US20030105052A1 - Oligoribonucleotide derivatives for specific inhibition of gene expression - Google Patents
Oligoribonucleotide derivatives for specific inhibition of gene expression Download PDFInfo
- Publication number
- US20030105052A1 US20030105052A1 US10/192,926 US19292602A US2003105052A1 US 20030105052 A1 US20030105052 A1 US 20030105052A1 US 19292602 A US19292602 A US 19292602A US 2003105052 A1 US2003105052 A1 US 2003105052A1
- Authority
- US
- United States
- Prior art keywords
- oligonucleotide
- formula
- oligonucleotides
- pharmaceutical
- gene expression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000014509 gene expression Effects 0.000 title claims abstract description 47
- 230000005764 inhibitory process Effects 0.000 title claims abstract description 26
- 108091027075 5S-rRNA precursor Proteins 0.000 title abstract description 7
- 108091034117 Oligonucleotide Proteins 0.000 claims description 137
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims description 67
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 56
- 108090000623 proteins and genes Proteins 0.000 claims description 31
- 239000000969 carrier Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 230000000295 complement effect Effects 0.000 claims description 13
- 230000002401 inhibitory effect Effects 0.000 claims description 13
- 239000002773 nucleotide Substances 0.000 claims description 10
- 125000003729 nucleotide group Chemical group 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 9
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 claims description 8
- 101710163270 Nuclease Proteins 0.000 claims description 7
- 108030002617 2'-5' oligoadenylate synthases Proteins 0.000 claims description 5
- 108091028664 Ribonucleotide Proteins 0.000 claims description 5
- 239000000654 additive Substances 0.000 claims description 5
- 230000015556 catabolic process Effects 0.000 claims description 5
- 238000006731 degradation reaction Methods 0.000 claims description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 5
- 239000002336 ribonucleotide Substances 0.000 claims description 5
- 125000002652 ribonucleotide group Chemical group 0.000 claims description 5
- 239000002126 C01EB10 - Adenosine Substances 0.000 claims description 4
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 claims description 4
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical group O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 claims description 4
- 229960005305 adenosine Drugs 0.000 claims description 4
- 238000012986 modification Methods 0.000 claims description 4
- 230000004048 modification Effects 0.000 claims description 4
- 239000002719 pyrimidine nucleotide Substances 0.000 claims description 4
- 150000003230 pyrimidines Chemical class 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 230000002950 deficient Effects 0.000 claims description 3
- 201000010099 disease Diseases 0.000 claims description 3
- 230000002265 prevention Effects 0.000 claims description 3
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 claims description 2
- 208000024172 Cardiovascular disease Diseases 0.000 claims description 2
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 claims description 2
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 claims description 2
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 claims description 2
- 206010028980 Neoplasm Diseases 0.000 claims description 2
- 208000006673 asthma Diseases 0.000 claims description 2
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 claims description 2
- OFEZSBMBBKLLBJ-UHFFFAOYSA-N cordycepine Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(CO)CC1O OFEZSBMBBKLLBJ-UHFFFAOYSA-N 0.000 claims description 2
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 claims description 2
- 229940029575 guanosine Drugs 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims description 2
- 108020004999 messenger RNA Proteins 0.000 claims description 2
- 238000011160 research Methods 0.000 claims description 2
- 239000007790 solid phase Substances 0.000 claims description 2
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 claims description 2
- 229940045145 uridine Drugs 0.000 claims description 2
- 230000003612 virological effect Effects 0.000 claims description 2
- 238000002560 therapeutic procedure Methods 0.000 claims 5
- 239000000546 pharmaceutical excipient Substances 0.000 claims 2
- 208000035473 Communicable disease Diseases 0.000 claims 1
- 206010061218 Inflammation Diseases 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 claims 1
- OFEZSBMBBKLLBJ-BAJZRUMYSA-N cordycepin Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)C[C@H]1O OFEZSBMBBKLLBJ-BAJZRUMYSA-N 0.000 claims 1
- 230000002526 effect on cardiovascular system Effects 0.000 claims 1
- 230000004054 inflammatory process Effects 0.000 claims 1
- 208000030159 metabolic disease Diseases 0.000 claims 1
- 230000001225 therapeutic effect Effects 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 29
- 101000693265 Homo sapiens Sphingosine 1-phosphate receptor 1 Proteins 0.000 description 23
- -1 8-substituted adenosine Chemical class 0.000 description 19
- 102100025750 Sphingosine 1-phosphate receptor 1 Human genes 0.000 description 18
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 17
- 101000622060 Photinus pyralis Luciferin 4-monooxygenase Proteins 0.000 description 16
- 150000007523 nucleic acids Chemical class 0.000 description 16
- 239000003814 drug Substances 0.000 description 15
- 102000039446 nucleic acids Human genes 0.000 description 15
- 108020004707 nucleic acids Proteins 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 14
- 108020004414 DNA Proteins 0.000 description 13
- 230000000692 anti-sense effect Effects 0.000 description 13
- 229910019142 PO4 Inorganic materials 0.000 description 10
- 239000000074 antisense oligonucleotide Substances 0.000 description 10
- 238000012230 antisense oligonucleotides Methods 0.000 description 10
- 239000010452 phosphate Substances 0.000 description 10
- 239000000872 buffer Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 102000053642 Catalytic RNA Human genes 0.000 description 7
- 108090000994 Catalytic RNA Proteins 0.000 description 7
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000009368 gene silencing by RNA Effects 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 239000000825 pharmaceutical preparation Substances 0.000 description 7
- 239000002953 phosphate buffered saline Substances 0.000 description 7
- 108091092562 ribozyme Proteins 0.000 description 7
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 108090000331 Firefly luciferases Proteins 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 239000005089 Luciferase Substances 0.000 description 6
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical group OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 6
- 238000007385 chemical modification Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 229920005862 polyol Polymers 0.000 description 6
- 150000003077 polyols Chemical class 0.000 description 6
- 239000003826 tablet Substances 0.000 description 6
- 102100034343 Integrase Human genes 0.000 description 5
- 101710203526 Integrase Proteins 0.000 description 5
- 108060001084 Luciferase Proteins 0.000 description 5
- 239000000020 Nitrocellulose Substances 0.000 description 5
- SIIZPVYVXNXXQG-KGXOGWRBSA-N [(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-4-[[(3s,4r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-3-hydroxyoxolan-2-yl]methyl [(2r,4r,5r)-2-(6-aminopurin-9-yl)-4-hydroxy-5-(phosphonooxymethyl)oxolan-3-yl] hydrogen phosphate Polymers C1=NC2=C(N)N=CN=C2N1[C@@H]1O[C@H](COP(O)(=O)OC2[C@@H](O[C@H](COP(O)(O)=O)[C@H]2O)N2C3=NC=NC(N)=C3N=C2)[C@@H](O)[C@H]1OP(O)(=O)OCC([C@@H](O)[C@H]1O)OC1N1C(N=CN=C2N)=C2N=C1 SIIZPVYVXNXXQG-KGXOGWRBSA-N 0.000 description 5
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 5
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 102000057557 human S1PR1 Human genes 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 229920001220 nitrocellulos Polymers 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000001890 transfection Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 4
- 102100027962 2-5A-dependent ribonuclease Human genes 0.000 description 4
- 108010000834 2-5A-dependent ribonuclease Proteins 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 125000006539 C12 alkyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 102000007568 Proto-Oncogene Proteins c-fos Human genes 0.000 description 4
- 108010071563 Proto-Oncogene Proteins c-fos Proteins 0.000 description 4
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 239000007903 gelatin capsule Substances 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 4
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 4
- 108050006400 Cyclin Proteins 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 3
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000012124 Opti-MEM Substances 0.000 description 3
- 108010052090 Renilla Luciferases Proteins 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 102000004243 Tubulin Human genes 0.000 description 3
- 108090000704 Tubulin Proteins 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 230000004700 cellular uptake Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000005289 controlled pore glass Substances 0.000 description 3
- 241001493065 dsRNA viruses Species 0.000 description 3
- 238000010864 dual luciferase reporter gene assay Methods 0.000 description 3
- 210000002889 endothelial cell Anatomy 0.000 description 3
- 210000005260 human cell Anatomy 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000000829 suppository Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 125000002264 triphosphate group Chemical group [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 3
- 210000003606 umbilical vein Anatomy 0.000 description 3
- CJHGCXGTUHBMMH-UHFFFAOYSA-N 2-[2-(2-hydroxyethoxy)ethoxy]ethyl dihydrogen phosphate Chemical compound OCCOCCOCCOP(O)(O)=O CJHGCXGTUHBMMH-UHFFFAOYSA-N 0.000 description 2
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 2
- PNWOYKVCNDZOLS-UHFFFAOYSA-N 6-amino-5-chloro-1h-pyrimidin-2-one Chemical compound NC=1NC(=O)N=CC=1Cl PNWOYKVCNDZOLS-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 206010008874 Chronic Fatigue Syndrome Diseases 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- 102000016736 Cyclin Human genes 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 2
- 108060006698 EGF receptor Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 241000254158 Lampyridae Species 0.000 description 2
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 2
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 102000001253 Protein Kinase Human genes 0.000 description 2
- 108010087776 Proto-Oncogene Proteins c-myb Proteins 0.000 description 2
- 102000009096 Proto-Oncogene Proteins c-myb Human genes 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 229930003427 Vitamin E Natural products 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 208000036815 beta tubulin Diseases 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000001268 conjugating effect Effects 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 238000001212 derivatisation Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 229960004903 invert sugar Drugs 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 150000002634 lipophilic molecules Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 208000029766 myalgic encephalomeyelitis/chronic fatigue syndrome Diseases 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 102000027450 oncoproteins Human genes 0.000 description 2
- 108091008819 oncoproteins Proteins 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- RDOWQLZANAYVLL-UHFFFAOYSA-N phenanthridine Chemical compound C1=CC=C2C3=CC=CC=C3C=NC2=C1 RDOWQLZANAYVLL-UHFFFAOYSA-N 0.000 description 2
- 230000032361 posttranscriptional gene silencing Effects 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 108060006633 protein kinase Proteins 0.000 description 2
- ZCCUUQDIBDJBTK-UHFFFAOYSA-N psoralen Chemical compound C1=C2OC(=O)C=CC2=CC2=C1OC=C2 ZCCUUQDIBDJBTK-UHFFFAOYSA-N 0.000 description 2
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 229960003604 testosterone Drugs 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 239000001226 triphosphate Substances 0.000 description 2
- 235000011178 triphosphate Nutrition 0.000 description 2
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 235000019165 vitamin E Nutrition 0.000 description 2
- 229940046009 vitamin E Drugs 0.000 description 2
- 239000011709 vitamin E Substances 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- IMAXLNCKOJCLPF-NGJCXOISSA-N (2r,4r,6s)-6-(hydroxymethyl)oxane-2,4-diol Chemical compound OC[C@@H]1C[C@@H](O)C[C@H](O)O1 IMAXLNCKOJCLPF-NGJCXOISSA-N 0.000 description 1
- 125000006702 (C1-C18) alkyl group Chemical group 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- 125000006736 (C6-C20) aryl group Chemical group 0.000 description 1
- JUDOLRSMWHVKGX-UHFFFAOYSA-N 1,1-dioxo-1$l^{6},2-benzodithiol-3-one Chemical compound C1=CC=C2C(=O)SS(=O)(=O)C2=C1 JUDOLRSMWHVKGX-UHFFFAOYSA-N 0.000 description 1
- AZUYLZMQTIKGSC-UHFFFAOYSA-N 1-[6-[4-(5-chloro-6-methyl-1H-indazol-4-yl)-5-methyl-3-(1-methylindazol-5-yl)pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl]prop-2-en-1-one Chemical compound ClC=1C(=C2C=NNC2=CC=1C)C=1C(=NN(C=1C)C1CC2(CN(C2)C(C=C)=O)C1)C=1C=C2C=NN(C2=CC=1)C AZUYLZMQTIKGSC-UHFFFAOYSA-N 0.000 description 1
- YQDJMFFVPVZWNK-UHFFFAOYSA-N 2,3-dihexadecoxypropan-1-ol Chemical compound CCCCCCCCCCCCCCCCOCC(CO)OCCCCCCCCCCCCCCCC YQDJMFFVPVZWNK-UHFFFAOYSA-N 0.000 description 1
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 1
- RYAFZRROCNNRFK-IOSLPCCCSA-N 3'-O-Methyladenosine Chemical compound O[C@@H]1[C@H](OC)[C@@H](CO)O[C@H]1N1C2=NC=NC(N)=C2N=C1 RYAFZRROCNNRFK-IOSLPCCCSA-N 0.000 description 1
- WUMDILAJHJEZOK-UHFFFAOYSA-N 3,4-dimethyl-1,3,4-thiadiazinane 1,1-dioxide Chemical compound CN1CCS(=O)(=O)CN1C WUMDILAJHJEZOK-UHFFFAOYSA-N 0.000 description 1
- VXGRJERITKFWPL-UHFFFAOYSA-N 4',5'-Dihydropsoralen Natural products C1=C2OC(=O)C=CC2=CC2=C1OCC2 VXGRJERITKFWPL-UHFFFAOYSA-N 0.000 description 1
- FCZOVUJWOBSMSS-UHFFFAOYSA-N 5-[(6-aminopurin-9-yl)methyl]-5-methyl-3-methylideneoxolan-2-one Chemical compound C1=NC2=C(N)N=CN=C2N1CC1(C)CC(=C)C(=O)O1 FCZOVUJWOBSMSS-UHFFFAOYSA-N 0.000 description 1
- BISHACNKZIBDFM-UHFFFAOYSA-N 5-amino-1h-pyrimidine-2,4-dione Chemical compound NC1=CNC(=O)NC1=O BISHACNKZIBDFM-UHFFFAOYSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- ZFTBZKVVGZNMJR-UHFFFAOYSA-N 5-chlorouracil Chemical compound ClC1=CNC(=O)NC1=O ZFTBZKVVGZNMJR-UHFFFAOYSA-N 0.000 description 1
- JDBGXEHEIRGOBU-UHFFFAOYSA-N 5-hydroxymethyluracil Chemical compound OCC1=CNC(=O)NC1=O JDBGXEHEIRGOBU-UHFFFAOYSA-N 0.000 description 1
- QFVKLKDEXOWFSL-UHFFFAOYSA-N 6-amino-5-bromo-1h-pyrimidin-2-one Chemical compound NC=1NC(=O)N=CC=1Br QFVKLKDEXOWFSL-UHFFFAOYSA-N 0.000 description 1
- VJUPMOPLUQHMLE-UUOKFMHZSA-N 8-Bromoadenosine Chemical class BrC1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O VJUPMOPLUQHMLE-UUOKFMHZSA-N 0.000 description 1
- RTGYRFMTJZYXPD-IOSLPCCCSA-N 8-Methyladenosine Chemical class CC1=NC2=C(N)N=CN=C2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O RTGYRFMTJZYXPD-IOSLPCCCSA-N 0.000 description 1
- FVXHPCVBOXMRJP-UHFFFAOYSA-N 8-bromo-7h-purin-6-amine Chemical compound NC1=NC=NC2=C1NC(Br)=N2 FVXHPCVBOXMRJP-UHFFFAOYSA-N 0.000 description 1
- ORUIZIXJCCIGAI-UHFFFAOYSA-N 8-methyl-7h-purin-6-amine Chemical compound C1=NC(N)=C2NC(C)=NC2=N1 ORUIZIXJCCIGAI-UHFFFAOYSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 108010060263 Adenosine A1 Receptor Proteins 0.000 description 1
- 102000030814 Adenosine A1 receptor Human genes 0.000 description 1
- 102000008161 Adenosine A3 Receptor Human genes 0.000 description 1
- 108010060261 Adenosine A3 Receptor Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- SKQTXVZTCGSRJS-SRVKXCTJSA-N Asn-Tyr-Asp Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CC(=O)N)N)O SKQTXVZTCGSRJS-SRVKXCTJSA-N 0.000 description 1
- BYLPQJAWXJWUCJ-YDHLFZDLSA-N Asp-Tyr-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](C(C)C)C(O)=O BYLPQJAWXJWUCJ-YDHLFZDLSA-N 0.000 description 1
- 102100040794 Beta-1 adrenergic receptor Human genes 0.000 description 1
- 102100021277 Beta-secretase 2 Human genes 0.000 description 1
- 101710150190 Beta-secretase 2 Proteins 0.000 description 1
- 101150012716 CDK1 gene Proteins 0.000 description 1
- 101100314454 Caenorhabditis elegans tra-1 gene Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- UDMBCSSLTHHNCD-UHFFFAOYSA-N Coenzym Q(11) Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(O)=O)C(O)C1O UDMBCSSLTHHNCD-UHFFFAOYSA-N 0.000 description 1
- 102000012422 Collagen Type I Human genes 0.000 description 1
- 108010022452 Collagen Type I Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 102000008130 Cyclic AMP-Dependent Protein Kinases Human genes 0.000 description 1
- 108010049894 Cyclic AMP-Dependent Protein Kinases Proteins 0.000 description 1
- OZHXXYOHPLLLMI-CIUDSAMLSA-N Cys-Lys-Ala Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O OZHXXYOHPLLLMI-CIUDSAMLSA-N 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- 101100481408 Danio rerio tie2 gene Proteins 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- 241000255925 Diptera Species 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 102000012199 E3 ubiquitin-protein ligase Mdm2 Human genes 0.000 description 1
- 108050002772 E3 ubiquitin-protein ligase Mdm2 Proteins 0.000 description 1
- 102000036530 EDG receptors Human genes 0.000 description 1
- 108091007263 EDG receptors Proteins 0.000 description 1
- 101100059559 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) nimX gene Proteins 0.000 description 1
- 241000991587 Enterovirus C Species 0.000 description 1
- 102000009024 Epidermal Growth Factor Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 102100039788 GTPase NRas Human genes 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 241000711557 Hepacivirus Species 0.000 description 1
- 102000018710 Heparin-binding EGF-like Growth Factor Human genes 0.000 description 1
- 101800001649 Heparin-binding EGF-like growth factor Proteins 0.000 description 1
- ZPVJJPAIUZLSNE-DCAQKATOSA-N His-Arg-Ser Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(O)=O ZPVJJPAIUZLSNE-DCAQKATOSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 1
- 101000744505 Homo sapiens GTPase NRas Proteins 0.000 description 1
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 1
- 241000701074 Human alphaherpesvirus 2 Species 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- GRSZFWQUAKGDAV-KQYNXXCUSA-N IMP Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(O)=O)O[C@H]1N1C(NC=NC2=O)=C2N=C1 GRSZFWQUAKGDAV-KQYNXXCUSA-N 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical class O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 229930010555 Inosine Chemical class 0.000 description 1
- 108010017642 Integrin alpha2beta1 Proteins 0.000 description 1
- 108010008212 Integrin alpha4beta1 Proteins 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 102000004388 Interleukin-4 Human genes 0.000 description 1
- 102000004889 Interleukin-6 Human genes 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 102000004890 Interleukin-8 Human genes 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 108010058398 Macrophage Colony-Stimulating Factor Receptor Proteins 0.000 description 1
- 102100028123 Macrophage colony-stimulating factor 1 Human genes 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 101100344182 Mus musculus Lox gene Proteins 0.000 description 1
- 101100481410 Mus musculus Tek gene Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 102100034681 Myeloblastin Human genes 0.000 description 1
- 108090000973 Myeloblastin Proteins 0.000 description 1
- 108700026495 N-Myc Proto-Oncogene Proteins 0.000 description 1
- 102100030124 N-myc proto-oncogene protein Human genes 0.000 description 1
- 101100522284 Orgyia pseudotsugata multicapsid polyhedrosis virus PTP-1 gene Proteins 0.000 description 1
- 241000702244 Orthoreovirus Species 0.000 description 1
- 108091008606 PDGF receptors Proteins 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 241000254064 Photinus pyralis Species 0.000 description 1
- 102000011653 Platelet-Derived Growth Factor Receptors Human genes 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 101710098940 Pro-epidermal growth factor Proteins 0.000 description 1
- 102100036691 Proliferating cell nuclear antigen Human genes 0.000 description 1
- 102100024924 Protein kinase C alpha type Human genes 0.000 description 1
- 101710109947 Protein kinase C alpha type Proteins 0.000 description 1
- 108010018070 Proto-Oncogene Proteins c-ets Proteins 0.000 description 1
- 102000004053 Proto-Oncogene Proteins c-ets Human genes 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 230000004570 RNA-binding Effects 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108090000621 Ribonuclease P Proteins 0.000 description 1
- 102000004167 Ribonuclease P Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 102000001332 SRC Human genes 0.000 description 1
- 108060006706 SRC Proteins 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- JGUWRQWULDWNCM-FXQIFTODSA-N Ser-Val-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CO)C(O)=O JGUWRQWULDWNCM-FXQIFTODSA-N 0.000 description 1
- 241000580858 Simian-Human immunodeficiency virus Species 0.000 description 1
- 241000251131 Sphyrna Species 0.000 description 1
- 241000906446 Theraps Species 0.000 description 1
- 102000005610 Thyroid Hormone Receptors alpha Human genes 0.000 description 1
- 108010045070 Thyroid Hormone Receptors alpha Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- DJJCXFVJDGTHFX-UHFFFAOYSA-N Uridinemonophosphate Natural products OC1C(O)C(COP(O)(O)=O)OC1N1C(=O)NC(=O)C=C1 DJJCXFVJDGTHFX-UHFFFAOYSA-N 0.000 description 1
- 108091008605 VEGF receptors Proteins 0.000 description 1
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 description 1
- 241000711975 Vesicular stomatitis virus Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 206010047642 Vitiligo Diseases 0.000 description 1
- 101100273808 Xenopus laevis cdk1-b gene Proteins 0.000 description 1
- 0 [1*]P(=[W])([V]CC1O[C@@H](C)C([2*])[C@H]1[3*])[U]C1[C@H](C)OC(C[V]P([1*])(=[W])[U][C@H]2C(C[V]P([1*])(=[W])[U][C@H]3C(CO)O[C@@H](C)C3[2*])O[C@@H](BC)C2[2*])[C@@H]1[3*] Chemical compound [1*]P(=[W])([V]CC1O[C@@H](C)C([2*])[C@H]1[3*])[U]C1[C@H](C)OC(C[V]P([1*])(=[W])[U][C@H]2C(C[V]P([1*])(=[W])[U][C@H]3C(CO)O[C@@H](C)C3[2*])O[C@@H](BC)C2[2*])[C@@H]1[3*] 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 229950006790 adenosine phosphate Drugs 0.000 description 1
- 108010013985 adhesion receptor Proteins 0.000 description 1
- 102000019997 adhesion receptor Human genes 0.000 description 1
- 108010070944 alanylhistidine Proteins 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- HMFHBZSHGGEWLO-MBMOQRBOSA-N alpha-D-arabinofuranose Chemical compound OC[C@H]1O[C@H](O)[C@@H](O)[C@@H]1O HMFHBZSHGGEWLO-MBMOQRBOSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000007860 aryl ester derivatives Chemical class 0.000 description 1
- 239000012131 assay buffer Substances 0.000 description 1
- YEJAJYAHJQIWNU-UHFFFAOYSA-N azelastine hydrochloride Chemical compound Cl.C1CN(C)CCCC1N1C(=O)C2=CC=CC=C2C(CC=2C=CC(Cl)=CC=2)=N1 YEJAJYAHJQIWNU-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 108010014494 beta-1 Adrenergic Receptors Proteins 0.000 description 1
- HMFHBZSHGGEWLO-SQOUGZDYSA-N beta-D-arabinofuranose Chemical compound OC[C@H]1O[C@@H](O)[C@@H](O)[C@@H]1O HMFHBZSHGGEWLO-SQOUGZDYSA-N 0.000 description 1
- HMFHBZSHGGEWLO-TXICZTDVSA-N beta-D-ribose Chemical group OC[C@H]1O[C@@H](O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-TXICZTDVSA-N 0.000 description 1
- HMFHBZSHGGEWLO-KKQCNMDGSA-N beta-D-xylofuranose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@H]1O HMFHBZSHGGEWLO-KKQCNMDGSA-N 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 230000017455 cell-cell adhesion Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- IERHLVCPSMICTF-XVFCMESISA-N cytidine 5'-monophosphate Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(O)=O)O1 IERHLVCPSMICTF-XVFCMESISA-N 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- GYOZYWVXFNDGLU-XLPZGREQSA-N dTMP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)C1 GYOZYWVXFNDGLU-XLPZGREQSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000009982 effect on human Effects 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 1
- 229960004413 flucytosine Drugs 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- RQFCJASXJCIDSX-UUOKFMHZSA-N guanosine 5'-monophosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O RQFCJASXJCIDSX-UUOKFMHZSA-N 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 239000012194 insect media Substances 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002154 ionophoretic effect Effects 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- CPQCSJYYDADLCZ-UHFFFAOYSA-N n-methylhydroxylamine Chemical compound CNO CPQCSJYYDADLCZ-UHFFFAOYSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 125000005642 phosphothioate group Chemical group 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 102000027483 retinoid hormone receptors Human genes 0.000 description 1
- 108091008679 retinoid hormone receptors Proteins 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 125000000548 ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- DJJCXFVJDGTHFX-XVFCMESISA-N uridine 5'-monophosphate Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(O)=O)O[C@H]1N1C(=O)NC(=O)C=C1 DJJCXFVJDGTHFX-XVFCMESISA-N 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 231100000925 very toxic Toxicity 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/315—Phosphorothioates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/318—Chemical structure of the backbone where the PO2 is completely replaced, e.g. MMI or formacetal
- C12N2310/3183—Diol linkers, e.g. glycols or propanediols
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/319—Chemical structure of the backbone linked by 2'-5' linkages, i.e. having a free 3'-position
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/32—Chemical structure of the sugar
- C12N2310/321—2'-O-R Modification
Definitions
- the present invention relates to novel oligoribonucleotide derivatives which have a 2′5′-linked oligoribonucleotide residue without a 5′-phosphate residue on the 3′ end and to the use thereof for specific inhibition of gene expression.
- oligonucleotides are antisense oligonucleotides, ribozymes, DNA enzymes and external guide sequences (EGS).
- Antisense oligonucleotides are short single-stranded nucleic acid derivatives which bind via Watson-Crick base pairing to a complementary messenger ribonucleic acid (mRNA) whose translation into the corresponding protein is to be inhibited.
- mRNA complementary messenger ribonucleic acid
- antisense oligonucleotides exhibit their action according to a mechanism which is supported by cellular ribonuclease H (RNase H); numerous studies have shown evidence for this.
- RNase H which is present in all cells recognizes a double strand of DNA and RNA and cuts the mRNA complementary to said oligonucleotide via hydrolysis of one or in most cases more phosphodiester bonds.
- the way in which the oligonucleotides have to be modified in order for activation of RNase H to take place is known and is described, for example, in Uhlmann (2000) Curr. Opin. Drug Discov. Dev. 3, 203-213. Synthetic ribozymes carry this nuclease activity in their sequence.
- ribozyme The most common type of ribozyme is the “hammerhead” ribozyme in which the consensus sequence GAAAC which is derived from naturally occurring ribozymes forms the RNase part and the flanking sequences form the antisense oligonucleotide part.
- DNA enzymes which, however, are not derived from naturally occurring ribozyme motifs but have been found by in-vitro selection, act in a similar way.
- EGS are synthetic RNA analogs which activate the cellular RNase P and bind via appropriate flanking sequences to the target mRNA and induce a specific mRNA degradation.
- a common problem of the inhibition of gene expression with the aid of synthetic oligonucleotides is that it is always necessary to assay a relatively large number of oligonucleotides against various regions of the target nucleic acid, in order to identify an efficient sequence.
- antisense oligonucleotides often inhibit gene expression only inefficiently or incompletely.
- sequence-unspecific side effects were observed, which may be caused by the fact that even relatively short part sequences of about five bases in length activate RNase H. This is shown, for example, by “Woolf et al. (1992). Proc. Natl. Acad. Sci. U.S.A. 89, 7305-7309)”.
- there are also side effects which are caused by interaction of the antisense oligonucleotides with proteins.
- Double-stranded RNA is a signal for particular cells and organisms to induce a sequence-specific degradation of mRNA according to a process which is known as RNA interference (RNAi).
- RNAi RNA interference
- the RNAi phenomenon was observed in a number of different organisms such as, for example, C. elegans , flies, fungi, plants and mouse embryos. RNAi is believed to be very similar or identical to post-transcriptional gene silencing (PTGS) found in plants.
- PTGS post-transcriptional gene silencing
- RNAi is a post-transcriptional process in which the dsRNA is first cleaved into relatively small fragments which are then probably used for sequence-specific degradation of the target mRNA.
- RNAi with long dsRNA is the fact that only particular organisms such as C. elegans , zebra fish, plants, particular types of fungi, Drosophila, oocytes and embryos of mice allow sequence-specific inhibition by dsRNA, while most animal cells when treated with dsRNA cause apoptosis. Long dsRNA still inhibits gene expression when the sequence homology is from 70 to 90%. For this reason, it is possible in the case of gene families with high sequence homology for misinterpretations of the phenotype to occur by simultaneous inhibition of the expression of a plurality of not completely homologous genes.
- dsRNA for example with dsRNA viruses
- the treatment of cells with dsRNA generally leads to an apoptotic process or to the sequence-unspecific degradation of the mRNA due to induction of a 2′5′-oligoadenylate-synthase activity.
- the infected cell synthesizes in response to the viral dsRNA trimeric or tetrameric adenylate (2′5′-A) with the unusual 2′5′-phosphodiester-internucleoside bond.
- 2′5′-A is phosphorylated by cellular kinases on its 5′ end and then activates a nuclease called RNase L.
- 2′5′-A may also be chemically synthesized and be introduced into the cell (Torrence et al. (1994) Curr. Med. Chem 1, 176-191). However, synthetic 2′5′-A activates RNase L only if it has been converted to the 5′-phosphate or 5′-triphosphate form. RNase L activated by 5′-p-2′5′-A (p is phosphate, diphosphate or triphosphate) then degrades the entire RNA of the cell in a sequence-unspecific manner. In addition, it was shown that it is possible to inhibit gene expression sequence-specifically with the aid of antisense oligonucleotide conjugates with a 5′-p-2′5′-A residue.
- the 5′ end of the 2′5′-A residue is not linked to the oligonucleotide but is present as phosphate, thiophosphate or triphosphate (Torrence et al. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 1300-4).
- the target RNA-recognizing oligonucleotide part (antisense part) must be in single-stranded form.
- oligonucleotides having on their 3′ ends 2′5′-A residues which consequently have no free 5′-phosphate or triphosphate function have not been described previously as inhibitors of gene expression.
- the inhibition of gene expression by the single-stranded, 5′-phosphorylated 5′-p-2′5′-A antisense oligonucleotide conjugates is a variation of the antisense principle and is therefore also subject to the limitations of the antisense-oligonucleotide approach.
- the 2′5′-A residue is attached to the 5′ end of the oligonucleotide via a spacer (linker) so that the 2′ or 3′ end of the 2′5′-A residue is present in bound form.
- the RNA-binding portion preferably comprises DNA (FIGS. 4 to 6 in Torence, Curr. Opin. Mol. Ther. (1999) 1, 307).
- oligonucleotides have been used increasingly as tools for studying the function of new genes (functional genomics).
- the use of antisense oligonucleotides and ribozymes for sequence-specific inhibition of gene expression of new genes coding for proteins with unknown function is made more difficult by the fact that generally a large variety of oligonucleotides of different sequences have to be assayed, and this is a disadvantage in particular for a high-throughput process.
- novel oligonucleotide derivatives which have a 2′5′-linked oligonucleotide residue on the 3′ end, which carries no phosphate, thiophosphate or triphosphate group.
- the sequence of the novel oligonucleotide derivatives is complementary to the RNA sequence whose translation is to be inhibited.
- the invention accordingly provides oligonucleotide derivatives of the formula I,
- N is naturally or not naturally occurring nucleotides, preferably ribonucleotides, which are at least partly complementary to a target RNA,
- x is independently 10 to 100, preferably 15 to 45 and particularly preferably 16 to 25,
- n is 2 to 20, preferably 3 to 10, particularly preferably 3 to 6,
- Z is naturally or not naturally occurring nucleotides which are linked via a 2′5′internucleoside bond
- v and w independently of one another are 2 to 20, preferably 2 to 10, particularly preferably 2 to 6 and
- z is 15 to 25, preferably 16 to 23 and particularly preferably 19 to 21 and
- U is uridine
- N is adenosine (A), guanosine (G), cytidine (C) or U
- X is A, G or C, preferably A.
- N may be a ribonucleotide.
- the gene whose expression is to be inhibited contains, for example, the following DNA sequence
- the target RNA has the following sequence pattern
- oligonucleotides of the formula I in which one or more phosphodiester bonds have been replaced, for example by phosphorothioate bonds or N3′,P5′-phosphoramidate bonds.
- Particular preference is given to oligonucleotides of the formula I in which one or more phosphodiester bonds have been replaced by phosphorothioate residues.
- the phosphorothioate residues are preferably introduced on the 3′ ends, the 5′ ends and on the internal pyrimidine nucleotides C and U, in particular if several pyrimidine nucleotides succeed one another in the sequence.
- a particular embodiment of the invention comprises the use of a mixture of two or more oligonucleotide derivatives in accordance with formula 1 for inhibiting gene expression.
- the oligonucleotide derivatives in this case may be directed against different regions of an RNA or against the RNA of different genes.
- the single-stranded oligonucleotides of the fomula I were originally employed as control oligonucleotides for RNAi experiments using short dsRNA. Thus, owing to the single-stranded character, inhibition of gene expression was not expected. Surprisingly, however, particular single-stranded oligonucleotides inhibited gene expression, too, in particular when sufficiently stable toward nucleases. Another surprise was that the oligonucleotides of the formula I in which the 2′5′-linked oligoadenylate residue has no free 5′-phosphate, 5′-thiophosphate or 5′-triphosphate residue inhibited gene expression in a sequence-specific manner.
- the 2′5′-linked oligoadenylate residue can be bound to the 3′5′-linked RNA directly via the 5′ function. It has been a valid dogma up until now that the 2′5′-linked oligoadenylate residue must have a free phosphate, thiophosphate or triphosphate residue on the 5′ end in order to inhibit gene expression. Moreover, a 2′5′ oligoadenylate-mediated inhibition had previously always been asscociated with an unspecific, i.e. sequence-independent, effect (Bass, Nature (2001) 411, 428).
- oligonucleotides of the formula I not only deviate in their structure from the oligonucleotide conjugates described by Torrence (Curr. Opin. Mol. Ther. (1999) 1, 307) but also exhibit a much better inhibitory action which consequently is based on a different mechanism.
- the oligonucleotides of the invention also had an inhibitory sequence-specific effect on human primary cells. As far as we know, the inhibition of gene expression by oligonucleotides having 2′5′-linked nucleotides in human primary cells has not been observed previously.
- inventive oligonucleotides of the formula I may also be used for inhibiting gene expression in cells which express only a small amount of, a defective or no 2′5′-oligoadenylate synthase.
- oligonucleotides of the formula I for treating patients having a deficiency or defect in 2′5′-oligoadenylate synthase.
- Patients with CFS chronic fatigue syndrome
- sequences of the oligonucleotides of the formula I which are used for inhibiting the gene expression of particular targets are selected on the basis of the corresponding gene sequences.
- the sequences of said genes are obtained by sequencing or from gene databases.
- An example which may be illustrated here is the inhibition of luciferase (firefly) by double-stranded nucleic acids.
- the accession number for this gene is U47298.
- the coding region of firefly luciferase comprises 1 653 nucleotides. The following four regions may be selected, inter alia, as target sequences for the inhibition by double-stranded nucleic acids.
- RNA for these regions then has the following sequence.
- (Seq ID No.7) GCUUUUACAGAUGCACAUAUCGAGGUGGACAUCACUUACG (Seq ID No.8) CCGCGAACGACAUUUAUAAUGAACGUGAAUUGCUCAACAG (Seq ID No.9) GCGGUCGGUAAAGUUGUUCCAUUUUUUGAAGCGAAGGUUG (Seq ID No.10) AUUUUUUGAAGCGAAGGUUGUGGAUCUGGAUACCGGGAAA
- inventive complementary oligonucleotides of the formula I derived therefrom have the following sequences and are characterized in that two or more nucleotides (indicated here by lower-case letters) are linked via a 2′5′-internucleoside bond. Preference is given to 2′5′-linked adenylate residues.
- 3′ aaaaAUGUCUACGUGUAUAGCUCCAC Seq ID No.11 3′ aaaaAUAUUACUUGCACUUAACGAG Seq ID No.12 3′ aaaCCAUUUCAACAAGGUAAAAAA Seq ID No.13
- oligonucleotides for example as phosphorothioates (asterisks). Stabilization by phosphorothioates is preferably carried out on the ends and internal pyrimidine nucleotides.
- the specificity of the inhibition of luciferase expression can be checked on the basis of control oligonucleotides which are not completely complementary to the target RNA and have, for example, 4 base mismatches.
- B is a naturally or not naturally occurring nucleobase
- U, V and W independently of one another are O, S, NH or CH 2 , preferably O or S,
- R 1 is independently of one another OH, SH, CH 3 or BH 3 , preferably OH or SH, or physiologically tolerated salts thereof,
- R 2 is independently of one another OH, H, O—C 1 to C 12 -alkyl , preferably OH (ribonucleotide), where C 1 to C 12 -alkyl preferably is CH 3 or CH 3 —O—CH 2 CH 2 ,
- R 3 is independently of one another OH, H, O—C 1 to C 12 -Alkyl , preferably OH or H, where C 1 to C 12 -alkyl preferably is CH 3 or CH 3 —O—CH 2 CH 2 ,
- x is independently 10 to 100, preferably 15 to 45, and particularly preferably 16 to 25,
- n is 2 to 20, preferably 3 to 10, particularly preferably 3 to 6,
- A is adenine or an adenine derivative, for example 8-bromoadenine, 8-methyladenine, or hypoxanthine.
- oligonucleotides of the invention are directed, for example, against a human gene or the corresponding RNA thereof and assayed in human cells (HUVEC, human umbilical vein endothelial cells).
- human cells human umbilical vein endothelial cells
- Edg-1 DNA accession number M31210
- the gene database may be transcribed into the corresponding messenger RNA and the following two regions (175 and 725) could be selected for synthesizing appropriate oligonucleotides.
- Edg-1 RNA ′′175′′ GACCUCGGUGGUGUUCAUUCUCAUCUGCUGCU (Seq ID No.16) UUAUCAUCCUGGAGAACAUCUUUGUCUU ′′725′′ AUUUCCAAGGCCAGCCGCAGCUCUGAGAAUGU (Seq ID No.17) GGCGCUGCUCAAGACCGUAAUUAUCGUC
- the mismatch control differs in 5 nucleotides (underlined as mismatch) from the edg-1 RNA.
- oligonucleotides directed against edg-1 were prepared, which have improved nuclease stability and increased inhibitory activity and are derived from the above edg-1 sequences.
- an oligonucleotide may be synthesized completely from the nucleotides adenosine phosphate, guanosine phosphate, inosine phosphate, cytidine phosphate, uridine phosphate and thymidine phosphate. Preference is given to oligonucleotides which are synthesized from ribonucleotides, the “oligoribonucleotides”.
- an oligonucleotide may contain, where appropriate, one or more modifications, for example chemical modifications.
- An oligonucleotide may have a plurality of identical and/or different modifications.
- the 2′5′-linked residue may contain, for example, adenosine, 3′-deoxyadenosine (cordycepin), inosine, 8-bromoadenosine, 8-methyladenosine and other 8-substituted adenosine derivatives.
- the ribose residue may also be derivatized as 3′-O-methyladenosine.
- the internucleoside bonds in the 2′5′-linked portion are preferably phosphodiester and phosphorothioate bonds. Common derivatives of 2′5′-adenylate, their synthesis and activation of RNase L are described in the literature (Player et al. (1998) Pharmacol. Ther. 78, 55).
- the chemical modification of an oligonucleotide may include, for example,
- R 1 and R 1′ independently of one another are hydrogen, (C 1 -C 18 )alkyl, (C 6 -C 20 )aryl, (C 6 -C 14 )aryl-(C 1 -C 8 )alkyl, preferably hydrogen, (C 1 -C 8 )alkyl and/or methoxyethyl, particularly preferably hydrogen, (C 1 -C 4 )alkyl and/or methoxyethyl, or
- R 1 and R 1′ together with the nitrogen atom to which they are bound, form a 5-6-membered heterocycle which may additionally contain another heteroatom selected from the group consisting of O, S, N;
- Heterocyclic base modifications are described, for example, in Herdewijn, Antisense & Nucl. Acid Drug Dev. (2000) 297.
- the chemical modification of the oligonucleotide furthermore comprises conjugating an oligonucleotide with one or more molecules which influence advantageously the properties (e.g. nuclease stability, affinity for target sequence, pharmacokinetics) of said oligonucleotide and/or, during hybridization of the modified oligonucleotide to the target sequence, attack said target sequence with binding and/or crosslinking (oligonucleotide conjugates).
- properties e.g. nuclease stability, affinity for target sequence, pharmacokinetics
- Examples thereof are conjugates with polylysine, with intercalators such as pyrene, acridine, phenazine, phenanthridine, with fluorescent compounds such as fluorescein, with crosslinkers such as psoralen, azidoproflavin, with lipophilic molecules such as (C 12 -C 20 )alkyl, with lipids such as 1,2-dihexadecyl-rac-glycerol, with steroids such as cholesterol or testosterone, with vitamins such as vitamin E, with poly- or oligoethylene glycol, with (C 12 -C 18 )alkyl phosphate diesters and/or with —O—CH 2 —CH(OH)—O—(C 12 -C 18 )alkyl.
- intercalators such as pyrene, acridine, phenazine, phenanthridine
- fluorescent compounds such as fluorescein
- crosslinkers such as psoralen, azidoproflavin
- Such molecules may be conjugated at the 5′ and/or 3′ end and/or within the sequence, for example at a nucleobase.
- oligonucleotide conjugates known to the skilled worker are described in Manoharan (2001) Conjugated Oligonucleotides in Antisense technology. In: Crooke (Editor) Antisense Technology. Marcel Dekker, New York.
- a specific embodiment of the chemical modification relates to conjugation of the oligonucleotide a) with lipophilic molecules, for example (C 12 -C 20 )alkyl, b) with steroids such as cholesterol and/or testosterone, c) with poly- and/or oligoethylene glycol, d) with vitamin E, e) with intercalators such as pyrene, f) with (C 14 -C 18 )alkyl phosphate diesters and/or g) with —O—CH 2 —CH(OH)—O—(C 12 -C 16 )alkyl.
- lipophilic molecules for example (C 12 -C 20 )alkyl
- steroids such as cholesterol and/or testosterone
- poly- and/or oligoethylene glycol d) with vitamin E
- intercalators such as pyrene
- Another specific embodiment of the chemical modification relates to derivatization of the oligonucleotide, as described in HMR 99/L045, as aryl ester conjugate, for example as FDA conjugate, which derivatization benefits the cellular uptake of said oligonucleotides.
- the oligonucleotide may have on its 5′ end a 5′-5′ inversion.
- This type of chemical modification is known to the skilled worker and described, for example, in M. Koga et al., J. Org. Chem. 56 (1991) 3757.
- the 5′ end is a preferred position for conjugating the oligonucleotide with one or more molecules which have a beneficial effect on the properties (for example stability against nucleases, cellular uptake, affinity for the target sequence, pharmacokinetics) of the oligonucleotide.
- the invention further provides methods for preparing the oligonucleotides.
- the oligonucleotides described may be prepared with the aid of various known chemical methods, as described, for example, in Eckstein, F. (1991) “Oligonucleotides and Analogues, A Practical Approach”, IRL Press, Oxford.
- the oligonucleotides may also be prepared by methods which, where appropriate, contain one or more enzymic steps.
- the invention furthermore provides the use of the oligonucleotides for modulating and for completely or partially inhibiting the expression of particular target genes, for example for completely or partially inhibiting translation.
- the invention furthermore relates to the use of said oligonucleotides for modulating and for completely or partially inhibiting expression in cells which have only a small amount of, a defective or no 2′5′-oligoadenylate synthase.
- the invention furthermore provides the use of said oligonucleotides as pharmaceuticals or to the use of said oligonucleotides for the production of pharmaceuticals.
- said oligonucleotides in pharmaceuticals which are suitable for the prevention and/or treatment of diseases which accompany the expression or overexpression of particular genes.
- the invention further provides the use of said oligonucleotides or of pharmaceuticals containing said oligonucleotides for the treatment of diseases in which specific genes are the cause or are involved, due to overexpression.
- the pharmaceuticals of the present invention may be used, for example, for the treatment of disorders caused by viruses, for example by CMV, HIV, HSV-1, HSV-2, hepatitis B, hepatitis C viruses, or papillomaviruses.
- Pharmaceuticals of the present invention are particularly suitable for the treatment of RNA viruses such as, for example, polio viruses, VSV or Influenza virus, in particular also of double-stranded RNA viruses such as reoviruses, for example.
- the pharmaceuticals of the present invention are also suitable, for example, for cancer treatment.
- nuclear oncoproteins such as, for example, c-myc, N-myc, c-myb, c-fos, c-fos/jun, PCNA, p120,
- cytoplasmic/membrane-associated oncoproteins such as, for example, EJ-ras, c-Ha-ras, N-ras, rrg, bcl-2, cdc-2, c-raf-1, c-mos, c-src, c-abl, c-ets,
- cellular receptors such as, for example, EGF receptor, Her-2, c-erbA, VEGF receptor (KDR-1), retinoid receptors, protein kinase regulatory subunit, c-fms, Tie-2, c-raf-1 kinase, PKC-alpha, protein kinase A (R1 alpha),
- cytokines cytokines, growth factors, extracellular matrix such as, for example, CSF-1, IL-6, IL-1 a, IL-1b, IL-2, IL-4, IL-6, IL-8, bFGF, VEGF, myeloblastin, fibronectin,
- extracellular matrix such as, for example, CSF-1, IL-6, IL-1 a, IL-1b, IL-2, IL-4, IL-6, IL-8, bFGF, VEGF, myeloblastin, fibronectin,
- the pharmaceuticals of the present invention are further suitable, for example, for the treatment of disorders which are influenced by integrins or cell-cell adhesion receptors, for example by VLA-4, VLA-2, ICAM, VCAM or ELAM.
- the pharmaceuticals of the present invention are also suitable, for example, for preventing restenosis.
- nuclear transactivator proteins and cyclins such as, for example, c-myc, c-myb, c-fos, c-fos/jun, cyclins and cdc2 kinase,
- mitogens or growth factors such as, for example, PDGF, bFGF, VEGF, EGF, HB-EGF and TGF- ⁇
- cellular receptors such as, for example, bFGF receptor, EGF receptor and PDGF receptor.
- the invention further relates to oligonucleotides for the treatment of asthma, with expression of the adenosine-A1 receptor, adenosine-A3 receptor, Bradikinin receptor or of IL-13 being inhibited with the aid of suitable oligonucleotides.
- the invention also relates to oligonucleotides, for example, for the treatment of cardiovascular diseases, with, for example, expression of the ⁇ 1-adrenergic receptor or of a protein from the EDG family such as, for example, Edg-1 being inhibited.
- the invention also relates to oligonucleotides, for example, for the treatment of diabetes, with expression of PTP-1 B being inhibited, for example.
- the pharmaceuticals may be used, for example, in the form of pharmaceutical preparations which may be administered orally, for example in the form of tablets, coated tablets, hard or soft gelatin capsules, solutions, emulsions or suspensions. They may also be administered rectally, for example in the form of suppositories, or parenterally, for example in the form of injection solutions.
- Pharmaceutical preparations may be produced by processing said compounds in therapeutically inert organic and inorganic carriers. Examples of such carriers for tablets, coated tablets and hard gelatin capsules are lactose, corn starch or derivatives thereof, talc and stearic acid or salts thereof.
- Carriers suitable for the preparation of solutions are water, polyols, sucrose, invert sugar and glucose.
- Carriers suitable for injection solutions are water, alcohols, polyols, glycerol and vegetable oils.
- Carriers suitable for suppositories are vegetable and hardened oils, waxes, fats and semisolid polyols.
- the pharmaceutical preparations may also contain preservatives, solvents, stabilizers, wetting agents, emulsifiers, sweeteners, colorants, flavorings, salts for modifying the osmotic pressure, buffers, coating agents, antioxidants and, where appropriate, other therapeutically active substances.
- Preferred administration forms are topical administrations, local administrations such as, for example, with the aid of a catheter or by inhalation, injections or infusions, and oral administration.
- the oligonucleotide derivatives are formulated in a liquid solution, preferably in a physiologically acceptable buffer such as, for example, Hank's solution or Ringer's solution.
- the oligonucleotides may also be formulated in solid form and be dissolved or suspended prior to use.
- the dosages preferred for systematic administration are from approx. 0.01 mg/kg to approx. 50 mg/kg body weight and day.
- the invention furthermore relates to pharmaceutical preparations which contain oligonucleotides and/or physiologically tolerated salts thereof in addition to pharmaceutically suitable carriers and/or additives.
- the oligonucleotides and/or physiologically tolerated salts thereof may be administered to animals, preferably to mammals, and in particular to humans as pharmaceuticals on their own, in mixtures with one another or in the form of pharmaceutical preparations which permit topical, percutaneous, parenteral or enteral application and which contain as active ingredient an active dose of at least one oligonucleotide in addition to common pharmaceutically suitable carriers and additives.
- the preparations normally contain about from 0.1 to 90% by weight of the therapeutically active compound.
- a topical application for example in the form of ointments, lotions or tinctures, emulsions, or suspensions is preferred.
- the pharmaceutical preparations are produced in a manner known per se (e.g. Remingtons Pharmaceutical Sciences, Mack Publ. Co., Easton, Pa.), with pharmaceutically inert inorganic and/or organic carriers being used.
- pharmaceutically inert inorganic and/or organic carriers are used, for example.
- carriers for soft gelatin capsules and/or suppositories are fats, waxes, semisolid and liquid polyols, natural and/or hardened oils, etc.
- Examples of carriers suitable for the preparation of solutions and/or syrups are water, sucrose, invert sugar, glucose, polyols, etc.
- Carriers suitable for the preparation of injection solutions are water, alcohols, glycerol, polyols, vegetable oils, etc.
- Carriers suitable for microcapsules, implants and/or rods are mixed polymers of glycolic acid and lactic acid. Liposome formulations which are known to the skilled worker (N. Weiner, Drug Develop Ind Pharm 15 (1989) 1523; “Liposome Dermatics, Springer Verlag 1992), for example HVJ liposomes (Hayashi, Gene Therapy 3 (1996) 878), are also suitable.
- Dermal administration may also be carried out, for example, with the aid of ionophoretic methods and/or with the aid of electroporation.
- lipofectins and other carrier systems for example those which are used in gene therapy.
- Particularly suitable systems are those which can be used to introduce oligonucleotides into eukaryotic cells with great efficiency.
- a pharmaceutical preparation may also contain additives such as, for example, fillers, extenders, disintegrants, binding agents, lubricants, wetting agents, stabilizers, emulsifiers, preservatives, sweeteners, colorants, flavorings or aromatizers, thickening agents, diluents, buffer substances, furthermore solvents and/or solubilizers and/or agents for achieving a depot effect, and also salts for modifying the osmotic pressure, coating agents and/or antioxidants. They may also contain two or more different oligonucleotides and/or their physiologically tolerated salts and furthermore, in addition to at least one oligonucleotide, one or more other therapeutically active substances.
- additives such as, for example, fillers, extenders, disintegrants, binding agents, lubricants, wetting agents, stabilizers, emulsifiers, preservatives, sweeteners, colorants, flavorings or aromatizers, thickening agents,
- the dose may vary within wide limits and, in each individual case, has to be adjusted to the individual circumstances.
- the 2′5′-linked oligonucleotide part was synthesized by five condensations with 5′-O-dimethoxytrityl-N-6-benzoyl-3′-O-tertbutyldimethylsilyladenosine-2′-O-phosphoramidite (ANP-5681, Chemgenes).
- the cells were washed with 3 ml of serum-free medium and 800 ⁇ l of SF 900II SFM and the nucleic acid/lipofectin mixture were successively added to the cells, followed by incubation at 25 degrees overnight. On the next day, 1 ml of medium and serum (Gibco BRL 10122-166; final concentration 2%) is added.
- Dual-luciferase reporter (DLR; Promega E 1960) assay system [0112] Dual-luciferase reporter (DLR; Promega E 1960) assay system:
- the Promega DLR assay allows the sequential determination of the firefly luciferase and Renilla luciferase activities having different nucleic acid sequences from a single sample.
- the oligonucleotides according to the formula I, which were to be measured, were directed against firefly luciferase. Thus, only firefly luciferase activity but not Renilla luciferase activity should be inhibited. Thus, apart from the inhibitory action, the specificity may also be tested for.
- the passive lysis of the cells in the well plates was carried out by first removing the medium and washing the cells with PBS (phosphate-buffered saline (Gibco BRL 14200-067). The medium was completely removed by suction and then the PLB (passive lysis buffer, diluted 1:5 with water; 500 ⁇ l of PLB (1 ⁇ ) to be introduced into one well of a 6-well plate) was added thereto. This was followed by a 15-minute incubation with shaking at room temperature.
- PBS phosphate-buffered saline
- the luciferase assay reagent II (LAR II) was prepared by resuspending the luciferase assay substrate (LAS) in 10 ml of luciferase assay buffer II (LAB II).
- the Stop & Glo reagent was prepared by adding 200 ⁇ l of the Stop & Glo substrate (solution) into the bottle containing dry Stop & Glo substrate and mixing the solution for 10 seconds using a vortexer. In order to produce a 1 ⁇ Stop & Glo solution, 20 ⁇ l of the 50 ⁇ Stop & Glo substrate and 1 ml of the Stop & Glo buffer are combined. This is sufficient for 10 assays.
- DLR-assay 100 ⁇ l of LAR II were introduced together with 20 ⁇ l of cell lysate into a well and mixed by pipetting up and down for 2-3 seconds. After luminometric measurement of firefly luciferase activity, 100 ⁇ l of Stop & Glo reagent were added, the solution was mixed and then the Renilla-luciferase activity was determined. The luminescence was determined using the Fluoroskan Ascent FL luminometer (Thermo Labsystems, Frankfurt, Germany).
- Oligonucleotide % Inhibition* a) 3′ aaaaaaCUUCGCUUCCAACACCUAGAC 43 (RNA in antisense orientation, with 2′5′ A) b) 3′ a*a*a a-C*U*U*C G C*U*U C*C A A*C A C*C*U A G A*C 43 (RNA in antisense orientation, with 2′5′ A) c) 3′ aaaaTTTTTTACCTTGTTGAAATGG 12 (not complementary to target RNA; sense orientation) d) 3′ a*a*a a- C*U*U*C G C*U*U C*C A A*C A C*C*U A G A*C 7 (antisense orientation, underlined 2′-O-methyl) 5′-G A A G*C G A A G G*U*U G*U G G A U*C*U*G-teg 0 (Seq ID No.20; sense
- the stabilization of the oligonucleotide by phosphorothioate residues (oligonucleotide b) at particular positions on the oligomer resulted in a markedly improved action.
- the entire 3′5′-linked complementary sequence was derivatized as 2′-O-methyl derivative, virtually no activity was detectable (oligonucleotide d).
- oligonucleotides of the invention were also directed against a human gene or the corresponding RNA and tested on human cells (HUVEC, human umbilical vein endothelial cells).
- control oligonucleotides used were the complementary sequences (sense orientation) without 2′5′-oligoadenylate,
- * is phosphorothioate
- a*a*a a is a 2′5′-linked adenylate (partially modified with *)
- teg is triethylene glycol phosphate
- oligoribonucleotide analogs which had been modified with phosphothioate at particular positions were used in human primary cells as follows, in order to inhibit gene expression of Edg-1 in human cells (HUVEC, human umbilical vein endothelial cells).
- the cell lawn was washed again with PBS and then overlaid with serum-containing EGM medium (CellSystems, # CC-3024+EGM supplements # CC-3124) and incubated for a further 24 or 48 h.
- serum-containing EGM medium CellSystems, # CC-3024+EGM supplements # CC-3124
- the cells were incubated for 4 hours, then fixed with 5% paraformaldehyde (in PBS, pH 7.4) and directly photographed in an inverted fluorescence microscope (Zeiss Axiovert 135M) with its 200-fold magnification using a cooled CCD camera (ORCA-1, Bfi optilas) and excitation through an FITC filter (excitation: 490 nm, emission: 510 nm) and processed via AQM2000 software (Kinetic Imaging).
- the gel was run in 1 ⁇ Tris/glycine/SDS buffer (Bio-Rad # 161-0732).
- the gel was transferred with the aid of the Bio-Rad criterion Western blot apparatus (#170-4070) to a nitrocellulose (NC) membrane (Amersham # RPN 2020D) in 1 ⁇ Tris/glycine buffer (Bio-Rad #161-0732, +10% methanol).
- NC membrane was then saturated at room temperature for 1 hour using 1 ⁇ TBS buffer (Bio-Rad # 170-6435), which contained 5% milk powder (“Blotto”, Bio-Rad #170-6404) and 0.1% Tween 20 (Bio-Rad # 170-6531).
- the membrane was incubated with the anti-hEDG-1 primary antibody (polyclonal rabbit serum obtained by immunization with the EDG-1-specific peptide sequence CKAHRSSVSDYVNYD, coupled to KLH and affinity-purified against the abovementioned peptide sequence) in a 1:50 dilution in TBST-Blotto at 4° C. overnight.
- the secondary antibody anti-rabbit, alkaline phosphatase-coupled, Dianova # 111-055-045 was incubated in a 1:2000 dilution in TBST-Blotto at room temperature for one hour.
- the ECF (“enhanced chemifluorescence”) detection reaction (Amersham #RPN5785) was carried out, and the NC membrane which was covered with clingfilm was incubated with 1 ml of ECF substrate (Amersham Pharmacia #RPN5785) at room temperature for 5 minutes and then detected using a Fluor-imager 595 scanner (Amersham Pharmacia).
- the signal was quantified using the ImageQuant software (Amersham Pharmacia) and normalized to the ⁇ -tubulin signal which was obtained after destaining (Alpha Diagnostic Kit # 90100) the NC membrane once and incubating the ⁇ -tubulin-specific primary antibody (affinity-purified rabbit antibody, Santa Cruz # sc-9104) according to the above-described method.
- EDG-1 protein (% of control) Concentration Oligo #2 Oligo #3 Oligo #5 Oligo #6 Oligo #7 Oligo #8 ( ⁇ M) region “175” region “175” region “725” region “725” mismath mismath 0 100.0 100.0 100.0 100.0 100.0 0.01 87.7 51.4 98.6 47.2 89.4 128.3 0.05 100.8 44.2 129.3 35.5 109.7 107.5 0.1 103.0 35.5 109.4 25.1 121.8 103.6 0.5 119.2 40.3 107.2 27.1 95.7 85.6 1.0 104.4 34.0 96.2 22.6 100.1 83.5
- the inhibition proved to be also sequence-specific with regard to the oligoribonucleotides used, since only the edg-1-homologous oligoribonucleotides #3 and #6 inhibited edg-1 expression, while the oligoribonucleotide #8 with antisense orientation, which differs from the edg-1 sequence by 5 nucleotides, did not inhibit edg-1 expression.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Diabetes (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Communicable Diseases (AREA)
- Biophysics (AREA)
- Pulmonology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Oncology (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Physics & Mathematics (AREA)
- Urology & Nephrology (AREA)
- Vascular Medicine (AREA)
- Virology (AREA)
- Rheumatology (AREA)
- Pain & Pain Management (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
Abstract
The present invention relates to oligoribonucleotide derivatives which have a 2′5′-linked oligoribonucleotide residue without a 5′-phosphate residue on the 3′ end and to the use thereof for specific inhibition of gene expression.
Description
- The present invention relates to novel oligoribonucleotide derivatives which have a 2′5′-linked oligoribonucleotide residue without a 5′-phosphate residue on the 3′ end and to the use thereof for specific inhibition of gene expression.
- The inhibition of gene expression with the aid of synthetic nucleic acids is becoming increasingly important. Typical representatives of these synthetic nucleic acids (oligonucleotides) are antisense oligonucleotides, ribozymes, DNA enzymes and external guide sequences (EGS). “Antisense oligonucleotides” are short single-stranded nucleic acid derivatives which bind via Watson-Crick base pairing to a complementary messenger ribonucleic acid (mRNA) whose translation into the corresponding protein is to be inhibited. In most cases antisense oligonucleotides exhibit their action according to a mechanism which is supported by cellular ribonuclease H (RNase H); numerous studies have shown evidence for this. RNase H which is present in all cells recognizes a double strand of DNA and RNA and cuts the mRNA complementary to said oligonucleotide via hydrolysis of one or in most cases more phosphodiester bonds. The way in which the oligonucleotides have to be modified in order for activation of RNase H to take place is known and is described, for example, in Uhlmann (2000) Curr. Opin. Drug Discov. Dev. 3, 203-213. Synthetic ribozymes carry this nuclease activity in their sequence. The most common type of ribozyme is the “hammerhead” ribozyme in which the consensus sequence GAAAC which is derived from naturally occurring ribozymes forms the RNase part and the flanking sequences form the antisense oligonucleotide part. DNA enzymes which, however, are not derived from naturally occurring ribozyme motifs but have been found by in-vitro selection, act in a similar way. EGS are synthetic RNA analogs which activate the cellular RNase P and bind via appropriate flanking sequences to the target mRNA and induce a specific mRNA degradation.
- A common problem of the inhibition of gene expression with the aid of synthetic oligonucleotides is that it is always necessary to assay a relatively large number of oligonucleotides against various regions of the target nucleic acid, in order to identify an efficient sequence. Furthermore, antisense oligonucleotides often inhibit gene expression only inefficiently or incompletely. Moreover, sequence-unspecific side effects were observed, which may be caused by the fact that even relatively short part sequences of about five bases in length activate RNase H. This is shown, for example, by “Woolf et al. (1992). Proc. Natl. Acad. Sci. U.S.A. 89, 7305-7309)”. However, there are also side effects which are caused by interaction of the antisense oligonucleotides with proteins.
- Recently, the use of double-stranded RNA for inhibiting gene expression has been described. Double-stranded RNA (dsRNA) is a signal for particular cells and organisms to induce a sequence-specific degradation of mRNA according to a process which is known as RNA interference (RNAi). The RNAi phenomenon was observed in a number of different organisms such as, for example,C. elegans, flies, fungi, plants and mouse embryos. RNAi is believed to be very similar or identical to post-transcriptional gene silencing (PTGS) found in plants. A simple injection of dsRNA of more than 500 base pairs (bp) in length, whose sense-strand sequence is identical to the target mRNA to be inhibited, can specifically inhibit expression of a target gene having the corresponding DNA sequence. This does not impair the expression of nonhomologous genes and the base sequence of the target gene is not altered. RNAi is a post-transcriptional process in which the dsRNA is first cleaved into relatively small fragments which are then probably used for sequence-specific degradation of the target mRNA.
- Previously, the gene expression was efficiently inhibited mainly by using dsRNA of more than 100 bp in length. This relatively long dsRNA is accessible only via in-vitro or in-vivo transcription from the corresponding DNA via suitable transcription systems. Another limitation of RNAi with long dsRNA is the fact that only particular organisms such asC. elegans, zebra fish, plants, particular types of fungi, Drosophila, oocytes and embryos of mice allow sequence-specific inhibition by dsRNA, while most animal cells when treated with dsRNA cause apoptosis. Long dsRNA still inhibits gene expression when the sequence homology is from 70 to 90%. For this reason, it is possible in the case of gene families with high sequence homology for misinterpretations of the phenotype to occur by simultaneous inhibition of the expression of a plurality of not completely homologous genes.
- The treatment of cells with dsRNA, for example with dsRNA viruses, generally leads to an apoptotic process or to the sequence-unspecific degradation of the mRNA due to induction of a 2′5′-oligoadenylate-synthase activity. The infected cell synthesizes in response to the viral dsRNA trimeric or tetrameric adenylate (2′5′-A) with the unusual 2′5′-phosphodiester-internucleoside bond. 2′5′-A is phosphorylated by cellular kinases on its 5′ end and then activates a nuclease called RNase L. 2′5′-A may also be chemically synthesized and be introduced into the cell (Torrence et al. (1994) Curr. Med. Chem 1, 176-191). However, synthetic 2′5′-A activates RNase L only if it has been converted to the 5′-phosphate or 5′-triphosphate form. RNase L activated by 5′-p-2′5′-A (p is phosphate, diphosphate or triphosphate) then degrades the entire RNA of the cell in a sequence-unspecific manner. In addition, it was shown that it is possible to inhibit gene expression sequence-specifically with the aid of antisense oligonucleotide conjugates with a 5′-p-2′5′-A residue. For this purpose, however, it is essential that the 5′ end of the 2′5′-A residue is not linked to the oligonucleotide but is present as phosphate, thiophosphate or triphosphate (Torrence et al. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 1300-4). Furthermore, the target RNA-recognizing oligonucleotide part (antisense part) must be in single-stranded form. For the reasons mentioned above, oligonucleotides having on their 3′ ends 2′5′-A residues which consequently have no free 5′-phosphate or triphosphate function have not been described previously as inhibitors of gene expression. The inhibition of gene expression by the single-stranded, 5′-phosphorylated 5′-p-2′5′-A antisense oligonucleotide conjugates is a variation of the antisense principle and is therefore also subject to the limitations of the antisense-oligonucleotide approach. In this connection, the 2′5′-A residue is attached to the 5′ end of the oligonucleotide via a spacer (linker) so that the 2′ or 3′ end of the 2′5′-A residue is present in bound form. The RNA-binding portion preferably comprises DNA (FIGS. 4 to 6 in Torence, Curr. Opin. Mol. Ther. (1999) 1, 307).
- Recently, oligonucleotides have been used increasingly as tools for studying the function of new genes (functional genomics). The use of antisense oligonucleotides and ribozymes for sequence-specific inhibition of gene expression of new genes coding for proteins with unknown function is made more difficult by the fact that generally a large variety of oligonucleotides of different sequences have to be assayed, and this is a disadvantage in particular for a high-throughput process.
- It is therefore an object of the present invention to provide novel chemically modified oligonucleotides with significantly improved inhibition of gene expression, which circumvent the abovementioned limitations of the conventional methods and agents. In particular, gene expression was intended to be inhibited in an RNA interference-like process.
- According to the invention, this object is achieved by novel oligonucleotide derivatives which have a 2′5′-linked oligonucleotide residue on the 3′ end, which carries no phosphate, thiophosphate or triphosphate group. The sequence of the novel oligonucleotide derivatives is complementary to the RNA sequence whose translation is to be inhibited.
- The invention accordingly provides oligonucleotide derivatives of the formula I,
- 5′-(N)x—(Z)n Formula I
- where
- N is naturally or not naturally occurring nucleotides, preferably ribonucleotides, which are at least partly complementary to a target RNA,
- x is independently 10 to 100, preferably 15 to 45 and particularly preferably 16 to 25,
- n is 2 to 20, preferably 3 to 10, particularly preferably 3 to 6,
- Z is naturally or not naturally occurring nucleotides which are linked via a 2′5′internucleoside bond,
- with the proviso that its homologous target RNA has the following sequence patterns:
- 5′-(U)v—(N′)z—(U)w
- 5′-(U)v—(N′)z—UX
- 5′-UX—(N′)z—UX and
- 5′-(U)v—(N′)z
- where
- v and w independently of one another are 2 to 20, preferably 2 to 10, particularly preferably 2 to 6 and
- z is 15 to 25, preferably 16 to 23 and particularly preferably 19 to 21 and
- U is uridine, N is adenosine (A), guanosine (G), cytidine (C) or U, and X is A, G or C, preferably A. In a preferred embodiment, N may be a ribonucleotide.
- If the gene whose expression is to be inhibited contains, for example, the following DNA sequence
- 5′-TTTTGMGCGAAGGTTGTGGATCTG (Seq ID No. 1)
- or the following RNA sequence
- 5′-UUUUGMGCGAAGGUUGUGGAUCUG (Seq ID No. 2)
- then the target RNA has the following sequence pattern
- 5′-(U)v—(N)z—UX, where v is 4, z is 19 and X is G.
- Furthermore, preference is given to oligonucleotides of the formula I in which one or more phosphodiester bonds have been replaced, for example by phosphorothioate bonds or N3′,P5′-phosphoramidate bonds. Particular preference is given to oligonucleotides of the formula I in which one or more phosphodiester bonds have been replaced by phosphorothioate residues. The phosphorothioate residues are preferably introduced on the 3′ ends, the 5′ ends and on the internal pyrimidine nucleotides C and U, in particular if several pyrimidine nucleotides succeed one another in the sequence.
- A particular embodiment of the invention comprises the use of a mixture of two or more oligonucleotide derivatives in accordance with formula 1 for inhibiting gene expression. The oligonucleotide derivatives in this case may be directed against different regions of an RNA or against the RNA of different genes.
- The single-stranded oligonucleotides of the fomula I were originally employed as control oligonucleotides for RNAi experiments using short dsRNA. Thus, owing to the single-stranded character, inhibition of gene expression was not expected. Surprisingly, however, particular single-stranded oligonucleotides inhibited gene expression, too, in particular when sufficiently stable toward nucleases. Another surprise was that the oligonucleotides of the formula I in which the 2′5′-linked oligoadenylate residue has no free 5′-phosphate, 5′-thiophosphate or 5′-triphosphate residue inhibited gene expression in a sequence-specific manner. It also came as a complete surprise that in this case the 2′5′-linked oligoadenylate residue can be bound to the 3′5′-linked RNA directly via the 5′ function. It has been a valid dogma up until now that the 2′5′-linked oligoadenylate residue must have a free phosphate, thiophosphate or triphosphate residue on the 5′ end in order to inhibit gene expression. Moreover, a 2′5′ oligoadenylate-mediated inhibition had previously always been asscociated with an unspecific, i.e. sequence-independent, effect (Bass, Nature (2001) 411, 428). It is therefore obvious that the oligonucleotides of the formula I not only deviate in their structure from the oligonucleotide conjugates described by Torrence (Curr. Opin. Mol. Ther. (1999) 1, 307) but also exhibit a much better inhibitory action which consequently is based on a different mechanism.
- Surprisingly, the oligonucleotides of the invention also had an inhibitory sequence-specific effect on human primary cells. As far as we know, the inhibition of gene expression by oligonucleotides having 2′5′-linked nucleotides in human primary cells has not been observed previously.
- The inventive oligonucleotides of the formula I may also be used for inhibiting gene expression in cells which express only a small amount of, a defective or no 2′5′-oligoadenylate synthase.
- It is furthermore also possible to use the oligonucleotides of the formula I for treating patients having a deficiency or defect in 2′5′-oligoadenylate synthase. Patients with CFS (chronic fatigue syndrome), for example, may also be treated.
- The sequences of the oligonucleotides of the formula I which are used for inhibiting the gene expression of particular targets are selected on the basis of the corresponding gene sequences. The sequences of said genes are obtained by sequencing or from gene databases. An example which may be illustrated here is the inhibition of luciferase (firefly) by double-stranded nucleic acids. The accession number for this gene is U47298. The coding region of firefly luciferase comprises 1 653 nucleotides. The following four regions may be selected, inter alia, as target sequences for the inhibition by double-stranded nucleic acids.
(Seq ID No.3) gcttttacagatgcacatatcgaggtggacatcacttacg 121 ---------+---------+---------+---------+ 160 cgaaaatgtctacgtgtatagctccacctgtagtgaatgc (Seq ID No.4) ccgcgaacgacatttataatgaacgtgaattgctcaacag 311 ---------+---------+---------+---------+ 350 ggcgcttgctgtaaatattacttgcacttaacgagttgtc (Seq ID No.5) gcggtcggtaaagttgttccattttttgaagcgaaggttg 1081 ---------+---------+---------+---------+ 1120 cgccagccatttcaacaaggtaaaaaacttcgcttccaac (Seq ID No.6) attttttgaagcgaaggttgtggatctggataccgggaaa 1101 ---------+---------+---------+---------+ 1140 taaaaaacttcgcttccaacacctagacctatggcccttt - The corresponding RNA for these regions then has the following sequence.
(Seq ID No.7) GCUUUUACAGAUGCACAUAUCGAGGUGGACAUCACUUACG (Seq ID No.8) CCGCGAACGACAUUUAUAAUGAACGUGAAUUGCUCAACAG (Seq ID No.9) GCGGUCGGUAAAGUUGUUCCAUUUUUUGAAGCGAAGGUUG (Seq ID No.10) AUUUUUUGAAGCGAAGGUUGUGGAUCUGGAUACCGGGAAA - The inventive complementary oligonucleotides of the formula I derived therefrom have the following sequences and are characterized in that two or more nucleotides (indicated here by lower-case letters) are linked via a 2′5′-internucleoside bond. Preference is given to 2′5′-linked adenylate residues.
3′ aaaaAUGUCUACGUGUAUAGCUCCAC Seq ID No.11 3′ aaaaAUAUUACUUGCACUUAACGAG Seq ID No.12 3′ aaaaCCAUUUCAACAAGGUAAAAAA Seq ID No.13 3′ aaaaaaCUUCGCUUCCAACACCUAGAC Seq ID No.14 - In order to improve metabolic stability, it is also possible to modify the oligonucleotides, for example as phosphorothioates (asterisks). Stabilization by phosphorothioates is preferably carried out on the ends and internal pyrimidine nucleotides.
- 3′ a*a*a a-C*U*U*C G C*U*U C*C A A*C A C*C*U A G A*C
- The specificity of the inhibition of luciferase expression can be checked on the basis of control oligonucleotides which are not completely complementary to the target RNA and have, for example, 4 base mismatches.
- 3′ a*a*a a C*U*U*CU*C U*U*C A A C*C A*C*C G A*G A*C Seq ID No. 15
-
- where
- B is a naturally or not naturally occurring nucleobase,
- U, V and W independently of one another are O, S, NH or CH2, preferably O or S,
- R1 is independently of one another OH, SH, CH3 or BH3 , preferably OH or SH, or physiologically tolerated salts thereof,
- R2 is independently of one another OH, H, O—C1 to C12-alkyl , preferably OH (ribonucleotide), where C1 to C12-alkyl preferably is CH3 or CH3—O—CH2CH2,
- R3 is independently of one another OH, H, O—C1 to C12-Alkyl , preferably OH or H, where C1 to C12-alkyl preferably is CH3 or CH3—O—CH2CH2,
- x is independently 10 to 100, preferably 15 to 45, and particularly preferably 16 to 25,
- n is 2 to 20, preferably 3 to 10, particularly preferably 3 to 6,
- A is adenine or an adenine derivative, for example 8-bromoadenine, 8-methyladenine, or hypoxanthine.
- In order to test the inhibition of gene expression using the oligonucleotides of the invention in animal cells, in particular in human primary cells, these are directed, for example, against a human gene or the corresponding RNA thereof and assayed in human cells (HUVEC, human umbilical vein endothelial cells). For this, Edg-1 DNA (accession number M31210) from the gene database, for example, may be transcribed into the corresponding messenger RNA and the following two regions (175 and 725) could be selected for synthesizing appropriate oligonucleotides.
- Edg-1 RNA:
″175″ GACCUCGGUGGUGUUCAUUCUCAUCUGCUGCU (Seq ID No.16) UUAUCAUCCUGGAGAACAUCUUUGUCUU ″725″ AUUUCCAAGGCCAGCCGCAGCUCUGAGAAUGU (Seq ID No.17) GGCGCUGCUCAAGACCGUAAUUAUCGUC - Examples of the possible structure of the corresponding oligonucleotides are disclosed below:
3′-aaaaUAGUAGGACCUCUUGUAGAAA; Seq ID No.18 3′-aaaaGGUUCCGGUCGGCGUCGAGAC; Seq ID No.19 Mismatch control 3′-aaaaGGUGCCUGUCUGCGGCGACAC; Seq ID No.20 - The mismatch control differs in 5 nucleotides (underlined as mismatch) from the edg-1 RNA.
- Furthermore, the following oligonucleotides directed against edg-1 were prepared, which have improved nuclease stability and increased inhibitory activity and are derived from the above edg-1 sequences.
3′-a*a*a a U*A G*U A G G A C*C*U C*U*U G*U*A G A A *A 3′-a*a*a a G G U*U*C*C G G*U*C G G*C G*U*C G A G A *C 3′-a*a*a a G G U*G C*C*U G*U*C*U G*C G G*C G A*C A *C - The inventive nucleic acid derivatives of formula I are synthesized from oligonucleotides. For example, an oligonucleotide may be synthesized completely from the nucleotides adenosine phosphate, guanosine phosphate, inosine phosphate, cytidine phosphate, uridine phosphate and thymidine phosphate. Preference is given to oligonucleotides which are synthesized from ribonucleotides, the “oligoribonucleotides”. In other embodiments of the present invention, an oligonucleotide may contain, where appropriate, one or more modifications, for example chemical modifications. An oligonucleotide may have a plurality of identical and/or different modifications.
- The 2′5′-linked residue may contain, for example, adenosine, 3′-deoxyadenosine (cordycepin), inosine, 8-bromoadenosine, 8-methyladenosine and other 8-substituted adenosine derivatives. The ribose residue may also be derivatized as 3′-O-methyladenosine. The internucleoside bonds in the 2′5′-linked portion are preferably phosphodiester and phosphorothioate bonds. Common derivatives of 2′5′-adenylate, their synthesis and activation of RNase L are described in the literature (Player et al. (1998) Pharmacol. Ther. 78, 55).
- Examples of chemical modifications are known to the skilled worker and are described, for example, in E. Uhlmann and A. Peyman, Chemical Reviews 90 (1990) 543 and “Protocols for Oligonucleotides and Analogs” Synthesis and Properties & Synthesis and Analytical Techniques, S. Agrawal, Ed, Humana Press, Totowa, USA 1993, J. Hunziker and C. Leumann ‘Nucleic Acid Analogs: Synthesis and Properties’ in Modern Synthetic Methods (Ed. Beat Ernst and C. Leumann) Verlag Helvetica Chimica Acata, Basle, p. 331-417, R P lyer et al.Curr Opin Mol Therap (1999) 1:344-358; S. Verma and F. Eckstein, Annu Rev Biochem (1998) 67:99-134; J W Engels and E. Uhlmann : Chemistry of oligonucleotides. In: Pharmaceutical aspects of oligonucleotides. Couvreur P, Malvy C (Eds), Taylor & Francis, London, (2000): 35-78.
- The chemical modification of an oligonucleotide may include, for example,
- a) replacing completely or partially the phosphoric diester bridges with, for example, phosphorothioate, phosphorodithioate, NR1R1′ phosphoramidate, boranophosphate, (C1-C21)—O-alkyl phosphate, [(C6-C12)aryl-(C1-C21)—O-alkyl]phosphate, (C1-C8)alkyl phosphonate and/or (C6-C12)aryl phosphonate bridges, where
- R1 and R1′ independently of one another are hydrogen, (C1-C18)alkyl, (C6-C20)aryl, (C6-C14)aryl-(C1-C8)alkyl, preferably hydrogen, (C1-C8)alkyl and/or methoxyethyl, particularly preferably hydrogen, (C1-C4)alkyl and/or methoxyethyl, or
- R1 and R1′, together with the nitrogen atom to which they are bound, form a 5-6-membered heterocycle which may additionally contain another heteroatom selected from the group consisting of O, S, N;
- b) replacing completely or partially the 3′- and/or 5′-phosphoric diester bridges with “dephospho” bridges (described, for example, in Uhlmann, E. and Peyman, A. in “Methods in Molecular Biology”, Vol. 20, “Protocols for Oligonucleotides and Analogs”, S. Agrawal, Ed., Humana Press, Totowa 1993, Chapter 16, 355ff), for example with formacetal, 3′-thioformacetal, methylhydroxylamine, oxime, methylenedimethylhydrazo, dimethylenesulfone and/or silyl groups;
- c) replacing partially the sugar phosphate backbone, for example with “morpholino” oligomers (described, for example, in E. P. Stirchak et al., Nucleic Acids Res. 17 (1989) 6129 and in J. Summerton and D. Weller, Antisense and Nucleic Acid Drug Dev. 7 (1997) 187-195) and/or with polyamide nucleic acids (“PNAs”) (described, for example, in P. E. Nielsen et al, Bioconj. Chem. 5 (1994) 3) and/or phosphomonoester nucleic acids (“PHONAs”) (described, for example, in Peyman et al., Angew. Chem. Int. Ed. Engl. 35 (1996) 2632-2638);
- d) replacing partially the β-D-ribose units with, for example, β-D-2′-deoxyribose, α-D-2′-deoxyribose, L-2′-deoxyribose, 2′-F-2′-deoxyribose, 2′-F-2′-deoxyarabinofuranose, 2′-O—(C1-C6)alkylribose, 2′-O—(C2-C6)alkenylribose, 2′-[O—(C1-C6)alkyl-O—(C1-C6)alkyl]ribose, 2′-NH2-2′-deoxyribose, β-D-xylofuranose, β-D-arabinofuranose, α-arabinofuranose, 2,4-dideoxy-β-D-erythrohexopyranose, conformationally restricted sugar analogs such as LNA (Locked nucleic acids; Singh et al., Chem. Commun. 4 (1998) 455; Singh et al. Chem. Commun. 12 (1998) 1247) and carbocyclic (described, for example, in Froehler, J.Am.Chem.Soc. 114 (1992) 8320) and/or open-chain sugar analogs (described, for example, in Vandendriessche et al., Tetrahedron 49 (1993) 7223) and/or bicyclo sugar analogs (described, for example, in M. Tarkov et al., Helv. Chim. Acta 76 (1993) 481). The 2′-modified oligonucleotide analogs are described in detail in Manoharan, Biochim. Biophys. Acta (1999) 117 and conformationally restricted oligonucleotide analogs in Herdewijn, Biochim. Biopyhs. Acta (1999) 167;
- e) modifying and, respectively, completely or partially replacing the natural nucleoside bases with, for example, 5-(hydroxymethyl)uracil, 5-aminouracil, pseudouracil, pseudoisocytosine, dihydrouracil, 5-(C1-C6)alkyluracil, 5-(C2-C6)-alkenyluracil, 5-(C2-C6)alkynyluracil, 5-(C1-C6)alkylcytosine, 5-(C2-C6)alkenyl-cytosine, 5-(C2-C6)alkynylcytosine, 5-fluorouracil, 5-fluorocytosine, 5-chlorouracil, 5-chlorocytosine, 5-bromouracil, 5-bromocytosine or 7-deaza-7-substituted purines.
- Heterocyclic base modifications are described, for example, in Herdewijn, Antisense & Nucl. Acid Drug Dev. (2000) 297.
- The chemical modification of the oligonucleotide furthermore comprises conjugating an oligonucleotide with one or more molecules which influence advantageously the properties (e.g. nuclease stability, affinity for target sequence, pharmacokinetics) of said oligonucleotide and/or, during hybridization of the modified oligonucleotide to the target sequence, attack said target sequence with binding and/or crosslinking (oligonucleotide conjugates). Examples thereof are conjugates with polylysine, with intercalators such as pyrene, acridine, phenazine, phenanthridine, with fluorescent compounds such as fluorescein, with crosslinkers such as psoralen, azidoproflavin, with lipophilic molecules such as (C12-C20)alkyl, with lipids such as 1,2-dihexadecyl-rac-glycerol, with steroids such as cholesterol or testosterone, with vitamins such as vitamin E, with poly- or oligoethylene glycol, with (C12-C18)alkyl phosphate diesters and/or with —O—CH2—CH(OH)—O—(C12-C18)alkyl. Such molecules may be conjugated at the 5′ and/or 3′ end and/or within the sequence, for example at a nucleobase. Examples of oligonucleotide conjugates known to the skilled worker are described in Manoharan (2001) Conjugated Oligonucleotides in Antisense technology. In: Crooke (Editor) Antisense Technology. Marcel Dekker, New York.
- A specific embodiment of the chemical modification relates to conjugation of the oligonucleotide a) with lipophilic molecules, for example (C12-C20)alkyl, b) with steroids such as cholesterol and/or testosterone, c) with poly- and/or oligoethylene glycol, d) with vitamin E, e) with intercalators such as pyrene, f) with (C14-C18)alkyl phosphate diesters and/or g) with —O—CH2—CH(OH)—O—(C12-C16)alkyl.
- Another specific embodiment of the chemical modification relates to derivatization of the oligonucleotide, as described in HMR 99/L045, as aryl ester conjugate, for example as FDA conjugate, which derivatization benefits the cellular uptake of said oligonucleotides.
- Methods for preparing said oligonucleotide derivatives are known to the skilled worker and described, for example, in Uhlmann, E. & Peyman, A., Chem. Rev. 90 (1990) 543 and/or M. Manoharan in “Antisense Research and Applications”, Crooke and Lebleu, Eds., CRC Press, Boca Raton, 1993, chapter 17, p. 303ff. and/or EP-A 0 552 766.
- In further specific embodiments of the present invention, the oligonucleotide may have on its 5′ end a 5′-5′ inversion. This type of chemical modification is known to the skilled worker and described, for example, in M. Koga et al., J. Org. Chem. 56 (1991) 3757. Moreover, the 5′ end is a preferred position for conjugating the oligonucleotide with one or more molecules which have a beneficial effect on the properties (for example stability against nucleases, cellular uptake, affinity for the target sequence, pharmacokinetics) of the oligonucleotide.
- The invention further provides methods for preparing the oligonucleotides. The oligonucleotides described may be prepared with the aid of various known chemical methods, as described, for example, in Eckstein, F. (1991) “Oligonucleotides and Analogues, A Practical Approach”, IRL Press, Oxford. The oligonucleotides may also be prepared by methods which, where appropriate, contain one or more enzymic steps.
- The invention furthermore provides the use of the oligonucleotides for modulating and for completely or partially inhibiting the expression of particular target genes, for example for completely or partially inhibiting translation. The invention furthermore relates to the use of said oligonucleotides for modulating and for completely or partially inhibiting expression in cells which have only a small amount of, a defective or no 2′5′-oligoadenylate synthase.
- The invention furthermore provides the use of said oligonucleotides as pharmaceuticals or to the use of said oligonucleotides for the production of pharmaceuticals. In particular, it is possible to use said oligonucleotides in pharmaceuticals which are suitable for the prevention and/or treatment of diseases which accompany the expression or overexpression of particular genes.
- The invention further provides the use of said oligonucleotides or of pharmaceuticals containing said oligonucleotides for the treatment of diseases in which specific genes are the cause or are involved, due to overexpression.
- The pharmaceuticals of the present invention may be used, for example, for the treatment of disorders caused by viruses, for example by CMV, HIV, HSV-1, HSV-2, hepatitis B, hepatitis C viruses, or papillomaviruses. Pharmaceuticals of the present invention are particularly suitable for the treatment of RNA viruses such as, for example, polio viruses, VSV or Influenza virus, in particular also of double-stranded RNA viruses such as reoviruses, for example.
- The pharmaceuticals of the present invention are also suitable, for example, for cancer treatment. In this case it is possible, for example, to use oligonucleotide sequences which are directed against targets responsible for the development or growth of cancers. Examples of such targets are:
- 1) nuclear oncoproteins such as, for example, c-myc, N-myc, c-myb, c-fos, c-fos/jun, PCNA, p120,
- 2) cytoplasmic/membrane-associated oncoproteins such as, for example, EJ-ras, c-Ha-ras, N-ras, rrg, bcl-2, cdc-2, c-raf-1, c-mos, c-src, c-abl, c-ets,
- 3) cellular receptors such as, for example, EGF receptor, Her-2, c-erbA, VEGF receptor (KDR-1), retinoid receptors, protein kinase regulatory subunit, c-fms, Tie-2, c-raf-1 kinase, PKC-alpha, protein kinase A (R1 alpha),
- 4) cytokines, growth factors, extracellular matrix such as, for example, CSF-1, IL-6, IL-1 a, IL-1b, IL-2, IL-4, IL-6, IL-8, bFGF, VEGF, myeloblastin, fibronectin,
- 5) inhibitors of tumor suppressor genes such as, for example, MDM-2.
- The pharmaceuticals of the present invention are further suitable, for example, for the treatment of disorders which are influenced by integrins or cell-cell adhesion receptors, for example by VLA-4, VLA-2, ICAM, VCAM or ELAM.
- The pharmaceuticals of the present invention are also suitable, for example, for preventing restenosis. In this connection, it is possible to use, for example, oligonucleotide sequences which are directed against targets responsible for proliferation or migration. Examples of such targets are:
- 1) nuclear transactivator proteins and cyclins such as, for example, c-myc, c-myb, c-fos, c-fos/jun, cyclins and cdc2 kinase,
- 2) mitogens or growth factors such as, for example, PDGF, bFGF, VEGF, EGF, HB-EGF and TGF-β
- 3) cellular receptors such as, for example, bFGF receptor, EGF receptor and PDGF receptor.
- The invention further relates to oligonucleotides for the treatment of asthma, with expression of the adenosine-A1 receptor, adenosine-A3 receptor, Bradikinin receptor or of IL-13 being inhibited with the aid of suitable oligonucleotides.
- The invention also relates to oligonucleotides, for example, for the treatment of cardiovascular diseases, with, for example, expression of the β1-adrenergic receptor or of a protein from the EDG family such as, for example, Edg-1 being inhibited.
- The invention also relates to oligonucleotides, for example, for the treatment of diabetes, with expression of PTP-1 B being inhibited, for example.
- The pharmaceuticals may be used, for example, in the form of pharmaceutical preparations which may be administered orally, for example in the form of tablets, coated tablets, hard or soft gelatin capsules, solutions, emulsions or suspensions. They may also be administered rectally, for example in the form of suppositories, or parenterally, for example in the form of injection solutions. Pharmaceutical preparations may be produced by processing said compounds in therapeutically inert organic and inorganic carriers. Examples of such carriers for tablets, coated tablets and hard gelatin capsules are lactose, corn starch or derivatives thereof, talc and stearic acid or salts thereof. Carriers suitable for the preparation of solutions are water, polyols, sucrose, invert sugar and glucose. Carriers suitable for injection solutions are water, alcohols, polyols, glycerol and vegetable oils. Carriers suitable for suppositories are vegetable and hardened oils, waxes, fats and semisolid polyols. The pharmaceutical preparations may also contain preservatives, solvents, stabilizers, wetting agents, emulsifiers, sweeteners, colorants, flavorings, salts for modifying the osmotic pressure, buffers, coating agents, antioxidants and, where appropriate, other therapeutically active substances.
- Preferred administration forms are topical administrations, local administrations such as, for example, with the aid of a catheter or by inhalation, injections or infusions, and oral administration. For injection, the oligonucleotide derivatives are formulated in a liquid solution, preferably in a physiologically acceptable buffer such as, for example, Hank's solution or Ringer's solution. However, the oligonucleotides may also be formulated in solid form and be dissolved or suspended prior to use. The dosages preferred for systematic administration are from approx. 0.01 mg/kg to approx. 50 mg/kg body weight and day.
- The invention furthermore relates to pharmaceutical preparations which contain oligonucleotides and/or physiologically tolerated salts thereof in addition to pharmaceutically suitable carriers and/or additives.
- The oligonucleotides and/or physiologically tolerated salts thereof may be administered to animals, preferably to mammals, and in particular to humans as pharmaceuticals on their own, in mixtures with one another or in the form of pharmaceutical preparations which permit topical, percutaneous, parenteral or enteral application and which contain as active ingredient an active dose of at least one oligonucleotide in addition to common pharmaceutically suitable carriers and additives. The preparations normally contain about from 0.1 to 90% by weight of the therapeutically active compound. For the treatment of skin disorders such as, for example, psoriasis or vitiligo, a topical application, for example in the form of ointments, lotions or tinctures, emulsions, or suspensions is preferred.
- The pharmaceutical preparations are produced in a manner known per se (e.g. Remingtons Pharmaceutical Sciences, Mack Publ. Co., Easton, Pa.), with pharmaceutically inert inorganic and/or organic carriers being used. For the production of pills, tablets, coated tablets and hard gelatin capsules, lactose, corn starch and/or derivatives thereof, talc, stearic acid and/or salts thereof, etc. may be used, for example. Examples of carriers for soft gelatin capsules and/or suppositories are fats, waxes, semisolid and liquid polyols, natural and/or hardened oils, etc. Examples of carriers suitable for the preparation of solutions and/or syrups are water, sucrose, invert sugar, glucose, polyols, etc. Carriers suitable for the preparation of injection solutions are water, alcohols, glycerol, polyols, vegetable oils, etc. Carriers suitable for microcapsules, implants and/or rods are mixed polymers of glycolic acid and lactic acid. Liposome formulations which are known to the skilled worker (N. Weiner, Drug Develop Ind Pharm 15 (1989) 1523; “Liposome Dermatics, Springer Verlag 1992), for example HVJ liposomes (Hayashi, Gene Therapy 3 (1996) 878), are also suitable. Dermal administration may also be carried out, for example, with the aid of ionophoretic methods and/or with the aid of electroporation. In addition, it is possible to use lipofectins and other carrier systems, for example those which are used in gene therapy. Particularly suitable systems are those which can be used to introduce oligonucleotides into eukaryotic cells with great efficiency.
- In addition to the active substances and the carriers, a pharmaceutical preparation may also contain additives such as, for example, fillers, extenders, disintegrants, binding agents, lubricants, wetting agents, stabilizers, emulsifiers, preservatives, sweeteners, colorants, flavorings or aromatizers, thickening agents, diluents, buffer substances, furthermore solvents and/or solubilizers and/or agents for achieving a depot effect, and also salts for modifying the osmotic pressure, coating agents and/or antioxidants. They may also contain two or more different oligonucleotides and/or their physiologically tolerated salts and furthermore, in addition to at least one oligonucleotide, one or more other therapeutically active substances.
- The dose may vary within wide limits and, in each individual case, has to be adjusted to the individual circumstances.
- 1. Synthesis of the Oligonucleotides of the Formula 1
- a) 3′ aaaaaaCUUCGCUUCCAACACCUAGAC (The bases indicated by lower-case letters have a 2′5′-internucleoside bond).
- The syntheses were carried out in an ABI 394 DNA or Expedite synthesizer (Applied Biosystems, Weiterstadt, Germany). The synthesis cycles recommended by the manufacturer were used but for the ribonucleoside-2′-O-phosphoramidites the condensation step was doubled (with a coupling time of in each case 400 s) and the length of the iodine oxidation step was increased to 30 s. The solid phase used was a 1000 Å controlled pore glass (CPG) support which had 5′-O-dimethoxytrityl-N-6-benzoyladenosine (NSS-6101-10A, Chemgenes, Waltham, Mass.) bound via the 2′ or 3′ position of the sugar. After removing the 5′-O-dimethoxytrityl group by cleavage with trichloroacetic acid, the 2′5′-linked oligonucleotide part was synthesized by five condensations with 5′-O-dimethoxytrityl-N-6-benzoyl-3′-O-tertbutyldimethylsilyladenosine-2′-O-phosphoramidite (ANP-5681, Chemgenes). This was followed by synthesizing the 3′5′-linked oligonucleotide part by repeated condensation with the corresponding 5′-O-dimethoxytrityl-2′-O-tertbutyldimethylsilyladenosine-3′-O-phosphoramidites (ANP-5671 to ANP-5680, Chemgenes). The CPG support was incubated with 750 μl of conc. ammonia/ethanol (3:1, v:v) with shaking at 30° C. for 24 hours in order to remove the oligomer from the support and to deprotect the phosphate and amino protective groups. The supernatant was separated from the support which was then washed twice more with 150 μl of conc. ammonia/ethanol (3:1, v:v). The combined supernatants were concentrated under reduced pressure and the residue was incubated with shaking in 1200 μl of triethylamine×3HF (very toxic) at 30° C. for 24 hours in order to remove the silyl protective groups. This is followed by adding 700 μl of n-butanol, cooling the mixture on dry ice for 30 minutes and centrifugation. The pellet was washed with butanol two more times. In addition, a sodium chloride precipitation was then carried out. 112 OD (260) of the crude product which shows only one main band in gelelectrophoresis were obtained. The product was further characterized by means of HPLC and electrospray mass spectrometry (negative mode) (calc. 8527.2, found 8527.5).
- b) 3′ a*a*a a-C*U*U*C G C*U*U C*C A A*C A C*C*U A G A*C
- The synthesis was carried out analogously to that of example 1a), with the 2′5′-linked oligonucleotide part being synthesized by three condensations with 5′-O-dimethoxytrityl-N-6-benzoyl-3′-O-tertbutyldimethylsilyladenosine-2′-O-phosphoramidite (ANP-5681, Chemgenes). The phosphorothioate residue was introduced by using the Beaucage reagent (RN-1535, Chemgenes, Waltham, Mass.) rather than the iodine solution in the particular oxidation step. 128 OD (260) of the crude product which shows only one main band in gelelectrophoresis were obtained. The product was further characterized by means of HPLC and electrospray mass spectrometry (negative mode) (calc. 8061.6, found 8062.8).
- 2. Inhibition of Luciferase Expression in SL-3 Cells
- In order to test for biological activity, the following oligonucleotides as described in example 1 were prepared and tested for inhibition of luciferase activity.
- a) 3′ aaaaaaCUUCGCUUCCAACACCUAGAC
- b) 3′ a*a*a a-C*U*U*C G C*U*U C*C A A*C A C*C*U A G A*C
- Transfection: on the day before the experiment, 2×106 cells/ml were plated out into 6-well plates. The oligonucleotides were taken up in 100 μl of SF 900II SFM (SF-900 serum-free insect medium II; Gibco BRL 10902-096). For transfection, 10 μl of lipofectin (1 mg/ml; Gibco BRL) were mixed with 100 μl of SF 900II SFM and incubated at room temperature for 15 min. This was followed by pipetting together the lipofectin mix and the nucleic acid and incubating at room temperature for 15-45 min. In the meantime, the cells were washed with 3 ml of serum-free medium and 800 μl of SF 900II SFM and the nucleic acid/lipofectin mixture were successively added to the cells, followed by incubation at 25 degrees overnight. On the next day, 1 ml of medium and serum (Gibco BRL 10122-166; final concentration 2%) is added.
- Dual-luciferase reporter (DLR; Promega E 1960) assay system:
- (hftp://www.promega.com/catalog/CatalogProducts.asp?catalog%5Fname=Promega%5FProducts&category%5Fname=Dual%2DLuciferase+Reporter+Assay+System&description%5Ftext=Dual%2DLuciferase%3Csup%3E%26reg%3B%3C%2Fsup%3E+Reporter+Assay+System)
- The Promega DLR assay allows the sequential determination of the firefly luciferase and Renilla luciferase activities having different nucleic acid sequences from a single sample. The oligonucleotides according to the formula I, which were to be measured, were directed against firefly luciferase. Thus, only firefly luciferase activity but not Renilla luciferase activity should be inhibited. Thus, apart from the inhibitory action, the specificity may also be tested for.
- The passive lysis of the cells in the well plates was carried out by first removing the medium and washing the cells with PBS (phosphate-buffered saline (Gibco BRL 14200-067). The medium was completely removed by suction and then the PLB (passive lysis buffer, diluted 1:5 with water; 500 μl of PLB (1×) to be introduced into one well of a 6-well plate) was added thereto. This was followed by a 15-minute incubation with shaking at room temperature.
- The luciferase assay reagent II (LAR II) was prepared by resuspending the luciferase assay substrate (LAS) in 10 ml of luciferase assay buffer II (LAB II). The Stop & Glo reagent was prepared by adding 200 μl of the Stop & Glo substrate (solution) into the bottle containing dry Stop & Glo substrate and mixing the solution for 10 seconds using a vortexer. In order to produce a 1×Stop & Glo solution, 20 μl of the 50×Stop & Glo substrate and 1 ml of the Stop & Glo buffer are combined. This is sufficient for 10 assays.
- DLR-assay: 100 μl of LAR II were introduced together with 20 μl of cell lysate into a well and mixed by pipetting up and down for 2-3 seconds. After luminometric measurement of firefly luciferase activity, 100 μl of Stop & Glo reagent were added, the solution was mixed and then the Renilla-luciferase activity was determined. The luminescence was determined using the Fluoroskan Ascent FL luminometer (Thermo Labsystems, Frankfurt, Germany).
Oligonucleotide % Inhibition* a) 3′ aaaaaaCUUCGCUUCCAACACCUAGAC 43 (RNA in antisense orientation, with 2′5′ A) b) 3′ a*a*a a-C*U*U*C G C*U*U C*C A A*C A C*C*U A G A*C 43 (RNA in antisense orientation, with 2′5′ A) c) 3′ aaaaTTTTTTACCTTGTTGAAATGG 12 (not complementary to target RNA; sense orientation) d) 3′ a*a*a a-C*U*U*C G C*U*U C*C A A*C A C*C*U A G A*C 7 (antisense orientation, underlined 2′-O-methyl) 5′-G A A G*C G A A G G*U*U G*U G G A U*C*U*G-teg 0 (Seq ID No.20; sense orientation, without 2′5′ A, teg: triethylene glycol phosphate) 3′-teg-G*C*T*T C*C*A A*C A*C*C*T A G A*C*C*T*A 0 (Seq ID No.21; antisense orientation, DNA, underlined 2′-O-methyl) 1100 bp dsRNA 94 without dsRNA 0 - The firefly luciferase-complementary oligonucleotide a) inhibited firefly-luciferase activity to a substantially greater extent than the non-complementary oligonucleotide c). The stabilization of the oligonucleotide by phosphorothioate residues (oligonucleotide b) at particular positions on the oligomer resulted in a markedly improved action. When the entire 3′5′-linked complementary sequence was derivatized as 2′-O-methyl derivative, virtually no activity was detectable (oligonucleotide d).
- 3. Inhibition of the Edg-1 Expression in Human Primary Umbilical Cells (HUVEC)
- In order to test the oligonucleotides of the invention for inhibition of gene expression in human primary cells, said oligonucleotides were also directed against a human gene or the corresponding RNA and tested on human cells (HUVEC, human umbilical vein endothelial cells).
- The appropriate oligonucleotides were synthesized. The first two sequences are complementary to edg-1 RNA, while the third oligonucleotide has base mismatches.
#2: 5′ A U*C A U*C*C*U G G A G A A*C A*U C* U*U*U-teg #3: 3′-a*a*a a U*A G*U A G G A C*C*U C*U*U G*U*A G A A*A #5: 5′ C*C*A A G G*C*C A G*C*C G*C A G C*U* C*U*G-teg #6: 3′-a*a*a a G G U*U*C*C G G*U*C G G*C G*U*C G A G A*C #7: 5′ C*C*A C*G G A C*A G A C*G C*C*G C*U* G*U*G-teg #8: 3′-a*a*a a C G U*G C*C*U G*U*C*U G*C G G*C G A *C A*C - The control oligonucleotides used were the complementary sequences (sense orientation) without 2′5′-oligoadenylate,
- where * is phosphorothioate;a*a*a a is a 2′5′-linked adenylate (partially modified with *) and teg is triethylene glycol phosphate.
- The oligoribonucleotide analogs which had been modified with phosphothioate at particular positions were used in human primary cells as follows, in order to inhibit gene expression of Edg-1 in human cells (HUVEC, human umbilical vein endothelial cells).
- Cells (HUVECS) and detection of cellular uptake. Transfection: 24 h prior to the actual transfection, primary HUVECs (2nd passage, isolated according to Jaffe et al., 1973, J. Clin.Invest 52, pp.2745), were plated out at a density of 2.5×105 cells/well in 6-well plates coated with collagen-I from rats (Biocoat, #354400, Becton Dickinson). For transfection, 6 μl of lipofectin (1 mg/ml; Gibco BRL, # 18292-011) were mixed with 200 μl of serum-free Opti-MEM 1 medium (Gibco BRL, 31985-047) and incubated at room temperature for 15 minutes. In a parallel reaction, 10 μM (→final concentration 0.1 μm) or 100 μm (→final concentration 1 μm) of an oligonucleotide solution (in PBS, pH 7.4) was diluted in a ratio of 1:10 with serum-free Opti-MEM 1 medium and mixed with the same volume of preincubated lipofectin solution. After incubation at room temperature for 15 minutes, the volume of said mixture was increased to 2 ml with serum-free Opti-MEM 1 medium and the cell lawn was washed once with PBS and then incubated with said mixture at 37° C., 5% CO2 and 95% humidity for 4 hours. Subsequently, the cell lawn was washed again with PBS and then overlaid with serum-containing EGM medium (CellSystems, # CC-3024+EGM supplements # CC-3124) and incubated for a further 24 or 48 h. In the case of uptake studies using fluorescently labeled oligonucleotides, the cells were incubated for 4 hours, then fixed with 5% paraformaldehyde (in PBS, pH 7.4) and directly photographed in an inverted fluorescence microscope (Zeiss Axiovert 135M) with its 200-fold magnification using a cooled CCD camera (ORCA-1, Bfi optilas) and excitation through an FITC filter (excitation: 490 nm, emission: 510 nm) and processed via AQM2000 software (Kinetic Imaging). Western blot analysis: the cells were lysed by washing the cell lawn once with PBS and then overlaying it with 200 μl/well 2×Laemmli buffer (Bio-Rad #161-0737). After incubation at room temperature for five minutes, the cell lysate was collected using a cell scraper (Becton Dickinson, #3085) and, prior to discontinuous 12% SDS polyacrylamide gel electrophoresis (SDS-PAGE, Laemmli et al., 1970, Bio-Rad-Criterion-System #345-0014), heated at 95° C. for 5 minutes and 45 μl of this solution were applied to each slot. The gel was run in 1×Tris/glycine/SDS buffer (Bio-Rad # 161-0732). For the immunoblot, the gel was transferred with the aid of the Bio-Rad criterion Western blot apparatus (#170-4070) to a nitrocellulose (NC) membrane (Amersham # RPN 2020D) in 1×Tris/glycine buffer (Bio-Rad #161-0732, +10% methanol). The NC membrane was then saturated at room temperature for 1 hour using 1×TBS buffer (Bio-Rad # 170-6435), which contained 5% milk powder (“Blotto”, Bio-Rad #170-6404) and 0.1% Tween 20 (Bio-Rad # 170-6531). After washing the membrane three times in Blotto-free TBS-Tween (TBST) buffer, the membrane was incubated with the anti-hEDG-1 primary antibody (polyclonal rabbit serum obtained by immunization with the EDG-1-specific peptide sequence CKAHRSSVSDYVNYD, coupled to KLH and affinity-purified against the abovementioned peptide sequence) in a 1:50 dilution in TBST-Blotto at 4° C. overnight. After washing three times with TBST, the secondary antibody (anti-rabbit, alkaline phosphatase-coupled, Dianova # 111-055-045) was incubated in a 1:2000 dilution in TBST-Blotto at room temperature for one hour. After another washing step (see above), the ECF (“enhanced chemifluorescence”) detection reaction (Amersham #RPN5785) was carried out, and the NC membrane which was covered with clingfilm was incubated with 1 ml of ECF substrate (Amersham Pharmacia #RPN5785) at room temperature for 5 minutes and then detected using a Fluor-imager 595 scanner (Amersham Pharmacia). The signal was quantified using the ImageQuant software (Amersham Pharmacia) and normalized to the β-tubulin signal which was obtained after destaining (Alpha Diagnostic Kit # 90100) the NC membrane once and incubating the β-tubulin-specific primary antibody (affinity-purified rabbit antibody, Santa Cruz # sc-9104) according to the above-described method.
EDG-1 protein (% of control) Concentration Oligo #2 Oligo #3 Oligo #5 Oligo #6 Oligo #7 Oligo #8 (μM) region “175” region “175” region “725” region “725” mismath mismath 0 100.0 100.0 100.0 100.0 100.0 100.0 0.01 87.7 51.4 98.6 47.2 89.4 128.3 0.05 100.8 44.2 129.3 35.5 109.7 107.5 0.1 103.0 35.5 109.4 25.1 121.8 103.6 0.5 119.2 40.3 107.2 27.1 95.7 85.6 1.0 104.4 34.0 96.2 22.6 100.1 83.5 - Treatment of the primary HUVEC cells with the chemically modified single-stranded oligoribonucleotides of the invention led to a dose-dependent inhibition of edg-1 expression. Only the oligoribonucleotides #3 and #6 with antisense orientation inhibited gene expression, while the oligoribonucleotides #2 and #5 with sense orientation did not inhibit expression. The inhibition proved to be target gene-specific, since, after treatment with the edg-1-specific oligoribonucleotides #3 and #6, only the EDG-1 protein levels and not the tubulin level were reduced. The inhibition proved to be also sequence-specific with regard to the oligoribonucleotides used, since only the edg-1-homologous oligoribonucleotides #3 and #6 inhibited edg-1 expression, while the oligoribonucleotide #8 with antisense orientation, which differs from the edg-1 sequence by 5 nucleotides, did not inhibit edg-1 expression.
-
1 23 1 25 DNA Artificial Sequence Part of Photinus pyralis Luciferase 1 ttttgaagcg aaggttgtgg atctg 25 2 25 RNA Artificial Sequence Part of Photinus pyralis Luciferase 2 uuuugaagcg aagguugugg aucug 25 3 80 DNA Artificial Sequence Part of Photinus pyralis Luciferase 3 gcttttacag atgcacatat cgaggtggac atcacttacg cgaaaatgtc tacgtgtata 60 gctccacctg tagtgaatgc 80 4 80 DNA Artificial Sequence Part of Photinus pyralis Luciferase 4 ccgcgaacga catttataat gaacgtgaat tgctcaacag ggcgcttgct gtaaatatta 60 cttgcactta acgagttgtc 80 5 80 DNA Artificial Sequence Part of Photinus Pyralis Luciferase 5 gcggtcggta aagttgttcc attttttgaa gcgaaggttg cgccagccat ttcaacaagg 60 taaaaaactt cgcttccaac 80 6 80 DNA Artificial Sequence Part of Photinus Pyralis Luciferase 6 attttttgaa gcgaaggttg tggatctgga taccgggaaa taaaaaactt cgcttccaac 60 acctagacct atggcccttt 80 7 40 RNA Artificial Sequence Part of Photinus Pyralis Luciferase 7 gcuuuuacag augcacauau cgagguggac aucacuuacg 40 8 40 RNA Artificial Sequence Part of Photinus pyralis Luciferase 8 ccgcgaacga cauuuauaau gaacgugaau ugcucaacag 40 9 40 RNA Artificial Sequence Part of Photinus pyralis Luciferase 9 gcggucggua aaguuguucc auuuuuugaa gcgaagguug 40 10 40 RNA Artificial Sequence Part of Photinus pyralis Luciferase 10 auuuuuugaa gcgaagguug uggaucugga uaccgggaaa 40 11 26 RNA Artificial Sequence Part of Photinus pyralis Luciferase 11 caccucgaua ugugcaucug uaaaaa 26 12 25 RNA Artificial Sequence Part of Photinus pyralis Luciferase 12 gagcaauuca cguucauuau aaaaa 25 13 25 RNA Artificial Sequence Part of Photinus pyralis Luciferase 13 cagauccaca accuucgcuu caaaa 25 14 25 RNA Artificial Sequence Part of Photinus pyralis Luciferase 14 cagauccaca accuucgcuu caaaa 25 15 25 RNA Artificial Sequence Part of Photinus Pyralis Luciferase 15 cagagccacc aacuucucuu caaaa 25 16 60 RNA Artificial Sequence Part of human EDG1 16 gaccucggug guguucauuc ucaucugcug cuuuaucauc cuggagaaca ucuuugucuu 60 17 60 RNA Artificial Sequence Part of human EDG1 17 auuuccaagg ccagccgcag cucugagaau guggcgcugc ucaagaccgu aauuaucguc 60 18 25 RNA Artificial Sequence Part of human EDG1 18 aaagauguuc uccaggauga uaaaa 25 19 25 RNA Artificial Sequence Part of human EDG1 19 cagagcugcg gcuggccuug gaaaa 25 20 25 RNA Artificial Sequence Part of human EDG1 20 cacagcggcg ucuguccgug gaaaa 25 21 21 RNA Artificial Sequence Part of Photinus Pyralis Luciferase 21 gaagcgaagg uuguggaucu g 21 22 16 RNA Artificial Sequence Part of Photinus pyralis Luciferase 22 accagaccac aacccg 16 23 15 PRT Artificial Sequence An EDG-1-specific peptide sequence 23 Cys Lys Ala His Arg Ser Ser Val Ser Asp Tyr Val Asn Tyr Asp 1 5 10 15
Claims (28)
1. An oligonucleotide of the formula I
5′-(N)x—(Z)n Formula I
where
N is naturally or not naturally occurring nucleotides which are at least partly complementary to a target RNA,
x is independently 10 to 100,
n is 2 to 20,
Z is naturally or not naturally occurring nucleotides which are linked via a 2′5′ internucleoside bond.
with the proviso that its homologous target RNA has one of the following sequence patterns.
5′-(U)v—(N)z—(U)w
5′-(U)v—(N)z—UX
5′-UX—(N)z—UX and
5′-(U)v—(N)z,
where v is independently 2 to 20,
where w is independently 2 to 20,
z is independently 15 to 25,
U is uridine, N is adenosine (A), guanosine (G), cytidine (C) or U and X is A, G or C, preferably A
and to its physiologically tolerated salts.
2. The oligonucleotide of the formula I as claimed in claim 1 , wherein x is 15 to 45.
3. The oligonucleotide of the formula I as claimed in claim 2 , wherein x is 16 to 25.
4. The oligonucleotide of the formula I as claimed in one or more of claims 1 to 3 , wherein n is 2 to 10.
5. The oligonucleotide of the formula I as claimed in claim 4 , wherein n is 3 to 6.
6. The oligonucleotide of the formula I as claimed in one or more of claims 1 to 5 , wherein N is a ribonucleotide.
7. The oligonucleotide of the formula I as claimed in one or more of claims 1 to 6 , wherein v is 2 to 10.
8. The oligonucleotide of the formula I as claimed in claim 7 , wherein v is 3 to 6.
9. The oligonucleotide of the formula I as claimed in one or more of claims 6 to 8 , wherein w is 2 to 10.
10. The oligonucleotide of the formula I as claimed in claim 9 , wherein w is 3 to 6.
11. The oligonucleotide of the formula I as claimed in one or more of claims 1 to 10 , wherein z is 16 to 23.
12. The oligonucleotide of the formula I as claimed in claim 11 , wherein z is 19 to 21.
13. The oligonucleotide of the formula I as claimed in one or more of claims 1 to 12 , wherein Z is adenosine or 3′-deoxyadenosine.
14. The oligonucleotide of the formula I as claimed in one or more of claims 1 to 13 , in which one or more natural phosphodiester bonds have been replaced by unnatural internucleotide bonds which stabilize against nuclease degradation.
15. The oligonucleotide of the formula I as claimed in one or more of claims 1 to 14 , in which one or more natural phosphodiester bonds have been replaced by phosphorothioate bonds.
16. The oligonucleotide of the formula I as claimed in one or more of claims 1 to 15 , in which a plurality of natural phosphodiester bonds have been replaced by phosphorothioate bonds, with said modifications being located on the ends and on internal pyrimidine nucleotides.
17. A method for inhibiting gene expression of a target gene in a cell with the aid of one or more oligonucleotides as claimed in one or more of claims 1 to 16 , wherein first an oligonucleotide complementary to an appropriate target gene is prepared, said oligonucleotide is introduced into a cell, said cell is incubated and inhibition of the gene expression of the target gene is then determined by comparative measurements of the amount of the corresponding mRNA or corresponding gene product in a control cell.
18. The method as claimed in claim 17 for inhibiting gene expression of a target gene in a cell in which 2′5′-oligoadenylate synthase is underexpressed in comparison with a control cell or is defective.
19. A pharmaceutical comprising an oligonucleotide as claimed in one or more of claims 1 to 18 and also additives and/or carriers and, where appropriate, excipients for preparing or formulating a pharmaceutical.
20. The use of a pharmaceutical as claimed in claim 19 in tumor therapy.
21. The use of a pharmaceutical as claimed in claim 19 in the therapy or prevention of infectious diseases.
22. The use of a pharmaceutical as claimed in claim 19 in the therapy or prevention of viral diseases.
23. The use of a pharmaceutical as claimed in claim 19 in the therapy of inflammations or asthma.
24. The use of a pharmaceutical as claimed in claim 19 in the therapy of cardiovascular or metabolic disorders.
25. The use of an oligonucleotide as claimed in one or more of claims 1 to 16 for identifying or validating novel therapeutic target genes.
26. The use of an oligonucleotide as claimed in one or more of claims 1 to 16 for identifying or validating novel target genes in crop protection research.
27. A method for preparing an oligonucleotide as claimed in one or more of claims 1 to 16 , wherein the oligonucleotides are first prepared in solution or on the solid phase by successive coupling or coupling in blocks and are, after the preparation, isolated and purified.
28. A method for preparing a pharmaceutical, wherein an oligonucleotide derivative as claimed in claim 27 is prepared and, where appropriate, admixed with further additives and/or carriers and, where appropriate, excipients.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/233,907 US7635769B2 (en) | 2001-07-12 | 2005-09-22 | Oligoribonucleotide derivatives for specific inhibition of gene expression |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10133915.1 | 2001-07-12 | ||
DE10133915A DE10133915A1 (en) | 2001-07-12 | 2001-07-12 | New oligoribonucleotide derivatives for targeted inhibition of gene expression |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/233,907 Continuation US7635769B2 (en) | 2001-07-12 | 2005-09-22 | Oligoribonucleotide derivatives for specific inhibition of gene expression |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030105052A1 true US20030105052A1 (en) | 2003-06-05 |
Family
ID=7691545
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/192,926 Abandoned US20030105052A1 (en) | 2001-07-12 | 2002-07-11 | Oligoribonucleotide derivatives for specific inhibition of gene expression |
US11/233,907 Expired - Fee Related US7635769B2 (en) | 2001-07-12 | 2005-09-22 | Oligoribonucleotide derivatives for specific inhibition of gene expression |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/233,907 Expired - Fee Related US7635769B2 (en) | 2001-07-12 | 2005-09-22 | Oligoribonucleotide derivatives for specific inhibition of gene expression |
Country Status (14)
Country | Link |
---|---|
US (2) | US20030105052A1 (en) |
EP (1) | EP1414961B1 (en) |
JP (1) | JP4690649B2 (en) |
AT (1) | ATE371734T1 (en) |
AU (1) | AU2002325305B2 (en) |
CA (1) | CA2453295C (en) |
CY (1) | CY1107776T1 (en) |
DE (2) | DE10133915A1 (en) |
DK (1) | DK1414961T3 (en) |
ES (1) | ES2289131T3 (en) |
IL (2) | IL159759A0 (en) |
MX (1) | MXPA04000178A (en) |
PT (1) | PT1414961E (en) |
WO (1) | WO2003008595A2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1572902B1 (en) | 2002-02-01 | 2014-06-11 | Life Technologies Corporation | HIGH POTENCY siRNAS FOR REDUCING THE EXPRESSION OF TARGET GENES |
EP2128248B2 (en) | 2002-02-01 | 2017-01-11 | Life Technologies Corporation | Oligonucleotide compositions with enhanced efficiency |
US20060009409A1 (en) | 2002-02-01 | 2006-01-12 | Woolf Tod M | Double-stranded oligonucleotides |
US7803781B2 (en) * | 2003-02-28 | 2010-09-28 | Isis Pharmaceuticals, Inc. | Modulation of growth hormone receptor expression and insulin-like growth factor expression |
DE10350256A1 (en) * | 2003-10-01 | 2005-06-02 | Grünenthal GmbH | PIM-1-specific siRNA compounds |
DE102004011687A1 (en) * | 2004-03-10 | 2005-10-13 | Grünenthal GmbH | VGLUT-specific dsRNA compounds |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3717436A1 (en) * | 1987-05-23 | 1988-12-08 | Hoechst Ag | METHOD FOR PRODUCING DOUBLE-STRANDED DNA |
KR930016437A (en) | 1992-01-22 | 1993-08-26 | 귀틀라인, 슈미트 | Oligonucleotide Analogues, Methods for Making and Uses thereof |
US5886165A (en) * | 1996-09-24 | 1999-03-23 | Hybridon, Inc. | Mixed backbone antisense oligonucleotides containing 2'-5'-ribonucleotide- and 3'-5'-deoxyribonucleotides segments |
US6010907A (en) * | 1998-05-12 | 2000-01-04 | Kimeragen, Inc. | Eukaryotic use of non-chimeric mutational vectors |
US6004804A (en) * | 1998-05-12 | 1999-12-21 | Kimeragen, Inc. | Non-chimeric mutational vectors |
WO2000004189A1 (en) * | 1998-07-14 | 2000-01-27 | Isis Pharmaceuticals, Inc. | Modified oligonucleotides |
-
2001
- 2001-07-12 DE DE10133915A patent/DE10133915A1/en not_active Withdrawn
-
2002
- 2002-07-05 EP EP02758317A patent/EP1414961B1/en not_active Expired - Lifetime
- 2002-07-05 DE DE50210819T patent/DE50210819D1/en not_active Expired - Lifetime
- 2002-07-05 AU AU2002325305A patent/AU2002325305B2/en not_active Ceased
- 2002-07-05 PT PT02758317T patent/PT1414961E/en unknown
- 2002-07-05 ES ES02758317T patent/ES2289131T3/en not_active Expired - Lifetime
- 2002-07-05 IL IL15975902A patent/IL159759A0/en unknown
- 2002-07-05 AT AT02758317T patent/ATE371734T1/en active
- 2002-07-05 DK DK02758317T patent/DK1414961T3/en active
- 2002-07-05 MX MXPA04000178A patent/MXPA04000178A/en active IP Right Grant
- 2002-07-05 JP JP2003514911A patent/JP4690649B2/en not_active Expired - Fee Related
- 2002-07-05 WO PCT/EP2002/007483 patent/WO2003008595A2/en active IP Right Grant
- 2002-07-05 CA CA2453295A patent/CA2453295C/en not_active Expired - Fee Related
- 2002-07-11 US US10/192,926 patent/US20030105052A1/en not_active Abandoned
-
2004
- 2004-01-07 IL IL159759A patent/IL159759A/en not_active IP Right Cessation
-
2005
- 2005-09-22 US US11/233,907 patent/US7635769B2/en not_active Expired - Fee Related
-
2007
- 2007-10-25 CY CY20071101371T patent/CY1107776T1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CY1107776T1 (en) | 2013-06-19 |
EP1414961B1 (en) | 2007-08-29 |
US7635769B2 (en) | 2009-12-22 |
CA2453295C (en) | 2012-09-25 |
MXPA04000178A (en) | 2004-03-18 |
CA2453295A1 (en) | 2003-01-30 |
JP2005500050A (en) | 2005-01-06 |
AU2002325305B2 (en) | 2007-05-17 |
WO2003008595A3 (en) | 2004-01-22 |
DK1414961T3 (en) | 2007-11-26 |
IL159759A0 (en) | 2004-06-20 |
WO2003008595A2 (en) | 2003-01-30 |
DE10133915A1 (en) | 2003-02-06 |
ATE371734T1 (en) | 2007-09-15 |
ES2289131T3 (en) | 2008-02-01 |
PT1414961E (en) | 2007-09-25 |
US20060025374A1 (en) | 2006-02-02 |
IL159759A (en) | 2012-05-31 |
JP4690649B2 (en) | 2011-06-01 |
EP1414961A2 (en) | 2004-05-06 |
DE50210819D1 (en) | 2007-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8772469B2 (en) | Synthetic double-stranded oligonucleotides for specific inhibition of gene expression | |
AU711792B2 (en) | G cap-stabilized oligonucleotides | |
EP0979869A1 (en) | Short oligonucleotides for the inhibition of VEGF expression | |
RU2249458C2 (en) | Oligonucleotide for inhibiting human eg5 expression | |
JP2008289488A (en) | RNA INTERFERENCE-MEDIATED INHIBITION OF GENE EXPRESSION BY USING CHEMICALLY MODIFIED SHORT INTERFERING NUCLEIC ACID (siNA) | |
JP2008514647A (en) | Method for treating inflammatory diseases with double-stranded ribonucleic acid | |
RU2418068C2 (en) | Chemically modified short interfering nucleic acid molecules that mediate rna interference | |
US7635769B2 (en) | Oligoribonucleotide derivatives for specific inhibition of gene expression | |
KR20010072312A (en) | Antisense oligonucleotides for the inhibition of VEGF expression | |
MX2008002369A (en) | Chemically modified short interfering nucleic acid molecules that mediate rna interference. | |
US20040171564A1 (en) | Antisense oligonucleotide modulation of human serine/threonine protein phosphatase gene expression | |
CZ2001454A3 (en) | Short oligonucleotides intended for inhibition of VEGF expression, process of their preparation and their use | |
MXPA01000910A (en) | Antisense oligonucleotides for the inhibition of vegf expression | |
MXPA01000908A (en) | Short oligonucleotides for the inhibition of vegf expression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: SANOFI-AVENTIS DEUTSCHLAND GMBH, GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:AVENTIS PHARMA DEUTSCHLAND GMBH;REEL/FRAME:016793/0789 Effective date: 20050901 Owner name: SANOFI-AVENTIS DEUTSCHLAND GMBH,GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:AVENTIS PHARMA DEUTSCHLAND GMBH;REEL/FRAME:016793/0789 Effective date: 20050901 |