln Ser Gly Ser Ser
245 250 255
Gly Ser Gly Ser Asn Gly Asp Asn Asn Asn Gly Ser Ser Ser Gly
260 265 270
Gly Ser Ser Ser Gly Ser Ser Ser Gly Ser Ser Ser Gly Gly Ser
275 280 285
Ser Gly Gly Ser Ser Gly Gly Ser Ser Gly Asn Ser Gly Gly Ser
290 295 300
Arg Gly Asp Ser Gly Ser Glu Ser Ser Trp Gly Ser Ser Thr Gly
305 310 315
Ser Ser Ser Gly Asn His Gly Gly Ser Gly Gly Gly Asn Gly His
320 325 330
Lys Pro Gly Cys Glu Lys Pro Gly Asn Glu Ala Arg Gly Ser Gly
335 340 345
Glu Ser Gly Ile Gln Gly Phe Arg Gly Gln Gly Val Ser Ser Asn
350 355 360
Met Arg Glu Ile Ser Lys Glu Gly Asn Arg Leu Leu Gly Gly Ser
365 370 375
Gly Asp Asn Tyr Arg Gly Gln Gly Ser Ser Trp Gly Ser Gly Gly
380 385 390
Gly Asp Ala Val Gly Gly Val Asn Thr Val Asn Ser Glu Thr Ser
395 400 405
Pro Gly Met Phe Asn Phe Asp Thr Phe Trp Lys Asn Phe Lys Ser
410 415 420
Lys Leu Gly Phe Ile Asn Trp Asp Ala Ile Asn Lys Asp Gln Arg
425 430 435
Ser Ser Arg Ile Pro
440
53
1676
DNA
Homo Sapien
53
ggagaagagg ttgtgtggga caagctgctc ccgacagaag gatgtcgctg 50
ctgagcctgc cctggctggg cctcagaccg gtggcaatgt ccccatggct 100
actcctgctg ctggttgtgg gctcctggct actcgcccgc atcctggctt 150
ggacctatgc cttctataac aactgccgcc ggctccagtg tttcccacag 200
cccccaaaac ggaactggtt ttggggtcac ctgggcctga tcactcctac 250
agaggagggc ttgaaggact cgacccagat gtcggccacc tattcccagg 300
gctttacggt atggctgggt cccatcatcc ccttcatcgt tttatgccac 350
cctgacacca tccggtctat caccaatgcc tcagctgcca ttgcacccaa 400
ggataatctc ttcatcaggt tcctgaagcc ctggctggga gaagggatac 450
tgctgagtgg cggtgacaag tggagccgcc accgtcggat gctgacgccc 500
gccttccatt tcaacatcct gaagtcctat ataacgatct tcaacaagag 550
tgcaaacatc atgcttgaca agtggcagca cctggcctca gagggcagca 600
gtcgtctgga catgtttgag cacatcagcc tcatgacctt ggacagtcta 650
cagaaatgca tcttcagctt tgacagccat tgtcaggaga ggcccagtga 700
atatattgcc accatcttgg agctcagtgc ccttgtagag aaaagaagcc 750
agcatatcct ccagcacatg gactttctgt attacctctc ccatgacggg 800
cggcgcttcc acagggcctg ccgcctggtg catgacttca cagacgctgt 850
catccgggag cggcgtcgca ccctccccac tcagggtatt gatgattttt 900
tcaaagacaa agccaagtcc aagactttgg atttcattga tgtgcttctg 950
ctgagcaagg atgaagatgg gaaggcattg tcagatgagg atataagagc 1000
agaggctgac accttcatgt ttggaggcca tgacaccacg gccagtggcc 1050
tctcctgggt cctgtacaac cttgcgaggc acccagaata ccaggagcgc 1100
tgccgacagg aggtgcaaga gcttctgaag gaccgcgatc ctaaagagat 1150
tgaatgggac gacctggccc agctgccctt cctgaccatg tgcgtgaagg 1200
agagcctgag gttacatccc ccagctccct tcatctcccg atgctgcacc 1250
caggacattg ttctcccaga tggccgagtc atccccaaag gcattacctg 1300
cctcatcgat attatagggg tccatcacaa cccaactgtg tggccggatc 1350
ctgaggtcta cgaccccttc cgctttgacc cagagaacag caaggggagg 1400
tcacctctgg cttttattcc tttctccgca gggcccagga actgcatcgg 1450
gcaggcgttc gccatggcgg agatgaaagt ggtcctggcg ttgatgctgc 1500
tgcacttccg gttcctgcca gaccacactg agccccgcag gaagctggaa 1550
ttgatcatgc gcgccgaggg cgggctttgg ctgcgggtgg agcccctgaa 1600
tgtaggcttg cagtgacttt ctgacccatc cacctgtttt tttgcagatt 1650
gtcatgaata aaacggtgct gtcaaa 1676
54
524
PRT
Homo Sapien
54
Met Ser Leu Leu Ser Leu Pro Trp Leu Gly Leu Arg Pro Val Ala
1 5 10 15
Met Ser Pro Trp Leu Leu Leu Leu Leu Val Val Gly Ser Trp Leu
20 25 30
Leu Ala Arg Ile Leu Ala Trp Thr Tyr Ala Phe Tyr Asn Asn Cys
35 40 45
Arg Arg Leu Gln Cys Phe Pro Gln Pro Pro Lys Arg Asn Trp Phe
50 55 60
Trp Gly His Leu Gly Leu Ile Thr Pro Thr Glu Glu Gly Leu Lys
65 70 75
Asp Ser Thr Gln Met Ser Ala Thr Tyr Ser Gln Gly Phe Thr Val
80 85 90
Trp Leu Gly Pro Ile Ile Pro Phe Ile Val Leu Cys His Pro Asp
95 100 105
Thr Ile Arg Ser Ile Thr Asn Ala Ser Ala Ala Ile Ala Pro Lys
110 115 120
Asp Asn Leu Phe Ile Arg Phe Leu Lys Pro Trp Leu Gly Glu Gly
125 130 135
Ile Leu Leu Ser Gly Gly Asp Lys Trp Ser Arg His Arg Arg Met
140 145 150
Leu Thr Pro Ala Phe His Phe Asn Ile Leu Lys Ser Tyr Ile Thr
155 160 165
Ile Phe Asn Lys Ser Ala Asn Ile Met Leu Asp Lys Trp Gln His
170 175 180
Leu Ala Ser Glu Gly Ser Ser Arg Leu Asp Met Phe Glu His Ile
185 190 195
Ser Leu Met Thr Leu Asp Ser Leu Gln Lys Cys Ile Phe Ser Phe
200 205 210
Asp Ser His Cys Gln Glu Arg Pro Ser Glu Tyr Ile Ala Thr Ile
215 220 225
Leu Glu Leu Ser Ala Leu Val Glu Lys Arg Ser Gln His Ile Leu
230 235 240
Gln His Met Asp Phe Leu Tyr Tyr Leu Ser His Asp Gly Arg Arg
245 250 255
Phe His Arg Ala Cys Arg Leu Val His Asp Phe Thr Asp Ala Val
260 265 270
Ile Arg Glu Arg Arg Arg Thr Leu Pro Thr Gln Gly Ile Asp Asp
275 280 285
Phe Phe Lys Asp Lys Ala Lys Ser Lys Thr Leu Asp Phe Ile Asp
290 295 300
Val Leu Leu Leu Ser Lys Asp Glu Asp Gly Lys Ala Leu Ser Asp
305 310 315
Glu Asp Ile Arg Ala Glu Ala Asp Thr Phe Met Phe Gly Gly His
320 325 330
Asp Thr Thr Ala Ser Gly Leu Ser Trp Val Leu Tyr Asn Leu Ala
335 340 345
Arg His Pro Glu Tyr Gln Glu Arg Cys Arg Gln Glu Val Gln Glu
350 355 360
Leu Leu Lys Asp Arg Asp Pro Lys Glu Ile Glu Trp Asp Asp Leu
365 370 375
Ala Gln Leu Pro Phe Leu Thr Met Cys Val Lys Glu Ser Leu Arg
380 385 390
Leu His Pro Pro Ala Pro Phe Ile Ser Arg Cys Cys Thr Gln Asp
395 400 405
Ile Val Leu Pro Asp Gly Arg Val Ile Pro Lys Gly Ile Thr Cys
410 415 420
Leu Ile Asp Ile Ile Gly Val His His Asn Pro Thr Val Trp Pro
425 430 435
Asp Pro Glu Val Tyr Asp Pro Phe Arg Phe Asp Pro Glu Asn Ser
440 445 450
Lys Gly Arg Ser Pro Leu Ala Phe Ile Pro Phe Ser Ala Gly Pro
455 460 465
Arg Asn Cys Ile Gly Gln Ala Phe Ala Met Ala Glu Met Lys Val
470 475 480
Val Leu Ala Leu Met Leu Leu His Phe Arg Phe Leu Pro Asp His
485 490 495
Thr Glu Pro Arg Arg Lys Leu Glu Leu Ile Met Arg Ala Glu Gly
500 505 510
Gly Leu Trp Leu Arg Val Glu Pro Leu Asn Val Gly Leu Gln
515 520
55
644
DNA
Homo Sapien
55
atcgcatcaa ttgggagtac catcttcctc atgggaccag tgaaacagct 50
gaagcgaatg tttgagccta ctcgtttgat tgcaactatc atggtgctgt 100
tgtgttttgc acttaccctg tgttctgcct tttggtggca taacaaggga 150
cttgcactta tcttctgcat tttgcagtct ttggcattga cgtggtacag 200
cctttccttc ataccatttg caagggatgc tgtgaagaag tgttttgccg 250
tgtgtcttgc ataattcatg gccagtttta tgaagctttg gaaggcacta 300
tggacagaag ctggtggaca gttttgtaac tatcttcgaa acctctgtct 350
tacagacatg tgccttttat cttgcagcaa tgtgttgctt gtgattcgaa 400
catttgaggg ttacttttgg aagcaacaat acattctcga acctgaatgt 450
cagtagcaca ggatgagaag tgggttctgt atcttgtgga gtggaatctt 500
cctcatgtac ctgtttcctc tctggatgtt gtcccactga attcccatga 550
atacaaacct attcagcaac agcaaaaaaa aaaaaaaaaa aaaaaaaaaa 600
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 644
56
77
PRT
Homo Sapien
56
Met Gly Pro Val Lys Gln Leu Lys Arg Met Phe Glu Pro Thr Arg
1 5 10 15
Leu Ile Ala Thr Ile Met Val Leu Leu Cys Phe Ala Leu Thr Leu
20 25 30
Cys Ser Ala Phe Trp Trp His Asn Lys Gly Leu Ala Leu Ile Phe
35 40 45
Cys Ile Leu Gln Ser Leu Ala Leu Thr Trp Tyr Ser Leu Ser Phe
50 55 60
Ile Pro Phe Ala Arg Asp Ala Val Lys Lys Cys Phe Ala Val Cys
65 70 75
Leu Ala
57
3334
DNA
Homo Sapien
57
cggctcgagc tcgagccgaa tcggctcgag gggcagtgga gcacccagca 50
ggccgccaac atgctctgtc tgtgcctgta cgtgccggtc atcggggaag 100
cccagaccga gttccagtac tttgagtcga aggggctccc tgccgagctg 150
aagtccattt tcaagctcag tgtcttcatc ccctcccagg aattctccac 200
ctaccgccag tggaagcaga aaattgtaca agctggagat aaggaccttg 250
atgggcagct agactttgaa gaatttgtcc attatctcca agatcatgag 300
aagaagctga ggctggtgtt taagattttg gacaaaaaga atgatggacg 350
cattgacgcg caggagatca tgcagtccct gcgggacttg ggagtcaaga 400
tatctgaaca gcaggcagaa aaaattctca agagcatgga taaaaacggc 450
acgatgacca tcgactggaa cgagtggaga gactaccacc tcctccaccc 500
cgtggaaaac atccccgaga tcatcctcta ctggaagcat tccacgatct 550
ttgatgtggg tgagaatcta acggtcccgg atgagttcac agtggaggag 600
aggcagacgg ggatgtggtg gagacacctg gtggcaggag gtggggcagg 650
ggccgtatcc agaacctgca cggcccccct ggacaggctc aaggtgctca 700
tgcaggtcca tgcctcccgc agcaacaaca tgggcatcgt tggtggcttc 750
actcagatga ttcgagaagg aggggccagg tcactctggc ggggcaatgg 800
catcaacgtc ctcaaaattg cccccgaatc agccatcaaa ttcatggcct 850
atgagcagat caagcgcctt gttggtagtg accaggagac tctgaggatt 900
cacgagaggc ttgtggcagg gtccttggca ggggccatcg cccagagcag 950
catctaccca atggaggtcc tgaagacccg gatggcgctg cggaagacag 1000
gccagtactc aggaatgctg gactgcgcca ggaggatcct ggccagagag 1050
ggggtggccg ccttctacaa aggctatgtc cccaacatgc tgggcatcat 1100
cccctatgcc ggcatcgacc ttgcagtcta cgagacgctc aagaatgcct 1150
ggctgcagca ctatgcagtg aacagcgcgg accccggcgt gtttgtgctc 1200
ctggcctgtg gcaccatgtc cagtacctgt ggccagctgg ccagctaccc 1250
cctggcccta gtcaggaccc ggatgcaggc gcaagcctct attgagggcg 1300
ctccggaggt gaccatgagc agcctcttca aacatatcct gcggaccgag 1350
ggggccttcg ggctgtacag ggggctggcc cccaacttca tgaaggtcat 1400
cccagctgtg agcatcagct acgtggtcta cgagaacctg aagatcaccc 1450
tgggcgtgca gtcgcggtga cggggggagg gccgcccggc agtggactcg 1500
ctgatcctgg gccgcagcct ggggtgtgca gccatctcat tctgtgaatg 1550
tgccaacact aagctgtctc gagccaagct gtgaaaaccc tagacgcacc 1600
cgcagggagg gtggggagag ctggcaggcc cagggcttgt cctgctgacc 1650
ccagcagacc ctcctgttgg ttccagcgaa gaccacaggc attccttagg 1700
gtccagggtc agcaggctcc gggctcacat gtgtaaggac aggacatttt 1750
ctgcagtgcc tgccaatagt gagcttggag cctggaggcc ggcttagttc 1800
ttccatttca cccttgcagc cagctgttgg ccacggcccc tgccctctgg 1850
tctgccgtgc atctccctgt gccctcttgc tgcctgcctg tctgctgagg 1900
taaggtggga ggagggctac agcccacatc ccaccccctc gtccaatccc 1950
ataatccatg atgaaaggtg aggtcacgtg gcctcccagg cctgacttcc 2000
caacctacag cattgacgcc aacttggctg tgaaggaaga ggaaaggatc 2050
tggccttgtg gtcactggca tctgagccct gctgatggct ggggctctcg 2100
ggcatgcttg ggagtgcagg gggctcgggc tgcctggcct ggctgcacag 2150
aaggcaagtg ctggggctca tggtgctctg agctggcctg gaccctgtca 2200
ggatgggccc cacctcagaa ccaaactcac tgtccccact gtggcatgag 2250
ggcagtggag caccatgttt gagggcgaag ggcagagcgt ttgtgtgttc 2300
tggggaggga aggaaaaggt gttggaggcc ttaattatgg actgttggga 2350
aaagggtttt gtccagaagg acaagccgga caaatgagcg acttctgtgc 2400
ttccagagga agacgaggga gcaggagctt ggctgactgc tcagagtctg 2450
ttctgacgcc ctgggggttc ctgtccaacc ccagcagggg cgcagcggga 2500
ccagccccac attccacttg tgtcactgct tggaacctat ttattttgta 2550
tttatttgaa cagagttatg tcctaactat ttttatagat ttgtttaatt 2600
aatagcttgt cattttcaag ttcatttttt attcatattt atgttcatgg 2650
ttgattgtac cttcccaagc ccgcccagtg ggatgggagg aggaggagaa 2700
ggggggcctt gggccgctgc agtcacatct gtccagagaa attccttttg 2750
ggactggagg cagaaaagcg gccagaaggc agcagccctg gctcctttcc 2800
tttggcaggt tggggaaggg cttgccccca gccttaggat ttcagggttt 2850
gactgggggc gtggagagag agggaggaac ctcaataacc ttgaaggtgg 2900
aatccagtta tttcctgcgc tgcgagggtt tctttatttc actcttttct 2950
gaatgtcaag gcagtgaggt gcctctcact gtgaatttgt ggtgggcggg 3000
ggctggagga gagggtgggg ggctggctcc gtccctccca gccttctgct 3050
gcccttgctt aacaatgccg gccaactggc gacctcacgg ttgcacttcc 3100
attccaccag aatgacctga tgaggaaatc ttcaatagga tgcaaagatc 3150
aatgcaaaaa ttgttatata tgaacatata actggagtcg tcaaaaagca 3200
aattaagaaa gaattggacg ttagaagttg tcatttaaag cagccttcta 3250
ataaagttgt ttcaaagctg aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 3300
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 3334
58
469
PRT
Homo Sapien
58
Met Leu Cys Leu Cys Leu Tyr Val Pro Val Ile Gly Glu Ala Gln
1 5 10 15
Thr Glu Phe Gln Tyr Phe Glu Ser Lys Gly Leu Pro Ala Glu Leu
20 25 30
Lys Ser Ile Phe Lys Leu Ser Val Phe Ile Pro Ser Gln Glu Phe
35 40 45
Ser Thr Tyr Arg Gln Trp Lys Gln Lys Ile Val Gln Ala Gly Asp
50 55 60
Lys Asp Leu Asp Gly Gln Leu Asp Phe Glu Glu Phe Val His Tyr
65 70 75
Leu Gln Asp His Glu Lys Lys Leu Arg Leu Val Phe Lys Ile Leu
80 85 90
Asp Lys Lys Asn Asp Gly Arg Ile Asp Ala Gln Glu Ile Met Gln
95 100 105
Ser Leu Arg Asp Leu Gly Val Lys Ile Ser Glu Gln Gln Ala Glu
110 115 120
Lys Ile Leu Lys Ser Met Asp Lys Asn Gly Thr Met Thr Ile Asp
125 130 135
Trp Asn Glu Trp Arg Asp Tyr His Leu Leu His Pro Val Glu Asn
140 145 150
Ile Pro Glu Ile Ile Leu Tyr Trp Lys His Ser Thr Ile Phe Asp
155 160 165
Val Gly Glu Asn Leu Thr Val Pro Asp Glu Phe Thr Val Glu Glu
170 175 180
Arg Gln Thr Gly Met Trp Trp Arg His Leu Val Ala Gly Gly Gly
185 190 195
Ala Gly Ala Val Ser Arg Thr Cys Thr Ala Pro Leu Asp Arg Leu
200 205 210
Lys Val Leu Met Gln Val His Ala Ser Arg Ser Asn Asn Met Gly
215 220 225
Ile Val Gly Gly Phe Thr Gln Met Ile Arg Glu Gly Gly Ala Arg
230 235 240
Ser Leu Trp Arg Gly Asn Gly Ile Asn Val Leu Lys Ile Ala Pro
245 250 255
Glu Ser Ala Ile Lys Phe Met Ala Tyr Glu Gln Ile Lys Arg Leu
260 265 270
Val Gly Ser Asp Gln Glu Thr Leu Arg Ile His Glu Arg Leu Val
275 280 285
Ala Gly Ser Leu Ala Gly Ala Ile Ala Gln Ser Ser Ile Tyr Pro
290 295 300
Met Glu Val Leu Lys Thr Arg Met Ala Leu Arg Lys Thr Gly Gln
305 310 315
Tyr Ser Gly Met Leu Asp Cys Ala Arg Arg Ile Leu Ala Arg Glu
320 325 330
Gly Val Ala Ala Phe Tyr Lys Gly Tyr Val Pro Asn Met Leu Gly
335 340 345
Ile Ile Pro Tyr Ala Gly Ile Asp Leu Ala Val Tyr Glu Thr Leu
350 355 360
Lys Asn Ala Trp Leu Gln His Tyr Ala Val Asn Ser Ala Asp Pro
365 370 375
Gly Val Phe Val Leu Leu Ala Cys Gly Thr Met Ser Ser Thr Cys
380 385 390
Gly Gln Leu Ala Ser Tyr Pro Leu Ala Leu Val Arg Thr Arg Met
395 400 405
Gln Ala Gln Ala Ser Ile Glu Gly Ala Pro Glu Val Thr Met Ser
410 415 420
Ser Leu Phe Lys His Ile Leu Arg Thr Glu Gly Ala Phe Gly Leu
425 430 435
Tyr Arg Gly Leu Ala Pro Asn Phe Met Lys Val Ile Pro Ala Val
440 445 450
Ser Ile Ser Tyr Val Val Tyr Glu Asn Leu Lys Ile Thr Leu Gly
455 460 465
Val Gln Ser Arg
59
1658
DNA
Homo Sapien
59
ggaaggcagc ggcagctcca ctcagccagt acccagatac gctgggaacc 50
ttccccagcc atggcttccc tggggcagat cctcttctgg agcataatta 100
gcatcatcat tattctggct ggagcaattg cactcatcat tggctttggt 150
atttcaggga gacactccat cacagtcact actgtcgcct cagctgggaa 200
cattggggag gatggaatcc tgagctgcac ttttgaacct gacatcaaac 250
tttctgatat cgtgatacaa tggctgaagg aaggtgtttt aggcttggtc 300
catgagttca aagaaggcaa agatgagctg tcggagcagg atgaaatgtt 350
cagaggccgg acagcagtgt ttgctgatca agtgatagtt ggcaatgcct 400
ctttgcggct gaaaaacgtg caactcacag atgctggcac ctacaaatgt 450
tatatcatca cttctaaagg caaggggaat gctaaccttg agtataaaac 500
tggagccttc agcatgccgg aagtgaatgt ggactataat gccagctcag 550
agaccttgcg gtgtgaggct ccccgatggt tcccccagcc cacagtggtc 600
tgggcatccc aagttgacca gggagccaac ttctcggaag tctccaatac 650
cagctttgag ctgaactctg agaatgtgac catgaaggtt gtgtctgtgc 700
tctacaatgt tacgatcaac aacacatact cctgtatgat tgaaaatgac 750
attgccaaag caacagggga tatcaaagtg acagaatcgg agatcaaaag 800
gcggagtcac ctacagctgc taaactcaaa ggcttctctg tgtgtctctt 850
ctttctttgc catcagctgg gcacttctgc ctctcagccc ttacctgatg 900
ctaaaataat gtgccttggc cacaaaaaag catgcaaagt cattgttaca 950
acagggatct acagaactat ttcaccacca gatatgacct agttttatat 1000
ttctgggagg aaatgaattc atatctagaa gtctggagtg agcaaacaag 1050
agcaagaaac aaaaagaagc caaaagcaga aggctccaat atgaacaaga 1100
taaatctatc ttcaaagaca tattagaagt tgggaaaata attcatgtga 1150
actagacaag tgtgttaaga gtgataagta aaatgcacgt ggagacaagt 1200
gcatccccag atctcaggga cctccccctg cctgtcacct ggggagtgag 1250
aggacaggat agtgcatgtt ctttgtctct gaatttttag ttatatgtgc 1300
tgtaatgttg ctctgaggaa gcccctggaa agtctatccc aacatatcca 1350
catcttatat tccacaaatt aagctgtagt atgtacccta agacgctgct 1400
aattgactgc cacttcgcaa ctcaggggcg gctgcatttt agtaatgggt 1450
caaatgattc actttttatg atgcttccaa aggtgccttg gcttctcttc 1500
ccaactgaca aatgccaaag ttgagaaaaa tgatcataat tttagcataa 1550
acagagcagt cggggacacc gattttataa ataaactgag caccttcttt 1600
ttaaacaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1650
aaaaaaaa 1658
60
282
PRT
Homo Sapien
60
Met Ala Ser Leu Gly Gln Ile Leu Phe Trp Ser Ile Ile Ser Ile
1 5 10 15
Ile Ile Ile Leu Ala Gly Ala Ile Ala Leu Ile Ile Gly Phe Gly
20 25 30
Ile Ser Gly Arg His Ser Ile Thr Val Thr Thr Val Ala Ser Ala
35 40 45
Gly Asn Ile Gly Glu Asp Gly Ile Leu Ser Cys Thr Phe Glu Pro
50 55 60
Asp Ile Lys Leu Ser Asp Ile Val Ile Gln Trp Leu Lys Glu Gly
65 70 75
Val Leu Gly Leu Val His Glu Phe Lys Glu Gly Lys Asp Glu Leu
80 85 90
Ser Glu Gln Asp Glu Met Phe Arg Gly Arg Thr Ala Val Phe Ala
95 100 105
Asp Gln Val Ile Val Gly Asn Ala Ser Leu Arg Leu Lys Asn Val
110 115 120
Gln Leu Thr Asp Ala Gly Thr Tyr Lys Cys Tyr Ile Ile Thr Ser
125 130 135
Lys Gly Lys Gly Asn Ala Asn Leu Glu Tyr Lys Thr Gly Ala Phe
140 145 150
Ser Met Pro Glu Val Asn Val Asp Tyr Asn Ala Ser Ser Glu Thr
155 160 165
Leu Arg Cys Glu Ala Pro Arg Trp Phe Pro Gln Pro Thr Val Val
170 175 180
Trp Ala Ser Gln Val Asp Gln Gly Ala Asn Phe Ser Glu Val Ser
185 190 195
Asn Thr Ser Phe Glu Leu Asn Ser Glu Asn Val Thr Met Lys Val
200 205 210
Val Ser Val Leu Tyr Asn Val Thr Ile Asn Asn Thr Tyr Ser Cys
215 220 225
Met Ile Glu Asn Asp Ile Ala Lys Ala Thr Gly Asp Ile Lys Val
230 235 240
Thr Glu Ser Glu Ile Lys Arg Arg Ser His Leu Gln Leu Leu Asn
245 250 255
Ser Lys Ala Ser Leu Cys Val Ser Ser Phe Phe Ala Ile Ser Trp
260 265 270
Ala Leu Leu Pro Leu Ser Pro Tyr Leu Met Leu Lys
275 280
61
1617
DNA
Homo Sapien
61
tgacgtcaga atcaccatgg ccagctatcc ttaccggcag ggctgcccag 50
gagctgcagg acaagcacca ggagcccctc cgggtagcta ctaccctgga 100
ccccccaata gtggagggca gtatggtagt gggctacccc ctggtggtgg 150
ttatgggggt cctgcccctg gagggcctta tggaccacca gctggtggag 200
ggccctatgg acaccccaat cctgggatgt tcccctctgg aactccagga 250
ggaccatatg gcggtgcagc tcccgggggc ccctatggtc agccacctcc 300
aagttcctac ggtgcccagc agcctgggct ttatggacag ggtggcgccc 350
ctcccaatgt ggatcctgag gcctactcct ggttccagtc ggtggactca 400
gatcacagtg gctatatctc catgaaggag ctaaagcagg ccctggtcaa 450
ctgcaattgg tcttcattca atgatgagac ctgcctcatg atgataaaca 500
tgtttgacaa gaccaagtca ggccgcatcg atgtctacgg cttctcagcc 550
ctgtggaaat tcatccagca gtggaagaac ctcttccagc agtatgaccg 600
ggaccgctcg ggctccatta gctacacaga gctgcagcaa gctctgtccc 650
aaatgggcta caacctgagc ccccagttca cccagcttct ggtctcccgc 700
tactgcccac gctctgccaa tcctgccatg cagcttgacc gcttcatcca 750
ggtgtgcacc cagctgcagg tgctgacaga ggccttccgg gagaaggaca 800
cagctgtaca aggcaacatc cggctcagct tcgaggactt cgtcaccatg 850
acagcttctc ggatgctatg acccaaccat ctgtggagag tggagtgcac 900
cagggacctt tcctggcttc ttagagtgag agaagtatgt ggacatctct 950
tcttttcctg tccctctaga agaacattct cccttgcttg atgcaacact 1000
gttccaaaag agggtggaga gtcctgcatc atagccacca aatagtgagg 1050
accggggctg aggccacaca gataggggcc tgatggagga gaggatagaa 1100
gttgaatgtc ctgatggcca tgagcagttg agtggcacag cctggcacca 1150
ggagcaggtc cttgtaatgg agttagtgtc cagtcagctg agctccaccc 1200
tgatgccagt ggtgagtgtt catcggcctg ttaccgttag tacctgtgtt 1250
ccctcaccag gccatcctgt caaacgagcc cattttctcc aaagtggaat 1300
ctgaccaagc atgagagaga tctgtctatg ggaccagtgg cttggattct 1350
gccacaccca taaatccttg tgtgttaact tctagctgcc tggggctggc 1400
cctgctcaga caaatctgct ccctgggcat ctttggccag gcttctgccc 1450
cctgcagctg ggacccctca cttgcctgcc atgctctgct cggcttcagt 1500
ctccaggaga cagtggtcac ctctccctgc caatactttt tttaatttgc 1550
attttttttc atttggggcc aaaagtccag tgaaattgta agcttcaata 1600
aaaggatgaa actctga 1617
62
284
PRT
Homo Sapien
62
Met Ala Ser Tyr Pro Tyr Arg Gln Gly Cys Pro Gly Ala Ala Gly
1 5 10 15
Gln Ala Pro Gly Ala Pro Pro Gly Ser Tyr Tyr Pro Gly Pro Pro
20 25 30
Asn Ser Gly Gly Gln Tyr Gly Ser Gly Leu Pro Pro Gly Gly Gly
35 40 45
Tyr Gly Gly Pro Ala Pro Gly Gly Pro Tyr Gly Pro Pro Ala Gly
50 55 60
Gly Gly Pro Tyr Gly His Pro Asn Pro Gly Met Phe Pro Ser Gly
65 70 75
Thr Pro Gly Gly Pro Tyr Gly Gly Ala Ala Pro Gly Gly Pro Tyr
80 85 90
Gly Gln Pro Pro Pro Ser Ser Tyr Gly Ala Gln Gln Pro Gly Leu
95 100 105
Tyr Gly Gln Gly Gly Ala Pro Pro Asn Val Asp Pro Glu Ala Tyr
110 115 120
Ser Trp Phe Gln Ser Val Asp Ser Asp His Ser Gly Tyr Ile Ser
125 130 135
Met Lys Glu Leu Lys Gln Ala Leu Val Asn Cys Asn Trp Ser Ser
140 145 150
Phe Asn Asp Glu Thr Cys Leu Met Met Ile Asn Met Phe Asp Lys
155 160 165
Thr Lys Ser Gly Arg Ile Asp Val Tyr Gly Phe Ser Ala Leu Trp
170 175 180
Lys Phe Ile Gln Gln Trp Lys Asn Leu Phe Gln Gln Tyr Asp Arg
185 190 195
Asp Arg Ser Gly Ser Ile Ser Tyr Thr Glu Leu Gln Gln Ala Leu
200 205 210
Ser Gln Met Gly Tyr Asn Leu Ser Pro Gln Phe Thr Gln Leu Leu
215 220 225
Val Ser Arg Tyr Cys Pro Arg Ser Ala Asn Pro Ala Met Gln Leu
230 235 240
Asp Arg Phe Ile Gln Val Cys Thr Gln Leu Gln Val Leu Thr Glu
245 250 255
Ala Phe Arg Glu Lys Asp Thr Ala Val Gln Gly Asn Ile Arg Leu
260 265 270
Ser Phe Glu Asp Phe Val Thr Met Thr Ala Ser Arg Met Leu
275 280
63
1234
DNA
Homo Sapien
63
caggatgcag ggccgcgtgg cagggagctg cgctcctctg ggcctgctcc 50
tggtctgtct tcatctccca ggcctctttg cccggagcat cggtgttgtg 100
gaggagaaag tttcccaaaa cttcgggacc aacttgcctc agctcggaca 150
accttcctcc actggcccct ctaactctga acatccgcag cccgctctgg 200
accctaggtc taatgacttg gcaagggttc ctctgaagct cagcgtgcct 250
ccatcagatg gcttcccacc tgcaggaggt tctgcagtgc agaggtggcc 300
tccatcgtgg gggctgcctg ccatggattc ctggccccct gaggatcctt 350
ggcagatgat ggctgctgcg gctgaggacc gcctggggga agcgctgcct 400
gaagaactct cttacctctc cagtgctgcg gccctcgctc cgggcagtgg 450
ccctttgcct ggggagtctt ctcccgatgc cacaggcctc tcacctgagg 500
cttcactcct ccaccaggac tcggagtcca gacgactgcc ccgttctaat 550
tcactgggag ccgggggaaa aatcctttcc caacgccctc cctggtctct 600
catccacagg gttctgcctg atcacccctg gggtaccctg aatcccagtg 650
tgtcctgggg aggtggaggc cctgggactg gttggggaac gaggcccatg 700
ccacaccctg agggaatctg gggtatcaat aatcaacccc caggtaccag 750
ctggggaaat attaatcggt atccaggagg cagctgggga aatattaatc 800
ggtatccagg aggcagctgg gggaatatta atcggtatcc aggaggcagc 850
tgggggaata ttcatctata cccaggtatc aataacccat ttcctcctgg 900
agttctccgc cctcctggct cttcttggaa catcccagct ggcttcccta 950
atcctccaag ccctaggttg cagtggggct agagcacgat agagggaaac 1000
ccaacattgg gagttagagt cctgctcccg ccccttgctg tgtgggctca 1050
atccaggccc tgttaacatg tttccagcac tatccccact tttcagtgcc 1100
tcccctgctc atctccaata aaataaaagc acttatgaaa aaaaaaaaaa 1150
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1200
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 1234
64
325
PRT
Homo Sapien
64
Met Gln Gly Arg Val Ala Gly Ser Cys Ala Pro Leu Gly Leu Leu
1 5 10 15
Leu Val Cys Leu His Leu Pro Gly Leu Phe Ala Arg Ser Ile Gly
20 25 30
Val Val Glu Glu Lys Val Ser Gln Asn Phe Gly Thr Asn Leu Pro
35 40 45
Gln Leu Gly Gln Pro Ser Ser Thr Gly Pro Ser Asn Ser Glu His
50 55 60
Pro Gln Pro Ala Leu Asp Pro Arg Ser Asn Asp Leu Ala Arg Val
65 70 75
Pro Leu Lys Leu Ser Val Pro Pro Ser Asp Gly Phe Pro Pro Ala
80 85 90
Gly Gly Ser Ala Val Gln Arg Trp Pro Pro Ser Trp Gly Leu Pro
95 100 105
Ala Met Asp Ser Trp Pro Pro Glu Asp Pro Trp Gln Met Met Ala
110 115 120
Ala Ala Ala Glu Asp Arg Leu Gly Glu Ala Leu Pro Glu Glu Leu
125 130 135
Ser Tyr Leu Ser Ser Ala Ala Ala Leu Ala Pro Gly Ser Gly Pro
140 145 150
Leu Pro Gly Glu Ser Ser Pro Asp Ala Thr Gly Leu Ser Pro Glu
155 160 165
Ala Ser Leu Leu His Gln Asp Ser Glu Ser Arg Arg Leu Pro Arg
170 175 180
Ser Asn Ser Leu Gly Ala Gly Gly Lys Ile Leu Ser Gln Arg Pro
185 190 195
Pro Trp Ser Leu Ile His Arg Val Leu Pro Asp His Pro Trp Gly
200 205 210
Thr Leu Asn Pro Ser Val Ser Trp Gly Gly Gly Gly Pro Gly Thr
215 220 225
Gly Trp Gly Thr Arg Pro Met Pro His Pro Glu Gly Ile Trp Gly
230 235 240
Ile Asn Asn Gln Pro Pro Gly Thr Ser Trp Gly Asn Ile Asn Arg
245 250 255
Tyr Pro Gly Gly Ser Trp Gly Asn Ile Asn Arg Tyr Pro Gly Gly
260 265 270
Ser Trp Gly Asn Ile Asn Arg Tyr Pro Gly Gly Ser Trp Gly Asn
275 280 285
Ile His Leu Tyr Pro Gly Ile Asn Asn Pro Phe Pro Pro Gly Val
290 295 300
Leu Arg Pro Pro Gly Ser Ser Trp Asn Ile Pro Ala Gly Phe Pro
305 310 315
Asn Pro Pro Ser Pro Arg Leu Gln Trp Gly
320 325
65
422
DNA
Homo Sapien
65
aaggagaggc caccgggact tcagtgtctc ctccatccca ggagcgcagt 50
ggccactatg gggtctgggc tgccccttgt cctcctcttg accctccttg 100
gcagctcaca tggaacaggg ccgggtatga ctttgcaact gaagctgaag 150
gagtcttttc tgacaaattc ctcctatgag tccagcttcc tggaattgct 200
tgaaaagctc tgcctcctcc tccatctccc ttcagggacc agcgtcaccc 250
tccaccatgc aagatctcaa caccatgttg tctgcaacac atgacagcca 300
ttgaagcctg tgtccttctt ggcccgggct tttgggccgg ggatgcagga 350
ggcaggcccc gaccctgtct ttcagcaggc ccccaccctc ctgagtggca 400
ataaataaaa ttcggtatgc tg 422
66
78
PRT
Homo Sapien
66
Met Gly Ser Gly Leu Pro Leu Val Leu Leu Leu Thr Leu Leu Gly
1 5 10 15
Ser Ser His Gly Thr Gly Pro Gly Met Thr Leu Gln Leu Lys Leu
20 25 30
Lys Glu Ser Phe Leu Thr Asn Ser Ser Tyr Glu Ser Ser Phe Leu
35 40 45
Glu Leu Leu Glu Lys Leu Cys Leu Leu Leu His Leu Pro Ser Gly
50 55 60
Thr Ser Val Thr Leu His His Ala Arg Ser Gln His His Val Val
65 70 75
Cys Asn Thr
67
744
DNA
Homo Sapien
67
acggaccgag ggttcgaggg agggacacgg accaggaacc tgagctaggt 50
caaagacgcc cgggccaggt gccccgtcgc aggtgcccct ggccggagat 100
gcggtaggag gggcgagcgc gagaagcccc ttcctcggcg ctgccaaccc 150
gccacccagc ccatggcgaa ccccgggctg gggctgcttc tggcgctggg 200
cctgccgttc ctgctggccc gctggggccg agcctggggg caaatacaga 250
ccacttctgc aaatgagaat agcactgttt tgccttcatc caccagctcc 300
agctccgatg gcaacctgcg tccggaagcc atcactgcta tcatcgtggt 350
cttctccctc ttggctgcct tgctcctggc tgtggggctg gcactgttgg 400
tgcggaagct tcgggagaag cggcagacgg agggcaccta ccggcccagt 450
agcgaggagc agttctccca tgcagccgag gcccgggccc ctcaggactc 500
caaggagacg gtgcagggct gcctgcccat ctaggtcccc tctcctgcat 550
ctgtctccct tcattgctgt gtgaccttgg ggaaaggcag tgccctctct 600
gggcagtcag atccacccag tgcttaatag cagggaagaa ggtacttcaa 650
agactctgcc cctgaggtca agagaggatg gggctattca cttttatata 700
tttatataaa attagtagtg agatgtaaaa aaaaaaaaaa aaaa 744
68
123
PRT
Homo Sapien
68
Met Ala Asn Pro Gly Leu Gly Leu Leu Leu Ala Leu Gly Leu Pro
1 5 10 15
Phe Leu Leu Ala Arg Trp Gly Arg Ala Trp Gly Gln Ile Gln Thr
20 25 30
Thr Ser Ala Asn Glu Asn Ser Thr Val Leu Pro Ser Ser Thr Ser
35 40 45
Ser Ser Ser Asp Gly Asn Leu Arg Pro Glu Ala Ile Thr Ala Ile
50 55 60
Ile Val Val Phe Ser Leu Leu Ala Ala Leu Leu Leu Ala Val Gly
65 70 75
Leu Ala Leu Leu Val Arg Lys Leu Arg Glu Lys Arg Gln Thr Glu
80 85 90
Gly Thr Tyr Arg Pro Ser Ser Glu Glu Gln Phe Ser His Ala Ala
95 100 105
Glu Ala Arg Ala Pro Gln Asp Ser Lys Glu Thr Val Gln Gly Cys
110 115 120
Leu Pro Ile
69
3265
DNA
Homo Sapien
69
gccaggaata actagagagg aacaatgggg ttattcagag gttttgtttt 50
cctcttagtt ctgtgcctgc tgcaccagtc aaatacttcc ttcattaagc 100
tgaataataa tggctttgaa gatattgtca ttgttataga tcctagtgtg 150
ccagaagatg aaaaaataat tgaacaaata gaggatatgg tgactacagc 200
ttctacgtac ctgtttgaag ccacagaaaa aagatttttt ttcaaaaatg 250
tatctatatt aattcctgag aattggaagg aaaatcctca gtacaaaagg 300
ccaaaacatg aaaaccataa acatgctgat gttatagttg caccacctac 350
actcccaggt agagatgaac catacaccaa gcagttcaca gaatgtggag 400
agaaaggcga atacattcac ttcacccctg accttctact tggaaaaaaa 450
caaaatgaat atggaccacc aggcaaactg tttgtccatg agtgggctca 500
cctccggtgg ggagtgtttg atgagtacaa tgaagatcag cctttctacc 550
gtgctaagtc aaaaaaaatc gaagcaacaa ggtgttccgc aggtatctct 600
ggtagaaata gagtttataa gtgtcaagga ggcagctgtc ttagtagagc 650
atgcagaatt gattctacaa caaaactgta tggaaaagat tgtcaattct 700
ttcctgataa agtacaaaca gaaaaagcat ccataatgtt tatgcaaagt 750
attgattctg ttgttgaatt ttgtaacgaa aaaacccata atcaagaagc 800
tccaagccta caaaacataa agtgcaattt tagaagtaca tgggaggtga 850
ttagcaattc tgaggatttt aaaaacacca tacccatggt gacaccacct 900
cctccacctg tcttctcatt gctgaagatc agtcaaagaa ttgtgtgctt 950
agttcttgat aagtctggaa gcatgggggg taaggaccgc ctaaatcgaa 1000
tgaatcaagc agcaaaacat ttcctgctgc agactgttga aaatggatcc 1050
tgggtgggga tggttcactt tgatagtact gccactattg taaataagct 1100
aatccaaata aaaagcagtg atgaaagaaa cacactcatg gcaggattac 1150
ctacatatcc tctgggagga acttccatct gctctggaat taaatatgca 1200
tttcaggtga ttggagagct acattcccaa ctcgatggat ccgaagtact 1250
gctgctgact gatggggagg ataacactgc aagttcttgt attgatgaag 1300
tgaaacaaag tggggccatt gttcatttta ttgctttggg aagagctgct 1350
gatgaagcag taatagagat gagcaagata acaggaggaa gtcattttta 1400
tgtttcagat gaagctcaga acaatggcct cattgatgct tttggggctc 1450
ttacatcagg aaatactgat ctctcccaga agtcccttca gctcgaaagt 1500
aagggattaa cactgaatag taatgcctgg atgaacgaca ctgtcataat 1550
tgatagtaca gtgggaaagg acacgttctt tctcatcaca tggaacagtc 1600
tgcctcccag tatttctctc tgggatccca gtggaacaat aatggaaaat 1650
ttcacagtgg atgcaacttc caaaatggcc tatctcagta ttccaggaac 1700
tgcaaaggtg ggcacttggg catacaatct tcaagccaaa gcgaacccag 1750
aaacattaac tattacagta acttctcgag cagcaaattc ttctgtgcct 1800
ccaatcacag tgaatgctaa aatgaataag gacgtaaaca gtttccccag 1850
cccaatgatt gtttacgcag aaattctaca aggatatgta cctgttcttg 1900
gagccaatgt gactgctttc attgaatcac agaatggaca tacagaagtt 1950
ttggaacttt tggataatgg tgcaggcgct gattctttca agaatgatgg 2000
agtctactcc aggtatttta cagcatatac agaaaatggc agatatagct 2050
taaaagttcg ggctcatgga ggagcaaaca ctgccaggct aaaattacgg 2100
cctccactga atagagccgc gtacatacca ggctgggtag tgaacgggga 2150
aattgaagca aacccgccaa gacctgaaat tgatgaggat actcagacca 2200
ccttggagga tttcagccga acagcatccg gaggtgcatt tgtggtatca 2250
caagtcccaa gccttccctt gcctgaccaa tacccaccaa gtcaaatcac 2300
agaccttgat gccacagttc atgaggataa gattattctt acatggacag 2350
caccaggaga taattttgat gttggaaaag ttcaacgtta tatcataaga 2400
ataagtgcaa gtattcttga tctaagagac agttttgatg atgctcttca 2450
agtaaatact actgatctgt caccaaagga ggccaactcc aaggaaagct 2500
ttgcatttaa accagaaaat atctcagaag aaaatgcaac ccacatattt 2550
attgccatta aaagtataga taaaagcaat ttgacatcaa aagtatccaa 2600
cattgcacaa gtaactttgt ttatccctca agcaaatcct gatgacattg 2650
atcctacacc tactcctact cctactccta ctcctgataa aagtcataat 2700
tctggagtta atatttctac gctggtattg tctgtgattg ggtctgttgt 2750
aattgttaac tttattttaa gtaccaccat ttgaacctta acgaagaaaa 2800
aaatcttcaa gtagacctag aagagagttt taaaaaacaa aacaatgtaa 2850
gtaaaggata tttctgaatc ttaaaattca tcccatgtgt gatcataaac 2900
tcataaaaat aattttaaga tgtcggaaaa ggatactttg attaaataaa 2950
aacactcatg gatatgtaaa aactgtcaag attaaaattt aatagtttca 3000
tttatttgtt attttatttg taagaaatag tgatgaacaa agatcctttt 3050
tcatactgat acctggttgt atattatttg atgcaacagt tttctgaaat 3100
gatatttcaa attgcatcaa gaaattaaaa tcatctatct gagtagtcaa 3150
aatacaagta aaggagagca aataaacaac atttggaaaa aaaaaaaaaa 3200
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 3250
aaaaaaaaaa aaaaa 3265
70
919
PRT
Homo Sapien
70
Met Gly Leu Phe Arg Gly Phe Val Phe Leu Leu Val Leu Cys Leu
1 5 10 15
Leu His Gln Ser Asn Thr Ser Phe Ile Lys Leu Asn Asn Asn Gly
20 25 30
Phe Glu Asp Ile Val Ile Val Ile Asp Pro Ser Val Pro Glu Asp
35 40 45
Glu Lys Ile Ile Glu Gln Ile Glu Asp Met Val Thr Thr Ala Ser
50 55 60
Thr Tyr Leu Phe Glu Ala Thr Glu Lys Arg Phe Phe Phe Lys Asn
65 70 75
Val Ser Ile Leu Ile Pro Glu Asn Trp Lys Glu Asn Pro Gln Tyr
80 85 90
Lys Arg Pro Lys His Glu Asn His Lys His Ala Asp Val Ile Val
95 100 105
Ala Pro Pro Thr Leu Pro Gly Arg Asp Glu Pro Tyr Thr Lys Gln
110 115 120
Phe Thr Glu Cys Gly Glu Lys Gly Glu Tyr Ile His Phe Thr Pro
125 130 135
Asp Leu Leu Leu Gly Lys Lys Gln Asn Glu Tyr Gly Pro Pro Gly
140 145 150
Lys Leu Phe Val His Glu Trp Ala His Leu Arg Trp Gly Val Phe
155 160 165
Asp Glu Tyr Asn Glu Asp Gln Pro Phe Tyr Arg Ala Lys Ser Lys
170 175 180
Lys Ile Glu Ala Thr Arg Cys Ser Ala Gly Ile Ser Gly Arg Asn
185 190 195
Arg Val Tyr Lys Cys Gln Gly Gly Ser Cys Leu Ser Arg Ala Cys
200 205 210
Arg Ile Asp Ser Thr Thr Lys Leu Tyr Gly Lys Asp Cys Gln Phe
215 220 225
Phe Pro Asp Lys Val Gln Thr Glu Lys Ala Ser Ile Met Phe Met
230 235 240
Gln Ser Ile Asp Ser Val Val Glu Phe Cys Asn Glu Lys Thr His
245 250 255
Asn Gln Glu Ala Pro Ser Leu Gln Asn Ile Lys Cys Asn Phe Arg
260 265 270
Ser Thr Trp Glu Val Ile Ser Asn Ser Glu Asp Phe Lys Asn Thr
275 280 285
Ile Pro Met Val Thr Pro Pro Pro Pro Pro Val Phe Ser Leu Leu
290 295 300
Lys Ile Ser Gln Arg Ile Val Cys Leu Val Leu Asp Lys Ser Gly
305 310 315
Ser Met Gly Gly Lys Asp Arg Leu Asn Arg Met Asn Gln Ala Ala
320 325 330
Lys His Phe Leu Leu Gln Thr Val Glu Asn Gly Ser Trp Val Gly
335 340 345
Met Val His Phe Asp Ser Thr Ala Thr Ile Val Asn Lys Leu Ile
350 355 360
Gln Ile Lys Ser Ser Asp Glu Arg Asn Thr Leu Met Ala Gly Leu
365 370 375
Pro Thr Tyr Pro Leu Gly Gly Thr Ser Ile Cys Ser Gly Ile Lys
380 385 390
Tyr Ala Phe Gln Val Ile Gly Glu Leu His Ser Gln Leu Asp Gly
395 400 405
Ser Glu Val Leu Leu Leu Thr Asp Gly Glu Asp Asn Thr Ala Ser
410 415 420
Ser Cys Ile Asp Glu Val Lys Gln Ser Gly Ala Ile Val His Phe
425 430 435
Ile Ala Leu Gly Arg Ala Ala Asp Glu Ala Val Ile Glu Met Ser
440 445 450
Lys Ile Thr Gly Gly Ser His Phe Tyr Val Ser Asp Glu Ala Gln
455 460 465
Asn Asn Gly Leu Ile Asp Ala Phe Gly Ala Leu Thr Ser Gly Asn
470 475 480
Thr Asp Leu Ser Gln Lys Ser Leu Gln Leu Glu Ser Lys Gly Leu
485 490 495
Thr Leu Asn Ser Asn Ala Trp Met Asn Asp Thr Val Ile Ile Asp
500 505 510
Ser Thr Val Gly Lys Asp Thr Phe Phe Leu Ile Thr Trp Asn Ser
515 520 525
Leu Pro Pro Ser Ile Ser Leu Trp Asp Pro Ser Gly Thr Ile Met
530 535 540
Glu Asn Phe Thr Val Asp Ala Thr Ser Lys Met Ala Tyr Leu Ser
545 550 555
Ile Pro Gly Thr Ala Lys Val Gly Thr Trp Ala Tyr Asn Leu Gln
560 565 570
Ala Lys Ala Asn Pro Glu Thr Leu Thr Ile Thr Val Thr Ser Arg
575 580 585
Ala Ala Asn Ser Ser Val Pro Pro Ile Thr Val Asn Ala Lys Met
590 595 600
Asn Lys Asp Val Asn Ser Phe Pro Ser Pro Met Ile Val Tyr Ala
605 610 615
Glu Ile Leu Gln Gly Tyr Val Pro Val Leu Gly Ala Asn Val Thr
620 625 630
Ala Phe Ile Glu Ser Gln Asn Gly His Thr Glu Val Leu Glu Leu
635 640 645
Leu Asp Asn Gly Ala Gly Ala Asp Ser Phe Lys Asn Asp Gly Val
650 655 660
Tyr Ser Arg Tyr Phe Thr Ala Tyr Thr Glu Asn Gly Arg Tyr Ser
665 670 675
Leu Lys Val Arg Ala His Gly Gly Ala Asn Thr Ala Arg Leu Lys
680 685 690
Leu Arg Pro Pro Leu Asn Arg Ala Ala Tyr Ile Pro Gly Trp Val
695 700 705
Val Asn Gly Glu Ile Glu Ala Asn Pro Pro Arg Pro Glu Ile Asp
710 715 720
Glu Asp Thr Gln Thr Thr Leu Glu Asp Phe Ser Arg Thr Ala Ser
725 730 735
Gly Gly Ala Phe Val Val Ser Gln Val Pro Ser Leu Pro Leu Pro
740 745 750
Asp Gln Tyr Pro Pro Ser Gln Ile Thr Asp Leu Asp Ala Thr Val
755 760 765
His Glu Asp Lys Ile Ile Leu Thr Trp Thr Ala Pro Gly Asp Asn
770 775 780
Phe Asp Val Gly Lys Val Gln Arg Tyr Ile Ile Arg Ile Ser Ala
785 790 795
Ser Ile Leu Asp Leu Arg Asp Ser Phe Asp Asp Ala Leu Gln Val
800 805 810
Asn Thr Thr Asp Leu Ser Pro Lys Glu Ala Asn Ser Lys Glu Ser
815 820 825
Phe Ala Phe Lys Pro Glu Asn Ile Ser Glu Glu Asn Ala Thr His
830 835 840
Ile Phe Ile Ala Ile Lys Ser Ile Asp Lys Ser Asn Leu Thr Ser
845 850 855
Lys Val Ser Asn Ile Ala Gln Val Thr Leu Phe Ile Pro Gln Ala
860 865 870
Asn Pro Asp Asp Ile Asp Pro Thr Pro Thr Pro Thr Pro Thr Pro
875 880 885
Thr Pro Asp Lys Ser His Asn Ser Gly Val Asn Ile Ser Thr Leu
890 895 900
Val Leu Ser Val Ile Gly Ser Val Val Ile Val Asn Phe Ile Leu
905 910 915
Ser Thr Thr Ile
71
3877
DNA
Homo Sapien
71
ctccttaggt ggaaaccctg ggagtagagt actgacagca aagaccggga 50
aagaccatac gtccccgggc aggggtgaca acaggtgtca tctttttgat 100
ctcgtgtgtg gctgccttcc tatttcaagg aaagacgcca aggtaatttt 150
gacccagagg agcaatgatg tagccacctc ctaaccttcc cttcttgaac 200
ccccagttat gccaggattt actagagagt gtcaactcaa ccagcaagcg 250
gctccttcgg cttaacttgt ggttggagga gagaaccttt gtggggctgc 300
gttctcttag cagtgctcag aagtgacttg cctgagggtg gaccagaaga 350
aaggaaaggt cccctcttgc tgttggctgc acatcaggaa ggctgtgatg 400
ggaatgaagg tgaaaacttg gagatttcac ttcagtcatt gcttctgcct 450
gcaagatcat cctttaaaag tagagaagct gctctgtgtg gtggttaact 500
ccaagaggca gaactcgttc tagaaggaaa tggatgcaag cagctccggg 550
ggccccaaac gcatgcttcc tgtggtctag cccagggaag cccttccgtg 600
ggggccccgg ctttgaggga tgccaccggt tctggacgca tggctgattc 650
ctgaatgatg atggttcgcc gggggctgct tgcgtggatt tcccgggtgg 700
tggttttgct ggtgctcctc tgctgtgcta tctctgtcct gtacatgttg 750
gcctgcaccc caaaaggtga cgaggagcag ctggcactgc ccagggccaa 800
cagccccacg gggaaggagg ggtaccaggc cgtccttcag gagtgggagg 850
agcagcaccg caactacgtg agcagcctga agcggcagat cgcacagctc 900
aaggaggagc tgcaggagag gagtgagcag ctcaggaatg ggcagtacca 950
agccagcgat gctgctggcc tgggtctgga caggagcccc ccagagaaaa 1000
cccaggccga cctcctggcc ttcctgcact cgcaggtgga caaggcagag 1050
gtgaatgctg gcgtcaagct ggccacagag tatgcagcag tgcctttcga 1100
tagctttact ctacagaagg tgtaccagct ggagactggc cttacccgcc 1150
accccgagga gaagcctgtg aggaaggaca agcgggatga gttggtggaa 1200
gccattgaat cagccttgga gaccctgaac aatcctgcag agaacagccc 1250
caatcaccgt ccttacacgg cctctgattt catagaaggg atctaccgaa 1300
cagaaaggga caaagggaca ttgtatgagc tcaccttcaa aggggaccac 1350
aaacacgaat tcaaacggct catcttattt cgaccattca gccccatcat 1400
gaaagtgaaa aatgaaaagc tcaacatggc caacacgctt atcaatgtta 1450
tcgtgcctct agcaaaaagg gtggacaagt tccggcagtt catgcagaat 1500
ttcagggaga tgtgcattga gcaggatggg agagtccatc tcactgttgt 1550
ttactttggg aaagaagaaa taaatgaagt caaaggaata cttgaaaaca 1600
cttccaaagc tgccaacttc aggaacttta ccttcatcca gctgaatgga 1650
gaattttctc ggggaaaggg acttgatgtt ggagcccgct tctggaaggg 1700
aagcaacgtc cttctctttt tctgtgatgt ggacatctac ttcacatctg 1750
aattcctcaa tacgtgtagg ctgaatacac agccagggaa gaaggtattt 1800
tatccagttc ttttcagtca gtacaatcct ggcataatat acggccacca 1850
tgatgcagtc cctcccttgg aacagcagct ggtcataaag aaggaaactg 1900
gattttggag agactttgga tttgggatga cgtgtcagta tcggtcagac 1950
ttcatcaata taggtgggtt tgatctggac atcaaaggct ggggcggaga 2000
ggatgtgcac ctttatcgca agtatctcca cagcaacctc atagtggtac 2050
ggacgcctgt gcgaggactc ttccacctct ggcatgagaa gcgctgcatg 2100
gacgagctga cccccgagca gtacaagatg tgcatgcagt ccaaggccat 2150
gaacgaggca tcccacggcc agctgggcat gctggtgttc aggcacgaga 2200
tagaggctca ccttcgcaaa cagaaacaga agacaagtag caaaaaaaca 2250
tgaactccca gagaaggatt gtgggagaca ctttttcttt ccttttgcaa 2300
ttactgaaag tggctgcaac agagaaaaga cttccataaa ggacgacaaa 2350
agaattggac tgatgggtca gagatgagaa agcctccgat ttctctctgt 2400
tgggcttttt acaacagaaa tcaaaatctc cgctttgcct gcaaaagtaa 2450
cccagttgca ccctgtgaag tgtctgacaa aggcagaatg cttgtgagat 2500
tataagccta atggtgtgga ggttttgatg gtgtttacaa tacactgaga 2550
cctgttgttt tgtgtgctca ttgaaatatt catgatttaa gagcagtttt 2600
gtaaaaaatt cattagcatg aaaggcaagc atatttctcc tcatatgaat 2650
gagcctatca gcagggctct agtttctagg aatgctaaaa tatcagaagg 2700
caggagagga gataggctta ttatgatact agtgagtaca ttaagtaaaa 2750
taaaatggac cagaaaagaa aagaaaccat aaatatcgtg tcatattttc 2800
cccaagatta accaaaaata atctgcttat ctttttggtt gtccttttaa 2850
ctgtctccgt ttttttcttt tatttaaaaa tgcacttttt ttcccttgtg 2900
agttatagtc tgcttattta attaccactt tgcaagcctt acaagagagc 2950
acaagttggc ctacattttt atatttttta agaagatact ttgagatgca 3000
ttatgagaac tttcagttca aagcatcaaa ttgatgccat atccaaggac 3050
atgccaaatg ctgattctgt caggcactga atgtcaggca ttgagacata 3100
gggaaggaat ggtttgtact aatacagacg tacagatact ttctctgaag 3150
agtattttcg aagaggagca actgaacact ggaggaaaag aaaatgacac 3200
tttctgcttt acagaaaagg aaactcattc agactggtga tatcgtgatg 3250
tacctaaaag tcagaaacca cattttctcc tcagaagtag ggaccgcttt 3300
cttacctgtt taaataaacc aaagtatacc gtgtgaacca aacaatctct 3350
tttcaaaaca gggtgctcct cctggcttct ggcttccata agaagaaatg 3400
gagaaaaata tatatatata tatatatatt gtgaaagatc aatccatctg 3450
ccagaatcta gtgggatgga agtttttgct acatgttatc caccccaggc 3500
caggtggaag taactgaatt attttttaaa ttaagcagtt ctactcaatc 3550
accaagatgc ttctgaaaat tgcattttat taccatttca aactattttt 3600
taaaaataaa tacagttaac atagagtggt ttcttcattc atgtgaaaat 3650
tattagccag caccagatgc atgagctaat tatctctttg agtccttgct 3700
tctgtttgct cacagtaaac tcattgttta aaagcttcaa gaacattcaa 3750
gctgttggtg tgttaaaaaa tgcattgtat tgatttgtac tggtagttta 3800
tgaaatttaa ttaaaacaca ggccatgaat ggaaggtggt attgcacagc 3850
taataaaata tgatttgtgg atatgaa 3877
72
532
PRT
Homo Sapien
72
Met Met Met Val Arg Arg Gly Leu Leu Ala Trp Ile Ser Arg Val
1 5 10 15
Val Val Leu Leu Val Leu Leu Cys Cys Ala Ile Ser Val Leu Tyr
20 25 30
Met Leu Ala Cys Thr Pro Lys Gly Asp Glu Glu Gln Leu Ala Leu
35 40 45
Pro Arg Ala Asn Ser Pro Thr Gly Lys Glu Gly Tyr Gln Ala Val
50 55 60
Leu Gln Glu Trp Glu Glu Gln His Arg Asn Tyr Val Ser Ser Leu
65 70 75
Lys Arg Gln Ile Ala Gln Leu Lys Glu Glu Leu Gln Glu Arg Ser
80 85 90
Glu Gln Leu Arg Asn Gly Gln Tyr Gln Ala Ser Asp Ala Ala Gly
95 100 105
Leu Gly Leu Asp Arg Ser Pro Pro Glu Lys Thr Gln Ala Asp Leu
110 115 120
Leu Ala Phe Leu His Ser Gln Val Asp Lys Ala Glu Val Asn Ala
125 130 135
Gly Val Lys Leu Ala Thr Glu Tyr Ala Ala Val Pro Phe Asp Ser
140 145 150
Phe Thr Leu Gln Lys Val Tyr Gln Leu Glu Thr Gly Leu Thr Arg
155 160 165
His Pro Glu Glu Lys Pro Val Arg Lys Asp Lys Arg Asp Glu Leu
170 175 180
Val Glu Ala Ile Glu Ser Ala Leu Glu Thr Leu Asn Asn Pro Ala
185 190 195
Glu Asn Ser Pro Asn His Arg Pro Tyr Thr Ala Ser Asp Phe Ile
200 205 210
Glu Gly Ile Tyr Arg Thr Glu Arg Asp Lys Gly Thr Leu Tyr Glu
215 220 225
Leu Thr Phe Lys Gly Asp His Lys His Glu Phe Lys Arg Leu Ile
230 235 240
Leu Phe Arg Pro Phe Ser Pro Ile Met Lys Val Lys Asn Glu Lys
245 250 255
Leu Asn Met Ala Asn Thr Leu Ile Asn Val Ile Val Pro Leu Ala
260 265 270
Lys Arg Val Asp Lys Phe Arg Gln Phe Met Gln Asn Phe Arg Glu
275 280 285
Met Cys Ile Glu Gln Asp Gly Arg Val His Leu Thr Val Val Tyr
290 295 300
Phe Gly Lys Glu Glu Ile Asn Glu Val Lys Gly Ile Leu Glu Asn
305 310 315
Thr Ser Lys Ala Ala Asn Phe Arg Asn Phe Thr Phe Ile Gln Leu
320 325 330
Asn Gly Glu Phe Ser Arg Gly Lys Gly Leu Asp Val Gly Ala Arg
335 340 345
Phe Trp Lys Gly Ser Asn Val Leu Leu Phe Phe Cys Asp Val Asp
350 355 360
Ile Tyr Phe Thr Ser Glu Phe Leu Asn Thr Cys Arg Leu Asn Thr
365 370 375
Gln Pro Gly Lys Lys Val Phe Tyr Pro Val Leu Phe Ser Gln Tyr
380 385 390
Asn Pro Gly Ile Ile Tyr Gly His His Asp Ala Val Pro Pro Leu
395 400 405
Glu Gln Gln Leu Val Ile Lys Lys Glu Thr Gly Phe Trp Arg Asp
410 415 420
Phe Gly Phe Gly Met Thr Cys Gln Tyr Arg Ser Asp Phe Ile Asn
425 430 435
Ile Gly Gly Phe Asp Leu Asp Ile Lys Gly Trp Gly Gly Glu Asp
440 445 450
Val His Leu Tyr Arg Lys Tyr Leu His Ser Asn Leu Ile Val Val
455 460 465
Arg Thr Pro Val Arg Gly Leu Phe His Leu Trp His Glu Lys Arg
470 475 480
Cys Met Asp Glu Leu Thr Pro Glu Gln Tyr Lys Met Cys Met Gln
485 490 495
Ser Lys Ala Met Asn Glu Ala Ser His Gly Gln Leu Gly Met Leu
500 505 510
Val Phe Arg His Glu Ile Glu Ala His Leu Arg Lys Gln Lys Gln
515 520 525
Lys Thr Ser Ser Lys Lys Thr
530
73
1701
DNA
Homo Sapien
unsure
1528
unknown base
73
gagactgcag agggagataa agagagaggg caaagaggca gcaagagatt 50
tgtcctgggg atccagaaac ccatgatacc ctactgaaca ccgaatcccc 100
tggaagccca cagagacaga gacagcaaga gaagcagaga taaatacact 150
cacgccagga gctcgctcgc tctctctctc tctctctcac tcctccctcc 200
ctctctctct gcctgtccta gtcctctagt cctcaaattc ccagtcccct 250
gcaccccttc ctgggacact atgttgttct ccgccctcct gctggaggtg 300
atttggatcc tggctgcaga tgggggtcaa cactggacgt atgagggccc 350
acatggtcag gaccattggc cagcctctta ccctgagtgt ggaaacaatg 400
cccagtcgcc catcgatatt cagacagaca gtgtgacatt tgaccctgat 450
ttgcctgctc tgcagcccca cggatatgac cagcctggca ccgagccttt 500
ggacctgcac aacaatggcc acacagtgca actctctctg ccctctaccc 550
tgtatctggg tggacttccc cgaaaatatg tagctgccca gctccacctg 600
cactggggtc agaaaggatc cccagggggg tcagaacacc agatcaacag 650
tgaagccaca tttgcagagc tccacattgt acattatgac tctgattcct 700
atgacagctt gagtgaggct gctgagaggc ctcagggcct ggctgtcctg 750
ggcatcctaa ttgaggtggg tgagactaag aatatagctt atgaacacat 800
tctgagtcac ttgcatgaag tcaggcataa agatcagaag acctcagtgc 850
ctcccttcaa cctaagagag ctgctcccca aacagctggg gcagtacttc 900
cgctacaatg gctcgctcac aactccccct tgctaccaga gtgtgctctg 950
gacagttttt tatagaaggt cccagatttc aatggaacag ctggaaaagc 1000
ttcaggggac attgttctcc acagaagagg agccctctaa gcttctggta 1050
cagaactacc gagcccttca gcctctcaat cagcgcatgg tctttgcttc 1100
tttcatccaa gcaggatcct cgtataccac aggtgaaatg ctgagtctag 1150
gtgtaggaat cttggttggc tgtctctgcc ttctcctggc tgtttatttc 1200
attgctagaa agattcggaa gaagaggctg gaaaaccgaa agagtgtggt 1250
cttcacctca gcacaagcca cgactgaggc ataaattcct tctcagatac 1300
catggatgtg gatgacttcc cttcatgcct atcaggaagc ctctaaaatg 1350
gggtgtagga tctggccaga aacactgtag gagtagtaag cagatgtcct 1400
ccttcccctg gacatctctt agagaggaat ggacccaggc tgtcattcca 1450
ggaagaactg cagagccttc agcctctcca aacatgtagg aggaaatgag 1500
gaaatcgctg tgttgttaat gcagaganca aactctgttt agttgcaggg 1550
gaagtttggg atatacccca aagtcctcta ccccctcact tttatggccc 1600
tttccctaga tatactgcgg gatctctcct taggataaag agttgctgtt 1650
gaagttgtat atttttgatc aatatatttg gaaattaaag tttctgactt 1700
t 1701
74
337
PRT
Homo Sapien
74
Met Leu Phe Ser Ala Leu Leu Leu Glu Val Ile Trp Ile Leu Ala
1 5 10 15
Ala Asp Gly Gly Gln His Trp Thr Tyr Glu Gly Pro His Gly Gln
20 25 30
Asp His Trp Pro Ala Ser Tyr Pro Glu Cys Gly Asn Asn Ala Gln
35 40 45
Ser Pro Ile Asp Ile Gln Thr Asp Ser Val Thr Phe Asp Pro Asp
50 55 60
Leu Pro Ala Leu Gln Pro His Gly Tyr Asp Gln Pro Gly Thr Glu
65 70 75
Pro Leu Asp Leu His Asn Asn Gly His Thr Val Gln Leu Ser Leu
80 85 90
Pro Ser Thr Leu Tyr Leu Gly Gly Leu Pro Arg Lys Tyr Val Ala
95 100 105
Ala Gln Leu His Leu His Trp Gly Gln Lys Gly Ser Pro Gly Gly
110 115 120
Ser Glu His Gln Ile Asn Ser Glu Ala Thr Phe Ala Glu Leu His
125 130 135
Ile Val His Tyr Asp Ser Asp Ser Tyr Asp Ser Leu Ser Glu Ala
140 145 150
Ala Glu Arg Pro Gln Gly Leu Ala Val Leu Gly Ile Leu Ile Glu
155 160 165
Val Gly Glu Thr Lys Asn Ile Ala Tyr Glu His Ile Leu Ser His
170 175 180
Leu His Glu Val Arg His Lys Asp Gln Lys Thr Ser Val Pro Pro
185 190 195
Phe Asn Leu Arg Glu Leu Leu Pro Lys Gln Leu Gly Gln Tyr Phe
200 205 210
Arg Tyr Asn Gly Ser Leu Thr Thr Pro Pro Cys Tyr Gln Ser Val
215 220 225
Leu Trp Thr Val Phe Tyr Arg Arg Ser Gln Ile Ser Met Glu Gln
230 235 240
Leu Glu Lys Leu Gln Gly Thr Leu Phe Ser Thr Glu Glu Glu Pro
245 250 255
Ser Lys Leu Leu Val Gln Asn Tyr Arg Ala Leu Gln Pro Leu Asn
260 265 270
Gln Arg Met Val Phe Ala Ser Phe Ile Gln Ala Gly Ser Ser Tyr
275 280 285
Thr Thr Gly Glu Met Leu Ser Leu Gly Val Gly Ile Leu Val Gly
290 295 300
Cys Leu Cys Leu Leu Leu Ala Val Tyr Phe Ile Ala Arg Lys Ile
305 310 315
Arg Lys Lys Arg Leu Glu Asn Arg Lys Ser Val Val Phe Thr Ser
320 325 330
Ala Gln Ala Thr Thr Glu Ala
335
75
1743
DNA
Homo Sapien
75
tgccgctgcc gccgctgctg ctgttgctcc tggcggcgcc ttggggacgg 50
gcagttccct gtgtctctgg tggtttgcct aaacctgcaa acatcacctt 100
cttatccatc aacatgaaga atgtcctaca atggactcca ccagagggtc 150
ttcaaggagt taaagttact tacactgtgc agtatttcat cacaaattgg 200
cccaccagag gtggcactga ctacagatga gaagtccatt tctgttgtcc 250
tgacagctcc agagaagtgg aagagaaatc cagaagacct tcctgtttcc 300
atgcaacaaa tatactccaa tctgaagtat aacgtgtctg tgttgaatac 350
taaatcaaac agaacgtggt cccagtgtgt gaccaaccac acgctggtgc 400
tcacctggct ggagccgaac actctttact gcgtacacgt ggagtccttc 450
gtcccagggc cccctcgccg tgctcagcct tctgagaagc agtgtgccag 500
gactttgaaa gatcaatcat cagagttcaa ggctaaaatc atcttctggt 550
atgttttgcc catatctatt accgtgtttc ttttttctgt gatgggctat 600
tccatctacc gatatatcca cgttggcaaa gagaaacacc cagcaaattt 650
gattttgatt tatggaaatg aatttgacaa aagattcttt gtgcctgctg 700
aaaaaatcgt gattaacttt atcaccctca atatctcgga tgattctaaa 750
atttctcatc aggatatgag tttactggga aaaagcagtg atgtatccag 800
ccttaatgat cctcagccca gcgggaacct gaggccccct caggaggaag 850
aggaggtgaa acatttaggg tatgcttcgc atttgatgga aattttttgt 900
gactctgaag aaaacacgga aggtacttct ctcacccagc aagagtccct 950
cagcagaaca atacccccgg ataaaacagt cattgaatat gaatatgatg 1000
tcagaaccac tgacatttgt gcggggcctg aagagcagga gctcagtttg 1050
caggaggagg tgtccacaca aggaacatta ttggagtcgc aggcagcgtt 1100
ggcagtcttg ggcccgcaaa cgttacagta ctcatacacc cctcagctcc 1150
aagacttaga ccccctggcg caggagcaca cagactcgga ggaggggccg 1200
gaggaagagc catcgacgac cctggtcgac tgggatcccc aaactggcag 1250
gctgtgtatt ccttcgctgt ccagcttcga ccaggattca gagggctgcg 1300
agccttctga gggggatggg ctcggagagg agggtcttct atctagactc 1350
tatgaggagc cggctccaga caggccacca ggagaaaatg aaacctatct 1400
catgcaattc atggaggaat gggggttata tgtgcagatg gaaaactgat 1450
gccaacactt ccttttgcct tttgtttcct gtgcaaacaa gtgagtcacc 1500
cctttgatcc cagccataaa gtacctggga tgaaagaagt tttttccagt 1550
ttgtcagtgt ctgtgagaat tacttatttc ttttctctat tctcatagca 1600
cgtgtgtgat tggttcatgc atgtaggtct cttaacaatg atggtgggcc 1650
tctggagtcc aggggctggc cggttgttct atgcagagaa agcagtcaat 1700
aaatgtttgc cagactgggt gcagaattta ttcaggtggg tgt 1743
76
442
PRT
Homo Sapien
76
Met Ser Tyr Asn Gly Leu His Gln Arg Val Phe Lys Glu Leu Lys
1 5 10 15
Leu Leu Thr Leu Cys Ser Ile Ser Ser Gln Ile Gly Pro Pro Glu
20 25 30
Val Ala Leu Thr Thr Asp Glu Lys Ser Ile Ser Val Val Leu Thr
35 40 45
Ala Pro Glu Lys Trp Lys Arg Asn Pro Glu Asp Leu Pro Val Ser
50 55 60
Met Gln Gln Ile Tyr Ser Asn Leu Lys Tyr Asn Val Ser Val Leu
65 70 75
Asn Thr Lys Ser Asn Arg Thr Trp Ser Gln Cys Val Thr Asn His
80 85 90
Thr Leu Val Leu Thr Trp Leu Glu Pro Asn Thr Leu Tyr Cys Val
95 100 105
His Val Glu Ser Phe Val Pro Gly Pro Pro Arg Arg Ala Gln Pro
110 115 120
Ser Glu Lys Gln Cys Ala Arg Thr Leu Lys Asp Gln Ser Ser Glu
125 130 135
Phe Lys Ala Lys Ile Ile Phe Trp Tyr Val Leu Pro Ile Ser Ile
140 145 150
Thr Val Phe Leu Phe Ser Val Met Gly Tyr Ser Ile Tyr Arg Tyr
155 160 165
Ile His Val Gly Lys Glu Lys His Pro Ala Asn Leu Ile Leu Ile
170 175 180
Tyr Gly Asn Glu Phe Asp Lys Arg Phe Phe Val Pro Ala Glu Lys
185 190 195
Ile Val Ile Asn Phe Ile Thr Leu Asn Ile Ser Asp Asp Ser Lys
200 205 210
Ile Ser His Gln Asp Met Ser Leu Leu Gly Lys Ser Ser Asp Val
215 220 225
Ser Ser Leu Asn Asp Pro Gln Pro Ser Gly Asn Leu Arg Pro Pro
230 235 240
Gln Glu Glu Glu Glu Val Lys His Leu Gly Tyr Ala Ser His Leu
245 250 255
Met Glu Ile Phe Cys Asp Ser Glu Glu Asn Thr Glu Gly Thr Ser
260 265 270
Leu Thr Gln Gln Glu Ser Leu Ser Arg Thr Ile Pro Pro Asp Lys
275 280 285
Thr Val Ile Glu Tyr Glu Tyr Asp Val Arg Thr Thr Asp Ile Cys
290 295 300
Ala Gly Pro Glu Glu Gln Glu Leu Ser Leu Gln Glu Glu Val Ser
305 310 315
Thr Gln Gly Thr Leu Leu Glu Ser Gln Ala Ala Leu Ala Val Leu
320 325 330
Gly Pro Gln Thr Leu Gln Tyr Ser Tyr Thr Pro Gln Leu Gln Asp
335 340 345
Leu Asp Pro Leu Ala Gln Glu His Thr Asp Ser Glu Glu Gly Pro
350 355 360
Glu Glu Glu Pro Ser Thr Thr Leu Val Asp Trp Asp Pro Gln Thr
365 370 375
Gly Arg Leu Cys Ile Pro Ser Leu Ser Ser Phe Asp Gln Asp Ser
380 385 390
Glu Gly Cys Glu Pro Ser Glu Gly Asp Gly Leu Gly Glu Glu Gly
395 400 405
Leu Leu Ser Arg Leu Tyr Glu Glu Pro Ala Pro Asp Arg Pro Pro
410 415 420
Gly Glu Asn Glu Thr Tyr Leu Met Gln Phe Met Glu Glu Trp Gly
425 430 435
Leu Tyr Val Gln Met Glu Asn
440
77
1636
DNA
Homo Sapien
77
gaggagcggg ccgaggactc cagcgtgccc aggtctggca tcctgcactt 50
gctgccctct gacacctggg aagatggccg gcccgtggac cttcaccctt 100
ctctgtggtt tgctggcagc caccttgatc caagccaccc tcagtcccac 150
tgcagttctc atcctcggcc caaaagtcat caaagaaaag ctgacacagg 200
agctgaagga ccacaacgcc accagcatcc tgcagcagct gccgctgctc 250
agtgccatgc gggaaaagcc agccggaggc atccctgtgc tgggcagcct 300
ggtgaacacc gtcctgaagc acatcatctg gctgaaggtc atcacagcta 350
acatcctcca gctgcaggtg aagccctcgg ccaatgacca ggagctgcta 400
gtcaagatcc ccctggacat ggtggctgga ttcaacacgc ccctggtcaa 450
gaccatcgtg gagttccaca tgacgactga ggcccaagcc accatccgca 500
tggacaccag tgcaagtggc cccacccgcc tggtcctcag tgactgtgcc 550
accagccatg ggagcctgcg catccaactg ctgtataagc tctccttcct 600
ggtgaacgcc ttagctaagc aggtcatgaa cctcctagtg ccatccctgc 650
ccaatctagt gaaaaaccag ctgtgtcccg tgatcgaggc ttccttcaat 700
ggcatgtatg cagacctcct gcagctggtg aaggtgccca tttccctcag 750
cattgaccgt ctggagtttg accttctgta tcctgccatc aagggtgaca 800
ccattcagct ctacctgggg gccaagttgt tggactcaca gggaaaggtg 850
accaagtggt tcaataactc tgcagcttcc ctgacaatgc ccaccctgga 900
caacatcccg ttcagcctca tcgtgagtca ggacgtggtg aaagctgcag 950
tggctgctgt gctctctcca gaagaattca tggtcctgtt ggactctgtg 1000
cttcctgaga gtgcccatcg gctgaagtca agcatcgggc tgatcaatga 1050
aaaggctgca gataagctgg gatctaccca gatcgtgaag atcctaactc 1100
aggacactcc cgagtttttt atagaccaag gccatgccaa ggtggcccaa 1150
ctgatcgtgc tggaagtgtt tccctccagt gaagccctcc gccctttgtt 1200
caccctgggc atcgaagcca gctcggaagc tcagttttac accaaaggtg 1250
accaacttat actcaacttg aataacatca gctctgatcg gatccagctg 1300
atgaactctg ggattggctg gttccaacct gatgttctga aaaacatcat 1350
cactgagatc atccactcca tcctgctgcc gaaccagaat ggcaaattaa 1400
gatctggggt cccagtgtca ttggtgaagg ccttgggatt cgaggcagct 1450
gagtcctcac tgaccaagga tgcccttgtg cttactccag cctccttgtg 1500
gaaacccagc tctcctgtct cccagtgaag acttggatgg cagccatcag 1550
ggaaggctgg gtcccagctg ggagtatggg tgtgagctct atagaccatc 1600
cctctctgca atcaataaac acttgcctgt gaaaaa 1636
78
484
PRT
Homo Sapien
78
Met Ala Gly Pro Trp Thr Phe Thr Leu Leu Cys Gly Leu Leu Ala
1 5 10 15
Ala Thr Leu Ile Gln Ala Thr Leu Ser Pro Thr Ala Val Leu Ile
20 25 30
Leu Gly Pro Lys Val Ile Lys Glu Lys Leu Thr Gln Glu Leu Lys
35 40 45
Asp His Asn Ala Thr Ser Ile Leu Gln Gln Leu Pro Leu Leu Ser
50 55 60
Ala Met Arg Glu Lys Pro Ala Gly Gly Ile Pro Val Leu Gly Ser
65 70 75
Leu Val Asn Thr Val Leu Lys His Ile Ile Trp Leu Lys Val Ile
80 85 90
Thr Ala Asn Ile Leu Gln Leu Gln Val Lys Pro Ser Ala Asn Asp
95 100 105
Gln Glu Leu Leu Val Lys Ile Pro Leu Asp Met Val Ala Gly Phe
110 115 120
Asn Thr Pro Leu Val Lys Thr Ile Val Glu Phe His Met Thr Thr
125 130 135
Glu Ala Gln Ala Thr Ile Arg Met Asp Thr Ser Ala Ser Gly Pro
140 145 150
Thr Arg Leu Val Leu Ser Asp Cys Ala Thr Ser His Gly Ser Leu
155 160 165
Arg Ile Gln Leu Leu Tyr Lys Leu Ser Phe Leu Val Asn Ala Leu
170 175 180
Ala Lys Gln Val Met Asn Leu Leu Val Pro Ser Leu Pro Asn Leu
185 190 195
Val Lys Asn Gln Leu Cys Pro Val Ile Glu Ala Ser Phe Asn Gly
200 205 210
Met Tyr Ala Asp Leu Leu Gln Leu Val Lys Val Pro Ile Ser Leu
215 220 225
Ser Ile Asp Arg Leu Glu Phe Asp Leu Leu Tyr Pro Ala Ile Lys
230 235 240
Gly Asp Thr Ile Gln Leu Tyr Leu Gly Ala Lys Leu Leu Asp Ser
245 250 255
Gln Gly Lys Val Thr Lys Trp Phe Asn Asn Ser Ala Ala Ser Leu
260 265 270
Thr Met Pro Thr Leu Asp Asn Ile Pro Phe Ser Leu Ile Val Ser
275 280 285
Gln Asp Val Val Lys Ala Ala Val Ala Ala Val Leu Ser Pro Glu
290 295 300
Glu Phe Met Val Leu Leu Asp Ser Val Leu Pro Glu Ser Ala His
305 310 315
Arg Leu Lys Ser Ser Ile Gly Leu Ile Asn Glu Lys Ala Ala Asp
320 325 330
Lys Leu Gly Ser Thr Gln Ile Val Lys Ile Leu Thr Gln Asp Thr
335 340 345
Pro Glu Phe Phe Ile Asp Gln Gly His Ala Lys Val Ala Gln Leu
350 355 360
Ile Val Leu Glu Val Phe Pro Ser Ser Glu Ala Leu Arg Pro Leu
365 370 375
Phe Thr Leu Gly Ile Glu Ala Ser Ser Glu Ala Gln Phe Tyr Thr
380 385 390
Lys Gly Asp Gln Leu Ile Leu Asn Leu Asn Asn Ile Ser Ser Asp
395 400 405
Arg Ile Gln Leu Met Asn Ser Gly Ile Gly Trp Phe Gln Pro Asp
410 415 420
Val Leu Lys Asn Ile Ile Thr Glu Ile Ile His Ser Ile Leu Leu
425 430 435
Pro Asn Gln Asn Gly Lys Leu Arg Ser Gly Val Pro Val Ser Leu
440 445 450
Val Lys Ala Leu Gly Phe Glu Ala Ala Glu Ser Ser Leu Thr Lys
455 460 465
Asp Ala Leu Val Leu Thr Pro Ala Ser Leu Trp Lys Pro Ser Ser
470 475 480
Pro Val Ser Gln
79
1475
DNA
Homo Sapien
79
gagagaagtc agcctggcag agagactctg aaatgaggga ttagaggtgt 50
tcaaggagca agagcttcag cctgaagaca agggagcagt ccctgaagac 100
gcttctactg agaggtctgc catggcctct cttggcctcc aacttgtggg 150
ctacatccta ggccttctgg ggcttttggg cacactggtt gccatgctgc 200
tccccagctg gaaaacaagt tcttatgtcg gtgccagcat tgtgacagca 250
gttggcttct ccaagggcct ctggatggaa tgtgccacac acagcacagg 300
catcacccag tgtgacatct atagcaccct tctgggcctg cccgctgaca 350
tccaggctgc ccaggccatg atggtgacat ccagtgcaat ctcctccctg 400
gcctgcatta tctctgtggt gggcatgaga tgcacagtct tctgccagga 450
atcccgagcc aaagacagag tggcggtagc aggtggagtc tttttcatcc 500
ttggaggcct cctgggattc attcctgttg cctggaatct tcatgggatc 550
ctacgggact tctactcacc actggtgcct gacagcatga aatttgagat 600
tggagaggct ctttacttgg gcattatttc ttccctgttc tccctgatag 650
ctggaatcat cctctgcttt tcctgctcat cccagagaaa tcgctccaac 700
tactacgatg cctaccaagc ccaacctctt gccacaagga gctctccaag 750
gcctggtcaa cctcccaaag tcaagagtga gttcaattcc tacagcctga 800
cagggtatgt gtgaagaacc aggggccaga gctggggggt ggctgggtct 850
gtgaaaaaca gtggacagca ccccgagggc cacaggtgag ggacactacc 900
actggatcgt gtcagaaggt gctgctgagg atagactgac tttggccatt 950
ggattgagca aaggcagaaa tgggggctag tgtaacagca tgcaggttga 1000
attgccaagg atgctcgcca tgccagcctt tctgttttcc tcaccttgct 1050
gctcccctgc cctaagtccc caaccctcaa cttgaaaccc cattccctta 1100
agccaggact cagaggatcc ctttgccctc tggtttacct gggactccat 1150
ccccaaaccc actaatcaca tcccactgac tgaccctctg tgatcaaaga 1200
ccctctctct ggctgaggtt ggctcttagc tcattgctgg ggatgggaag 1250
gagaagcagt ggcttttgtg ggcattgctc taacctactt ctcaagcttc 1300
cctccaaaga aactgattgg ccctggaacc tccatcccac tcttgttatg 1350
actccacagt gtccagacta atttgtgcat gaactgaaat aaaaccatcc 1400
tacggtatcc agggaacaga aagcaggatg caggatggga ggacaggaag 1450
gcagcctggg acatttaaaa aaata 1475
80
230
PRT
Homo Sapien
80
Met Ala Ser Leu Gly Leu Gln Leu Val Gly Tyr Ile Leu Gly Leu
1 5 10 15
Leu Gly Leu Leu Gly Thr Leu Val Ala Met Leu Leu Pro Ser Trp
20 25 30
Lys Thr Ser Ser Tyr Val Gly Ala Ser Ile Val Thr Ala Val Gly
35 40 45
Phe Ser Lys Gly Leu Trp Met Glu Cys Ala Thr His Ser Thr Gly
50 55 60
Ile Thr Gln Cys Asp Ile Tyr Ser Thr Leu Leu Gly Leu Pro Ala
65 70 75
Asp Ile Gln Ala Ala Gln Ala Met Met Val Thr Ser Ser Ala Ile
80 85 90
Ser Ser Leu Ala Cys Ile Ile Ser Val Val Gly Met Arg Cys Thr
95 100 105
Val Phe Cys Gln Glu Ser Arg Ala Lys Asp Arg Val Ala Val Ala
110 115 120
Gly Gly Val Phe Phe Ile Leu Gly Gly Leu Leu Gly Phe Ile Pro
125 130 135
Val Ala Trp Asn Leu His Gly Ile Leu Arg Asp Phe Tyr Ser Pro
140 145 150
Leu Val Pro Asp Ser Met Lys Phe Glu Ile Gly Glu Ala Leu Tyr
155 160 165
Leu Gly Ile Ile Ser Ser Leu Phe Ser Leu Ile Ala Gly Ile Ile
170 175 180
Leu Cys Phe Ser Cys Ser Ser Gln Arg Asn Arg Ser Asn Tyr Tyr
185 190 195
Asp Ala Tyr Gln Ala Gln Pro Leu Ala Thr Arg Ser Ser Pro Arg
200 205 210
Pro Gly Gln Pro Pro Lys Val Lys Ser Glu Phe Asn Ser Tyr Ser
215 220 225
Leu Thr Gly Tyr Val
230
81
1732
DNA
Homo Sapien
81
cccacgcgtc cgcgcctctc ccttctgctg gaccttcctt cgtctctcca 50
tctctccctc ctttccccgc gttctctttc cacctttctc ttcttcccac 100
cttagacctc ccttcctgcc ctcctttcct gcccaccgct gcttcctggc 150
ccttctccga ccccgctcta gcagcagacc tcctggggtc tgtgggttga 200
tctgtggccc ctgtgcctcc gtgtcctttt cgtctccctt cctcccgact 250
ccgctcccgg accagcggcc tgaccctggg gaaaggatgg ttcccgaggt 300
gagggtcctc tcctccttgc tgggactcgc gctgctctgg ttccccctgg 350
actcccacgc tcgagcccgc ccagacatgt tctgcctttt ccatgggaag 400
agatactccc ccggcgagag ctggcacccc tacttggagc cacaaggcct 450
gatgtactgc ctgcgctgta cctgctcaga gggcgcccat gtgagttgtt 500
accgcctcca ctgtccgcct gtccactgcc cccagcctgt gacggagcca 550
cagcaatgct gtcccaagtg tgtggaacct cacactccct ctggactccg 600
ggccccacca aagtcctgcc agcacaacgg gaccatgtac caacacggag 650
agatcttcag tgcccatgag ctgttcccct cccgcctgcc caaccagtgt 700
gtcctctgca gctgcacaga gggccagatc tactgcggcc tcacaacctg 750
ccccgaacca ggctgcccag cacccctccc actgccagac tcctgctgcc 800
aagcctgcaa agatgaggca agtgagcaat cggatgaaga ggacagtgtg 850
cagtcgctcc atggggtgag acatcctcag gatccatgtt ccagtgatgc 900
tgggagaaag agaggcccgg gcaccccagc ccccactggc ctcagcgccc 950
ctctgagctt catccctcgc cacttcagac ccaagggagc aggcagcaca 1000
actgtcaaga tcgtcctgaa ggagaaacat aagaaagcct gtgtgcatgg 1050
cgggaagacg tactcccacg gggaggtgtg gcacccggcc ttccgtgcct 1100
tcggcccctt gccctgcatc ctatgcacct gtgaggatgg ccgccaggac 1150
tgccagcgtg tgacctgtcc caccgagtac ccctgccgtc accccgagaa 1200
agtggctggg aagtgctgca agatttgccc agaggacaaa gcagaccctg 1250
gccacagtga gatcagttct accaggtgtc ccaaggcacc gggccgggtc 1300
ctcgtccaca catcggtatc cccaagccca gacaacctgc gtcgctttgc 1350
cctggaacac gaggcctcgg acttggtgga gatctacctc tggaagctgg 1400
taaaagatga ggaaactgag gctcagagag gtgaagtacc tggcccaagg 1450
ccacacagcc agaatcttcc acttgactca gatcaagaaa gtcaggaagc 1500
aagacttcca gaaagaggca cagcacttcc gactgctcgc tggcccccac 1550
gaaggtcact ggaacgtctt cctagcccag accctggagc tgaaggtcac 1600
ggccagtcca gacaaagtga ccaagacata acaaagacct aacagttgca 1650
gatatgagct gtataattgt tgttattata tattaataaa taagaagttg 1700
cattaccctc aaaaaaaaaa aaaaaaaaaa aa 1732
82
451
PRT
Homo Sapien
82
Met Val Pro Glu Val Arg Val Leu Ser Ser Leu Leu Gly Leu Ala
1 5 10 15
Leu Leu Trp Phe Pro Leu Asp Ser His Ala Arg Ala Arg Pro Asp
20 25 30
Met Phe Cys Leu Phe His Gly Lys Arg Tyr Ser Pro Gly Glu Ser
35 40 45
Trp His Pro Tyr Leu Glu Pro Gln Gly Leu Met Tyr Cys Leu Arg
50 55 60
Cys Thr Cys Ser Glu Gly Ala His Val Ser Cys Tyr Arg Leu His
65 70 75
Cys Pro Pro Val His Cys Pro Gln Pro Val Thr Glu Pro Gln Gln
80 85 90
Cys Cys Pro Lys Cys Val Glu Pro His Thr Pro Ser Gly Leu Arg
95 100 105
Ala Pro Pro Lys Ser Cys Gln His Asn Gly Thr Met Tyr Gln His
110 115 120
Gly Glu Ile Phe Ser Ala His Glu Leu Phe Pro Ser Arg Leu Pro
125 130 135
Asn Gln Cys Val Leu Cys Ser Cys Thr Glu Gly Gln Ile Tyr Cys
140 145 150
Gly Leu Thr Thr Cys Pro Glu Pro Gly Cys Pro Ala Pro Leu Pro
155 160 165
Leu Pro Asp Ser Cys Cys Gln Ala Cys Lys Asp Glu Ala Ser Glu
170 175 180
Gln Ser Asp Glu Glu Asp Ser Val Gln Ser Leu His Gly Val Arg
185 190 195
His Pro Gln Asp Pro Cys Ser Ser Asp Ala Gly Arg Lys Arg Gly
200 205 210
Pro Gly Thr Pro Ala Pro Thr Gly Leu Ser Ala Pro Leu Ser Phe
215 220 225
Ile Pro Arg His Phe Arg Pro Lys Gly Ala Gly Ser Thr Thr Val
230 235 240
Lys Ile Val Leu Lys Glu Lys His Lys Lys Ala Cys Val His Gly
245 250 255
Gly Lys Thr Tyr Ser His Gly Glu Val Trp His Pro Ala Phe Arg
260 265 270
Ala Phe Gly Pro Leu Pro Cys Ile Leu Cys Thr Cys Glu Asp Gly
275 280 285
Arg Gln Asp Cys Gln Arg Val Thr Cys Pro Thr Glu Tyr Pro Cys
290 295 300
Arg His Pro Glu Lys Val Ala Gly Lys Cys Cys Lys Ile Cys Pro
305 310 315
Glu Asp Lys Ala Asp Pro Gly His Ser Glu Ile Ser Ser Thr Arg
320 325 330
Cys Pro Lys Ala Pro Gly Arg Val Leu Val His Thr Ser Val Ser
335 340 345
Pro Ser Pro Asp Asn Leu Arg Arg Phe Ala Leu Glu His Glu Ala
350 355 360
Ser Asp Leu Val Glu Ile Tyr Leu Trp Lys Leu Val Lys Asp Glu
365 370 375
Glu Thr Glu Ala Gln Arg Gly Glu Val Pro Gly Pro Arg Pro His
380 385 390
Ser Gln Asn Leu Pro Leu Asp Ser Asp Gln Glu Ser Gln Glu Ala
395 400 405
Arg Leu Pro Glu Arg Gly Thr Ala Leu Pro Thr Ala Arg Trp Pro
410 415 420
Pro Arg Arg Ser Leu Glu Arg Leu Pro Ser Pro Asp Pro Gly Ala
425 430 435
Glu Gly His Gly Gln Ser Arg Gln Ser Asp Gln Asp Ile Thr Lys
440 445 450
Thr
83
2052
DNA
Homo Sapien
83
gacagctgtg tctcgatgga gtagactctc agaacagcgc agtttgccct 50
ccgctcacgc agagcctctc cgtggcttcc gcaccttgag cattaggcca 100
gttctcctct tctctctaat ccatccgtca cctctcctgt catccgtttc 150
catgccgtga ggtccattca cagaacacat ccatggctct catgctcagt 200
ttggttctga gtctcctcaa gctgggatca gggcagtggc aggtgtttgg 250
gccagacaag cctgtccagg ccttggtggg ggaggacgca gcattctcct 300
gtttcctgtc tcctaagacc aatgcagagg ccatggaagt gcggttcttc 350
aggggccagt tctctagcgt ggtccacctc tacagggacg ggaaggacca 400
gccatttatg cagatgccac agtatcaagg caggacaaaa ctggtgaagg 450
attctattgc ggaggggcgc atctctctga ggctggaaaa cattactgtg 500
ttggatgctg gcctctatgg gtgcaggatt agttcccagt cttactacca 550
gaaggccatc tgggagctac aggtgtcagc actgggctca gttcctctca 600
tttccatcac gggatatgtt gatagagaca tccagctact ctgtcagtcc 650
tcgggctggt tcccccggcc cacagcgaag tggaaaggtc cacaaggaca 700
ggatttgtcc acagactcca ggacaaacag agacatgcat ggcctgtttg 750
atgtggagat ctctctgacc gtccaagaga acgccgggag catatcctgt 800
tccatgcggc atgctcatct gagccgagag gtggaatcca gggtacagat 850
aggagatacc tttttcgagc ctatatcgtg gcacctggct accaaagtac 900
tgggaatact ctgctgtggc ctattttttg gcattgttgg actgaagatt 950
ttcttctcca aattccagtg gaaaatccag gcggaactgg actggagaag 1000
aaagcacgga caggcagaat tgagagacgc ccggaaacac gcagtggagg 1050
tgactctgga tccagagacg gctcacccga agctctgcgt ttctgatctg 1100
aaaactgtaa cccatagaaa agctccccag gaggtgcctc actctgagaa 1150
gagatttaca aggaagagtg tggtggcttc tcagagtttc caagcaggga 1200
aacattactg ggaggtggac ggaggacaca ataaaaggtg gcgcgtggga 1250
gtgtgccggg atgatgtgga caggaggaag gagtacgtga ctttgtctcc 1300
cgatcatggg tactgggtcc tcagactgaa tggagaacat ttgtatttca 1350
cattaaatcc ccgttttatc agcgtcttcc ccaggacccc acctacaaaa 1400
ataggggtct tcctggacta tgagtgtggg accatctcct tcttcaacat 1450
aaatgaccag tcccttattt ataccctgac atgtcggttt gaaggcttat 1500
tgaggcccta cattgagtat ccgtcctata atgagcaaaa tggaactccc 1550
atagtcatct gcccagtcac ccaggaatca gagaaagagg cctcttggca 1600
aagggcctct gcaatcccag agacaagcaa cagtgagtcc tcctcacagg 1650
caaccacgcc cttcctcccc aggggtgaaa tgtaggatga atcacatccc 1700
acattcttct ttagggatat taaggtctct ctcccagatc caaagtcccg 1750
cagcagccgg ccaaggtggc ttccagatga agggggactg gcctgtccac 1800
atgggagtca ggtgtcatgg ctgccctgag ctgggaggga agaaggctga 1850
cattacattt agtttgctct cactccatct ggctaagtga tcttgaaata 1900
ccacctctca ggtgaagaac cgtcaggaat tcccatctca caggctgtgg 1950
tgtagattaa gtagacaagg aatgtgaata atgcttagat cttattgatg 2000
acagagtgta tcctaatggt ttgttcatta tattacactt tcagtaaaaa 2050
aa 2052
84
500
PRT
Homo Sapien
84
Met Ala Leu Met Leu Ser Leu Val Leu Ser Leu Leu Lys Leu Gly
1 5 10 15
Ser Gly Gln Trp Gln Val Phe Gly Pro Asp Lys Pro Val Gln Ala
20 25 30
Leu Val Gly Glu Asp Ala Ala Phe Ser Cys Phe Leu Ser Pro Lys
35 40 45
Thr Asn Ala Glu Ala Met Glu Val Arg Phe Phe Arg Gly Gln Phe
50 55 60
Ser Ser Val Val His Leu Tyr Arg Asp Gly Lys Asp Gln Pro Phe
65 70 75
Met Gln Met Pro Gln Tyr Gln Gly Arg Thr Lys Leu Val Lys Asp
80 85 90
Ser Ile Ala Glu Gly Arg Ile Ser Leu Arg Leu Glu Asn Ile Thr
95 100 105
Val Leu Asp Ala Gly Leu Tyr Gly Cys Arg Ile Ser Ser Gln Ser
110 115 120
Tyr Tyr Gln Lys Ala Ile Trp Glu Leu Gln Val Ser Ala Leu Gly
125 130 135
Ser Val Pro Leu Ile Ser Ile Thr Gly Tyr Val Asp Arg Asp Ile
140 145 150
Gln Leu Leu Cys Gln Ser Ser Gly Trp Phe Pro Arg Pro Thr Ala
155 160 165
Lys Trp Lys Gly Pro Gln Gly Gln Asp Leu Ser Thr Asp Ser Arg
170 175 180
Thr Asn Arg Asp Met His Gly Leu Phe Asp Val Glu Ile Ser Leu
185 190 195
Thr Val Gln Glu Asn Ala Gly Ser Ile Ser Cys Ser Met Arg His
200 205 210
Ala His Leu Ser Arg Glu Val Glu Ser Arg Val Gln Ile Gly Asp
215 220 225
Thr Phe Phe Glu Pro Ile Ser Trp His Leu Ala Thr Lys Val Leu
230 235 240
Gly Ile Leu Cys Cys Gly Leu Phe Phe Gly Ile Val Gly Leu Lys
245 250 255
Ile Phe Phe Ser Lys Phe Gln Trp Lys Ile Gln Ala Glu Leu Asp
260 265 270
Trp Arg Arg Lys His Gly Gln Ala Glu Leu Arg Asp Ala Arg Lys
275 280 285
His Ala Val Glu Val Thr Leu Asp Pro Glu Thr Ala His Pro Lys
290 295 300
Leu Cys Val Ser Asp Leu Lys Thr Val Thr His Arg Lys Ala Pro
305 310 315
Gln Glu Val Pro His Ser Glu Lys Arg Phe Thr Arg Lys Ser Val
320 325 330
Val Ala Ser Gln Ser Phe Gln Ala Gly Lys His Tyr Trp Glu Val
335 340 345
Asp Gly Gly His Asn Lys Arg Trp Arg Val Gly Val Cys Arg Asp
350 355 360
Asp Val Asp Arg Arg Lys Glu Tyr Val Thr Leu Ser Pro Asp His
365 370 375
Gly Tyr Trp Val Leu Arg Leu Asn Gly Glu His Leu Tyr Phe Thr
380 385 390
Leu Asn Pro Arg Phe Ile Ser Val Phe Pro Arg Thr Pro Pro Thr
395 400 405
Lys Ile Gly Val Phe Leu Asp Tyr Glu Cys Gly Thr Ile Ser Phe
410 415 420
Phe Asn Ile Asn Asp Gln Ser Leu Ile Tyr Thr Leu Thr Cys Arg
425 430 435
Phe Glu Gly Leu Leu Arg Pro Tyr Ile Glu Tyr Pro Ser Tyr Asn
440 445 450
Glu Gln Asn Gly Thr Pro Ile Val Ile Cys Pro Val Thr Gln Glu
455 460 465
Ser Glu Lys Glu Ala Ser Trp Gln Arg Ala Ser Ala Ile Pro Glu
470 475 480
Thr Ser Asn Ser Glu Ser Ser Ser Gln Ala Thr Thr Pro Phe Leu
485 490 495
Pro Arg Gly Glu Met
500
85
1665
DNA
Homo Sapien
85
aacagacgtt ccctcgcggc cctggcacct ctaaccccag acatgctgct 50
gctgctgctg cccctgctct gggggaggga gagggcggaa ggacagacaa 100
gtaaactgct gacgatgcag agttccgtga cggtgcagga aggcctgtgt 150
gtccatgtgc cctgctcctt ctcctacccc tcgcatggct ggatttaccc 200
tggcccagta gttcatggct actggttccg ggaaggggcc aatacagacc 250
aggatgctcc agtggccaca aacaacccag ctcgggcagt gtgggaggag 300
actcgggacc gattccacct ccttggggac ccacatacca agaattgcac 350
cctgagcatc agagatgcca gaagaagtga tgcggggaga tacttctttc 400
gtatggagaa aggaagtata aaatggaatt ataaacatca ccggctctct 450
gtgaatgtga cagccttgac ccacaggccc aacatcctca tcccaggcac 500
cctggagtcc ggctgccccc agaatctgac ctgctctgtg ccctgggcct 550
gtgagcaggg gacaccccct atgatctcct ggatagggac ctccgtgtcc 600
cccctggacc cctccaccac ccgctcctcg gtgctcaccc tcatcccaca 650
gccccaggac catggcacca gcctcacctg tcaggtgacc ttccctgggg 700
ccagcgtgac cacgaacaag accgtccatc tcaacgtgtc ctacccgcct 750
cagaacttga ccatgactgt cttccaagga gacggcacag tatccacagt 800
cttgggaaat ggctcatctc tgtcactccc agagggccag tctctgcgcc 850
tggtctgtgc agttgatgca gttgacagca atccccctgc caggctgagc 900
ctgagctgga gaggcctgac cctgtgcccc tcacagccct caaacccggg 950
ggtgctggag ctgccttggg tgcacctgag ggatgcagct gaattcacct 1000
gcagagctca gaaccctctc ggctctcagc aggtctacct gaacgtctcc 1050
ctgcagagca aagccacatc aggagtgact cagggggtgg tcgggggagc 1100
tggagccaca gccctggtct tcctgtcctt ctgcgtcatc ttcgttgtag 1150
tgaggtcctg caggaagaaa tcggcaaggc cagcagcggg cgtgggagat 1200
acgggcatag aggatgcaaa cgctgtcagg ggttcagcct ctcaggggcc 1250
cctgactgaa ccttgggcag aagacagtcc cccagaccag cctcccccag 1300
cttctgcccg ctcctcagtg ggggaaggag agctccagta tgcatccctc 1350
agcttccaga tggtgaagcc ttgggactcg cggggacagg aggccactga 1400
caccgagtac tcggagatca agatccacag atgagaaact gcagagactc 1450
accctgattg agggatcaca gcccctccag gcaagggaga agtcagaggc 1500
tgattcttgt agaattaaca gccctcaacg tgatgagcta tgataacact 1550
atgaattatg tgcagagtga aaagcacaca ggctttagag tcaaagtatc 1600
tcaaacctga atccacactg tgccctccct tttatttttt taactaaaag 1650
acagacaaat tccta 1665
86
463
PRT
Homo Sapien
86
Met Leu Leu Leu Leu Leu Pro Leu Leu Trp Gly Arg Glu Arg Ala
1 5 10 15
Glu Gly Gln Thr Ser Lys Leu Leu Thr Met Gln Ser Ser Val Thr
20 25 30
Val Gln Glu Gly Leu Cys Val His Val Pro Cys Ser Phe Ser Tyr
35 40 45
Pro Ser His Gly Trp Ile Tyr Pro Gly Pro Val Val His Gly Tyr
50 55 60
Trp Phe Arg Glu Gly Ala Asn Thr Asp Gln Asp Ala Pro Val Ala
65 70 75
Thr Asn Asn Pro Ala Arg Ala Val Trp Glu Glu Thr Arg Asp Arg
80 85 90
Phe His Leu Leu Gly Asp Pro His Thr Lys Asn Cys Thr Leu Ser
95 100 105
Ile Arg Asp Ala Arg Arg Ser Asp Ala Gly Arg Tyr Phe Phe Arg
110 115 120
Met Glu Lys Gly Ser Ile Lys Trp Asn Tyr Lys His His Arg Leu
125 130 135
Ser Val Asn Val Thr Ala Leu Thr His Arg Pro Asn Ile Leu Ile
140 145 150
Pro Gly Thr Leu Glu Ser Gly Cys Pro Gln Asn Leu Thr Cys Ser
155 160 165
Val Pro Trp Ala Cys Glu Gln Gly Thr Pro Pro Met Ile Ser Trp
170 175 180
Ile Gly Thr Ser Val Ser Pro Leu Asp Pro Ser Thr Thr Arg Ser
185 190 195
Ser Val Leu Thr Leu Ile Pro Gln Pro Gln Asp His Gly Thr Ser
200 205 210
Leu Thr Cys Gln Val Thr Phe Pro Gly Ala Ser Val Thr Thr Asn
215 220 225
Lys Thr Val His Leu Asn Val Ser Tyr Pro Pro Gln Asn Leu Thr
230 235 240
Met Thr Val Phe Gln Gly Asp Gly Thr Val Ser Thr Val Leu Gly
245 250 255
Asn Gly Ser Ser Leu Ser Leu Pro Glu Gly Gln Ser Leu Arg Leu
260 265 270
Val Cys Ala Val Asp Ala Val Asp Ser Asn Pro Pro Ala Arg Leu
275 280 285
Ser Leu Ser Trp Arg Gly Leu Thr Leu Cys Pro Ser Gln Pro Ser
290 295 300
Asn Pro Gly Val Leu Glu Leu Pro Trp Val His Leu Arg Asp Ala
305 310 315
Ala Glu Phe Thr Cys Arg Ala Gln Asn Pro Leu Gly Ser Gln Gln
320 325 330
Val Tyr Leu Asn Val Ser Leu Gln Ser Lys Ala Thr Ser Gly Val
335 340 345
Thr Gln Gly Val Val Gly Gly Ala Gly Ala Thr Ala Leu Val Phe
350 355 360
Leu Ser Phe Cys Val Ile Phe Val Val Val Arg Ser Cys Arg Lys
365 370 375
Lys Ser Ala Arg Pro Ala Ala Gly Val Gly Asp Thr Gly Ile Glu
380 385 390
Asp Ala Asn Ala Val Arg Gly Ser Ala Ser Gln Gly Pro Leu Thr
395 400 405
Glu Pro Trp Ala Glu Asp Ser Pro Pro Asp Gln Pro Pro Pro Ala
410 415 420
Ser Ala Arg Ser Ser Val Gly Glu Gly Glu Leu Gln Tyr Ala Ser
425 430 435
Leu Ser Phe Gln Met Val Lys Pro Trp Asp Ser Arg Gly Gln Glu
440 445 450
Ala Thr Asp Thr Glu Tyr Ser Glu Ile Lys Ile His Arg
455 460
87
1176
DNA
Homo Sapien
87
agaaagctgc actctgttga gctccagggc gcagtggagg gagggagtga 50
aggagctctc tgtacccaag gaaagtgcag ctgagactca gacaagatta 100
caatgaacca actcagcttc ctgctgtttc tcatagcgac caccagagga 150
tggagtacag atgaggctaa tacttacttc aaggaatgga cctgttcttc 200
gtctccatct ctgcccagaa gctgcaagga aatcaaagac gaatgtccta 250
gtgcatttga tggcctgtat tttctccgca ctgagaatgg tgttatctac 300
cagaccttct gtgacatgac ctctgggggt ggcggctgga ccctggtggc 350
cagcgtgcat gagaatgaca tgcgtgggaa gtgcacggtg ggcgatcgct 400
ggtccagtca gcagggcagc aaagcagact acccagaggg ggacggcaac 450
tgggccaact acaacacctt tggatctgca gaggcggcca cgagcgatga 500
ctacaagaac cctggctact acgacatcca ggccaaggac ctgggcatct 550
ggcacgtgcc caataagtcc cccatgcagc actggagaaa cagctccctg 600
ctgaggtacc gcacggacac tggcttcctc cagacactgg gacataatct 650
gtttggcatc taccagaaat atccagtgaa atatggagaa ggaaagtgtt 700
ggactgacaa cggcccggtg atccctgtgg tctatgattt tggcgacgcc 750
cagaaaacag catcttatta ctcaccctat ggccagcggg aattcactgc 800
gggatttgtt cagttcaggg tatttaataa cgagagagca gccaacgcct 850
tgtgtgctgg aatgagggtc accggatgta acactgagca tcactgcatt 900
ggtggaggag gatactttcc agaggccagt ccccagcagt gtggagattt 950
ttctggtttt gattggagtg gatatggaac tcatgttggt tacagcagca 1000
gccgtgagat aactgaggca gctgtgcttc tattctatcg ttgagagttt 1050
tgtgggaggg aacccagacc tctcctccca accatgagat cccaaggatg 1100
gagaacaact tacccagtag ctagaatgtt aatggcagaa gagaaaacaa 1150
taaatcatat tgactcaaga aaaaaa 1176
88
313
PRT
Homo Sapien
88
Met Asn Gln Leu Ser Phe Leu Leu Phe Leu Ile Ala Thr Thr Arg
1 5 10 15
Gly Trp Ser Thr Asp Glu Ala Asn Thr Tyr Phe Lys Glu Trp Thr
20 25 30
Cys Ser Ser Ser Pro Ser Leu Pro Arg Ser Cys Lys Glu Ile Lys
35 40 45
Asp Glu Cys Pro Ser Ala Phe Asp Gly Leu Tyr Phe Leu Arg Thr
50 55 60
Glu Asn Gly Val Ile Tyr Gln Thr Phe Cys Asp Met Thr Ser Gly
65 70 75
Gly Gly Gly Trp Thr Leu Val Ala Ser Val His Glu Asn Asp Met
80 85 90
Arg Gly Lys Cys Thr Val Gly Asp Arg Trp Ser Ser Gln Gln Gly
95 100 105
Ser Lys Ala Asp Tyr Pro Glu Gly Asp Gly Asn Trp Ala Asn Tyr
110 115 120
Asn Thr Phe Gly Ser Ala Glu Ala Ala Thr Ser Asp Asp Tyr Lys
125 130 135
Asn Pro Gly Tyr Tyr Asp Ile Gln Ala Lys Asp Leu Gly Ile Trp
140 145 150
His Val Pro Asn Lys Ser Pro Met Gln His Trp Arg Asn Ser Ser
155 160 165
Leu Leu Arg Tyr Arg Thr Asp Thr Gly Phe Leu Gln Thr Leu Gly
170 175 180
His Asn Leu Phe Gly Ile Tyr Gln Lys Tyr Pro Val Lys Tyr Gly
185 190 195
Glu Gly Lys Cys Trp Thr Asp Asn Gly Pro Val Ile Pro Val Val
200 205 210
Tyr Asp Phe Gly Asp Ala Gln Lys Thr Ala Ser Tyr Tyr Ser Pro
215 220 225
Tyr Gly Gln Arg Glu Phe Thr Ala Gly Phe Val Gln Phe Arg Val
230 235 240
Phe Asn Asn Glu Arg Ala Ala Asn Ala Leu Cys Ala Gly Met Arg
245 250 255
Val Thr Gly Cys Asn Thr Glu His His Cys Ile Gly Gly Gly Gly
260 265 270
Tyr Phe Pro Glu Ala Ser Pro Gln Gln Cys Gly Asp Phe Ser Gly
275 280 285
Phe Asp Trp Ser Gly Tyr Gly Thr His Val Gly Tyr Ser Ser Ser
290 295 300
Arg Glu Ile Thr Glu Ala Ala Val Leu Leu Phe Tyr Arg
305 310
89
759
DNA
Homo Sapien
89
ctagatttgt cggcttgcgg ggagacttca ggagtcgctg tctctgaact 50
tccagcctca gagaccgccg cccttgtccc cgagggccat gggccgggtc 100
tcagggcttg tgccctctcg cttcctgacg ctcctggcgc atctggtggt 150
cgtcatcacc ttattctggt cccgggacag caacatacag gcctgcctgc 200
ctctcacgtt cacccccgag gagtatgaca agcaggacat tcagctggtg 250
gccgcgctct ctgtcaccct gggcctcttt gcagtggagc tggccggttt 300
cctctcagga gtctccatgt tcaacagcac ccagagcctc atctccattg 350
gggctcactg tagtgcatcc gtggccctgt ccttcttcat attcgagcgt 400
tgggagtgca ctacgtattg gtacattttt gtcttctgca gtgcccttcc 450
agctgtcact gaaatggctt tattcgtcac cgtctttggg ctgaaaaaga 500
aacccttctg attaccttca tgacgggaac ctaaggacga agcctacagg 550
ggcaagggcc gcttcgtatt cctggaagaa ggaaggcata ggcttcggtt 600
ttcccctcgg aaactgcttc tgctggagga tatgtgttgg aataattacg 650
tcttgagtct gggattatcc gcattgtatt tagtgctttg taataaaata 700
tgttttgtag taacattaag acttatatac agttttaggg gacaattaaa 750
aaaaaaaaa 759
90
140
PRT
Homo Sapien
90
Met Gly Arg Val Ser Gly Leu Val Pro Ser Arg Phe Leu Thr Leu
1 5 10 15
Leu Ala His Leu Val Val Val Ile Thr Leu Phe Trp Ser Arg Asp
20 25 30
Ser Asn Ile Gln Ala Cys Leu Pro Leu Thr Phe Thr Pro Glu Glu
35 40 45
Tyr Asp Lys Gln Asp Ile Gln Leu Val Ala Ala Leu Ser Val Thr
50 55 60
Leu Gly Leu Phe Ala Val Glu Leu Ala Gly Phe Leu Ser Gly Val
65 70 75
Ser Met Phe Asn Ser Thr Gln Ser Leu Ile Ser Ile Gly Ala His
80 85 90
Cys Ser Ala Ser Val Ala Leu Ser Phe Phe Ile Phe Glu Arg Trp
95 100 105
Glu Cys Thr Thr Tyr Trp Tyr Ile Phe Val Phe Cys Ser Ala Leu
110 115 120
Pro Ala Val Thr Glu Met Ala Leu Phe Val Thr Val Phe Gly Leu
125 130 135
Lys Lys Lys Pro Phe
140
91
1871
DNA
Homo Sapien
91
ctgggacccc gaaaagagaa ggggagagcg aggggacgag agcggaggag 50
gaagatgcaa ctgactcgct gctgcttcgt gttcctggtg cagggtagcc 100
tctatctggt catctgtggc caggatgatg gtcctcccgg ctcagaggac 150
cctgagcgtg atgaccacga gggccagccc cggccccggg tgcctcggaa 200
gcggggccac atctcaccta agtcccgccc catggccaat tccactctcc 250
tagggctgct ggccccgcct ggggaggctt ggggcattct tgggcagccc 300
cccaaccgcc cgaaccacag ccccccaccc tcagccaagg tgaagaaaat 350
ctttggctgg ggcgacttct actccaacat caagacggtg gccctgaacc 400
tgctcgtcac agggaagatt gtggaccatg gcaatgggac cttcagcgtc 450
cacttccaac acaatgccac aggccaggga aacatctcca tcagcctcgt 500
gccccccagt aaagctgtag agttccacca ggaacagcag atcttcatcg 550
aagccaaggc ctccaaaatc ttcaactgcc ggatggagtg ggagaaggta 600
gaacggggcc gccggacctc gctttgcacc cacgacccag ccaagatctg 650
ctcccgagac cacgctcaga gctcagccac ctggagctgc tcccagccct 700
tcaaagtcgt ctgtgtctac atcgccttct acagcacgga ctatcggctg 750
gtccagaagg tgtgcccaga ttacaactac catagtgata ccccctacta 800
cccatctggg tgacccgggg caggccacag aggccaggcc agggctggaa 850
ggacaggcct gcccatgcag gagaccatct ggacaccggg cagggaaggg 900
gttgggcctc aggcagggag gggggtggag acgaggagat gccaagtggg 950
gccagggcca agtctcaagt ggcagagaaa gggtcccaag tgctggtccc 1000
aacctgaagc tgtggagtga ctagatcaca ggagcactgg aggaggagtg 1050
ggctctctgt gcagcctcac agggctttgc cacggagcca cagagagatg 1100
ctgggtcccc gaggcctgtg ggcaggccga tcagtgtggc cccagatcaa 1150
gtcatgggag gaagctaagc ccttggttct tgccatcctg aggaaagata 1200
gcaacaggga gggggagatt tcatcagtgt ggacagcctg tcaacttagg 1250
atggatggct gagagggctt cctaggagcc agtcagcagg gtggggtggg 1300
gccagaggag ctctccagcc ctgcctagtg ggcgccctga gccccttgtc 1350
gtgtgctgag catggcatga ggctgaagtg gcaaccctgg ggtctttgat 1400
gtcttgacag attgaccatc tgtctccagc caggccaccc ctttccaaaa 1450
ttccctcttc tgccagtact ccccctgtac cacccattgc tgatggcaca 1500
cccatcctta agctaagaca ggacgattgt ggtcctccca cactaaggcc 1550
acagcccatc cgcgtgctgt gtgtccctct tccaccccaa cccctgctgg 1600
ctcctctggg agcatccatg tcccggagag gggtccctca acagtcagcc 1650
tcacctgtca gaccggggtt ctcccggatc tggatggcgc cgccctctca 1700
gcagcgggca cgggtggggc ggggccgggc cgcagagcat gtgctggatc 1750
tgttctgtgt gtctgtctgt gggtgggggg aggggaggga agtcttgtga 1800
aaccgctgat tgctgacttt tgtgtgaaga atcgtgttct tggagcagga 1850
aataaagctt gccccggggc a 1871
92
252
PRT
Homo Sapien
92
Met Gln Leu Thr Arg Cys Cys Phe Val Phe Leu Val Gln Gly Ser
1 5 10 15
Leu Tyr Leu Val Ile Cys Gly Gln Asp Asp Gly Pro Pro Gly Ser
20 25 30
Glu Asp Pro Glu Arg Asp Asp His Glu Gly Gln Pro Arg Pro Arg
35 40 45
Val Pro Arg Lys Arg Gly His Ile Ser Pro Lys Ser Arg Pro Met
50 55 60
Ala Asn Ser Thr Leu Leu Gly Leu Leu Ala Pro Pro Gly Glu Ala
65 70 75
Trp Gly Ile Leu Gly Gln Pro Pro Asn Arg Pro Asn His Ser Pro
80 85 90
Pro Pro Ser Ala Lys Val Lys Lys Ile Phe Gly Trp Gly Asp Phe
95 100 105
Tyr Ser Asn Ile Lys Thr Val Ala Leu Asn Leu Leu Val Thr Gly
110 115 120
Lys Ile Val Asp His Gly Asn Gly Thr Phe Ser Val His Phe Gln
125 130 135
His Asn Ala Thr Gly Gln Gly Asn Ile Ser Ile Ser Leu Val Pro
140 145 150
Pro Ser Lys Ala Val Glu Phe His Gln Glu Gln Gln Ile Phe Ile
155 160 165
Glu Ala Lys Ala Ser Lys Ile Phe Asn Cys Arg Met Glu Trp Glu
170 175 180
Lys Val Glu Arg Gly Arg Arg Thr Ser Leu Cys Thr His Asp Pro
185 190 195
Ala Lys Ile Cys Ser Arg Asp His Ala Gln Ser Ser Ala Thr Trp
200 205 210
Ser Cys Ser Gln Pro Phe Lys Val Val Cys Val Tyr Ile Ala Phe
215 220 225
Tyr Ser Thr Asp Tyr Arg Leu Val Gln Lys Val Cys Pro Asp Tyr
230 235 240
Asn Tyr His Ser Asp Thr Pro Tyr Tyr Pro Ser Gly
245 250
93
902
DNA
Homo Sapien
93
cggtggccat gactgcggcc gtgttcttcg gctgcgcctt cattgccttc 50
gggcctgcgc tcgcccttta tgtcttcacc atcgccatcg agccgttgcg 100
tatcatcttc ctcatcgccg gagctttctt ctggttggtg tctctactga 150
tttcgtccct tgtttggttc atggcaagag tcattattga caacaaagat 200
ggaccaacac agaaatatct gctgatcttt ggagcgtttg tctctgtcta 250
tatccaagaa atgttccgat ttgcatatta taaactctta aaaaaagcca 300
gtgaaggttt gaagagtata aacccaggtg agacagcacc ctctatgcga 350
ctgctggcct atgtttctgg cttgggcttt ggaatcatga gtggagtatt 400
ttcctttgtg aataccctat ctgactcctt ggggccaggc acagtgggca 450
ttcatggaga ttctcctcaa ttcttccttt attcagcttt catgacgctg 500
gtcattatct tgctgcatgt attctggggc attgtatttt ttgatggctg 550
tgagaagaaa aagtggggca tcctccttat cgttctcctg acccacctgc 600
tggtgtcagc ccagaccttc ataagttctt attatggaat aaacctggcg 650
tcagcattta taatcctggt gctcatgggc acctgggcat tcttagctgc 700
gggaggcagc tgccgaagcc tgaaactctg cctgctctgc caagacaaga 750
actttcttct ttacaaccag cgctccagat aacctcaggg aaccagcact 800
tcccaaaccg cagactacat ctttagagga agcacaactg tgcctttttc 850
tgaaaatccc tttttctggt ggaattgaga aagaaataaa actatgcaga 900
ta 902
94
257
PRT
Homo Sapien
94
Met Thr Ala Ala Val Phe Phe Gly Cys Ala Phe Ile Ala Phe Gly
1 5 10 15
Pro Ala Leu Ala Leu Tyr Val Phe Thr Ile Ala Ile Glu Pro Leu
20 25 30
Arg Ile Ile Phe Leu Ile Ala Gly Ala Phe Phe Trp Leu Val Ser
35 40 45
Leu Leu Ile Ser Ser Leu Val Trp Phe Met Ala Arg Val Ile Ile
50 55 60
Asp Asn Lys Asp Gly Pro Thr Gln Lys Tyr Leu Leu Ile Phe Gly
65 70 75
Ala Phe Val Ser Val Tyr Ile Gln Glu Met Phe Arg Phe Ala Tyr
80 85 90
Tyr Lys Leu Leu Lys Lys Ala Ser Glu Gly Leu Lys Ser Ile Asn
95 100 105
Pro Gly Glu Thr Ala Pro Ser Met Arg Leu Leu Ala Tyr Val Ser
110 115 120
Gly Leu Gly Phe Gly Ile Met Ser Gly Val Phe Ser Phe Val Asn
125 130 135
Thr Leu Ser Asp Ser Leu Gly Pro Gly Thr Val Gly Ile His Gly
140 145 150
Asp Ser Pro Gln Phe Phe Leu Tyr Ser Ala Phe Met Thr Leu Val
155 160 165
Ile Ile Leu Leu His Val Phe Trp Gly Ile Val Phe Phe Asp Gly
170 175 180
Cys Glu Lys Lys Lys Trp Gly Ile Leu Leu Ile Val Leu Leu Thr
185 190 195
His Leu Leu Val Ser Ala Gln Thr Phe Ile Ser Ser Tyr Tyr Gly
200 205 210
Ile Asn Leu Ala Ser Ala Phe Ile Ile Leu Val Leu Met Gly Thr
215 220 225
Trp Ala Phe Leu Ala Ala Gly Gly Ser Cys Arg Ser Leu Lys Leu
230 235 240
Cys Leu Leu Cys Gln Asp Lys Asn Phe Leu Leu Tyr Asn Gln Arg
245 250 255
Ser Arg
95
1073
DNA
Homo Sapien
95
aatttttcac cagagtaaac ttgagaaacc aactggacct tgagtattgt 50
acattttgcc tcgtggaccc aaaggtagca atctgaaaca tgaggagtac 100
gattctactg ttttgtcttc taggatcaac tcggtcatta ccacagctca 150
aacctgcttt gggactccct cccacaaaac tggctccgga tcagggaaca 200
ctaccaaacc aacagcagtc aaatcaggtc tttccttctt taagtctgat 250
accattaaca cagatgctca cactggggcc agatctgcat ctgttaaatc 300
ctgctgcagg aatgacacct ggtacccaga cccacccatt gaccctggga 350
gggttgaatg tacaacagca actgcaccca catgtgttac caatttttgt 400
cacacaactt ggagcccagg gcactatcct aagctcagag gaattgccac 450
aaatcttcac gagcctcatc atccattcct tgttcccggg aggcatcctg 500
cccaccagtc aggcaggggc taatccagat gtccaggatg gaagccttcc 550
agcaggagga gcaggtgtaa atcctgccac ccagggaacc ccagcaggcc 600
gcctcccaac tcccagtggc acagatgacg actttgcagt gaccacccct 650
gcaggcatcc aaaggagcac acatgccatc gaggaagcca ccacagaatc 700
agcaaatgga attcagtaag ctgtttcaaa ttttttcaac taagctgcct 750
cgaatttggt gatacatgtg aatctttatc attgattata ttatggaata 800
gattgagaca cattggatag tcttagaaga aattaattct taatttacct 850
gaaaatattc ttgaaatttc agaaaatatg ttctatgtag agaatcccaa 900
cttttaaaaa caataattca atggataaat ctgtctttga aatataacat 950
tatgctgcct ggatgatatg catattaaaa catatttgga aaactggaaa 1000
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1050
aaaaaaaaaa aaaaaaaaaa aaa 1073
96
209
PRT
Homo Sapien
96
Met Arg Ser Thr Ile Leu Leu Phe Cys Leu Leu Gly Ser Thr Arg
1 5 10 15
Ser Leu Pro Gln Leu Lys Pro Ala Leu Gly Leu Pro Pro Thr Lys
20 25 30
Leu Ala Pro Asp Gln Gly Thr Leu Pro Asn Gln Gln Gln Ser Asn
35 40 45
Gln Val Phe Pro Ser Leu Ser Leu Ile Pro Leu Thr Gln Met Leu
50 55 60
Thr Leu Gly Pro Asp Leu His Leu Leu Asn Pro Ala Ala Gly Met
65 70 75
Thr Pro Gly Thr Gln Thr His Pro Leu Thr Leu Gly Gly Leu Asn
80 85 90
Val Gln Gln Gln Leu His Pro His Val Leu Pro Ile Phe Val Thr
95 100 105
Gln Leu Gly Ala Gln Gly Thr Ile Leu Ser Ser Glu Glu Leu Pro
110 115 120
Gln Ile Phe Thr Ser Leu Ile Ile His Ser Leu Phe Pro Gly Gly
125 130 135
Ile Leu Pro Thr Ser Gln Ala Gly Ala Asn Pro Asp Val Gln Asp
140 145 150
Gly Ser Leu Pro Ala Gly Gly Ala Gly Val Asn Pro Ala Thr Gln
155 160 165
Gly Thr Pro Ala Gly Arg Leu Pro Thr Pro Ser Gly Thr Asp Asp
170 175 180
Asp Phe Ala Val Thr Thr Pro Ala Gly Ile Gln Arg Ser Thr His
185 190 195
Ala Ile Glu Glu Ala Thr Thr Glu Ser Ala Asn Gly Ile Gln
200 205
97
2848
DNA
Homo Sapien
97
gctcaagtgc cctgccttgc cccacccagc ccagcctggc cagagccccc 50
tggagaagga gctctcttct tgcttggcag ctggaccaag ggagccagtc 100
ttgggcgctg gagggcctgt cctgaccatg gtccctgcct ggctgtggct 150
gctttgtgtc tccgtccccc aggctctccc caaggcccag cctgcagagc 200
tgtctgtgga agttccagaa aactatggtg gaaatttccc tttatacctg 250
accaagttgc cgctgccccg tgagggggct gaaggccaga tcgtgctgtc 300
aggggactca ggcaaggcaa ctgagggccc atttgctatg gatccagatt 350
ctggcttcct gctggtgacc agggccctgg accgagagga gcaggcagag 400
taccagctac aggtcaccct ggagatgcag gatggacatg tcttgtgggg 450
tccacagcct gtgcttgtgc acgtgaagga tgagaatgac caggtgcccc 500
atttctctca agccatctac agagctcggc tgagccgggg taccaggcct 550
ggcatcccct tcctcttcct tgaggcttca gaccgggatg agccaggcac 600
agccaactcg gatcttcgat tccacatcct gagccaggct ccagcccagc 650
cttccccaga catgttccag ctggagcctc ggctgggggc tctggccctc 700
agccccaagg ggagcaccag ccttgaccac gccctggaga ggacctacca 750
gctgttggta caggtcaagg acatgggtga ccaggcctca ggccaccagg 800
ccactgccac cgtggaagtc tccatcatag agagcacctg ggtgtcccta 850
gagcctatcc acctggcaga gaatctcaaa gtcctatacc cgcaccacat 900
ggcccaggta cactggagtg ggggtgatgt gcactatcac ctggagagcc 950
atcccccggg accctttgaa gtgaatgcag agggaaacct ctacgtgacc 1000
agagagctgg acagagaagc ccaggctgag tacctgctcc aggtgcgggc 1050
tcagaattcc catggcgagg actatgcggc ccctctggag ctgcacgtgc 1100
tggtgatgga tgagaatgac aacgtgccta tctgccctcc ccgtgacccc 1150
acagtcagca tccctgagct cagtccacca ggtactgaag tgactagact 1200
gtcagcagag gatgcagatg cccccggctc ccccaattcc cacgttgtgt 1250
atcagctcct gagccctgag cctgaggatg gggtagaggg gagagccttc 1300
caggtggacc ccacttcagg cagtgtgacg ctgggggtgc tcccactccg 1350
agcaggccag aacatcctgc ttctggtgct ggccatggac ctggcaggcg 1400
cagagggtgg cttcagcagc acgtgtgaag tcgaagtcgc agtcacagat 1450
atcaatgatc acgcccctga gttcatcact tcccagattg ggcctataag 1500
cctccctgag gatgtggagc ccgggactct ggtggccatg ctaacagcca 1550
ttgatgctga cctcgagccc gccttccgcc tcatggattt tgccattgag 1600
aggggagaca cagaagggac ttttggcctg gattgggagc cagactctgg 1650
gcatgttaga ctcagactct gcaagaacct cagttatgag gcagctccaa 1700
gtcatgaggt ggtggtggtg gtgcagagtg tggcgaagct ggtggggcca 1750
ggcccaggcc ctggagccac cgccacggtg actgtgctag tggagagagt 1800
gatgccaccc cccaagttgg accaggagag ctacgaggcc agtgtcccca 1850
tcagtgcccc agccggctct ttcctgctga ccatccagcc ctccgacccc 1900
atcagccgaa ccctcaggtt ctccctagtc aatgactcag agggctggct 1950
ctgcattgag aaattctccg gggaggtgca caccgcccag tccctgcagg 2000
gcgcccagcc tggggacacc tacacggtgc ttgtggaggc ccaggataca 2050
gccctgactc ttgcccctgt gccctcccaa tacctctgca caccccgcca 2100
agaccatggc ttgatcgtga gtggacccag caaggacccc gatctggcca 2150
gtgggcacgg tccctacagc ttcacccttg gtcccaaccc cacggtgcaa 2200
cgggattggc gcctccagac tctcaatggt tcccatgcct acctcacctt 2250
ggccctgcat tgggtggagc cacgtgaaca cataatcccc gtggtggtca 2300
gccacaatgc ccagatgtgg cagctcctgg ttcgagtgat cgtgtgtcgc 2350
tgcaacgtgg aggggcagtg catgcgcaag gtgggccgca tgaagggcat 2400
gcccacgaag ctgtcggcag tgggcatcct tgtaggcacc ctggtagcaa 2450
taggaatctt cctcatcctc attttcaccc actggaccat gtcaaggaag 2500
aaggacccgg atcaaccagc agacagcgtg cccctgaagg cgactgtctg 2550
aatggcccag gcagctctag ctgggagctt ggcctctggc tccatctgag 2600
tcccctggga gagagcccag cacccaagat ccagcagggg acaggacaga 2650
gtagaagccc ctccatctgc cctggggtgg aggcaccatc accatcacca 2700
ggcatgtctg cagagcctgg acaccaactt tatggactgc ccatgggagt 2750
gctccaaatg tcagggtgtt tgcccaataa taaagcccca gagaactggg 2800
ctgggcccta tgggaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaag 2848
98
807
PRT
Homo Sapien
98
Met Val Pro Ala Trp Leu Trp Leu Leu Cys Val Ser Val Pro Gln
1 5 10 15
Ala Leu Pro Lys Ala Gln Pro Ala Glu Leu Ser Val Glu Val Pro
20 25 30
Glu Asn Tyr Gly Gly Asn Phe Pro Leu Tyr Leu Thr Lys Leu Pro
35 40 45
Leu Pro Arg Glu Gly Ala Glu Gly Gln Ile Val Leu Ser Gly Asp
50 55 60
Ser Gly Lys Ala Thr Glu Gly Pro Phe Ala Met Asp Pro Asp Ser
65 70 75
Gly Phe Leu Leu Val Thr Arg Ala Leu Asp Arg Glu Glu Gln Ala
80 85 90
Glu Tyr Gln Leu Gln Val Thr Leu Glu Met Gln Asp Gly His Val
95 100 105
Leu Trp Gly Pro Gln Pro Val Leu Val His Val Lys Asp Glu Asn
110 115 120
Asp Gln Val Pro His Phe Ser Gln Ala Ile Tyr Arg Ala Arg Leu
125 130 135
Ser Arg Gly Thr Arg Pro Gly Ile Pro Phe Leu Phe Leu Glu Ala
140 145 150
Ser Asp Arg Asp Glu Pro Gly Thr Ala Asn Ser Asp Leu Arg Phe
155 160 165
His Ile Leu Ser Gln Ala Pro Ala Gln Pro Ser Pro Asp Met Phe
170 175 180
Gln Leu Glu Pro Arg Leu Gly Ala Leu Ala Leu Ser Pro Lys Gly
185 190 195
Ser Thr Ser Leu Asp His Ala Leu Glu Arg Thr Tyr Gln Leu Leu
200 205 210
Val Gln Val Lys Asp Met Gly Asp Gln Ala Ser Gly His Gln Ala
215 220 225
Thr Ala Thr Val Glu Val Ser Ile Ile Glu Ser Thr Trp Val Ser
230 235 240
Leu Glu Pro Ile His Leu Ala Glu Asn Leu Lys Val Leu Tyr Pro
245 250 255
His His Met Ala Gln Val His Trp Ser Gly Gly Asp Val His Tyr
260 265 270
His Leu Glu Ser His Pro Pro Gly Pro Phe Glu Val Asn Ala Glu
275 280 285
Gly Asn Leu Tyr Val Thr Arg Glu Leu Asp Arg Glu Ala Gln Ala
290 295 300
Glu Tyr Leu Leu Gln Val Arg Ala Gln Asn Ser His Gly Glu Asp
305 310 315
Tyr Ala Ala Pro Leu Glu Leu His Val Leu Val Met Asp Glu Asn
320 325 330
Asp Asn Val Pro Ile Cys Pro Pro Arg Asp Pro Thr Val Ser Ile
335 340 345
Pro Glu Leu Ser Pro Pro Gly Thr Glu Val Thr Arg Leu Ser Ala
350 355 360
Glu Asp Ala Asp Ala Pro Gly Ser Pro Asn Ser His Val Val Tyr
365 370 375
Gln Leu Leu Ser Pro Glu Pro Glu Asp Gly Val Glu Gly Arg Ala
380 385 390
Phe Gln Val Asp Pro Thr Ser Gly Ser Val Thr Leu Gly Val Leu
395 400 405
Pro Leu Arg Ala Gly Gln Asn Ile Leu Leu Leu Val Leu Ala Met
410 415 420
Asp Leu Ala Gly Ala Glu Gly Gly Phe Ser Ser Thr Cys Glu Val
425 430 435
Glu Val Ala Val Thr Asp Ile Asn Asp His Ala Pro Glu Phe Ile
440 445 450
Thr Ser Gln Ile Gly Pro Ile Ser Leu Pro Glu Asp Val Glu Pro
455 460 465
Gly Thr Leu Val Ala Met Leu Thr Ala Ile Asp Ala Asp Leu Glu
470 475 480
Pro Ala Phe Arg Leu Met Asp Phe Ala Ile Glu Arg Gly Asp Thr
485 490 495
Glu Gly Thr Phe Gly Leu Asp Trp Glu Pro Asp Ser Gly His Val
500 505 510
Arg Leu Arg Leu Cys Lys Asn Leu Ser Tyr Glu Ala Ala Pro Ser
515 520 525
His Glu Val Val Val Val Val Gln Ser Val Ala Lys Leu Val Gly
530 535 540
Pro Gly Pro Gly Pro Gly Ala Thr Ala Thr Val Thr Val Leu Val
545 550 555
Glu Arg Val Met Pro Pro Pro Lys Leu Asp Gln Glu Ser Tyr Glu
560 565 570
Ala Ser Val Pro Ile Ser Ala Pro Ala Gly Ser Phe Leu Leu Thr
575 580 585
Ile Gln Pro Ser Asp Pro Ile Ser Arg Thr Leu Arg Phe Ser Leu
590 595 600
Val Asn Asp Ser Glu Gly Trp Leu Cys Ile Glu Lys Phe Ser Gly
605 610 615
Glu Val His Thr Ala Gln Ser Leu Gln Gly Ala Gln Pro Gly Asp
620 625 630
Thr Tyr Thr Val Leu Val Glu Ala Gln Asp Thr Ala Leu Thr Leu
635 640 645
Ala Pro Val Pro Ser Gln Tyr Leu Cys Thr Pro Arg Gln Asp His
650 655 660
Gly Leu Ile Val Ser Gly Pro Ser Lys Asp Pro Asp Leu Ala Ser
665 670 675
Gly His Gly Pro Tyr Ser Phe Thr Leu Gly Pro Asn Pro Thr Val
680 685 690
Gln Arg Asp Trp Arg Leu Gln Thr Leu Asn Gly Ser His Ala Tyr
695 700 705
Leu Thr Leu Ala Leu His Trp Val Glu Pro Arg Glu His Ile Ile
710 715 720
Pro Val Val Val Ser His Asn Ala Gln Met Trp Gln Leu Leu Val
725 730 735
Arg Val Ile Val Cys Arg Cys Asn Val Glu Gly Gln Cys Met Arg
740 745 750
Lys Val Gly Arg Met Lys Gly Met Pro Thr Lys Leu Ser Ala Val
755 760 765
Gly Ile Leu Val Gly Thr Leu Val Ala Ile Gly Ile Phe Leu Ile
770 775 780
Leu Ile Phe Thr His Trp Thr Met Ser Arg Lys Lys Asp Pro Asp
785 790 795
Gln Pro Ala Asp Ser Val Pro Leu Lys Ala Thr Val
800 805
99
2436
DNA
Homo Sapien
99
ggctgaccgt gctacattgc ctggaggaag cctaaggaac ccaggcatcc 50
agctgcccac gcctgagtcc aagattcttc ccaggaacac aaacgtagga 100
gacccacgct cctggaagca ccagccttta tctcttcacc ttcaagtccc 150
ctttctcaag aatcctctgt tctttgccct ctaaagtctt ggtacatcta 200
ggacccaggc atcttgcttt ccagccacaa agagacagat gaagatgcag 250
aaaggaaatg ttctccttat gtttggtcta ctattgcatt tagaagctgc 300
aacaaattcc aatgagacta gcacctctgc caacactgga tccagtgtga 350
tctccagtgg agccagcaca gccaccaact ctgggtccag tgtgacctcc 400
agtggggtca gcacagccac catctcaggg tccagcgtga cctccaatgg 450
ggtcagcata gtcaccaact ctgagttcca tacaacctcc agtgggatca 500
gcacagccac caactctgag ttcagcacag cgtccagtgg gatcagcata 550
gccaccaact ctgagtccag cacaacctcc agtggggcca gcacagccac 600
caactctgag tccagcacac cctccagtgg ggccagcaca gtcaccaact 650
ctgggtccag tgtgacctcc agtggagcca gcactgccac caactctgag 700
tccagcacag tgtccagtag ggccagcact gccaccaact ctgagtctag 750
cacactctcc agtggggcca gcacagccac caactctgac tccagcacaa 800
cctccagtgg ggctagcaca gccaccaact ctgagtccag cacaacctcc 850
agtggggcca gcacagccac caactctgag tccagcacag tgtccagtag 900
ggccagcact gccaccaact ctgagtccag cacaacctcc agtggggcca 950
gcacagccac caactctgag tccagaacga cctccaatgg ggctggcaca 1000
gccaccaact ctgagtccag cacgacctcc agtggggcca gcacagccac 1050
caactctgac tccagcacag tgtccagtgg ggccagcact gccaccaact 1100
ctgagtccag cacgacctcc agtggggcca gcacagccac caactctgag 1150
tccagcacga cctccagtgg ggctagcaca gccaccaact ctgactccag 1200
cacaacctcc agtggggccg gcacagccac caactctgag tccagcacag 1250
tgtccagtgg gatcagcaca gtcaccaatt ctgagtccag cacaccctcc 1300
agtggggcca acacagccac caactctgag tccagtacga cctccagtgg 1350
ggccaacaca gccaccaact ctgagtccag cacagtgtcc agtggggcca 1400
gcactgccac caactctgag tccagcacaa cctccagtgg ggtcagcaca 1450
gccaccaact ctgagtccag cacaacctcc agtggggcta gcacagccac 1500
caactctgac tccagcacaa cctccagtga ggccagcaca gccaccaact 1550
ctgagtctag cacagtgtcc agtgggatca gcacagtcac caattctgag 1600
tccagcacaa cctccagtgg ggccaacaca gccaccaact ctgggtccag 1650
tgtgacctct gcaggctctg gaacagcagc tctgactgga atgcacacaa 1700
cttcccatag tgcatctact gcagtgagtg aggcaaagcc tggtgggtcc 1750
ctggtgccgt gggaaatctt cctcatcacc ctggtctcgg ttgtggcggc 1800
cgtggggctc tttgctgggc tcttcttctg tgtgagaaac agcctgtccc 1850
tgagaaacac ctttaacaca gctgtctacc accctcatgg cctcaaccat 1900
ggccttggtc caggccctgg agggaatcat ggagcccccc acaggcccag 1950
gtggagtcct aactggttct ggaggagacc agtatcatcg atagccatgg 2000
agatgagcgg gaggaacagc gggccctgag cagccccgga agcaagtgcc 2050
gcattcttca ggaaggaaga gacctgggca cccaagacct ggtttccttt 2100
cattcatccc aggagacccc tcccagcttt gtttgagatc ctgaaaatct 2150
tgaagaaggt attcctcacc tttcttgcct ttaccagaca ctggaaagag 2200
aatactatat tgctcattta gctaagaaat aaatacatct catctaacac 2250
acacgacaaa gagaagctgt gcttgccccg gggtgggtat ctagctctga 2300
gatgaactca gttataggag aaaacctcca tgctggactc catctggcat 2350
tcaaaatctc cacagtaaaa tccaaagacc tcaaaaaaaa aaaaaaaaaa 2400
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa 2436
100
596
PRT
Homo Sapien
100
Met Lys Met Gln Lys Gly Asn Val Leu Leu Met Phe Gly Leu Leu
1 5 10 15
Leu His Leu Glu Ala Ala Thr Asn Ser Asn Glu Thr Ser Thr Ser
20 25 30
Ala Asn Thr Gly Ser Ser Val Ile Ser Ser Gly Ala Ser Thr Ala
35 40 45
Thr Asn Ser Gly Ser Ser Val Thr Ser Ser Gly Val Ser Thr Ala
50 55 60
Thr Ile Ser Gly Ser Ser Val Thr Ser Asn Gly Val Ser Ile Val
65 70 75
Thr Asn Ser Glu Phe His Thr Thr Ser Ser Gly Ile Ser Thr Ala
80 85 90
Thr Asn Ser Glu Phe Ser Thr Ala Ser Ser Gly Ile Ser Ile Ala
95 100 105
Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
110 115 120
Thr Asn Ser Glu Ser Ser Thr Pro Ser Ser Gly Ala Ser Thr Val
125 130 135
Thr Asn Ser Gly Ser Ser Val Thr Ser Ser Gly Ala Ser Thr Ala
140 145 150
Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Arg Ala Ser Thr Ala
155 160 165
Thr Asn Ser Glu Ser Ser Thr Leu Ser Ser Gly Ala Ser Thr Ala
170 175 180
Thr Asn Ser Asp Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
185 190 195
Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
200 205 210
Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Arg Ala Ser Thr Ala
215 220 225
Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
230 235 240
Thr Asn Ser Glu Ser Arg Thr Thr Ser Asn Gly Ala Gly Thr Ala
245 250 255
Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
260 265 270
Thr Asn Ser Asp Ser Ser Thr Val Ser Ser Gly Ala Ser Thr Ala
275 280 285
Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
290 295 300
Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
305 310 315
Thr Asn Ser Asp Ser Ser Thr Thr Ser Ser Gly Ala Gly Thr Ala
320 325 330
Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Gly Ile Ser Thr Val
335 340 345
Thr Asn Ser Glu Ser Ser Thr Pro Ser Ser Gly Ala Asn Thr Ala
350 355 360
Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Asn Thr Ala
365 370 375
Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Gly Ala Ser Thr Ala
380 385 390
Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Val Ser Thr Ala
395 400 405
Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Ser Thr Ala
410 415 420
Thr Asn Ser Asp Ser Ser Thr Thr Ser Ser Glu Ala Ser Thr Ala
425 430 435
Thr Asn Ser Glu Ser Ser Thr Val Ser Ser Gly Ile Ser Thr Val
440 445 450
Thr Asn Ser Glu Ser Ser Thr Thr Ser Ser Gly Ala Asn Thr Ala
455 460 465
Thr Asn Ser Gly Ser Ser Val Thr Ser Ala Gly Ser Gly Thr Ala
470 475 480
Ala Leu Thr Gly Met His Thr Thr Ser His Ser Ala Ser Thr Ala
485 490 495
Val Ser Glu Ala Lys Pro Gly Gly Ser Leu Val Pro Trp Glu Ile
500 505 510
Phe Leu Ile Thr Leu Val Ser Val Val Ala Ala Val Gly Leu Phe
515 520 525
Ala Gly Leu Phe Phe Cys Val Arg Asn Ser Leu Ser Leu Arg Asn
530 535 540
Thr Phe Asn Thr Ala Val Tyr His Pro His Gly Leu Asn His Gly
545 550 555
Leu Gly Pro Gly Pro Gly Gly Asn His Gly Ala Pro His Arg Pro
560 565 570
Arg Trp Ser Pro Asn Trp Phe Trp Arg Arg Pro Val Ser Ser Ile
575 580 585
Ala Met Glu Met Ser Gly Arg Asn Ser Gly Pro
590 595
101
1728
DNA
Homo Sapien
101
ggccggacgc ctccgcgtta cgggatgaat taacggcggg ttccgcacgg 50
aggttgtgac ccctacggag ccccagcttg cccacgcacc ccactcggcg 100
tcgcgcggcg tgccctgctt gtcacaggtg ggaggctgga actatcaggc 150
tgaaaaacag agtgggtact ctcttctggg aagctggcaa caaatggatg 200
atgtgatata tgcattccag gggaagggaa attgtggtgc ttctgaaccc 250
atggtcaatt aacgaggcag tttctagcta ctgcacgtac ttcataaagc 300
aggactctaa aagctttgga atcatggtgt catggaaagg gatttacttt 350
atactgactc tgttttgggg aagctttttt ggaagcattt tcatgctgag 400
tcccttttta cctttgatgt ttgtaaaccc atcttggtat cgctggatca 450
acaaccgcct tgtggcaaca tggctcaccc tacctgtggc attattggag 500
accatgtttg gtgtaaaagt gattataact ggggatgcat ttgttcctgg 550
agaaagaagt gtcattatca tgaaccatcg gacaagaatg gactggatgt 600
tcctgtggaa ttgcctgatg cgatatagct acctcagatt ggagaaaatt 650
tgcctcaaag cgagtctcaa aggtgttcct ggatttggtt gggccatgca 700
ggctgctgcc tatatcttca ttcataggaa atggaaggat gacaagagcc 750
atttcgaaga catgattgat tacttttgtg atattcacga accacttcaa 800
ctcctcatat tcccagaagg gactgatctc acagaaaaca gcaagtctcg 850
aagtaatgca tttgctgaaa aaaatggact tcagaaatat gaatatgttt 900
tacatccaag aactacaggc tttacttttg tggtagaccg tctaagagaa 950
ggtaagaacc ttgatgctgt ccatgatatc actgtggcgt atcctcacaa 1000
cattcctcaa tcagagaagc acctcctcca aggagacttt cccagggaaa 1050
tccactttca cgtccaccgg tatccaatag acaccctccc cacatccaag 1100
gaggaccttc aactctggtg ccacaaacgg tgggaagaga aagaagagag 1150
gctgcgttcc ttctatcaag gggagaagaa tttttatttt accggacaga 1200
gtgtcattcc accttgcaag tctgaactca gggtccttgt ggtcaaattg 1250
ctctctatac tgtattggac cctgttcagc cctgcaatgt gcctactcat 1300
atatttgtac agtcttgtta agtggtattt tataatcacc attgtaatct 1350
ttgtgctgca agagagaata tttggtggac tggagatcat agaacttgca 1400
tgttaccgac ttttacacaa acagccacat ttaaattcaa agaaaaatga 1450
gtaagattat aaggtttgcc atgtgaaaac ctagagcata ttttggaaat 1500
gttctaaacc tttctaagct cagatgcatt tttgcatgac tatgtcgaat 1550
atttcttact gccatcatta tttgttaaag atattttgca cttaattttg 1600
tgggaaaaat attgctacaa ttttttttaa tctctgaatg taatttcgat 1650
actgtgtaca tagcagggag tgatcggggt gaaataactt gggccagaat 1700
attattaaac aatcatcagg cttttaaa 1728
102
414
PRT
Homo Sapien
102
Met His Ser Arg Gly Arg Glu Ile Val Val Leu Leu Asn Pro Trp
1 5 10 15
Ser Ile Asn Glu Ala Val Ser Ser Tyr Cys Thr Tyr Phe Ile Lys
20 25 30
Gln Asp Ser Lys Ser Phe Gly Ile Met Val Ser Trp Lys Gly Ile
35 40 45
Tyr Phe Ile Leu Thr Leu Phe Trp Gly Ser Phe Phe Gly Ser Ile
50 55 60
Phe Met Leu Ser Pro Phe Leu Pro Leu Met Phe Val Asn Pro Ser
65 70 75
Trp Tyr Arg Trp Ile Asn Asn Arg Leu Val Ala Thr Trp Leu Thr
80 85 90
Leu Pro Val Ala Leu Leu Glu Thr Met Phe Gly Val Lys Val Ile
95 100 105
Ile Thr Gly Asp Ala Phe Val Pro Gly Glu Arg Ser Val Ile Ile
110 115 120
Met Asn His Arg Thr Arg Met Asp Trp Met Phe Leu Trp Asn Cys
125 130 135
Leu Met Arg Tyr Ser Tyr Leu Arg Leu Glu Lys Ile Cys Leu Lys
140 145 150
Ala Ser Leu Lys Gly Val Pro Gly Phe Gly Trp Ala Met Gln Ala
155 160 165
Ala Ala Tyr Ile Phe Ile His Arg Lys Trp Lys Asp Asp Lys Ser
170 175 180
His Phe Glu Asp Met Ile Asp Tyr Phe Cys Asp Ile His Glu Pro
185 190 195
Leu Gln Leu Leu Ile Phe Pro Glu Gly Thr Asp Leu Thr Glu Asn
200 205 210
Ser Lys Ser Arg Ser Asn Ala Phe Ala Glu Lys Asn Gly Leu Gln
215 220 225
Lys Tyr Glu Tyr Val Leu His Pro Arg Thr Thr Gly Phe Thr Phe
230 235 240
Val Val Asp Arg Leu Arg Glu Gly Lys Asn Leu Asp Ala Val His
245 250 255
Asp Ile Thr Val Ala Tyr Pro His Asn Ile Pro Gln Ser Glu Lys
260 265 270
His Leu Leu Gln Gly Asp Phe Pro Arg Glu Ile His Phe His Val
275 280 285
His Arg Tyr Pro Ile Asp Thr Leu Pro Thr Ser Lys Glu Asp Leu
290 295 300
Gln Leu Trp Cys His Lys Arg Trp Glu Glu Lys Glu Glu Arg Leu
305 310 315
Arg Ser Phe Tyr Gln Gly Glu Lys Asn Phe Tyr Phe Thr Gly Gln
320 325 330
Ser Val Ile Pro Pro Cys Lys Ser Glu Leu Arg Val Leu Val Val
335 340 345
Lys Leu Leu Ser Ile Leu Tyr Trp Thr Leu Phe Ser Pro Ala Met
350 355 360
Cys Leu Leu Ile Tyr Leu Tyr Ser Leu Val Lys Trp Tyr Phe Ile
365 370 375
Ile Thr Ile Val Ile Phe Val Leu Gln Glu Arg Ile Phe Gly Gly
380 385 390
Leu Glu Ile Ile Glu Leu Ala Cys Tyr Arg Leu Leu His Lys Gln
395 400 405
Pro His Leu Asn Ser Lys Lys Asn Glu
410
103
2403
DNA
Homo Sapien
103
cggctcgagc ggctcgagtg aagagcctct ccacggctcc tgcgcctgag 50
acagctggcc tgacctccaa atcatccatc cacccctgct gtcatctgtt 100
ttcatagtgt gagatcaacc cacaggaata tccatggctt ttgtgctcat 150
tttggttctc agtttctacg agctggtgtc aggacagtgg caagtcactg 200
gaccgggcaa gtttgtccag gccttggtgg gggaggacgc cgtgttctcc 250
tgctccctct ttcctgagac cagtgcagag gctatggaag tgcggttctt 300
caggaatcag ttccatgctg tggtccacct ctacagagat ggggaagact 350
gggaatctaa gcagatgcca cagtatcgag ggagaactga gtttgtgaag 400
gactccattg caggggggcg tgtctctcta aggctaaaaa acatcactcc 450
ctcggacatc ggcctgtatg ggtgctggtt cagttcccag atttacgatg 500
aggaggccac ctgggagctg cgggtggcag cactgggctc acttcctctc 550
atttccatcg tgggatatgt tgacggaggt atccagttac tctgcctgtc 600
ctcaggctgg ttcccccagc ccacagccaa gtggaaaggt ccacaaggac 650
aggatttgtc ttcagactcc agagcaaatg cagatgggta cagcctgtat 700
gatgtggaga tctccattat agtccaggaa aatgctggga gcatattgtg 750
ttccatccac cttgctgagc agagtcatga ggtggaatcc aaggtattga 800
taggagagac gtttttccag ccctcacctt ggcgcctggc ttctatttta 850
ctcgggttac tctgtggtgc cctgtgtggt gttgtcatgg ggatgataat 900
tgttttcttc aaatccaaag ggaaaatcca ggcggaactg gactggagaa 950
gaaagcacgg acaggcagaa ttgagagacg cccggaaaca cgcagtggag 1000
gtgactctgg atccagagac ggctcacccg aagctctgcg tttctgatct 1050
gaaaactgta acccatagaa aagctcccca ggaggtgcct cactctgaga 1100
agagatttac aaggaagagt gtggtggctt ctcagggttt ccaagcaggg 1150
agacattact gggaggtgga cgtgggacaa aatgtagggt ggtatgtggg 1200
agtgtgtcgg gatgacgtag acagggggaa gaacaatgtg actttgtctc 1250
ccaacaatgg gtattgggtc ctcagactga caacagaaca tttgtatttc 1300
acattcaatc cccattttat cagcctcccc cccagcaccc ctcctacacg 1350
agtaggggtc ttcctggact atgagggtgg gaccatctcc ttcttcaata 1400
caaatgacca gtcccttatt tataccctgc tgacatgtca gtttgaaggc 1450
ttgttgagac cctatatcca gcatgcgatg tatgacgagg aaaaggggac 1500
tcccatattc atatgtccag tgtcctgggg atgagacaga gaagaccctg 1550
cttaaagggc cccacaccac agacccagac acagccaagg gagagtgctc 1600
ccgacaggtg gccccagctt cctctccgga gcctgcgcac agagagtcac 1650
gccccccact ctcctttagg gagctgaggt tcttctgccc tgagccctgc 1700
agcagcggca gtcacagctt ccagatgagg ggggattggc ctgaccctgt 1750
gggagtcaga agccatggct gccctgaagt ggggacggaa tagactcaca 1800
ttaggtttag tttgtgaaaa ctccatccag ctaagcgatc ttgaacaagt 1850
cacaacctcc caggctcctc atttgctagt cacggacagt gattcctgcc 1900
tcacaggtga agattaaaga gacaacgaat gtgaatcatg cttgcaggtt 1950
tgagggcaca gtgtttgcta atgatgtgtt tttatattat acattttccc 2000
accataaact ctgtttgctt attccacatt aatttacttt tctctatacc 2050
aaatcaccca tggaatagtt attgaacacc tgctttgtga ggctcaaaga 2100
ataaagagga ggtaggattt ttcactgatt ctataagccc agcattacct 2150
gataccaaaa ccaggcaaag aaaacagaag aagaggaagg aaaactacag 2200
gtccatatcc ctcattaaca cagacacaaa aattctaaat aaaattttaa 2250
caaattaaac taaacaatat atttaaagat gatatataac tactcagtgt 2300
ggtttgtccc acaaatgcag agttggttta atatttaaat atcaaccagt 2350
gtaattcagc acattaataa agtaaaaaag aaaaccataa aaaaaaaaaa 2400
aaa 2403
104
466
PRT
Homo Sapien
104
Met Ala Phe Val Leu Ile Leu Val Leu Ser Phe Tyr Glu Leu Val
1 5 10 15
Ser Gly Gln Trp Gln Val Thr Gly Pro Gly Lys Phe Val Gln Ala
20 25 30
Leu Val Gly Glu Asp Ala Val Phe Ser Cys Ser Leu Phe Pro Glu
35 40 45
Thr Ser Ala Glu Ala Met Glu Val Arg Phe Phe Arg Asn Gln Phe
50 55 60
His Ala Val Val His Leu Tyr Arg Asp Gly Glu Asp Trp Glu Ser
65 70 75
Lys Gln Met Pro Gln Tyr Arg Gly Arg Thr Glu Phe Val Lys Asp
80 85 90
Ser Ile Ala Gly Gly Arg Val Ser Leu Arg Leu Lys Asn Ile Thr
95 100 105
Pro Ser Asp Ile Gly Leu Tyr Gly Cys Trp Phe Ser Ser Gln Ile
110 115 120
Tyr Asp Glu Glu Ala Thr Trp Glu Leu Arg Val Ala Ala Leu Gly
125 130 135
Ser Leu Pro Leu Ile Ser Ile Val Gly Tyr Val Asp Gly Gly Ile
140 145 150
Gln Leu Leu Cys Leu Ser Ser Gly Trp Phe Pro Gln Pro Thr Ala
155 160 165
Lys Trp Lys Gly Pro Gln Gly Gln Asp Leu Ser Ser Asp Ser Arg
170 175 180
Ala Asn Ala Asp Gly Tyr Ser Leu Tyr Asp Val Glu Ile Ser Ile
185 190 195
Ile Val Gln Glu Asn Ala Gly Ser Ile Leu Cys Ser Ile His Leu
200 205 210
Ala Glu Gln Ser His Glu Val Glu Ser Lys Val Leu Ile Gly Glu
215 220 225
Thr Phe Phe Gln Pro Ser Pro Trp Arg Leu Ala Ser Ile Leu Leu
230 235 240
Gly Leu Leu Cys Gly Ala Leu Cys Gly Val Val Met Gly Met Ile
245 250 255
Ile Val Phe Phe Lys Ser Lys Gly Lys Ile Gln Ala Glu Leu Asp
260 265 270
Trp Arg Arg Lys His Gly Gln Ala Glu Leu Arg Asp Ala Arg Lys
275 280 285
His Ala Val Glu Val Thr Leu Asp Pro Glu Thr Ala His Pro Lys
290 295 300
Leu Cys Val Ser Asp Leu Lys Thr Val Thr His Arg Lys Ala Pro
305 310 315
Gln Glu Val Pro His Ser Glu Lys Arg Phe Thr Arg Lys Ser Val
320 325 330
Val Ala Ser Gln Gly Phe Gln Ala Gly Arg His Tyr Trp Glu Val
335 340 345
Asp Val Gly Gln Asn Val Gly Trp Tyr Val Gly Val Cys Arg Asp
350 355 360
Asp Val Asp Arg Gly Lys Asn Asn Val Thr Leu Ser Pro Asn Asn
365 370 375
Gly Tyr Trp Val Leu Arg Leu Thr Thr Glu His Leu Tyr Phe Thr
380 385 390
Phe Asn Pro His Phe Ile Ser Leu Pro Pro Ser Thr Pro Pro Thr
395 400 405
Arg Val Gly Val Phe Leu Asp Tyr Glu Gly Gly Thr Ile Ser Phe
410 415 420
Phe Asn Thr Asn Asp Gln Ser Leu Ile Tyr Thr Leu Leu Thr Cys
425 430 435
Gln Phe Glu Gly Leu Leu Arg Pro Tyr Ile Gln His Ala Met Tyr
440 445 450
Asp Glu Glu Lys Gly Thr Pro Ile Phe Ile Cys Pro Val Ser Trp
455 460 465
Gly
105
2103
DNA
Homo Sapien
105
ccttcacagg actcttcatt gctggttggc aatgatgtat cggccagatg 50
tggtgagggc taggaaaaga gtttgttggg aaccctgggt tatcggcctc 100
gtcatcttca tatccctgat tgtcctggca gtgtgcattg gactcactgt 150
tcattatgtg agatataatc aaaagaagac ctacaattac tatagcacat 200
tgtcatttac aactgacaaa ctatatgctg agtttggcag agaggcttct 250
aacaatttta cagaaatgag ccagagactt gaatcaatgg tgaaaaatgc 300
attttataaa tctccattaa gggaagaatt tgtcaagtct caggttatca 350
agttcagtca acagaagcat ggagtgttgg ctcatatgct gttgatttgt 400
agatttcact ctactgagga tcctgaaact gtagataaaa ttgttcaact 450
tgttttacat gaaaagctgc aagatgctgt aggaccccct aaagtagatc 500
ctcactcagt taaaattaaa aaaatcaaca agacagaaac agacagctat 550
ctaaaccatt gctgcggaac acgaagaagt aaaactctag gtcagagtct 600
caggatcgtt ggtgggacag aagtagaaga gggtgaatgg ccctggcagg 650
ctagcctgca gtgggatggg agtcatcgct gtggagcaac cttaattaat 700
gccacatggc ttgtgagtgc tgctcactgt tttacaacat ataagaaccc 750
tgccagatgg actgcttcct ttggagtaac aataaaacct tcgaaaatga 800
aacggggtct ccggagaata attgtccatg aaaaatacaa acacccatca 850
catgactatg atatttctct tgcagagctt tctagccctg ttccctacac 900
aaatgcagta catagagttt gtctccctga tgcatcctat gagtttcaac 950
caggtgatgt gatgtttgtg acaggatttg gagcactgaa aaatgatggt 1000
tacagtcaaa atcatcttcg acaagcacag gtgactctca tagacgctac 1050
aacttgcaat gaacctcaag cttacaatga cgccataact cctagaatgt 1100
tatgtgctgg ctccttagaa ggaaaaacag atgcatgcca gggtgactct 1150
ggaggaccac tggttagttc agatgctaga gatatctggt accttgctgg 1200
aatagtgagc tggggagatg aatgtgcgaa acccaacaag cctggtgttt 1250
atactagagt tacggccttg cgggactgga ttacttcaaa aactggtatc 1300
taagagacaa aagcctcatg gaacagataa catttttttt tgttttttgg 1350
gtgtggaggc catttttaga gatacagaat tggagaagac ttgcaaaaca 1400
gctagatttg actgatctca ataaactgtt tgcttgatgc atgtattttc 1450
ttcccagctc tgttccgcac gtaagcatcc tgcttctgcc agatcaactc 1500
tgtcatctgt gagcaatagt tgaaacttta tgtacataga gaaatagata 1550
atacaatatt acattacagc ctgtattcat ttgttctcta gaagttttgt 1600
cagaattttg acttgttgac ataaatttgt aatgcatata tacaatttga 1650
agcactcctt ttcttcagtt cctcagctcc tctcatttca gcaaatatcc 1700
attttcaagg tgcagaacaa ggagtgaaag aaaatataag aagaaaaaaa 1750
tcccctacat tttattggca cagaaaagta ttaggtgttt ttcttagtgg 1800
aatattagaa atgatcatat tcattatgaa aggtcaagca aagacagcag 1850
aataccaatc acttcatcat ttaggaagta tgggaactaa gttaaggaag 1900
tccagaaaga agccaagata tatccttatt ttcatttcca aacaactact 1950
atgataaatg tgaagaagat tctgtttttt tgtgacctat aataattata 2000
caaacttcat gcaatgtact tgttctaagc aaattaaagc aaatatttat 2050
ttaacattgt tactgaggat gtcaacatat aacaataaaa tataaatcac 2100
cca 2103
106
423
PRT
Homo Sapien
106
Met Met Tyr Arg Pro Asp Val Val Arg Ala Arg Lys Arg Val Cys
1 5 10 15
Trp Glu Pro Trp Val Ile Gly Leu Val Ile Phe Ile Ser Leu Ile
20 25 30
Val Leu Ala Val Cys Ile Gly Leu Thr Val His Tyr Val Arg Tyr
35 40 45
Asn Gln Lys Lys Thr Tyr Asn Tyr Tyr Ser Thr Leu Ser Phe Thr
50 55 60
Thr Asp Lys Leu Tyr Ala Glu Phe Gly Arg Glu Ala Ser Asn Asn
65 70 75
Phe Thr Glu Met Ser Gln Arg Leu Glu Ser Met Val Lys Asn Ala
80 85 90
Phe Tyr Lys Ser Pro Leu Arg Glu Glu Phe Val Lys Ser Gln Val
95 100 105
Ile Lys Phe Ser Gln Gln Lys His Gly Val Leu Ala His Met Leu
110 115 120
Leu Ile Cys Arg Phe His Ser Thr Glu Asp Pro Glu Thr Val Asp
125 130 135
Lys Ile Val Gln Leu Val Leu His Glu Lys Leu Gln Asp Ala Val
140 145 150
Gly Pro Pro Lys Val Asp Pro His Ser Val Lys Ile Lys Lys Ile
155 160 165
Asn Lys Thr Glu Thr Asp Ser Tyr Leu Asn His Cys Cys Gly Thr
170 175 180
Arg Arg Ser Lys Thr Leu Gly Gln Ser Leu Arg Ile Val Gly Gly
185 190 195
Thr Glu Val Glu Glu Gly Glu Trp Pro Trp Gln Ala Ser Leu Gln
200 205 210
Trp Asp Gly Ser His Arg Cys Gly Ala Thr Leu Ile Asn Ala Thr
215 220 225
Trp Leu Val Ser Ala Ala His Cys Phe Thr Thr Tyr Lys Asn Pro
230 235 240
Ala Arg Trp Thr Ala Ser Phe Gly Val Thr Ile Lys Pro Ser Lys
245 250 255
Met Lys Arg Gly Leu Arg Arg Ile Ile Val His Glu Lys Tyr Lys
260 265 270
His Pro Ser His Asp Tyr Asp Ile Ser Leu Ala Glu Leu Ser Ser
275 280 285
Pro Val Pro Tyr Thr Asn Ala Val His Arg Val Cys Leu Pro Asp
290 295 300
Ala Ser Tyr Glu Phe Gln Pro Gly Asp Val Met Phe Val Thr Gly
305 310 315
Phe Gly Ala Leu Lys Asn Asp Gly Tyr Ser Gln Asn His Leu Arg
320 325 330
Gln Ala Gln Val Thr Leu Ile Asp Ala Thr Thr Cys Asn Glu Pro
335 340 345
Gln Ala Tyr Asn Asp Ala Ile Thr Pro Arg Met Leu Cys Ala Gly
350 355 360
Ser Leu Glu Gly Lys Thr Asp Ala Cys Gln Gly Asp Ser Gly Gly
365 370 375
Pro Leu Val Ser Ser Asp Ala Arg Asp Ile Trp Tyr Leu Ala Gly
380 385 390
Ile Val Ser Trp Gly Asp Glu Cys Ala Lys Pro Asn Lys Pro Gly
395 400 405
Val Tyr Thr Arg Val Thr Ala Leu Arg Asp Trp Ile Thr Ser Lys
410 415 420
Thr Gly Ile
107
2397
DNA
Homo Sapien
107
agagaaagaa gcgtctccag ctgaagccaa tgcagccctc cggctctccg 50
cgaagaagtt ccctgccccg atgagccccc gccgtgcgtc cccgactatc 100
cccaggcggg cgtggggcac cgggcccagc gccgacgatc gctgccgttt 150
tgcccttggg agtaggatgt ggtgaaagga tggggcttct cccttacggg 200
gctcacaatg gccagagaag attccgtgaa gtgtctgcgc tgcctgctct 250
acgccctcaa tctgctcttt tggttaatgt ccatcagtgt gttggcagtt 300
tctgcttgga tgagggacta cctaaataat gttctcactt taactgcaga 350
aacgagggta gaggaagcag tcattttgac ttactttcct gtggttcatc 400
cggtcatgat tgctgtttgc tgtttcctta tcattgtggg gatgttagga 450
tattgtggaa cggtgaaaag aaatctgttg cttcttgcat ggtactttgg 500
aagtttgctt gtcattttct gtgtagaact ggcttgtggc gtttggacat 550
atgaacagga acttatggtt ccagtacaat ggtcagatat ggtcactttg 600
aaagccagga tgacaaatta tggattacct agatatcggt ggcttactca 650
tgcttggaat ttttttcaga gagagtttaa gtgctgtgga gtagtatatt 700
tcactgactg gttggaaatg acagagatgg actggccccc agattcctgc 750
tgtgttagag aattcccagg atgttccaaa caggcccacc aggaagatct 800
cagtgacctt tatcaagagg gttgtgggaa gaaaatgtat tcctttttga 850
gaggaaccaa acaactgcag gtgctgaggt ttctgggaat ctccattggg 900
gtgacacaaa tcctggccat gattctcacc attactctgc tctgggctct 950
gtattatgat agaagggagc ctgggacaga ccaaatgatg tccttgaaga 1000
atgacaactc tcagcacctg tcatgtccct cagtagaact gttgaaacca 1050
agcctgtcaa gaatctttga acacacatcc atggcaaaca gctttaatac 1100
acactttgag atggaggagt tataaaaaga aatgtcacag aagaaaacca 1150
caaacttgtt ttattggact tgtgaatttt tgagtacata ctatgtgttt 1200
cagaaatatg tagaaataaa aatgttgcca taaaataaca cctaagcata 1250
tactattcta tgctttaaaa tgaggatgga aaagtttcat gtcataagtc 1300
accacctgga caataattga tgcccttaaa atgctgaaga cagatgtcat 1350
acccactgtg tagcctgtgt atgactttta ctgaacacag ttatgttttg 1400
aggcagcatg gtttgattag catttccgca tccatgcaaa cgagtcacat 1450
atggtgggac tggagccata gtaaaggttg atttacttct accaactagt 1500
atataaagta ctaattaaat gctaacatag gaagttagaa aatactaata 1550
acttttatta ctcagcgatc tattcttctg atgctaaata aattatatat 1600
cagaaaactt tcaatattgg tgactaccta aatgtgattt ttgctggtta 1650
ctaaaatatt cttaccactt aaaagagcaa gctaacacat tgtcttaagc 1700
tgatcaggga ttttttgtat ataagtctgt gttaaatctg tataattcag 1750
tcgatttcag ttctgataat gttaagaata accattatga aaaggaaaat 1800
ttgtcctgta tagcatcatt atttttagcc tttcctgtta ataaagcttt 1850
actattctgt cctgggctta tattacacat ataactgtta tttaaatact 1900
taaccactaa ttttgaaaat taccagtgtg atacatagga atcattattc 1950
agaatgtagt ctggtcttta ggaagtatta ataagaaaat ttgcacataa 2000
cttagttgat tcagaaagga cttgtatgct gtttttctcc caaatgaaga 2050
ctctttttga cactaaacac tttttaaaaa gcttatcttt gccttctcca 2100
aacaagaagc aatagtctcc aagtcaatat aaattctaca gaaaatagtg 2150
ttctttttct ccagaaaaat gcttgtgaga atcattaaaa catgtgacaa 2200
tttagagatt ctttgtttta tttcactgat taatatactg tggcaaatta 2250
cacagattat taaatttttt tacaagagta tagtatattt atttgaaatg 2300
ggaaaagtgc attttactgt attttgtgta ttttgtttat ttctcagaat 2350
atggaaagaa aattaaaatg tgtcaataaa tattttctag agagtaa 2397
108
305
PRT
Homo Sapien
108
Met Ala Arg Glu Asp Ser Val Lys Cys Leu Arg Cys Leu Leu Tyr
1 5 10 15
Ala Leu Asn Leu Leu Phe Trp Leu Met Ser Ile Ser Val Leu Ala
20 25 30
Val Ser Ala Trp Met Arg Asp Tyr Leu Asn Asn Val Leu Thr Leu
35 40 45
Thr Ala Glu Thr Arg Val Glu Glu Ala Val Ile Leu Thr Tyr Phe
50 55 60
Pro Val Val His Pro Val Met Ile Ala Val Cys Cys Phe Leu Ile
65 70 75
Ile Val Gly Met Leu Gly Tyr Cys Gly Thr Val Lys Arg Asn Leu
80 85 90
Leu Leu Leu Ala Trp Tyr Phe Gly Ser Leu Leu Val Ile Phe Cys
95 100 105
Val Glu Leu Ala Cys Gly Val Trp Thr Tyr Glu Gln Glu Leu Met
110 115 120
Val Pro Val Gln Trp Ser Asp Met Val Thr Leu Lys Ala Arg Met
125 130 135
Thr Asn Tyr Gly Leu Pro Arg Tyr Arg Trp Leu Thr His Ala Trp
140 145 150
Asn Phe Phe Gln Arg Glu Phe Lys Cys Cys Gly Val Val Tyr Phe
155 160 165
Thr Asp Trp Leu Glu Met Thr Glu Met Asp Trp Pro Pro Asp Ser
170 175 180
Cys Cys Val Arg Glu Phe Pro Gly Cys Ser Lys Gln Ala His Gln
185 190 195
Glu Asp Leu Ser Asp Leu Tyr Gln Glu Gly Cys Gly Lys Lys Met
200 205 210
Tyr Ser Phe Leu Arg Gly Thr Lys Gln Leu Gln Val Leu Arg Phe
215 220 225
Leu Gly Ile Ser Ile Gly Val Thr Gln Ile Leu Ala Met Ile Leu
230 235 240
Thr Ile Thr Leu Leu Trp Ala Leu Tyr Tyr Asp Arg Arg Glu Pro
245 250 255
Gly Thr Asp Gln Met Met Ser Leu Lys Asn Asp Asn Ser Gln His
260 265 270
Leu Ser Cys Pro Ser Val Glu Leu Leu Lys Pro Ser Leu Ser Arg
275 280 285
Ile Phe Glu His Thr Ser Met Ala Asn Ser Phe Asn Thr His Phe
290 295 300
Glu Met Glu Glu Leu
305
109
2339
DNA
Homo Sapien
109
ccaaggccag agctgtggac accttatccc actcatcctc atcctcttcc 50
tctgataaag cccctaccag tgctgataaa gtctttctcg tgagagccta 100
gaggccttaa aaaaaaaagt gcttgaaaga gaaggggaca aaggaacacc 150
agtattaaga ggattttcca gtgtttctgg cagttggtcc agaaggatgc 200
ctccattcct gcttctcacc tgcctcttca tcacaggcac ctccgtgtca 250
cccgtggccc tagatccttg ttctgcttac atcagcctga atgagccctg 300
gaggaacact gaccaccagt tggatgagtc tcaaggtcct cctctatgtg 350
acaaccatgt gaatggggag tggtaccact tcacgggcat ggcgggagat 400
gccatgccta ccttctgcat accagaaaac cactgtggaa cccacgcacc 450
tgtctggctc aatggcagcc accccctaga aggcgacggc attgtgcaac 500
gccaggcttg tgccagcttc aatgggaact gctgtctctg gaacaccacg 550
gtggaagtca aggcttgccc tggaggctac tatgtgtatc gtctgaccaa 600
gcccagcgtc tgcttccacg tctactgtgg tcatttttat gacatctgcg 650
acgaggactg ccatggcagc tgctcagata ccagcgagtg cacatgcgct 700
ccaggaactg tgctaggccc tgacaggcag acatgctttg atgaaaatga 750
atgtgagcaa aacaacggtg gctgcagtga gatctgtgtg aacctcaaaa 800
actcctaccg ctgtgagtgt ggggttggcc gtgtgctaag aagtgatggc 850
aagacttgtg aagacgttga aggatgccac aataacaatg gtggctgcag 900
ccactcttgc cttggatctg agaaaggcta ccagtgtgaa tgtccccggg 950
gcctggtgct gtctgaggat aaccacactt gccaagtccc tgtgttgtgc 1000
aaatcaaatg ccattgaagt gaacatcccc agggagctgg ttggtggcct 1050
ggagctcttc ctgaccaaca cctcctgccg aggagtgtcc aacggcaccc 1100
atgtcaacat cctcttctct ctcaagacat gtggtacagt ggtcgatgtg 1150
gtgaatgaca agattgtggc cagcaacctc gtgacaggtc tacccaagca 1200
gaccccgggg agcagcgggg acttcatcat ccgaaccagc aagctgctga 1250
tcccggtgac ctgcgagttt ccacgcctgt acaccatttc tgaaggatac 1300
gttcccaacc ttcgaaactc cccactggaa atcatgagcc gaaatcatgg 1350
gatcttccca ttcactctgg agatcttcaa ggacaatgag tttgaagagc 1400
cttaccggga agctctgccc accctcaagc ttcgtgactc cctctacttt 1450
ggcattgagc ccgtggtgca cgtgagcggc ttggaaagct tggtggagag 1500
ctgctttgcc acccccacct ccaagatcga cgaggtcctg aaatactacc 1550
tcatccggga tggctgtgtt tcagatgact cggtaaagca gtacacatcc 1600
cgggatcacc tagcaaagca cttccaggtc cctgtcttca agtttgtggg 1650
caaagaccac aaggaagtgt ttctgcactg ccgggttctt gtctgtggag 1700
tgttggacga gcgttcccgc tgtgcccagg gttgccaccg gcgaatgcgt 1750
cgtggggcag gaggagagga ctcagccggt ctacagggcc agacgctaac 1800
aggcggcccg atccgcatcg actgggagga ctagttcgta gccatacctc 1850
gagtccctgc attggacggc tctgctcttt ggagcttctc cccccaccgc 1900
cctctaagaa catctgccaa cagctgggtt cagacttcac actgtgagtt 1950
cagactccca gcaccaactc actctgattc tggtccattc agtgggcaca 2000
ggtcacagca ctgctgaaca atgtggcctg ggtggggttt catctttcta 2050
gggttgaaaa ctaaactgtc cacccagaaa gacactcacc ccatttccct 2100
catttctttc ctacacttaa atacctcgtg tatggtgcaa tcagaccaca 2150
aaatcagaag ctgggtataa tatttcaagt tacaaaccct agaaaaatta 2200
aacagttact gaaattatga cttaaatacc caatgactcc ttaaatatgt 2250
aaattatagt tataccttga aatttcaatt caaatgcaga ctaattatag 2300
ggaatttgga agtgtatcaa taaaacagta tataatttt 2339
110
545
PRT
Homo Sapien
110
Met Pro Pro Phe Leu Leu Leu Thr Cys Leu Phe Ile Thr Gly Thr
1 5 10 15
Ser Val Ser Pro Val Ala Leu Asp Pro Cys Ser Ala Tyr Ile Ser
20 25 30
Leu Asn Glu Pro Trp Arg Asn Thr Asp His Gln Leu Asp Glu Ser
35 40 45
Gln Gly Pro Pro Leu Cys Asp Asn His Val Asn Gly Glu Trp Tyr
50 55 60
His Phe Thr Gly Met Ala Gly Asp Ala Met Pro Thr Phe Cys Ile
65 70 75
Pro Glu Asn His Cys Gly Thr His Ala Pro Val Trp Leu Asn Gly
80 85 90
Ser His Pro Leu Glu Gly Asp Gly Ile Val Gln Arg Gln Ala Cys
95 100 105
Ala Ser Phe Asn Gly Asn Cys Cys Leu Trp Asn Thr Thr Val Glu
110 115 120
Val Lys Ala Cys Pro Gly Gly Tyr Tyr Val Tyr Arg Leu Thr Lys
125 130 135
Pro Ser Val Cys Phe His Val Tyr Cys Gly His Phe Tyr Asp Ile
140 145 150
Cys Asp Glu Asp Cys His Gly Ser Cys Ser Asp Thr Ser Glu Cys
155 160 165
Thr Cys Ala Pro Gly Thr Val Leu Gly Pro Asp Arg Gln Thr Cys
170 175 180
Phe Asp Glu Asn Glu Cys Glu Gln Asn Asn Gly Gly Cys Ser Glu
185 190 195
Ile Cys Val Asn Leu Lys Asn Ser Tyr Arg Cys Glu Cys Gly Val
200 205 210
Gly Arg Val Leu Arg Ser Asp Gly Lys Thr Cys Glu Asp Val Glu
215 220 225
Gly Cys His Asn Asn Asn Gly Gly Cys Ser His Ser Cys Leu Gly
230 235 240
Ser Glu Lys Gly Tyr Gln Cys Glu Cys Pro Arg Gly Leu Val Leu
245 250 255
Ser Glu Asp Asn His Thr Cys Gln Val Pro Val Leu Cys Lys Ser
260 265 270
Asn Ala Ile Glu Val Asn Ile Pro Arg Glu Leu Val Gly Gly Leu
275 280 285
Glu Leu Phe Leu Thr Asn Thr Ser Cys Arg Gly Val Ser Asn Gly
290 295 300
Thr His Val Asn Ile Leu Phe Ser Leu Lys Thr Cys Gly Thr Val
305 310 315
Val Asp Val Val Asn Asp Lys Ile Val Ala Ser Asn Leu Val Thr
320 325 330
Gly Leu Pro Lys Gln Thr Pro Gly Ser Ser Gly Asp Phe Ile Ile
335 340 345
Arg Thr Ser Lys Leu Leu Ile Pro Val Thr Cys Glu Phe Pro Arg
350 355 360
Leu Tyr Thr Ile Ser Glu Gly Tyr Val Pro Asn Leu Arg Asn Ser
365 370 375
Pro Leu Glu Ile Met Ser Arg Asn His Gly Ile Phe Pro Phe Thr
380 385 390
Leu Glu Ile Phe Lys Asp Asn Glu Phe Glu Glu Pro Tyr Arg Glu
395 400 405
Ala Leu Pro Thr Leu Lys Leu Arg Asp Ser Leu Tyr Phe Gly Ile
410 415 420
Glu Pro Val Val His Val Ser Gly Leu Glu Ser Leu Val Glu Ser
425 430 435
Cys Phe Ala Thr Pro Thr Ser Lys Ile Asp Glu Val Leu Lys Tyr
440 445 450
Tyr Leu Ile Arg Asp Gly Cys Val Ser Asp Asp Ser Val Lys Gln
455 460 465
Tyr Thr Ser Arg Asp His Leu Ala Lys His Phe Gln Val Pro Val
470 475 480
Phe Lys Phe Val Gly Lys Asp His Lys Glu Val Phe Leu His Cys
485 490 495
Arg Val Leu Val Cys Gly Val Leu Asp Glu Arg Ser Arg Cys Ala
500 505 510
Gln Gly Cys His Arg Arg Met Arg Arg Gly Ala Gly Gly Glu Asp
515 520 525
Ser Ala Gly Leu Gln Gly Gln Thr Leu Thr Gly Gly Pro Ile Arg
530 535 540
Ile Asp Trp Glu Asp
545
111
2063
DNA
Homo Sapien
111
gagagaggca gcagcttgct cagcggacaa ggatgctggg cgtgagggac 50
caaggcctgc cctgcactcg ggcctcctcc agccagtgct gaccagggac 100
ttctgacctg ctggccagcc aggacctgtg tggggaggcc ctcctgctgc 150
cttggggtga caatctcagc tccaggctac agggagaccg ggaggatcac 200
agagccagca tgttacagga tcctgacagt gatcaacctc tgaacagcct 250
cgatgtcaaa cccctgcgca aaccccgtat ccccatggag accttcagaa 300
aggtggggat ccccatcatc atagcactac tgagcctggc gagtatcatc 350
attgtggttg tcctcatcaa ggtgattctg gataaatact acttcctctg 400
cgggcagcct ctccacttca tcccgaggaa gcagctgtgt gacggagagc 450
tggactgtcc cttgggggag gacgaggagc actgtgtcaa gagcttcccc 500
gaagggcctg cagtggcagt ccgcctctcc aaggaccgat ccacactgca 550
ggtgctggac tcggccacag ggaactggtt ctctgcctgt ttcgacaact 600
tcacagaagc tctcgctgag acagcctgta ggcagatggg ctacagcaga 650
gctgtggaga ttggcccaga ccaggatctg gatgttgttg aaatcacaga 700
aaacagccag gagcttcgca tgcggaactc aagtgggccc tgtctctcag 750
gctccctggt ctccctgcac tgtcttgcct gtgggaagag cctgaagacc 800
ccccgtgtgg tgggtgggga ggaggcctct gtggattctt ggccttggca 850
ggtcagcatc cagtacgaca aacagcacgt ctgtggaggg agcatcctgg 900
acccccactg ggtcctcacg gcagcccact gcttcaggaa acataccgat 950
gtgttcaact ggaaggtgcg ggcaggctca gacaaactgg gcagcttccc 1000
atccctggct gtggccaaga tcatcatcat tgaattcaac cccatgtacc 1050
ccaaagacaa tgacatcgcc ctcatgaagc tgcagttccc actcactttc 1100
tcaggcacag tcaggcccat ctgtctgccc ttctttgatg aggagctcac 1150
tccagccacc ccactctgga tcattggatg gggctttacg aagcagaatg 1200
gagggaagat gtctgacata ctgctgcagg cgtcagtcca ggtcattgac 1250
agcacacggt gcaatgcaga cgatgcgtac cagggggaag tcaccgagaa 1300
gatgatgtgt gcaggcatcc cggaaggggg tgtggacacc tgccagggtg 1350
acagtggtgg gcccctgatg taccaatctg accagtggca tgtggtgggc 1400
atcgttagct ggggctatgg ctgcgggggc ccgagcaccc caggagtata 1450
caccaaggtc tcagcctatc tcaactggat ctacaatgtc tggaaggctg 1500
agctgtaatg ctgctgcccc tttgcagtgc tgggagccgc ttccttcctg 1550
ccctgcccac ctggggatcc cccaaagtca gacacagagc aagagtcccc 1600
ttgggtacac ccctctgccc acagcctcag catttcttgg agcagcaaag 1650
ggcctcaatt cctgtaagag accctcgcag cccagaggcg cccagaggaa 1700
gtcagcagcc ctagctcggc cacacttggt gctcccagca tcccagggag 1750
agacacagcc cactgaacaa ggtctcaggg gtattgctaa gccaagaagg 1800
aactttccca cactactgaa tggaagcagg ctgtcttgta aaagcccaga 1850
tcactgtggg ctggagagga gaaggaaagg gtctgcgcca gccctgtccg 1900
tcttcaccca tccccaagcc tactagagca agaaaccagt tgtaatataa 1950
aatgcactgc cctactgttg gtatgactac cgttacctac tgttgtcatt 2000
gttattacag ctatggccac tattattaaa gagctgtgta acatctctgg 2050
caaaaaaaaa aaa 2063
112
432
PRT
Homo Sapien
112
Met Leu Gln Asp Pro Asp Ser Asp Gln Pro Leu Asn Ser Leu Asp
1 5 10 15
Val Lys Pro Leu Arg Lys Pro Arg Ile Pro Met Glu Thr Phe Arg
20 25 30
Lys Val Gly Ile Pro Ile Ile Ile Ala Leu Leu Ser Leu Ala Ser
35 40 45
Ile Ile Ile Val Val Val Leu Ile Lys Val Ile Leu Asp Lys Tyr
50 55 60
Tyr Phe Leu Cys Gly Gln Pro Leu His Phe Ile Pro Arg Lys Gln
65 70 75
Leu Cys Asp Gly Glu Leu Asp Cys Pro Leu Gly Glu Asp Glu Glu
80 85 90
His Cys Val Lys Ser Phe Pro Glu Gly Pro Ala Val Ala Val Arg
95 100 105
Leu Ser Lys Asp Arg Ser Thr Leu Gln Val Leu Asp Ser Ala Thr
110 115 120
Gly Asn Trp Phe Ser Ala Cys Phe Asp Asn Phe Thr Glu Ala Leu
125 130 135
Ala Glu Thr Ala Cys Arg Gln Met Gly Tyr Ser Arg Ala Val Glu
140 145 150
Ile Gly Pro Asp Gln Asp Leu Asp Val Val Glu Ile Thr Glu Asn
155 160 165
Ser Gln Glu Leu Arg Met Arg Asn Ser Ser Gly Pro Cys Leu Ser
170 175 180
Gly Ser Leu Val Ser Leu His Cys Leu Ala Cys Gly Lys Ser Leu
185 190 195
Lys Thr Pro Arg Val Val Gly Gly Glu Glu Ala Ser Val Asp Ser
200 205 210
Trp Pro Trp Gln Val Ser Ile Gln Tyr Asp Lys Gln His Val Cys
215 220 225
Gly Gly Ser Ile Leu Asp Pro His Trp Val Leu Thr Ala Ala His
230 235 240
Cys Phe Arg Lys His Thr Asp Val Phe Asn Trp Lys Val Arg Ala
245 250 255
Gly Ser Asp Lys Leu Gly Ser Phe Pro Ser Leu Ala Val Ala Lys
260 265 270
Ile Ile Ile Ile Glu Phe Asn Pro Met Tyr Pro Lys Asp Asn Asp
275 280 285
Ile Ala Leu Met Lys Leu Gln Phe Pro Leu Thr Phe Ser Gly Thr
290 295 300
Val Arg Pro Ile Cys Leu Pro Phe Phe Asp Glu Glu Leu Thr Pro
305 310 315
Ala Thr Pro Leu Trp Ile Ile Gly Trp Gly Phe Thr Lys Gln Asn
320 325 330
Gly Gly Lys Met Ser Asp Ile Leu Leu Gln Ala Ser Val Gln Val
335 340 345
Ile Asp Ser Thr Arg Cys Asn Ala Asp Asp Ala Tyr Gln Gly Glu
350 355 360
Val Thr Glu Lys Met Met Cys Ala Gly Ile Pro Glu Gly Gly Val
365 370 375
Asp Thr Cys Gln Gly Asp Ser Gly Gly Pro Leu Met Tyr Gln Ser
380 385 390
Asp Gln Trp His Val Val Gly Ile Val Ser Trp Gly Tyr Gly Cys
395 400 405
Gly Gly Pro Ser Thr Pro Gly Val Tyr Thr Lys Val Ser Ala Tyr
410 415 420
Leu Asn Trp Ile Tyr Asn Val Trp Lys Ala Glu Leu
425 430
113
1768
DNA
Homo Sapien
113
ggctggactg gaactcctgg tcccaagtga tccacccgcc tcagcctccc 50
aaggtgctgt gattataggt gtaagccacc gtgtctggcc tctgaacaac 100
tttttcagca actaaaaaag ccacaggagt tgaactgcta ggattctgac 150
tatgctgtgg tggctagtgc tcctactcct acctacatta aaatctgttt 200
tttgttctct tgtaactagc ctttaccttc ctaacacaga ggatctgtca 250
ctgtggctct ggcccaaacc tgaccttcac tctggaacga gaacagaggt 300
ttctacccac accgtcccct cgaagccggg gacagcctca ccttgctggc 350
ctctcgctgg agcagtgccc tcaccaactg tctcacgtct ggaggcactg 400
actcgggcag tgcaggtagc tgagcctctt ggtagctgcg gctttcaagg 450
tgggccttgc cctggccgta gaagggattg acaagcccga agatttcata 500
ggcgatggct cccactgccc aggcatcagc cttgctgtag tcaatcactg 550
ccctggggcc aggacgggcc gtggacacct gctcagaagc agtgggtgag 600
acatcacgct gcccgcccat ctaacctttt catgtcctgc acatcacctg 650
atccatgggc taatctgaac tctgtcccaa ggaacccaga gcttgagtga 700
gctgtggctc agacccagaa ggggtctgct tagaccacct ggtttatgtg 750
acaggacttg cattctcctg gaacatgagg gaacgccgga ggaaagcaaa 800
gtggcaggga aggaacttgt gccaaattat gggtcagaaa agatggaggt 850
gttgggttat cacaaggcat cgagtctcct gcattcagtg gacatgtggg 900
ggaagggctg ccgatggcgc atgacacact cgggactcac ctctggggcc 950
atcagacagc cgtttccgcc ccgatccacg taccagctgc tgaagggcaa 1000
ctgcaggccg atgctctcat cagccaggca gcagccaaaa tctgcgatca 1050
ccagccaggg gcagccgtct gggaaggagc aagcaaagtg accatttctc 1100
ctcccctcct tccctctgag aggccctcct atgtccctac taaagccacc 1150
agcaagacat agctgacagg ggctaatggc tcagtgttgg cccaggaggt 1200
cagcaaggcc tgagagctga tcagaagggc ctgctgtgcg aacacggaaa 1250
tgcctccagt aagcacaggc tgcaaaatcc ccaggcaaag gactgtgtgg 1300
ctcaatttaa atcatgttct agtaattgga gctgtcccca agaccaaagg 1350
agctagagct tggttcaaat gatctccaag ggcccttata ccccaggaga 1400
ctttgatttg aatttgaaac cccaaatcca aacctaagaa ccaggtgcat 1450
taagaatcag ttattgccgg gtgtggtggc ctgtaatgcc aacattttgg 1500
gaggccgagg cgggtagatc acctgaggtc aggagttcaa gaccagcctg 1550
gccaacatgg tgaaacccct gtctctacta aaaatacaaa aaaactagcc 1600
aggcatggtg gtgtgtgcct gtatcccagc tactcgggag gctgagacag 1650
gagaattact tgaacctggg aggtgaagga ggctgagaca ggagaatcac 1700
ttcagcctga gcaacacagc gagactctgt ctcagaaaaa ataaaaaaag 1750
aattatggtt atttgtaa 1768
114
109
PRT
Homo Sapien
114
Met Leu Trp Trp Leu Val Leu Leu Leu Leu Pro Thr Leu Lys Ser
1 5 10 15
Val Phe Cys Ser Leu Val Thr Ser Leu Tyr Leu Pro Asn Thr Glu
20 25 30
Asp Leu Ser Leu Trp Leu Trp Pro Lys Pro Asp Leu His Ser Gly
35 40 45
Thr Arg Thr Glu Val Ser Thr His Thr Val Pro Ser Lys Pro Gly
50 55 60
Thr Ala Ser Pro Cys Trp Pro Leu Ala Gly Ala Val Pro Ser Pro
65 70 75
Thr Val Ser Arg Leu Glu Ala Leu Thr Arg Ala Val Gln Val Ala
80 85 90
Glu Pro Leu Gly Ser Cys Gly Phe Gln Gly Gly Pro Cys Pro Gly
95 100 105
Arg Arg Arg Asp
115
1197
DNA
Homo Sapien
115
cagcagtggt ctctcagtcc tctcaaagca aggaaagagt actgtgtgct 50
gagagaccat ggcaaagaat cctccagaga attgtgaaga ctgtcacatt 100
ctaaatgcag aagcttttaa atccaagaaa atatgtaaat cacttaagat 150
ttgtggactg gtgtttggta tcctggccct aactctaatt gtcctgtttt 200
gggggagcaa gcacttctgg ccggaggtac ccaaaaaagc ctatgacatg 250
gagcacactt tctacagcaa tggagagaag aagaagattt acatggaaat 300
tgatcctgtg accagaactg aaatattcag aagcggaaat ggcactgatg 350
aaacattgga agtgcacgac tttaaaaacg gatacactgg catctacttc 400
gtgggtcttc aaaaatgttt tatcaaaact cagattaaag tgattcctga 450
attttctgaa ccagaagagg aaatagatga gaatgaagaa attaccacaa 500
ctttctttga acagtcagtg atttgggtcc cagcagaaaa gcctattgaa 550
aaccgagatt ttcttaaaaa ttccaaaatt ctggagattt gtgataacgt 600
gaccatgtat tggatcaatc ccactctaat atcagtttct gagttacaag 650
actttgagga ggagggagaa gatcttcact ttcctgccaa cgaaaaaaaa 700
gggattgaac aaaatgaaca gtgggtggtc cctcaagtga aagtagagaa 750
gacccgtcac gccagacaag caagtgagga agaacttcca ataaatgact 800
atactgaaaa tggaatagaa tttgatccca tgctggatga gagaggttat 850
tgttgtattt actgccgtcg aggcaaccgc tattgccgcc gcgtctgtga 900
acctttacta ggctactacc catatccata ctgctaccaa ggaggacgag 950
tcatctgtcg tgtcatcatg ccttgtaact ggtgggtggc ccgcatgctg 1000
gggagggtct aataggaggt ttgagctcaa atgcttaaac tgctggcaac 1050
atataataaa tgcatgctat tcaatgaatt tctgcctatg aggcatctgg 1100
cccctggtag ccagctctcc agaattactt gtaggtaatt cctctcttca 1150
tgttctaata aacttctaca ttatcaccaa aaaaaaaaaa aaaaaaa 1197
116
317
PRT
Homo Sapien
116
Met Ala Lys Asn Pro Pro Glu Asn Cys Glu Asp Cys His Ile Leu
1 5 10 15
Asn Ala Glu Ala Phe Lys Ser Lys Lys Ile Cys Lys Ser Leu Lys
20 25 30
Ile Cys Gly Leu Val Phe Gly Ile Leu Ala Leu Thr Leu Ile Val
35 40 45
Leu Phe Trp Gly Ser Lys His Phe Trp Pro Glu Val Pro Lys Lys
50 55 60
Ala Tyr Asp Met Glu His Thr Phe Tyr Ser Asn Gly Glu Lys Lys
65 70 75
Lys Ile Tyr Met Glu Ile Asp Pro Val Thr Arg Thr Glu Ile Phe
80 85 90
Arg Ser Gly Asn Gly Thr Asp Glu Thr Leu Glu Val His Asp Phe
95 100 105
Lys Asn Gly Tyr Thr Gly Ile Tyr Phe Val Gly Leu Gln Lys Cys
110 115 120
Phe Ile Lys Thr Gln Ile Lys Val Ile Pro Glu Phe Ser Glu Pro
125 130 135
Glu Glu Glu Ile Asp Glu Asn Glu Glu Ile Thr Thr Thr Phe Phe
140 145 150
Glu Gln Ser Val Ile Trp Val Pro Ala Glu Lys Pro Ile Glu Asn
155 160 165
Arg Asp Phe Leu Lys Asn Ser Lys Ile Leu Glu Ile Cys Asp Asn
170 175 180
Val Thr Met Tyr Trp Ile Asn Pro Thr Leu Ile Ser Val Ser Glu
185 190 195
Leu Gln Asp Phe Glu Glu Glu Gly Glu Asp Leu His Phe Pro Ala
200 205 210
Asn Glu Lys Lys Gly Ile Glu Gln Asn Glu Gln Trp Val Val Pro
215 220 225
Gln Val Lys Val Glu Lys Thr Arg His Ala Arg Gln Ala Ser Glu
230 235 240
Glu Glu Leu Pro Ile Asn Asp Tyr Thr Glu Asn Gly Ile Glu Phe
245 250 255
Asp Pro Met Leu Asp Glu Arg Gly Tyr Cys Cys Ile Tyr Cys Arg
260 265 270
Arg Gly Asn Arg Tyr Cys Arg Arg Val Cys Glu Pro Leu Leu Gly
275 280 285
Tyr Tyr Pro Tyr Pro Tyr Cys Tyr Gln Gly Gly Arg Val Ile Cys
290 295 300
Arg Val Ile Met Pro Cys Asn Trp Trp Val Ala Arg Met Leu Gly
305 310 315
Arg Val
117
2121
DNA
Homo Sapien
117
gagctcccct caggagcgcg ttagcttcac accttcggca gcaggagggc 50
ggcagcttct cgcaggcggc agggcgggcg gccaggatca tgtccaccac 100
cacatgccaa gtggtggcgt tcctcctgtc catcctgggg ctggccggct 150
gcatcgcggc caccgggatg gacatgtgga gcacccagga cctgtacgac 200
aaccccgtca cctccgtgtt ccagtacgaa gggctctgga ggagctgcgt 250
gaggcagagt tcaggcttca ccgaatgcag gccctatttc accatcctgg 300
gacttccagc catgctgcag gcagtgcgag ccctgatgat cgtaggcatc 350
gtcctgggtg ccattggcct cctggtatcc atctttgccc tgaaatgcat 400
ccgcattggc agcatggagg actctgccaa agccaacatg acactgacct 450
ccgggatcat gttcattgtc tcaggtcttt gtgcaattgc tggagtgtct 500
gtgtttgcca acatgctggt gactaacttc tggatgtcca cagctaacat 550
gtacaccggc atgggtggga tggtgcagac tgttcagacc aggtacacat 600
ttggtgcggc tctgttcgtg ggctgggtcg ctggaggcct cacactaatt 650
gggggtgtga tgatgtgcat cgcctgccgg ggcctggcac cagaagaaac 700
caactacaaa gccgtttctt atcatgcctc aggccacagt gttgcctaca 750
agcctggagg cttcaaggcc agcactggct ttgggtccaa caccaaaaac 800
aagaagatat acgatggagg tgcccgcaca gaggacgagg tacaatctta 850
tccttccaag cacgactatg tgtaatgctc taagacctct cagcacgggc 900
ggaagaaact cccggagagc tcacccaaaa aacaaggaga tcccatctag 950
atttcttctt gcttttgact cacagctgga agttagaaaa gcctcgattt 1000
catctttgga gaggccaaat ggtcttagcc tcagtctctg tctctaaata 1050
ttccaccata aaacagctga gttatttatg aattagaggc tatagctcac 1100
attttcaatc ctctatttct ttttttaaat ataactttct actctgatga 1150
gagaatgtgg ttttaatctc tctctcacat tttgatgatt tagacagact 1200
ccccctcttc ctcctagtca ataaacccat tgatgatcta tttcccagct 1250
tatccccaag aaaacttttg aaaggaaaga gtagacccaa agatgttatt 1300
ttctgctgtt tgaattttgt ctccccaccc ccaacttggc tagtaataaa 1350
cacttactga agaagaagca ataagagaaa gatatttgta atctctccag 1400
cccatgatct cggttttctt acactgtgat cttaaaagtt accaaaccaa 1450
agtcattttc agtttgaggc aaccaaacct ttctactgct gttgacatct 1500
tcttattaca gcaacaccat tctaggagtt tcctgagctc tccactggag 1550
tcctctttct gtcgcgggtc agaaattgtc cctagatgaa tgagaaaatt 1600
atttttttta atttaagtcc taaatatagt taaaataaat aatgttttag 1650
taaaatgata cactatctct gtgaaatagc ctcaccccta catgtggata 1700
gaaggaaatg aaaaaataat tgctttgaca ttgtctatat ggtactttgt 1750
aaagtcatgc ttaagtacaa attccatgaa aagctcacac ctgtaatcct 1800
agcactttgg gaggctgagg aggaaggatc acttgagccc agaagttcga 1850
gactagcctg ggcaacatgg agaagccctg tctctacaaa atacagagag 1900
aaaaaatcag ccagtcatgg tggcatacac ctgtagtccc agcattccgg 1950
gaggctgagg tgggaggatc acttgagccc agggaggttg gggctgcagt 2000
gagccatgat cacaccactg cactccagcc aggtgacata gcgagatcct 2050
gtctaaaaaa ataaaaaata aataatggaa cacagcaagt cctaggaagt 2100
aggttaaaac taattcttta a 2121
118
261
PRT
Homo Sapien
118
Met Ser Thr Thr Thr Cys Gln Val Val Ala Phe Leu Leu Ser Ile
1 5 10 15
Leu Gly Leu Ala Gly Cys Ile Ala Ala Thr Gly Met Asp Met Trp
20 25 30
Ser Thr Gln Asp Leu Tyr Asp Asn Pro Val Thr Ser Val Phe Gln
35 40 45
Tyr Glu Gly Leu Trp Arg Ser Cys Val Arg Gln Ser Ser Gly Phe
50 55 60
Thr Glu Cys Arg Pro Tyr Phe Thr Ile Leu Gly Leu Pro Ala Met
65 70 75
Leu Gln Ala Val Arg Ala Leu Met Ile Val Gly Ile Val Leu Gly
80 85 90
Ala Ile Gly Leu Leu Val Ser Ile Phe Ala Leu Lys Cys Ile Arg
95 100 105
Ile Gly Ser Met Glu Asp Ser Ala Lys Ala Asn Met Thr Leu Thr
110 115 120
Ser Gly Ile Met Phe Ile Val Ser Gly Leu Cys Ala Ile Ala Gly
125 130 135
Val Ser Val Phe Ala Asn Met Leu Val Thr Asn Phe Trp Met Ser
140 145 150
Thr Ala Asn Met Tyr Thr Gly Met Gly Gly Met Val Gln Thr Val
155 160 165
Gln Thr Arg Tyr Thr Phe Gly Ala Ala Leu Phe Val Gly Trp Val
170 175 180
Ala Gly Gly Leu Thr Leu Ile Gly Gly Val Met Met Cys Ile Ala
185 190 195
Cys Arg Gly Leu Ala Pro Glu Glu Thr Asn Tyr Lys Ala Val Ser
200 205 210
Tyr His Ala Ser Gly His Ser Val Ala Tyr Lys Pro Gly Gly Phe
215 220 225
Lys Ala Ser Thr Gly Phe Gly Ser Asn Thr Lys Asn Lys Lys Ile
230 235 240
Tyr Asp Gly Gly Ala Arg Thr Glu Asp Glu Val Gln Ser Tyr Pro
245 250 255
Ser Lys His Asp Tyr Val
260
119
2010
DNA
Homo Sapien
119
ggaaaaactg ttctcttctg tggcacagag aaccctgctt caaagcagaa 50
gtagcagttc cggagtccag ctggctaaaa ctcatcccag aggataatgg 100
caacccatgc cttagaaatc gctgggctgt ttcttggtgg tgttggaatg 150
gtgggcacag tggctgtcac tgtcatgcct cagtggagag tgtcggcctt 200
cattgaaaac aacatcgtgg tttttgaaaa cttctgggaa ggactgtgga 250
tgaattgcgt gaggcaggct aacatcagga tgcagtgcaa aatctatgat 300
tccctgctgg ctctttctcc ggacctacag gcagccagag gactgatgtg 350
tgctgcttcc gtgatgtcct tcttggcttt catgatggcc atccttggca 400
tgaaatgcac caggtgcacg ggggacaatg agaaggtgaa ggctcacatt 450
ctgctgacgg ctggaatcat cttcatcatc acgggcatgg tggtgctcat 500
ccctgtgagc tgggttgcca atgccatcat cagagatttc tataactcaa 550
tagtgaatgt tgcccaaaaa cgtgagcttg gagaagctct ctacttagga 600
tggaccacgg cactggtgct gattgttgga ggagctctgt tctgctgcgt 650
tttttgttgc aacgaaaaga gcagtagcta cagatactcg ataccttccc 700
atcgcacaac ccaaaaaagt tatcacaccg gaaagaagtc accgagcgtc 750
tactccagaa gtcagtatgt gtagttgtgt atgttttttt aactttacta 800
taaagccatg caaatgacaa aaatctatat tactttctca aaatggaccc 850
caaagaaact ttgatttact gttcttaact gcctaatctt aattacagga 900
actgtgcatc agctatttat gattctataa gctatttcag cagaatgaga 950
tattaaaccc aatgctttga ttgttctaga aagtatagta atttgttttc 1000
taaggtggtt caagcatcta ctctttttat catttacttc aaaatgacat 1050
tgctaaagac tgcattattt tactactgta atttctccac gacatagcat 1100
tatgtacata gatgagtgta acatttatat ctcacataga gacatgctta 1150
tatggtttta tttaaaatga aatgccagtc cattacactg aataaataga 1200
actcaactat tgcttttcag ggaaatcatg gatagggttg aagaaggtta 1250
ctattaattg tttaaaaaca gcttagggat taatgtcctc catttataat 1300
gaagattaaa atgaaggctt taatcagcat tgtaaaggaa attgaatggc 1350
tttctgatat gctgtttttt agcctaggag ttagaaatcc taacttcttt 1400
atcctcttct cccagaggct ttttttttct tgtgtattaa attaacattt 1450
ttaaaacgca gatattttgt caaggggctt tgcattcaaa ctgcttttcc 1500
agggctatac tcagaagaaa gataaaagtg tgatctaaga aaaagtgatg 1550
gttttaggaa agtgaaaata tttttgtttt tgtatttgaa gaagaatgat 1600
gcattttgac aagaaatcat atatgtatgg atatatttta ataagtattt 1650
gagtacagac tttgaggttt catcaatata aataaaagag cagaaaaata 1700
tgtcttggtt ttcatttgct taccaaaaaa acaacaacaa aaaaagttgt 1750
cctttgagaa cttcacctgc tcctatgtgg gtacctgagt caaaattgtc 1800
atttttgttc tgtgaaaaat aaatttcctt cttgtaccat ttctgtttag 1850
ttttactaaa atctgtaaat actgtatttt tctgtttatt ccaaatttga 1900
tgaaactgac aatccaattt gaaagtttgt gtcgacgtct gtctagctta 1950
aatgaatgtg ttctatttgc tttatacatt tatattaata aattgtacat 2000
ttttctaatt 2010
120
225
PRT
Homo Sapien
120
Met Ala Thr His Ala Leu Glu Ile Ala Gly Leu Phe Leu Gly Gly
1 5 10 15
Val Gly Met Val Gly Thr Val Ala Val Thr Val Met Pro Gln Trp
20 25 30
Arg Val Ser Ala Phe Ile Glu Asn Asn Ile Val Val Phe Glu Asn
35 40 45
Phe Trp Glu Gly Leu Trp Met Asn Cys Val Arg Gln Ala Asn Ile
50 55 60
Arg Met Gln Cys Lys Ile Tyr Asp Ser Leu Leu Ala Leu Ser Pro
65 70 75
Asp Leu Gln Ala Ala Arg Gly Leu Met Cys Ala Ala Ser Val Met
80 85 90
Ser Phe Leu Ala Phe Met Met Ala Ile Leu Gly Met Lys Cys Thr
95 100 105
Arg Cys Thr Gly Asp Asn Glu Lys Val Lys Ala His Ile Leu Leu
110 115 120
Thr Ala Gly Ile Ile Phe Ile Ile Thr Gly Met Val Val Leu Ile
125 130 135
Pro Val Ser Trp Val Ala Asn Ala Ile Ile Arg Asp Phe Tyr Asn
140 145 150
Ser Ile Val Asn Val Ala Gln Lys Arg Glu Leu Gly Glu Ala Leu
155 160 165
Tyr Leu Gly Trp Thr Thr Ala Leu Val Leu Ile Val Gly Gly Ala
170 175 180
Leu Phe Cys Cys Val Phe Cys Cys Asn Glu Lys Ser Ser Ser Tyr
185 190 195
Arg Tyr Ser Ile Pro Ser His Arg Thr Thr Gln Lys Ser Tyr His
200 205 210
Thr Gly Lys Lys Ser Pro Ser Val Tyr Ser Arg Ser Gln Tyr Val
215 220 225
121
1257
DNA
Homo Sapien
121
ggagagaggc gcgcgggtga aaggcgcatt gatgcagcct gcggcggcct 50
cggagcgcgg cggagccaga cgctgaccac gttcctctcc tcggtctcct 100
ccgcctccag ctccgcgctg cccggcagcc gggagccatg cgaccccagg 150
gccccgccgc ctccccgcag cggctccgcg gcctcctgct gctcctgctg 200
ctgcagctgc ccgcgccgtc gagcgcctct gagatcccca aggggaagca 250
aaaggcgcag ctccggcaga gggaggtggt ggacctgtat aatggaatgt 300
gcttacaagg gccagcagga gtgcctggtc gagacgggag ccctggggcc 350
aatgttattc cgggtacacc tgggatccca ggtcgggatg gattcaaagg 400
agaaaagggg gaatgtctga gggaaagctt tgaggagtcc tggacaccca 450
actacaagca gtgttcatgg agttcattga attatggcat agatcttggg 500
aaaattgcgg agtgtacatt tacaaagatg cgttcaaata gtgctctaag 550
agttttgttc agtggctcac ttcggctaaa atgcagaaat gcatgctgtc 600
agcgttggta tttcacattc aatggagctg aatgttcagg acctcttccc 650
attgaagcta taatttattt ggaccaagga agccctgaaa tgaattcaac 700
aattaatatt catcgcactt cttctgtgga aggactttgt gaaggaattg 750
gtgctggatt agtggatgtt gctatctggg ttggcacttg ttcagattac 800
ccaaaaggag atgcttctac tggatggaat tcagtttctc gcatcattat 850
tgaagaacta ccaaaataaa tgctttaatt ttcatttgct acctcttttt 900
ttattatgcc ttggaatggt tcacttaaat gacattttaa ataagtttat 950
gtatacatct gaatgaaaag caaagctaaa tatgtttaca gaccaaagtg 1000
tgatttcaca ctgtttttaa atctagcatt attcattttg cttcaatcaa 1050
aagtggtttc aatatttttt ttagttggtt agaatacttt cttcatagtc 1100
acattctctc aacctataat ttggaatatt gttgtggtct tttgtttttt 1150
ctcttagtat agcattttta aaaaaatata aaagctacca atctttgtac 1200
aatttgtaaa tgttaagaat tttttttata tctgttaaat aaaaattatt 1250
tccaaca 1257
122
243
PRT
Homo Sapien
122
Met Arg Pro Gln Gly Pro Ala Ala Ser Pro Gln Arg Leu Arg Gly
1 5 10 15
Leu Leu Leu Leu Leu Leu Leu Gln Leu Pro Ala Pro Ser Ser Ala
20 25 30
Ser Glu Ile Pro Lys Gly Lys Gln Lys Ala Gln Leu Arg Gln Arg
35 40 45
Glu Val Val Asp Leu Tyr Asn Gly Met Cys Leu Gln Gly Pro Ala
50 55 60
Gly Val Pro Gly Arg Asp Gly Ser Pro Gly Ala Asn Val Ile Pro
65 70 75
Gly Thr Pro Gly Ile Pro Gly Arg Asp Gly Phe Lys Gly Glu Lys
80 85 90
Gly Glu Cys Leu Arg Glu Ser Phe Glu Glu Ser Trp Thr Pro Asn
95 100 105
Tyr Lys Gln Cys Ser Trp Ser Ser Leu Asn Tyr Gly Ile Asp Leu
110 115 120
Gly Lys Ile Ala Glu Cys Thr Phe Thr Lys Met Arg Ser Asn Ser
125 130 135
Ala Leu Arg Val Leu Phe Ser Gly Ser Leu Arg Leu Lys Cys Arg
140 145 150
Asn Ala Cys Cys Gln Arg Trp Tyr Phe Thr Phe Asn Gly Ala Glu
155 160 165
Cys Ser Gly Pro Leu Pro Ile Glu Ala Ile Ile Tyr Leu Asp Gln
170 175 180
Gly Ser Pro Glu Met Asn Ser Thr Ile Asn Ile His Arg Thr Ser
185 190 195
Ser Val Glu Gly Leu Cys Glu Gly Ile Gly Ala Gly Leu Val Asp
200 205 210
Val Ala Ile Trp Val Gly Thr Cys Ser Asp Tyr Pro Lys Gly Asp
215 220 225
Ala Ser Thr Gly Trp Asn Ser Val Ser Arg Ile Ile Ile Glu Glu
230 235 240
Leu Pro Lys
123
2379
DNA
Homo Sapien
123
gctgagcgtg tgcgcggtac ggggctctcc tgccttctgg gctccaacgc 50
agctctgtgg ctgaactggg tgctcatcac gggaactgct gggctatgga 100
atacagatgt ggcagctcag gtagccccaa attgcctgga agaatacatc 150
atgtttttcg ataagaagaa attgtaggat ccagtttttt ttttaaccgc 200
cccctcccca ccccccaaaa aaactgtaaa gatgcaaaaa cgtaatatcc 250
atgaagatcc tattacctag gaagattttg atgttttgct gcgaatgcgg 300
tgttgggatt tatttgttct tggagtgttc tgcgtggctg gcaaagaata 350
atgttccaaa atcggtccat ctcccaaggg gtccaatttt tcttcctggg 400
tgtcagcgag ccctgactca ctacagtgca gctgacaggg gctgtcatgc 450
aactggcccc taagccaaag caaaagacct aaggacgacc tttgaacaat 500
acaaaggatg ggtttcaatg taattaggct actgagcgga tcagctgtag 550
cactggttat agcccccact gtcttactga caatgctttc ttctgccgaa 600
cgaggatgcc ctaagggctg taggtgtgaa ggcaaaatgg tatattgtga 650
atctcagaaa ttacaggaga taccctcaag tatatctgct ggttgcttag 700
gtttgtccct tcgctataac agccttcaaa aacttaagta taatcaattt 750
aaagggctca accagctcac ctggctatac cttgaccata accatatcag 800
caatattgac gaaaatgctt ttaatggaat acgcagactc aaagagctga 850
ttcttagttc caatagaatc tcctattttc ttaacaatac cttcagacct 900
gtgacaaatt tacggaactt ggatctgtcc tataatcagc tgcattctct 950
gggatctgaa cagtttcggg gcttgcggaa gctgctgagt ttacatttac 1000
ggtctaactc cctgagaacc atccctgtgc gaatattcca agactgccgc 1050
aacctggaac ttttggacct gggatataac cggatccgaa gtttagccag 1100
gaatgtcttt gctggcatga tcagactcaa agaacttcac ctggagcaca 1150
atcaattttc caagctcaac ctggcccttt ttccaaggtt ggtcagcctt 1200
cagaaccttt acttgcagtg gaataaaatc agtgtcatag gacagaccat 1250
gtcctggacc tggagctcct tacaaaggct tgatttatca ggcaatgaga 1300
tcgaagcttt cagtggaccc agtgttttcc agtgtgtccc gaatctgcag 1350
cgcctcaacc tggattccaa caagctcaca tttattggtc aagagatttt 1400
ggattcttgg atatccctca atgacatcag tcttgctggg aatatatggg 1450
aatgcagcag aaatatttgc tcccttgtaa actggctgaa aagttttaaa 1500
ggtctaaggg agaatacaat tatctgtgcc agtcccaaag agctgcaagg 1550
agtaaatgtg atcgatgcag tgaagaacta cagcatctgt ggcaaaagta 1600
ctacagagag gtttgatctg gccagggctc tcccaaagcc gacgtttaag 1650
cccaagctcc ccaggccgaa gcatgagagc aaaccccctt tgcccccgac 1700
ggtgggagcc acagagcccg gcccagagac cgatgctgac gccgagcaca 1750
tctctttcca taaaatcatc gcgggcagcg tggcgctttt cctgtccgtg 1800
ctcgtcatcc tgctggttat ctacgtgtca tggaagcggt accctgcgag 1850
catgaagcag ctgcagcagc gctccctcat gcgaaggcac aggaaaaaga 1900
aaagacagtc cctaaagcaa atgactccca gcacccagga attttatgta 1950
gattataaac ccaccaacac ggagaccagc gagatgctgc tgaatgggac 2000
gggaccctgc acctataaca aatcgggctc cagggagtgt gaggtatgaa 2050
ccattgtgat aaaaagagct cttaaaagct gggaaataag tggtgcttta 2100
ttgaactctg gtgactatca agggaacgcg atgccccccc tccccttccc 2150
tctccctctc actttggtgg caagatcctt ccttgtccgt tttagtgcat 2200
tcataatact ggtcattttc ctctcataca taatcaaccc attgaaattt 2250
aaataccaca atcaatgtga agcttgaact ccggtttaat ataataccta 2300
ttgtataaga ccctttactg attccattaa tgtcgcattt gttttaagat 2350
aaaacttctt tcataggtaa aaaaaaaaa 2379
124
513
PRT
Homo Sapien
124
Met Gly Phe Asn Val Ile Arg Leu Leu Ser Gly Ser Ala Val Ala
1 5 10 15
Leu Val Ile Ala Pro Thr Val Leu Leu Thr Met Leu Ser Ser Ala
20 25 30
Glu Arg Gly Cys Pro Lys Gly Cys Arg Cys Glu Gly Lys Met Val
35 40 45
Tyr Cys Glu Ser Gln Lys Leu Gln Glu Ile Pro Ser Ser Ile Ser
50 55 60
Ala Gly Cys Leu Gly Leu Ser Leu Arg Tyr Asn Ser Leu Gln Lys
65 70 75
Leu Lys Tyr Asn Gln Phe Lys Gly Leu Asn Gln Leu Thr Trp Leu
80 85 90
Tyr Leu Asp His Asn His Ile Ser Asn Ile Asp Glu Asn Ala Phe
95 100 105
Asn Gly Ile Arg Arg Leu Lys Glu Leu Ile Leu Ser Ser Asn Arg
110 115 120
Ile Ser Tyr Phe Leu Asn Asn Thr Phe Arg Pro Val Thr Asn Leu
125 130 135
Arg Asn Leu Asp Leu Ser Tyr Asn Gln Leu His Ser Leu Gly Ser
140 145 150
Glu Gln Phe Arg Gly Leu Arg Lys Leu Leu Ser Leu His Leu Arg
155 160 165
Ser Asn Ser Leu Arg Thr Ile Pro Val Arg Ile Phe Gln Asp Cys
170 175 180
Arg Asn Leu Glu Leu Leu Asp Leu Gly Tyr Asn Arg Ile Arg Ser
185 190 195
Leu Ala Arg Asn Val Phe Ala Gly Met Ile Arg Leu Lys Glu Leu
200 205 210
His Leu Glu His Asn Gln Phe Ser Lys Leu Asn Leu Ala Leu Phe
215 220 225
Pro Arg Leu Val Ser Leu Gln Asn Leu Tyr Leu Gln Trp Asn Lys
230 235 240
Ile Ser Val Ile Gly Gln Thr Met Ser Trp Thr Trp Ser Ser Leu
245 250 255
Gln Arg Leu Asp Leu Ser Gly Asn Glu Ile Glu Ala Phe Ser Gly
260 265 270
Pro Ser Val Phe Gln Cys Val Pro Asn Leu Gln Arg Leu Asn Leu
275 280 285
Asp Ser Asn Lys Leu Thr Phe Ile Gly Gln Glu Ile Leu Asp Ser
290 295 300
Trp Ile Ser Leu Asn Asp Ile Ser Leu Ala Gly Asn Ile Trp Glu
305 310 315
Cys Ser Arg Asn Ile Cys Ser Leu Val Asn Trp Leu Lys Ser Phe
320 325 330
Lys Gly Leu Arg Glu Asn Thr Ile Ile Cys Ala Ser Pro Lys Glu
335 340 345
Leu Gln Gly Val Asn Val Ile Asp Ala Val Lys Asn Tyr Ser Ile
350 355 360
Cys Gly Lys Ser Thr Thr Glu Arg Phe Asp Leu Ala Arg Ala Leu
365 370 375
Pro Lys Pro Thr Phe Lys Pro Lys Leu Pro Arg Pro Lys His Glu
380 385 390
Ser Lys Pro Pro Leu Pro Pro Thr Val Gly Ala Thr Glu Pro Gly
395 400 405
Pro Glu Thr Asp Ala Asp Ala Glu His Ile Ser Phe His Lys Ile
410 415 420
Ile Ala Gly Ser Val Ala Leu Phe Leu Ser Val Leu Val Ile Leu
425 430 435
Leu Val Ile Tyr Val Ser Trp Lys Arg Tyr Pro Ala Ser Met Lys
440 445 450
Gln Leu Gln Gln Arg Ser Leu Met Arg Arg His Arg Lys Lys Lys
455 460 465
Arg Gln Ser Leu Lys Gln Met Thr Pro Ser Thr Gln Glu Phe Tyr
470 475 480
Val Asp Tyr Lys Pro Thr Asn Thr Glu Thr Ser Glu Met Leu Leu
485 490 495
Asn Gly Thr Gly Pro Cys Thr Tyr Asn Lys Ser Gly Ser Arg Glu
500 505 510
Cys Glu Val
125
998
DNA
Homo Sapien
125
ccgttatcgt cttgcgctac tgctgaatgt ccgtcccgga ggaggaggag 50
aggcttttgc cgctgaccca gagatggccc cgagcgagca aattcctact 100
gtccggctgc gcggctaccg tggccgagct agcaaccttt cccctggatc 150
tcacaaaaac tcgactccaa atgcaaggag aagcagctct tgctcggttg 200
ggagacggtg caagagaatc tgccccctat aggggaatgg tgcgcacagc 250
cctagggatc attgaagagg aaggctttct aaagctttgg caaggagtga 300
cacccgccat ttacagacac gtagtgtatt ctggaggtcg aatggtcaca 350
tatgaacatc tccgagaggt tgtgtttggc aaaagtgaag atgagcatta 400
tcccctttgg aaatcagtca ttggagggat gatggctggt gttattggcc 450
agtttttagc caatccaact gacctagtga aggttcagat gcaaatggaa 500
ggaaaaagga aactggaagg aaaaccattg cgatttcgtg gtgtacatca 550
tgcatttgca aaaatcttag ctgaaggagg aatacgaggg ctttgggcag 600
gctgggtacc caatatacaa agagcagcac tggtgaatat gggagattta 650
accacttatg atacagtgaa acactacttg gtattgaata caccacttga 700
ggacaatatc atgactcacg gtttatcaag tttatgttct ggactggtag 750
cttctattct gggaacacca gccgatgtca tcaaaagcag aataatgaat 800
caaccacgag ataaacaagg aaggggactt ttgtataaat catcgactga 850
ctgcttgatt caggctgttc aaggtgaagg attcatgagt ctatataaag 900
gctttttacc atcttggctg agaatgaccc cttggtcaat ggtgttctgg 950
cttacttatg aaaaaatcag agagatgagt ggagtcagtc cattttaa 998
126
323
PRT
Homo Sapien
126
Met Ser Val Pro Glu Glu Glu Glu Arg Leu Leu Pro Leu Thr Gln
1 5 10 15
Arg Trp Pro Arg Ala Ser Lys Phe Leu Leu Ser Gly Cys Ala Ala
20 25 30
Thr Val Ala Glu Leu Ala Thr Phe Pro Leu Asp Leu Thr Lys Thr
35 40 45
Arg Leu Gln Met Gln Gly Glu Ala Ala Leu Ala Arg Leu Gly Asp
50 55 60
Gly Ala Arg Glu Ser Ala Pro Tyr Arg Gly Met Val Arg Thr Ala
65 70 75
Leu Gly Ile Ile Glu Glu Glu Gly Phe Leu Lys Leu Trp Gln Gly
80 85 90
Val Thr Pro Ala Ile Tyr Arg His Val Val Tyr Ser Gly Gly Arg
95 100 105
Met Val Thr Tyr Glu His Leu Arg Glu Val Val Phe Gly Lys Ser
110 115 120
Glu Asp Glu His Tyr Pro Leu Trp Lys Ser Val Ile Gly Gly Met
125 130 135
Met Ala Gly Val Ile Gly Gln Phe Leu Ala Asn Pro Thr Asp Leu
140 145 150
Val Lys Val Gln Met Gln Met Glu Gly Lys Arg Lys Leu Glu Gly
155 160 165
Lys Pro Leu Arg Phe Arg Gly Val His His Ala Phe Ala Lys Ile
170 175 180
Leu Ala Glu Gly Gly Ile Arg Gly Leu Trp Ala Gly Trp Val Pro
185 190 195
Asn Ile Gln Arg Ala Ala Leu Val Asn Met Gly Asp Leu Thr Thr
200 205 210
Tyr Asp Thr Val Lys His Tyr Leu Val Leu Asn Thr Pro Leu Glu
215 220 225
Asp Asn Ile Met Thr His Gly Leu Ser Ser Leu Cys Ser Gly Leu
230 235 240
Val Ala Ser Ile Leu Gly Thr Pro Ala Asp Val Ile Lys Ser Arg
245 250 255
Ile Met Asn Gln Pro Arg Asp Lys Gln Gly Arg Gly Leu Leu Tyr
260 265 270
Lys Ser Ser Thr Asp Cys Leu Ile Gln Ala Val Gln Gly Glu Gly
275 280 285
Phe Met Ser Leu Tyr Lys Gly Phe Leu Pro Ser Trp Leu Arg Met
290 295 300
Thr Pro Trp Ser Met Val Phe Trp Leu Thr Tyr Glu Lys Ile Arg
305 310 315
Glu Met Ser Gly Val Ser Pro Phe
320
127
1505
DNA
Homo Sapien
127
cgcggatcgg acccaagcag gtcggcggcg gcggcaggag agcggccggg 50
cgtcagctcc tcgacccccg tgtcgggcta gtccagcgag gcggacgggc 100
ggcgtgggcc catggccagg cccggcatgg agcggtggcg cgaccggctg 150
gcgctggtga cgggggcctc ggggggcatc ggcgcggccg tggcccgggc 200
cctggtccag cagggactga aggtggtggg ctgcgcccgc actgtgggca 250
acatcgagga gctggctgct gaatgtaaga gtgcaggcta ccccgggact 300
ttgatcccct acagatgtga cctatcaaat gaagaggaca tcctctccat 350
gttctcagct atccgttctc agcacagcgg tgtagacatc tgcatcaaca 400
atgctggctt ggcccggcct gacaccctgc tctcaggcag caccagtggt 450
tggaaggaca tgttcaatgt gaacgtgctg gccctcagca tctgcacacg 500
ggaagcctac cagtccatga aggagcggaa tgtggacgat gggcacatca 550
ttaacatcaa tagcatgtct ggccaccgag tgttacccct gtctgtgacc 600
cacttctata gtgccaccaa gtatgccgtc actgcgctga cagagggact 650
gaggcaagag cttcgggagg cccagaccca catccgagcc acgtgcatct 700
ctccaggtgt ggtggagaca caattcgcct tcaaactcca cgacaaggac 750
cctgagaagg cagctgccac ctatgagcaa atgaagtgtc tcaaacccga 800
ggatgtggcc gaggctgtta tctacgtcct cagcaccccc gcacacatcc 850
agattggaga catccagatg aggcccacgg agcaggtgac ctagtgactg 900
tgggagctcc tccttccctc cccacccttc atggcttgcc tcctgcctct 950
ggattttagg tgttgatttc tggatcacgg gataccactt cctgtccaca 1000
ccccgaccag gggctagaaa atttgtttga gatttttata tcatcttgtc 1050
aaattgcttc agttgtaaat gtgaaaaatg ggctggggaa aggaggtggt 1100
gtccctaatt gttttacttg ttaacttgtt cttgtgcccc tgggcacttg 1150
gcctttgtct gctctcagtg tcttcccttt gacatgggaa aggagttgtg 1200
gccaaaatcc ccatcttctt gcacctcaac gtctgtggct cagggctggg 1250
gtggcagagg gaggccttca ccttatatct gtgttgttat ccagggctcc 1300
agacttcctc ctctgcctgc cccactgcac cctctccccc ttatctatct 1350
ccttctcggc tccccagccc agtcttggct tcttgtcccc tcctggggtc 1400
atccctccac tctgactctg actatggcag cagaacacca gggcctggcc 1450
cagtggattt catggtgatc attaaaaaag aaaaatcgca accaaaaaaa 1500
aaaaa 1505
128
260
PRT
Homo Sapien
128
Met Ala Arg Pro Gly Met Glu Arg Trp Arg Asp Arg Leu Ala Leu
1 5 10 15
Val Thr Gly Ala Ser Gly Gly Ile Gly Ala Ala Val Ala Arg Ala
20 25 30
Leu Val Gln Gln Gly Leu Lys Val Val Gly Cys Ala Arg Thr Val
35 40 45
Gly Asn Ile Glu Glu Leu Ala Ala Glu Cys Lys Ser Ala Gly Tyr
50 55 60
Pro Gly Thr Leu Ile Pro Tyr Arg Cys Asp Leu Ser Asn Glu Glu
65 70 75
Asp Ile Leu Ser Met Phe Ser Ala Ile Arg Ser Gln His Ser Gly
80 85 90
Val Asp Ile Cys Ile Asn Asn Ala Gly Leu Ala Arg Pro Asp Thr
95 100 105
Leu Leu Ser Gly Ser Thr Ser Gly Trp Lys Asp Met Phe Asn Val
110 115 120
Asn Val Leu Ala Leu Ser Ile Cys Thr Arg Glu Ala Tyr Gln Ser
125 130 135
Met Lys Glu Arg Asn Val Asp Asp Gly His Ile Ile Asn Ile Asn
140 145 150
Ser Met Ser Gly His Arg Val Leu Pro Leu Ser Val Thr His Phe
155 160 165
Tyr Ser Ala Thr Lys Tyr Ala Val Thr Ala Leu Thr Glu Gly Leu
170 175 180
Arg Gln Glu Leu Arg Glu Ala Gln Thr His Ile Arg Ala Thr Cys
185 190 195
Ile Ser Pro Gly Val Val Glu Thr Gln Phe Ala Phe Lys Leu His
200 205 210
Asp Lys Asp Pro Glu Lys Ala Ala Ala Thr Tyr Glu Gln Met Lys
215 220 225
Cys Leu Lys Pro Glu Asp Val Ala Glu Ala Val Ile Tyr Val Leu
230 235 240
Ser Thr Pro Ala His Ile Gln Ile Gly Asp Ile Gln Met Arg Pro
245 250 255
Thr Glu Gln Val Thr
260
129
1177
DNA
Homo Sapien
129
aacttctaca tgggcctcct gctgctggtg ctcttcctca gcctcctgcc 50
ggtggcctac accatcatgt ccctcccacc ctcctttgac tgcgggccgt 100
tcaggtgcag agtctcagtt gcccgggagc acctcccctc ccgaggcagt 150
ctgctcagag ggcctcggcc cagaattcca gttctggttt catgccagcc 200
tgtaaaaggc catggaactt tgggtgaatc accgatgcca tttaagaggg 250
ttttctgcca ggatggaaat gttaggtcgt tctgtgtctg cgctgttcat 300
ttcagtagcc accagccacc tgtggccgtt gagtgcttga aatgaggaac 350
tgagaaaatt aatttctcat gtatttttct catttattta ttaattttta 400
actgatagtt gtacatattt gggggtacat gtgatatttg gatacatgta 450
tacaatatat aatgatcaaa tcagggtaac tgggatatcc atcacatcaa 500
acatttattt tttattcttt ttagacagag tctcactctg tcacccaggc 550
tggagtgcag tggtgccatc tcagcttact gcaacctctg cctgccaggt 600
tcaagcgatt ctcatgcctc cacctcccaa gtagctggga ctacaggcat 650
gcaccacaat gcccaactaa tttttgtatt tttagtagag acggggtttt 700
gccatgttgc ccaggctggc cttgaactcc tggcctcaaa caatccactt 750
gcctcggcct cccaaagtgt tatgattaca ggcgtgagcc accgtgcctg 800
gcctaaacat ttatcttttc tttgtgttgg gaactttgaa attatacaat 850
gaattattgt taactgtcat ctccctgctg tgctatggaa cactgggact 900
tcttccctct atctaactgt atatttgtac cagttaacca accgtacttc 950
atccccactc ctctctatcc ttcccaacct ctgatcacct cattctactc 1000
tctacctcca tgagatccac ttttttagct cccacatgtg agtaagaaaa 1050
tgcaatattt gtctttctgt gcctggctta tttcacttaa cataatgact 1100
tcctgttcca tccatgttgc tgcaaatgac aggatttcgt tcttaatttc 1150
aattaaaata accacacatg gcaaaaa 1177
130
111
PRT
Homo Sapien
130
Met Gly Leu Leu Leu Leu Val Leu Phe Leu Ser Leu Leu Pro Val
1 5 10 15
Ala Tyr Thr Ile Met Ser Leu Pro Pro Ser Phe Asp Cys Gly Pro
20 25 30
Phe Arg Cys Arg Val Ser Val Ala Arg Glu His Leu Pro Ser Arg
35 40 45
Gly Ser Leu Leu Arg Gly Pro Arg Pro Arg Ile Pro Val Leu Val
50 55 60
Ser Cys Gln Pro Val Lys Gly His Gly Thr Leu Gly Glu Ser Pro
65 70 75
Met Pro Phe Lys Arg Val Phe Cys Gln Asp Gly Asn Val Arg Ser
80 85 90
Phe Cys Val Cys Ala Val His Phe Ser Ser His Gln Pro Pro Val
95 100 105
Ala Val Glu Cys Leu Lys
110
131
2061
DNA
Homo Sapien
131
ttctgaagta acggaagcta ccttgtataa agacctcaac actgctgacc 50
atgatcagcg cagcctggag catcttcctc atcgggacta aaattgggct 100
gttccttcaa gtagcacctc tatcagttat ggctaaatcc tgtccatctg 150
tgtgtcgctg cgatgcgggt ttcatttact gtaatgatcg ctttctgaca 200
tccattccaa caggaatacc agaggatgct acaactctct accttcagaa 250
caaccaaata aataatgctg ggattccttc agatttgaaa aacttgctga 300
aagtagaaag aatataccta taccacaaca gtttagatga atttcctacc 350
aacctcccaa agtatgtaaa agagttacat ttgcaagaaa ataacataag 400
gactatcact tatgattcac tttcaaaaat tccctatctg gaagaattac 450
atttagatga caactctgtc tctgcagtta gcatagaaga gggagcattc 500
cgagacagca actatctccg actgcttttc ctgtcccgta atcaccttag 550
cacaattccc tggggtttgc ccaggactat agaagaacta cgcttggatg 600
ataatcgcat atccactatt tcatcaccat ctcttcaagg tctcactagt 650
ctaaaacgcc tggttctaga tggaaacctg ttgaacaatc atggtttagg 700
tgacaaagtt ttcttcaacc tagttaattt gacagagctg tccctggtgc 750
ggaattccct gactgctgca ccagtaaacc ttccaggcac aaacctgagg 800
aagctttatc ttcaagataa ccacatcaat cgggtgcccc caaatgcttt 850
ttcttatcta aggcagctct atcgactgga tatgtccaat aataacctaa 900
gtaatttacc tcagggtatc tttgatgatt tggacaatat aacacaactg 950
attcttcgca acaatccctg gtattgcggg tgcaagatga aatgggtacg 1000
tgactggtta caatcactac ctgtgaaggt caacgtgcgt gggctcatgt 1050
gccaagcccc agaaaaggtt cgtgggatgg ctattaagga tctcaatgca 1100
gaactgtttg attgtaagga cagtgggatt gtaagcacca ttcagataac 1150
cactgcaata cccaacacag tgtatcctgc ccaaggacag tggccagctc 1200
cagtgaccaa acagccagat attaagaacc ccaagctcac taaggatcaa 1250
caaaccacag ggagtccctc aagaaaaaca attacaatta ctgtgaagtc 1300
tgtcacctct gataccattc atatctcttg gaaacttgct ctacctatga 1350
ctgctttgag actcagctgg cttaaactgg gccatagccc ggcatttgga 1400
tctataacag aaacaattgt aacaggggaa cgcagtgagt acttggtcac 1450
agccctggag cctgattcac cctataaagt atgcatggtt cccatggaaa 1500
ccagcaacct ctacctattt gatgaaactc ctgtttgtat tgagactgaa 1550
actgcacccc ttcgaatgta caaccctaca accaccctca atcgagagca 1600
agagaaagaa ccttacaaaa accccaattt acctttggct gccatcattg 1650
gtggggctgt ggccctggtt accattgccc ttcttgcttt agtgtgttgg 1700
tatgttcata ggaatggatc gctcttctca aggaactgtg catatagcaa 1750
agggaggaga agaaaggatg actatgcaga agctggcact aagaaggaca 1800
actctatcct ggaaatcagg gaaacttctt ttcagatgtt accaataagc 1850
aatgaaccca tctcgaagga ggagtttgta atacacacca tatttcctcc 1900
taatggaatg aatctgtaca aaaacaatca cagtgaaagc agtagtaacc 1950
gaagctacag agacagtggt attccagact cagatcactc acactcatga 2000
tgctgaagga ctcacagcag acttgtgttt tgggtttttt aaacctaagg 2050
gaggtgatgg t 2061
132
649
PRT
Homo Sapien
132
Met Ile Ser Ala Ala Trp Ser Ile Phe Leu Ile Gly Thr Lys Ile
1 5 10 15
Gly Leu Phe Leu Gln Val Ala Pro Leu Ser Val Met Ala Lys Ser
20 25 30
Cys Pro Ser Val Cys Arg Cys Asp Ala Gly Phe Ile Tyr Cys Asn
35 40 45
Asp Arg Phe Leu Thr Ser Ile Pro Thr Gly Ile Pro Glu Asp Ala
50 55 60
Thr Thr Leu Tyr Leu Gln Asn Asn Gln Ile Asn Asn Ala Gly Ile
65 70 75
Pro Ser Asp Leu Lys Asn Leu Leu Lys Val Glu Arg Ile Tyr Leu
80 85 90
Tyr His Asn Ser Leu Asp Glu Phe Pro Thr Asn Leu Pro Lys Tyr
95 100 105
Val Lys Glu Leu His Leu Gln Glu Asn Asn Ile Arg Thr Ile Thr
110 115 120
Tyr Asp Ser Leu Ser Lys Ile Pro Tyr Leu Glu Glu Leu His Leu
125 130 135
Asp Asp Asn Ser Val Ser Ala Val Ser Ile Glu Glu Gly Ala Phe
140 145 150
Arg Asp Ser Asn Tyr Leu Arg Leu Leu Phe Leu Ser Arg Asn His
155 160 165
Leu Ser Thr Ile Pro Trp Gly Leu Pro Arg Thr Ile Glu Glu Leu
170 175 180
Arg Leu Asp Asp Asn Arg Ile Ser Thr Ile Ser Ser Pro Ser Leu
185 190 195
Gln Gly Leu Thr Ser Leu Lys Arg Leu Val Leu Asp Gly Asn Leu
200 205 210
Leu Asn Asn His Gly Leu Gly Asp Lys Val Phe Phe Asn Leu Val
215 220 225
Asn Leu Thr Glu Leu Ser Leu Val Arg Asn Ser Leu Thr Ala Ala
230 235 240
Pro Val Asn Leu Pro Gly Thr Asn Leu Arg Lys Leu Tyr Leu Gln
245 250 255
Asp Asn His Ile Asn Arg Val Pro Pro Asn Ala Phe Ser Tyr Leu
260 265 270
Arg Gln Leu Tyr Arg Leu Asp Met Ser Asn Asn Asn Leu Ser Asn
275 280 285
Leu Pro Gln Gly Ile Phe Asp Asp Leu Asp Asn Ile Thr Gln Leu
290 295 300
Ile Leu Arg Asn Asn Pro Trp Tyr Cys Gly Cys Lys Met Lys Trp
305 310 315
Val Arg Asp Trp Leu Gln Ser Leu Pro Val Lys Val Asn Val Arg
320 325 330
Gly Leu Met Cys Gln Ala Pro Glu Lys Val Arg Gly Met Ala Ile
335 340 345
Lys Asp Leu Asn Ala Glu Leu Phe Asp Cys Lys Asp Ser Gly Ile
350 355 360
Val Ser Thr Ile Gln Ile Thr Thr Ala Ile Pro Asn Thr Val Tyr
365 370 375
Pro Ala Gln Gly Gln Trp Pro Ala Pro Val Thr Lys Gln Pro Asp
380 385 390
Ile Lys Asn Pro Lys Leu Thr Lys Asp Gln Gln Thr Thr Gly Ser
395 400 405
Pro Ser Arg Lys Thr Ile Thr Ile Thr Val Lys Ser Val Thr Ser
410 415 420
Asp Thr Ile His Ile Ser Trp Lys Leu Ala Leu Pro Met Thr Ala
425 430 435
Leu Arg Leu Ser Trp Leu Lys Leu Gly His Ser Pro Ala Phe Gly
440 445 450
Ser Ile Thr Glu Thr Ile Val Thr Gly Glu Arg Ser Glu Tyr Leu
455 460 465
Val Thr Ala Leu Glu Pro Asp Ser Pro Tyr Lys Val Cys Met Val
470 475 480
Pro Met Glu Thr Ser Asn Leu Tyr Leu Phe Asp Glu Thr Pro Val
485 490 495
Cys Ile Glu Thr Glu Thr Ala Pro Leu Arg Met Tyr Asn Pro Thr
500 505 510
Thr Thr Leu Asn Arg Glu Gln Glu Lys Glu Pro Tyr Lys Asn Pro
515 520 525
Asn Leu Pro Leu Ala Ala Ile Ile Gly Gly Ala Val Ala Leu Val
530 535 540
Thr Ile Ala Leu Leu Ala Leu Val Cys Trp Tyr Val His Arg Asn
545 550 555
Gly Ser Leu Phe Ser Arg Asn Cys Ala Tyr Ser Lys Gly Arg Arg
560 565 570
Arg Lys Asp Asp Tyr Ala Glu Ala Gly Thr Lys Lys Asp Asn Ser
575 580 585
Ile Leu Glu Ile Arg Glu Thr Ser Phe Gln Met Leu Pro Ile Ser
590 595 600
Asn Glu Pro Ile Ser Lys Glu Glu Phe Val Ile His Thr Ile Phe
605 610 615
Pro Pro Asn Gly Met Asn Leu Tyr Lys Asn Asn His Ser Glu Ser
620 625 630
Ser Ser Asn Arg Ser Tyr Arg Asp Ser Gly Ile Pro Asp Ser Asp
635 640 645
His Ser His Ser
133
1882
DNA
Homo Sapien
133
ccgtcatccc cctgcagcca cccttcccag agtcctttgc ccaggccacc 50
ccaggcttct tggcagccct gccgggccac ttgtcttcat gtctgccagg 100
gggaggtggg aaggaggtgg gaggagggcg tgcagaggca gtctgggctt 150
ggccagagct cagggtgctg agcgtgtgac cagcagtgag cagaggccgg 200
ccatggccag cctggggctg ctgctcctgc tcttactgac agcactgcca 250
ccgctgtggt cctcctcact gcctgggctg gacactgctg aaagtaaagc 300
caccattgca gacctgatcc tgtctgcgct ggagagagcc accgtcttcc 350
tagaacagag gctgcctgaa atcaacctgg atggcatggt gggggtccga 400
gtgctggaag agcagctaaa aagtgtccgg gagaagtggg cccaggagcc 450
cctgctgcag ccgctgagcc tgcgcgtggg gatgctgggg gagaagctgg 500
aggctgccat ccagagatcc ctccactacc tcaagctgag tgatcccaag 550
tacctaagag agttccagct gaccctccag cccgggtttt ggaagctccc 600
acatgcctgg atccacactg atgcctcctt ggtgtacccc acgttcgggc 650
cccaggactc attctcagag gagagaagtg acgtgtgcct ggtgcagctg 700
ctgggaaccg ggacggacag cagcgagccc tgcggcctct cagacctctg 750
caggagcctc atgaccaagc ccggctgctc aggctactgc ctgtcccacc 800
aactgctctt cttcctctgg gccagaatga ggggatgcac acagggacca 850
ctccaacaga gccaggacta tatcaacctc ttctgcgcca acatgatgga 900
cttgaaccgc agagctgagg ccatcggata cgcctaccct acccgggaca 950
tcttcatgga aaacatcatg ttctgtggaa tgggcggctt ctccgacttc 1000
tacaagctcc ggtggctgga ggccattctc agctggcaga aacagcagga 1050
aggatgcttc ggggagcctg atgctgaaga tgaagaatta tctaaagcta 1100
ttcaatatca gcagcatttt tcgaggagag tgaagaggcg agaaaaacaa 1150
tttccagatt ctcgctctgt tgctcaggct ggagtacagt ggcgcaatct 1200
cggctcactg caacctttgc ctcctgggtt caagcaattc tcttgcctca 1250
tcctcccgag tagctgggac tacaggagcg tgccaccata cctggctaat 1300
ttttatattt ttttagtaga gacagggttt catcatgttg ctcatgctgg 1350
tctcgaactc ctgatctcaa gagatccgcc cacctcaggc tcccaaagtg 1400
tgggattata ggtgtgagcc accgtgtctg gctgaaaagc actttcaaag 1450
agactgtgtt gaataaaggg ccaaggttct tgccacccag cactcatggg 1500
ggctctctcc cctagatggc tgctcctccc acaacacagc cacagcagtg 1550
gcagccctgg gtggcttcct atacatcctg gcagaatacc ccccagcaaa 1600
cagagagcca cacccatcca caccgccacc accaagcagc cgctgagacg 1650
gacggttcca tgccagctgc ctggaggagg aacagacccc tttagtcctc 1700
atcccttaga tcctggaggg cacggatcac atcctgggaa gaaggcatct 1750
ggaggataag caaagccacc ccgacaccca atcttggaag ccctgagtag 1800
gcagggccag ggtaggtggg ggccgggagg gacccaggtg tgaacggatg 1850
aataaagttc aactgcaact gaaaaaaaaa aa 1882
134
440
PRT
Homo Sapien
134
Met Ser Ala Arg Gly Arg Trp Glu Gly Gly Gly Arg Arg Ala Cys
1 5 10 15
Arg Gly Ser Leu Gly Leu Ala Arg Ala Gln Gly Ala Glu Arg Val
20 25 30
Thr Ser Ser Glu Gln Arg Pro Ala Met Ala Ser Leu Gly Leu Leu
35 40 45
Leu Leu Leu Leu Leu Thr Ala Leu Pro Pro Leu Trp Ser Ser Ser
50 55 60
Leu Pro Gly Leu Asp Thr Ala Glu Ser Lys Ala Thr Ile Ala Asp
65 70 75
Leu Ile Leu Ser Ala Leu Glu Arg Ala Thr Val Phe Leu Glu Gln
80 85 90
Arg Leu Pro Glu Ile Asn Leu Asp Gly Met Val Gly Val Arg Val
95 100 105
Leu Glu Glu Gln Leu Lys Ser Val Arg Glu Lys Trp Ala Gln Glu
110 115 120
Pro Leu Leu Gln Pro Leu Ser Leu Arg Val Gly Met Leu Gly Glu
125 130 135
Lys Leu Glu Ala Ala Ile Gln Arg Ser Leu His Tyr Leu Lys Leu
140 145 150
Ser Asp Pro Lys Tyr Leu Arg Glu Phe Gln Leu Thr Leu Gln Pro
155 160 165
Gly Phe Trp Lys Leu Pro His Ala Trp Ile His Thr Asp Ala Ser
170 175 180
Leu Val Tyr Pro Thr Phe Gly Pro Gln Asp Ser Phe Ser Glu Glu
185 190 195
Arg Ser Asp Val Cys Leu Val Gln Leu Leu Gly Thr Gly Thr Asp
200 205 210
Ser Ser Glu Pro Cys Gly Leu Ser Asp Leu Cys Arg Ser Leu Met
215 220 225
Thr Lys Pro Gly Cys Ser Gly Tyr Cys Leu Ser His Gln Leu Leu
230 235 240
Phe Phe Leu Trp Ala Arg Met Arg Gly Cys Thr Gln Gly Pro Leu
245 250 255
Gln Gln Ser Gln Asp Tyr Ile Asn Leu Phe Cys Ala Asn Met Met
260 265 270
Asp Leu Asn Arg Arg Ala Glu Ala Ile Gly Tyr Ala Tyr Pro Thr
275 280 285
Arg Asp Ile Phe Met Glu Asn Ile Met Phe Cys Gly Met Gly Gly
290 295 300
Phe Ser Asp Phe Tyr Lys Leu Arg Trp Leu Glu Ala Ile Leu Ser
305 310 315
Trp Gln Lys Gln Gln Glu Gly Cys Phe Gly Glu Pro Asp Ala Glu
320 325 330
Asp Glu Glu Leu Ser Lys Ala Ile Gln Tyr Gln Gln His Phe Ser
335 340 345
Arg Arg Val Lys Arg Arg Glu Lys Gln Phe Pro Asp Ser Arg Ser
350 355 360
Val Ala Gln Ala Gly Val Gln Trp Arg Asn Leu Gly Ser Leu Gln
365 370 375
Pro Leu Pro Pro Gly Phe Lys Gln Phe Ser Cys Leu Ile Leu Pro
380 385 390
Ser Ser Trp Asp Tyr Arg Ser Val Pro Pro Tyr Leu Ala Asn Phe
395 400 405
Tyr Ile Phe Leu Val Glu Thr Gly Phe His His Val Ala His Ala
410 415 420
Gly Leu Glu Leu Leu Ile Ser Arg Asp Pro Pro Thr Ser Gly Ser
425 430 435
Gln Ser Val Gly Leu
440
135
884
DNA
Homo Sapien
135
ggtctgagtg cagagctgct gtcatggcgg ccgctctgtg gggcttcttt 50
cccgtcctgc tgctgctgct gctatcgggg gatgtccaga gctcggaggt 100
gcccggggct gctgctgagg gatcgggagg gagtggggtc ggcataggag 150
atcgcttcaa gattgagggg cgtgcagttg ttccaggggt gaagcctcag 200
gactggatct cggcggcccg agtgctggta gacggagaag agcacgtcgg 250
tttccttaag acagatggga gttttgtggt tcatgatata ccttctggat 300
cttatgtagt ggaagttgta tctccagctt acagatttga tcccgttcga 350
gtggatatca cttcgaaagg aaaaatgaga gcaagatatg tgaattacat 400
caaaacatca gaggttgtca gactgcccta tcctctccaa atgaaatctt 450
caggtccacc ttcttacttt attaaaaggg aatcgtgggg ctggacagac 500
tttctaatga acccaatggt tatgatgatg gttcttcctt tattgatatt 550
tgtgcttctg cctaaagtgg tcaacacaag tgatcctgac atgagacggg 600
aaatggagca gtcaatgaat atgctgaatt ccaaccatga gttgcctgat 650
gtttctgagt tcatgacaag actcttctct tcaaaatcat ctggcaaatc 700
tagcagcggc agcagtaaaa caggcaaaag tggggctggc aaaaggaggt 750
agtcaggccg tccagagctg gcatttgcac aaacacggca acactgggtg 800
gcatccaagt cttggaaaac cgtgtgaagc aactactata aacttgagtc 850
atcccgacgt tgatctctta caactgtgta tgtt 884
136
242
PRT
Homo Sapien
136
Met Ala Ala Ala Leu Trp Gly Phe Phe Pro Val Leu Leu Leu Leu
1 5 10 15
Leu Leu Ser Gly Asp Val Gln Ser Ser Glu Val Pro Gly Ala Ala
20 25 30
Ala Glu Gly Ser Gly Gly Ser Gly Val Gly Ile Gly Asp Arg Phe
35 40 45
Lys Ile Glu Gly Arg Ala Val Val Pro Gly Val Lys Pro Gln Asp
50 55 60
Trp Ile Ser Ala Ala Arg Val Leu Val Asp Gly Glu Glu His Val
65 70 75
Gly Phe Leu Lys Thr Asp Gly Ser Phe Val Val His Asp Ile Pro
80 85 90
Ser Gly Ser Tyr Val Val Glu Val Val Ser Pro Ala Tyr Arg Phe
95 100 105
Asp Pro Val Arg Val Asp Ile Thr Ser Lys Gly Lys Met Arg Ala
110 115 120
Arg Tyr Val Asn Tyr Ile Lys Thr Ser Glu Val Val Arg Leu Pro
125 130 135
Tyr Pro Leu Gln Met Lys Ser Ser Gly Pro Pro Ser Tyr Phe Ile
140 145 150
Lys Arg Glu Ser Trp Gly Trp Thr Asp Phe Leu Met Asn Pro Met
155 160 165
Val Met Met Met Val Leu Pro Leu Leu Ile Phe Val Leu Leu Pro
170 175 180
Lys Val Val Asn Thr Ser Asp Pro Asp Met Arg Arg Glu Met Glu
185 190 195
Gln Ser Met Asn Met Leu Asn Ser Asn His Glu Leu Pro Asp Val
200 205 210
Ser Glu Phe Met Thr Arg Leu Phe Ser Ser Lys Ser Ser Gly Lys
215 220 225
Ser Ser Ser Gly Ser Ser Lys Thr Gly Lys Ser Gly Ala Gly Lys
230 235 240
Arg Arg
137
1571
DNA
Homo Sapien
137
gatggcgcag ccacagcttc tgtgagattc gatttctccc cagttcccct 50
gtgggtctga ggggaccaga agggtgagct acgttggctt tctggaaggg 100
gaggctatat gcgtcaattc cccaaaacaa gttttgacat ttcccctgaa 150
atgtcattct ctatctattc actgcaagtg cctgctgttc caggccttac 200
ctgctgggca ctaacggcgg agccaggatg gggacagaat aaaggagcca 250
cgacctgtgc caccaactcg cactcagact ctgaactcag acctgaaatc 300
ttctcttcac gggaggcttg gcagtttttc ttactcctgt ggtctccaga 350
tttcaggcct aagatgaaag cctctagtct tgccttcagc cttctctctg 400
ctgcgtttta tctcctatgg actccttcca ctggactgaa gacactcaat 450
ttgggaagct gtgtgatcgc cacaaacctt caggaaatac gaaatggatt 500
ttctgagata cggggcagtg tgcaagccaa agatggaaac attgacatca 550
gaatcttaag gaggactgag tctttgcaag acacaaagcc tgcgaatcga 600
tgctgcctcc tgcgccattt gctaagactc tatctggaca gggtatttaa 650
aaactaccag acccctgacc attatactct ccggaagatc agcagcctcg 700
ccaattcctt tcttaccatc aagaaggacc tccggctctc tcatgcccac 750
atgacatgcc attgtgggga ggaagcaatg aagaaataca gccagattct 800
gagtcacttt gaaaagctgg aacctcaggc agcagttgtg aaggctttgg 850
gggaactaga cattcttctg caatggatgg aggagacaga ataggaggaa 900
agtgatgctg ctgctaagaa tattcgaggt caagagctcc agtcttcaat 950
acctgcagag gaggcatgac cccaaaccac catctcttta ctgtactagt 1000
cttgtgctgg tcacagtgta tcttatttat gcattacttg cttccttgca 1050
tgattgtctt tatgcatccc caatcttaat tgagaccata cttgtataag 1100
atttttgtaa tatctttctg ctattggata tatttattag ttaatatatt 1150
tatttatttt ttgctattta atgtatttat ttttttactt ggacatgaaa 1200
ctttaaaaaa attcacagat tatatttata acctgactag agcaggtgat 1250
gtatttttat acagtaaaaa aaaaaaacct tgtaaattct agaagagtgg 1300
ctaggggggt tattcatttg tattcaacta aggacatatt tactcatgct 1350
gatgctctgt gagatatttg aaattgaacc aatgactact taggatgggt 1400
tgtggaataa gttttgatgt ggaattgcac atctacctta caattactga 1450
ccatccccag tagactcccc agtcccataa ttgtgtatct tccagccagg 1500
aatcctacac ggccagcatg tatttctaca aataaagttt tctttgcata 1550
ccaaaaaaaa aaaaaaaaaa a 1571
138
261
PRT
Homo Sapien
138
Met Arg Gln Phe Pro Lys Thr Ser Phe Asp Ile Ser Pro Glu Met
1 5 10 15
Ser Phe Ser Ile Tyr Ser Leu Gln Val Pro Ala Val Pro Gly Leu
20 25 30
Thr Cys Trp Ala Leu Thr Ala Glu Pro Gly Trp Gly Gln Asn Lys
35 40 45
Gly Ala Thr Thr Cys Ala Thr Asn Ser His Ser Asp Ser Glu Leu
50 55 60
Arg Pro Glu Ile Phe Ser Ser Arg Glu Ala Trp Gln Phe Phe Leu
65 70 75
Leu Leu Trp Ser Pro Asp Phe Arg Pro Lys Met Lys Ala Ser Ser
80 85 90
Leu Ala Phe Ser Leu Leu Ser Ala Ala Phe Tyr Leu Leu Trp Thr
95 100 105
Pro Ser Thr Gly Leu Lys Thr Leu Asn Leu Gly Ser Cys Val Ile
110 115 120
Ala Thr Asn Leu Gln Glu Ile Arg Asn Gly Phe Ser Glu Ile Arg
125 130 135
Gly Ser Val Gln Ala Lys Asp Gly Asn Ile Asp Ile Arg Ile Leu
140 145 150
Arg Arg Thr Glu Ser Leu Gln Asp Thr Lys Pro Ala Asn Arg Cys
155 160 165
Cys Leu Leu Arg His Leu Leu Arg Leu Tyr Leu Asp Arg Val Phe
170 175 180
Lys Asn Tyr Gln Thr Pro Asp His Tyr Thr Leu Arg Lys Ile Ser
185 190 195
Ser Leu Ala Asn Ser Phe Leu Thr Ile Lys Lys Asp Leu Arg Leu
200 205 210
Ser His Ala His Met Thr Cys His Cys Gly Glu Glu Ala Met Lys
215 220 225
Lys Tyr Ser Gln Ile Leu Ser His Phe Glu Lys Leu Glu Pro Gln
230 235 240
Ala Ala Val Val Lys Ala Leu Gly Glu Leu Asp Ile Leu Leu Gln
245 250 255
Trp Met Glu Glu Thr Glu
260
139
2395
DNA
Homo Sapien
139
cctggagccg gaagcgcggc tgcagcaggg cgaggctcca ggtggggtcg 50
gttccgcatc cagcctagcg tgtccacgat gcggctgggc tccgggactt 100
tcgctacctg ttgcgtagcg atcgaggtgc tagggatcgc ggtcttcctt 150
cggggattct tcccggctcc cgttcgttcc tctgccagag cggaacacgg 200
agcggagccc ccagcgcccg aaccctcggc tggagccagt tctaactgga 250
ccacgctgcc accacctctc ttcagtaaag ttgttattgt tctgatagat 300
gccttgagag atgattttgt gtttgggtca aagggtgtga aatttatgcc 350
ctacacaact taccttgtgg aaaaaggagc atctcacagt tttgtggctg 400
aagcaaagcc acctacagtt actatgcctc gaatcaaggc attgatgacg 450
gggagccttc ctggctttgt cgacgtcatc aggaacctca attctcctgc 500
actgctggaa gacagtgtga taagacaagc aaaagcagct ggaaaaagaa 550
tagtctttta tggagatgaa acctgggtta aattattccc aaagcatttt 600
gtggaatatg atggaacaac ctcatttttc gtgtcagatt acacagaggt 650
ggataataat gtcacgaggc atttggataa agtattaaaa agaggagatt 700
gggacatatt aatcctccac tacctggggc tggaccacat tggccacatt 750
tcagggccca acagccccct gattgggcag aagctgagcg agatggacag 800
cgtgctgatg aagatccaca cctcactgca gtcgaaggag agagagacgc 850
ctttacccaa tttgctggtt ctttgtggtg accatggcat gtctgaaaca 900
ggaagtcacg gggcctcctc caccgaggag gtgaatacac ctctgatttt 950
aatcagttct gcgtttgaaa ggaaacccgg tgatatccga catccaaagc 1000
acgtccaata gacggatgtg gctgcgacac tggcgatagc acttggctta 1050
ccgattccaa aagacagtgt agggagcctc ctattcccag ttgtggaagg 1100
aagaccaatg agagagcagt tgagattttt acatttgaat acagtgcagc 1150
ttagtaaact gttgcaagag aatgtgccgt catatgaaaa agatcctggg 1200
tttgagcagt ttaaaatgtc agaaagattg catgggaact ggatcagact 1250
gtacttggag gaaaagcatt cagaagtcct attcaacctg ggctccaagg 1300
ttctcaggca gtacctggat gctctgaaga cgctgagctt gtccctgagt 1350
gcacaagtgg cccagttctc accctgctcc tgctcagcgt cccacaggca 1400
ctgcacagaa aggctgagct ggaagtccca ctgtcatctc ctgggttttc 1450
tctgctcttt tatttggtga tcctggttct ttcggccgtt cacgtcattg 1500
tgtgcacctc agctgaaagt tcgtgctact tctgtggcct ctcgtggctg 1550
gcggcaggct gcctttcgtt taccagactc tggttgaaca cctggtgtgt 1600
gccaagtgct ggcagtgccc tggacagggg gcctcaggga aggacgtgga 1650
gcagccttat cccaggcctc tgggtgtccc gacacaggtg ttcacatctg 1700
tgctgtcagg tcagatgcct cagttcttgg aaagctaggt tcctgcgact 1750
gttaccaagg tgattgtaaa gagctggcgg tcacagagga acaagccccc 1800
cagctgaggg ggtgtgtgaa tcggacagcc tcccagcaga ggtgtgggag 1850
ctgcagctga gggaagaaga gacaatcggc ctggacactc aggagggtca 1900
aaaggagact tggtcgcacc actcatcctg ccacccccag aatgcatcct 1950
gcctcatcag gtccagattt ctttccaagg cggacgtttt ctgttggaat 2000
tcttagtcct tggcctcgga caccttcatt cgttagctgg ggagtggtgg 2050
tgaggcagtg aagaagaggc ggatggtcac actcagatcc acagagccca 2100
ggatcaaggg acccactgca gtggcagcag gactgttggg cccccacccc 2150
aaccctgcac agccctcatc ccctcttggc ttgagccgtc agaggccctg 2200
tgctgagtgt ctgaccgaga cactcacagc tttgtcatca gggcacaggc 2250
ttcctcggag ccaggatgat ctgtgccacg cttgcacctc gggcccatct 2300
gggctcatgc tctctctcct gctattgaat tagtacctag ctgcacacag 2350
tatgtagtta ccaaaagaat aaacggcaat aattgagaaa aaaaa 2395
140
310
PRT
Homo Sapien
140
Met Arg Leu Gly Ser Gly Thr Phe Ala Thr Cys Cys Val Ala Ile
1 5 10 15
Glu Val Leu Gly Ile Ala Val Phe Leu Arg Gly Phe Phe Pro Ala
20 25 30
Pro Val Arg Ser Ser Ala Arg Ala Glu His Gly Ala Glu Pro Pro
35 40 45
Ala Pro Glu Pro Ser Ala Gly Ala Ser Ser Asn Trp Thr Thr Leu
50 55 60
Pro Pro Pro Leu Phe Ser Lys Val Val Ile Val Leu Ile Asp Ala
65 70 75
Leu Arg Asp Asp Phe Val Phe Gly Ser Lys Gly Val Lys Phe Met
80 85 90
Pro Tyr Thr Thr Tyr Leu Val Glu Lys Gly Ala Ser His Ser Phe
95 100 105
Val Ala Glu Ala Lys Pro Pro Thr Val Thr Met Pro Arg Ile Lys
110 115 120
Ala Leu Met Thr Gly Ser Leu Pro Gly Phe Val Asp Val Ile Arg
125 130 135
Asn Leu Asn Ser Pro Ala Leu Leu Glu Asp Ser Val Ile Arg Gln
140 145 150
Ala Lys Ala Ala Gly Lys Arg Ile Val Phe Tyr Gly Asp Glu Thr
155 160 165
Trp Val Lys Leu Phe Pro Lys His Phe Val Glu Tyr Asp Gly Thr
170 175 180
Thr Ser Phe Phe Val Ser Asp Tyr Thr Glu Val Asp Asn Asn Val
185 190 195
Thr Arg His Leu Asp Lys Val Leu Lys Arg Gly Asp Trp Asp Ile
200 205 210
Leu Ile Leu His Tyr Leu Gly Leu Asp His Ile Gly His Ile Ser
215 220 225
Gly Pro Asn Ser Pro Leu Ile Gly Gln Lys Leu Ser Glu Met Asp
230 235 240
Ser Val Leu Met Lys Ile His Thr Ser Leu Gln Ser Lys Glu Arg
245 250 255
Glu Thr Pro Leu Pro Asn Leu Leu Val Leu Cys Gly Asp His Gly
260 265 270
Met Ser Glu Thr Gly Ser His Gly Ala Ser Ser Thr Glu Glu Val
275 280 285
Asn Thr Pro Leu Ile Leu Ile Ser Ser Ala Phe Glu Arg Lys Pro
290 295 300
Gly Asp Ile Arg His Pro Lys His Val Gln
305 310
141
754
DNA
Homo Sapien
141
ggcacgaggc aagccttcca ggttatcgtg acgcaccttg aaagtctgag 50
agctactgcc ctacagaaag ttactagtgc cctaaagctg gcgctggcac 100
tgatgttact gctgctgttg gagtacaact tccctataga aaacaactgc 150
cagcacctta agaccactca caccttcaga gtgaagaact taaacccgaa 200
gaaattcagc attcatgacc aggatcacaa agtactggtc ctggactctg 250
ggaatctcat agcagttcca gataaaaact acatacgccc agagatcttc 300
tttgcattag cctcatcctt gagctcagcc tctgcggaga aaggaagtcc 350
gattctcctg ggggtctcta aaggggagtt ttgtctctac tgtgacaagg 400
ataaaggaca aagtcatcca tcccttcagc tgaagaagga gaaactgatg 450
aagctggctg cccaaaagga atcagcacgc cggcccttca tcttttatag 500
ggctcaggtg ggctcctgga acatgctgga gtcggcggct caccccggat 550
ggttcatctg cacctcctgc aattgtaatg agcctgttgg ggtgacagat 600
aaatttgaga acaggaaaca cattgaattt tcatttcaac cagtttgcaa 650
agctgaaatg agccccagtg aggtcagcga ttaggaaact gccccattga 700
acgccttcct cgctaatttg aactaattgt ataaaaacac caaacctgct 750
cact 754
142
193
PRT
Homo Sapien
142
Met Leu Leu Leu Leu Leu Glu Tyr Asn Phe Pro Ile Glu Asn Asn
1 5 10 15
Cys Gln His Leu Lys Thr Thr His Thr Phe Arg Val Lys Asn Leu
20 25 30
Asn Pro Lys Lys Phe Ser Ile His Asp Gln Asp His Lys Val Leu
35 40 45
Val Leu Asp Ser Gly Asn Leu Ile Ala Val Pro Asp Lys Asn Tyr
50 55 60
Ile Arg Pro Glu Ile Phe Phe Ala Leu Ala Ser Ser Leu Ser Ser
65 70 75
Ala Ser Ala Glu Lys Gly Ser Pro Ile Leu Leu Gly Val Ser Lys
80 85 90
Gly Glu Phe Cys Leu Tyr Cys Asp Lys Asp Lys Gly Gln Ser His
95 100 105
Pro Ser Leu Gln Leu Lys Lys Glu Lys Leu Met Lys Leu Ala Ala
110 115 120
Gln Lys Glu Ser Ala Arg Arg Pro Phe Ile Phe Tyr Arg Ala Gln
125 130 135
Val Gly Ser Trp Asn Met Leu Glu Ser Ala Ala His Pro Gly Trp
140 145 150
Phe Ile Cys Thr Ser Cys Asn Cys Asn Glu Pro Val Gly Val Thr
155 160 165
Asp Lys Phe Glu Asn Arg Lys His Ile Glu Phe Ser Phe Gln Pro
170 175 180
Val Cys Lys Ala Glu Met Ser Pro Ser Glu Val Ser Asp
185 190
143
961
DNA
Homo Sapien
143
ctagagagta tagggcagaa ggatggcaga tgagtgactc cacatccaga 50
gctgcctccc tttaatccag gatcctgtcc ttcctgtcct gtaggagtgc 100
ctgttgccag tgtggggtga gacaagtttg tcccacaggg ctgtctgagc 150
agataagatt aagggctggg tctgtgctca attaactcct gtgggcacgg 200
gggctgggaa gagcaaagtc agcggtgcct acagtcagca ccatgctggg 250
cctgccgtgg aagggaggtc tgtcctgggc gctgctgctg cttctcttag 300
gctcccagat cctgctgatc tatgcctggc atttccacga gcaaagggac 350
tgtgatgaac acaatgtcat ggctcgttac ctccctgcca cagtggagtt 400
tgctgtccac acattcaacc aacagagcaa ggactactat gcctacagac 450
tggggcacat cttgaattcc tggaaggagc aggtggagtc caagactgta 500
ttctcaatgg agctactgct ggggagaact aggtgtggga aatttgaaga 550
cgacattgac aactgccatt tccaagaaag cacagagctg aacaatactt 600
tcacctgctt cttcaccatc agcaccaggc cctggatgac tcagttcagc 650
ctcctgaaca agacctgctt ggagggattc cactgagtga aacccactca 700
caggcttgtc catgtgctgc tcccacattc cgtggacatc agcactactc 750
tcctgaggac tcttcagtgg ctgagcagct ttggacttgt ttgttatcct 800
attttgcatg tgtttgagat ctcagatcag tgttttagaa aatccacaca 850
tcttgagcct aatcatgtag tgtagatcat taaacatcag cattttaaga 900
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 950
aaaaaaaaaa a 961
144
147
PRT
Homo Sapien
144
Met Leu Gly Leu Pro Trp Lys Gly Gly Leu Ser Trp Ala Leu Leu
1 5 10 15
Leu Leu Leu Leu Gly Ser Gln Ile Leu Leu Ile Tyr Ala Trp His
20 25 30
Phe His Glu Gln Arg Asp Cys Asp Glu His Asn Val Met Ala Arg
35 40 45
Tyr Leu Pro Ala Thr Val Glu Phe Ala Val His Thr Phe Asn Gln
50 55 60
Gln Ser Lys Asp Tyr Tyr Ala Tyr Arg Leu Gly His Ile Leu Asn
65 70 75
Ser Trp Lys Glu Gln Val Glu Ser Lys Thr Val Phe Ser Met Glu
80 85 90
Leu Leu Leu Gly Arg Thr Arg Cys Gly Lys Phe Glu Asp Asp Ile
95 100 105
Asp Asn Cys His Phe Gln Glu Ser Thr Glu Leu Asn Asn Thr Phe
110 115 120
Thr Cys Phe Phe Thr Ile Ser Thr Arg Pro Trp Met Thr Gln Phe
125 130 135
Ser Leu Leu Asn Lys Thr Cys Leu Glu Gly Phe His
140 145
145
1157
DNA
Homo Sapien
145
ctgtgcagct cgaggctcca gaggcacact ccagagagag ccaaggttct 50
gacgcgatga ggaagcacct gagctggtgg tggctggcca ctgtctgcat 100
gctgctcttc agccacctct ctgcggtcca gacgaggggc atcaagcaca 150
gaatcaagtg gaaccggaag gccctgccca gcactgccca gatcactgag 200
gcccaggtgg ctgagaaccg cccgggagcc ttcatcaagc aaggccgcaa 250
gctcgacatt gacttcggag ccgagggcaa caggtactac gaggccaact 300
actggcagtt ccccgatggc atccactaca acggctgctc tgaggctaat 350
gtgaccaagg aggcatttgt caccggctgc atcaatgcca cccaggcggc 400
gaaccagggg gagttccaga agccagacaa caagctccac cagcaggtgc 450
tctggcggct ggtccaggag ctctgctccc tcaagcattg cgagttttgg 500
ttggagaggg gcgcaggact tcgggtcacc atgcaccagc cagtgctcct 550
ctgccttctg gctttgatct ggctcatggt gaaataagct tgccaggagg 600
ctggcagtac agagcgcagc agcgagcaaa tcctggcaag tgacccagct 650
cttctccccc aaacccacgc gtgttctgaa ggtgcccagg agcggcgatg 700
cactcgcact gcaaatgccg ctcccacgta tgcgccctgg tatgtgcctg 750
cgttctgata gatgggggac tgtggcttct ccgtcactcc attctcagcc 800
cctagcagag cgtctggcac actagattag tagtaaatgc ttgatgagaa 850
gaacacatca ggcactgcgc cacctgcttc acagtacttc ccaacaactc 900
ttagaggtag gtgtattccc gttttacaga taaggaaact gaggcccaga 950
gagctgaagt actgcaccca gcatcaccag ctagaaagtg gcagagccag 1000
gattcaaccc tggcttgtct aaccccaggt tttctgctct gtccaattcc 1050
agagctgtct ggtgatcact ttatgtctca cagggaccca catccaaaca 1100
tgtatctcta atgaaattgt gaaagctcca tgtttagaaa taaatgaaaa 1150
cacctga 1157
146
176
PRT
Homo Sapien
146
Met Arg Lys His Leu Ser Trp Trp Trp Leu Ala Thr Val Cys Met
1 5 10 15
Leu Leu Phe Ser His Leu Ser Ala Val Gln Thr Arg Gly Ile Lys
20 25 30
His Arg Ile Lys Trp Asn Arg Lys Ala Leu Pro Ser Thr Ala Gln
35 40 45
Ile Thr Glu Ala Gln Val Ala Glu Asn Arg Pro Gly Ala Phe Ile
50 55 60
Lys Gln Gly Arg Lys Leu Asp Ile Asp Phe Gly Ala Glu Gly Asn
65 70 75
Arg Tyr Tyr Glu Ala Asn Tyr Trp Gln Phe Pro Asp Gly Ile His
80 85 90
Tyr Asn Gly Cys Ser Glu Ala Asn Val Thr Lys Glu Ala Phe Val
95 100 105
Thr Gly Cys Ile Asn Ala Thr Gln Ala Ala Asn Gln Gly Glu Phe
110 115 120
Gln Lys Pro Asp Asn Lys Leu His Gln Gln Val Leu Trp Arg Leu
125 130 135
Val Gln Glu Leu Cys Ser Leu Lys His Cys Glu Phe Trp Leu Glu
140 145 150
Arg Gly Ala Gly Leu Arg Val Thr Met His Gln Pro Val Leu Leu
155 160 165
Cys Leu Leu Ala Leu Ile Trp Leu Met Val Lys
170 175
147
333
DNA
Homo Sapien
147
gccttggcct cccaaagggc tgggattata ggcgtgacca ccatgtctgg 50
tccagagtct catttcctga tgatttatag actcaaagaa aactcatgtt 100
cagaagctct cttctcttct ggcctcctct ctgtcttctt tccctctttc 150
ttcttatttt aattagtagc atctactcag agtcatgcaa gctggaaatc 200
tttcattttg cttgtcagtg gggtaggtca ctgagtctta gtttttattt 250
tttgaaattt caactttcag attcaggggg tacatgtgaa ggtttgtttt 300
atgagtatat tgcatgatgc tgaggtttgg ggt 333
148
73
PRT
Homo Sapien
148
Met Phe Arg Ser Ser Leu Leu Phe Trp Pro Pro Leu Cys Leu Leu
1 5 10 15
Ser Leu Phe Leu Leu Ile Leu Ile Ser Ser Ile Tyr Ser Glu Ser
20 25 30
Cys Lys Leu Glu Ile Phe His Phe Ala Cys Gln Trp Gly Arg Ser
35 40 45
Leu Ser Leu Ser Phe Tyr Phe Leu Lys Phe Gln Leu Ser Asp Ser
50 55 60
Gly Gly Thr Cys Glu Gly Leu Phe Tyr Glu Tyr Ile Ala
65 70
149
1893
DNA
Homo Sapien
149
gtctccgcgt cacaggaact tcagcaccca cagggcggac agcgctcccc 50
tctacctgga gacttgactc ccgcgcgccc caaccctgct tatcccttga 100
ccgtcgagtg tcagagatcc tgcagccgcc cagtcccggc ccctctcccg 150
ccccacaccc accctcctgg ctcttcctgt ttttactcct ccttttcatt 200
cataacaaaa gctacagctc caggagccca gcgccgggct gtgacccaag 250
ccgagcgtgg aagaatgggg ttcctcggga ccggcacttg gattctggtg 300
ttagtgctcc cgattcaagc tttccccaaa cctggaggaa gccaagacaa 350
atctctacat aatagagaat taagtgcaga aagacctttg aatgaacaga 400
ttgctgaagc agaagaagac aagattaaaa aaacatatcc tccagaaaac 450
aagccaggtc agagcaacta ttcttttgtt gataacttga acctgctaaa 500
ggcaataaca gaaaaggaaa aaattgagaa agaaagacaa tctataagaa 550
gctccccact tgataataag ttgaatgtgg aagatgttga ttcaaccaag 600
aatcgaaaac tgatcgatga ttatgactct actaagagtg gattggatca 650
taaatttcaa gatgatccag atggtcttca tcaactagac gggactcctt 700
taaccgctga agacattgtc cataaaatcg ctgccaggat ttatgaagaa 750
aatgacagag ccgtgtttga caagattgtt tctaaactac ttaatctcgg 800
ccttatcaca gaaagccaag cacatacact ggaagatgaa gtagcagagg 850
ttttacaaaa attaatctca aaggaagcca acaattatga ggaggatccc 900
aataagccca caagctggac tgagaatcag gctggaaaaa taccagagaa 950
agtgactcca atggcagcaa ttcaagatgg tcttgctaag ggagaaaacg 1000
atgaaacagt atctaacaca ttaaccttga caaatggctt ggaaaggaga 1050
actaaaacct acagtgaaga caactttgag gaactccaat atttcccaaa 1100
tttctatgcg ctactgaaaa gtattgattc agaaaaagaa gcaaaagaga 1150
aagaaacact gattactatc atgaaaacac tgattgactt tgtgaagatg 1200
atggtgaaat atggaacaat atctccagaa gaaggtgttt cctaccttga 1250
aaacttggat gaaatgattg ctcttcagac caaaaacaag ctagaaaaaa 1300
atgctactga caatataagc aagcttttcc cagcaccatc agagaagagt 1350
catgaagaaa cagacagtac caaggaagaa gcagctaaga tggaaaagga 1400
atatggaagc ttgaaggatt ccacaaaaga tgataactcc aacccaggag 1450
gaaagacaga tgaacccaaa ggaaaaacag aagcctattt ggaagccatc 1500
agaaaaaata ttgaatggtt gaagaaacat gacaaaaagg gaaataaaga 1550
agattatgac ctttcaaaga tgagagactt catcaataaa caagctgatg 1600
cttatgtgga gaaaggcatc cttgacaagg aagaagccga ggccatcaag 1650
cgcatttata gcagcctgta aaaatggcaa aagatccagg agtctttcaa 1700
ctgtttcaga aaacataata tagcttaaaa cacttctaat tctgtgatta 1750
aaattttttg acccaagggt tattagaaag tgctgaattt acagtagtta 1800
accttttaca agtggttaaa acatagcttt cttcccgtaa aaactatctg 1850
aaagtaaagt tgtatgtaag ctgaaaaaaa aaaaaaaaaa aaa 1893
150
468
PRT
Homo Sapien
150
Met Gly Phe Leu Gly Thr Gly Thr Trp Ile Leu Val Leu Val Leu
1 5 10 15
Pro Ile Gln Ala Phe Pro Lys Pro Gly Gly Ser Gln Asp Lys Ser
20 25 30
Leu His Asn Arg Glu Leu Ser Ala Glu Arg Pro Leu Asn Glu Gln
35 40 45
Ile Ala Glu Ala Glu Glu Asp Lys Ile Lys Lys Thr Tyr Pro Pro
50 55 60
Glu Asn Lys Pro Gly Gln Ser Asn Tyr Ser Phe Val Asp Asn Leu
65 70 75
Asn Leu Leu Lys Ala Ile Thr Glu Lys Glu Lys Ile Glu Lys Glu
80 85 90
Arg Gln Ser Ile Arg Ser Ser Pro Leu Asp Asn Lys Leu Asn Val
95 100 105
Glu Asp Val Asp Ser Thr Lys Asn Arg Lys Leu Ile Asp Asp Tyr
110 115 120
Asp Ser Thr Lys Ser Gly Leu Asp His Lys Phe Gln Asp Asp Pro
125 130 135
Asp Gly Leu His Gln Leu Asp Gly Thr Pro Leu Thr Ala Glu Asp
140 145 150
Ile Val His Lys Ile Ala Ala Arg Ile Tyr Glu Glu Asn Asp Arg
155 160 165
Ala Val Phe Asp Lys Ile Val Ser Lys Leu Leu Asn Leu Gly Leu
170 175 180
Ile Thr Glu Ser Gln Ala His Thr Leu Glu Asp Glu Val Ala Glu
185 190 195
Val Leu Gln Lys Leu Ile Ser Lys Glu Ala Asn Asn Tyr Glu Glu
200 205 210
Asp Pro Asn Lys Pro Thr Ser Trp Thr Glu Asn Gln Ala Gly Lys
215 220 225
Ile Pro Glu Lys Val Thr Pro Met Ala Ala Ile Gln Asp Gly Leu
230 235 240
Ala Lys Gly Glu Asn Asp Glu Thr Val Ser Asn Thr Leu Thr Leu
245 250 255
Thr Asn Gly Leu Glu Arg Arg Thr Lys Thr Tyr Ser Glu Asp Asn
260 265 270
Phe Glu Glu Leu Gln Tyr Phe Pro Asn Phe Tyr Ala Leu Leu Lys
275 280 285
Ser Ile Asp Ser Glu Lys Glu Ala Lys Glu Lys Glu Thr Leu Ile
290 295 300
Thr Ile Met Lys Thr Leu Ile Asp Phe Val Lys Met Met Val Lys
305 310 315
Tyr Gly Thr Ile Ser Pro Glu Glu Gly Val Ser Tyr Leu Glu Asn
320 325 330
Leu Asp Glu Met Ile Ala Leu Gln Thr Lys Asn Lys Leu Glu Lys
335 340 345
Asn Ala Thr Asp Asn Ile Ser Lys Leu Phe Pro Ala Pro Ser Glu
350 355 360
Lys Ser His Glu Glu Thr Asp Ser Thr Lys Glu Glu Ala Ala Lys
365 370 375
Met Glu Lys Glu Tyr Gly Ser Leu Lys Asp Ser Thr Lys Asp Asp
380 385 390
Asn Ser Asn Pro Gly Gly Lys Thr Asp Glu Pro Lys Gly Lys Thr
395 400 405
Glu Ala Tyr Leu Glu Ala Ile Arg Lys Asn Ile Glu Trp Leu Lys
410 415 420
Lys His Asp Lys Lys Gly Asn Lys Glu Asp Tyr Asp Leu Ser Lys
425 430 435
Met Arg Asp Phe Ile Asn Lys Gln Ala Asp Ala Tyr Val Glu Lys
440 445 450
Gly Ile Leu Asp Lys Glu Glu Ala Glu Ala Ile Lys Arg Ile Tyr
455 460 465
Ser Ser Leu
151
2598
DNA
Homo Sapien
151
cggctcgagg ctcccgccag gagaaaggaa cattctgagg ggagtctaca 50
ccctgtggag ctcaagatgg tcctgagtgg ggcgctgtgc ttccgaatga 100
aggactcggc attgaaggtg ctttatctgc ataataacca gcttctagct 150
ggagggctgc atgcagggaa ggtcattaaa ggtgaagaga tcagcgtggt 200
ccccaatcgg tggctggatg ccagcctgtc ccccgtcatc ctgggtgtcc 250
agggtggaag ccagtgcctg tcatgtgggg tggggcagga gccgactcta 300
acactagagc cagtgaacat catggagctc tatcttggtg ccaaggaatc 350
caagagcttc accttctacc ggcgggacat ggggctcacc tccagcttcg 400
agtcggctgc ctacccgggc tggttcctgt gcacggtgcc tgaagccgat 450
cagcctgtca gactcaccca gcttcccgag aatggtggct ggaatgcccc 500
catcacagac ttctacttcc agcagtgtga ctagggcaac gtgcccccca 550
gaactccctg ggcagagcca gctcgggtga ggggtgagtg gaggagaccc 600
atggcggaca atcactctct ctgctctcag gacccccacg tctgacttag 650
tgggcacctg accactttgt cttctggttc ccagtttgga taaattctga 700
gatttggagc tcagtccacg gtcctccccc actggatggt gctactgctg 750
tggaaccttg taaaaaccat gtggggtaaa ctgggaataa catgaaaaga 800
tttctgtggg ggtggggtgg gggagtggtg ggaatcattc ctgcttaatg 850
gtaactgaca agtgttaccc tgagccccgc aggccaaccc atccccagtt 900
gagccttata gggtcagtag ctctccacat gaagtcctgt cactcaccac 950
tgtgcaggag agggaggtgg tcatagagtc agggatctat ggcccttggc 1000
ccagccccac ccccttccct ttaatcctgc cactgtcata tgctaccttt 1050
cctatctctt ccctcatcat cttgttgtgg gcatgaggag gtggtgatgt 1100
cagaagaaat ggctcgagct cagaagataa aagataagta gggtatgctg 1150
atcctctttt aaaaacccaa gatacaatca aaatcccaga tgctggtctc 1200
tattcccatg aaaaagtgct catgacatat tgagaagacc tacttacaaa 1250
gtggcatata ttgcaattta ttttaattaa aagataccta tttatatatt 1300
tctttataga aaaaagtctg gaagagttta cttcaattgt agcaatgtca 1350
gggtggtggc agtataggtg atttttcttt taattctgtt aatttatctg 1400
tatttcctaa tttttctaca atgaagatga attccttgta taaaaataag 1450
aaaagaaatt aatcttgagg taagcagagc agacatcatc tctgattgtc 1500
ctcagcctcc acttccccag agtaaattca aattgaatcg agctctgctg 1550
ctctggttgg ttgtagtagt gatcaggaaa cagatctcag caaagccact 1600
gaggaggagg ctgtgctgag tttgtgtggc tggaatctct gggtaaggaa 1650
cttaaagaac aaaaatcatc tggtaattct ttcctagaag gatcacagcc 1700
cctgggattc caaggcattg gatccagtct ctaagaaggc tgctgtactg 1750
gttgaattgt gtccccctca aattcacatc cttcttggaa tctcagtctg 1800
tgagtttatt tggagataag gtctctgcag atgtagttag ttaagacaag 1850
gtcatgctgg atgaaggtag acctaaattc aatatgactg gtttccttgt 1900
atgaaaagga gaggacacag agacagagga gacgcgggga agactatgta 1950
aagatgaagg cagagatcgg agttttgcag ccacaagcta agaaacacca 2000
aggattgtgg caaccatcag aagcttggaa gaggcaaaga agaattcttc 2050
cctagaggct ttagagggat aacggctctg ctgaaacctt aatctcagac 2100
ttccagcctc ctgaacgaag aaagaataaa tttcggctgt tttaagccac 2150
caaggataat tggttacagc agctctagga aactaataca gctgctaaaa 2200
tgatccctgt ctcctcgtgt ttacattctg tgtgtgtccc ctcccacaat 2250
gtaccaaagt tgtctttgtg accaatagaa tatggcagaa gtgatggcat 2300
gccacttcca agattaggtt ataaaagaca ctgcagcttc tacttgagcc 2350
ctctctctct gccacccacc gcccccaatc tatcttggct cactcgctct 2400
gggggaagct agctgccatg ctatgagcag gcctataaag agacttacgt 2450
ggtaaaaaat gaagtctcct gcccacagcc acattagtga acctagaagc 2500
agagactctg tgagataatc gatgtttgtt gttttaagtt gctcagtttt 2550
ggtctaactt gttatgcagc aatagataaa taatatgcag agaaagag 2598
152
155
PRT
Homo Sapien
152
Met Val Leu Ser Gly Ala Leu Cys Phe Arg Met Lys Asp Ser Ala
1 5 10 15
Leu Lys Val Leu Tyr Leu His Asn Asn Gln Leu Leu Ala Gly Gly
20 25 30
Leu His Ala Gly Lys Val Ile Lys Gly Glu Glu Ile Ser Val Val
35 40 45
Pro Asn Arg Trp Leu Asp Ala Ser Leu Ser Pro Val Ile Leu Gly
50 55 60
Val Gln Gly Gly Ser Gln Cys Leu Ser Cys Gly Val Gly Gln Glu
65 70 75
Pro Thr Leu Thr Leu Glu Pro Val Asn Ile Met Glu Leu Tyr Leu
80 85 90
Gly Ala Lys Glu Ser Lys Ser Phe Thr Phe Tyr Arg Arg Asp Met
95 100 105
Gly Leu Thr Ser Ser Phe Glu Ser Ala Ala Tyr Pro Gly Trp Phe
110 115 120
Leu Cys Thr Val Pro Glu Ala Asp Gln Pro Val Arg Leu Thr Gln
125 130 135
Leu Pro Glu Asn Gly Gly Trp Asn Ala Pro Ile Thr Asp Phe Tyr
140 145 150
Phe Gln Gln Cys Asp
155
153
1152
DNA
Homo Sapien
153
cttcagaaca ggttctcctt ccccagtcac cagttgctcg agttagaatt 50
gtctgcaatg gccgccctgc agaaatctgt gagctctttc cttatgggga 100
ccctggccac cagctgcctc cttctcttgg ccctcttggt acagggagga 150
gcagctgcgc ccatcagctc ccactgcagg cttgacaagt ccaacttcca 200
gcagccctat atcaccaacc gcaccttcat gctggctaag gaggctagct 250
tggctgataa caacacagac gttcgtctca ttggggagaa actgttccac 300
ggagtcagta tgagtgagcg ctgctatctg atgaagcagg tgctgaactt 350
cacccttgaa gaagtgctgt tccctcaatc tgataggttc cagccttata 400
tgcaggaggt ggtgcccttc ctggccaggc tcagcaacag gctaagcaca 450
tgtcatattg aaggtgatga cctgcatatc cagaggaatg tgcaaaagct 500
gaaggacaca gtgaaaaagc ttggagagag tggagagatc aaagcaattg 550
gagaactgga tttgctgttt atgtctctga gaaatgcctg catttgacca 600
gagcaaagct gaaaaatgaa taactaaccc cctttccctg ctagaaataa 650
caattagatg ccccaaagcg atttttttta accaaaagga agatgggaag 700
ccaaactcca tcatgatggg tggattccaa atgaacccct gcgttagtta 750
caaaggaaac caatgccact tttgtttata agaccagaag gtagactttc 800
taagcataga tatttattga taacatttca ttgtaactgg tgttctatac 850
acagaaaaca atttattttt taaataattg tctttttcca taaaaaagat 900
tactttccat tcctttaggg gaaaaaaccc ctaaatagct tcatgtttcc 950
ataatcagta ctttatattt ataaatgtat ttattattat tataagactg 1000
cattttattt atatcatttt attaatatgg atttatttat agaaacatca 1050
ttcgatattg ctacttgagt gtaaggctaa tattgatatt tatgacaata 1100
attatagagc tataacatgt ttatttgacc tcaataaaca cttggatatc 1150
cc 1152
154
179
PRT
Homo Sapien
154
Met Ala Ala Leu Gln Lys Ser Val Ser Ser Phe Leu Met Gly Thr
1 5 10 15
Leu Ala Thr Ser Cys Leu Leu Leu Leu Ala Leu Leu Val Gln Gly
20 25 30
Gly Ala Ala Ala Pro Ile Ser Ser His Cys Arg Leu Asp Lys Ser
35 40 45
Asn Phe Gln Gln Pro Tyr Ile Thr Asn Arg Thr Phe Met Leu Ala
50 55 60
Lys Glu Ala Ser Leu Ala Asp Asn Asn Thr Asp Val Arg Leu Ile
65 70 75
Gly Glu Lys Leu Phe His Gly Val Ser Met Ser Glu Arg Cys Tyr
80 85 90
Leu Met Lys Gln Val Leu Asn Phe Thr Leu Glu Glu Val Leu Phe
95 100 105
Pro Gln Ser Asp Arg Phe Gln Pro Tyr Met Gln Glu Val Val Pro
110 115 120
Phe Leu Ala Arg Leu Ser Asn Arg Leu Ser Thr Cys His Ile Glu
125 130 135
Gly Asp Asp Leu His Ile Gln Arg Asn Val Gln Lys Leu Lys Asp
140 145 150
Thr Val Lys Lys Leu Gly Glu Ser Gly Glu Ile Lys Ala Ile Gly
155 160 165
Glu Leu Asp Leu Leu Phe Met Ser Leu Arg Asn Ala Cys Ile
170 175
155
1320
DNA
Homo Sapien
155
ggcttgctga aaataaaatc aggactccta acctgctcca gtcagcctgc 50
ttccacgagg cctgtcagtc agtgcccgac ttgtgactga gtgtgcagtg 100
cccagcatgt accaggtcag tgcagagggc tgcctgaggg ctgtgctgag 150
agggagagga gcagagatgc tgctgagggt ggagggaggc caagctgcca 200
ggtttggggc tgggggccaa gtggagtgag aaactgggat cccaggggga 250
gggtgcagat gagggagcga cccagattag gtgaggacag ttctctcatt 300
agccttttcc tacaggtggt tgcattcttg gcaatggtca tgggaaccca 350
cacctacagc cactggccca gctgctgccc cagcaaaggg caggacacct 400
ctgaggagct gctgaggtgg agcactgtgc ctgtgcctcc cctagagcct 450
gctaggccca accgccaccc agagtcctgt agggccagtg aagatggacc 500
cctcaacagc agggccatct ccccctggag atatgagttg gacagagact 550
tgaaccggct cccccaggac ctgtaccacg cccgttgcct gtgcccgcac 600
tgcgtcagcc tacagacagg ctcccacatg gacccccggg gcaactcgga 650
gctgctctac cacaaccaga ctgtcttcta caggcggcca tgccatggcg 700
agaagggcac ccacaagggc tactgcctgg agcgcaggct gtaccgtgtt 750
tccttagctt gtgtgtgtgt gcggccccgt gtgatgggct agccggacct 800
gctggaggct ggtccctttt tgggaaacct ggagccaggt gtacaaccac 850
ttgccatgaa gggccaggat gcccagatgc ttggcccctg tgaagtgctg 900
tctggagcag caggatcccg ggacaggatg gggggctttg gggaaaacct 950
gcacttctgc acattttgaa aagagcagct gctgcttagg gccgccggaa 1000
gctggtgtcc tgtcattttc tctcaggaaa ggttttcaaa gttctgccca 1050
tttctggagg ccaccactcc tgtctcttcc tcttttccca tcccctgcta 1100
ccctggccca gcacaggcac tttctagata tttccccctt gctggagaag 1150
aaagagcccc tggttttatt tgtttgttta ctcatcactc agtgagcatc 1200
tactttgggt gcattctagt gtagttacta gtcttttgac atggatgatt 1250
ctgaggagga agctgttatt gaatgtatag agatttatcc aaataaatat 1300
ctttatttaa aaatgaaaaa 1320
156
177
PRT
Homo Sapien
156
Met Arg Glu Arg Pro Arg Leu Gly Glu Asp Ser Ser Leu Ile Ser
1 5 10 15
Leu Phe Leu Gln Val Val Ala Phe Leu Ala Met Val Met Gly Thr
20 25 30
His Thr Tyr Ser His Trp Pro Ser Cys Cys Pro Ser Lys Gly Gln
35 40 45
Asp Thr Ser Glu Glu Leu Leu Arg Trp Ser Thr Val Pro Val Pro
50 55 60
Pro Leu Glu Pro Ala Arg Pro Asn Arg His Pro Glu Ser Cys Arg
65 70 75
Ala Ser Glu Asp Gly Pro Leu Asn Ser Arg Ala Ile Ser Pro Trp
80 85 90
Arg Tyr Glu Leu Asp Arg Asp Leu Asn Arg Leu Pro Gln Asp Leu
95 100 105
Tyr His Ala Arg Cys Leu Cys Pro His Cys Val Ser Leu Gln Thr
110 115 120
Gly Ser His Met Asp Pro Arg Gly Asn Ser Glu Leu Leu Tyr His
125 130 135
Asn Gln Thr Val Phe Tyr Arg Arg Pro Cys His Gly Glu Lys Gly
140 145 150
Thr His Lys Gly Tyr Cys Leu Glu Arg Arg Leu Tyr Arg Val Ser
155 160 165
Leu Ala Cys Val Cys Val Arg Pro Arg Val Met Gly
170 175
157
1515
DNA
Homo Sapien
157
ccggcgatgt cgctcgtgct gctaagcctg gccgcgctgt gcaggagcgc 50
cgtaccccga gagccgaccg ttcaatgtgg ctctgaaact gggccatctc 100
cagagtggat gctacaacat gatctaatcc ccggagactt gagggacctc 150
cgagtagaac ctgttacaac tagtgttgca acaggggact attcaatttt 200
gatgaatgta agctgggtac tccgggcaga tgccagcatc cgcttgttga 250
aggccaccaa gatttgtgtg acgggcaaaa gcaacttcca gtcctacagc 300
tgtgtgaggt gcaattacac agaggccttc cagactcaga ccagaccctc 350
tggtggtaaa tggacatttt cctacatcgg cttccctgta gagctgaaca 400
cagtctattt cattggggcc cataatattc ctaatgcaaa tatgaatgaa 450
gatggccctt ccatgtctgt gaatttcacc tcaccaggct gcctagacca 500
cataatgaaa tataaaaaaa agtgtgtcaa ggccggaagc ctgtgggatc 550
cgaacatcac tgcttgtaag aagaatgagg agacagtaga agtgaacttc 600
acaaccactc ccctgggaaa cagatacatg gctcttatcc aacacagcac 650
tatcatcggg ttttctcagg tgtttgagcc acaccagaag aaacaaacgc 700
gagcttcagt ggtgattcca gtgactgggg atagtgaagg tgctacggtg 750
cagctgactc catattttcc tacttgtggc agcgactgca tccgacataa 800
aggaacagtt gtgctctgcc cacaaacagg cgtccctttc cctctggata 850
acaacaaaag caagccggga ggctggctgc ctctcctcct gctgtctctg 900
ctggtggcca catgggtgct ggtggcaggg atctatctaa tgtggaggca 950
cgaaaggatc aagaagactt ccttttctac caccacacta ctgcccccca 1000
ttaaggttct tgtggtttac ccatctgaaa tatgtttcca tcacacaatt 1050
tgttacttca ctgaatttct tcaaaaccat tgcagaagtg aggtcatcct 1100
tgaaaagtgg cagaaaaaga aaatagcaga gatgggtcca gtgcagtggc 1150
ttgccactca aaagaaggca gcagacaaag tcgtcttcct tctttccaat 1200
gacgtcaaca gtgtgtgcga tggtacctgt ggcaagagcg agggcagtcc 1250
cagtgagaac tctcaagacc tcttccccct tgcctttaac cttttctgca 1300
gtgatctaag aagccagatt catctgcaca aatacgtggt ggtctacttt 1350
agagagattg atacaaaaga cgattacaat gctctcagtg tctgccccaa 1400
gtaccacctc atgaaggatg ccactgcttt ctgtgcagaa cttctccatg 1450
tcaagcagca ggtgtcagca ggaaaaagat cacaagcctg ccacgatggc 1500
tgctgctcct tgtag 1515
158
502
PRT
Homo Sapien
158
Met Ser Leu Val Leu Leu Ser Leu Ala Ala Leu Cys Arg Ser Ala
1 5 10 15
Val Pro Arg Glu Pro Thr Val Gln Cys Gly Ser Glu Thr Gly Pro
20 25 30
Ser Pro Glu Trp Met Leu Gln His Asp Leu Ile Pro Gly Asp Leu
35 40 45
Arg Asp Leu Arg Val Glu Pro Val Thr Thr Ser Val Ala Thr Gly
50 55 60
Asp Tyr Ser Ile Leu Met Asn Val Ser Trp Val Leu Arg Ala Asp
65 70 75
Ala Ser Ile Arg Leu Leu Lys Ala Thr Lys Ile Cys Val Thr Gly
80 85 90
Lys Ser Asn Phe Gln Ser Tyr Ser Cys Val Arg Cys Asn Tyr Thr
95 100 105
Glu Ala Phe Gln Thr Gln Thr Arg Pro Ser Gly Gly Lys Trp Thr
110 115 120
Phe Ser Tyr Ile Gly Phe Pro Val Glu Leu Asn Thr Val Tyr Phe
125 130 135
Ile Gly Ala His Asn Ile Pro Asn Ala Asn Met Asn Glu Asp Gly
140 145 150
Pro Ser Met Ser Val Asn Phe Thr Ser Pro Gly Cys Leu Asp His
155 160 165
Ile Met Lys Tyr Lys Lys Lys Cys Val Lys Ala Gly Ser Leu Trp
170 175 180
Asp Pro Asn Ile Thr Ala Cys Lys Lys Asn Glu Glu Thr Val Glu
185 190 195
Val Asn Phe Thr Thr Thr Pro Leu Gly Asn Arg Tyr Met Ala Leu
200 205 210
Ile Gln His Ser Thr Ile Ile Gly Phe Ser Gln Val Phe Glu Pro
215 220 225
His Gln Lys Lys Gln Thr Arg Ala Ser Val Val Ile Pro Val Thr
230 235 240
Gly Asp Ser Glu Gly Ala Thr Val Gln Leu Thr Pro Tyr Phe Pro
245 250 255
Thr Cys Gly Ser Asp Cys Ile Arg His Lys Gly Thr Val Val Leu
260 265 270
Cys Pro Gln Thr Gly Val Pro Phe Pro Leu Asp Asn Asn Lys Ser
275 280 285
Lys Pro Gly Gly Trp Leu Pro Leu Leu Leu Leu Ser Leu Leu Val
290 295 300
Ala Thr Trp Val Leu Val Ala Gly Ile Tyr Leu Met Trp Arg His
305 310 315
Glu Arg Ile Lys Lys Thr Ser Phe Ser Thr Thr Thr Leu Leu Pro
320 325 330
Pro Ile Lys Val Leu Val Val Tyr Pro Ser Glu Ile Cys Phe His
335 340 345
His Thr Ile Cys Tyr Phe Thr Glu Phe Leu Gln Asn His Cys Arg
350 355 360
Ser Glu Val Ile Leu Glu Lys Trp Gln Lys Lys Lys Ile Ala Glu
365 370 375
Met Gly Pro Val Gln Trp Leu Ala Thr Gln Lys Lys Ala Ala Asp
380 385 390
Lys Val Val Phe Leu Leu Ser Asn Asp Val Asn Ser Val Cys Asp
395 400 405
Gly Thr Cys Gly Lys Ser Glu Gly Ser Pro Ser Glu Asn Ser Gln
410 415 420
Asp Leu Phe Pro Leu Ala Phe Asn Leu Phe Cys Ser Asp Leu Arg
425 430 435
Ser Gln Ile His Leu His Lys Tyr Val Val Val Tyr Phe Arg Glu
440 445 450
Ile Asp Thr Lys Asp Asp Tyr Asn Ala Leu Ser Val Cys Pro Lys
455 460 465
Tyr His Leu Met Lys Asp Ala Thr Ala Phe Cys Ala Glu Leu Leu
470 475 480
His Val Lys Gln Gln Val Ser Ala Gly Lys Arg Ser Gln Ala Cys
485 490 495
His Asp Gly Cys Cys Ser Leu
500
159
535
DNA
Homo Sapien
159
agccaccagc gcaacatgac agtgaagacc ctgcatggcc cagccatggt 50
caagtacttg ctgctgtcga tattggggct tgcctttctg agtgaggcgg 100
cagctcggaa aatccccaaa gtaggacata cttttttcca aaagcctgag 150
agttgcccgc ctgtgccagg aggtagtatg aagcttgaca ttggcatcat 200
caatgaaaac cagcgcgttt ccatgtcacg taacatcgag agccgctcca 250
cctccccctg gaattacact gtcacttggg accccaaccg gtacccctcg 300
gaagttgtac aggcccagtg taggaacttg ggctgcatca atgctcaagg 350
aaaggaagac atctccatga attccgttcc catccagcaa gagaccctgg 400
tcgtccggag gaagcaccaa ggctgctctg tttctttcca gttggagaag 450
gtgctggtga ctgttggctg cacctgcgtc acccctgtca tccaccatgt 500
gcagtaagag gtgcatatcc actcagctga agaag 535
160
163
PRT
Homo Sapien
160
Met Thr Val Lys Thr Leu His Gly Pro Ala Met Val Lys Tyr Leu
1 5 10 15
Leu Leu Ser Ile Leu Gly Leu Ala Phe Leu Ser Glu Ala Ala Ala
20 25 30
Arg Lys Ile Pro Lys Val Gly His Thr Phe Phe Gln Lys Pro Glu
35 40 45
Ser Cys Pro Pro Val Pro Gly Gly Ser Met Lys Leu Asp Ile Gly
50 55 60
Ile Ile Asn Glu Asn Gln Arg Val Ser Met Ser Arg Asn Ile Glu
65 70 75
Ser Arg Ser Thr Ser Pro Trp Asn Tyr Thr Val Thr Trp Asp Pro
80 85 90
Asn Arg Tyr Pro Ser Glu Val Val Gln Ala Gln Cys Arg Asn Leu
95 100 105
Gly Cys Ile Asn Ala Gln Gly Lys Glu Asp Ile Ser Met Asn Ser
110 115 120
Val Pro Ile Gln Gln Glu Thr Leu Val Val Arg Arg Lys His Gln
125 130 135
Gly Cys Ser Val Ser Phe Gln Leu Glu Lys Val Leu Val Thr Val
140 145 150
Gly Cys Thr Cys Val Thr Pro Val Ile His His Val Gln
155 160
161
2380
DNA
Homo Sapien
161
acactggcca aacaaaaacg aaagcactcc gtgctggaag taggaggaga 50
gtcaggactc ccaggacaga gagtgcacaa actacccagc acagccccct 100
ccgccccctc tggaggctga agagggattc cagcccctgc cacccacaga 150
cacgggctga ctggggtgtc tgcccccctt gggggggggc agcacagggc 200
ctcaggcctg ggtgccacct ggcacctaga agatgcctgt gccctggttc 250
ttgctgtcct tggcactggg ccgaagccca gtggtccttt ctctggagag 300
gcttgtgggg cctcaggacg ctacccactg ctctccgggc ctctcctgcc 350
gcctctggga cagtgacata ctctgcctgc ctggggacat cgtgcctgct 400
ccgggccccg tgctggcgcc tacgcacctg cagacagagc tggtgctgag 450
gtgccagaag gagaccgact gtgacctctg tctgcgtgtg gctgtccact 500
tggccgtgca tgggcactgg gaagagcctg aagatgagga aaagtttgga 550
ggagcagctg actcaggggt ggaggagcct aggaatgcct ctctccaggc 600
ccaagtcgtg ctctccttcc aggcctaccc tactgcccgc tgcgtcctgc 650
tggaggtgca agtgcctgct gcccttgtgc agtttggtca gtctgtgggc 700
tctgtggtat atgactgctt cgaggctgcc ctagggagtg aggtacgaat 750
ctggtcctat actcagccca ggtacgagaa ggaactcaac cacacacagc 800
agctgcctgc cctgccctgg ctcaacgtgt cagcagatgg tgacaacgtg 850
catctggttc tgaatgtctc tgaggagcag cacttcggcc tctccctgta 900
ctggaatcag gtccagggcc ccccaaaacc ccggtggcac aaaaacctga 950
ctggaccgca gatcattacc ttgaaccaca cagacctggt tccctgcctc 1000
tgtattcagg tgtggcctct ggaacctgac tccgttagga cgaacatctg 1050
ccccttcagg gaggaccccc gcgcacacca gaacctctgg caagccgccc 1100
gactgcgact gctgaccctg cagagctggc tgctggacgc accgtgctcg 1150
ctgcccgcag aagcggcact gtgctggcgg gctccgggtg gggacccctg 1200
ccagccactg gtcccaccgc tttcctggga gaacgtcact gtggacaagg 1250
ttctcgagtt cccattgctg aaaggccacc ctaacctctg tgttcaggtg 1300
aacagctcgg agaagctgca gctgcaggag tgcttgtggg ctgactccct 1350
ggggcctctc aaagacgatg tgctactgtt ggagacacga ggcccccagg 1400
acaacagatc cctctgtgcc ttggaaccca gtggctgtac ttcactaccc 1450
agcaaagcct ccacgagggc agctcgcctt ggagagtact tactacaaga 1500
cctgcagtca ggccagtgtc tgcagctatg ggacgatgac ttgggagcgc 1550
tatgggcctg ccccatggac aaatacatcc acaagcgctg ggccctcgtg 1600
tggctggcct gcctactctt tgccgctgcg ctttccctca tcctccttct 1650
caaaaaggat cacgcgaaag ggtggctgag gctcttgaaa caggacgtcc 1700
gctcgggggc ggccgccagg ggccgcgcgg ctctgctcct ctactcagcc 1750
gatgactcgg gtttcgagcg cctggtgggc gccctggcgt cggccctgtg 1800
ccagctgccg ctgcgcgtgg ccgtagacct gtggagccgt cgtgaactga 1850
gcgcgcaggg gcccgtggct tggtttcacg cgcagcggcg ccagaccctg 1900
caggagggcg gcgtggtggt cttgctcttc tctcccggtg cggtggcgct 1950
gtgcagcgag tggctacagg atggggtgtc cgggcccggg gcgcacggcc 2000
cgcacgacgc cttccgcgcc tcgctcagct gcgtgctgcc cgacttcttg 2050
cagggccggg cgcccggcag ctacgtgggg gcctgcttcg acaggctgct 2100
ccacccggac gccgtacccg cccttttccg caccgtgccc gtcttcacac 2150
tgccctccca actgccagac ttcctggggg ccctgcagca gcctcgcgcc 2200
ccgcgttccg ggcggctcca agagagagcg gagcaagtgt cccgggccct 2250
tcagccagcc ctggatagct acttccatcc cccggggact cccgcgccgg 2300
gacgcggggt gggaccaggg gcgggacctg gggcggggga cgggacttaa 2350
ataaaggcag acgctgtttt tctaaaaaaa 2380
162
705
PRT
Homo Sapien
162
Met Pro Val Pro Trp Phe Leu Leu Ser Leu Ala Leu Gly Arg Ser
1 5 10 15
Pro Val Val Leu Ser Leu Glu Arg Leu Val Gly Pro Gln Asp Ala
20 25 30
Thr His Cys Ser Pro Gly Leu Ser Cys Arg Leu Trp Asp Ser Asp
35 40 45
Ile Leu Cys Leu Pro Gly Asp Ile Val Pro Ala Pro Gly Pro Val
50 55 60
Leu Ala Pro Thr His Leu Gln Thr Glu Leu Val Leu Arg Cys Gln
65 70 75
Lys Glu Thr Asp Cys Asp Leu Cys Leu Arg Val Ala Val His Leu
80 85 90
Ala Val His Gly His Trp Glu Glu Pro Glu Asp Glu Glu Lys Phe
95 100 105
Gly Gly Ala Ala Asp Ser Gly Val Glu Glu Pro Arg Asn Ala Ser
110 115 120
Leu Gln Ala Gln Val Val Leu Ser Phe Gln Ala Tyr Pro Thr Ala
125 130 135
Arg Cys Val Leu Leu Glu Val Gln Val Pro Ala Ala Leu Val Gln
140 145 150
Phe Gly Gln Ser Val Gly Ser Val Val Tyr Asp Cys Phe Glu Ala
155 160 165
Ala Leu Gly Ser Glu Val Arg Ile Trp Ser Tyr Thr Gln Pro Arg
170 175 180
Tyr Glu Lys Glu Leu Asn His Thr Gln Gln Leu Pro Ala Leu Pro
185 190 195
Trp Leu Asn Val Ser Ala Asp Gly Asp Asn Val His Leu Val Leu
200 205 210
Asn Val Ser Glu Glu Gln His Phe Gly Leu Ser Leu Tyr Trp Asn
215 220 225
Gln Val Gln Gly Pro Pro Lys Pro Arg Trp His Lys Asn Leu Thr
230 235 240
Gly Pro Gln Ile Ile Thr Leu Asn His Thr Asp Leu Val Pro Cys
245 250 255
Leu Cys Ile Gln Val Trp Pro Leu Glu Pro Asp Ser Val Arg Thr
260 265 270
Asn Ile Cys Pro Phe Arg Glu Asp Pro Arg Ala His Gln Asn Leu
275 280 285
Trp Gln Ala Ala Arg Leu Arg Leu Leu Thr Leu Gln Ser Trp Leu
290 295 300
Leu Asp Ala Pro Cys Ser Leu Pro Ala Glu Ala Ala Leu Cys Trp
305 310 315
Arg Ala Pro Gly Gly Asp Pro Cys Gln Pro Leu Val Pro Pro Leu
320 325 330
Ser Trp Glu Asn Val Thr Val Asp Lys Val Leu Glu Phe Pro Leu
335 340 345
Leu Lys Gly His Pro Asn Leu Cys Val Gln Val Asn Ser Ser Glu
350 355 360
Lys Leu Gln Leu Gln Glu Cys Leu Trp Ala Asp Ser Leu Gly Pro
365 370 375
Leu Lys Asp Asp Val Leu Leu Leu Glu Thr Arg Gly Pro Gln Asp
380 385 390
Asn Arg Ser Leu Cys Ala Leu Glu Pro Ser Gly Cys Thr Ser Leu
395 400 405
Pro Ser Lys Ala Ser Thr Arg Ala Ala Arg Leu Gly Glu Tyr Leu
410 415 420
Leu Gln Asp Leu Gln Ser Gly Gln Cys Leu Gln Leu Trp Asp Asp
425 430 435
Asp Leu Gly Ala Leu Trp Ala Cys Pro Met Asp Lys Tyr Ile His
440 445 450
Lys Arg Trp Ala Leu Val Trp Leu Ala Cys Leu Leu Phe Ala Ala
455 460 465
Ala Leu Ser Leu Ile Leu Leu Leu Lys Lys Asp His Ala Lys Gly
470 475 480
Trp Leu Arg Leu Leu Lys Gln Asp Val Arg Ser Gly Ala Ala Ala
485 490 495
Arg Gly Arg Ala Ala Leu Leu Leu Tyr Ser Ala Asp Asp Ser Gly
500 505 510
Phe Glu Arg Leu Val Gly Ala Leu Ala Ser Ala Leu Cys Gln Leu
515 520 525
Pro Leu Arg Val Ala Val Asp Leu Trp Ser Arg Arg Glu Leu Ser
530 535 540
Ala Gln Gly Pro Val Ala Trp Phe His Ala Gln Arg Arg Gln Thr
545 550 555
Leu Gln Glu Gly Gly Val Val Val Leu Leu Phe Ser Pro Gly Ala
560 565 570
Val Ala Leu Cys Ser Glu Trp Leu Gln Asp Gly Val Ser Gly Pro
575 580 585
Gly Ala His Gly Pro His Asp Ala Phe Arg Ala Ser Leu Ser Cys
590 595 600
Val Leu Pro Asp Phe Leu Gln Gly Arg Ala Pro Gly Ser Tyr Val
605 610 615
Gly Ala Cys Phe Asp Arg Leu Leu His Pro Asp Ala Val Pro Ala
620 625 630
Leu Phe Arg Thr Val Pro Val Phe Thr Leu Pro Ser Gln Leu Pro
635 640 645
Asp Phe Leu Gly Ala Leu Gln Gln Pro Arg Ala Pro Arg Ser Gly
650 655 660
Arg Leu Gln Glu Arg Ala Glu Gln Val Ser Arg Ala Leu Gln Pro
665 670 675
Ala Leu Asp Ser Tyr Phe His Pro Pro Gly Thr Pro Ala Pro Gly
680 685 690
Arg Gly Val Gly Pro Gly Ala Gly Pro Gly Ala Gly Asp Gly Thr
695 700 705
163
2478
DNA
Homo Sapien
163
gtcagtgcgg gaggccggtc agccaccaag atgactgaca ggttcagctc 50
tctgcagcac actaccctca agccacctga tgtgacctgt atctccaaag 100
tgagatcgat tcagatgatt gttcatccta cccccacgcc aatccgtgca 150
ggcgatggcc accggctaac cctggaagac atcttccatg acctgttcta 200
ccacttagag ctccaggtca accgcaccta ccaaatgcac cttggaggga 250
agcagagaga atatgagttc ttcggcctga cccctgacac agagttcctt 300
ggcaccatca tgatttgcgt tcccacctgg gccaaggaga gtgcccccta 350
catgtgccga gtgaagacac tgccagaccg gacatggacc tactccttct 400
ccggagcctt cctgttctcc atgggcttcc tcgtcgcagt actctgctac 450
ctgagctaca gatatgtcac caagccgcct gcacctccca actccctgaa 500
cgtccagcga gtcctgactt tccagccgct gcgcttcatc caggagcacg 550
tcctgatccc tgtctttgac ctcagcggcc ccagcagtct ggcccagcct 600
gtccagtact cccagatcag ggtgtctgga cccagggagc ccgcaggagc 650
tccacagcgg catagcctgt ccgagatcac ctacttaggg cagccagaca 700
tctccatcct ccagccctcc aacgtgccac ctccccagat cctctcccca 750
ctgtcctatg ccccaaacgc tgcccctgag gtcgggcccc catcctatgc 800
acctcaggtg acccccgaag ctcaattccc attctacgcc ccacaggcca 850
tctctaaggt ccagccttcc tcctatgccc ctcaagccac tccggacagc 900
tggcctccct cctatggggt atgcatggaa ggttctggca aagactcccc 950
cactgggaca ctttctagtc ctaaacacct taggcctaaa ggtcagcttc 1000
agaaagagcc accagctgga agctgcatgt taggtggcct ttctctgcag 1050
gaggtgacct ccttggctat ggaggaatcc caagaagcaa aatcattgca 1100
ccagcccctg gggatttgca cagacagaac atctgaccca aatgtgctac 1150
acagtgggga ggaagggaca ccacagtacc taaagggcca gctccccctc 1200
ctctcctcag tccagatcga gggccacccc atgtccctcc ctttgcaacc 1250
tccttccggt ccatgttccc cctcggacca aggtccaagt ccctggggcc 1300
tgctggagtc ccttgtgtgt cccaaggatg aagccaagag cccagcccct 1350
gagacctcag acctggagca gcccacagaa ctggattctc ttttcagagg 1400
cctggccctg actgtgcagt gggagtcctg aggggaatgg gaaaggcttg 1450
gtgcttcctc cctgtcccta cccagtgtca catccttggc tgtcaatccc 1500
atgcctgccc atgccacaca ctctgcgatc tggcctcaga cgggtgccct 1550
tgagagaagc agagggagtg gcatgcaggg cccctgccat gggtgcgctc 1600
ctcaccggaa caaagcagca tgataaggac tgcagcgggg gagctctggg 1650
gagcagcttg tgtagacaag cgcgtgctcg ctgagccctg caaggcagaa 1700
atgacagtgc aaggaggaaa tgcagggaaa ctcccgaggt ccagagcccc 1750
acctcctaac accatggatt caaagtgctc agggaatttg cctctccttg 1800
ccccattcct ggccagtttc acaatctagc tcgacagagc atgaggcccc 1850
tgcctcttct gtcattgttc aaaggtggga agagagcctg gaaaagaacc 1900
aggcctggaa aagaaccaga aggaggctgg gcagaaccag aacaacctgc 1950
acttctgcca aggccagggc cagcaggacg gcaggactct agggaggggt 2000
gtggcctgca gctcattccc agccagggca actgcctgac gttgcacgat 2050
ttcagcttca ttcctctgat agaacaaagc gaaatgcagg tccaccaggg 2100
agggagacac acaagccttt tctgcaggca ggagtttcag accctatcct 2150
gagaatgggg tttgaaagga aggtgagggc tgtggcccct ggacgggtac 2200
aataacacac tgtactgatg tcacaacttt gcaagctctg ccttgggttc 2250
agcccatctg ggctcaaatt ccagcctcac cactcacaag ctgtgtgact 2300
tcaaacaaat gaaatcagtg cccagaacct cggtttcctc atctgtaatg 2350
tggggatcat aacacctacc tcatggagtt gtggtgaaga tgaaatgaag 2400
tcatgtcttt aaagtgctta atagtgcctg gtacatgggc agtgcccaat 2450
aaacggtagc tatttaaaaa aaaaaaaa 2478
164
574
PRT
Homo Sapien
164
Met Arg Thr Leu Leu Thr Ile Leu Thr Val Gly Ser Leu Ala Ala
1 5 10 15
His Ala Pro Glu Asp Pro Ser Asp Leu Leu Gln His Val Lys Phe
20 25 30
Gln Ser Ser Asn Phe Glu Asn Ile Leu Thr Trp Asp Ser Gly Pro
35 40 45
Glu Gly Thr Pro Asp Thr Val Tyr Ser Ile Glu Tyr Lys Thr Tyr
50 55 60
Gly Glu Arg Asp Trp Val Ala Lys Lys Gly Cys Gln Arg Ile Thr
65 70 75
Arg Lys Ser Cys Asn Leu Thr Val Glu Thr Gly Asn Leu Thr Glu
80 85 90
Leu Tyr Tyr Ala Arg Val Thr Ala Val Ser Ala Gly Gly Arg Ser
95 100 105
Ala Thr Lys Met Thr Asp Arg Phe Ser Ser Leu Gln His Thr Thr
110 115 120
Leu Lys Pro Pro Asp Val Thr Cys Ile Ser Lys Val Arg Ser Ile
125 130 135
Gln Met Ile Val His Pro Thr Pro Thr Pro Ile Arg Ala Gly Asp
140 145 150
Gly His Arg Leu Thr Leu Glu Asp Ile Phe His Asp Leu Phe Tyr
155 160 165
His Leu Glu Leu Gln Val Asn Arg Thr Tyr Gln Met His Leu Gly
170 175 180
Gly Lys Gln Arg Glu Tyr Glu Phe Phe Gly Leu Thr Pro Asp Thr
185 190 195
Glu Phe Leu Gly Thr Ile Met Ile Cys Val Pro Thr Trp Ala Lys
200 205 210
Glu Ser Ala Pro Tyr Met Cys Arg Val Lys Thr Leu Pro Asp Arg
215 220 225
Thr Trp Thr Tyr Ser Phe Ser Gly Ala Phe Leu Phe Ser Met Gly
230 235 240
Phe Leu Val Ala Val Leu Cys Tyr Leu Ser Tyr Arg Tyr Val Thr
245 250 255
Lys Pro Pro Ala Pro Pro Asn Ser Leu Asn Val Gln Arg Val Leu
260 265 270
Thr Phe Gln Pro Leu Arg Phe Ile Gln Glu His Val Leu Ile Pro
275 280 285
Val Phe Asp Leu Ser Gly Pro Ser Ser Leu Ala Gln Pro Val Gln
290 295 300
Tyr Ser Gln Ile Arg Val Ser Gly Pro Arg Glu Pro Ala Gly Ala
305 310 315
Pro Gln Arg His Ser Leu Ser Glu Ile Thr Tyr Leu Gly Gln Pro
320 325 330
Asp Ile Ser Ile Leu Gln Pro Ser Asn Val Pro Pro Pro Gln Ile
335 340 345
Leu Ser Pro Leu Ser Tyr Ala Pro Asn Ala Ala Pro Glu Val Gly
350 355 360
Pro Pro Ser Tyr Ala Pro Gln Val Thr Pro Glu Ala Gln Phe Pro
365 370 375
Phe Tyr Ala Pro Gln Ala Ile Ser Lys Val Gln Pro Ser Ser Tyr
380 385 390
Ala Pro Gln Ala Thr Pro Asp Ser Trp Pro Pro Ser Tyr Gly Val
395 400 405
Cys Met Glu Gly Ser Gly Lys Asp Ser Pro Thr Gly Thr Leu Ser
410 415 420
Ser Pro Lys His Leu Arg Pro Lys Gly Gln Leu Gln Lys Glu Pro
425 430 435
Pro Ala Gly Ser Cys Met Leu Gly Gly Leu Ser Leu Gln Glu Val
440 445 450
Thr Ser Leu Ala Met Glu Glu Ser Gln Glu Ala Lys Ser Leu His
455 460 465
Gln Pro Leu Gly Ile Cys Thr Asp Arg Thr Ser Asp Pro Asn Val
470 475 480
Leu His Ser Gly Glu Glu Gly Thr Pro Gln Tyr Leu Lys Gly Gln
485 490 495
Leu Pro Leu Leu Ser Ser Val Gln Ile Glu Gly His Pro Met Ser
500 505 510
Leu Pro Leu Gln Pro Pro Ser Gly Pro Cys Ser Pro Ser Asp Gln
515 520 525
Gly Pro Ser Pro Trp Gly Leu Leu Glu Ser Leu Val Cys Pro Lys
530 535 540
Asp Glu Ala Lys Ser Pro Ala Pro Glu Thr Ser Asp Leu Glu Gln
545 550 555
Pro Thr Glu Leu Asp Ser Leu Phe Arg Gly Leu Ala Leu Thr Val
560 565 570
Gln Trp Glu Ser
165
1060
DNA
Homo Sapien
165
tggcctactg gaaaaaaaaa aaaaaaaaaa aaaagtcacc cgggcccgcg 50
gtggccacaa catggctgcg gcgccggggc tgctcttctg gctgttcgtg 100
ctgggggcgc tctggtgggt cccgggccag tcggatctca gccacggacg 150
gcgtttctcg gacctcaaag tgtgcgggga cgaagagtgc agcatgttaa 200
tgtaccgtgg gaaagctctt gaagacttca cgggccctga ttgtcgtttt 250
gtgaatttta aaaaaggtga cgatgtatat gtctactaca aactggcagg 300
gggatccctt gaactttggg ctggaagtgt tgaacacagt tttggatatt 350
ttccaaaaga tttgatcaag gtacttcata aatacacgga agaagagcta 400
catattccag cagatgagac agactttgtc tgctttgaag gaggaagaga 450
tgattttaat agttataatg tagaagagct tttaggatct ttggaactgg 500
aggactctgt acctgaagag tcgaagaaag ctgaagaagt ttctcagcac 550
agagagaaat ctcctgagga gtctcggggg cgtgaacttg accctgtgcc 600
tgagcccgag gcattcagag ctgattcaga ggatggagaa ggtgctttct 650
cagagagcac cgaggggctg cagggacagc cctcagctca ggagagccac 700
cctcacacca gcggtcctgc ggctaacgct cagggagtgc agtcttcgtt 750
ggacactttt gaagaaattc tgcacgataa attgaaagtg ccgggaagcg 800
aaagcagaac tggcaatagt tctcctgcct cggtggagcg ggagaagaca 850
gatgcttaca aagtcctgaa aacagaaatg agtcagagag gaagtggaca 900
gtgcgttatt cattacagca aaggatttcg ttggcatcaa aatctaagtt 950
tgttttacaa agattgtttt tagtactaag ctgccttggc agtttgcatt 1000
tttgagccaa acaaaaatat attattttcc cttctaagta aaaaaaaaaa 1050
aaaaaaaaaa 1060
166
303
PRT
Homo Sapien
166
Met Ala Ala Ala Pro Gly Leu Leu Phe Trp Leu Phe Val Leu Gly
1 5 10 15
Ala Leu Trp Trp Val Pro Gly Gln Ser Asp Leu Ser His Gly Arg
20 25 30
Arg Phe Ser Asp Leu Lys Val Cys Gly Asp Glu Glu Cys Ser Met
35 40 45
Leu Met Tyr Arg Gly Lys Ala Leu Glu Asp Phe Thr Gly Pro Asp
50 55 60
Cys Arg Phe Val Asn Phe Lys Lys Gly Asp Asp Val Tyr Val Tyr
65 70 75
Tyr Lys Leu Ala Gly Gly Ser Leu Glu Leu Trp Ala Gly Ser Val
80 85 90
Glu His Ser Phe Gly Tyr Phe Pro Lys Asp Leu Ile Lys Val Leu
95 100 105
His Lys Tyr Thr Glu Glu Glu Leu His Ile Pro Ala Asp Glu Thr
110 115 120
Asp Phe Val Cys Phe Glu Gly Gly Arg Asp Asp Phe Asn Ser Tyr
125 130 135
Asn Val Glu Glu Leu Leu Gly Ser Leu Glu Leu Glu Asp Ser Val
140 145 150
Pro Glu Glu Ser Lys Lys Ala Glu Glu Val Ser Gln His Arg Glu
155 160 165
Lys Ser Pro Glu Glu Ser Arg Gly Arg Glu Leu Asp Pro Val Pro
170 175 180
Glu Pro Glu Ala Phe Arg Ala Asp Ser Glu Asp Gly Glu Gly Ala
185 190 195
Phe Ser Glu Ser Thr Glu Gly Leu Gln Gly Gln Pro Ser Ala Gln
200 205 210
Glu Ser His Pro His Thr Ser Gly Pro Ala Ala Asn Ala Gln Gly
215 220 225
Val Gln Ser Ser Leu Asp Thr Phe Glu Glu Ile Leu His Asp Lys
230 235 240
Leu Lys Val Pro Gly Ser Glu Ser Arg Thr Gly Asn Ser Ser Pro
245 250 255
Ala Ser Val Glu Arg Glu Lys Thr Asp Ala Tyr Lys Val Leu Lys
260 265 270
Thr Glu Met Ser Gln Arg Gly Ser Gly Gln Cys Val Ile His Tyr
275 280 285
Ser Lys Gly Phe Arg Trp His Gln Asn Leu Ser Leu Phe Tyr Lys
290 295 300
Asp Cys Phe
167
2570
DNA
Homo Sapien
167
ccaggaccag ggcgcaccgg ctcagcctct cacttgtcag aggccgggga 50
agagaagcaa agcgcaacgg tgtggtccaa gccggggctt ctgcttcgcc 100
tctaggacat acacgggacc ccctaacttc agtcccccaa acgcgcaccc 150
tcgaagtctt gaactccagc cccgcacatc cacgcgcggc acaggcgcgg 200
caggcggcag gtcccggccg aaggcgatgc gcgcaggggg tcgggcagct 250
gggctcgggc ggcgggagta gggcccggca gggaggcagg gaggctgcat 300
attcagagtc gcgggctgcg ccctgggcag aggccgccct cgctccacgc 350
aacacctgct gctgccaccg cgccgcgatg agccgcgtgg tctcgctgct 400
gctgggcgcc gcgctgctct gcggccacgg agccttctgc cgccgcgtgg 450
tcagcggcca aaaggtgtgt tttgctgact tcaagcatcc ctgctacaaa 500
atggcctact tccatgaact gtccagccga gtgagctttc aggaggcacg 550
cctggcttgt gagagtgagg gaggagtcct cctcagcctt gagaatgaag 600
cagaacagaa gttaatagag agcatgttgc aaaacctgac aaaacccggg 650
acagggattt ctgatggtga tttctggata gggctttgga ggaatggaga 700
tgggcaaaca tctggtgcct gcccagatct ctaccagtgg tctgatggaa 750
gcaattccca gtaccgaaac tggtacacag atgaaccttc ctgcggaagt 800
gaaaagtgtg ttgtgatgta tcaccaacca actgccaatc ctggccttgg 850
gggtccctac ctttaccagt ggaatgatga caggtgtaac atgaagcaca 900
attatatttg caagtatgaa ccagagatta atccaacagc ccctgtagaa 950
aagccttatc ttacaaatca accaggagac acccatcaga atgtggttgt 1000
tactgaagca ggtataattc ccaatctaat ttatgttgtt ataccaacaa 1050
tacccctgct cttactgata ctggttgctt ttggaacctg ttgtttccag 1100
atgctgcata aaagtaaagg aagaacaaaa actagtccaa accagtctac 1150
actgtggatt tcaaagagta ccagaaaaga aagtggcatg gaagtataat 1200
aactcattga cttggttcca gaattttgta attctggatc tgtataagga 1250
atggcatcag aacaatagct tggaatggct tgaaatcaca aaggatctgc 1300
aagatgaact gtaagctccc ccttgaggca aatattaaag taatttttat 1350
atgtctatta tttcatttaa agaatatgct gtgctaataa tggagtgaga 1400
catgcttatt ttgctaaagg atgcacccaa acttcaaact tcaagcaaat 1450
gaaatggaca atgcagataa agttgttatc aacacgtcgg gagtatgtgt 1500
gttagaagca attcctttta tttctttcac ctttcataag ttgttatcta 1550
gtcaatgtaa tgtatattgt attgaaattt acagtgtgca aaagtatttt 1600
acctttgcat aagtgtttga taaaaatgaa ctgttctaat atttattttt 1650
atggcatctc atttttcaat acatgctctt ttgattaaag aaacttatta 1700
ctgttgtcaa ctgaattcac acacacacaa atatagtacc atagaaaaag 1750
tttgttttct cgaaataatt catctttcag cttctctgct tttggtcaat 1800
gtctaggaaa tctcttcaga aataagaagc tatttcatta agtgtgatat 1850
aaacctcctc aaacatttta cttagaggca aggattgtct aatttcaatt 1900
gtgcaagaca tgtgccttat aattattttt agcttaaaat taaacagatt 1950
ttgtaataat gtaactttgt taataggtgc ataaacacta atgcagtcaa 2000
tttgaacaaa agaagtgaca tacacaatat aaatcatatg tcttcacacg 2050
ttgcctatat aatgagaagc agctctctga gggttctgaa atcaatgtgg 2100
tccctctctt gcccactaaa caaagatggt tgttcggggt ttgggattga 2150
cactggaggc agatagttgc aaagttagtc taaggtttcc ctagctgtat 2200
ttagcctctg actatattag tatacaaaga ggtcatgtgg ttgagaccag 2250
gtgaatagtc actatcagtg tggagacaag cacagcacac agacatttta 2300
ggaaggaaag gaactacgaa atcgtgtgaa aatgggttgg aacccatcag 2350
tgatcgcata ttcattgatg agggtttgct tgagatagaa aatggtggct 2400
cctttctgtc ttatctccta gtttcttcaa tgcttacgcc ttgttcttct 2450
caagagaaag ttgtaactct ctggtcttca tatgtccctg tgctcctttt 2500
aaccaaataa agagttcttg tttctggggg aaaaaaaaaa aaaaaaaaaa 2550
aaaaaaaaaa aaaaaaaaaa 2570
168
273
PRT
Homo Sapien
168
Met Ser Arg Val Val Ser Leu Leu Leu Gly Ala Ala Leu Leu Cys
1 5 10 15
Gly His Gly Ala Phe Cys Arg Arg Val Val Ser Gly Gln Lys Val
20 25 30
Cys Phe Ala Asp Phe Lys His Pro Cys Tyr Lys Met Ala Tyr Phe
35 40 45
His Glu Leu Ser Ser Arg Val Ser Phe Gln Glu Ala Arg Leu Ala
50 55 60
Cys Glu Ser Glu Gly Gly Val Leu Leu Ser Leu Glu Asn Glu Ala
65 70 75
Glu Gln Lys Leu Ile Glu Ser Met Leu Gln Asn Leu Thr Lys Pro
80 85 90
Gly Thr Gly Ile Ser Asp Gly Asp Phe Trp Ile Gly Leu Trp Arg
95 100 105
Asn Gly Asp Gly Gln Thr Ser Gly Ala Cys Pro Asp Leu Tyr Gln
110 115 120
Trp Ser Asp Gly Ser Asn Ser Gln Tyr Arg Asn Trp Tyr Thr Asp
125 130 135
Glu Pro Ser Cys Gly Ser Glu Lys Cys Val Val Met Tyr His Gln
140 145 150
Pro Thr Ala Asn Pro Gly Leu Gly Gly Pro Tyr Leu Tyr Gln Trp
155 160 165
Asn Asp Asp Arg Cys Asn Met Lys His Asn Tyr Ile Cys Lys Tyr
170 175 180
Glu Pro Glu Ile Asn Pro Thr Ala Pro Val Glu Lys Pro Tyr Leu
185 190 195
Thr Asn Gln Pro Gly Asp Thr His Gln Asn Val Val Val Thr Glu
200 205 210
Ala Gly Ile Ile Pro Asn Leu Ile Tyr Val Val Ile Pro Thr Ile
215 220 225
Pro Leu Leu Leu Leu Ile Leu Val Ala Phe Gly Thr Cys Cys Phe
230 235 240
Gln Met Leu His Lys Ser Lys Gly Arg Thr Lys Thr Ser Pro Asn
245 250 255
Gln Ser Thr Leu Trp Ile Ser Lys Ser Thr Arg Lys Glu Ser Gly
260 265 270
Met Glu Val
169
43
DNA
Artificial Sequence
Synthetic oligonucleotide probe
169
tgtaaaacga cggccagtta aatagacctg caattattaa tct 43
170
41
DNA
Artificial Sequence
Synthetic oligonucleotide probe
170
caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41