Nothing Special   »   [go: up one dir, main page]

US20030055372A1 - Shunt device and method for treating glaucoma - Google Patents

Shunt device and method for treating glaucoma Download PDF

Info

Publication number
US20030055372A1
US20030055372A1 US10/222,209 US22220902A US2003055372A1 US 20030055372 A1 US20030055372 A1 US 20030055372A1 US 22220902 A US22220902 A US 22220902A US 2003055372 A1 US2003055372 A1 US 2003055372A1
Authority
US
United States
Prior art keywords
canal
schlemm
anterior chamber
shunt
eye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/222,209
Other versions
US20050119601A9 (en
Inventor
Mary Lynch
Reay Brown
Stuart Ball
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/558,505 external-priority patent/US6450984B1/en
Application filed by Individual filed Critical Individual
Priority to US10/222,209 priority Critical patent/US20050119601A9/en
Publication of US20030055372A1 publication Critical patent/US20030055372A1/en
Priority to US10/899,687 priority patent/US7220238B2/en
Publication of US20050119601A9 publication Critical patent/US20050119601A9/en
Priority to US11/585,043 priority patent/US20070088432A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00781Apparatus for modifying intraocular pressure, e.g. for glaucoma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/0008Introducing ophthalmic products into the ocular cavity or retaining products therein
    • A61F9/0017Introducing ophthalmic products into the ocular cavity or retaining products therein implantable in, or in contact with, the eye, e.g. ocular inserts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0612Eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • A61M25/007Side holes, e.g. their profiles or arrangements; Provisions to keep side holes unblocked

Definitions

  • the present invention is generally directed to a surgical treatment for glaucoma, and relates more particularly to a device and method for continuously decompressing elevated intraocular pressure in eyes affected by glaucoma by diverting aqueous humor from the anterior chamber of the eye into Schlemm's canal where postoperative patency can be maintained with an indwelling shu placed to connect the canal with the anterior chamber.
  • Glaucoma is a significant public health problem, because glaucoma is a major cause of blindness.
  • the blindness that results from glaucoma involves both central and peripheral vision and has a major impact on an individual's ability to lead and independent life.
  • Glaucoma is an optic neuropathy (a disorder of the optic nerve) that usually occurs in the setting of an elevated intraocular pressure.
  • the pressure within the eye increases and this is associated with changes in the appearance (“cupping”) and function (“blind spots” in the visual field) of the optic nerve. If the pressure remains high enough for a long enough period of time, total vision loss occurs. High pressure develops in an eye because of an internal fluid imbalance.
  • the eye is a hollow structure that contains a clear fluid called “aqueous humor.”
  • Aqueous humor is formed in the posterior chamber of the eye by the ciliary body at rate of about 2.5 microliters per minute.
  • the fluid which is made at a fairly constant rate, then passes around the lens, through the pupillary opening in the iris and into the anterior chamber of the eye. Once in the anterior chamber, the fluid drains out of the eye through two different routes. In the “uveoscleral” route, the fluid percolates between muscle fibers of the ciliary body. This route accounts for approximately ten percent of the aqueous outflow in humans.
  • the primary pathway for aqueous outflow in humans is through the “canalicular” route that involves the trabecular meshwork and Schlemm's canal.
  • the trabecular meshwork and Schlemm's canal are located at the junction between the iris and the sclera. This junction or corner is called “the angle.”
  • the trabecular meshwork is a wedge-shaped structure that runs around the circumference of the eye. It is composed of collagen beams arranged in a three-dimensional sieve-like structure. The beams are lined with a monolayer of cells called trabecular cells. The spaces between the collagen beams are filled with an extracellular substance that is produced by the trabecular cells. These cells also produce enzymes that degrade the extracellular material.
  • Schlemm's canal is adjacent to the trabecular meshwork. The outer wall of the trabecular meshwork coincides with the inner wall of Schlemm's canal. Schlemm's canal is a tube-like structure that runs around the circumference of the cornea. In human adults, Schlemm's Canal is believed to be divided by septa into a series of autonomous, dead-end canals.
  • aqueous fluid travels through the spaces between the trabecular beams, across the inner wall of Schlemm's canal into the canal, through a series of about 25 collecting channels that drain from Schlemm's canal and into the episcleral venous system.
  • aqueous production is equal to aqueous outflow and intraocular pressure remains fairly constant in the 15 to 21 mmHg range.
  • the resistance through the canalicular outflow system is abnormally high.
  • primary open angle glaucoma which is the most common form of glaucoma
  • the abnormal resistance is believed to be along the outer aspect of trabecular meshwork and the inner wall of Schlemm's canal. It is believed that an abnormal metabolism of the trabecular cells leads to an excessive build up of extracellular materials or a build up of abnormally “stiff” materials in this area.
  • Primary open angle glaucoma accounts for approximately eighty-five percent of all glaucoma.
  • Other forms of glaucoma (such as angle closure glaucoma and secondary glaucomas) also involve decreased outflow through the canalicular pathway but the increased resistance is from other causes such as mechanical blockage, inflammatory debris, cellular blockage, etc.
  • the aqueous fluid builds up because it cannot exit fast enough.
  • the intraocular pressure (IOP) within the eye increases.
  • the increased IOP compresses the axons in the optic nerve and also may compromise the vascular supply to the optic nerve.
  • the optic nerve carries vision from the eye to the brain.
  • Some optic nerves seem more susceptible to IOP than other eyes. While research is investigating ways to protect the nerve from an elevated pressure, the only therapeutic approach currently available in glaucoma is to reduce the intraocular pressure.
  • laser trabeculoplasty When medication fails to adequately reduce the pressure, laser trabeculoplasty often is performed.
  • thermal energy from a laser is applied to a number of noncontiguous spots in the trabecular meshwork. It is believed that the laser energy stimulates the metabolism of the trabecular cells in some way, and changes the extracellular material in the trabecular meshwork.
  • aqueous outflow In approximately eighty percent of patients, aqueous outflow is enhanced and IOP decreases. However, the effect often is not long lasting and fifty percent of patients develop an elevated pressure within five years. The laser surgery is not usually repeatable.
  • laser trabeculoplasty is not an effective treatment for primary open angle glaucoma in patients less than fifty years of age, nor is it effective for angle closure glaucoma and many secondary glaucomas. If laser trabeculoplasty does not reduce the pressure enough, then filtering surgery is performed. With filtering surgery, a hole is made in the sclera and angle region. This hole allows the aqueous fluid to leave the eye through an alternate route.
  • the most commonly performed filtering procedure is a trabeculectomy.
  • a posterior incision is made in the conjunctiva, the transparent tissue that covers the sclera.
  • the conjunctiva is rolled forward, exposing the sclera at the limbus.
  • a partial thickness scleral flap is made and dissected half-thickness into the cornea.
  • the anterior chamber is entered beneath the scleral flap and a section of deep sclera and trabecular meshwork is excised.
  • the scleral flap is loosely sewn back into place.
  • the conjunctival incision is tightly closed.
  • the aqueous fluid passes through the hole, beneath the scleral flap and collects in an elevated space beneath the conjunctiva.
  • the fluid then is either absorbed through blood vessels in the conjunctiva or traverses across the conjunctiva into the tear film.
  • Trabeculectomy is associated with many problems. Fibroblasts that are present in the episelera proliferate and migrate and can scar down the scleral flap. Failure from scarring may occur, particularly in children and young adults. Of eyes that have an initially successful trabeculectomy, eighty percent will fail from scarring within three to five years after surgery. To minimize fibrosis, surgeons now are applying antifibrotic agents such as mitomycin C (MMC) and 5-fluorouracil (5-FU) to the scleral flap at the time of surgery. The use of these agents has increased the success rate of trabeculectomy but also has increased the prevalence of hypotony. Hypotony is a problem that develops when aqueous flows out of the eye too fast. The eye pressure drops too low (usually less than 6.0 mmHg); the structure of the eye collapses and vision decreases.
  • MMC mitomycin C
  • 5-FU 5-fluorouracil
  • Trabeculectomy creates a pathway for aqueous fluid to escape to the surface of the eye. At the same time, it creates a pathway for bacteria that normally live on the surface of the eye and eyelids to get into the eye. If this happens, an internal eye infection can occur called endophthalmitis. Endophthalmitis often leads to permanent and profound visual loss. Endophthalmitis can occur anytime after trabeculectomy. The risk increases with the thin blebs that develop after MMC and 5-FU. Another factor that contributes to infection is the placement of a bleb. Eyes that have trabeculectomy performed inferiorly have about five times the risk of eye infection than eyes that have a superior bleb. Therefore, initial trabeculectomy is performed superiorly under the eyelid, in either the nasal or temporal quadrant.
  • trabeculectomy In addition to scarring, hypotony and infection, there are other complications of trabeculectomy.
  • the bleb can tear and lead to profound hypotony.
  • the bleb can be irritating and can disrupt the normal tear film, leading to blurred vision.
  • Patients with blebs generally cannot wear contact lenses. All of the complications from trabeculectomy stem from the fact that fluid is being diverted from inside the eye to the external surface of the eye.
  • An aqueous diversion device of the prior art is a silicone tube that is attached at one end to a plastic (polypropylene or other synthetic) plate.
  • an aqueous shunt device With an aqueous shunt device, an incision is made in the conjunctiva, exposing the sclera.
  • the plastic plate is sewn to the surface of the eye posteriorly, usually over the equator.
  • a full thickness hole is made into the eye at the limbus, usually with a needle.
  • the tube is inserted into the eye through this hole.
  • the external portion of the tube is covered with either donor sclera or pericardium. The conjunctiva is replaced and the incision is closed tightly.
  • aqueous diversion devices With prior art aqueous diversion devices, aqueous drains out of the eye through the silicone tube to the surface of the eye. Deeper orbital tissues then absorb the fluid. The outside end of the tube is protected from fibroblasts and scarring by the plastic plate. Many complications are associated with aqueous shunt devices. A thickened wall of scar tissue that develops around the plastic plate offers some resistance to outflow and in many eyes limits the reduction in eye pressure. In some eyes, hypotony develops because the flow through the tube is not restricted. Many physicians tie an absorbable suture around the tube and wait for the suture to dissolve post-operatively at which time enough scar tissue has hopefully formed around the plate. Some devices contain a pressure-sensitive valve within the tube, although these valves may not function properly. The surgery involves operating in the posterior orbit and many patients develop an eye muscle imbalance and double vision post-operatively. With prior art aqueous shunt devices, a pathway is created for bacteria to get into the eye and endophthalmitis can potentially occur.
  • the prior art includes a number of such aqueous shunt devices, such as U.S. Pat. No. 4,936,825 (providing a tubular shunt from the anterior chamber to the corneal surface for the treatment of glaucoma), U.S. Pat. No. 5,127,901 (directed to a transscleral shunt from the anterior chamber to the subconjunctival space), U.S. Pat. No. 5,180,362 (teaching a helical steel implant that is placed to provide drainage from the anterior chamber to the subconjunctival space), and U.S. Pat. No. 5,433,701 (generally teaching shunting from the anterior chamber to the scleral or conjunctival spaces).
  • U.S. Pat. No. 4,936,825 providing a tubular shunt from the anterior chamber to the corneal surface for the treatment of glaucoma
  • U.S. Pat. No. 5,127,901 directed to a transscleral shunt from
  • U.S. Pat. No. 5,360,399 teaches the temporary placement of a plastic or steel tube with preformed curvature in Schlemm's canal with injection of a viscous material through the tube to hydraulically expand and hydrodissect the trabecular meshwork. The tube is removed from the canal following injection. Because the tube is directed outwardly from the eye for injection access, the intersection of the outflow element with the preformed curved element within Schlemm's canal is at about a 90 degree angle relative to the plane of the curvature, and 180 degrees away from the anterior chamber.
  • this tube has a larger diameter injection cuff element, which serves as an adapter for irrigation. Therefore, this device is not adapted for shunting aqueous between the anterior chamber and Schlemm's canal.
  • Enhancing aqueous flow directly into Schlemm's canal would minimize hypotony since the canal is part of the normal outflow system and is biologically engineered to handle the normal volume of aqueous humor. Enhancing aqueous flow directly into Schlemm's canal would eliminate complications such as endophthalmitis and leaks.
  • the present invention is directed to a novel shunt and an associated surgical method for the treatment of glaucoma in which the shunt is placed to divert aqueous humor from the anterior chamber of the eye into Schlemm's canal.
  • the present invention therefore facilitates the normal physiologic pathway for drainage of aqueous humor from the anterior chamber, rather than shunting to the sclera or another anatomic site as is done in most prior art shunt devices.
  • the present invention is further directed to providing a permanent, indwelling shunt to provide increased egress of aqueous humor from the anterior chamber to Schlemm's canal for glaucoma management.
  • FIG. 1A is an illustration showing an overhead perspective view of one embodiment of the present invention, in which the inventive shunt is comprised of tubular elements extending bi-directionally within Schlemm's canal.
  • FIG. 1B is an overhead view of the embodiment of the present invention shown in FIG. 1A, with phantom lines detailing the internal communication between the lumens of the tubular elements comprising the inventive device.
  • FIG. 1C is an illustration showing an overhead perspective view of one embodiment of the present invention, in which the inventive shunt is comprised of mesh tubular elements extending bi-directionally within Schlemm's canal.
  • FIG. 1D is an illustration showing an overhead perspective view of one embodiment of the present invention, in which the inventive shunt is comprised of solid, porous elements extending bi-directionally within Schlemm's canal.
  • FIG. 1E is an overhead perspective view of another embodiment of the present invention, with phantom lines detailing the internal communication between the two proximal lumens and the single distal lumen of the inventive device.
  • FIG. 2 is an illustration showing another embodiment of the present invention, in which the inventive shunt is comprised of perforated tubular elements and with an angulated terminal aspect of the proximal portion.
  • FIG. 3A is an illustration showing a perspective of another embodiment of the present invention in which the inventive shunt is comprised of elements that are partially tubular and partially open in their configuration.
  • FIG. 3B is an illustration showing a top view of the embodiment of the present invention in FIG. 3A, with phantom lines detailing the internal communication of the device.
  • FIG. 3C is an illustration showing a side view from the proximal end of the embodiment of the present invention in FIG. 3A.
  • FIG. 3D is an illustration showing a perspective of another embodiment of the present invention in which the inventive shunt is comprised of elements that are partially open and trough-like in their configuration.
  • FIG. 4 is an illustration showing another embodiment of the present invention, in which the inventive shunt is comprised of distal elements having wicking extensions at their terminal ends, and in which the proximal portion has a sealed, blunted tip with a portal continuous with the lumen of the proximal portion, oriented to face away from the iris when the device is implanted in Schlemm's canal.
  • FIG. 5A is an illustration showing another embodiment of the inventive shunt in which a portion of the device enters Schlemm's canal in only one direction and shunts fluid in a non-linear path from the anterior chamber.
  • FIG. 5B is an illustration showing an alternative embodiment of the inventive shunt in which the entire shunt is placed within Schlemm's canal but contains a fenestration to maintain fluid egress of aqueous humor from the anterior chamber to Schlemm's canal.
  • FIG. 5C is an illustration showing a side view of one embodiment of the present invention, in which the inventive shunt is comprised of tubular elements, with a proximal portion extending towards the anterior chamber that is shorter relative to the distal portions which extend bi-directionally within Schlemm's canal.
  • FIG. 5D is an illustration showing an alternative embodiment of the inventive shunt comprised of a partially open trough-like element which is placed within Schlemm's canal but contains a portal to maintain fluid egress of aqueous humor from the anterior chamber to Schlemm's canal.
  • FIG. 5E is an illustration showing an alternative embodiment of the inventive shunt comprised of a solid, but porous wick-like element which is placed within Schlemm's canal
  • FIG. 6A is an illustration showing certain anatomic details of the human eye.
  • FIG. 6B is a cross-sectional illustration showing the anatomic relationships of the surgical placement of an exemplary embodiment of the present invention.
  • FIG. 6C is a cross-sectional illustration showing the anatomic relationships of the surgical placement of another exemplary embodiment of the present invention in which the proximal portion has an angulated terminal aspect with a sealed, blunted tip with a portal continuous with the lumen of the proximal portion, oriented to face away from the iris when the device is implanted in Schlemm's canal.
  • FIG. 7A is a cross-sectional illustration showing the anatomic relationships of the surgical placement of an exemplary embodiment of the present invention showing the proximal portion of the device and a barb-shaped anchor extending toward the iris.
  • FIG. 7B is a cross-sectional illustration showing the anatomic relationships of the surgical placement of another exemplary embodiment of the present invention showing the proximal portion of the device having an annular or circumferential anchor thereon.
  • FIG. 8A shows one embodiment of the device having a bi-directional distal portion and an anchor on the proximal portion extending circumferentially thereon.
  • FIG. 8B shows another embodiment of the device having a bi-directional distal portion and an anchor on the proximal portion extending medially toward the location of the iris when implanted.
  • FIG. 8C shows another embodiment of the device having a bi-directional distal portion and an anchor on the proximal portion extending laterally on each side of the device when implanted.
  • FIG. 9 shows another embodiment having a bi-directional distal portion and an anchor on the proximal portion extending circumferentially thereon in a barbed or cone shape to facilitate introduction into the anterior chamber and to inhibit removal therefrom.
  • FIG. 10 shows another embodiment having a tapered proximal portion with screw threads.
  • the present invention provides an aqueous humor shunt device to divert aqueous humor in the eye from the anterior chamber into Schlemm's canal, in which the shunt device comprises a distal portion having at least one terminal aspect sized and shaped to be circumferentially received within a portion of Schlemm's canal, and a proximal portion having at least one terminal aspect sized and shaped to be received within the anterior chamber of the eye, wherein the device permits fluid communication between the proximal portion in the anterior chamber to the distal portion in Schlemm's canal. Fluid communication can be facilitated by an aqueous humor directing channel in either the proximal or distal portions, as described below. Fluid communication can also be facilitated by a wicking function of a solid proximal or distal portions of the device, for example.
  • the present invention also provides embodiments of an inventive shunt comprising a body of biocompatible material of a size and shape adapted to be at least partially circumferentially received within a portion of Schlemm's canal to divert aqueous humor from the anterior chamber of the human eye to and within Schlemm's canal, and wherein the body facilitates the passage of aqueous humor from the anterior chamber into Schlemm's canal.
  • This embodiment of the device of the present invention can be produced without the proximal portion of the previous embodiment extending into the anterior chamber.
  • An aqueous humor directing channel can facilitate the passage of aqueous humor from the anterior chamber into Schlemm's canal. Fluid communication can also be facilitated by a wicking function of a solid body portion, for example.
  • the invention contemplates many different configurations for an aqueous humor directing channel, provided that each assists in channeling aqueous humor from the anterior chamber to Schlemm's canal, such as by providing a lumen, trough, wick or capillary action.
  • the aqueous humor directing channel can be a fully enclosed lumen, a partially enclosed lumen, or a trough-like channel that is at least partially open.
  • a solid monofilament or braided polymer such as Proline® (polypropylene)
  • Proline® polypropylene
  • Such a wicking or stenting extension can also be grooved or fluted along any portion of the length thereof, so as to be multi-angular or star-shaped in cross-section.
  • the devices of the present invention can be constructed of a solid, matrix, mesh, fenestrated, or porous material, or combinations thereof.
  • Schlemm's canal in an adult is divided by septa into separate canals, rendering the complete passage of a suture impossible.
  • Preliminary studies on adult human eye bank eyes have shown that Schlemm's canal is, indeed, patent.
  • a suture can be passed through the entire circumference of the canal. It has not been heretofore determined that Schlemm's canal is patent throughout its circumference in normal adult individuals, as opposed to being divided by septae into multiple dead end canals.
  • the invention utilizes this knowledge to access Schlemm's canal and to create and maintain the natural physiologic egress of aqueous humor from the anterior chamber to Schlemm's canal and to the collecting channels.
  • the present invention also provides methods of use of the shunt devices.
  • One embodiment of the present invention is directed to a surgical method to divert aqueous humor from the anterior chamber of the eye into Schlemm's canal with a device that is implanted to extend from within the anterior chamber to Schlemm's canal.
  • the portion of the device extending into Schlemm's canal can be fashioned from a flexible material, such as silicone, capable of being received within a portion of the radius, curvature, and diameter of Schlemm's canal.
  • the external diameter of the proximal portion can be about 0.1 mm to 0.5 mm, or about 0.3 mm.
  • a preferred diameter for the proximal portion to be about 0.23 mm to about 0.28 m, or preferably about 0.23 mm to about 0.26 mm. All or parts of the device may be solid, porous, tubular, trough-like, fenestrated, or pre-curved.
  • FIG. 1A One embodiment of the present invention is illustrated in FIG. 1A, in which the shunt device 100 is shown in a side view.
  • the shunt device 100 of this embodiment is comprised of two portions, a proximal portion 10 which joins a distal portion 25 .
  • the proximal portion 10 and distal portion 25 shown create an enclosed tubular channeling structure.
  • the total length of the distal portion 25 may be between about 1.0 mm to 40 mm, preferably about 4 mm to 6 mm.
  • the same embodiment of the present invention is illustrated with phantom lines showing the internal fluid communication path in FIG. 1B.
  • the lumen or channeling space defined by the walls of the proximal portion 10 and the distal portion(s) 25 are continuous at their junction at the distal portion portal 20 .
  • FIG. 1C An alternate embodiment of the present invention is shown in FIG. 1C, in which the shunt device 100 is comprised of two luminal mesh elements, with a proximal portion 10 which joins a distal portion 25 .
  • FIG. 1D Yet another embodiment of the present invention is shown in FIG. 1D, in which the shunt device 100 is comprised of two solid, porous elements which may provide wick-like fluid communication therethrough, with a proximal portion 10 which joins a distal portion 25 .
  • FIG. 1E An alternate embodiment of the present invention is shown in FIG. 1E, in which the shunt device 100 is comprised of a proximal portion 10 having two lumens therein terminating in proximal portion portals 18 .
  • the distal portion 25 shaped and sized to be received within Schlemm's canal extends in either direction having separate lumens traversing therethrough from each of the distal portion portals 20 .
  • FIG. 2 shows an embodiment of the inventive shunt in which the device 100 is tubular and fenestrated ( 15 , 30 ) in its configuration, with an acute ( ⁇ 90) angle of junction between the proximal portion 10 and the plane defined by the distal portion 25 .
  • Such fenestrations ( 15 , 30 ) may be placed along any portion of the device 100 to facilitate the passage of fluid therethrough, but are particularly directed towards the collecting channels of the eye.
  • FIG. 2 further shows an alternate embodiment of the present invention in which the terminal aspect 16 of the proximal portion is angulated toward the iris 40 with respect to the main axis of the proximal portion 10 , with the portal 18 of the proximal portion directed toward from the iris 40 .
  • the portal 18 of the proximal portion 16 is directed away from the iris 40 .
  • FIG. 3A shows an embodiment of the inventive shunt in which a portion of the channeling device is enclosed and tubular in configuration at the junction of the proximal portion 10 and the distal portion 25 , but where the distal portion 10 is a trough-like channel.
  • the distal portion portal 20 is also shown.
  • the invention contemplates that any portion of the device 100 can be semi-tubular, open and trough-like, or a wick-like extension.
  • Tubular channels can be round, ovoid, or any other enclosed geometry.
  • the non-tubular trough-like aspects are oriented posteriorly on the outer wall of the canal to facilitate aqueous humor drainage to the collecting channels of the eye, as shown in FIG. 3A.
  • FIG. 3B shows an overhead view of the embodiment of the inventive shunt of FIG. 3A, further detailing the relationship among the proximal portion 10 and the distal portion 25 .
  • the aqueous humor directing channel is shown in dashed lines.
  • FIG. 3C shows a proximal view of the embodiment of the inventive shunt of FIG. 3A, further detailing the relationship among the proximal portion 10 and the distal portion 25 .
  • FIG. 3D shows another embodiment of the inventive shunt in which the structure of the device 100 comprises an aqueous humor directing channel that is both open and curved in a continuous trough-like configuration along the proximal portion 10 and the distal portion 25 .
  • the distal portion portal 20 is also an open trough-like channel.
  • FIG. 4 shows another embodiment of the inventive shunt with the addition of aqueous humor-wicking extensions 32 which are either continuous with, or attached to the terminal aspects of the distal portion 25 .
  • the wicking extensions 32 can be fashioned from a monofilament or braided polymer, such as proline, and preferably have a length of about 1.0 mm to about 16.0 mm.
  • the proximal portion 10 is curved with a sealed, blunted tip 16 and contains a portal 18 in fluid communication with the lumen of the proximal portion and oriented to face away from the iris when the shunt device 100 is implanted in its intended anatomic position.
  • the shunt device 100 can also help to maintain the patency of Schlemm's canal in a stenting fashion.
  • FIG. 5A shows another embodiment of the inventive shunt in which the proximal portion 10 joins a single, curved distal portion 25 in a “V-shaped,” tubular configuration.
  • the embodiment shown in FIG. 5A can also have a portal (not shown) in the distal portion 25 adjacent to the junction with the proximal portion 10 in order to facilitate bi-directional flow of fluid within the canal.
  • Fenestrations and non-tubular, trough-like terminal openings are contemplated in all embodiments of the invention, and these fenestrations and openings may be round, ovoid, or other shapes as needed for optimum aqueous humor channeling function within the anatomic spaces involved.
  • FIG. 5B shows another embodiment of the inventive shunt in which the body or device 100 comprises only a single, curved distal portion 25 which contains a distal portion portal 20 oriented towards the anterior chamber to allow egress of aqueous humor from the anterior chamber to Schlemm's canal.
  • the body of this device can have a length of about 1.0 mm to about 40 mm, preferably about 6 mm.
  • the external diameter of the device (or the distal portions of the device) can be about 0.1 mm to about 0.5 mm, preferably about 0.2 mm to about 0.3 mm, preferably about 0.23 mm to about 0.28 m or about 0.26 mm.
  • FIG. 5C shows another embodiment of the inventive shunt in which the device 100 comprises a bi-directional tubular distal portion 25 which is intersected by a proximal portion 10 which is short in length relative to the distal portion 25 and is directed towards the anterior chamber.
  • FIG. 5D shows still another embodiment of the inventive shunt in which the device 100 comprises a bi-directional, trough-like, curved distal portion 25 for insertion into Schlemm's canal, which contains a distal portion portal 20 oriented to allow egress of aqueous humor from the anterior chamber, wherein the trough-like distal portion 25 is oriented to open toward the collecting channels to facilitate the egress of aqueous humor.
  • FIG. 5E shows another embodiment of the inventive shunt in which the device 100 comprises a bi-directional, solid distal portion 25 for insertion into Schlemm's canal to facilitate the egress of aqueous humor from the canal to the collecting channels in a wicking capacity.
  • the solid distal portion 25 can be porous or non-porous.
  • the inventive device is an implant, it can be fabricated from a material that will be compatible with the tissues and fluids with which it is in contact.
  • the device may be constructed of biodegradable or non-biodegradable materials. It is preferable that the device not be absorbed, corroded, or otherwise structurally compromised during its in situ tenure. Moreover, it is equally important that the eye tissues and the aqueous remain non-detrimentally affected by the presence of the implanted device. A number of materials are available to meet the engineering and medical specifications for the shunts.
  • the shunt device 100 is constructed of a biologically inert, flexible material such as silicone or similar polymers.
  • the shunt device 100 may be constructed as either porous or solid in alternate embodiments.
  • the material can contain a therapeutic agent deliverable to the adjacent tissues.
  • the proximal portion 10 joins the distal portion(s) 25 at an angle sufficient to allow the placement of the proximal portion 15 within the anterior chamber of the eye when the distal portion 25 is oriented in the plane of Schlemm's canal.
  • the proximal portion 10 is preferably of sufficient length, about 0.1 to about 3.0 mm or about 2.0 mm, to extend from its junction with the distal portion 25 in Schlemm's canal towards the adjacent space of the anterior chamber.
  • the diameter or width of the proximal portion 10 can be sized to yield an internal diameter of between about 0.1 and about 0.5 mm, preferably about 0.2 mm to about 0.3 mm for a tubular or curved shunt, or a comparable maximal width for a shunt with a multiangular configuration.
  • the proximal portion is a non-luminal, non-trough-like wicking extension that provides an aqueous humor directing channel along the length thereof.
  • the proximal portion 10 may contain a plurality of fenestrations to allow fluid ingress, arranged to prevent occlusion by the adjacent iris.
  • the proximal portion 10 may comprise only a proximal portion portal 18 in the form of a fenestration oriented anteriorly to provide continuous fluid egress between the anterior chamber of the eye and the directing channel of the shunt.
  • Said fenestrations may be any functional size, and circular or non-circular in various embodiments of the present invention.
  • a porous structural material can assist in channeling aqueous humor, while minimizing the potential for intake of fimbriae.
  • the proximal portion 10 may be positioned sufficiently remote from the iris 40 to prevent interference therewith, such as by traversing a more anterior aspect of the trabecular meshwork into the peripheral corneal tissue.
  • the device 100 may comprise a proximal portion 10 in which the terminal aspect of said proximal portion 10 is curved or angled toward the iris 40 , and with a blunted, sealed tip 16 and a portal 18 oriented anteriorly to face away from the underlying iris 40 .
  • Such a configuration would tend to decrease the possibility of occlusion of the shunt device by the iris 40 .
  • the device 100 may contain one or more unidirectional valves to prevent backflow into the anterior chamber from Schlemm's canal.
  • the internal lumen for an enclosed portion of the device or the internal channel defined by the edges of an open portion of the device communicates directly with the inner lumen or channel of the distal portion at the proximal portion portal 20 .
  • the distal portion 25 may have a pre-formed curve to approximate the 6.0 mm radius of Schlemm's canal in a human eye. Such a pre-formed curvature is not required when flexible material is used to construct the shunt device 100 .
  • the distal portion 25 may be of sufficient length to extend from the junction with the proximal portion 10 through any length of the entire circumference of Schlemm's canal.
  • Embodiments having a distal portion 25 that extends in either direction within Schlemm's canal can extend in each direction about 1.0 mm to 20 mm, or about 3.0 mm. to permit circumferential placement through Schlemm's canal.
  • the diameter or width of the distal portion 25 can be sized to yield an outer diameter of between about 0.1 and 0.5 mm, or about 0.3 mm, for a tubular or curved shunt, or a comparable maximal width for a shunt with a multiangular configuration.
  • the distal portion 25 may contain a plurality of fenestrations to allow fluid egress, arranged to prevent occlusion by the adjacent walls of Schlemm's canal.
  • the distal portion is a non-luminal, non-trough-like wicking extension that provides an aqueous humor directing channel along the length thereof.
  • the shunt device may be either bi-directional, with the distal portion of the implant intersecting with the proximal portion in a “T-shaped” junction as shown in FIGS. 1 A- 1 E, 2 , 3 A- 3 D, 4 and 5 C, or uni-directional, with a “V-shaped” junction of the proximal and distal shunt portions, as shown in FIG. 5A.
  • a bi-directional shunt device can have a distal portion that is threaded into opposing directions within Schlemm's canal. In the case of the uni-directional shunt, only the distal shunt portion is placed within Schlemm's canal.
  • non-linear fluid communication means that at least some portion of the shunt through which fluid passes is not in a straight line.
  • non-linear shunts are the above described bi-directional “T” shapes, and the unidirectional “V” shapes, or shunts having two channel openings which are not in straight alignment with each other when implanted.
  • FIG. 6A shows the anterior chamber 35 , Schlemm's canal 30 , the iris 40 , cornea 45 , trabecular meshwork 50 , collecting channels 55 , episcleral veins 60 , pupil 65 , and lens 70 .
  • FIG. 6B illustrates the surgical placement of the exemplary embodiment of the present invention, with the relevant anatomic relationships. It should be noted that the inventive device is designed so that placement of the distal portion 25 within Schlemm's canal 30 results in an orientation of the proximal portion 10 within the anterior chamber 35 within the angle defined by the iris 40 and the inner surface of the cornea 45 .
  • the proximal portion 10 can extend therefrom at an angle of between about +60 degrees towards the cornea 45 or ⁇ 30 degrees toward the iris 40 , more preferably in the range of 0 to +45 degrees. This range may vary in individuals having a slightly different location of Schlemm's canal 30 relative to the limbal angle of the anterior chamber 35 .
  • the shunt device 100 is configured with one distal portion 25 which is tubular to provide a shunting functionality and a plurality of proximal portions 10 which provide an anchoring function to stabilize the overall implant device, in addition to providing fluid communication from the anterior chamber to Schlemm's Canal.
  • the invention provides an aqueous humor shunt device to divert aqueous humor in an eye from the anterior chamber into Schlemm's canal, the shunt device comprising a distal portion having at least one terminal aspect sized and shaped to be received circumferentially within a portion of Schlemm's canal and a proximal portion having at least one terminal aspect sized and shaped to be received within the anterior chamber of the eye, wherein the proximal portion has an anchor extending therefrom to maintain the position of the terminal aspect of the proximal portion within the anterior chamber of the eye, wherein device permits fluid communication from the proximal portion in the anterior chamber to the distal portion in Schlemm's canal.
  • such an anchor can extend from distal portions of the device to assist in stabilization of the implant within Schlemm's canal.
  • the multiple proximal portions or the anchor extension(s) from the distal or proximal portion provide multiple improvements for the shunt device.
  • the anchor facilitates implantation and proper placement of the device, as the proximal portion can be advanced into the anterior chamber and then pulled back into place until it contacts the edge of the anterior chamber.
  • a shelf may be created by the surgical procedure for implantation that is designed to capture the anchor. This permits the surgeon to determine how much of the proximal portion is left extending into the anterior chamber.
  • the anchor feature also allows the surgical alternative of first implanting the proximal portion into the anterior chamber, and then placing the distal portion(s) into Schlemm's canal.
  • the anchor also serves to anchor the shunt device in the desired location within the anterior chamber and Schlemm's canal with minimal shifting during normal use.
  • the anchor can be fabricated by a simple thickening of the material of construction of the shunt, e.g. silicon, at the desired site on the proximal portion, or can be made of another material attached thereto. Additionally, the anchor can be fabricated by removal of excess material.
  • the anchor can extend from the proximal portion in virtually any functional shape, such as in a rounded or barbed fashion.
  • FIG. 7A is a cross-sectional illustration showing the anatomic relationships of the surgical placement of an exemplary embodiment of the present invention showing the proximal portion 10 of the device and a barb-shaped anchor 80 extending toward the iris.
  • FIG. 7B is a cross-sectional illustration showing the anatomic relationships of the surgical placement of another exemplary embodiment of the present invention showing the proximal portion 10 of the device having an annular or circumferential anchor 80 thereon.
  • the anchor can extend circumferentially around the proximal portion, or only in one or more directions therefrom.
  • FIG. 8A shows one embodiment of the device having a bi-directional distal portion 25 and an anchor 80 on the proximal portion 10 extending circumferentially thereon.
  • FIG. 8B shows another embodiment of the device having a bi-directional distal portion 25 and an anchor 80 on the proximal portion 10 extending medially toward the location of the iris when implanted.
  • FIG. 8C shows another embodiment of the device having a bi-directional distal portion 25 and an anchor 80 on the proximal portion 10 extending laterally on each side of the device when implanted.
  • the invention contemplates many other configurations of the anchor, including a plurality of teeth extending from the proximal portion.
  • the device may also be provided with an anchor for placement adjacent the exterior surface of the anterior chamber to assist in surgical placement and securing the device, with or without a corresponding anchor adjacent the interior surface of the anterior chamber.
  • an anchor for placement adjacent the exterior surface of the anterior chamber to assist in surgical placement and securing the device, with or without a corresponding anchor adjacent the interior surface of the anterior chamber.
  • a potential configuration to stabilize the implant is a device having anchors for positioning inside the anterior chamber and inside Schlemm's canal to secure the device about the trabecular meshwork between the anterior chamber and Schlemm's canal.
  • the anchor can extend in any direction in any shape and size which facilitates implantation or anchoring of the device.
  • FIG. 9 shows another embodiment having a bi-directional distal portion 25 and an anchor 80 on the proximal portion 10 extending circumferentially thereon in a barbed or cone shape to facilitate introduction into the anterior chamber and to inhibit removal therefrom.
  • the end of the proximal portion can be cut at an angle, rather than blunted or square cut, in order to facilitate introduction through the wall of the anterior chamber.
  • the angled shape of the tip of the proximal portion allows the proximal portal to have a larger surface area to facilitate the flow of aqueous.
  • the device should be at least capable of permitting the flow of aqueous humor at the estimated normal production rate of about 2.5 microliters per minute.
  • FIG. 10 shows yet another embodiment of the device in which the proximal end comprises a larger single proximal lumen 10 which branches to form a pair of distal lumens 25 for insertion into Schlemm's canal.
  • the proximal end is preferably tapered and contains screw threads 80 such that the device can be screwed into the anterior chamber and anchored therein by means of the threads and the distal ends inserted in Schlemm's canal.
  • This embodiment would, in some instances, simplify insertion by eliminating the need to make an incision into the anterior chamber.
  • the anchor as well as optionally the remainder of the device, can be constructed on a textured, grooved or porous material in order to facilitate the growth of cells, such as fibroblasts, to stabilize the implant from movement.
  • the extreme tips of the proximal and distal ends of the device are produced to avoid the attraction of new tissues, such as fibroblasts, which may grow at the surgical site and impede the flow of aqueous therethrough. Therefore, the proximal portion of the device can be produced to extend beyond the entrance into the anterior chamber by 0.1 to 3 mm, or preferably about 0.5 mm.
  • the angled tip of the proximal portal will create a range of lengths along the proximal portion extending into the anterior chamber.
  • the distal portion(s) should similarly extend beyond the site of surgery and subsequent fibroblast proliferation. Therefore, the distal portion(s) can have a length of approximately 4 mm to 6 mm, again taking into consideration variability for angled extremities.
  • the single or dual lumen shunt devices of the present invention can be manufactured by conventional molding or extrusion techniques. In the case of extrusion production, single lumens can be subsequently partially joined together to form dual lumen devices, or the individual lumens of a co-extruded dual lumen devices can be partially separated to define distal portions extendable in separate directions. It is preferable that such devices be constructed such that they will not kink when wrapped around a 0.25 mm object.
  • the device may also include one or more visible markings on the device to assist in proper placement in the anterior chamber or Schlemm's canal. Markings on the distal ends could be used to confirm the distal ends are properly inserted in Schlemm's canal and markings on the proximal end would avoid over or under insertion into the anterior chamber.
  • the device may be selectively coated or permeated with therapeutic agents as desired.
  • therapeutic agents such as 5-fluourouracil or mitomycin.
  • the device may be more generally provided with coatings that are antibiotic, anti-inflammatory, or carboxylic anhydrase inhibitors. Agents that facilitate the degradation of collagen within the trabecular meshwork can also be employed.
  • the present invention provides methods for the implantation and use of the shunt devices.
  • the surgical procedure necessary to insert the device requires an approach through a conjunctival flap.
  • a partial thickness scleral flap is then created and dissected half-thickness into clear cornea.
  • the posterior aspect of Schlemm's canal is identified and the canal is entered posteriorly.
  • Schlemm's canal and/or the anterior chamber may be expanded and lubricated by injection of a viscoelastic and/or a mitotic agent. Suitable viscoelastic compositions and devices and methods for their injection into the eye are disclosed in U.S. Pat. No. 5,360,399 which is incorporated herein by reference.
  • the proximal portion of the shunt is then inserted through the inner wall of Schlemm's canal and trabecular meshwork into the anterior chamber within the angle between the iris and the cornea. In some cases, as incision may be needed from Schlemm's canal through the trabecular meshwork into the anterior chamber to facilitate passage of the proximal portion therethrough.
  • One arm of the distal portion of the shunt device is grasped and threaded into Schlemm's canal.
  • the other arm of the distal portion of the shunt device (when present) is inserted into Schlemm's canal in the opposing direction from the first.
  • the scleral flap and conjunctival wound are closed in a conventional manner.
  • a viscocanalostomy cannula and a viscoelastic agent (e.g., hyaluronate or hyaluronate/chondroitin sulfate).
  • a viscoelastic agent e.g., hyaluronate or hyaluronate/chondroitin sulfate.
  • a study in 16 swine was performed using a shunt device comprising two (2) 7 mm length, 0.125 mm inner diameter and 0.250 mm outer diameter silicone (65 A durometer) tubes bonded together with silicone adhesive over a 1.0 mm length at the proximal end, creating a Y shape.
  • the device was implanted in one eye of each animal and the non-implanted eye served as a control.
  • the periocular area of the study eye was prepped (eyelash trimming and betadine). The animal was then anesthesized using isofluorane. Under sterile conditions, a lid speculum was used to open the eyelids. An operating microscope was swung into place. A peripheral corneal bridle suture was placed to rotate the eye and expose the superior nasal limbus. A fornix-based conjunctival incision was made in the sclera and hemostasis ensured with bipolar cautery. A partial-thickness triangular scleral flap that measured 4 ⁇ 4 mm was made at the limbus and dissected anteriorly into clear cornea.
  • a second, deeper flap was created at the base of the first flap, and dissected anteriorly to unroof the porcine equivalent of Schlemm's canal.
  • the plane of the deeper flap then was angled anteriorly to create a corneoscleral shelf.
  • a viscoelastic agent (hyaluronate and chondroitin sulfate) was instilled into the Schlemm's canal-like space on either side using a viscocanalostomy cannula.
  • the distal aspects of the bi-directional glaucoma shunt were inserted into the canal on either side of the unroofing site.
  • the anterior chamber was entered through the corneoscleral shelf and a viscoelastic agent instilled into the anterior chamber.
  • the proximal (radial) portion of the shunt was inserted into the anterior chamber through the corneoscleral shelf.
  • the scleral flaps were tightly closed with 10-0 nylon sutures and the knots buried.
  • the conjunctiva was closed with absorbable suture.
  • the bridle suture was removed.
  • Subconjuctival garamycin and decadron were instilled interiorly.
  • the eye was dressed with tobramycin-decadron ointment. The animal was allowed to awaken and returned to the boarding area.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

The present invention provides a shunt for the flow of aqueous humor from the anterior chamber of the eye to Schlemm's canal. The device comprises at least one lumen and optionally has at least one anchor extending from the proximal portion within the anterior chamber to assist in placement and anchoring of the device in the correct anatomic position.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the priority filing benefit of U.S. Serial No. 60/312,799 filed Aug. 16, 2001.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field the Invention [0002]
  • The present invention is generally directed to a surgical treatment for glaucoma, and relates more particularly to a device and method for continuously decompressing elevated intraocular pressure in eyes affected by glaucoma by diverting aqueous humor from the anterior chamber of the eye into Schlemm's canal where postoperative patency can be maintained with an indwelling shu placed to connect the canal with the anterior chamber. [0003]
  • 2. Background Art [0004]
  • Glaucoma is a significant public health problem, because glaucoma is a major cause of blindness. The blindness that results from glaucoma involves both central and peripheral vision and has a major impact on an individual's ability to lead and independent life. [0005]
  • Glaucoma is an optic neuropathy (a disorder of the optic nerve) that usually occurs in the setting of an elevated intraocular pressure. The pressure within the eye increases and this is associated with changes in the appearance (“cupping”) and function (“blind spots” in the visual field) of the optic nerve. If the pressure remains high enough for a long enough period of time, total vision loss occurs. High pressure develops in an eye because of an internal fluid imbalance. [0006]
  • The eye is a hollow structure that contains a clear fluid called “aqueous humor.” Aqueous humor is formed in the posterior chamber of the eye by the ciliary body at rate of about 2.5 microliters per minute. The fluid, which is made at a fairly constant rate, then passes around the lens, through the pupillary opening in the iris and into the anterior chamber of the eye. Once in the anterior chamber, the fluid drains out of the eye through two different routes. In the “uveoscleral” route, the fluid percolates between muscle fibers of the ciliary body. This route accounts for approximately ten percent of the aqueous outflow in humans. The primary pathway for aqueous outflow in humans is through the “canalicular” route that involves the trabecular meshwork and Schlemm's canal. [0007]
  • The trabecular meshwork and Schlemm's canal are located at the junction between the iris and the sclera. This junction or corner is called “the angle.” The trabecular meshwork is a wedge-shaped structure that runs around the circumference of the eye. It is composed of collagen beams arranged in a three-dimensional sieve-like structure. The beams are lined with a monolayer of cells called trabecular cells. The spaces between the collagen beams are filled with an extracellular substance that is produced by the trabecular cells. These cells also produce enzymes that degrade the extracellular material. Schlemm's canal is adjacent to the trabecular meshwork. The outer wall of the trabecular meshwork coincides with the inner wall of Schlemm's canal. Schlemm's canal is a tube-like structure that runs around the circumference of the cornea. In human adults, Schlemm's Canal is believed to be divided by septa into a series of autonomous, dead-end canals. [0008]
  • The aqueous fluid travels through the spaces between the trabecular beams, across the inner wall of Schlemm's canal into the canal, through a series of about 25 collecting channels that drain from Schlemm's canal and into the episcleral venous system. In a normal situation, aqueous production is equal to aqueous outflow and intraocular pressure remains fairly constant in the 15 to 21 mmHg range. In glaucoma, the resistance through the canalicular outflow system is abnormally high. [0009]
  • In primary open angle glaucoma, which is the most common form of glaucoma, the abnormal resistance is believed to be along the outer aspect of trabecular meshwork and the inner wall of Schlemm's canal. It is believed that an abnormal metabolism of the trabecular cells leads to an excessive build up of extracellular materials or a build up of abnormally “stiff” materials in this area. Primary open angle glaucoma accounts for approximately eighty-five percent of all glaucoma. Other forms of glaucoma (such as angle closure glaucoma and secondary glaucomas) also involve decreased outflow through the canalicular pathway but the increased resistance is from other causes such as mechanical blockage, inflammatory debris, cellular blockage, etc. [0010]
  • With the increased resistance, the aqueous fluid builds up because it cannot exit fast enough. As the fluid builds up, the intraocular pressure (IOP) within the eye increases. The increased IOP compresses the axons in the optic nerve and also may compromise the vascular supply to the optic nerve. The optic nerve carries vision from the eye to the brain. Some optic nerves seem more susceptible to IOP than other eyes. While research is investigating ways to protect the nerve from an elevated pressure, the only therapeutic approach currently available in glaucoma is to reduce the intraocular pressure. [0011]
  • The clinical treatment of glaucoma is approached in a step-wise fashion. Medication often is the first treatment option. Administered either topically or orally, these medications work to either reduce aqueous production or they act to increase outflow. Currently available medications have many serious side effects including: congestive heart failure, respiratory distress, hypertension, depression, renal stones, aplastic anemia, sexual dysfunction and death. Compliance with medication is a major problem, with estimates that over half of glaucoma patients do not follow their correct dosing schedules. [0012]
  • When medication fails to adequately reduce the pressure, laser trabeculoplasty often is performed. In laser trabeculoplasty, thermal energy from a laser is applied to a number of noncontiguous spots in the trabecular meshwork. It is believed that the laser energy stimulates the metabolism of the trabecular cells in some way, and changes the extracellular material in the trabecular meshwork. In approximately eighty percent of patients, aqueous outflow is enhanced and IOP decreases. However, the effect often is not long lasting and fifty percent of patients develop an elevated pressure within five years. The laser surgery is not usually repeatable. In addition, laser trabeculoplasty is not an effective treatment for primary open angle glaucoma in patients less than fifty years of age, nor is it effective for angle closure glaucoma and many secondary glaucomas. If laser trabeculoplasty does not reduce the pressure enough, then filtering surgery is performed. With filtering surgery, a hole is made in the sclera and angle region. This hole allows the aqueous fluid to leave the eye through an alternate route. [0013]
  • The most commonly performed filtering procedure is a trabeculectomy. In a trabeculectomy, a posterior incision is made in the conjunctiva, the transparent tissue that covers the sclera. The conjunctiva is rolled forward, exposing the sclera at the limbus. A partial thickness scleral flap is made and dissected half-thickness into the cornea. The anterior chamber is entered beneath the scleral flap and a section of deep sclera and trabecular meshwork is excised. The scleral flap is loosely sewn back into place. The conjunctival incision is tightly closed. Post-operatively, the aqueous fluid passes through the hole, beneath the scleral flap and collects in an elevated space beneath the conjunctiva. The fluid then is either absorbed through blood vessels in the conjunctiva or traverses across the conjunctiva into the tear film. [0014]
  • Trabeculectomy is associated with many problems. Fibroblasts that are present in the episelera proliferate and migrate and can scar down the scleral flap. Failure from scarring may occur, particularly in children and young adults. Of eyes that have an initially successful trabeculectomy, eighty percent will fail from scarring within three to five years after surgery. To minimize fibrosis, surgeons now are applying antifibrotic agents such as mitomycin C (MMC) and 5-fluorouracil (5-FU) to the scleral flap at the time of surgery. The use of these agents has increased the success rate of trabeculectomy but also has increased the prevalence of hypotony. Hypotony is a problem that develops when aqueous flows out of the eye too fast. The eye pressure drops too low (usually less than 6.0 mmHg); the structure of the eye collapses and vision decreases. [0015]
  • Trabeculectomy creates a pathway for aqueous fluid to escape to the surface of the eye. At the same time, it creates a pathway for bacteria that normally live on the surface of the eye and eyelids to get into the eye. If this happens, an internal eye infection can occur called endophthalmitis. Endophthalmitis often leads to permanent and profound visual loss. Endophthalmitis can occur anytime after trabeculectomy. The risk increases with the thin blebs that develop after MMC and 5-FU. Another factor that contributes to infection is the placement of a bleb. Eyes that have trabeculectomy performed inferiorly have about five times the risk of eye infection than eyes that have a superior bleb. Therefore, initial trabeculectomy is performed superiorly under the eyelid, in either the nasal or temporal quadrant. [0016]
  • In addition to scarring, hypotony and infection, there are other complications of trabeculectomy. The bleb can tear and lead to profound hypotony. The bleb can be irritating and can disrupt the normal tear film, leading to blurred vision. Patients with blebs generally cannot wear contact lenses. All of the complications from trabeculectomy stem from the fact that fluid is being diverted from inside the eye to the external surface of the eye. [0017]
  • When trabeculectomy doesn't successfully lower the eye pressure, the next surgical step often is an aqueous shunt device. An aqueous diversion device of the prior art is a silicone tube that is attached at one end to a plastic (polypropylene or other synthetic) plate. With an aqueous shunt device, an incision is made in the conjunctiva, exposing the sclera. The plastic plate is sewn to the surface of the eye posteriorly, usually over the equator. A full thickness hole is made into the eye at the limbus, usually with a needle. The tube is inserted into the eye through this hole. The external portion of the tube is covered with either donor sclera or pericardium. The conjunctiva is replaced and the incision is closed tightly. [0018]
  • With prior art aqueous diversion devices, aqueous drains out of the eye through the silicone tube to the surface of the eye. Deeper orbital tissues then absorb the fluid. The outside end of the tube is protected from fibroblasts and scarring by the plastic plate. Many complications are associated with aqueous shunt devices. A thickened wall of scar tissue that develops around the plastic plate offers some resistance to outflow and in many eyes limits the reduction in eye pressure. In some eyes, hypotony develops because the flow through the tube is not restricted. Many physicians tie an absorbable suture around the tube and wait for the suture to dissolve post-operatively at which time enough scar tissue has hopefully formed around the plate. Some devices contain a pressure-sensitive valve within the tube, although these valves may not function properly. The surgery involves operating in the posterior orbit and many patients develop an eye muscle imbalance and double vision post-operatively. With prior art aqueous shunt devices, a pathway is created for bacteria to get into the eye and endophthalmitis can potentially occur. [0019]
  • The prior art includes a number of such aqueous shunt devices, such as U.S. Pat. No. 4,936,825 (providing a tubular shunt from the anterior chamber to the corneal surface for the treatment of glaucoma), U.S. Pat. No. 5,127,901 (directed to a transscleral shunt from the anterior chamber to the subconjunctival space), U.S. Pat. No. 5,180,362 (teaching a helical steel implant that is placed to provide drainage from the anterior chamber to the subconjunctival space), and U.S. Pat. No. 5,433,701 (generally teaching shunting from the anterior chamber to the scleral or conjunctival spaces). [0020]
  • In addition to the prior art aqueous shunt devices described above, other prior art devices for glaucoma surgery have used setons, or other porous, wick-like components to divert and convey excess aqueous from the anterior chamber to the exterior ocular surface. Examples include U.S. Pat. Nos. 4,634,418 and 4,787,885 (teaching the surgical treatment of glaucoma using an implant that consists of a triangular seton (wick)), and U.S. Pat. No. 4,946,436, (teaching the use of a porous device to shunt anterior chamber to subscleral space). These patents do not teach placement in Schlemm's canal. [0021]
  • Some prior art references for glaucoma management have been directed at Schlemm's canal, but these have not involved the placement of long-term, indwelling shunts. U.S. Pat. No. 5,360,399 teaches the temporary placement of a plastic or steel tube with preformed curvature in Schlemm's canal with injection of a viscous material through the tube to hydraulically expand and hydrodissect the trabecular meshwork. The tube is removed from the canal following injection. Because the tube is directed outwardly from the eye for injection access, the intersection of the outflow element with the preformed curved element within Schlemm's canal is at about a 90 degree angle relative to the plane of the curvature, and 180 degrees away from the anterior chamber. Therefore, at no time does any portion of the '399 device communicate with the anterior chamber. Furthermore, relative to that portion within Schlemm's canal, this tube has a larger diameter injection cuff element, which serves as an adapter for irrigation. Therefore, this device is not adapted for shunting aqueous between the anterior chamber and Schlemm's canal. [0022]
  • Most of the problems that have developed with current glaucoma treatment devices and procedures have occurred because aqueous fluid is drained from inside of the eye to the surface of the eye. A need exists, then, for a more physiologic system to enhance the drainage of aqueous fluid from the anterior chamber into Schlemm's canal. In the vast majority of glaucoma patients, the resistance problem lies between Schlemm's canal and the anterior chamber. The canal itself, the collecting channels and the episcleral venous system all are intact. Enhancing aqueous flow directly into Schlemm's canal would minimize the scarring that usually occurs with external filtration procedure since the internal angle region is populated with a single line of nonproliferating trabecular cells. Enhancing aqueous flow directly into Schlemm's canal would minimize hypotony since the canal is part of the normal outflow system and is biologically engineered to handle the normal volume of aqueous humor. Enhancing aqueous flow directly into Schlemm's canal would eliminate complications such as endophthalmitis and leaks. [0023]
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a novel shunt and an associated surgical method for the treatment of glaucoma in which the shunt is placed to divert aqueous humor from the anterior chamber of the eye into Schlemm's canal. The present invention therefore facilitates the normal physiologic pathway for drainage of aqueous humor from the anterior chamber, rather than shunting to the sclera or another anatomic site as is done in most prior art shunt devices. The present invention is further directed to providing a permanent, indwelling shunt to provide increased egress of aqueous humor from the anterior chamber to Schlemm's canal for glaucoma management. [0024]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is an illustration showing an overhead perspective view of one embodiment of the present invention, in which the inventive shunt is comprised of tubular elements extending bi-directionally within Schlemm's canal. [0025]
  • FIG. 1B is an overhead view of the embodiment of the present invention shown in FIG. 1A, with phantom lines detailing the internal communication between the lumens of the tubular elements comprising the inventive device. [0026]
  • FIG. 1C is an illustration showing an overhead perspective view of one embodiment of the present invention, in which the inventive shunt is comprised of mesh tubular elements extending bi-directionally within Schlemm's canal. [0027]
  • FIG. 1D is an illustration showing an overhead perspective view of one embodiment of the present invention, in which the inventive shunt is comprised of solid, porous elements extending bi-directionally within Schlemm's canal. [0028]
  • FIG. 1E is an overhead perspective view of another embodiment of the present invention, with phantom lines detailing the internal communication between the two proximal lumens and the single distal lumen of the inventive device. [0029]
  • FIG. 2 is an illustration showing another embodiment of the present invention, in which the inventive shunt is comprised of perforated tubular elements and with an angulated terminal aspect of the proximal portion. [0030]
  • FIG. 3A is an illustration showing a perspective of another embodiment of the present invention in which the inventive shunt is comprised of elements that are partially tubular and partially open in their configuration. [0031]
  • FIG. 3B is an illustration showing a top view of the embodiment of the present invention in FIG. 3A, with phantom lines detailing the internal communication of the device. [0032]
  • FIG. 3C is an illustration showing a side view from the proximal end of the embodiment of the present invention in FIG. 3A. [0033]
  • FIG. 3D is an illustration showing a perspective of another embodiment of the present invention in which the inventive shunt is comprised of elements that are partially open and trough-like in their configuration. [0034]
  • FIG. 4 is an illustration showing another embodiment of the present invention, in which the inventive shunt is comprised of distal elements having wicking extensions at their terminal ends, and in which the proximal portion has a sealed, blunted tip with a portal continuous with the lumen of the proximal portion, oriented to face away from the iris when the device is implanted in Schlemm's canal. [0035]
  • FIG. 5A is an illustration showing another embodiment of the inventive shunt in which a portion of the device enters Schlemm's canal in only one direction and shunts fluid in a non-linear path from the anterior chamber. [0036]
  • FIG. 5B is an illustration showing an alternative embodiment of the inventive shunt in which the entire shunt is placed within Schlemm's canal but contains a fenestration to maintain fluid egress of aqueous humor from the anterior chamber to Schlemm's canal. [0037]
  • FIG. 5C is an illustration showing a side view of one embodiment of the present invention, in which the inventive shunt is comprised of tubular elements, with a proximal portion extending towards the anterior chamber that is shorter relative to the distal portions which extend bi-directionally within Schlemm's canal. [0038]
  • FIG. 5D is an illustration showing an alternative embodiment of the inventive shunt comprised of a partially open trough-like element which is placed within Schlemm's canal but contains a portal to maintain fluid egress of aqueous humor from the anterior chamber to Schlemm's canal. [0039]
  • FIG. 5E is an illustration showing an alternative embodiment of the inventive shunt comprised of a solid, but porous wick-like element which is placed within Schlemm's canal [0040]
  • FIG. 6A is an illustration showing certain anatomic details of the human eye. [0041]
  • FIG. 6B is a cross-sectional illustration showing the anatomic relationships of the surgical placement of an exemplary embodiment of the present invention. [0042]
  • FIG. 6C is a cross-sectional illustration showing the anatomic relationships of the surgical placement of another exemplary embodiment of the present invention in which the proximal portion has an angulated terminal aspect with a sealed, blunted tip with a portal continuous with the lumen of the proximal portion, oriented to face away from the iris when the device is implanted in Schlemm's canal. [0043]
  • FIG. 7A is a cross-sectional illustration showing the anatomic relationships of the surgical placement of an exemplary embodiment of the present invention showing the proximal portion of the device and a barb-shaped anchor extending toward the iris. [0044]
  • FIG. 7B is a cross-sectional illustration showing the anatomic relationships of the surgical placement of another exemplary embodiment of the present invention showing the proximal portion of the device having an annular or circumferential anchor thereon. [0045]
  • FIG. 8A shows one embodiment of the device having a bi-directional distal portion and an anchor on the proximal portion extending circumferentially thereon. [0046]
  • FIG. 8B shows another embodiment of the device having a bi-directional distal portion and an anchor on the proximal portion extending medially toward the location of the iris when implanted. [0047]
  • FIG. 8C shows another embodiment of the device having a bi-directional distal portion and an anchor on the proximal portion extending laterally on each side of the device when implanted. [0048]
  • FIG. 9 shows another embodiment having a bi-directional distal portion and an anchor on the proximal portion extending circumferentially thereon in a barbed or cone shape to facilitate introduction into the anterior chamber and to inhibit removal therefrom. [0049]
  • FIG. 10 shows another embodiment having a tapered proximal portion with screw threads. [0050]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides an aqueous humor shunt device to divert aqueous humor in the eye from the anterior chamber into Schlemm's canal, in which the shunt device comprises a distal portion having at least one terminal aspect sized and shaped to be circumferentially received within a portion of Schlemm's canal, and a proximal portion having at least one terminal aspect sized and shaped to be received within the anterior chamber of the eye, wherein the device permits fluid communication between the proximal portion in the anterior chamber to the distal portion in Schlemm's canal. Fluid communication can be facilitated by an aqueous humor directing channel in either the proximal or distal portions, as described below. Fluid communication can also be facilitated by a wicking function of a solid proximal or distal portions of the device, for example. [0051]
  • The present invention also provides embodiments of an inventive shunt comprising a body of biocompatible material of a size and shape adapted to be at least partially circumferentially received within a portion of Schlemm's canal to divert aqueous humor from the anterior chamber of the human eye to and within Schlemm's canal, and wherein the body facilitates the passage of aqueous humor from the anterior chamber into Schlemm's canal. This embodiment of the device of the present invention can be produced without the proximal portion of the previous embodiment extending into the anterior chamber. An aqueous humor directing channel can facilitate the passage of aqueous humor from the anterior chamber into Schlemm's canal. Fluid communication can also be facilitated by a wicking function of a solid body portion, for example. [0052]
  • The invention contemplates many different configurations for an aqueous humor directing channel, provided that each assists in channeling aqueous humor from the anterior chamber to Schlemm's canal, such as by providing a lumen, trough, wick or capillary action. For example, the aqueous humor directing channel can be a fully enclosed lumen, a partially enclosed lumen, or a trough-like channel that is at least partially open. The invention contemplates that a solid monofilament or braided polymer, such as Proline® (polypropylene), can be inserted into Schlemm's canal to provide a wicking or stenting function to facilitate the passage of aqueous humor from the anterior chamber to Schlemm's canal. Such a wicking or stenting extension can also be grooved or fluted along any portion of the length thereof, so as to be multi-angular or star-shaped in cross-section. The devices of the present invention can be constructed of a solid, matrix, mesh, fenestrated, or porous material, or combinations thereof. [0053]
  • Traditional glaucoma teaching states that Schlemm's canal in an adult is divided by septa into separate canals, rendering the complete passage of a suture impossible. Preliminary studies on adult human eye bank eyes have shown that Schlemm's canal is, indeed, patent. A suture can be passed through the entire circumference of the canal. It has not been heretofore determined that Schlemm's canal is patent throughout its circumference in normal adult individuals, as opposed to being divided by septae into multiple dead end canals. The invention utilizes this knowledge to access Schlemm's canal and to create and maintain the natural physiologic egress of aqueous humor from the anterior chamber to Schlemm's canal and to the collecting channels. [0054]
  • The present invention also provides methods of use of the shunt devices. One embodiment of the present invention is directed to a surgical method to divert aqueous humor from the anterior chamber of the eye into Schlemm's canal with a device that is implanted to extend from within the anterior chamber to Schlemm's canal. The portion of the device extending into Schlemm's canal can be fashioned from a flexible material, such as silicone, capable of being received within a portion of the radius, curvature, and diameter of Schlemm's canal. The external diameter of the proximal portion can be about 0.1 mm to 0.5 mm, or about 0.3 mm. Preliminary studies indicate a preferred diameter for the proximal portion to be about 0.23 mm to about 0.28 m, or preferably about 0.23 mm to about 0.26 mm. All or parts of the device may be solid, porous, tubular, trough-like, fenestrated, or pre-curved. [0055]
  • One embodiment of the present invention is illustrated in FIG. 1A, in which the [0056] shunt device 100 is shown in a side view. The shunt device 100 of this embodiment is comprised of two portions, a proximal portion 10 which joins a distal portion 25. The proximal portion 10 and distal portion 25 shown create an enclosed tubular channeling structure. The total length of the distal portion 25 may be between about 1.0 mm to 40 mm, preferably about 4 mm to 6 mm. The same embodiment of the present invention is illustrated with phantom lines showing the internal fluid communication path in FIG. 1B. The lumen or channeling space defined by the walls of the proximal portion 10 and the distal portion(s) 25 are continuous at their junction at the distal portion portal 20.
  • An alternate embodiment of the present invention is shown in FIG. 1C, in which the [0057] shunt device 100 is comprised of two luminal mesh elements, with a proximal portion 10 which joins a distal portion 25. Yet another embodiment of the present invention is shown in FIG. 1D, in which the shunt device 100 is comprised of two solid, porous elements which may provide wick-like fluid communication therethrough, with a proximal portion 10 which joins a distal portion 25.
  • An alternate embodiment of the present invention is shown in FIG. 1E, in which the [0058] shunt device 100 is comprised of a proximal portion 10 having two lumens therein terminating in proximal portion portals 18. The distal portion 25 shaped and sized to be received within Schlemm's canal extends in either direction having separate lumens traversing therethrough from each of the distal portion portals 20.
  • Other examples of embodiments of the present invention are shown in FIGS. [0059] 2-5D. FIG. 2 shows an embodiment of the inventive shunt in which the device 100 is tubular and fenestrated (15, 30) in its configuration, with an acute (<90) angle of junction between the proximal portion 10 and the plane defined by the distal portion 25. Such fenestrations (15, 30) may be placed along any portion of the device 100 to facilitate the passage of fluid therethrough, but are particularly directed towards the collecting channels of the eye. FIG. 2 further shows an alternate embodiment of the present invention in which the terminal aspect 16 of the proximal portion is angulated toward the iris 40 with respect to the main axis of the proximal portion 10, with the portal 18 of the proximal portion directed toward from the iris 40. In alternate embodiments as shown in FIG. 6C, the portal 18 of the proximal portion 16 is directed away from the iris 40.
  • FIG. 3A shows an embodiment of the inventive shunt in which a portion of the channeling device is enclosed and tubular in configuration at the junction of the [0060] proximal portion 10 and the distal portion 25, but where the distal portion 10 is a trough-like channel. The distal portion portal 20 is also shown. The invention contemplates that any portion of the device 100 can be semi-tubular, open and trough-like, or a wick-like extension. Tubular channels can be round, ovoid, or any other enclosed geometry. Preferably the non-tubular trough-like aspects are oriented posteriorly on the outer wall of the canal to facilitate aqueous humor drainage to the collecting channels of the eye, as shown in FIG. 3A.
  • FIG. 3B shows an overhead view of the embodiment of the inventive shunt of FIG. 3A, further detailing the relationship among the [0061] proximal portion 10 and the distal portion 25. The aqueous humor directing channel is shown in dashed lines. FIG. 3C shows a proximal view of the embodiment of the inventive shunt of FIG. 3A, further detailing the relationship among the proximal portion 10 and the distal portion 25.
  • FIG. 3D shows another embodiment of the inventive shunt in which the structure of the [0062] device 100 comprises an aqueous humor directing channel that is both open and curved in a continuous trough-like configuration along the proximal portion 10 and the distal portion 25. The distal portion portal 20 is also an open trough-like channel.
  • FIG. 4 shows another embodiment of the inventive shunt with the addition of aqueous humor-[0063] wicking extensions 32 which are either continuous with, or attached to the terminal aspects of the distal portion 25. The wicking extensions 32 can be fashioned from a monofilament or braided polymer, such as proline, and preferably have a length of about 1.0 mm to about 16.0 mm. Furthermore, the proximal portion 10 is curved with a sealed, blunted tip 16 and contains a portal 18 in fluid communication with the lumen of the proximal portion and oriented to face away from the iris when the shunt device 100 is implanted in its intended anatomic position. The shunt device 100 can also help to maintain the patency of Schlemm's canal in a stenting fashion.
  • FIG. 5A shows another embodiment of the inventive shunt in which the [0064] proximal portion 10 joins a single, curved distal portion 25 in a “V-shaped,” tubular configuration. The embodiment shown in FIG. 5A can also have a portal (not shown) in the distal portion 25 adjacent to the junction with the proximal portion 10 in order to facilitate bi-directional flow of fluid within the canal. Fenestrations and non-tubular, trough-like terminal openings are contemplated in all embodiments of the invention, and these fenestrations and openings may be round, ovoid, or other shapes as needed for optimum aqueous humor channeling function within the anatomic spaces involved.
  • FIG. 5B shows another embodiment of the inventive shunt in which the body or [0065] device 100 comprises only a single, curved distal portion 25 which contains a distal portion portal 20 oriented towards the anterior chamber to allow egress of aqueous humor from the anterior chamber to Schlemm's canal. The body of this device can have a length of about 1.0 mm to about 40 mm, preferably about 6 mm. The external diameter of the device (or the distal portions of the device) can be about 0.1 mm to about 0.5 mm, preferably about 0.2 mm to about 0.3 mm, preferably about 0.23 mm to about 0.28 m or about 0.26 mm.
  • FIG. 5C shows another embodiment of the inventive shunt in which the [0066] device 100 comprises a bi-directional tubular distal portion 25 which is intersected by a proximal portion 10 which is short in length relative to the distal portion 25 and is directed towards the anterior chamber.
  • FIG. 5D shows still another embodiment of the inventive shunt in which the [0067] device 100 comprises a bi-directional, trough-like, curved distal portion 25 for insertion into Schlemm's canal, which contains a distal portion portal 20 oriented to allow egress of aqueous humor from the anterior chamber, wherein the trough-like distal portion 25 is oriented to open toward the collecting channels to facilitate the egress of aqueous humor.
  • FIG. 5E shows another embodiment of the inventive shunt in which the [0068] device 100 comprises a bi-directional, solid distal portion 25 for insertion into Schlemm's canal to facilitate the egress of aqueous humor from the canal to the collecting channels in a wicking capacity. The solid distal portion 25 can be porous or non-porous.
  • As the inventive device is an implant, it can be fabricated from a material that will be compatible with the tissues and fluids with which it is in contact. The device may be constructed of biodegradable or non-biodegradable materials. It is preferable that the device not be absorbed, corroded, or otherwise structurally compromised during its in situ tenure. Moreover, it is equally important that the eye tissues and the aqueous remain non-detrimentally affected by the presence of the implanted device. A number of materials are available to meet the engineering and medical specifications for the shunts. In the exemplary embodiments of the present invention, the [0069] shunt device 100 is constructed of a biologically inert, flexible material such as silicone or similar polymers. Alternate materials might include, but are not limited to, thin-walled Teflon®, polypropylene, other polymers or plastics, metals, or some combination of these materials. The shunt device 100 may be constructed as either porous or solid in alternate embodiments. The material can contain a therapeutic agent deliverable to the adjacent tissues.
  • In the embodiments shown in FIGS. [0070] 1-4, the proximal portion 10 joins the distal portion(s) 25 at an angle sufficient to allow the placement of the proximal portion 15 within the anterior chamber of the eye when the distal portion 25 is oriented in the plane of Schlemm's canal. The proximal portion 10 is preferably of sufficient length, about 0.1 to about 3.0 mm or about 2.0 mm, to extend from its junction with the distal portion 25 in Schlemm's canal towards the adjacent space of the anterior chamber. While many geometries can be used for channeling aqueous humor, the diameter or width of the proximal portion 10 can be sized to yield an internal diameter of between about 0.1 and about 0.5 mm, preferably about 0.2 mm to about 0.3 mm for a tubular or curved shunt, or a comparable maximal width for a shunt with a multiangular configuration. In other embodiments, the proximal portion is a non-luminal, non-trough-like wicking extension that provides an aqueous humor directing channel along the length thereof.
  • Because the nature of the [0071] iris 40 is such that it tends to comprise a plurality of rather flaccid fimbriae of tissue, it is desirable to avoid said fimbriae from being drawn into the lumen of an implant, thus occluding the shunt device. Therefore, the proximal portion 10 may contain a plurality of fenestrations to allow fluid ingress, arranged to prevent occlusion by the adjacent iris. Alternately, the proximal portion 10 may comprise only a proximal portion portal 18 in the form of a fenestration oriented anteriorly to provide continuous fluid egress between the anterior chamber of the eye and the directing channel of the shunt. Said fenestrations may be any functional size, and circular or non-circular in various embodiments of the present invention. In addition, a porous structural material can assist in channeling aqueous humor, while minimizing the potential for intake of fimbriae.
  • Furthermore, the [0072] proximal portion 10 may be positioned sufficiently remote from the iris 40 to prevent interference therewith, such as by traversing a more anterior aspect of the trabecular meshwork into the peripheral corneal tissue. In yet another possible embodiment, as shown in FIG. 6C, the device 100 may comprise a proximal portion 10 in which the terminal aspect of said proximal portion 10 is curved or angled toward the iris 40, and with a blunted, sealed tip 16 and a portal 18 oriented anteriorly to face away from the underlying iris 40. Such a configuration would tend to decrease the possibility of occlusion of the shunt device by the iris 40.
  • The [0073] device 100 may contain one or more unidirectional valves to prevent backflow into the anterior chamber from Schlemm's canal. The internal lumen for an enclosed portion of the device or the internal channel defined by the edges of an open portion of the device communicates directly with the inner lumen or channel of the distal portion at the proximal portion portal 20.
  • The [0074] distal portion 25 may have a pre-formed curve to approximate the 6.0 mm radius of Schlemm's canal in a human eye. Such a pre-formed curvature is not required when flexible material is used to construct the shunt device 100. The distal portion 25 may be of sufficient length to extend from the junction with the proximal portion 10 through any length of the entire circumference of Schlemm's canal. Embodiments having a distal portion 25 that extends in either direction within Schlemm's canal can extend in each direction about 1.0 mm to 20 mm, or about 3.0 mm. to permit circumferential placement through Schlemm's canal. The diameter or width of the distal portion 25 can be sized to yield an outer diameter of between about 0.1 and 0.5 mm, or about 0.3 mm, for a tubular or curved shunt, or a comparable maximal width for a shunt with a multiangular configuration. The distal portion 25 may contain a plurality of fenestrations to allow fluid egress, arranged to prevent occlusion by the adjacent walls of Schlemm's canal. In other embodiments, the distal portion is a non-luminal, non-trough-like wicking extension that provides an aqueous humor directing channel along the length thereof.
  • In the exemplary embodiments of the present invention, the shunt device may be either bi-directional, with the distal portion of the implant intersecting with the proximal portion in a “T-shaped” junction as shown in FIGS. [0075] 1A-1E, 2, 3A-3D, 4 and 5C, or uni-directional, with a “V-shaped” junction of the proximal and distal shunt portions, as shown in FIG. 5A. A bi-directional shunt device can have a distal portion that is threaded into opposing directions within Schlemm's canal. In the case of the uni-directional shunt, only the distal shunt portion is placed within Schlemm's canal. In these exemplary embodiments, “non-linear fluid communication” means that at least some portion of the shunt through which fluid passes is not in a straight line. Examples of non-linear shunts are the above described bi-directional “T” shapes, and the unidirectional “V” shapes, or shunts having two channel openings which are not in straight alignment with each other when implanted.
  • The surgical anatomy relevant to the present invention is illustrated in FIG. 6A. Generally, FIG. 6A shows the [0076] anterior chamber 35, Schlemm's canal 30, the iris 40, cornea 45, trabecular meshwork 50, collecting channels 55, episcleral veins 60, pupil 65, and lens 70. FIG. 6B illustrates the surgical placement of the exemplary embodiment of the present invention, with the relevant anatomic relationships. It should be noted that the inventive device is designed so that placement of the distal portion 25 within Schlemm's canal 30 results in an orientation of the proximal portion 10 within the anterior chamber 35 within the angle defined by the iris 40 and the inner surface of the cornea 45. Therefore, if the plane defined by Schlemm's canal is defined as zero degrees, the proximal portion 10 can extend therefrom at an angle of between about +60 degrees towards the cornea 45 or −30 degrees toward the iris 40, more preferably in the range of 0 to +45 degrees. This range may vary in individuals having a slightly different location of Schlemm's canal 30 relative to the limbal angle of the anterior chamber 35.
  • In yet another embodiment of the present invention not shown, the [0077] shunt device 100 is configured with one distal portion 25 which is tubular to provide a shunting functionality and a plurality of proximal portions 10 which provide an anchoring function to stabilize the overall implant device, in addition to providing fluid communication from the anterior chamber to Schlemm's Canal.
  • Therefore, the invention provides an aqueous humor shunt device to divert aqueous humor in an eye from the anterior chamber into Schlemm's canal, the shunt device comprising a distal portion having at least one terminal aspect sized and shaped to be received circumferentially within a portion of Schlemm's canal and a proximal portion having at least one terminal aspect sized and shaped to be received within the anterior chamber of the eye, wherein the proximal portion has an anchor extending therefrom to maintain the position of the terminal aspect of the proximal portion within the anterior chamber of the eye, wherein device permits fluid communication from the proximal portion in the anterior chamber to the distal portion in Schlemm's canal. In alternative embodiments, such an anchor can extend from distal portions of the device to assist in stabilization of the implant within Schlemm's canal. [0078]
  • The multiple proximal portions or the anchor extension(s) from the distal or proximal portion (collectively referred to as the “anchor”) in the various embodiments described below and apparent to those of skill in the art in view of the present disclosure, provide multiple improvements for the shunt device. The anchor facilitates implantation and proper placement of the device, as the proximal portion can be advanced into the anterior chamber and then pulled back into place until it contacts the edge of the anterior chamber. As further described below, a shelf may be created by the surgical procedure for implantation that is designed to capture the anchor. This permits the surgeon to determine how much of the proximal portion is left extending into the anterior chamber. The anchor feature also allows the surgical alternative of first implanting the proximal portion into the anterior chamber, and then placing the distal portion(s) into Schlemm's canal. The anchor also serves to anchor the shunt device in the desired location within the anterior chamber and Schlemm's canal with minimal shifting during normal use. [0079]
  • The anchor can be fabricated by a simple thickening of the material of construction of the shunt, e.g. silicon, at the desired site on the proximal portion, or can be made of another material attached thereto. Additionally, the anchor can be fabricated by removal of excess material. The anchor can extend from the proximal portion in virtually any functional shape, such as in a rounded or barbed fashion. FIG. 7A is a cross-sectional illustration showing the anatomic relationships of the surgical placement of an exemplary embodiment of the present invention showing the [0080] proximal portion 10 of the device and a barb-shaped anchor 80 extending toward the iris. FIG. 7B is a cross-sectional illustration showing the anatomic relationships of the surgical placement of another exemplary embodiment of the present invention showing the proximal portion 10 of the device having an annular or circumferential anchor 80 thereon.
  • Therefore, the anchor can extend circumferentially around the proximal portion, or only in one or more directions therefrom. FIG. 8A shows one embodiment of the device having a bi-directional [0081] distal portion 25 and an anchor 80 on the proximal portion 10 extending circumferentially thereon. FIG. 8B shows another embodiment of the device having a bi-directional distal portion 25 and an anchor 80 on the proximal portion 10 extending medially toward the location of the iris when implanted. FIG. 8C shows another embodiment of the device having a bi-directional distal portion 25 and an anchor 80 on the proximal portion 10 extending laterally on each side of the device when implanted. The invention contemplates many other configurations of the anchor, including a plurality of teeth extending from the proximal portion.
  • The device may also be provided with an anchor for placement adjacent the exterior surface of the anterior chamber to assist in surgical placement and securing the device, with or without a corresponding anchor adjacent the interior surface of the anterior chamber. Thus, a potential configuration to stabilize the implant is a device having anchors for positioning inside the anterior chamber and inside Schlemm's canal to secure the device about the trabecular meshwork between the anterior chamber and Schlemm's canal. [0082]
  • It is understood that the anchor can extend in any direction in any shape and size which facilitates implantation or anchoring of the device. For example, FIG. 9 shows another embodiment having a bi-directional [0083] distal portion 25 and an anchor 80 on the proximal portion 10 extending circumferentially thereon in a barbed or cone shape to facilitate introduction into the anterior chamber and to inhibit removal therefrom. Furthermore, the end of the proximal portion can be cut at an angle, rather than blunted or square cut, in order to facilitate introduction through the wall of the anterior chamber. The angled shape of the tip of the proximal portion allows the proximal portal to have a larger surface area to facilitate the flow of aqueous. The device should be at least capable of permitting the flow of aqueous humor at the estimated normal production rate of about 2.5 microliters per minute.
  • FIG. 10 shows yet another embodiment of the device in which the proximal end comprises a larger single [0084] proximal lumen 10 which branches to form a pair of distal lumens 25 for insertion into Schlemm's canal. The proximal end is preferably tapered and contains screw threads 80 such that the device can be screwed into the anterior chamber and anchored therein by means of the threads and the distal ends inserted in Schlemm's canal. This embodiment would, in some instances, simplify insertion by eliminating the need to make an incision into the anterior chamber.
  • The anchor, as well as optionally the remainder of the device, can be constructed on a textured, grooved or porous material in order to facilitate the growth of cells, such as fibroblasts, to stabilize the implant from movement. Preferably, the extreme tips of the proximal and distal ends of the device are produced to avoid the attraction of new tissues, such as fibroblasts, which may grow at the surgical site and impede the flow of aqueous therethrough. Therefore, the proximal portion of the device can be produced to extend beyond the entrance into the anterior chamber by 0.1 to 3 mm, or preferably about 0.5 mm. As discussed above, the angled tip of the proximal portal will create a range of lengths along the proximal portion extending into the anterior chamber. [0085]
  • The distal portion(s) should similarly extend beyond the site of surgery and subsequent fibroblast proliferation. Therefore, the distal portion(s) can have a length of approximately 4 mm to 6 mm, again taking into consideration variability for angled extremities. The single or dual lumen shunt devices of the present invention can be manufactured by conventional molding or extrusion techniques. In the case of extrusion production, single lumens can be subsequently partially joined together to form dual lumen devices, or the individual lumens of a co-extruded dual lumen devices can be partially separated to define distal portions extendable in separate directions. It is preferable that such devices be constructed such that they will not kink when wrapped around a 0.25 mm object. [0086]
  • Optionally, the device may also include one or more visible markings on the device to assist in proper placement in the anterior chamber or Schlemm's canal. Markings on the distal ends could be used to confirm the distal ends are properly inserted in Schlemm's canal and markings on the proximal end would avoid over or under insertion into the anterior chamber. [0087]
  • Optionally, the device may be selectively coated or permeated with therapeutic agents as desired. For example, where ingrowth is desired for stability, certain growth factors may be present, whereas at the terminal portals where obstructions are to be avoided, certain antifibrotic agents may be present, such as 5-fluourouracil or mitomycin. The device may be more generally provided with coatings that are antibiotic, anti-inflammatory, or carboxylic anhydrase inhibitors. Agents that facilitate the degradation of collagen within the trabecular meshwork can also be employed. [0088]
  • The present invention provides methods for the implantation and use of the shunt devices. The surgical procedure necessary to insert the device requires an approach through a conjunctival flap. A partial thickness scleral flap is then created and dissected half-thickness into clear cornea. The posterior aspect of Schlemm's canal is identified and the canal is entered posteriorly. Schlemm's canal and/or the anterior chamber may be expanded and lubricated by injection of a viscoelastic and/or a mitotic agent. Suitable viscoelastic compositions and devices and methods for their injection into the eye are disclosed in U.S. Pat. No. 5,360,399 which is incorporated herein by reference. When using viscoelastic compositions as part of the present invention care should be taken to avoid over-expanding and rupturing Schlemm's canal. The proximal portion of the shunt is then inserted through the inner wall of Schlemm's canal and trabecular meshwork into the anterior chamber within the angle between the iris and the cornea. In some cases, as incision may be needed from Schlemm's canal through the trabecular meshwork into the anterior chamber to facilitate passage of the proximal portion therethrough. One arm of the distal portion of the shunt device is grasped and threaded into Schlemm's canal. In a similar fashion, the other arm of the distal portion of the shunt device (when present) is inserted into Schlemm's canal in the opposing direction from the first. The scleral flap and conjunctival wound are closed in a conventional manner. [0089]
  • The following procedure may be followed for the insertion of a bi-directional shunt within Schlemm's canal, in particular to insert an anchored shunt as disclosed onto a surgically prepared tissue shelf: [0090]
  • Obtain general or local anesthesia. Preferably with either a retrobulbar or peribulbar injection of an anesthetic agent (lidocaine, bupivacaine, etc.). [0091]
  • Scrub the periocular region with a surgically acceptable antiseptic such as povodine solution. Place a lid speculum. [0092]
  • Make a fornix-based conjunctival incision at the limbus. Ensure hemostasis with either bipolar cautery or diathermy. [0093]
  • Make a 3-4 mm×3-4 mm scleral flap, extending to a depth within approximately 100 of the choroid. [0094]
  • Dissect the flap anteriorly to unroof the outer wall of Schlemm's canal. [0095]
  • Continue the dissection along a more shallow plane to create a corneo-scleral shelf over the trabecular meshwork. At surgeon's discretion, place a stay suture through the scleral flap to hold it in position. [0096]
  • At surgeon's discretion, dilate the opening to Schlemm's canal on both sides of the flap using a viscocanalostomy cannula and a viscoelastic agent (e.g., hyaluronate or hyaluronate/chondroitin sulfate). [0097]
  • Make a paracentesis at the limbus distal to the surgical site. [0098]
  • At surgeon's discretion, inject a viscoelastic agent and a miotic (carbachol or acetylcholine) into the anterior chamber to deepen the area. [0099]
  • Remove the GMP Shunt from its case. Insert the distal portions of the shunt into the canal on both sides. [0100]
  • Enter the anterior chamber along the corneo-scleral shelf using a keratome blade or a 21 gauge needle. [0101]
  • Insert the proximal portion of the tube into the anterior chamber. Close the scleral flap with interrupted 10-0 nylon sutures. Initially, place one suture at the base and one each along the two sides. Bury the suture knots. [0102]
  • Deepen the anterior chamber with balanced salt solution through the paracentesis. [0103]
  • Test the scleral flap with a cellulose sponge. If there is leakage, place additional 10-0 nylon sutures to achieve a watertight closure. [0104]
  • Close the conunctiva with appropriately sized absorbable sutures. [0105]
  • Dress the eye with subconjunctival and/or topical broad-spectrum antibiotic and corticosteroid. [0106]
  • Place a protective shield over the eye and tape the shield in place. [0107]
  • Results of Preclinical Study in Animal Eyes [0108]
  • Study Device [0109]
  • A study in [0110] 16 swine was performed using a shunt device comprising two (2) 7 mm length, 0.125 mm inner diameter and 0.250 mm outer diameter silicone (65 A durometer) tubes bonded together with silicone adhesive over a 1.0 mm length at the proximal end, creating a Y shape. The device was implanted in one eye of each animal and the non-implanted eye served as a control.
  • Surgical Procedure [0111]
  • For each animal, the periocular area of the study eye was prepped (eyelash trimming and betadine). The animal was then anesthesized using isofluorane. Under sterile conditions, a lid speculum was used to open the eyelids. An operating microscope was swung into place. A peripheral corneal bridle suture was placed to rotate the eye and expose the superior nasal limbus. A fornix-based conjunctival incision was made in the sclera and hemostasis ensured with bipolar cautery. A partial-thickness triangular scleral flap that measured 4×4 mm was made at the limbus and dissected anteriorly into clear cornea. A second, deeper flap was created at the base of the first flap, and dissected anteriorly to unroof the porcine equivalent of Schlemm's canal. The plane of the deeper flap then was angled anteriorly to create a corneoscleral shelf. A viscoelastic agent (hyaluronate and chondroitin sulfate) was instilled into the Schlemm's canal-like space on either side using a viscocanalostomy cannula. The distal aspects of the bi-directional glaucoma shunt were inserted into the canal on either side of the unroofing site. The anterior chamber was entered through the corneoscleral shelf and a viscoelastic agent instilled into the anterior chamber. The proximal (radial) portion of the shunt was inserted into the anterior chamber through the corneoscleral shelf. The scleral flaps were tightly closed with 10-0 nylon sutures and the knots buried. The conjunctiva was closed with absorbable suture. The bridle suture was removed. Subconjuctival garamycin and decadron were instilled interiorly. The eye was dressed with tobramycin-decadron ointment. The animal was allowed to awaken and returned to the boarding area. [0112]
  • In each case, the surgical endpoints were achieved. The Schlemm's canal-like space was accurately located and unroofed in 16 of 16 eyes and the device was successfully implanted without complication. Neither ocular structures nor the device were damaged during implantation. The surgical site was adequately closed without difficulty. During the procedure there was no observable touching between the device and the corneal endothelium, no collapse of the anterior chamber, no anterior chamber bleeding requiring washout, no tearing of the iris, and no touching between the device and the iris. All animals tolerated the surgery and anesthesia well. [0113]
  • Clinical Observations [0114]
  • All animals tolerated the implant procedure well. No animal demonstrated post-operative pain or discomfort as evidenced by rubbing, decreased eating or sleeping. No sight-threatening complications occurred due to implanting the device. Specifically, there was no chronic inflammatory reaction to the device, erosion of surrounding tissues, choroidal detachment or hemorrhage, retinal detachment, or infection. [0115]
  • The swine included in this study were normal animals without glaucoma. At baseline, the average intraocular pressures of the right and left eyes were equivalent. At 3 months post-operatively, the intraocular pressure in the study eye with the device was 14% lower than the contralateral (control) eye (n=16 animals). [0116]
  • It was unanticipated that IOP would drop in the study eyes since these eyes did not have glaucoma and therefore did not have an area of abnormal resistance to bypass. Nevertheless, the device resulted in a lower pressure even in these normal eyes. No eye had hypotony or ocular hypertension. Thus, in this interim phase of the study, the potential for pressure lowering of the device in a non-glaucomatous animal model was demonstrated. [0117]
  • Demonstration of in Vivo Fluid Flow [0118]
  • At 3 months, two devices were explanted from two eyes for pressure-flow testing. In these eyes, a fornix-based conjunctival incision was made over the scleral flap. The scleral flap was gently loosened from the surrounding tissue and dissected forward to unroof the Schlemm's canal-like space. The device was identified within the space and the distal portions of the device were removed from the space, leaving the proximal portion within the anterior chamber. At this point, aqueous fluid was observed to flow through the shunt from the anterior chamber out of the distal tubes, demonstrating in vivo flow through the device. [0119]
  • While the above-described embodiments are exemplary, the invention contemplates a wide variety of shapes and configurations of the shunt to provide fluid communication between the anterior chamber and Schlemm's canal. The abovedescribed embodiments are, therefore, not intended to be limiting to the scope of the claims and equivalents thereof. [0120]

Claims (32)

We claim:
1. An aqueous humor shunt device to divert aqueous humor in an eye from the anterior chamber into Schlemm's canal, the shunt device comprising a distal portion having at least one terminal aspect sized and shaped to be received circumferentially within a portion of Schlemm's canal and a proximal portion having at least one terminal aspect sized and shaped to be received within the anterior chamber of the eye, wherein the distal portion has an outer diameter of from about 0.1 mm to about 0.5 mm and a length of from about 1 mm to 40 mm, wherein the device permits fluid communication from the proximal portion in the anterior chamber to the distal portion in Schlemm's canal.
2. The device of claim 1, wherein the outer diameter of the distal portion is from about 0.23 mm to about 0.28 mm.
3. The device of claim 1, wherein the outer diameter of the distal portion is from about 0.23 mm to about 0.26 mm.
4. The device of claim 1, wherein the length of the distal portion is from about 1 mm to about 20 mm.
5. The device of claim 1, wherein the length of the distal portion is from about 4 mm to about 7 mm.
6. The device of claim 1, wherein the length of the distal portion is from about 6.0 mm.
7. The device of claim 1, wherein the length of the proximal portion extends at least about 0.1 mm into the anterior chamber.
8. The device of claim 1, wherein the proximal portion extends about 0.1 mm to about 3 mm into the anterior chamber.
9. The device of claim 1, wherein the device is selectively coated with a therapeutic agent.
10. The device of claim 9, wherein the device is selectively coated with a tissue growth promoting agent.
11. The device of claim 9, wherein the terminal aspects are selectively coated with a tissue growth inhibiting agent.
12. The device of claim 1, wherein the device permits a flow of aqueous humor therethrough at a rate of about 2.5 microliters per minute.
13. The device of claim 1, wherein the shunt device is a dual lumen shunt.
14. The device of claim 13, wherein the dual lumen is bifurcated for insertion into opposite directions within Schlemm's canal.
15. The device of claim 13, wherein the dual lumen anchors the shunt.
16. The shunt of claim 13, wherein the dual lumen shunt is extruded as a dual lumen tube and the individual lumens are partially separated during manufacture.
17. The shunt of claim 13, wherein the dual lumen shunt is extruded as a single lumen and two single lumens are partially attached together during manufacture.
18. An aqueous humor shunt device to divert aqueous humor in an eye from the anterior chamber into Schlemm's canal, the shunt device comprising a distal portion having at least one terminal aspect sized and shaped to be received circumferentially within a portion of Schlemm's canal and a proximal portion having at least one terminal aspect sized and shaped to be received within the anterior chamber of the eye, wherein the device permits fluid communication from the proximal portion in the anterior chamber to the distal portion in Schlemm's canal, and wherein the proximal portion has an anchor thereon to maintain the device in position when implanted in tissues.
19. The device of claim 18, wherein the anchor extends circumferentially around the proximal portion of the device.
20. The device of claim 18, wherein the anchor extends toward the iris when implanted in the eye.
21. The device of claim 18, wherein the anchor extends away from the iris when implanted in the eye.
22. The device of claim 18, wherein the anchor extends laterally relative to the iris when implanted in the eye.
23. The device of claim 18, wherein the proximal portion has a plurality of anchors.
24. The device of claim 18, wherein the anchor is inside the anterior chamber when the device is implanted in the eye.
25. The device of claim 18, wherein the anchor is outside the anterior chamber when the device is implanted in the eye.
26. The device of claim 18, wherein the shunt is anchored on a shelf of corneo-scleral tissue created by a surgeon when the device is implanted in the eye.
27. The device of claim 18, wherein the terminal aspect of the proximal portion has an acute angle to facilitate passage into the anterior chamber.
28. A method of implanting the anchored aqueous humor shunt device of claim 1 or claim 18 to divert aqueous humor in an eye from the anterior chamber into Schlemm's canal, comprising:
a. creating a conjunctival flap and a partial thickness scleral flap dissected half-thickness into clear cornea;
b. dissecting the flap anteriorly to unroof the outer wall of Schlemm's canal;
c. continuing the dissection along a more shallow plane to create a corneo-scleral shelf over the trabecular meshwork;
d. inserting the device into Schlemm's canal and the anterior chamber within the angle between the iris and the cornea; and
e. closing the scleral flap and conjunctival wound.
29. The method of claim 28, wherein the device is further anchored by the shelf.
30. The method of claim 28, wherein Schlemm's canal is injected with a viscoelastic agent and/or a mitotic agent prior to insertion of the device.
31. The method of claim 28, wherein the distal portion of the device is inserted into Schlemm's canal before the posterior portion is inserted into the anterior chamber.
32. The method of claim 28, wherein the distal portion of the device is inserted into Schlemm's canal after the posterior portion is inserted into the anterior chamber.
US10/222,209 1999-04-26 2002-08-16 Shunt device and method for treating glaucoma Abandoned US20050119601A9 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/222,209 US20050119601A9 (en) 1999-04-26 2002-08-16 Shunt device and method for treating glaucoma
US10/899,687 US7220238B2 (en) 1999-04-26 2004-07-27 Shunt device and method for treating glaucoma
US11/585,043 US20070088432A1 (en) 1999-04-26 2006-10-23 Indwelling shunt device and methods for treating glaucoma

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13103099P 1999-04-26 1999-04-26
US09/558,505 US6450984B1 (en) 1999-04-26 2000-04-26 Shunt device and method for treating glaucoma
US31279901P 2001-08-16 2001-08-16
US10/222,209 US20050119601A9 (en) 1999-04-26 2002-08-16 Shunt device and method for treating glaucoma

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/558,505 Continuation-In-Part US6450984B1 (en) 1999-04-26 2000-04-26 Shunt device and method for treating glaucoma

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/899,687 Continuation US7220238B2 (en) 1999-04-26 2004-07-27 Shunt device and method for treating glaucoma
US11/585,043 Continuation US20070088432A1 (en) 1999-04-26 2006-10-23 Indwelling shunt device and methods for treating glaucoma

Publications (2)

Publication Number Publication Date
US20030055372A1 true US20030055372A1 (en) 2003-03-20
US20050119601A9 US20050119601A9 (en) 2005-06-02

Family

ID=34657842

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/222,209 Abandoned US20050119601A9 (en) 1999-04-26 2002-08-16 Shunt device and method for treating glaucoma
US10/899,687 Expired - Lifetime US7220238B2 (en) 1999-04-26 2004-07-27 Shunt device and method for treating glaucoma
US11/585,043 Abandoned US20070088432A1 (en) 1999-04-26 2006-10-23 Indwelling shunt device and methods for treating glaucoma

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/899,687 Expired - Lifetime US7220238B2 (en) 1999-04-26 2004-07-27 Shunt device and method for treating glaucoma
US11/585,043 Abandoned US20070088432A1 (en) 1999-04-26 2006-10-23 Indwelling shunt device and methods for treating glaucoma

Country Status (1)

Country Link
US (3) US20050119601A9 (en)

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030187385A1 (en) * 2000-04-14 2003-10-02 Bergheim Olav B. Implant with anchor
US20040024345A1 (en) * 2002-04-19 2004-02-05 Morteza Gharib Glaucoma implant with valveless flow bias
US20040102729A1 (en) * 2002-04-08 2004-05-27 David Haffner Devices and methods for glaucoma treatment
US20040111050A1 (en) * 2000-04-14 2004-06-10 Gregory Smedley Implantable ocular pump to reduce intraocular pressure
US20040127843A1 (en) * 2000-04-14 2004-07-01 Hosheng Tu Glaucoma implant with therapeutic agents
US20040147870A1 (en) * 2002-04-08 2004-07-29 Burns Thomas W. Glaucoma treatment kit
US20050049578A1 (en) * 2000-04-14 2005-03-03 Hosheng Tu Implantable ocular pump to reduce intraocular pressure
US20050090806A1 (en) * 1999-04-26 2005-04-28 Gmp Vision Solutions Inc. Shunt device and method for treating glaucoma
US20050107734A1 (en) * 2003-11-14 2005-05-19 Coroneo Minas T. Ocular pressure regulation
US20050119737A1 (en) * 2000-01-12 2005-06-02 Bene Eric A. Ocular implant and methods for making and using same
US20050184004A1 (en) * 2004-02-24 2005-08-25 Rodgers M. S. Glaucoma implant having MEMS filter module
US20050192527A1 (en) * 2001-05-02 2005-09-01 Morteza Gharib Glaucoma implant with extending members
US20050197653A1 (en) * 2004-03-02 2005-09-08 Sniegowski Jeffry J. Filter assembly with microfabricated filter element
US20050197613A1 (en) * 2004-03-02 2005-09-08 Sniegowski Jeffry J. Implant having MEMS flow module with movable, flow-controlling baffle
US20050250788A1 (en) * 2004-01-30 2005-11-10 Hosheng Tu Aqueous outflow enhancement with vasodilated aqueous cavity
US20050266047A1 (en) * 2002-04-08 2005-12-01 Hosheng Tu Injectable glaucoma implants with multiple openings
US20050273033A1 (en) * 2002-05-29 2005-12-08 Grahn Bruce H Shunt and method treatment of glaucoma
US20050271704A1 (en) * 2002-04-08 2005-12-08 Hosheng Tu Injectable glaucoma implants with multiple openings
US20050277864A1 (en) * 2000-04-14 2005-12-15 David Haffner Injectable gel implant for glaucoma treatment
US20060036207A1 (en) * 2004-02-24 2006-02-16 Koonmen James P System and method for treating glaucoma
US20060173397A1 (en) * 2004-11-23 2006-08-03 Hosheng Tu Ophthalmology implants and methods of manufacture
US20060173399A1 (en) * 2005-02-01 2006-08-03 Rodgers M S MEMS flow module with pivoting-type baffle
US20060206049A1 (en) * 2005-03-14 2006-09-14 Rodgers M S MEMS flow module with piston-type pressure regulating structure
US20060219627A1 (en) * 2005-03-31 2006-10-05 Rodgers M S MEMS filter module with concentric filtering walls
US20060241749A1 (en) * 2001-08-28 2006-10-26 Hosheng Tu Glaucoma stent system
US20070004998A1 (en) * 2005-06-21 2007-01-04 Rodgers M S Glaucoma implant having MEMS flow module with flexing diaphragm for pressure regulation
US20070112292A1 (en) * 2001-04-07 2007-05-17 Hosheng Tu Glaucoma stent and methods thereof for glaucoma treatment
US20070149915A1 (en) * 2003-05-05 2007-06-28 Judith Yablonski Internal shunt and method for treating glaucoma
US20070191863A1 (en) * 2006-01-17 2007-08-16 De Juan Eugene Jr Glaucoma Treatment Device
US20070199877A1 (en) * 2004-02-24 2007-08-30 Rodgers M S Mems filter module
US20080015488A1 (en) * 2001-05-03 2008-01-17 Glaukos Corporation Glaucoma implant with double anchor mechanism
US20080172204A1 (en) * 2007-01-15 2008-07-17 Fujitsu Limited Step counter and method of counting steps
US20090082860A1 (en) * 2007-09-24 2009-03-26 Schieber Andrew T Ocular Implants with Asymmetric Flexibility
US20090132040A1 (en) * 2007-11-20 2009-05-21 Ivantis, Inc. Ocular Implant Delivery System and Method
US20100106073A1 (en) * 2001-05-02 2010-04-29 Glaukos Corporation Method of monitoring intraocular pressure and treating an ocular disorder
US20100121342A1 (en) * 2007-11-20 2010-05-13 Schieber Andrew T Methods and Apparatus for Delivering Ocular Implants Into the Eye
US7740604B2 (en) 2007-09-24 2010-06-22 Ivantis, Inc. Ocular implants for placement in schlemm's canal
US20100274258A1 (en) * 2009-01-28 2010-10-28 Silvestrini Thomas A Ocular implant with stiffness qualities, methods of implantation and system
US20110009874A1 (en) * 2009-07-09 2011-01-13 John Wardle Single Operator Device for Delivering an Ocular Implant
US20110009958A1 (en) * 2009-07-09 2011-01-13 John Wardle Ocular Implants and Methods for Delivering Ocular Implants Into the Eye
US20110105990A1 (en) * 2009-11-04 2011-05-05 Silvestrini Thomas A Zonal drug delivery device and method
US7951155B2 (en) 2002-03-15 2011-05-31 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US8007459B2 (en) 2002-09-21 2011-08-30 Glaukos Corporation Ocular implant with anchoring mechanism and multiple outlets
US8267882B2 (en) 2008-03-05 2012-09-18 Ivantis, Inc. Methods and apparatus for treating glaucoma
US20120302861A1 (en) * 2011-04-27 2012-11-29 Istar Medical Device and method for glaucoma management and treatment
US8372026B2 (en) 2007-09-24 2013-02-12 Ivantis, Inc. Ocular implant architectures
US8506515B2 (en) 2006-11-10 2013-08-13 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US8529492B2 (en) 2009-12-23 2013-09-10 Trascend Medical, Inc. Drug delivery devices and methods
US20130274691A1 (en) * 2010-08-05 2013-10-17 Forsight Vision4, Inc. Combined drug delivery methods and apparatus
US20130317411A1 (en) * 2012-05-23 2013-11-28 Ghansham Das AGARWAL Device for Treatment of Glaucoma
US8617094B2 (en) 2002-03-07 2013-12-31 Glaukos Corporation Fluid infusion methods for glaucoma treatment
US8657776B2 (en) 2011-06-14 2014-02-25 Ivantis, Inc. Ocular implants for delivery into the eye
US8663150B2 (en) 2011-12-19 2014-03-04 Ivantis, Inc. Delivering ocular implants into the eye
US8672870B2 (en) 2007-07-17 2014-03-18 Transcend Medical, Inc. Ocular implant with hydrogel expansion capabilities
US8808222B2 (en) 2007-11-20 2014-08-19 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US9095413B2 (en) 2011-12-08 2015-08-04 Aquesys, Inc. Intraocular shunt manufacture
US9125723B2 (en) 2013-02-19 2015-09-08 Aquesys, Inc. Adjustable glaucoma implant
US9155656B2 (en) 2012-04-24 2015-10-13 Transcend Medical, Inc. Delivery system for ocular implant
US9173774B2 (en) 2010-03-26 2015-11-03 Optonol Ltd. Fluid drainage device, delivery device, and associated methods of use and manufacture
US9173775B2 (en) 2012-03-26 2015-11-03 Glaukos Corporation System for delivering multiple ocular implants
US9358156B2 (en) 2012-04-18 2016-06-07 Invantis, Inc. Ocular implants for delivery into an anterior chamber of the eye
US9414962B2 (en) 2012-04-23 2016-08-16 Das Agarwal Ghansham Device for treatment of glaucoma and prevention of sub-scleral fibrosis and blockage
US9480598B2 (en) 2012-09-17 2016-11-01 Novartis Ag Expanding ocular implant devices and methods
US9510973B2 (en) 2010-06-23 2016-12-06 Ivantis, Inc. Ocular implants deployed in schlemm's canal of the eye
US9579234B2 (en) 2009-10-23 2017-02-28 Ivantis, Inc. Ocular implant system and method
US9592151B2 (en) 2013-03-15 2017-03-14 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
US20170080179A1 (en) * 2015-09-23 2017-03-23 Brian William Rotenberg Bilateral Frontal Sinus Device
US9730638B2 (en) 2013-03-13 2017-08-15 Glaukos Corporation Intraocular physiological sensor
US9763829B2 (en) 2012-11-14 2017-09-19 Novartis Ag Flow promoting ocular implant
CN107981969A (en) * 2017-12-29 2018-05-04 温州医科大学附属眼视光医院 Drainage substitutes biomimetic scaffolds in a kind of glaucoma
US9987163B2 (en) 2013-04-16 2018-06-05 Novartis Ag Device for dispensing intraocular substances
US10085633B2 (en) 2012-04-19 2018-10-02 Novartis Ag Direct visualization system for glaucoma treatment
US10159601B2 (en) 2000-05-19 2018-12-25 Ivantis, Inc. Delivery system and method of use for the eye
US10159600B2 (en) 2013-02-19 2018-12-25 Aquesys, Inc. Adjustable intraocular flow regulation
US10517759B2 (en) 2013-03-15 2019-12-31 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US10617558B2 (en) 2012-11-28 2020-04-14 Ivantis, Inc. Apparatus for delivering ocular implants into an anterior chamber of the eye
US10709547B2 (en) 2014-07-14 2020-07-14 Ivantis, Inc. Ocular implant delivery system and method
US10842916B2 (en) 2015-06-24 2020-11-24 Healionics Corporation Injectable porous device for treatment of dry and wet age-related macular degeneration or diabetic retinopathy
US10959941B2 (en) 2014-05-29 2021-03-30 Glaukos Corporation Implants with controlled drug delivery features and methods of using same
CN112638332A (en) * 2018-08-31 2021-04-09 新世界医学有限公司 Ocular implant, inserter device and method for inserting an ocular implant
US11019997B2 (en) 2015-03-20 2021-06-01 Glaukos Corporation Gonioscopic devices
US11116625B2 (en) 2017-09-28 2021-09-14 Glaukos Corporation Apparatus and method for controlling placement of intraocular implants
USD938585S1 (en) 2017-10-27 2021-12-14 Glaukos Corporation Implant delivery apparatus
US11197779B2 (en) 2015-08-14 2021-12-14 Ivantis, Inc. Ocular implant with pressure sensor and delivery system
US11253394B2 (en) 2013-03-15 2022-02-22 Dose Medical Corporation Controlled drug delivery ocular implants and methods of using same
US11318043B2 (en) 2016-04-20 2022-05-03 Dose Medical Corporation Bioresorbable ocular drug delivery device
US11363951B2 (en) 2011-09-13 2022-06-21 Glaukos Corporation Intraocular physiological sensor
US11376040B2 (en) 2017-10-06 2022-07-05 Glaukos Corporation Systems and methods for delivering multiple ocular implants
US11540940B2 (en) 2021-01-11 2023-01-03 Alcon Inc. Systems and methods for viscoelastic delivery
US11564833B2 (en) 2015-09-25 2023-01-31 Glaukos Corporation Punctal implants with controlled drug delivery features and methods of using same
US11707383B2 (en) * 2016-04-21 2023-07-25 Suzhou Purevision Medical Technology Co., Ltd. Inner drainage biomimetic stent for glaucoma and use thereof
US11744734B2 (en) 2007-09-24 2023-09-05 Alcon Inc. Method of implanting an ocular implant
US11744458B2 (en) 2017-02-24 2023-09-05 Glaukos Corporation Gonioscopes
US11925578B2 (en) 2015-09-02 2024-03-12 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity
US11938058B2 (en) 2015-12-15 2024-03-26 Alcon Inc. Ocular implant and delivery system
US11938059B2 (en) 2013-11-14 2024-03-26 Aquesys, Inc. Intraocular shunt insertion techniques
US12029683B2 (en) 2018-02-22 2024-07-09 Alcon Inc. Ocular implant and delivery system

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203513B1 (en) 1997-11-20 2001-03-20 Optonol Ltd. Flow regulating implant, method of manufacture, and delivery device
JP4677538B2 (en) 2001-06-12 2011-04-27 ジョンズ ホプキンズ ユニヴァーシティ スクール オヴ メディシン Reservoir device for intraocular drug delivery
WO2004026347A2 (en) * 2002-09-17 2004-04-01 Iscience Surgical Corporation Apparatus and method for surgical bypass of aqueous humor
US20100173866A1 (en) * 2004-04-29 2010-07-08 Iscience Interventional Corporation Apparatus and method for ocular treatment
US20090043321A1 (en) * 2004-04-29 2009-02-12 Iscience Interventional Corporation Apparatus And Method For Surgical Enhancement Of Aqueous Humor Drainage
US7862531B2 (en) * 2004-06-25 2011-01-04 Optonol Ltd. Flow regulating implants
KR20070092279A (en) * 2004-12-16 2007-09-12 아이싸이언스 인터벤셔날 코포레이션 Ophthalmic implant for treatment of glaucoma
WO2006138319A2 (en) * 2005-06-16 2006-12-28 The University Of Miami Extraocular muscle prosthesis
US20090203985A1 (en) * 2005-10-14 2009-08-13 Ehrecke Timothy J Pressure Monitor
EP3338743A1 (en) 2006-01-17 2018-06-27 Novartis Ag Drug delivery treatment device
US7909789B2 (en) 2006-06-26 2011-03-22 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
US8663303B2 (en) 2010-11-15 2014-03-04 Aquesys, Inc. Methods for deploying an intraocular shunt from a deployment device and into an eye
US8721702B2 (en) 2010-11-15 2014-05-13 Aquesys, Inc. Intraocular shunt deployment devices
JP5396272B2 (en) 2006-06-30 2014-01-22 アクエシス インコーポレイテッド Method, system and apparatus for reducing pressure in an organ
US8308701B2 (en) 2010-11-15 2012-11-13 Aquesys, Inc. Methods for deploying intraocular shunts
US8828070B2 (en) 2010-11-15 2014-09-09 Aquesys, Inc. Devices for deploying intraocular shunts
US8852137B2 (en) 2010-11-15 2014-10-07 Aquesys, Inc. Methods for implanting a soft gel shunt in the suprachoroidal space
US8758290B2 (en) 2010-11-15 2014-06-24 Aquesys, Inc. Devices and methods for implanting a shunt in the suprachoroidal space
US8974511B2 (en) 2010-11-15 2015-03-10 Aquesys, Inc. Methods for treating closed angle glaucoma
US9095411B2 (en) 2010-11-15 2015-08-04 Aquesys, Inc. Devices for deploying intraocular shunts
US8801766B2 (en) 2010-11-15 2014-08-12 Aquesys, Inc. Devices for deploying intraocular shunts
US20120123316A1 (en) 2010-11-15 2012-05-17 Aquesys, Inc. Intraocular shunts for placement in the intra-tenon's space
US8852256B2 (en) 2010-11-15 2014-10-07 Aquesys, Inc. Methods for intraocular shunt placement
JP5406840B2 (en) * 2007-09-24 2014-02-05 イバンティス インコーポレイテッド Intraocular graft
US20090177138A1 (en) * 2007-11-07 2009-07-09 Brown Reay H Shunt Device for Glaucoma Treatment
US8109896B2 (en) * 2008-02-11 2012-02-07 Optonol Ltd. Devices and methods for opening fluid passageways
ES2640867T3 (en) * 2008-06-25 2017-11-07 Novartis Ag Eye implant with ability to change shape
US8353856B2 (en) * 2008-11-05 2013-01-15 Abbott Medical Optics Inc. Glaucoma drainage shunts and methods of use
AU2015218475B2 (en) * 2008-12-05 2017-11-02 Alcon Inc. Methods and apparatus for delivering ocular implants into the eye
CH700161A2 (en) * 2008-12-22 2010-06-30 Grieshaber Ophthalmic Res Foun IMPLANT FOR INTRODUCING into Schlemm's canal AN EYE.
CH700142A1 (en) * 2008-12-22 2010-06-30 Grieshaber Ophthalmic Res Foun Implant for insertion into Schlemm's canal of eye for use during glaucoma surgery, has connecting parts inserted into lumen of canal in circumferential direction together with ring parts and openings and comprising curved surfaces
US8425473B2 (en) 2009-01-23 2013-04-23 Iscience Interventional Corporation Subretinal access device
US20100191177A1 (en) * 2009-01-23 2010-07-29 Iscience Interventional Corporation Device for aspirating fluids
US8623395B2 (en) 2010-01-29 2014-01-07 Forsight Vision4, Inc. Implantable therapeutic device
SG2014007389A (en) * 2009-01-29 2014-04-28 Forsight Vision4 Inc Posterior segment drug delivery
US8702639B2 (en) * 2009-03-26 2014-04-22 Abbott Medical Optics Inc. Glaucoma shunts with flow management and improved surgical performance
US8764696B2 (en) * 2009-06-16 2014-07-01 Mobius Therapeutics, Inc. Medical drainage devices with carbon-based structures for inhibiting growth of fibroblasts
US8641671B2 (en) 2009-07-30 2014-02-04 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
KR101116867B1 (en) * 2009-08-28 2012-03-06 김준홍 The device for delivering optimal tension safaely and effectively in cerclage annuloplasty procedure
US8197540B2 (en) 2010-04-26 2012-06-12 Stellar Devices Llc Ocular implant iris diaphragm
US8545430B2 (en) 2010-06-09 2013-10-01 Transcend Medical, Inc. Expandable ocular devices
HRP20211909T1 (en) 2010-08-05 2022-03-18 Forsight Vision4, Inc. Apparatus to treat an eye
WO2012040380A1 (en) * 2010-09-21 2012-03-29 The Regents Of The University Of Colorado, A Body Corporate Aqueous humor micro bypass shunt
US8915877B2 (en) 2010-10-12 2014-12-23 Emmett T. Cunningham, JR. Glaucoma drainage device and uses thereof
US9370444B2 (en) 2010-10-12 2016-06-21 Emmett T. Cunningham, JR. Subconjunctival conformer device and uses thereof
US8585629B2 (en) 2010-11-15 2013-11-19 Aquesys, Inc. Systems for deploying intraocular shunts
WO2012113450A1 (en) * 2011-02-23 2012-08-30 Grieshaber Ophthalmic Research Foundaton Implant for treating glaucoma
US8834406B2 (en) * 2011-10-21 2014-09-16 Snyder Biomedical Corporation Biocompatible glaucoma drainage device
US9610195B2 (en) 2013-02-27 2017-04-04 Aquesys, Inc. Intraocular shunt implantation methods and devices
US8852136B2 (en) 2011-12-08 2014-10-07 Aquesys, Inc. Methods for placing a shunt into the intra-scleral space
AU2012374034B2 (en) 2012-03-20 2017-10-19 Sight Sciences, Inc. Ocular delivery systems and methods
AU2014241163B2 (en) 2013-03-28 2018-09-27 Forsight Vision4, Inc. Ophthalmic implant for delivering therapeutic substances
US10507101B2 (en) 2014-10-13 2019-12-17 W. L. Gore & Associates, Inc. Valved conduit
US10299958B2 (en) 2015-03-31 2019-05-28 Sight Sciences, Inc. Ocular delivery systems and methods
BR112018010063A2 (en) 2015-11-20 2018-11-13 Forsight Vision4 Inc porous structures for extended release drug delivery devices
SI3393412T1 (en) * 2015-12-24 2023-01-31 Istar Medical Ocular implant systems
US11351058B2 (en) 2017-03-17 2022-06-07 W. L. Gore & Associates, Inc. Glaucoma treatment systems and methods
EP3638164B1 (en) * 2017-06-13 2023-05-10 Innfocus, Inc. Systems and apparatus for treatment of glaucoma
EP3654894B1 (en) 2017-07-20 2023-04-05 Shifamed Holdings, LLC Adjustable flow glaucoma shunts
US11166849B2 (en) 2017-07-20 2021-11-09 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and methods for making and using same
US11672701B2 (en) 2018-10-25 2023-06-13 Amo Groningen B.V. Bleb control glaucoma shunts
US11678983B2 (en) 2018-12-12 2023-06-20 W. L. Gore & Associates, Inc. Implantable component with socket
CA3129162A1 (en) * 2019-02-27 2020-09-03 Innfocus, Inc. Glaucoma device inserter
AU2020310207A1 (en) * 2019-07-10 2022-02-24 Aquea Health, Inc. Eye stents and delivery systems
US11504270B1 (en) 2019-09-27 2022-11-22 Sight Sciences, Inc. Ocular delivery systems and methods
US11517477B2 (en) 2019-10-10 2022-12-06 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and associated systems and methods
US11529258B2 (en) 2020-01-23 2022-12-20 Shifamed Holdings, Llc Adjustable flow glaucoma shunts and associated systems and methods
JP2023514234A (en) 2020-02-14 2023-04-05 シファメド・ホールディングス・エルエルシー Shunt system with rotation-based flow control assembly, and related systems and methods
EP4106695A4 (en) 2020-02-18 2024-03-20 Shifamed Holdings, LLC Adjustable flow glaucoma shunts having non-linearly arranged flow control elements, and associated systems and methods
US12011391B2 (en) * 2020-02-27 2024-06-18 Innfocus, Inc. Ocular implant
US11766355B2 (en) 2020-03-19 2023-09-26 Shifamed Holdings, Llc Intraocular shunts with low-profile actuation elements and associated systems and methods
DE102020002231B4 (en) 2020-04-09 2022-02-17 aixtent GmbH Method of manufacturing an implant for insertion into Schlemm's canal of an eye, implant and arrangement with an implant
CN115867237A (en) 2020-04-16 2023-03-28 施菲姆德控股有限责任公司 Adjustable glaucoma treatment devices and related systems and methods
WO2022159723A1 (en) 2021-01-22 2022-07-28 Shifamed Holdings, Llc Adjustable shunting systems with plate assemblies, and associated systems and methods

Citations (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788327A (en) * 1971-03-30 1974-01-29 H Donowitz Surgical implant device
US4037604A (en) * 1976-01-05 1977-07-26 Newkirk John B Artifical biological drainage device
US4175563A (en) * 1977-10-05 1979-11-27 Arenberg Irving K Biological drainage shunt
US4402681A (en) * 1980-08-23 1983-09-06 Haas Joseph S Artificial implant valve for the regulation of intraocular pressure
US4428746A (en) * 1981-07-29 1984-01-31 Antonio Mendez Glaucoma treatment device
US4457757A (en) * 1981-07-20 1984-07-03 Molteno Anthony C B Device for draining aqueous humour
US4501274A (en) * 1981-03-12 1985-02-26 Finn Skjaerpe Microsurgical instrument
US4521210A (en) * 1982-12-27 1985-06-04 Wong Vernon G Eye implant for relieving glaucoma, and device and method for use therewith
US4554918A (en) * 1982-07-28 1985-11-26 White Thomas C Ocular pressure relief device
US4604087A (en) * 1985-02-26 1986-08-05 Joseph Neil H Aqueous humor drainage device
US4634418A (en) * 1984-04-06 1987-01-06 Binder Perry S Hydrogel seton
US4718907A (en) * 1985-06-20 1988-01-12 Atrium Medical Corporation Vascular prosthesis having fluorinated coating with varying F/C ratio
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4750901A (en) * 1986-03-07 1988-06-14 Molteno Anthony C B Implant for drainage of aqueous humour
US4787885A (en) * 1984-04-06 1988-11-29 Binder Perry S Hydrogel seton
US4846172A (en) * 1987-05-26 1989-07-11 Berlin Michael S Laser-delivery eye-treatment method
US4863457A (en) * 1986-11-24 1989-09-05 Lee David A Drug delivery device
US4900300A (en) * 1987-07-06 1990-02-13 Lee David A Surgical instrument
US4936825A (en) * 1988-04-11 1990-06-26 Ungerleider Bruce A Method for reducing intraocular pressure caused by glaucoma
US4946436A (en) * 1989-11-17 1990-08-07 Smith Stewart G Pressure-relieving device and process for implanting
US5041081A (en) * 1990-05-18 1991-08-20 Odrich Ronald B Ocular implant for controlling glaucoma
US5092837A (en) * 1989-12-20 1992-03-03 Robert Ritch Method for the treatment of glaucoma
US5095887A (en) * 1989-09-12 1992-03-17 Claude Leon Microscope-endoscope assembly especially usable in surgery
US5127901A (en) * 1990-05-18 1992-07-07 Odrich Ronald B Implant with subconjunctival arch
US5129895A (en) * 1990-05-16 1992-07-14 Sunrise Technologies, Inc. Laser sclerostomy procedure
US5178604A (en) * 1990-05-31 1993-01-12 Iovision, Inc. Glaucoma implant
US5180362A (en) * 1990-04-03 1993-01-19 Worst J G F Gonio seton
US5246451A (en) * 1991-04-30 1993-09-21 Medtronic, Inc. Vascular prosthesis and method
US5300020A (en) * 1991-05-31 1994-04-05 Medflex Corporation Surgically implantable device for glaucoma relief
US5304561A (en) * 1992-07-24 1994-04-19 Faezeh Sarfarazi New concept in glaucoma treatment
US5318513A (en) * 1992-09-24 1994-06-07 Leib Martin L Canalicular balloon fixation stent
US5334137A (en) * 1992-02-21 1994-08-02 Eagle Vision, Inc. Lacrimal fluid control device
US5338291A (en) * 1993-02-03 1994-08-16 Pudenz-Schulte Medical Research Corporation Glaucoma shunt and method for draining aqueous humor
US5346464A (en) * 1992-03-10 1994-09-13 Camras Carl B Method and apparatus for reducing intraocular pressure
US5397300A (en) * 1990-05-31 1995-03-14 Iovision, Inc. Glaucoma implant
US5433701A (en) * 1994-12-21 1995-07-18 Rubinstein; Mark H. Apparatus for reducing ocular pressure
US5454796A (en) * 1991-04-09 1995-10-03 Hood Laboratories Device and method for controlling intraocular fluid pressure
US5486165A (en) * 1992-01-10 1996-01-23 Stegmann; Robert Method and appliance for maintaining the natural intraocular pressure
US5520631A (en) * 1994-07-22 1996-05-28 Wound Healing Of Oklahoma Method and apparatus for lowering the intraocular pressure of an eye
US5557453A (en) * 1992-06-12 1996-09-17 Leica Mikroskopie Und Systeme Gmbh Microscope that displays superimposed data
US5558630A (en) * 1994-12-30 1996-09-24 Fisher; Bret L. Intrascleral implant and method for the regulation of intraocular pressure
US5601549A (en) * 1994-11-17 1997-02-11 Machida Endoscope Co., Ltd. Medical observing instrument
US5601094A (en) * 1994-11-22 1997-02-11 Reiss; George R. Ophthalmic shunt
US5626558A (en) * 1995-05-05 1997-05-06 Suson; John Adjustable flow rate glaucoma shunt and method of using same
US5626559A (en) * 1994-05-02 1997-05-06 Ramot University Authority For Applied Research And Industrial Development Ltd. Ophthalmic device for draining excess intraocular fluid
US5639278A (en) * 1993-10-21 1997-06-17 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5651783A (en) * 1995-12-20 1997-07-29 Reynard; Michael Fiber optic sleeve for surgical instruments
US5670161A (en) * 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent
US5676679A (en) * 1993-03-19 1997-10-14 University Of Miami Apparatus for implanting an artifical meshwork in glaucoma surgery
US5681275A (en) * 1988-10-07 1997-10-28 Ahmed; Abdul Mateen Ophthalmological device with adaptable multiple distribution plates
US5704907A (en) * 1994-07-22 1998-01-06 Wound Healing Of Oklahoma Method and apparatus for lowering the intraocular pressure of an eye
US5713844A (en) * 1997-01-10 1998-02-03 Peyman; Gholam A. Device and method for regulating intraocular pressure
US5723005A (en) * 1995-06-07 1998-03-03 Herrick Family Limited Partnership Punctum plug having a collapsible flared section and method
US5741333A (en) * 1995-04-12 1998-04-21 Corvita Corporation Self-expanding stent for a medical device to be introduced into a cavity of a body
US5743868A (en) * 1994-02-14 1998-04-28 Brown; Reay H. Corneal pressure-regulating implant device
US5752928A (en) * 1997-07-14 1998-05-19 Rdo Medical, Inc. Glaucoma pressure regulator
US5766243A (en) * 1995-08-21 1998-06-16 Oasis Medical, Inc. Abrasive polished canalicular implant
US5785674A (en) * 1988-10-07 1998-07-28 Mateen; Ahmed Abdul Device and method for treating glaucoma
US5807302A (en) * 1996-04-01 1998-09-15 Wandel; Thaddeus Treatment of glaucoma
US5810870A (en) * 1993-08-18 1998-09-22 W. L. Gore & Associates, Inc. Intraluminal stent graft
US5865831A (en) * 1996-04-17 1999-02-02 Premier Laser Systems, Inc. Laser surgical procedures for treatment of glaucoma
US5868697A (en) * 1995-05-14 1999-02-09 Optonol Ltd. Intraocular implant
US5869697A (en) * 1994-05-02 1999-02-09 Council Of Scientific & Industrial Research Process for preparing diltiazem
US5879319A (en) * 1994-06-22 1999-03-09 Chauvin Opsia Sclerotomy implant
US5882327A (en) * 1997-04-17 1999-03-16 Jacob; Jean T. Long-term glaucoma drainage implant
US5893837A (en) * 1997-02-28 1999-04-13 Staar Surgical Company, Inc. Glaucoma drain implanting device and method
US5968058A (en) * 1996-03-27 1999-10-19 Optonol Ltd. Device for and method of implanting an intraocular implant
US6033434A (en) * 1995-06-08 2000-03-07 Ave Galway Limited Bifurcated endovascular stent and methods for forming and placing
US6045557A (en) * 1995-11-10 2000-04-04 Baxter International Inc. Delivery catheter and method for positioning an intraluminal graft
US6050970A (en) * 1997-05-08 2000-04-18 Pharmacia & Upjohn Company Method and apparatus for inserting a glaucoma implant in an anterior and posterior segment of the eye
US6059812A (en) * 1997-03-21 2000-05-09 Schneider (Usa) Inc. Self-expanding medical device for centering radioactive treatment sources in body vessels
US6059772A (en) * 1995-03-10 2000-05-09 Candela Corporation Apparatus and method for treating glaucoma using a gonioscopic laser trabecular ablation procedure
US6063116A (en) * 1994-10-26 2000-05-16 Medarex, Inc. Modulation of cell proliferation and wound healing
US6063396A (en) * 1994-10-26 2000-05-16 Houston Biotechnology Incorporated Methods and compositions for the modulation of cell proliferation and wound healing
US6071286A (en) * 1997-02-19 2000-06-06 Mawad; Michel E. Combination angioplasty balloon/stent deployment device
US6077299A (en) * 1998-06-22 2000-06-20 Eyetronic, Llc Non-invasively adjustable valve implant for the drainage of aqueous humor in glaucoma
US6102045A (en) * 1994-07-22 2000-08-15 Premier Laser Systems, Inc. Method and apparatus for lowering the intraocular pressure of an eye
US6168575B1 (en) * 1998-01-29 2001-01-02 David Pyam Soltanpour Method and apparatus for controlling intraocular pressure
US6174305B1 (en) * 1996-04-09 2001-01-16 Endocare, Inc. Urological stent therapy system and method
US6193656B1 (en) * 1999-02-08 2001-02-27 Robert E. Jeffries Intraocular pressure monitoring/measuring apparatus and method
US6197056B1 (en) * 1992-07-15 2001-03-06 Ras Holding Corp. Segmented scleral band for treatment of presbyopia and other eye disorders
US6228873B1 (en) * 1994-12-09 2001-05-08 The Regents Of The University Of California Method for enhancing outflow of aqueous humor in treatment of glaucoma
US6231597B1 (en) * 1999-02-16 2001-05-15 Mark E. Deem Apparatus and methods for selectively stenting a portion of a vessel wall
US6241721B1 (en) * 1998-10-09 2001-06-05 Colette Cozean Laser surgical procedures for treatment of glaucoma
US6266182B1 (en) * 1997-04-03 2001-07-24 Olympus Optical Co., Ltd. Operating microscope
US6268398B1 (en) * 1998-04-24 2001-07-31 Mitokor Compounds and methods for treating mitochondria-associated diseases
US6342058B1 (en) * 1999-05-14 2002-01-29 Valdemar Portney Iris fixated intraocular lens and instrument for attaching same to an iris
US20020013546A1 (en) * 1997-08-15 2002-01-31 Grieshaber & Co. Ag Schaffhausen Method and device to improve aqueous humor drainage in an eye
US20020026200A1 (en) * 2000-08-22 2002-02-28 Savage James A. Method and apparatus for treatment of glaucoma
US6375642B1 (en) * 2000-02-15 2002-04-23 Grieshaber & Co. Ag Schaffhausen Method of and device for improving a drainage of aqueous humor within the eye
US20020072673A1 (en) * 1999-12-10 2002-06-13 Yamamoto Ronald K. Treatment of ocular disease
US20020082591A1 (en) * 2000-12-14 2002-06-27 Eduard Haefliger Device for the treatment of glaucoma
US20020133168A1 (en) * 2001-03-16 2002-09-19 Smedley Gregory T. Applicator and methods for placing a trabecular shunt for glaucoma treatment
US20020143284A1 (en) * 2001-04-03 2002-10-03 Hosheng Tu Drug-releasing trabecular implant for glaucoma treatment
US6464724B1 (en) * 1999-04-26 2002-10-15 Gmp Vision Solutions, Inc. Stent device and method for treating glaucoma
US6533768B1 (en) * 2000-04-14 2003-03-18 The Regents Of The University Of California Device for glaucoma treatment and methods thereof
US20040092548A1 (en) * 1995-12-21 2004-05-13 Jonathan Embleton Ophthalmic treatment

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788327A (en) * 1971-03-30 1974-01-29 H Donowitz Surgical implant device
US4037604A (en) * 1976-01-05 1977-07-26 Newkirk John B Artifical biological drainage device
US4175563A (en) * 1977-10-05 1979-11-27 Arenberg Irving K Biological drainage shunt
US4402681A (en) * 1980-08-23 1983-09-06 Haas Joseph S Artificial implant valve for the regulation of intraocular pressure
US4501274A (en) * 1981-03-12 1985-02-26 Finn Skjaerpe Microsurgical instrument
US4457757A (en) * 1981-07-20 1984-07-03 Molteno Anthony C B Device for draining aqueous humour
US4428746A (en) * 1981-07-29 1984-01-31 Antonio Mendez Glaucoma treatment device
US4554918A (en) * 1982-07-28 1985-11-26 White Thomas C Ocular pressure relief device
US4521210A (en) * 1982-12-27 1985-06-04 Wong Vernon G Eye implant for relieving glaucoma, and device and method for use therewith
US4634418A (en) * 1984-04-06 1987-01-06 Binder Perry S Hydrogel seton
US4787885A (en) * 1984-04-06 1988-11-29 Binder Perry S Hydrogel seton
US4604087A (en) * 1985-02-26 1986-08-05 Joseph Neil H Aqueous humor drainage device
US4718907A (en) * 1985-06-20 1988-01-12 Atrium Medical Corporation Vascular prosthesis having fluorinated coating with varying F/C ratio
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665B1 (en) * 1985-11-07 1994-01-11 Expandable Grafts Partnership Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft
US4750901A (en) * 1986-03-07 1988-06-14 Molteno Anthony C B Implant for drainage of aqueous humour
US4863457A (en) * 1986-11-24 1989-09-05 Lee David A Drug delivery device
US4846172A (en) * 1987-05-26 1989-07-11 Berlin Michael S Laser-delivery eye-treatment method
US4900300A (en) * 1987-07-06 1990-02-13 Lee David A Surgical instrument
US4936825A (en) * 1988-04-11 1990-06-26 Ungerleider Bruce A Method for reducing intraocular pressure caused by glaucoma
US5681275A (en) * 1988-10-07 1997-10-28 Ahmed; Abdul Mateen Ophthalmological device with adaptable multiple distribution plates
US5785674A (en) * 1988-10-07 1998-07-28 Mateen; Ahmed Abdul Device and method for treating glaucoma
US5095887A (en) * 1989-09-12 1992-03-17 Claude Leon Microscope-endoscope assembly especially usable in surgery
US4946436A (en) * 1989-11-17 1990-08-07 Smith Stewart G Pressure-relieving device and process for implanting
US5092837A (en) * 1989-12-20 1992-03-03 Robert Ritch Method for the treatment of glaucoma
US5180362A (en) * 1990-04-03 1993-01-19 Worst J G F Gonio seton
US5129895A (en) * 1990-05-16 1992-07-14 Sunrise Technologies, Inc. Laser sclerostomy procedure
US5041081A (en) * 1990-05-18 1991-08-20 Odrich Ronald B Ocular implant for controlling glaucoma
US5127901A (en) * 1990-05-18 1992-07-07 Odrich Ronald B Implant with subconjunctival arch
US5558629A (en) * 1990-05-31 1996-09-24 Iovision, Inc. Glaucoma implant
US5397300A (en) * 1990-05-31 1995-03-14 Iovision, Inc. Glaucoma implant
US5178604A (en) * 1990-05-31 1993-01-12 Iovision, Inc. Glaucoma implant
US5454796A (en) * 1991-04-09 1995-10-03 Hood Laboratories Device and method for controlling intraocular fluid pressure
US5246451A (en) * 1991-04-30 1993-09-21 Medtronic, Inc. Vascular prosthesis and method
US5300020A (en) * 1991-05-31 1994-04-05 Medflex Corporation Surgically implantable device for glaucoma relief
US5486165A (en) * 1992-01-10 1996-01-23 Stegmann; Robert Method and appliance for maintaining the natural intraocular pressure
US5334137A (en) * 1992-02-21 1994-08-02 Eagle Vision, Inc. Lacrimal fluid control device
US5346464A (en) * 1992-03-10 1994-09-13 Camras Carl B Method and apparatus for reducing intraocular pressure
US5557453A (en) * 1992-06-12 1996-09-17 Leica Mikroskopie Und Systeme Gmbh Microscope that displays superimposed data
US6197056B1 (en) * 1992-07-15 2001-03-06 Ras Holding Corp. Segmented scleral band for treatment of presbyopia and other eye disorders
US5304561A (en) * 1992-07-24 1994-04-19 Faezeh Sarfarazi New concept in glaucoma treatment
US5318513A (en) * 1992-09-24 1994-06-07 Leib Martin L Canalicular balloon fixation stent
US5338291A (en) * 1993-02-03 1994-08-16 Pudenz-Schulte Medical Research Corporation Glaucoma shunt and method for draining aqueous humor
US5676679A (en) * 1993-03-19 1997-10-14 University Of Miami Apparatus for implanting an artifical meshwork in glaucoma surgery
US5810870A (en) * 1993-08-18 1998-09-22 W. L. Gore & Associates, Inc. Intraluminal stent graft
US5639278A (en) * 1993-10-21 1997-06-17 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5743868A (en) * 1994-02-14 1998-04-28 Brown; Reay H. Corneal pressure-regulating implant device
US5626559A (en) * 1994-05-02 1997-05-06 Ramot University Authority For Applied Research And Industrial Development Ltd. Ophthalmic device for draining excess intraocular fluid
US5869697A (en) * 1994-05-02 1999-02-09 Council Of Scientific & Industrial Research Process for preparing diltiazem
US5879319A (en) * 1994-06-22 1999-03-09 Chauvin Opsia Sclerotomy implant
US6102045A (en) * 1994-07-22 2000-08-15 Premier Laser Systems, Inc. Method and apparatus for lowering the intraocular pressure of an eye
US5704907A (en) * 1994-07-22 1998-01-06 Wound Healing Of Oklahoma Method and apparatus for lowering the intraocular pressure of an eye
US5520631A (en) * 1994-07-22 1996-05-28 Wound Healing Of Oklahoma Method and apparatus for lowering the intraocular pressure of an eye
US6063116A (en) * 1994-10-26 2000-05-16 Medarex, Inc. Modulation of cell proliferation and wound healing
US6063396A (en) * 1994-10-26 2000-05-16 Houston Biotechnology Incorporated Methods and compositions for the modulation of cell proliferation and wound healing
US5601549A (en) * 1994-11-17 1997-02-11 Machida Endoscope Co., Ltd. Medical observing instrument
US5601094A (en) * 1994-11-22 1997-02-11 Reiss; George R. Ophthalmic shunt
US6228873B1 (en) * 1994-12-09 2001-05-08 The Regents Of The University Of California Method for enhancing outflow of aqueous humor in treatment of glaucoma
US5433701A (en) * 1994-12-21 1995-07-18 Rubinstein; Mark H. Apparatus for reducing ocular pressure
US5558630A (en) * 1994-12-30 1996-09-24 Fisher; Bret L. Intrascleral implant and method for the regulation of intraocular pressure
US6059772A (en) * 1995-03-10 2000-05-09 Candela Corporation Apparatus and method for treating glaucoma using a gonioscopic laser trabecular ablation procedure
US5741333A (en) * 1995-04-12 1998-04-21 Corvita Corporation Self-expanding stent for a medical device to be introduced into a cavity of a body
US5626558A (en) * 1995-05-05 1997-05-06 Suson; John Adjustable flow rate glaucoma shunt and method of using same
US5868697A (en) * 1995-05-14 1999-02-09 Optonol Ltd. Intraocular implant
US5723005A (en) * 1995-06-07 1998-03-03 Herrick Family Limited Partnership Punctum plug having a collapsible flared section and method
US6033434A (en) * 1995-06-08 2000-03-07 Ave Galway Limited Bifurcated endovascular stent and methods for forming and placing
US5766243A (en) * 1995-08-21 1998-06-16 Oasis Medical, Inc. Abrasive polished canalicular implant
US6045557A (en) * 1995-11-10 2000-04-04 Baxter International Inc. Delivery catheter and method for positioning an intraluminal graft
US5651783A (en) * 1995-12-20 1997-07-29 Reynard; Michael Fiber optic sleeve for surgical instruments
US20040092548A1 (en) * 1995-12-21 2004-05-13 Jonathan Embleton Ophthalmic treatment
US5968058A (en) * 1996-03-27 1999-10-19 Optonol Ltd. Device for and method of implanting an intraocular implant
US5807302A (en) * 1996-04-01 1998-09-15 Wandel; Thaddeus Treatment of glaucoma
US6174305B1 (en) * 1996-04-09 2001-01-16 Endocare, Inc. Urological stent therapy system and method
US5865831A (en) * 1996-04-17 1999-02-02 Premier Laser Systems, Inc. Laser surgical procedures for treatment of glaucoma
US5670161A (en) * 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent
US5713844A (en) * 1997-01-10 1998-02-03 Peyman; Gholam A. Device and method for regulating intraocular pressure
US6071286A (en) * 1997-02-19 2000-06-06 Mawad; Michel E. Combination angioplasty balloon/stent deployment device
US5893837A (en) * 1997-02-28 1999-04-13 Staar Surgical Company, Inc. Glaucoma drain implanting device and method
US6059812A (en) * 1997-03-21 2000-05-09 Schneider (Usa) Inc. Self-expanding medical device for centering radioactive treatment sources in body vessels
US6266182B1 (en) * 1997-04-03 2001-07-24 Olympus Optical Co., Ltd. Operating microscope
US5882327A (en) * 1997-04-17 1999-03-16 Jacob; Jean T. Long-term glaucoma drainage implant
US6050970A (en) * 1997-05-08 2000-04-18 Pharmacia & Upjohn Company Method and apparatus for inserting a glaucoma implant in an anterior and posterior segment of the eye
US5752928A (en) * 1997-07-14 1998-05-19 Rdo Medical, Inc. Glaucoma pressure regulator
US20020013546A1 (en) * 1997-08-15 2002-01-31 Grieshaber & Co. Ag Schaffhausen Method and device to improve aqueous humor drainage in an eye
US6168575B1 (en) * 1998-01-29 2001-01-02 David Pyam Soltanpour Method and apparatus for controlling intraocular pressure
US6268398B1 (en) * 1998-04-24 2001-07-31 Mitokor Compounds and methods for treating mitochondria-associated diseases
US6077299A (en) * 1998-06-22 2000-06-20 Eyetronic, Llc Non-invasively adjustable valve implant for the drainage of aqueous humor in glaucoma
US6241721B1 (en) * 1998-10-09 2001-06-05 Colette Cozean Laser surgical procedures for treatment of glaucoma
US6193656B1 (en) * 1999-02-08 2001-02-27 Robert E. Jeffries Intraocular pressure monitoring/measuring apparatus and method
US6231597B1 (en) * 1999-02-16 2001-05-15 Mark E. Deem Apparatus and methods for selectively stenting a portion of a vessel wall
US6464724B1 (en) * 1999-04-26 2002-10-15 Gmp Vision Solutions, Inc. Stent device and method for treating glaucoma
US6626858B2 (en) * 1999-04-26 2003-09-30 Gmp Vision Solutions, Inc. Shunt device and method for treating glaucoma
US6342058B1 (en) * 1999-05-14 2002-01-29 Valdemar Portney Iris fixated intraocular lens and instrument for attaching same to an iris
US20020072673A1 (en) * 1999-12-10 2002-06-13 Yamamoto Ronald K. Treatment of ocular disease
US6375642B1 (en) * 2000-02-15 2002-04-23 Grieshaber & Co. Ag Schaffhausen Method of and device for improving a drainage of aqueous humor within the eye
US6533768B1 (en) * 2000-04-14 2003-03-18 The Regents Of The University Of California Device for glaucoma treatment and methods thereof
US20020026200A1 (en) * 2000-08-22 2002-02-28 Savage James A. Method and apparatus for treatment of glaucoma
US20020082591A1 (en) * 2000-12-14 2002-06-27 Eduard Haefliger Device for the treatment of glaucoma
US20020133168A1 (en) * 2001-03-16 2002-09-19 Smedley Gregory T. Applicator and methods for placing a trabecular shunt for glaucoma treatment
US20020143284A1 (en) * 2001-04-03 2002-10-03 Hosheng Tu Drug-releasing trabecular implant for glaucoma treatment

Cited By (272)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10492950B2 (en) 1999-04-26 2019-12-03 Glaukos Corporation Shunt device and method for treating ocular disorders
US7850637B2 (en) 1999-04-26 2010-12-14 Glaukos Corporation Shunt device and method for treating glaucoma
US8388568B2 (en) 1999-04-26 2013-03-05 Glaukos Corporation Shunt device and method for treating ocular disorders
US9492320B2 (en) 1999-04-26 2016-11-15 Glaukos Corporation Shunt device and method for treating ocular disorders
US10568762B2 (en) 1999-04-26 2020-02-25 Glaukos Corporation Stent for treating ocular disorders
US20100004580A1 (en) * 1999-04-26 2010-01-07 Glaukos Corporation Shunt device and method for treating ocular disorders
US9827143B2 (en) 1999-04-26 2017-11-28 Glaukos Corporation Shunt device and method for treating ocular disorders
US8152752B2 (en) 1999-04-26 2012-04-10 Glaukos Corporation Shunt device and method for treating glaucoma
US20050090806A1 (en) * 1999-04-26 2005-04-28 Gmp Vision Solutions Inc. Shunt device and method for treating glaucoma
US20050090807A1 (en) * 1999-04-26 2005-04-28 Gmp Vision Solutions, Inc. Shunt device and method for treating glaucoma
US20080161741A1 (en) * 2000-01-12 2008-07-03 Becton, Dickinson And Company Ocular implant and methods for making and using same
US20050119737A1 (en) * 2000-01-12 2005-06-02 Bene Eric A. Ocular implant and methods for making and using same
US20090137983A1 (en) * 2000-04-14 2009-05-28 Glaukos Corporation Implant delivery device and methods thereof for treatment of ocular disorders
US8348877B2 (en) 2000-04-14 2013-01-08 Dose Medical Corporation Ocular implant with therapeutic agents and methods thereof
US10485702B2 (en) 2000-04-14 2019-11-26 Glaukos Corporation System and method for treating an ocular disorder
US20100234790A1 (en) * 2000-04-14 2010-09-16 Glaukos Corporation Ocular implant with therapeutic agents and methods thereof
US20040254519A1 (en) * 2000-04-14 2004-12-16 Hosheng Tu Glaucoma treatment device
US8801648B2 (en) 2000-04-14 2014-08-12 Glaukos Corporation Ocular implant with anchor and methods thereof
US20050209550A1 (en) * 2000-04-14 2005-09-22 Bergheim Olav B Method of treating glaucoma using an implant having a uniform diameter between the anterior chamber and Schlemm's canal
US20050209549A1 (en) * 2000-04-14 2005-09-22 Bergheim Olav B Glaucoma implant with multiple openings
US8808219B2 (en) 2000-04-14 2014-08-19 Glaukos Corporation Implant delivery device and methods thereof for treatment of ocular disorders
US8273050B2 (en) 2000-04-14 2012-09-25 Glaukos Corporation Ocular implant with anchor and therapeutic agent
US20040111050A1 (en) * 2000-04-14 2004-06-10 Gregory Smedley Implantable ocular pump to reduce intraocular pressure
US9993368B2 (en) 2000-04-14 2018-06-12 Glaukos Corporation System and method for treating an ocular disorder
US20050277864A1 (en) * 2000-04-14 2005-12-15 David Haffner Injectable gel implant for glaucoma treatment
US7708711B2 (en) 2000-04-14 2010-05-04 Glaukos Corporation Ocular implant with therapeutic agents and methods thereof
US20040249333A1 (en) * 2000-04-14 2004-12-09 Bergheim Olav B. Glaucoma implant with bi-directional flow
US9789001B2 (en) 2000-04-14 2017-10-17 Dose Medical Corporation Ocular implant with therapeutic agents and methods thereof
US20100056979A1 (en) * 2000-04-14 2010-03-04 Glaukos Corporation Implantable ocular pump to reduce intraocular pressure
US20100010414A1 (en) * 2000-04-14 2010-01-14 Glaukos Corporation Method of delivering an implant for treating an ocular disorder
US20040210185A1 (en) * 2000-04-14 2004-10-21 Hosheng Tu Glaucoma implant kit
US20040127843A1 (en) * 2000-04-14 2004-07-01 Hosheng Tu Glaucoma implant with therapeutic agents
US8333742B2 (en) 2000-04-14 2012-12-18 Glaukos Corporation Method of delivering an implant for treating an ocular disorder
US20080234624A2 (en) * 2000-04-14 2008-09-25 Glaukos Corporation Ocular implant with anchor and therapeutic agent
US20050049578A1 (en) * 2000-04-14 2005-03-03 Hosheng Tu Implantable ocular pump to reduce intraocular pressure
US7867205B2 (en) 2000-04-14 2011-01-11 Glaukos Corporation Method of delivering an implant for treating an ocular disorder
US9066782B2 (en) 2000-04-14 2015-06-30 Dose Medical Corporation Ocular implant with therapeutic agents and methods thereof
US20030187385A1 (en) * 2000-04-14 2003-10-02 Bergheim Olav B. Implant with anchor
US8814820B2 (en) 2000-04-14 2014-08-26 Glaukos Corporation Ocular implant with therapeutic agent and methods thereof
US20070282245A1 (en) * 2000-04-14 2007-12-06 Glaukos Corporation Glaucoma implant with valve
US10159601B2 (en) 2000-05-19 2018-12-25 Ivantis, Inc. Delivery system and method of use for the eye
US10335314B2 (en) 2000-05-19 2019-07-02 Ivantis, Inc. Delivery system and method of use for the eye
US10390993B1 (en) 2000-05-19 2019-08-27 Ivantis, Inc. Delivery system and method of use for the eye
US10687978B2 (en) 2000-05-19 2020-06-23 Ivantis, Inc. Delivery system and method of use for the eye
US9155654B2 (en) 2001-04-07 2015-10-13 Glaukos Corporation Ocular system with anchoring implant and therapeutic agent
US8118768B2 (en) 2001-04-07 2012-02-21 Dose Medical Corporation Drug eluting ocular implant with anchor and methods thereof
US8579846B2 (en) 2001-04-07 2013-11-12 Glaukos Corporation Ocular implant systems
US20090036819A1 (en) * 2001-04-07 2009-02-05 Glaukos Corporation Drug eluting ocular implant with anchor and methods thereof
US7857782B2 (en) 2001-04-07 2010-12-28 Glaukos Corporation Ocular implant delivery system and method thereof
US10828473B2 (en) 2001-04-07 2020-11-10 Glaukos Corporation Ocular implant delivery system and methods thereof
US20070112292A1 (en) * 2001-04-07 2007-05-17 Hosheng Tu Glaucoma stent and methods thereof for glaucoma treatment
US8062244B2 (en) 2001-04-07 2011-11-22 Glaukos Corporation Self-trephining implant and methods thereof for treatment of ocular disorders
US20090138022A1 (en) * 2001-04-07 2009-05-28 Glaukos Corporation Ocular implant delivery system and method thereof
US8075511B2 (en) 2001-04-07 2011-12-13 Glaukos Corporation System for treating ocular disorders and methods thereof
US10406029B2 (en) 2001-04-07 2019-09-10 Glaukos Corporation Ocular system with anchoring implant and therapeutic agent
US9987472B2 (en) 2001-04-07 2018-06-05 Glaukos Corporation Ocular implant delivery systems
US9572963B2 (en) 2001-04-07 2017-02-21 Glaukos Corporation Ocular disorder treatment methods and systems
US20050192527A1 (en) * 2001-05-02 2005-09-01 Morteza Gharib Glaucoma implant with extending members
US20100106073A1 (en) * 2001-05-02 2010-04-29 Glaukos Corporation Method of monitoring intraocular pressure and treating an ocular disorder
US20090076436A2 (en) * 2001-05-02 2009-03-19 Glaukos Corporation Ocular implants with deployable structure
US8142364B2 (en) 2001-05-02 2012-03-27 Dose Medical Corporation Method of monitoring intraocular pressure and treating an ocular disorder
US20080015488A1 (en) * 2001-05-03 2008-01-17 Glaukos Corporation Glaucoma implant with double anchor mechanism
US8337445B2 (en) 2001-05-03 2012-12-25 Glaukos Corporation Ocular implant with double anchor mechanism
US10285856B2 (en) 2001-08-28 2019-05-14 Glaukos Corporation Implant delivery system and methods thereof for treating ocular disorders
US20070010827A1 (en) * 2001-08-28 2007-01-11 Hosheng Tu Glaucoma stent system
US7879079B2 (en) 2001-08-28 2011-02-01 Glaukos Corporation Implant delivery system and methods thereof for treating ocular disorders
US9561131B2 (en) 2001-08-28 2017-02-07 Glaukos Corporation Implant delivery system and methods thereof for treating ocular disorders
US20060241749A1 (en) * 2001-08-28 2006-10-26 Hosheng Tu Glaucoma stent system
US8617094B2 (en) 2002-03-07 2013-12-31 Glaukos Corporation Fluid infusion methods for glaucoma treatment
US9220632B2 (en) 2002-03-07 2015-12-29 Glaukos Corporation Fluid infusion methods for ocular disorder treatment
US8882781B2 (en) 2002-03-15 2014-11-11 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US7951155B2 (en) 2002-03-15 2011-05-31 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US20050271704A1 (en) * 2002-04-08 2005-12-08 Hosheng Tu Injectable glaucoma implants with multiple openings
US7879001B2 (en) 2002-04-08 2011-02-01 Glaukos Corporation Devices and methods for treatment of ocular disorders
US20040102729A1 (en) * 2002-04-08 2004-05-27 David Haffner Devices and methods for glaucoma treatment
US9301875B2 (en) 2002-04-08 2016-04-05 Glaukos Corporation Ocular disorder treatment implants with multiple opening
US7867186B2 (en) 2002-04-08 2011-01-11 Glaukos Corporation Devices and methods for treatment of ocular disorders
US20050266047A1 (en) * 2002-04-08 2005-12-01 Hosheng Tu Injectable glaucoma implants with multiple openings
US20040147870A1 (en) * 2002-04-08 2004-07-29 Burns Thomas W. Glaucoma treatment kit
US9597230B2 (en) 2002-04-08 2017-03-21 Glaukos Corporation Devices and methods for glaucoma treatment
US10485701B2 (en) 2002-04-08 2019-11-26 Glaukos Corporation Devices and methods for glaucoma treatment
US20040024345A1 (en) * 2002-04-19 2004-02-05 Morteza Gharib Glaucoma implant with valveless flow bias
US20090036818A1 (en) * 2002-05-29 2009-02-05 University Of Saskatchewan Shunt and Method Treatment of Glaucoma
US7947008B2 (en) 2002-05-29 2011-05-24 University Of Saskatchewan Shunt and method treatment of glaucoma
US20050273033A1 (en) * 2002-05-29 2005-12-08 Grahn Bruce H Shunt and method treatment of glaucoma
US8007459B2 (en) 2002-09-21 2011-08-30 Glaukos Corporation Ocular implant with anchoring mechanism and multiple outlets
US20100152641A1 (en) * 2003-05-05 2010-06-17 Michael Yablonski Internal shunt and method for treating glaucoma
US8945038B2 (en) 2003-05-05 2015-02-03 Transcend Medical, Inc. Internal shunt and method for treating glaucoma
US9844462B2 (en) 2003-05-05 2017-12-19 Novartis Ag Internal shunt and method for treating glaucoma
US20070149915A1 (en) * 2003-05-05 2007-06-28 Judith Yablonski Internal shunt and method for treating glaucoma
US8444588B2 (en) 2003-05-05 2013-05-21 Transcend Medical, Inc. Internal shunt and method for treating glaucoma
US8486000B2 (en) 2003-11-14 2013-07-16 Transcend Medical, Inc. Ocular pressure regulation
US7291125B2 (en) 2003-11-14 2007-11-06 Transcend Medical, Inc. Ocular pressure regulation
US10226380B2 (en) 2003-11-14 2019-03-12 Novartis Ag Ocular pressure regulation
US8128588B2 (en) 2003-11-14 2012-03-06 Transcend Medical, Inc. Ocular pressure regulation
US20110087151A1 (en) * 2003-11-14 2011-04-14 Minas Theodore Coroneo Ocular pressure regulation
US20050107734A1 (en) * 2003-11-14 2005-05-19 Coroneo Minas T. Ocular pressure regulation
US8758289B2 (en) 2003-11-14 2014-06-24 Transcend Medical, Inc. Ocular pressure regulation
US8771218B2 (en) 2003-11-14 2014-07-08 Transcend Medical, Inc. Ocular pressure regulation
US20070106235A1 (en) * 2003-11-14 2007-05-10 Coroneo Minas T Ocular Pressure Regulation
US8808220B2 (en) 2003-11-14 2014-08-19 Transcend Medical, Inc. Ocular pressure regulation
US20110087149A1 (en) * 2003-11-14 2011-04-14 Minas Theodore Coroneo Ocular pressure regulation
US7815592B2 (en) 2003-11-14 2010-10-19 Transcend Medical, Inc. Ocular pressure regulation
US20110028884A1 (en) * 2003-11-14 2011-02-03 Minas Theodore Coroneo Ocular pressure regulation
US9351873B2 (en) 2003-11-14 2016-05-31 Transcend Medical, Inc. Ocular pressure regulation
US7850638B2 (en) 2003-11-14 2010-12-14 Transcend Medical, Inc. Ocular pressure regulation
US8728021B2 (en) 2003-11-14 2014-05-20 Transcend Medical, Inc. Ocular pressure regulation
US20050250788A1 (en) * 2004-01-30 2005-11-10 Hosheng Tu Aqueous outflow enhancement with vasodilated aqueous cavity
US20060036207A1 (en) * 2004-02-24 2006-02-16 Koonmen James P System and method for treating glaucoma
US7384550B2 (en) 2004-02-24 2008-06-10 Becton, Dickinson And Company Glaucoma implant having MEMS filter module
US20050184004A1 (en) * 2004-02-24 2005-08-25 Rodgers M. S. Glaucoma implant having MEMS filter module
US20070199877A1 (en) * 2004-02-24 2007-08-30 Rodgers M S Mems filter module
US20050197613A1 (en) * 2004-03-02 2005-09-08 Sniegowski Jeffry J. Implant having MEMS flow module with movable, flow-controlling baffle
US20050197653A1 (en) * 2004-03-02 2005-09-08 Sniegowski Jeffry J. Filter assembly with microfabricated filter element
US7364564B2 (en) 2004-03-02 2008-04-29 Becton, Dickinson And Company Implant having MEMS flow module with movable, flow-controlling baffle
US20060173397A1 (en) * 2004-11-23 2006-08-03 Hosheng Tu Ophthalmology implants and methods of manufacture
US20060173399A1 (en) * 2005-02-01 2006-08-03 Rodgers M S MEMS flow module with pivoting-type baffle
US20060206049A1 (en) * 2005-03-14 2006-09-14 Rodgers M S MEMS flow module with piston-type pressure regulating structure
US20060219627A1 (en) * 2005-03-31 2006-10-05 Rodgers M S MEMS filter module with concentric filtering walls
US7544176B2 (en) 2005-06-21 2009-06-09 Becton, Dickinson And Company Glaucoma implant having MEMS flow module with flexing diaphragm for pressure regulation
US20070004998A1 (en) * 2005-06-21 2007-01-04 Rodgers M S Glaucoma implant having MEMS flow module with flexing diaphragm for pressure regulation
US9398977B2 (en) 2006-01-17 2016-07-26 Transcend Medical, Inc. Glaucoma treatment device
US8814819B2 (en) 2006-01-17 2014-08-26 Transcend Medical, Inc. Glaucoma treatment device
US10905590B2 (en) 2006-01-17 2021-02-02 Alcon Inc. Glaucoma treatment device
US8721656B2 (en) 2006-01-17 2014-05-13 Transcend Medical, Inc. Glaucoma treatment device
US11786402B2 (en) 2006-01-17 2023-10-17 Alcon Inc. Glaucoma treatment device
US8734378B2 (en) 2006-01-17 2014-05-27 Transcend Medical, Inc. Glaucoma treatment device
US9421130B2 (en) 2006-01-17 2016-08-23 Novartis Ag. Glaucoma treatment device
US20070191863A1 (en) * 2006-01-17 2007-08-16 De Juan Eugene Jr Glaucoma Treatment Device
US20110028883A1 (en) * 2006-01-17 2011-02-03 Juan Jr Eugene De Glaucoma treatment device
US8801649B2 (en) 2006-01-17 2014-08-12 Transcend Medical, Inc. Glaucoma treatment device
EP1979023A2 (en) * 2006-01-17 2008-10-15 Transcend Medical, Inc. Glaucoma treatment device
EP1979023A4 (en) * 2006-01-17 2012-10-31 Transcend Medical Inc Glaucoma treatment device
US9789000B2 (en) 2006-01-17 2017-10-17 Novartis Ag Glaucoma treatment device
US9962290B2 (en) 2006-11-10 2018-05-08 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US8506515B2 (en) 2006-11-10 2013-08-13 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US10828195B2 (en) 2006-11-10 2020-11-10 Glaukos Corporation Uveoscleral shunt and methods for implanting same
US20080172204A1 (en) * 2007-01-15 2008-07-17 Fujitsu Limited Step counter and method of counting steps
US9585789B2 (en) 2007-07-17 2017-03-07 Novartis Ag Ocular implant with hydrogel expansion capabilities
US8672870B2 (en) 2007-07-17 2014-03-18 Transcend Medical, Inc. Ocular implant with hydrogel expansion capabilities
US8734377B2 (en) 2007-09-24 2014-05-27 Ivantis, Inc. Ocular implants with asymmetric flexibility
US9039650B2 (en) 2007-09-24 2015-05-26 Ivantis, Inc. Ocular implants with asymmetric flexibility
US20100222733A1 (en) * 2007-09-24 2010-09-02 Schieber Andrew T Glaucoma Treatment Method
US12016796B2 (en) 2007-09-24 2024-06-25 Alcon Inc. Methods and devices for increasing aqueous humor outflow
US9610196B2 (en) 2007-09-24 2017-04-04 Ivantis, Inc. Ocular implants with asymmetric flexibility
US8282592B2 (en) 2007-09-24 2012-10-09 Ivantis, Inc. Glaucoma treatment method
US9402767B2 (en) 2007-09-24 2016-08-02 Ivantis, Inc. Ocular implant architectures
US20090082860A1 (en) * 2007-09-24 2009-03-26 Schieber Andrew T Ocular Implants with Asymmetric Flexibility
US8372026B2 (en) 2007-09-24 2013-02-12 Ivantis, Inc. Ocular implant architectures
US11744734B2 (en) 2007-09-24 2023-09-05 Alcon Inc. Method of implanting an ocular implant
US8961447B2 (en) 2007-09-24 2015-02-24 Ivantis, Inc. Glaucoma treatment method
US8414518B2 (en) 2007-09-24 2013-04-09 Ivantis, Inc. Glaucoma treatment method
US7740604B2 (en) 2007-09-24 2010-06-22 Ivantis, Inc. Ocular implants for placement in schlemm's canal
US9351874B2 (en) 2007-11-20 2016-05-31 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US8551166B2 (en) 2007-11-20 2013-10-08 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US8808222B2 (en) 2007-11-20 2014-08-19 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US20100121342A1 (en) * 2007-11-20 2010-05-13 Schieber Andrew T Methods and Apparatus for Delivering Ocular Implants Into the Eye
US9226852B2 (en) 2007-11-20 2016-01-05 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US8512404B2 (en) 2007-11-20 2013-08-20 Ivantis, Inc. Ocular implant delivery system and method
US9050169B2 (en) 2007-11-20 2015-06-09 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US20090132040A1 (en) * 2007-11-20 2009-05-21 Ivantis, Inc. Ocular Implant Delivery System and Method
US8337509B2 (en) 2007-11-20 2012-12-25 Ivantis, Inc. Methods and apparatus for delivering ocular implants into the eye
US9066783B2 (en) 2008-03-05 2015-06-30 Ivantis, Inc. Methods and apparatus for treating glaucoma
US9693902B2 (en) 2008-03-05 2017-07-04 Ivantis, Inc. Methods and apparatus for treating glaucoma
US8267882B2 (en) 2008-03-05 2012-09-18 Ivantis, Inc. Methods and apparatus for treating glaucoma
US8529494B2 (en) 2008-03-05 2013-09-10 Ivantis, Inc. Methods and apparatus for treating glaucoma
US11504275B2 (en) 2008-03-05 2022-11-22 Alcon Inc. Methods and apparatus for treating glaucoma
US10537474B2 (en) 2008-03-05 2020-01-21 Ivantis, Inc. Methods and apparatus for treating glaucoma
US8172899B2 (en) 2009-01-28 2012-05-08 Transcend Medical, Inc. Ocular implant with stiffness qualities, methods of implantation and system
US11839571B2 (en) 2009-01-28 2023-12-12 Alcon Inc. Ocular implant with stiffness qualities, methods of implantation and system
US10531983B2 (en) 2009-01-28 2020-01-14 Novartis Ag Ocular implant with stiffness qualities, methods of implantation and system
US8377122B2 (en) 2009-01-28 2013-02-19 Transcend Medical, Inc. Ocular implant with stiffness qualities, methods of implantation and system
US11344448B2 (en) 2009-01-28 2022-05-31 Alcon Inc. Ocular implant with stiffness qualities, methods of implantation and system
US20110028983A1 (en) * 2009-01-28 2011-02-03 Silvestrini Thomas A Ocular implant with stiffness qualities, methods of implantation and system
US20110087148A1 (en) * 2009-01-28 2011-04-14 Silvestrini Thomas A Ocular implant with stiffness qualities, methods of implantation and system
US20100274258A1 (en) * 2009-01-28 2010-10-28 Silvestrini Thomas A Ocular implant with stiffness qualities, methods of implantation and system
US8574294B2 (en) 2009-01-28 2013-11-05 Transcend Medical, Inc. Ocular implant with stiffness qualities, methods of implantation and system
US8167939B2 (en) 2009-01-28 2012-05-01 Transcend Medical, Inc. Ocular implant with stiffness qualities, methods of implantation and system
US8262726B2 (en) 2009-01-28 2012-09-11 Transcend Medical, Inc. Ocular implant with stiffness qualities, methods of implantation and system
US9763828B2 (en) 2009-01-28 2017-09-19 Novartis Ag Ocular implant with stiffness qualities, methods of implantation and system
US11426306B2 (en) 2009-05-18 2022-08-30 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
US10492949B2 (en) 2009-07-09 2019-12-03 Ivantis, Inc. Single operator device for delivering an ocular implant
US9693899B2 (en) 2009-07-09 2017-07-04 Ivantis, Inc. Single operator device for delivering an ocular implant
US10406025B2 (en) 2009-07-09 2019-09-10 Ivantis, Inc. Ocular implants and methods for delivering ocular implants into the eye
US11464675B2 (en) 2009-07-09 2022-10-11 Alcon Inc. Single operator device for delivering an ocular implant
US20110009874A1 (en) * 2009-07-09 2011-01-13 John Wardle Single Operator Device for Delivering an Ocular Implant
US20110009958A1 (en) * 2009-07-09 2011-01-13 John Wardle Ocular Implants and Methods for Delivering Ocular Implants Into the Eye
US11918514B2 (en) 2009-07-09 2024-03-05 Alcon Inc. Single operator device for delivering an ocular implant
US8425449B2 (en) 2009-07-09 2013-04-23 Ivantis, Inc. Ocular implants and methods for delivering ocular implants into the eye
US9211213B2 (en) 2009-07-09 2015-12-15 Ivantis, Inc. Ocular implants and methods for delivering ocular implants into the eye
US11596546B2 (en) 2009-07-09 2023-03-07 Alcon Inc. Ocular implants and methods for delivering ocular implants into the eye
US9579234B2 (en) 2009-10-23 2017-02-28 Ivantis, Inc. Ocular implant system and method
US20110105990A1 (en) * 2009-11-04 2011-05-05 Silvestrini Thomas A Zonal drug delivery device and method
US9089392B2 (en) 2009-12-23 2015-07-28 Transcend Medical, Inc. Drug delivery devices and methods
US9549846B2 (en) 2009-12-23 2017-01-24 Novartis Ag Drug delivery devices and methods
US8529492B2 (en) 2009-12-23 2013-09-10 Trascend Medical, Inc. Drug delivery devices and methods
US9173774B2 (en) 2010-03-26 2015-11-03 Optonol Ltd. Fluid drainage device, delivery device, and associated methods of use and manufacture
US9510973B2 (en) 2010-06-23 2016-12-06 Ivantis, Inc. Ocular implants deployed in schlemm's canal of the eye
US10617557B2 (en) * 2010-08-05 2020-04-14 Forsight Vision4, Inc. Combined drug delivery methods and apparatus
US11679027B2 (en) 2010-08-05 2023-06-20 Forsight Vision4, Inc. Combined drug delivery methods and apparatus
US20130274691A1 (en) * 2010-08-05 2013-10-17 Forsight Vision4, Inc. Combined drug delivery methods and apparatus
US20120302861A1 (en) * 2011-04-27 2012-11-29 Istar Medical Device and method for glaucoma management and treatment
US8926510B2 (en) * 2011-04-27 2015-01-06 Istar Medical Sa Device and method for glaucoma management and treatment
US9155655B2 (en) 2011-06-14 2015-10-13 Ivantis, Inc. Ocular implants for delivery into the eye
US10363168B2 (en) 2011-06-14 2019-07-30 Ivantis, Inc. Ocular implants for delivery into the eye
US8657776B2 (en) 2011-06-14 2014-02-25 Ivantis, Inc. Ocular implants for delivery into the eye
US11363951B2 (en) 2011-09-13 2022-06-21 Glaukos Corporation Intraocular physiological sensor
US9113994B2 (en) 2011-12-08 2015-08-25 Aquesys, Inc. Intraocular shunt manufacture
US10314743B2 (en) 2011-12-08 2019-06-11 Aquesys, Inc. Intraocular shunt manufacture
US9095413B2 (en) 2011-12-08 2015-08-04 Aquesys, Inc. Intraocular shunt manufacture
US9592154B2 (en) 2011-12-08 2017-03-14 Aquesys, Inc. Intraocular shunt manufacture
US11135088B2 (en) 2011-12-19 2021-10-05 Ivantis Inc. Delivering ocular implants into the eye
US9931243B2 (en) 2011-12-19 2018-04-03 Ivantis, Inc. Delivering ocular implants into the eye
US9066750B2 (en) 2011-12-19 2015-06-30 Ivantis, Inc. Delivering ocular implants into the eye
US12076273B2 (en) 2011-12-19 2024-09-03 Alcon Inc. Delivering ocular implants into the eye
US8663150B2 (en) 2011-12-19 2014-03-04 Ivantis, Inc. Delivering ocular implants into the eye
US11944573B2 (en) 2012-03-26 2024-04-02 Glaukos Corporation System and method for delivering multiple ocular implants
US9173775B2 (en) 2012-03-26 2015-11-03 Glaukos Corporation System for delivering multiple ocular implants
US9554940B2 (en) 2012-03-26 2017-01-31 Glaukos Corporation System and method for delivering multiple ocular implants
US10271989B2 (en) 2012-03-26 2019-04-30 Glaukos Corporation System and method for delivering multiple ocular implants
US11197780B2 (en) 2012-03-26 2021-12-14 Glaukos Corporation System and method for delivering multiple ocular implants
US9358156B2 (en) 2012-04-18 2016-06-07 Invantis, Inc. Ocular implants for delivery into an anterior chamber of the eye
US11026836B2 (en) 2012-04-18 2021-06-08 Ivantis, Inc. Ocular implants for delivery into an anterior chamber of the eye
US11992437B2 (en) 2012-04-18 2024-05-28 Alcon Inc. Ocular implants for delivery into an anterior chamber of the eye
US10085633B2 (en) 2012-04-19 2018-10-02 Novartis Ag Direct visualization system for glaucoma treatment
US9414962B2 (en) 2012-04-23 2016-08-16 Das Agarwal Ghansham Device for treatment of glaucoma and prevention of sub-scleral fibrosis and blockage
US9155656B2 (en) 2012-04-24 2015-10-13 Transcend Medical, Inc. Delivery system for ocular implant
US9907697B2 (en) 2012-04-24 2018-03-06 Novartis Ag Delivery system for ocular implant
US9241832B2 (en) 2012-04-24 2016-01-26 Transcend Medical, Inc. Delivery system for ocular implant
US10912676B2 (en) 2012-04-24 2021-02-09 Alcon Inc. Delivery system for ocular implant
US20130317411A1 (en) * 2012-05-23 2013-11-28 Ghansham Das AGARWAL Device for Treatment of Glaucoma
US9480598B2 (en) 2012-09-17 2016-11-01 Novartis Ag Expanding ocular implant devices and methods
US9763829B2 (en) 2012-11-14 2017-09-19 Novartis Ag Flow promoting ocular implant
US11712369B2 (en) 2012-11-28 2023-08-01 Alcon Inc. Apparatus for delivering ocular implants into an anterior chamber of the eye
US10617558B2 (en) 2012-11-28 2020-04-14 Ivantis, Inc. Apparatus for delivering ocular implants into an anterior chamber of the eye
US9125723B2 (en) 2013-02-19 2015-09-08 Aquesys, Inc. Adjustable glaucoma implant
US10159600B2 (en) 2013-02-19 2018-12-25 Aquesys, Inc. Adjustable intraocular flow regulation
US10195078B2 (en) 2013-02-19 2019-02-05 Aquesys, Inc. Adjustable intraocular flow regulation
US10195079B2 (en) 2013-02-19 2019-02-05 Aquesys, Inc. Adjustable intraocular implant
US9730638B2 (en) 2013-03-13 2017-08-15 Glaukos Corporation Intraocular physiological sensor
US10849558B2 (en) 2013-03-13 2020-12-01 Glaukos Corporation Intraocular physiological sensor
US9592151B2 (en) 2013-03-15 2017-03-14 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
US11523938B2 (en) 2013-03-15 2022-12-13 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
US11253394B2 (en) 2013-03-15 2022-02-22 Dose Medical Corporation Controlled drug delivery ocular implants and methods of using same
US10188551B2 (en) 2013-03-15 2019-01-29 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
US10517759B2 (en) 2013-03-15 2019-12-31 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US11559430B2 (en) 2013-03-15 2023-01-24 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US9987163B2 (en) 2013-04-16 2018-06-05 Novartis Ag Device for dispensing intraocular substances
US11938059B2 (en) 2013-11-14 2024-03-26 Aquesys, Inc. Intraocular shunt insertion techniques
US10959941B2 (en) 2014-05-29 2021-03-30 Glaukos Corporation Implants with controlled drug delivery features and methods of using same
US11992551B2 (en) 2014-05-29 2024-05-28 Glaukos Corporation Implants with controlled drug delivery features and methods of using same
US10709547B2 (en) 2014-07-14 2020-07-14 Ivantis, Inc. Ocular implant delivery system and method
US11019997B2 (en) 2015-03-20 2021-06-01 Glaukos Corporation Gonioscopic devices
US11019996B2 (en) 2015-03-20 2021-06-01 Glaukos Corporation Gonioscopic devices
US11826104B2 (en) 2015-03-20 2023-11-28 Glaukos Corporation Gonioscopic devices
US10842916B2 (en) 2015-06-24 2020-11-24 Healionics Corporation Injectable porous device for treatment of dry and wet age-related macular degeneration or diabetic retinopathy
US11197779B2 (en) 2015-08-14 2021-12-14 Ivantis, Inc. Ocular implant with pressure sensor and delivery system
US11925578B2 (en) 2015-09-02 2024-03-12 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity
US20170080182A1 (en) * 2015-09-23 2017-03-23 Brian William Rotenberg Bilateral Frontal Sinus Device
US20170080179A1 (en) * 2015-09-23 2017-03-23 Brian William Rotenberg Bilateral Frontal Sinus Device
US11564833B2 (en) 2015-09-25 2023-01-31 Glaukos Corporation Punctal implants with controlled drug delivery features and methods of using same
US11938058B2 (en) 2015-12-15 2024-03-26 Alcon Inc. Ocular implant and delivery system
US11318043B2 (en) 2016-04-20 2022-05-03 Dose Medical Corporation Bioresorbable ocular drug delivery device
US11707383B2 (en) * 2016-04-21 2023-07-25 Suzhou Purevision Medical Technology Co., Ltd. Inner drainage biomimetic stent for glaucoma and use thereof
US11744458B2 (en) 2017-02-24 2023-09-05 Glaukos Corporation Gonioscopes
US11116625B2 (en) 2017-09-28 2021-09-14 Glaukos Corporation Apparatus and method for controlling placement of intraocular implants
US11376040B2 (en) 2017-10-06 2022-07-05 Glaukos Corporation Systems and methods for delivering multiple ocular implants
USD938585S1 (en) 2017-10-27 2021-12-14 Glaukos Corporation Implant delivery apparatus
CN107981969A (en) * 2017-12-29 2018-05-04 温州医科大学附属眼视光医院 Drainage substitutes biomimetic scaffolds in a kind of glaucoma
US12029683B2 (en) 2018-02-22 2024-07-09 Alcon Inc. Ocular implant and delivery system
CN112638332A (en) * 2018-08-31 2021-04-09 新世界医学有限公司 Ocular implant, inserter device and method for inserting an ocular implant
US11540940B2 (en) 2021-01-11 2023-01-03 Alcon Inc. Systems and methods for viscoelastic delivery

Also Published As

Publication number Publication date
US20050119601A9 (en) 2005-06-02
US20070088432A1 (en) 2007-04-19
US7220238B2 (en) 2007-05-22
US20050038334A1 (en) 2005-02-17

Similar Documents

Publication Publication Date Title
US7220238B2 (en) Shunt device and method for treating glaucoma
US10568762B2 (en) Stent for treating ocular disorders
US20100234791A1 (en) Dual drainage pathway shunt device
WO2003015659A2 (en) Improved shunt device and method for treating glaucoma
AU2002323194A1 (en) Improved shunt device and method for treating glaucoma

Legal Events

Date Code Title Description
AS Assignment

Owner name: GMP VISION SOLUTIONS, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LYNCH, MARY G.;BROWN, REAY H.;BALL, STUART;SIGNING DATES FROM 20021018 TO 20021025;REEL/FRAME:013449/0534

Owner name: GMP VISION SOLUTIONS, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LYNCH, MARY G.;BROWN, REAY H.;BALL, STUART;REEL/FRAME:013449/0534;SIGNING DATES FROM 20021018 TO 20021025

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION