US20020165179A1 - Multifunctional nanodevice platform - Google Patents
Multifunctional nanodevice platform Download PDFInfo
- Publication number
- US20020165179A1 US20020165179A1 US09/940,243 US94024301A US2002165179A1 US 20020165179 A1 US20020165179 A1 US 20020165179A1 US 94024301 A US94024301 A US 94024301A US 2002165179 A1 US2002165179 A1 US 2002165179A1
- Authority
- US
- United States
- Prior art keywords
- agent
- dendrimer
- composition
- dendrimers
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000412 dendrimer Substances 0.000 claims abstract description 320
- 229920000736 dendritic polymer Polymers 0.000 claims abstract description 320
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 135
- 239000000203 mixture Substances 0.000 claims abstract description 117
- 230000008685 targeting Effects 0.000 claims abstract description 59
- 230000001225 therapeutic effect Effects 0.000 claims abstract description 54
- 238000012544 monitoring process Methods 0.000 claims abstract description 39
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 31
- 201000010099 disease Diseases 0.000 claims abstract description 28
- 239000003795 chemical substances by application Substances 0.000 claims description 142
- 239000003814 drug Substances 0.000 claims description 76
- 102000039446 nucleic acids Human genes 0.000 claims description 65
- 108020004707 nucleic acids Proteins 0.000 claims description 65
- 108090000623 proteins and genes Proteins 0.000 claims description 65
- 150000007523 nucleic acids Chemical class 0.000 claims description 59
- 229940124597 therapeutic agent Drugs 0.000 claims description 51
- -1 plicomycin Chemical compound 0.000 claims description 44
- 239000000427 antigen Substances 0.000 claims description 40
- 108091007433 antigens Proteins 0.000 claims description 40
- 102000036639 antigens Human genes 0.000 claims description 40
- 230000000694 effects Effects 0.000 claims description 37
- 230000006907 apoptotic process Effects 0.000 claims description 32
- 102000005962 receptors Human genes 0.000 claims description 29
- 108020003175 receptors Proteins 0.000 claims description 29
- 102000004169 proteins and genes Human genes 0.000 claims description 28
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 claims description 24
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 20
- 230000001413 cellular effect Effects 0.000 claims description 19
- 230000014509 gene expression Effects 0.000 claims description 17
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 claims description 16
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 claims description 16
- 230000000295 complement effect Effects 0.000 claims description 16
- 239000003446 ligand Substances 0.000 claims description 16
- 238000009396 hybridization Methods 0.000 claims description 15
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims description 15
- 229930012538 Paclitaxel Natural products 0.000 claims description 14
- 229960001592 paclitaxel Drugs 0.000 claims description 14
- 239000002246 antineoplastic agent Substances 0.000 claims description 13
- 239000012216 imaging agent Substances 0.000 claims description 12
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 claims description 11
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 claims description 11
- 230000000692 anti-sense effect Effects 0.000 claims description 10
- 102000004127 Cytokines Human genes 0.000 claims description 9
- 108090000695 Cytokines Proteins 0.000 claims description 9
- 229940127089 cytotoxic agent Drugs 0.000 claims description 9
- 125000006239 protecting group Chemical group 0.000 claims description 9
- 230000005856 abnormality Effects 0.000 claims description 8
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 claims description 8
- 239000000411 inducer Substances 0.000 claims description 8
- 229940088594 vitamin Drugs 0.000 claims description 8
- 229930003231 vitamin Natural products 0.000 claims description 8
- 235000013343 vitamin Nutrition 0.000 claims description 8
- 239000011782 vitamin Substances 0.000 claims description 8
- 108700020463 BRCA1 Proteins 0.000 claims description 7
- 102000036365 BRCA1 Human genes 0.000 claims description 7
- 101150072950 BRCA1 gene Proteins 0.000 claims description 7
- 108700020796 Oncogene Proteins 0.000 claims description 7
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 claims description 7
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 claims description 7
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 claims description 7
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- 102000052609 BRCA2 Human genes 0.000 claims description 6
- 108700020462 BRCA2 Proteins 0.000 claims description 6
- 101150008921 Brca2 gene Proteins 0.000 claims description 6
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 claims description 6
- 102000003886 Glycoproteins Human genes 0.000 claims description 6
- 108090000288 Glycoproteins Proteins 0.000 claims description 6
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 claims description 6
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 claims description 6
- 229940009456 adriamycin Drugs 0.000 claims description 6
- 238000012984 biological imaging Methods 0.000 claims description 6
- 238000003776 cleavage reaction Methods 0.000 claims description 6
- 229960004679 doxorubicin Drugs 0.000 claims description 6
- 108010038795 estrogen receptors Proteins 0.000 claims description 6
- 102000015694 estrogen receptors Human genes 0.000 claims description 6
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 claims description 6
- 229960002949 fluorouracil Drugs 0.000 claims description 6
- 108020005243 folate receptor Proteins 0.000 claims description 6
- 102000006815 folate receptor Human genes 0.000 claims description 6
- 230000007017 scission Effects 0.000 claims description 6
- 108010079245 Cystic Fibrosis Transmembrane Conductance Regulator Proteins 0.000 claims description 5
- 102000010789 Interleukin-2 Receptors Human genes 0.000 claims description 5
- 108010038453 Interleukin-2 Receptors Proteins 0.000 claims description 5
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 claims description 5
- 108010091356 Tumor Protein p73 Proteins 0.000 claims description 5
- 102000018252 Tumor Protein p73 Human genes 0.000 claims description 5
- 108091008605 VEGF receptors Proteins 0.000 claims description 5
- 229960005420 etoposide Drugs 0.000 claims description 5
- 229940088597 hormone Drugs 0.000 claims description 5
- 239000005556 hormone Substances 0.000 claims description 5
- 102000008371 intracellularly ATP-gated chloride channel activity proteins Human genes 0.000 claims description 5
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 claims description 4
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 claims description 4
- 108010092160 Dactinomycin Proteins 0.000 claims description 4
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 claims description 4
- 101000746373 Homo sapiens Granulocyte-macrophage colony-stimulating factor Proteins 0.000 claims description 4
- 102000008070 Interferon-gamma Human genes 0.000 claims description 4
- 108010074328 Interferon-gamma Proteins 0.000 claims description 4
- 108010002352 Interleukin-1 Proteins 0.000 claims description 4
- 108090000174 Interleukin-10 Proteins 0.000 claims description 4
- 108010065805 Interleukin-12 Proteins 0.000 claims description 4
- 108090000176 Interleukin-13 Proteins 0.000 claims description 4
- 102000003812 Interleukin-15 Human genes 0.000 claims description 4
- 108090000172 Interleukin-15 Proteins 0.000 claims description 4
- 102000000588 Interleukin-2 Human genes 0.000 claims description 4
- 108010002350 Interleukin-2 Proteins 0.000 claims description 4
- 108010002386 Interleukin-3 Proteins 0.000 claims description 4
- 108090000978 Interleukin-4 Proteins 0.000 claims description 4
- 108010002616 Interleukin-5 Proteins 0.000 claims description 4
- 108090001005 Interleukin-6 Proteins 0.000 claims description 4
- 108010002586 Interleukin-7 Proteins 0.000 claims description 4
- 108090001007 Interleukin-8 Proteins 0.000 claims description 4
- 108010002335 Interleukin-9 Proteins 0.000 claims description 4
- 101710163270 Nuclease Proteins 0.000 claims description 4
- 108091005804 Peptidases Proteins 0.000 claims description 4
- 239000004365 Protease Substances 0.000 claims description 4
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 claims description 4
- 230000003443 anti-oncogenic effect Effects 0.000 claims description 4
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 claims description 4
- 229940127093 camptothecin Drugs 0.000 claims description 4
- 239000003183 carcinogenic agent Substances 0.000 claims description 4
- 229960000640 dactinomycin Drugs 0.000 claims description 4
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 claims description 4
- YJGVMLPVUAXIQN-UHFFFAOYSA-N epipodophyllotoxin Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YJGVMLPVUAXIQN-UHFFFAOYSA-N 0.000 claims description 4
- 229940044627 gamma-interferon Drugs 0.000 claims description 4
- 229960004857 mitomycin Drugs 0.000 claims description 4
- YJGVMLPVUAXIQN-XVVDYKMHSA-N podophyllotoxin Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-XVVDYKMHSA-N 0.000 claims description 4
- 229960001237 podophyllotoxin Drugs 0.000 claims description 4
- YVCVYCSAAZQOJI-UHFFFAOYSA-N podophyllotoxin Natural products COC1=C(O)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YVCVYCSAAZQOJI-UHFFFAOYSA-N 0.000 claims description 4
- 230000002285 radioactive effect Effects 0.000 claims description 4
- 229960001722 verapamil Drugs 0.000 claims description 4
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 claims description 3
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 claims description 3
- 108010006654 Bleomycin Proteins 0.000 claims description 3
- 108010062802 CD66 antigens Proteins 0.000 claims description 3
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 claims description 3
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 claims description 3
- 108090000177 Interleukin-11 Proteins 0.000 claims description 3
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 claims description 3
- 229930192392 Mitomycin Natural products 0.000 claims description 3
- 229960001561 bleomycin Drugs 0.000 claims description 3
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 claims description 3
- 229960004562 carboplatin Drugs 0.000 claims description 3
- 229960004630 chlorambucil Drugs 0.000 claims description 3
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 claims description 3
- RAURUSFBVQLAPW-DNIKMYEQSA-N clocinnamox Chemical compound N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CCC5=O)NC(=O)\C=C\C=2C=CC(Cl)=CC=2)CC1)O)CC1CC1 RAURUSFBVQLAPW-DNIKMYEQSA-N 0.000 claims description 3
- 229960004397 cyclophosphamide Drugs 0.000 claims description 3
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 claims description 3
- 229960000975 daunorubicin Drugs 0.000 claims description 3
- 229960001101 ifosfamide Drugs 0.000 claims description 3
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 claims description 3
- 229960004961 mechlorethamine Drugs 0.000 claims description 3
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 claims description 3
- 229960001924 melphalan Drugs 0.000 claims description 3
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 claims description 3
- 229960000485 methotrexate Drugs 0.000 claims description 3
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 claims description 3
- 229960000624 procarbazine Drugs 0.000 claims description 3
- 108091008146 restriction endonucleases Proteins 0.000 claims description 3
- 229960001603 tamoxifen Drugs 0.000 claims description 3
- JXLYSJRDGCGARV-CFWMRBGOSA-N vinblastine Chemical compound C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-CFWMRBGOSA-N 0.000 claims description 3
- 229960003048 vinblastine Drugs 0.000 claims description 3
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 claims description 3
- 229960004528 vincristine Drugs 0.000 claims description 3
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 claims description 3
- 150000003722 vitamin derivatives Chemical class 0.000 claims description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims 1
- 190000008236 carboplatin Chemical compound 0.000 claims 1
- 201000011510 cancer Diseases 0.000 abstract description 59
- 238000003384 imaging method Methods 0.000 abstract description 36
- 238000002560 therapeutic procedure Methods 0.000 abstract description 35
- 239000000463 material Substances 0.000 abstract description 17
- 230000004044 response Effects 0.000 abstract description 13
- 238000003745 diagnosis Methods 0.000 abstract description 10
- 238000003491 array Methods 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 198
- 238000000034 method Methods 0.000 description 82
- 229920000962 poly(amidoamine) Polymers 0.000 description 40
- 229920000642 polymer Polymers 0.000 description 39
- 210000004881 tumor cell Anatomy 0.000 description 35
- 206010006187 Breast cancer Diseases 0.000 description 33
- 210000001519 tissue Anatomy 0.000 description 32
- 125000005647 linker group Chemical group 0.000 description 31
- 238000006243 chemical reaction Methods 0.000 description 30
- 208000026310 Breast neoplasm Diseases 0.000 description 29
- 150000001875 compounds Chemical class 0.000 description 28
- 108090000765 processed proteins & peptides Proteins 0.000 description 27
- 235000018102 proteins Nutrition 0.000 description 26
- 108020004414 DNA Proteins 0.000 description 25
- 238000011282 treatment Methods 0.000 description 25
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 24
- 238000000338 in vitro Methods 0.000 description 23
- 238000012384 transportation and delivery Methods 0.000 description 23
- 230000015572 biosynthetic process Effects 0.000 description 22
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 22
- 229960004316 cisplatin Drugs 0.000 description 22
- 229940079593 drug Drugs 0.000 description 22
- 241001465754 Metazoa Species 0.000 description 21
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 238000012360 testing method Methods 0.000 description 21
- 230000027455 binding Effects 0.000 description 20
- 238000001727 in vivo Methods 0.000 description 20
- 239000000243 solution Substances 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 16
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 15
- 229910052796 boron Inorganic materials 0.000 description 15
- 239000011258 core-shell material Substances 0.000 description 15
- 238000003786 synthesis reaction Methods 0.000 description 15
- 102000004190 Enzymes Human genes 0.000 description 14
- 108090000790 Enzymes Proteins 0.000 description 14
- 229940088598 enzyme Drugs 0.000 description 14
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 14
- 230000006870 function Effects 0.000 description 14
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 13
- 206010009944 Colon cancer Diseases 0.000 description 13
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 13
- 238000003556 assay Methods 0.000 description 13
- 208000029742 colonic neoplasm Diseases 0.000 description 13
- 230000001988 toxicity Effects 0.000 description 13
- 231100000419 toxicity Toxicity 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 125000003277 amino group Chemical group 0.000 description 11
- 238000013459 approach Methods 0.000 description 11
- 239000003153 chemical reaction reagent Substances 0.000 description 11
- 210000000349 chromosome Anatomy 0.000 description 11
- 108091034117 Oligonucleotide Proteins 0.000 description 10
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 10
- 241000700605 Viruses Species 0.000 description 10
- 239000002585 base Substances 0.000 description 10
- 230000021615 conjugation Effects 0.000 description 10
- 238000002595 magnetic resonance imaging Methods 0.000 description 10
- 108020004999 messenger RNA Proteins 0.000 description 10
- 102000004196 processed proteins & peptides Human genes 0.000 description 10
- 108091026890 Coding region Proteins 0.000 description 9
- 238000004630 atomic force microscopy Methods 0.000 description 9
- 238000009472 formulation Methods 0.000 description 9
- 239000012634 fragment Substances 0.000 description 9
- SENLDUJVTGGYIH-UHFFFAOYSA-N n-(2-aminoethyl)-3-[[3-(2-aminoethylamino)-3-oxopropyl]-[2-[bis[3-(2-aminoethylamino)-3-oxopropyl]amino]ethyl]amino]propanamide Chemical compound NCCNC(=O)CCN(CCC(=O)NCCN)CCN(CCC(=O)NCCN)CCC(=O)NCCN SENLDUJVTGGYIH-UHFFFAOYSA-N 0.000 description 9
- 244000052769 pathogen Species 0.000 description 9
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 9
- 238000001542 size-exclusion chromatography Methods 0.000 description 9
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 8
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 8
- 238000004113 cell culture Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 8
- 235000019152 folic acid Nutrition 0.000 description 8
- 239000011724 folic acid Substances 0.000 description 8
- 210000005170 neoplastic cell Anatomy 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 239000013598 vector Substances 0.000 description 8
- 102400001368 Epidermal growth factor Human genes 0.000 description 7
- 101800003838 Epidermal growth factor Proteins 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 231100000002 MTT assay Toxicity 0.000 description 7
- 238000000134 MTT assay Methods 0.000 description 7
- 230000010261 cell growth Effects 0.000 description 7
- 230000006378 damage Effects 0.000 description 7
- 229940116977 epidermal growth factor Drugs 0.000 description 7
- 238000005755 formation reaction Methods 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000002773 nucleotide Substances 0.000 description 7
- 125000003729 nucleotide group Chemical group 0.000 description 7
- 238000011275 oncology therapy Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000000829 suppository Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 6
- 102000053602 DNA Human genes 0.000 description 6
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 6
- 102400001301 Gasdermin-B, C-terminal Human genes 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 108091092195 Intron Proteins 0.000 description 6
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 6
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 6
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 6
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 6
- 208000009956 adenocarcinoma Diseases 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 210000000481 breast Anatomy 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 231100000135 cytotoxicity Toxicity 0.000 description 6
- 230000003013 cytotoxicity Effects 0.000 description 6
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 6
- 229960000304 folic acid Drugs 0.000 description 6
- 239000003999 initiator Substances 0.000 description 6
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 230000001717 pathogenic effect Effects 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- 230000003612 virological effect Effects 0.000 description 6
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 5
- 201000009030 Carcinoma Diseases 0.000 description 5
- 241000725303 Human immunodeficiency virus Species 0.000 description 5
- 101150039798 MYC gene Proteins 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- 108010090804 Streptavidin Proteins 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 230000000259 anti-tumor effect Effects 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 230000001588 bifunctional effect Effects 0.000 description 5
- 239000012620 biological material Substances 0.000 description 5
- 229940098773 bovine serum albumin Drugs 0.000 description 5
- 238000002648 combination therapy Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 239000002502 liposome Substances 0.000 description 5
- 229920002521 macromolecule Polymers 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 102000040430 polynucleotide Human genes 0.000 description 5
- 108091033319 polynucleotide Proteins 0.000 description 5
- 239000002157 polynucleotide Substances 0.000 description 5
- 229920001184 polypeptide Polymers 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 210000002307 prostate Anatomy 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 238000001338 self-assembly Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 125000001917 2,4-dinitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C(=C1*)[N+]([O-])=O)[N+]([O-])=O 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 108010076667 Caspases Proteins 0.000 description 4
- 102000011727 Caspases Human genes 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 102000001301 EGF receptor Human genes 0.000 description 4
- 108060006698 EGF receptor Proteins 0.000 description 4
- 101000891649 Homo sapiens Transcription elongation factor A protein-like 1 Proteins 0.000 description 4
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 4
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 4
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 4
- 101100346932 Mus musculus Muc1 gene Proteins 0.000 description 4
- 206010033128 Ovarian cancer Diseases 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 102100027467 Pro-opiomelanocortin Human genes 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- 208000008383 Wilms tumor Diseases 0.000 description 4
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 4
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 4
- 238000006640 acetylation reaction Methods 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- 230000000845 anti-microbial effect Effects 0.000 description 4
- 230000000890 antigenic effect Effects 0.000 description 4
- 230000001640 apoptogenic effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 201000008275 breast carcinoma Diseases 0.000 description 4
- 150000001720 carbohydrates Chemical class 0.000 description 4
- 230000003833 cell viability Effects 0.000 description 4
- 238000002512 chemotherapy Methods 0.000 description 4
- 210000001072 colon Anatomy 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 210000002950 fibroblast Anatomy 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000007850 fluorescent dye Substances 0.000 description 4
- 238000001415 gene therapy Methods 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 229940127121 immunoconjugate Drugs 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 201000001441 melanoma Diseases 0.000 description 4
- 210000003470 mitochondria Anatomy 0.000 description 4
- 239000003068 molecular probe Substances 0.000 description 4
- 238000000569 multi-angle light scattering Methods 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 238000007899 nucleic acid hybridization Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000004962 physiological condition Effects 0.000 description 4
- 102000016914 ras Proteins Human genes 0.000 description 4
- 108010014186 ras Proteins Proteins 0.000 description 4
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 4
- 238000007423 screening assay Methods 0.000 description 4
- 238000007920 subcutaneous administration Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 230000005945 translocation Effects 0.000 description 4
- JWDFQMWEFLOOED-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(pyridin-2-yldisulfanyl)propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCSSC1=CC=CC=N1 JWDFQMWEFLOOED-UHFFFAOYSA-N 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 3
- 238000005160 1H NMR spectroscopy Methods 0.000 description 3
- ZKHQWZAMYRWXGA-KQYNXXCUSA-N Adenosine triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-N 0.000 description 3
- 108020005544 Antisense RNA Proteins 0.000 description 3
- 241000972773 Aulopiformes Species 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 230000005778 DNA damage Effects 0.000 description 3
- 231100000277 DNA damage Toxicity 0.000 description 3
- 230000004543 DNA replication Effects 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 241000991587 Enterovirus C Species 0.000 description 3
- 108091008794 FGF receptors Proteins 0.000 description 3
- 102000044168 Fibroblast Growth Factor Receptor Human genes 0.000 description 3
- 229910052688 Gadolinium Inorganic materials 0.000 description 3
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 3
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 3
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 3
- 102000004877 Insulin Human genes 0.000 description 3
- 108090001090 Lectins Proteins 0.000 description 3
- 102000004856 Lectins Human genes 0.000 description 3
- 102100034256 Mucin-1 Human genes 0.000 description 3
- 241000588652 Neisseria gonorrhoeae Species 0.000 description 3
- 208000003019 Neurofibromatosis 1 Diseases 0.000 description 3
- 208000024834 Neurofibromatosis type 1 Diseases 0.000 description 3
- 102000035195 Peptidases Human genes 0.000 description 3
- 229920002873 Polyethylenimine Polymers 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 3
- 102100038358 Prostate-specific antigen Human genes 0.000 description 3
- 102100040250 Transcription elongation factor A protein-like 1 Human genes 0.000 description 3
- 102100026145 Transitional endoplasmic reticulum ATPase Human genes 0.000 description 3
- 102100040247 Tumor necrosis factor Human genes 0.000 description 3
- 241000607626 Vibrio cholerae Species 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 229960001456 adenosine triphosphate Drugs 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 239000000556 agonist Substances 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 230000001093 anti-cancer Effects 0.000 description 3
- 229940121375 antifungal agent Drugs 0.000 description 3
- 239000003429 antifungal agent Substances 0.000 description 3
- 239000004599 antimicrobial Substances 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 3
- 239000012830 cancer therapeutic Substances 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 231100000504 carcinogenesis Toxicity 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000001268 conjugating effect Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 239000012636 effector Substances 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 125000001165 hydrophobic group Chemical group 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 229940125396 insulin Drugs 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000002523 lectin Substances 0.000 description 3
- 208000032839 leukemia Diseases 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 150000002772 monosaccharides Chemical class 0.000 description 3
- 201000008026 nephroblastoma Diseases 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 208000008443 pancreatic carcinoma Diseases 0.000 description 3
- 230000005298 paramagnetic effect Effects 0.000 description 3
- 230000001991 pathophysiological effect Effects 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 238000002428 photodynamic therapy Methods 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 235000019515 salmon Nutrition 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 3
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 3
- 229910000162 sodium phosphate Inorganic materials 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 230000014616 translation Effects 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (Ā±)-Ī±-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- PFKYCGAUNWCWNO-UHFFFAOYSA-N 1,5-diphenyl-1h-tetrazol-1-ium;bromide Chemical compound [Br-].C1=CC=CC=C1[NH+]1C(C=2C=CC=CC=2)=NN=N1 PFKYCGAUNWCWNO-UHFFFAOYSA-N 0.000 description 2
- MHIITNFQDPFSES-UHFFFAOYSA-N 25,26,27,28-tetrazahexacyclo[16.6.1.13,6.18,11.113,16.019,24]octacosa-1(25),2,4,6,8(27),9,11,13,15,17,19,21,23-tridecaene Chemical compound N1C(C=C2C3=CC=CC=C3C(C=C3NC(=C4)C=C3)=N2)=CC=C1C=C1C=CC4=N1 MHIITNFQDPFSES-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 206010003571 Astrocytoma Diseases 0.000 description 2
- 241000193738 Bacillus anthracis Species 0.000 description 2
- 241000589969 Borreliella burgdorferi Species 0.000 description 2
- 102100025222 CD63 antigen Human genes 0.000 description 2
- 102100027221 CD81 antigen Human genes 0.000 description 2
- 208000005623 Carcinogenesis Diseases 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 108090000426 Caspase-1 Proteins 0.000 description 2
- 108010012236 Chemokines Proteins 0.000 description 2
- 102000019034 Chemokines Human genes 0.000 description 2
- 241000193449 Clostridium tetani Species 0.000 description 2
- 101800000414 Corticotropin Proteins 0.000 description 2
- 102100034157 DNA mismatch repair protein Msh2 Human genes 0.000 description 2
- 101150029707 ERBB2 gene Proteins 0.000 description 2
- 206010014967 Ependymoma Diseases 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 description 2
- 241000606768 Haemophilus influenzae Species 0.000 description 2
- 208000017604 Hodgkin disease Diseases 0.000 description 2
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000934368 Homo sapiens CD63 antigen Proteins 0.000 description 2
- 101000914479 Homo sapiens CD81 antigen Proteins 0.000 description 2
- 101000914324 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 5 Proteins 0.000 description 2
- 101000914321 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 7 Proteins 0.000 description 2
- 101001134036 Homo sapiens DNA mismatch repair protein Msh2 Proteins 0.000 description 2
- 101000980823 Homo sapiens Leukocyte surface antigen CD53 Proteins 0.000 description 2
- 101000617725 Homo sapiens Pregnancy-specific beta-1-glycoprotein 2 Proteins 0.000 description 2
- 241000701806 Human papillomavirus Species 0.000 description 2
- 231100000750 In vitro toxicology Toxicity 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 102000003996 Interferon-beta Human genes 0.000 description 2
- 108090000467 Interferon-beta Proteins 0.000 description 2
- 241000589248 Legionella Species 0.000 description 2
- 208000007764 Legionnaires' Disease Diseases 0.000 description 2
- 102100024221 Leukocyte surface antigen CD53 Human genes 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 229910015837 MSH2 Inorganic materials 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 238000006845 Michael addition reaction Methods 0.000 description 2
- 206010073148 Multiple endocrine neoplasia type 2A Diseases 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 101000596402 Mus musculus Neuronal vesicle trafficking-associated protein 1 Proteins 0.000 description 2
- 101000800539 Mus musculus Translationally-controlled tumor protein Proteins 0.000 description 2
- 102000013609 MutL Protein Homolog 1 Human genes 0.000 description 2
- 108010026664 MutL Protein Homolog 1 Proteins 0.000 description 2
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- 241000588650 Neisseria meningitidis Species 0.000 description 2
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 201000010133 Oligodendroglioma Diseases 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 102100028588 Protein ZNRD2 Human genes 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 2
- 208000006265 Renal cell carcinoma Diseases 0.000 description 2
- 241000702263 Reovirus sp. Species 0.000 description 2
- 208000007660 Residual Neoplasm Diseases 0.000 description 2
- 241000710799 Rubella virus Species 0.000 description 2
- 101000781972 Schizosaccharomyces pombe (strain 972 / ATCC 24843) Protein wos2 Proteins 0.000 description 2
- 241000191967 Staphylococcus aureus Species 0.000 description 2
- 102000019259 Succinate Dehydrogenase Human genes 0.000 description 2
- 108010012901 Succinate Dehydrogenase Proteins 0.000 description 2
- 102000006601 Thymidine Kinase Human genes 0.000 description 2
- 108020004440 Thymidine kinase Proteins 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- HPZOOQSXPMEJBV-ODCFVKFUSA-N Tirilazad mesylate Chemical compound CS(O)(=O)=O.O=C([C@@H]1[C@@]2(C)CC=C3[C@@]4(C)C=CC(=O)C=C4CC[C@H]3[C@@H]2C[C@H]1C)CN(CC1)CCN1C(N=1)=CC(N2CCCC2)=NC=1N1CCCC1 HPZOOQSXPMEJBV-ODCFVKFUSA-N 0.000 description 2
- 101001009610 Toxoplasma gondii Dense granule protein 5 Proteins 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- 241000589884 Treponema pallidum Species 0.000 description 2
- 102000003425 Tyrosinase Human genes 0.000 description 2
- 108060008724 Tyrosinase Proteins 0.000 description 2
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000021736 acetylation Effects 0.000 description 2
- 230000007059 acute toxicity Effects 0.000 description 2
- 231100000403 acute toxicity Toxicity 0.000 description 2
- 238000007818 agglutination assay Methods 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000009435 amidation Effects 0.000 description 2
- 238000007112 amidation reaction Methods 0.000 description 2
- 238000010640 amide synthesis reaction Methods 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 229920006187 aquazol Polymers 0.000 description 2
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 229940065181 bacillus anthracis Drugs 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 230000036952 cancer formation Effects 0.000 description 2
- 208000035269 cancer or benign tumor Diseases 0.000 description 2
- 238000005251 capillar electrophoresis Methods 0.000 description 2
- 150000001718 carbodiimides Chemical class 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 230000000973 chemotherapeutic effect Effects 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Chemical group 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical group [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 239000003184 complementary RNA Substances 0.000 description 2
- 239000002872 contrast media Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 2
- 229960000258 corticotropin Drugs 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 208000002445 cystadenocarcinoma Diseases 0.000 description 2
- 238000002784 cytotoxicity assay Methods 0.000 description 2
- 231100000263 cytotoxicity test Toxicity 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 206010013023 diphtheria Diseases 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010644 ester aminolysis reaction Methods 0.000 description 2
- ISVXIZFUEUVXPG-UHFFFAOYSA-N etiopurpurin Chemical compound CC1C2(CC)C(C(=O)OCC)=CC(C3=NC(C(=C3C)CC)=C3)=C2N=C1C=C(N1)C(CC)=C(C)C1=CC1=C(CC)C(C)=C3N1 ISVXIZFUEUVXPG-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 229940014144 folate Drugs 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 238000002599 functional magnetic resonance imaging Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 239000002955 immunomodulating agent Substances 0.000 description 2
- 230000001024 immunotherapeutic effect Effects 0.000 description 2
- 238000009169 immunotherapy Methods 0.000 description 2
- 238000012606 in vitro cell culture Methods 0.000 description 2
- 230000006882 induction of apoptosis Effects 0.000 description 2
- 208000027866 inflammatory disease Diseases 0.000 description 2
- 206010022000 influenza Diseases 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 150000002540 isothiocyanates Chemical class 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 230000002147 killing effect Effects 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 201000005296 lung carcinoma Diseases 0.000 description 2
- 210000003712 lysosome Anatomy 0.000 description 2
- 230000001868 lysosomic effect Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 150000008146 mannosides Chemical class 0.000 description 2
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 206010051747 multiple endocrine neoplasia Diseases 0.000 description 2
- 108700024542 myc Genes Proteins 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 201000002528 pancreatic cancer Diseases 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 238000002823 phage display Methods 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 229940109328 photofrin Drugs 0.000 description 2
- 239000003504 photosensitizing agent Substances 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 150000004032 porphyrins Chemical class 0.000 description 2
- 238000003918 potentiometric titration Methods 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 235000019419 proteases Nutrition 0.000 description 2
- 239000002510 pyrogen Substances 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 208000000587 small cell lung carcinoma Diseases 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- 230000036964 tight binding Effects 0.000 description 2
- 231100000167 toxic agent Toxicity 0.000 description 2
- 239000003440 toxic substance Substances 0.000 description 2
- 231100000041 toxicology testing Toxicity 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 150000005691 triesters Chemical class 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- 239000006216 vaginal suppository Substances 0.000 description 2
- 210000005166 vasculature Anatomy 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 229940118696 vibrio cholerae Drugs 0.000 description 2
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- CUKWUWBLQQDQAC-VEQWQPCFSA-N (3s)-3-amino-4-[[(2s)-1-[[(2s)-1-[[(2s)-1-[[(2s,3s)-1-[[(2s)-1-[(2s)-2-[[(1s)-1-carboxyethyl]carbamoyl]pyrrolidin-1-yl]-3-(1h-imidazol-5-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-3-methyl-1-ox Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C1=CC=C(O)C=C1 CUKWUWBLQQDQAC-VEQWQPCFSA-N 0.000 description 1
- IJTNSXPMYKJZPR-ZSCYQOFPSA-N (9Z,11E,13E,15Z)-octadecatetraenoic acid Chemical compound CC\C=C/C=C/C=C/C=C\CCCCCCCC(O)=O IJTNSXPMYKJZPR-ZSCYQOFPSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- UFBJCMHMOXMLKC-UHFFFAOYSA-N 2,4-dinitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- WEZDRVHTDXTVLT-GJZGRUSLSA-N 2-[[(2s)-2-[[(2s)-2-[(2-aminoacetyl)amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]acetic acid Chemical compound OC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)CN)CC1=CC=CC=C1 WEZDRVHTDXTVLT-GJZGRUSLSA-N 0.000 description 1
- YRPLTHBJMGSMKH-UHFFFAOYSA-N 2-methyl-4-nitro-1-oxidoquinolin-1-ium Chemical compound C1=CC=CC2=[N+]([O-])C(C)=CC([N+]([O-])=O)=C21 YRPLTHBJMGSMKH-UHFFFAOYSA-N 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- 102100030310 5,6-dihydroxyindole-2-carboxylic acid oxidase Human genes 0.000 description 1
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 1
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 1
- JMHFFDIMOUKDCZ-NTXHZHDSSA-N 61214-51-5 Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CCSC)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)[C@@H](C)O)C1=CC=CC=C1 JMHFFDIMOUKDCZ-NTXHZHDSSA-N 0.000 description 1
- 102100031585 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Human genes 0.000 description 1
- 230000002407 ATP formation Effects 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 1
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 241000701242 Adenoviridae Species 0.000 description 1
- 108060003345 Adrenergic Receptor Proteins 0.000 description 1
- 102000017910 Adrenergic receptor Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 102000007299 Amphiregulin Human genes 0.000 description 1
- 108010033760 Amphiregulin Proteins 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 201000003076 Angiosarcoma Diseases 0.000 description 1
- 102400000344 Angiotensin-1 Human genes 0.000 description 1
- 101800000734 Angiotensin-1 Proteins 0.000 description 1
- 102400000345 Angiotensin-2 Human genes 0.000 description 1
- 101800000733 Angiotensin-2 Proteins 0.000 description 1
- 101100113509 Arabidopsis thaliana CID9 gene Proteins 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical group C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 102100035526 B melanoma antigen 1 Human genes 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- 101800005049 Beta-endorphin Proteins 0.000 description 1
- 102100023995 Beta-nerve growth factor Human genes 0.000 description 1
- 206010004593 Bile duct cancer Diseases 0.000 description 1
- 102100037674 Bis(5'-adenosyl)-triphosphatase Human genes 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 101001011741 Bos taurus Insulin Proteins 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 208000011691 Burkitt lymphomas Diseases 0.000 description 1
- 102000007269 CA-125 Antigen Human genes 0.000 description 1
- 108010008629 CA-125 Antigen Proteins 0.000 description 1
- 102100037904 CD9 antigen Human genes 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102100032539 Calpain-3 Human genes 0.000 description 1
- 108030001375 Calpain-3 Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102100024423 Carbonic anhydrase 9 Human genes 0.000 description 1
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 1
- 102000003952 Caspase 3 Human genes 0.000 description 1
- 108090000397 Caspase 3 Proteins 0.000 description 1
- 102100035904 Caspase-1 Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 102000001327 Chemokine CCL5 Human genes 0.000 description 1
- 108010055166 Chemokine CCL5 Proteins 0.000 description 1
- 241000606161 Chlamydia Species 0.000 description 1
- 102100025841 Cholecystokinin Human genes 0.000 description 1
- 101800001982 Cholecystokinin Proteins 0.000 description 1
- 108010009685 Cholinergic Receptors Proteins 0.000 description 1
- 208000005243 Chondrosarcoma Diseases 0.000 description 1
- 201000009047 Chordoma Diseases 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 1
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 1
- 102100021809 Chorionic somatomammotropin hormone 1 Human genes 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 1
- 108091033380 Coding strand Proteins 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 208000023445 Congenital pulmonary airway malformation Diseases 0.000 description 1
- 241000711573 Coronaviridae Species 0.000 description 1
- 239000000055 Corticotropin-Releasing Hormone Substances 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 208000009798 Craniopharyngioma Diseases 0.000 description 1
- 102000003903 Cyclin-dependent kinases Human genes 0.000 description 1
- 108090000266 Cyclin-dependent kinases Proteins 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 102000000311 Cytosine Deaminase Human genes 0.000 description 1
- 108010080611 Cytosine Deaminase Proteins 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 239000012624 DNA alkylating agent Substances 0.000 description 1
- 239000012623 DNA damaging agent Substances 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 208000035240 Disease Resistance Diseases 0.000 description 1
- 101100279531 Drosophila melanogaster egr gene Proteins 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 102000001039 Dystrophin Human genes 0.000 description 1
- 108010069091 Dystrophin Proteins 0.000 description 1
- 108010024212 E-Selectin Proteins 0.000 description 1
- 102100023471 E-selectin Human genes 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 201000009051 Embryonal Carcinoma Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 102400000686 Endothelin-1 Human genes 0.000 description 1
- 101800004490 Endothelin-1 Proteins 0.000 description 1
- 241000709661 Enterovirus Species 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 208000031637 Erythroblastic Acute Leukemia Diseases 0.000 description 1
- 208000036566 Erythroleukaemia Diseases 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 208000006168 Ewing Sarcoma Diseases 0.000 description 1
- 208000001382 Experimental Melanoma Diseases 0.000 description 1
- 102000003971 Fibroblast Growth Factor 1 Human genes 0.000 description 1
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 description 1
- 102100023600 Fibroblast growth factor receptor 2 Human genes 0.000 description 1
- 101710182389 Fibroblast growth factor receptor 2 Proteins 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- 102400001370 Galanin Human genes 0.000 description 1
- 101800002068 Galanin Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 101710103262 Glandular kallikrein Proteins 0.000 description 1
- 102400000321 Glucagon Human genes 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- 101800004266 Glucagon-like peptide 1(7-37) Proteins 0.000 description 1
- 102000030595 Glucokinase Human genes 0.000 description 1
- 108010021582 Glucokinase Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 108010009504 Gly-Phe-Leu-Gly Proteins 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 102100020948 Growth hormone receptor Human genes 0.000 description 1
- 208000001258 Hemangiosarcoma Diseases 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 101000773083 Homo sapiens 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 1
- 101000777636 Homo sapiens ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Proteins 0.000 description 1
- 101000874316 Homo sapiens B melanoma antigen 1 Proteins 0.000 description 1
- 101100165850 Homo sapiens CA9 gene Proteins 0.000 description 1
- 101000738354 Homo sapiens CD9 antigen Proteins 0.000 description 1
- 101000945318 Homo sapiens Calponin-1 Proteins 0.000 description 1
- 101000998020 Homo sapiens Keratin, type I cytoskeletal 18 Proteins 0.000 description 1
- 101000777628 Homo sapiens Leukocyte antigen CD37 Proteins 0.000 description 1
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 1
- 101001059454 Homo sapiens Serine/threonine-protein kinase MARK2 Proteins 0.000 description 1
- 101000847107 Homo sapiens Tetraspanin-8 Proteins 0.000 description 1
- 101000652736 Homo sapiens Transgelin Proteins 0.000 description 1
- 101000851370 Homo sapiens Tumor necrosis factor receptor superfamily member 9 Proteins 0.000 description 1
- 101000912503 Homo sapiens Tyrosine-protein kinase Fgr Proteins 0.000 description 1
- 101000911513 Homo sapiens Uncharacterized protein FAM215A Proteins 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 1
- 102100029098 Hypoxanthine-guanine phosphoribosyltransferase Human genes 0.000 description 1
- 102000004627 Iduronidase Human genes 0.000 description 1
- 108010003381 Iduronidase Proteins 0.000 description 1
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 1
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 102000036770 Islet Amyloid Polypeptide Human genes 0.000 description 1
- 108010041872 Islet Amyloid Polypeptide Proteins 0.000 description 1
- 102100033421 Keratin, type I cytoskeletal 18 Human genes 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- 231100000111 LD50 Toxicity 0.000 description 1
- 108010011942 LH Receptors Proteins 0.000 description 1
- 102000023108 LH Receptors Human genes 0.000 description 1
- 102100039648 Lactadherin Human genes 0.000 description 1
- 101710191666 Lactadherin Proteins 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 208000018142 Leiomyosarcoma Diseases 0.000 description 1
- 108010092277 Leptin Proteins 0.000 description 1
- 102000016267 Leptin Human genes 0.000 description 1
- 206010024305 Leukaemia monocytic Diseases 0.000 description 1
- 102100031586 Leukocyte antigen CD37 Human genes 0.000 description 1
- 102000009151 Luteinizing Hormone Human genes 0.000 description 1
- 108010073521 Luteinizing Hormone Proteins 0.000 description 1
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 101150050678 MEN1 gene Proteins 0.000 description 1
- 108010059343 MM Form Creatine Kinase Proteins 0.000 description 1
- 241000712079 Measles morbillivirus Species 0.000 description 1
- 208000007054 Medullary Carcinoma Diseases 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 101800000992 Melanocyte-stimulating hormone beta Proteins 0.000 description 1
- 102400000747 Melanocyte-stimulating hormone beta Human genes 0.000 description 1
- 101710129905 Melanotropin beta Proteins 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 108010063954 Mucins Proteins 0.000 description 1
- 102000015728 Mucins Human genes 0.000 description 1
- 206010073150 Multiple endocrine neoplasia Type 1 Diseases 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 208000005647 Mumps Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 241000711408 Murine respirovirus Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 108091057508 Myc family Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 108010013731 Myelin-Associated Glycoprotein Proteins 0.000 description 1
- 102100021831 Myelin-associated glycoprotein Human genes 0.000 description 1
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 1
- 102000003505 Myosin Human genes 0.000 description 1
- 108060008487 Myosin Proteins 0.000 description 1
- 108700026495 N-Myc Proto-Oncogene Proteins 0.000 description 1
- 102100030124 N-myc proto-oncogene protein Human genes 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 108010069196 Neural Cell Adhesion Molecules Proteins 0.000 description 1
- 108050003738 Neural cell adhesion molecule 1 Proteins 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 102000002710 Neurophysins Human genes 0.000 description 1
- 108010018674 Neurophysins Proteins 0.000 description 1
- 108020003217 Nuclear RNA Proteins 0.000 description 1
- 102000043141 Nuclear RNA Human genes 0.000 description 1
- QBQQANPKYCNDDH-UHFFFAOYSA-N OC=1C2=C(C3=C(C(=C(N3O)C=C3C=CC(C=C4C=CC(=CC(C1)=N2)N4)=N3)C3=CC=CC=C3)O)O Chemical class OC=1C2=C(C3=C(C(=C(N3O)C=C3C=CC(C=C4C=CC(=CC(C1)=N2)N4)=N3)C3=CC=CC=C3)O)O QBQQANPKYCNDDH-UHFFFAOYSA-N 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 102000012404 Orosomucoid Human genes 0.000 description 1
- 108010061952 Orosomucoid Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 241000237988 Patellidae Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- 108010071384 Peptide T Proteins 0.000 description 1
- 108010069013 Phenylalanine Hydroxylase Proteins 0.000 description 1
- 102100038223 Phenylalanine-4-hydroxylase Human genes 0.000 description 1
- 108090000472 Phosphoenolpyruvate carboxykinase (ATP) Proteins 0.000 description 1
- 102100034792 Phosphoenolpyruvate carboxykinase [GTP], mitochondrial Human genes 0.000 description 1
- 208000007641 Pinealoma Diseases 0.000 description 1
- 108010003044 Placental Lactogen Proteins 0.000 description 1
- 239000000381 Placental Lactogen Substances 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 102100029740 Poliovirus receptor Human genes 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 108010071690 Prealbumin Proteins 0.000 description 1
- 102000007584 Prealbumin Human genes 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 108091000054 Prion Proteins 0.000 description 1
- 102000029797 Prion Human genes 0.000 description 1
- 241001415846 Procellariidae Species 0.000 description 1
- 102100024819 Prolactin Human genes 0.000 description 1
- 108010057464 Prolactin Proteins 0.000 description 1
- 102100035703 Prostatic acid phosphatase Human genes 0.000 description 1
- 101710150344 Protein Rev Proteins 0.000 description 1
- 101710149951 Protein Tat Proteins 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 206010037742 Rabies Diseases 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 206010038997 Retroviral infections Diseases 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 241000702670 Rotavirus Species 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 108010005173 SERPIN-B5 Proteins 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 201000010208 Seminoma Diseases 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 102100028904 Serine/threonine-protein kinase MARK2 Human genes 0.000 description 1
- 102100030333 Serpin B5 Human genes 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 102000005157 Somatostatin Human genes 0.000 description 1
- 108010056088 Somatostatin Proteins 0.000 description 1
- 102100038803 Somatotropin Human genes 0.000 description 1
- 108010068542 Somatotropin Receptors Proteins 0.000 description 1
- 102000011971 Sphingomyelin Phosphodiesterase Human genes 0.000 description 1
- 108010061312 Sphingomyelin Phosphodiesterase Proteins 0.000 description 1
- 208000000277 Splenic Neoplasms Diseases 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 241000194021 Streptococcus suis Species 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 102100032802 Tetraspanin-8 Human genes 0.000 description 1
- 101710097834 Thiol protease Proteins 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 102000011923 Thyrotropin Human genes 0.000 description 1
- 108010061174 Thyrotropin Proteins 0.000 description 1
- 102000057032 Tissue Kallikreins Human genes 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 102400001320 Transforming growth factor alpha Human genes 0.000 description 1
- 101800004564 Transforming growth factor alpha Proteins 0.000 description 1
- 102100031013 Transgelin Human genes 0.000 description 1
- 108050008367 Transmembrane emp24 domain-containing protein 7 Proteins 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- 102100026150 Tyrosine-protein kinase Fgr Human genes 0.000 description 1
- 108010058532 UTP-hexose-1-phosphate uridylyltransferase Proteins 0.000 description 1
- 102000006321 UTP-hexose-1-phosphate uridylyltransferase Human genes 0.000 description 1
- 102100026728 Uncharacterized protein FAM215A Human genes 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 102000016549 Vascular Endothelial Growth Factor Receptor-2 Human genes 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 108010003205 Vasoactive Intestinal Peptide Proteins 0.000 description 1
- 102400000015 Vasoactive intestinal peptide Human genes 0.000 description 1
- 208000014070 Vestibular schwannoma Diseases 0.000 description 1
- 241000607594 Vibrio alginolyticus Species 0.000 description 1
- 241000607272 Vibrio parahaemolyticus Species 0.000 description 1
- 241000607265 Vibrio vulnificus Species 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 108010090932 Vitellogenins Proteins 0.000 description 1
- 208000033559 Waldenstrƶm macroglobulinemia Diseases 0.000 description 1
- 101100444902 Xenopus tropicalis egr1 gene Proteins 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 1
- 102000034337 acetylcholine receptors Human genes 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 208000004064 acoustic neuroma Diseases 0.000 description 1
- 208000017733 acquired polycythemia vera Diseases 0.000 description 1
- DPKHZNPWBDQZCN-UHFFFAOYSA-N acridine orange free base Chemical compound C1=CC(N(C)C)=CC2=NC3=CC(N(C)C)=CC=C3C=C21 DPKHZNPWBDQZCN-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 208000021841 acute erythroid leukemia Diseases 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 108700010877 adenoviridae proteins Proteins 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 1
- 102000015395 alpha 1-Antitrypsin Human genes 0.000 description 1
- 229940024142 alpha 1-antitrypsin Drugs 0.000 description 1
- IJTNSXPMYKJZPR-WVRBZULHSA-N alpha-parinaric acid Natural products CCC=C/C=C/C=C/C=CCCCCCCCC(=O)O IJTNSXPMYKJZPR-WVRBZULHSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- ORWYRWWVDCYOMK-HBZPZAIKSA-N angiotensin I Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C1=CC=C(O)C=C1 ORWYRWWVDCYOMK-HBZPZAIKSA-N 0.000 description 1
- 229950006323 angiotensin ii Drugs 0.000 description 1
- 230000001775 anti-pathogenic effect Effects 0.000 description 1
- 238000011394 anticancer treatment Methods 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 208000034615 apoptosis-related disease Diseases 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- HAJABACXLZMFIH-UHFFFAOYSA-N azanylidyneoxidanium;iron;disulfide Chemical compound [S-2].[S-2].[Fe].[Fe].[O+]#N.[O+]#N.[O+]#N.[O+]#N HAJABACXLZMFIH-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N benzoquinolinylidene Natural products C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- 102000012740 beta Adrenergic Receptors Human genes 0.000 description 1
- 108010079452 beta Adrenergic Receptors Proteins 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 201000007180 bile duct carcinoma Diseases 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 108010005713 bis(5'-adenosyl)triphosphatase Proteins 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 201000006491 bone marrow cancer Diseases 0.000 description 1
- 201000008274 breast adenocarcinoma Diseases 0.000 description 1
- 201000007295 breast benign neoplasm Diseases 0.000 description 1
- 208000003362 bronchogenic carcinoma Diseases 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000007816 calorimetric assay Methods 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 238000001818 capillary gel electrophoresis Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000003262 carboxylic acid ester group Chemical group [H]C([H])([*:2])OC(=O)C([H])([H])[*:1] 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000007541 cellular toxicity Effects 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 229940107137 cholecystokinin Drugs 0.000 description 1
- 229940015047 chorionic gonadotropin Drugs 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000024207 chronic leukemia Diseases 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 231100000132 chronic toxicity testing Toxicity 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000011278 co-treatment Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 201000010897 colon adenocarcinoma Diseases 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 102000006834 complement receptors Human genes 0.000 description 1
- 108010047295 complement receptors Proteins 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000009146 cooperative binding Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000011461 current therapy Methods 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000007933 dermal patch Substances 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 229960003983 diphtheria toxoid Drugs 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000012154 double-distilled water Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 201000002491 encephalomyelitis Diseases 0.000 description 1
- 210000004696 endometrium Anatomy 0.000 description 1
- ZUBDGKVDJUIMQQ-ZTNLKOGPSA-N endothelin i Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)NC(=O)[C@H]1NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](C(C)C)NC(=O)[C@@H]2CSSC[C@@H](C(N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N2)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CSSC1)C1=CNC=N1 ZUBDGKVDJUIMQQ-ZTNLKOGPSA-N 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 208000037828 epithelial carcinoma Diseases 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 208000021045 exocrine pancreatic carcinoma Diseases 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- QPJBWNIQKHGLAU-IQZHVAEDSA-N ganglioside GM1 Chemical compound O[C@@H]1[C@@H](O)[C@H](OC[C@H](NC(=O)CCCCCCCCCCCCCCCCC)[C@H](O)\C=C\CCCCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@H]([C@H](NC(C)=O)[C@@H](O)C2)[C@H](O)[C@H](O)CO)C(O)=O)[C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O3)O)[C@@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](CO)O1 QPJBWNIQKHGLAU-IQZHVAEDSA-N 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 238000012817 gel-diffusion technique Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 230000035931 haemagglutination Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000025750 heavy chain disease Diseases 0.000 description 1
- 201000002222 hemangioblastoma Diseases 0.000 description 1
- 108060003552 hemocyanin Proteins 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 229940022353 herceptin Drugs 0.000 description 1
- 230000002962 histologic effect Effects 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 230000000951 immunodiffusion Effects 0.000 description 1
- 238000000760 immunoelectrophoresis Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000003017 in situ immunoassay Methods 0.000 description 1
- 231100000580 in vitro toxicity testing Toxicity 0.000 description 1
- 238000011503 in vivo imaging Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 230000007154 intracellular accumulation Effects 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- VBUWHHLIZKOSMS-RIWXPGAOSA-N invicorp Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)C(C)C)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=C(O)C=C1 VBUWHHLIZKOSMS-RIWXPGAOSA-N 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 210000004731 jugular vein Anatomy 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 1
- 229940039781 leptin Drugs 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 231100000636 lethal dose Toxicity 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000003859 lipid peroxidation Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 206010024627 liposarcoma Diseases 0.000 description 1
- 235000021056 liquid food Nutrition 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 201000005243 lung squamous cell carcinoma Diseases 0.000 description 1
- 239000003580 lung surfactant Substances 0.000 description 1
- 229940040129 luteinizing hormone Drugs 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 201000010453 lymph node cancer Diseases 0.000 description 1
- 208000037829 lymphangioendotheliosarcoma Diseases 0.000 description 1
- 208000012804 lymphangiosarcoma Diseases 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 210000001365 lymphatic vessel Anatomy 0.000 description 1
- 201000000564 macroglobulinemia Diseases 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229940107698 malachite green Drugs 0.000 description 1
- FDZZZRQASAIRJF-UHFFFAOYSA-M malachite green Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](C)C)C=C1 FDZZZRQASAIRJF-UHFFFAOYSA-M 0.000 description 1
- 206010025482 malaise Diseases 0.000 description 1
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 201000009020 malignant peripheral nerve sheath tumor Diseases 0.000 description 1
- 210000004216 mammary stem cell Anatomy 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 210000002752 melanocyte Anatomy 0.000 description 1
- 206010027191 meningioma Diseases 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- SLZIZIJTGAYEKK-CIJSCKBQSA-N molport-023-220-247 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)CN)[C@@H](C)O)C1=CNC=N1 SLZIZIJTGAYEKK-CIJSCKBQSA-N 0.000 description 1
- 201000006894 monocytic leukemia Diseases 0.000 description 1
- 230000036457 multidrug resistance Effects 0.000 description 1
- 208000010805 mumps infectious disease Diseases 0.000 description 1
- 208000001611 myxosarcoma Diseases 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 208000025189 neoplasm of testis Diseases 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 230000010309 neoplastic transformation Effects 0.000 description 1
- 229940053128 nerve growth factor Drugs 0.000 description 1
- 208000029974 neurofibrosarcoma Diseases 0.000 description 1
- PGSADBUBUOPOJS-UHFFFAOYSA-N neutral red Chemical compound Cl.C1=C(C)C(N)=CC2=NC3=CC(N(C)C)=CC=C3N=C21 PGSADBUBUOPOJS-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 238000011580 nude mouse model Methods 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 208000004019 papillary adenocarcinoma Diseases 0.000 description 1
- 201000010198 papillary carcinoma Diseases 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000008068 pathophysiological alteration Effects 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 238000009522 phase III clinical trial Methods 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 150000002991 phenoxazines Chemical class 0.000 description 1
- 229940117953 phenylisothiocyanate Drugs 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 238000007699 photoisomerization reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 208000024724 pineal body neoplasm Diseases 0.000 description 1
- 201000004123 pineal gland cancer Diseases 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 108010048507 poliovirus receptor Proteins 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 208000037244 polycythemia vera Diseases 0.000 description 1
- 239000008389 polyethoxylated castor oil Substances 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 231100000683 possible toxicity Toxicity 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- ARYGRUKSEUWFGF-UHFFFAOYSA-N potassium;azanylidyneoxidanium;iron;trisulfide Chemical compound [S-2].[S-2].[S-2].[K+].[Fe].[Fe].[Fe].[Fe].[O+]#N.[O+]#N.[O+]#N.[O+]#N.[O+]#N.[O+]#N.[O+]#N ARYGRUKSEUWFGF-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- GCYXWQUSHADNBF-AAEALURTSA-N preproglucagon 78-108 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 GCYXWQUSHADNBF-AAEALURTSA-N 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 108010042121 probasin Proteins 0.000 description 1
- 229940097325 prolactin Drugs 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 108010043671 prostatic acid phosphatase Proteins 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000013197 protein A assay Methods 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000002165 resonance energy transfer Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- 108020004418 ribosomal RNA Proteins 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 201000008407 sebaceous adenocarcinoma Diseases 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000012772 sequence design Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 231100000161 signs of toxicity Toxicity 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Chemical group 0.000 description 1
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 102000030938 small GTPase Human genes 0.000 description 1
- 108060007624 small GTPase Proteins 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 201000002314 small intestine cancer Diseases 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 235000021055 solid food Nutrition 0.000 description 1
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 1
- 229960000553 somatostatin Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 201000002471 spleen cancer Diseases 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 102000009076 src-Family Kinases Human genes 0.000 description 1
- 108010087686 src-Family Kinases Proteins 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 231100000456 subacute toxicity Toxicity 0.000 description 1
- 230000007666 subchronic toxicity Effects 0.000 description 1
- 231100000195 subchronic toxicity Toxicity 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- JJAHTWIKCUJRDK-UHFFFAOYSA-N succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate Chemical compound C1CC(CN2C(C=CC2=O)=O)CCC1C(=O)ON1C(=O)CCC1=O JJAHTWIKCUJRDK-UHFFFAOYSA-N 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- SEEPANYCNGTZFQ-UHFFFAOYSA-N sulfadiazine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)NC1=NC=CC=N1 SEEPANYCNGTZFQ-UHFFFAOYSA-N 0.000 description 1
- 229960004306 sulfadiazine Drugs 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 201000010965 sweat gland carcinoma Diseases 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 206010042863 synovial sarcoma Diseases 0.000 description 1
- 238000012385 systemic delivery Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 231100000057 systemic toxicity Toxicity 0.000 description 1
- 101150047061 tag-72 gene Proteins 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- CNHYKKNIIGEXAY-UHFFFAOYSA-N thiolan-2-imine Chemical compound N=C1CCCS1 CNHYKKNIIGEXAY-UHFFFAOYSA-N 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000820 toxicity test Toxicity 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000200 toxicological information Toxicity 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 1
- 239000000225 tumor suppressor protein Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 210000003708 urethra Anatomy 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000003026 viability measurement method Methods 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 108010047303 von Willebrand Factor Proteins 0.000 description 1
- 102100036537 von Willebrand factor Human genes 0.000 description 1
- 229960001134 von willebrand factor Drugs 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- SFVVQRJOGUKCEG-OPQSFPLASA-N Ī²-MSH Chemical compound C1C[C@@H](O)[C@H]2C(COC(=O)[C@@](O)([C@@H](C)O)C(C)C)=CCN21 SFVVQRJOGUKCEG-OPQSFPLASA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
- A61K41/0071—PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6949—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
- A61P31/06—Antibacterial agents for tuberculosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/14—Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G83/00—Macromolecular compounds not provided for in groups C08G2/00Ā -Ā C08G81/00
- C08G83/002—Dendritic macromolecules
- C08G83/003—Dendrimers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/005—Dendritic macromolecules
Definitions
- the present invention relates to novel therapeutic and diagnostic systems. More particularly, the present invention is directed to dendrimer based multifunctional compositions and systems for use in disease diagnosis and therapy (e.g., cancer diagnosis and therapy).
- the compositions and systems generally comprise two or more separate components for targeting, imaging, sensing, and/or triggering release of a therapeutic or diagnostic material and monitoring the response to therapy of a cell or tissue (e.g., a tumor).
- these therapies require the identification of specific pathophysiologic changes in an individual's particular tumor cells. This requires mechanical invasion (biopsy) of a tumor and diagnosis typically by in vitro cell culture and testing. The tumor phenotype then has to be analyzed before a therapy can be selected and implemented. Such steps are time consuming, complex, and expensive.
- an ideal therapy should have the ability to target a tumor, image the extent of the tumor and identify the presence of the therapeutic agent in the tumor cells. It ideally allows the physician to determine why cells transformed to a neoplasm, to select therapeutic molecules based on the pathophysiologic abnormalities in the tumor cells, to activate the therapeutic agents only in abnormal cells, to document the response to the therapy, and to identify residual disease.
- the present invention relates to novel therapeutic and diagnostic systems. More particularly, the present invention is directed to dendrimer based multifunctional compositions and systems for use in disease diagnosis and therapy (e.g., cancer diagnosis and therapy).
- the compositions and systems generally comprise two or more distinct components for targeting, imaging, sensing, and/or triggering release of a therapeutic or diagnostic material and monitoring the response to therapy of a cell or tissue (e.g., a tumor).
- the present invention provides a composition comprising a dendrimer complex, said dendrimer complex comprising first and second dendrimers, the first dendrimer comprising a first agent and the second dendrimer comprising a second agent, wherein the first agent is different than the second agent.
- the first and said second agents are selected from the group consisting of therapeutic agents, biological monitoring agents, biological imaging agents, targeting agents, and agents capable of identifying a specific signature of cellular abnormality.
- the first dendrimer is covalently linked to the second dendrimer.
- the dendrimer complex includes additional dendrimers.
- the complex comprises a third dendrimer (e.g., a third-dendrimer covalently linked to the first and second dendrimers).
- the dendrimer complex comprises fourth, fifth, or additional dendrimers.
- Each of the dendrimers may comprise an agent.
- the present invention provides a composition
- a composition comprising: a first dendrimer comprising a first agent; and a second dendrimer comprising a second agent, wherein the first and second dendrimers are complexed (e.g., covalently attached) with at least one dendrimer (e.g., to each other, to a common third dendrimer, or each individually to a third and fourth dendrimers respectively), and wherein the first agent is different than the second agent, and wherein the first and the second agents are selected from the group consisting of therapeutic agents, biological monitoring agents (i.e., agents capable of monitoring biological materials or events), biological imaging agents (i.e., agents capable of imaging biological materials or events), targeting agents (i.e., agents capable of targeting a biological materialāi.e., specifically interacting with the biological material), and agents capable of identifying a specific signature of cellular identity (i.e., capable of identifying a characteristic of a cell that helps differentiate the cell from other cell types
- Dendrimers suitable for use with the present invention include, but are not limited to, polyamidoamine (PAMAM), polypropylamine (POPAM), polyethylenimine, iptycene, aliphatic poly(ether), and/or aromatic polyether dendrimers.
- PAMAM polyamidoamine
- POPAM polypropylamine
- polyethylenimine polyethylenimine
- iptycene aliphatic poly(ether)
- aromatic polyether dendrimers e.g., the first dendrimer may comprises a PAMAM dendrimer, while the second dendrimer may comprises a POPAM dendrimer.
- the first or second dendrimer may further comprises an additional agent.
- the dendrimer complex may further comprises one or more additional dendrimers.
- the composition may further comprises a third dendrimer; wherein the third-dendrimer is complexed with at least one other dendrimer.
- a third agent is complexed with the third dendrimer.
- the first and second dendrimers are each complexed to a third dendrimer.
- the first and second dendrimers comprise PAMAM dendrimers and the third dendrimer comprises a POPAM dendrimer.
- the present invention further comprises fourth and/or fifth dendrimers comprising agents (e.g., third and fourth agents), wherein the fourth and/or fifth dendrimer is also complexed (e.g., covalently attached) to the third dendrimer.
- the present invention is not limited by the number of dendrimers complexed to one another.
- the first agent is a therapeutic agent and the second agent is a biological monitoring agent.
- the therapeutic agent includes, but is not limited to, a chemotherapeutic agent, an anti-oncogenic agent, an anti-vascularizing agent, a anti-microbial or anti-pathogenic agent, and an expression construct comprising a nucleic acid encoding a therapeutic protein.
- the therapeutic agent is protected with a protecting group selected from photo-labile, radio-labile, and enzyme-labile protecting groups.
- the chemotherapeutic agents include, but are not limited to, platinum complex, verapamil, podophyllotoxin, carboplatin, procarbazine, mechlorethamine, cyclophosphamide, camptothecin, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosurea, adriamycin, dactinomycin, daunorubicin, doxorubicin, bleomycin, plicomycin, mitomycin, etoposide, tamoxifen, taxol, transplatinum, 5-fluorouracil, vincristin, vinblastin, and methotrexate.
- the anti-oncogenic agent comprises an antisense nucleic acid.
- the antisense nucleic acid comprises a sequence complementary to an RNA of an oncogene.
- the oncogene includes, but is not limited to, abl, Bcl-2, Bcl-x 1 , erb, fms, gsp, hst, jun, myc, neu, raf, ras, ret, src, or trk.
- the nucleic acid encoding a therapeutic protein encodes a factor including, but not limited to, a tumor suppressor, cytokine, receptor, inducer of apoptosis, or differentiating agent.
- the tumor suppressor includes, but is not limited to, BRCA1, BRCA2, C-CAM, p16, p21, p53, p73, Rb, and p27.
- the cytokine includes, but is not limited to, GMCSF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, ā -interferon, ā -interferon, and TNF.
- the receptor includes, but is not limited to, CFTR, EGFR, estrogen receptor, IL-2 receptor, and VEGFR.
- the inducer of apoptosis includes, but is not limited to, AdE1B, Bad, Bak, Bax, Bid, Bik, Bim, Harakid, and ICE-CED3 protease.
- the therapeutic agent comprises a short-half life radioisotope.
- the biological monitoring agent comprises an agent that measures an effect of a therapeutic agent (e.g., directly or indirectly measures a cellular factor or reaction induced by a therapeutic agent), however, the present invention is not limited by the nature of the biological monitoring agent.
- the monitoring agent is capable of measuring the amount of or detecting apoptosis caused by the therapeutic agent.
- the imaging agent comprises a radioactive label including, but not limited to, 14 C, 36 CI, 57 Co, 58 Co, 51 Cr, 1251,1311, 111 In, 152 Eu, 59 Fe, 67 Ga, 32 P, 186Re, 35 S, 75 Se, Tc-99m, and 169 Yb, however, the present invention is not limited by the nature of the imaging agent.
- the targeting agent includes, but is not limited to an antibody, receptor ligand, hormone, vitamin, and antigen, however, the present invention is not limited by the nature of the targeting agent.
- the antibody is specific for a disease specific antigen.
- the disease specific antigen comprises a tumor specific antigen.
- the receptor ligand includes, but is not limited to, a ligand for CFTR, EGFR, estrogen receptor, FGR2, folate receptor, IL-2 receptor, glycoprotein, and VEGFR.
- the first and second dendrimers are attached to one another through linker groups.
- the linker groups comprise nucleic acid linkers.
- the first dendrimer comprises a first nucleic acid linker and the second dendrimer comprises a second nucleic acid linker, wherein the first nucleic acid linker is hybridized to the second nucleic acid linker.
- a duplex formed from hybridization of the first linker to the second linker comprises a cleavage site (e.g., a nuclease recognition site such as a restriction endonuclease site).
- the present invention also provides methods for treating a cell with a dendrimer complex comprising: providing a cell and a composition comprising a dendrimer complex, and exposing the cell to the dendrimer complex.
- the dendrimer complex comprises a first dendrimer comprising a first agent, and a second dendrimer comprising a second agent, wherein the first and second dendrimers are complexed with at least one dendrimer, and wherein the first agent is different than the second agent, and wherein the first and the second agents are selected from the group consisting of therapeutic agents, biological monitoring agents, biological imaging agents, targeting agents, and agents capable of identifying a specific signature of cellular abnormality; and exposing the cell to the composition.
- cells of the present invention include, but are not limited to, cell residing in vitro (e.g., cell culture cells) and cells residing in vivo (e.g., cells of a human or animal subject or pathogenic cells).
- a disease e.g., the cell is a disease cell such as a tumor cell.
- the disease includes, but is not limited to, cancer, cardiovascular disease, inflammatory disease, and prion-type disease (i.e., diseases associated with or caused by a prion).
- the therapeutic agent is in inactive form and is rendered active following administration of the composition to the subject.
- the agent upon exposure to light or a change in pH (e.g., due to exposure to a particular intracellular environment) is altered to assume its active form.
- the agent may be attached to a protective linker (e.g., photo-cleavable, enzyme-cleavable, pH-cleavable) to make it inactive and become active upon exposure to the appropriate activating agent (e.g., UV light, a cleavage enzyme, or a change in pH).
- a protective linker e.g., photo-cleavable, enzyme-cleavable, pH-cleavable
- the subject has a tumor or is suspected of having cancer.
- the cancer includes, but is not limited to, lung, breast, melanoma, colon, renal, testicular, ovarian, lung, prostate, hepatic, germ cancer, epithelial, prostate, head and neck, pancreatic cancer, glioblastoma, astrocytoma, oligodendroglioma, ependymomas, neurofibrosarcoma, meningia, liver, spleen, lymph node, small intestine, colon, stomach, thyroid, endometrium, prostate, skin, esophagus, and bone marrow cancer.
- compositions comprising nanodevices, and any other desired components are administered to the subject.
- the present invention is not limited by the route of administration.
- Such administration routes include, but are not limited to, endoscopic, intratracheal, intralesion, percutaneous, intravenous, subcutaneous, and intratumoral administration.
- FIG. 1 shows several generations of spherical, dendritic polymers, with each generation increasing the size, molecular weight and number of primary amine groups on the surface of the polymer.
- FIG. 2 shows different options for design of dendrimer-based nanodevices.
- FIG. 3 shows a component structure of nanodevices for breast and colon cancer in some embodiments of the present invention.
- FIGS. 4 A-D show functions of therapeutic nanodevices in some embodiment of the present invention.
- FIG. 4A shows ātargeting and imagingā applications, wherein the nano-device targets neoplastic cells through a cell-surface moiety and is taken into the cell through receptor mediated endocytosis.
- the tumor 00 is imaged through MRI.
- FIG. 4B shows āsensing cancer signatureā applications, wherein red fluorescence is activated by the presence of the cancer signature (Muc1, Her2, or mutated p53 through quantum dot-like aggregation or loss of 1 quenching).
- FIG. 4C shows ātriggered release of therapeuticā applications, wherein laser light is targeted to red-emitting cells and cleaves photo-labile protecting group from drug (e.g., platinum or Taxol releasing it from dendrimer matrix).
- drug e.g., platinum or Taxol releasing it from dendrimer matrix.
- FIG. 4D shows āmonitoring response to therapyā applications, wherein a drug induces apoptosis in cells, and caspase activity activates green fluorescence. Apoptotic cancer cells turn orange while residual cancer cells remain red. Normal cells induced to apoptose (collateral damage) if they fluoresce green.
- FIG. 5 shows a photograph of an atomic force microscopy (AFM) image of large (generation 9 MW 800 kDA) PAMAM dendritic polymers of the present invention. There is uniformity in size and shape. Three larger, noncovalently bonded clusters of dendrimers also are present in the figure.
- AFM atomic force microscopy
- FIG. 6 shows aqueous synthesis of clustered dendrimers in some embodiments of the present invention.
- FIG. 7 shows a dendrimer synthesis procedure in some embodiments of the present invention.
- FIG. 8 shows a dendrimer synthesis procedure in some embodiments of the present invention.
- FIG. 9 shows a graph indicating the toxicity level of certain dendrimers comprising a therapeutic agent.
- FIG. 10 shows a representation of a core-shell structure in some embodiments of the present invention.
- FIG. 11 shows a representation of a core (G x )-shell structure comprising nucleic acid linkers in some embodiments of the present invention.
- the present invention relates to novel therapeutic and diagnostic complexes. More particularly, the present invention is directed to dendrimer-based multifunctional compositions and systems for use in disease diagnosis and therapy (e.g., cancer diagnosis and therapy).
- the compositions and systems generally comprise two or more separate components for targeting, imaging, sensing, and/or triggering release of a therapeutic or diagnostic material and monitoring the response to therapy of a cell or tissue (e.g., a tumor).
- the present invention provides nanodevices comprising two or more dendrimers, each complexed with one or more components for targeting, imaging, sensing, and/or triggering release of a therapeutic or diagnostic material and monitoring the response to therapy of a cell or tissue.
- the nanodevice comprises a core dendrimer complexed (e.g., covalently linked) to other dendrimer subunits containing the above functionalities.
- the present invention demonstrates that such compositions are non-toxic and present new methods for treating, detecting, and monitoring various physiological conditions.
- the nanodevices contain a dendrimer subunit that targets the nanodevice to particular cells or tissues (e.g., contains binding agents that recognize and are specific cellular components).
- the nanodevices contain a dendrimer subunit that images a cell, a cellular component, or cellular reactions (e.g., provides a detectable signal upon exposure to the cell, component, or reaction).
- the nanodevices contain a dendrimer subunit that provides a signature identifying agent such that, directly or indirectly, the presence of a cell or cellular condition is identified (e.g., identifying a cancer cell through interaction of the signature identifying agent with a cancer-specific factor).
- the nanodevices contain a dendrimer subunit that provides a therapeutic or diagnostic agent for delivery or release into a cell or subject.
- the present invention provides a variety of useful therapeutic and diagnostic compositions for treating and characterizing cells or subjects with various pathologies or physiological conditions.
- the nanodevices of the present invention comprises any number of dendrimer components to give the desired functionality.
- the present invention provides nanodevices that comprise a core dendrimer covalently linked to individual dendrimer units comprising signature identifying agents, imaging agents, therapeutic agents, targeting agents, and monitoring agents, respectively.
- a core dendrimer covalently linked to individual dendrimer units comprising signature identifying agents, imaging agents, therapeutic agents, targeting agents, and monitoring agents, respectively.
- FIG. 3 showing complexes for use in breast and colon cancer.
- the core dendrimer is complexed with a first dendrimer comprising a gadolinium contrast agent for imaging the tissue by MRI, a second dendrimer comprising a therapeutic agent (e.g., Taxol or cisplatin) for treating the cancer, a third dendrimer comprising a ligand for binding to a folate receptor for targeting the cancer cells, a fourth dendrimer comprising a fluorogenic component for detecting mutated p53 protein for identifying the cancer signature, and a fifth dendrimer comprising a fluorogenic marker of apoptosis to monitor treatment with the therapeutic agent.
- the core dendrimer comprises any of the desired components.
- two or more of the functionalities are provided on a single dendrimer.
- libraries of individual dendrimers comprising the above functionalities are created for use in generating any desired nanodevice complexes.
- libraries of dendrimers each containing one of a host of therapeutic agents are created. The same procedure is conducted for target agents, imaging agents, and the like.
- Such libraries provide the ability to mix-and-match components to generate the optimum therapeutic or diagnostic complexes for a desired application.
- the nanodevices may be generated rationally, or may be generated randomly and screened for desired activities.
- the present invention provides non-toxic systems with a wide range of therapeutic and diagnostic uses.
- dendrimer complex refers to a complex comprising two or more dendrimers in physical association with one another (e.g., covalent or non-covalent attachment to one another).
- two dendrimers covalently linked to one another e.g., directly or through a linking group
- the term āagentā refers to a composition that possesses a biologically relevant activity or property.
- Biologically relevant activities are activities associated with biological reactions or events or that allow the detection, monitoring, or characterization biological reactions or events.
- Biologically relevant activities include, but are not limited to, therapeutic activities (e.g., the ability to improve biological health or prevent the continued degeneration associated with an undesired biological condition), targeting activities (e.g., the ability to bind or associate with a biological molecule or complex), monitoring activities (e.g., the ability to monitor the progress of a biological event or to monitor changes in a biological composition), imaging activities (e.g., the ability to observe or otherwise detect biological compositions or reactions), and signature identifying activities (e.g., the ability to recognize certain cellular compositions or conditions and produce a detectable response indicative of the presence of the composition or condition).
- therapeutic activities e.g., the ability to improve biological health or prevent the continued degeneration associated with an undesired biological condition
- targeting activities e.g.,
- the agents of the present invention are not limited to these particular illustrative examples. Indeed any useful agent may be used including agents that deliver or destroy biological materials, cosmetic agents, and the like.
- the agent or agents are associated with at least one dendrimer (e.g., incorporated into the dendrimer, surface exposed on the dendrimer, etc.).
- two or more dendrimers are present in a composition where any one dendrimer may have an agent that āis different thanā an agent of another dendrimer. āDifferent thanā refers to agents that are distinct from one another in chemical makeup and/or functionality.
- the term ānanodeviceā refers to small (e.g., invisible to the unaided human eye) compositions containing or associated with one or more āagents.ā
- the nanodevice consists of a physical composition (e.g., a dendrimer) associated with at least one agent that provides biological functionality (e.g., a therapeutic agent).
- the nanodevice may comprise additional components (e.g., additional dendrimers and/or agents).
- the physical composition of the nanodevice comprises at least one dendrimer and a biological functionality is provided by at least one agent associated with a dendrimer.
- biologically active refers to a protein or other biologically active molecules (e.g., catalytic RNA) having structural, regulatory, or biochemical functions of a naturally occurring molecule.
- agonist refers to a molecule which, when interacting with an biologically active molecule, causes a change (e.g., enhancement) in the biologically active molecule, which modulates the activity of the biologically active molecule.
- Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind or interact with biologically active molecules.
- agonists can alter the activity of gene transcription by interacting with RNA polymerase directly or through a transcription factor.
- Antagonist refers to a molecule which, when interacting with a biologically active molecule, blocks or modulates the biological activity of the biologically active molecule.
- Antagonists and inhibitors may include proteins, nucleic acids, carbohydrates, or any other molecules that bind or interact with biologically active molecules.
- Inhibitors and antagonists can effect the biology of entire cells, organs, or organisms (e.g., an inhibitor that slows tumor growth).
- modulate refers to a change in the biological activity of a biologically active molecule. Modulation can be an increase or a decrease in activity, a change in binding characteristics, or any other change in the biological, functional, or immunological properties of biologically active molecules.
- the term āgeneā refers to a nucleic acid (e.g., DNA) sequence that comprises coding sequences necessary for the production of a polypeptide or precursor.
- the polypeptide can be encoded by a full length coding sequence or by any portion of the coding sequence so long as the desired activity or functional properties (e.g., enzymatic activity, ligand binding, signal transduction, etc.) of the full-length or fragment are retained.
- the term also encompasses the coding region of a structural gene and the including sequences located adjacent to the coding region on both the 5ā² and 3ā² ends for a distance of about 1 kb or more on either end such that the gene corresponds to the length of the full-length mRNA.
- sequences that are located 5ā² of the coding region and which are present on the mRNA are referred to as 5ā² non-translated sequences.
- sequences that are located 3ā² or downstream of the coding region and which are present on the mRNA are referred to as 3ā² non-translated sequences.
- the term āgeneā encompasses both cDNA and genomic forms of a gene.
- a genomic form or clone of a gene contains the coding region interrupted with non-coding sequences termed āintronsā or āintervening regionsā or āintervening sequences.ā Introns are segments of a gene which are transcribed into nuclear RNA (hnRNA); introns may contain regulatory elements such as enhancers.
- Introns are removed or āspliced outā from the nuclear or primary transcript; introns therefore are absent in the messenger RNA (mRNA) transcript.
- mRNA messenger RNA
- the mRNA functions during translation to specify the sequence or order of amino acids in a nascent polypeptide.
- nucleic acid molecule encoding refers to the order or sequence of deoxyribonucleotides along a strand of deoxyribonucleic acid. The order of these deoxyribonucleotides determines the order of amino acids along the polypeptide (protein) chain. The DNA sequence thus codes for the amino acid sequence.
- the terms ācomplementaryā or ācomplementarityā are used in reference to polynucleotides (i.e., a sequence of nucleotides) related by the base-pairing rules. For example, for the sequence āA-G-T,ā is complementary to the sequence āT-C-A.ā Complementarity may be āpartial,ā in which only some of the nucleic acids' bases are matched according to the base pairing rules. Or, there may be ācompleteā or ātotalā complementarity between the nucleic acids. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. This is of particular importance in amplification reactions, as well as detection methods that depend upon binding between nucleic acids.
- hybridization is used in reference to the pairing of complementary nucleic acids. Hybridization and the strength of hybridization (i.e., the strength of the association between the nucleic acids) is impacted by such factors as the degree of complementary between the nucleic acids, stringency of the conditions involved, the T m of the formed hybrid, and the G:C ratio within the nucleic acids.
- T m is used in reference to the āmelting temperature.ā
- the melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half dissociated into single strands.
- stringency is used in reference to the conditions of temperature, ionic strength, and the presence of other compounds such as organic solvents, under which nucleic acid hybridizations are conducted. Those skilled in the art will recognize that āstringencyā conditions may be altered by varying the parameters just described either individually or in concert. With āhigh stringencyā conditions, nucleic acid base pairing will occur only between nucleic acid fragments that have a high frequency of complementary base sequences (e.g., hybridization under āhigh stringencyā conditions may occur between homologs with about 85-100% identity, preferably about 70-100% identity).
- nucleic acid base pairing will occur between nucleic acids with an intermediate frequency of complementary base sequences (e.g., hybridization under āmedium stringencyā conditions may occur between homologs with about 50-70% identity).
- conditions of āweakā or ālowā stringency are often required with nucleic acids that are derived from organisms that are genetically diverse, as the frequency of complementary sequences is usually less.
- āHigh stringency conditionsā when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42Ā° C. in a solution consisting of 5 ā SSPE (43.8 g/l NaCl, 6.9 g/l NaH 2 PO 4 .H 2 O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5 ā Denhardt's reagent and 100 ā g/ml denatured salmon sperm DNA followed by washing in a solution comprising 0.1 ā SSPE, 1.0% SDS at 42Ā° C. when a probe of about 500 nucleotides in length is employed.
- āMedium stringency conditionsā when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42Ā° C. in a solution consisting of 5 ā SSPE (43.8 g/l NaCl, 6.9 g/l NaH 2 PO 4 .H 2 O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5 ā Denhardt's reagent and 100 ā g/ml denatured salmon sperm DNA followed by washing in a solution comprising 1.0 ā SSPE, 1.0% SDS at 42Ā° C. when a probe of about 500 nucleotides in length is employed.
- āLow stringency conditionsā comprise conditions equivalent to binding or hybridization at 42Ā° C. in a solution consisting of 5 ā SSPE (43.8 g/l NaCl, 6.9 g/l NaH 2 PO 4 .H 2 O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.1% SDS, 5 ā Denhardt's reagent [50 ā Denhardt's contains per 500 ml: 5 g Ficoll (Type 400, Pharamcia), 5 g BSA (Fraction V; Sigma)] and 100 ā g/ml denatured salmon sperm DNA followed by washing in a solution comprising 5 ā SSPE, 0.1% SDS at 42Ā° C. when a probe of about 500 nucleotides in length is employed.
- 5 ā SSPE 43.8 g/l NaCl, 6.9 g/l NaH 2 PO 4 .H 2 O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH
- antisense is used in reference to DNA or RNA sequences that are complementary to a specific DNA or RNA sequence (e.g., mRNA). Included within this definition are antisense RNA (āasRNAā) molecules involved in gene regulation by bacteria. Antisense RNA may be produced by any method, including synthesis by splicing the gene(s) of interest in a reverse orientation to a viral promoter which permits the synthesis of a coding strand. Once introduced into an embryo, this transcribed strand combines with natural mRNA produced by the embryo to form duplexes. These duplexes then block either the further transcription of the mRNA or its translation. In this manner, mutant phenotypes may be generated.
- asRNA antisense RNA
- antisense strand is used in reference to a nucleic acid strand that is complementary to the āsenseā strand.
- the designation ( ā ) i.e., ānegativeā is sometimes used in reference to the antisense strand, with the designation (+) sometimes used in reference to the sense (i.e., āpositiveā) strand.
- antigenic determinant refers to that portion of an antigen that makes contact with a particular antibody (i.e., an epitope).
- a protein or fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to a given region or three-dimensional structure on the protein; these regions or structures are referred to as antigenic determinants.
- An antigenic determinant may compete with the intact antigen (i.e., the āimmunogenā used to elicit the immune response) for binding to an antibody.
- the terms āspecific bindingā or āspecifically bindingā when used in reference to the interaction of an antibody and a protein or peptide means that the interaction is dependent upon the presence of a particular structure (i.e., the antigenic determinant or epitope) on the protein; in other words the antibody is recognizing and binding to a specific protein structure rather than to proteins in general. For example, if an antibody is specific for epitope āA,ā the presence of a protein containing epitope A (or free, unlabelled A) in a reaction containing labelled āAā and the antibody will reduce the amount of labelled A bound to the antibody.
- transgene refers to a foreign gene that is placed into an organism by, for example, introducing the foreign gene into newly fertilized eggs or early embryos.
- foreign gene refers to any nucleic acid (e.g., gene sequence) that is introduced into the genome of an animal by experimental manipulations and may include gene sequences found in that animal so long as the introduced gene does not reside in the same location as does the naturally-occurring gene.
- vector is used in reference to nucleic acid molecules that transfer DNA segment(s) from one cell to another.
- vehicle is sometimes used interchangeably with āvector.ā
- Vectors are often derived from plasmids, bacteriophages, or plant or animal viruses.
- expression vector refers to a recombinant DNA molecule containing a desired coding sequence and appropriate nucleic acid sequences necessary for the expression of the operably linked coding sequence in a particular host organism.
- Nucleic acid sequences necessary for expression in prokaryotes usually include a promoter, an operator (optional), and a ribosome binding site, often along with other sequences.
- Eukaryotic cells are known to utilize promoters, enhancers, and termination and polyadenylation signals.
- gene transfer system refers to any means of delivering a composition comprising a nucleic acid sequence to a cell or tissue.
- gene transfer systems include, but are not limited to vectors (e.g., retroviral, adenoviral, adeno-associated viral, and other nucleic acid-based delivery systems), microinjection of naked nucleic acid, and polymer-based delivery systems (e.g., liposome-based and metallic particle-based systems).
- viral gene transfer system refers to gene transfer systems comprising viral elements (e.g., intact viruses and modified viruses) to facilitate delivery of the sample to a desired cell or tissue.
- adenovirus gene transfer system refers to gene transfer systems comprising intact or altered viruses belonging to the family Adenoviridae.
- transfection refers to the introduction of foreign DNA into eukaryotic cells. Transfection may be accomplished by a variety of means known to the art including calcium phosphate-DNA co-precipitation, DEAE-dextran-mediated transfection, polybrene-mediated transfection, electroporation, microinjection, liposome fusion, lipofection, protoplast fusion, retroviral infection, and biolistics.
- cell culture refers to any in vitro culture of cells. Included within this term are continuous cell lines (e.g., with an immortal phenotype), primary cell cultures, finite cell lines (e.g., non-transformed cells), and any other cell population maintained in vitro.
- in vitro refers to an artificial environment and to processes or reactions that occur within an artificial environment.
- In vitro environments can consist of, but are not limited to, test tubes and cell culture.
- in vivo refers to the natural environment (e.g., an animal or a cell) and to processes or reaction that occur within a natural environment.
- test compound refers to any chemical entity, pharmaceutical, drug, and the like that can be used to treat or prevent a disease, illness, sickness, or disorder of bodily function.
- Test compounds comprise both known and potential therapeutic compounds.
- a test compound can be determined to be therapeutic by screening using the screening methods of the present invention.
- a āknown therapeutic compoundā refers to a therapeutic compound that has been shown (e.g., through animal trials or prior experience with administration to humans) to be effective in such treatment or prevention.
- sample as used herein is used in its broadest sense and includes environmental and biological samples.
- Environmental samples include material from the environment such as soil and water.
- Biological samples may be animal, including, human, fluid (e.g., blood, plasma and serum), solid (e.g., stool), tissue, liquid foods (e.g., milk), and solid foods (e.g., vegetables).
- photosensitizer and āphotodynamic dye,ā refer to materials which undergo transformation to an excited state upon exposure to a light quantum (hv).
- photosensitizers and photodynamic dyes include, but are not limited to, Photofrin 2, benzoporphyrin, m-tetrahydroxyphenylchlorin, tin etiopurpurin, copper benzochlorin, and other porphyrins.
- the present invention provides novel systems and compositions for the treatment and monitoring of diseases (e.g., cancer).
- diseases e.g., cancer
- the present invention provides systems and compositions that target, image, and sense pathophysiological defects, provide the appropriate therapeutic based on the diseased state, monitor the response to the delivered therapeutic, and identify residual disease.
- the compositions are small enough to readily enter a patient's or subjects cells.
- the systems and compositions of the present invention are used in treatment and monitoring during cancer therapy.
- the systems and compositions of the present invention find use in the treatment and monitoring of a variety of disease states or other physiological conditions, and the present invention is not limited to use with any particular disease state or condition.
- Other disease states that find particular use with the present invention include, but are not limited to, cardiovascular disease, inflammatory disease, and other proliferative disorders.
- the present invention provides nanodevices comprising dendrimer subunits.
- the nanodevices are limited to a few hundred nanometers in diameter to facilitate internalization into cells.
- Preferred embodiments of the present invention provide a composition comprising two or more different dendrimer structures, each including at least one functional component, including, but not limited to, therapeutic agents, biological monitoring components, biological imaging components, targeting components, and components to identify the specific signature of cellular abnormalities. These components ultimately form a therapeutic and/or diagnostic complexes in which each of the different components is located within a distinct dendrimer carrier.
- the therapeutic nanodevice or complex is made up of at least two separate dendrimer carriers being specifically complexed with or covalently linked to at least one of the other dendrimer compositions of the complexes.
- the following discussion describes individual component parts of the nanodevice and methods of making and using the same in some embodiments of the present invention.
- the discussion focuses on specific embodiments of the use of the compositions in the treatment and monitoring of breast adenocarcinoma and colon adenocarcinoma. These specific embodiments are intended only to illustrate certain preferred embodiments of the present invention and are not intended to limit the scope thereof.
- the nanodevices of the present invention target the neoplastic cells through cell-surface moieties and are taken up by the tumor cell for example through receptor mediated endocytosis.
- the imaging component of the device allows the tumor to be imaged for example through the use of MRI.
- red fluorescence is activated by the presence of the particular cancer signature (e.g., Muc1, Her2 or mutated p53).
- the particular cancer signature e.g., Muc1, Her2 or mutated p53.
- This allows a triggered release of a therapeutic agent contained in the therapeutic component of the nanodevice.
- the release is facilitated by the therapeutic component being attached to a labile protecting group, such as, for example, cisplatin being attached to a photolabile protecting group that becomes released by laser light directed at those cells emitting the color of fluorescence activated as mentioned above (e.g., red-emitting) cells.
- the therapeutic device also may have a component to monitor the response of the tumor to therapy.
- the caspase activity of the cells may be used to activate a green fluorescence. This allows apoptotic cells to turn orange, (combination of red and green) while residual cells remain red. Any normal cells that are induced to undergo apoptosis in collateral damage fluoresce green.
- compositions of the present invention facilitates non-intrusive sensing, signaling, and intervention for cancer. Since specific protocols of molecular alterations in cancer cells are identified using this technique, non-intrusive sensing through the dendritic molecules is achieved and may then be employed automatically against various tumor phenotypes. If the polymer array approach is employed, the targeting, sensing, and therapeutic conjugates are interchanged to address varied tumor types or different pathophysiological alterations. Thus, the array approach provides common, interchangeable therapeutic platforms that transcend any single type of tumor or cellular abnormality.
- the nanodevices comprises dendrimers.
- Dendrimeric polymers have been described extensively (See, Tomalia, Advanced Materials 6:529 [1994]; Angew, Chem. Int. Ed. Engl., 29:138 [1990]; incorporated herein by reference in their entireties).
- Dendrimers polymers are synthesized as defined spherical structures typically ranging from 1 to 20 nanometers in diameter.
- polyamidoamine (B-alanine subunit) dendrimers are shown in FIG. 1. Molecular weight and the number of terminal groups increase exponentially as a function of generation (the number of layers) of the polymer.
- Different types of dendrimers can be synthesized based on the core structure that initiates the polymerization process.
- the dendrimer core structures dictate several characteristics of the molecule such as the overall shape, density and surface functionality (Tomalia et al., Chem. Int. Ed. Engl., 29:5305 [1990].
- Spherical dendrimers have ammonia as a trivalent initiator core or ethylenediamine (EDA) as a tetravalent initiator core.
- EDA ethylenediamine
- Recently described rod-shaped dendrimers (Yin et al., J. Am. Chem. Soc., 120:2678 [1998]) use polyethyleneimine linear cores of varying lengths; the longer the core, the longer the rod.
- Dendritic macromolecules are available commercially in kilogram quantities and are produced under current good manufacturing processes (GMP) for biotechnology applications.
- Dendrimers may be characterized by a number of techniques including, but not limited to, electrospray-ionization mass spectroscopy, 13 C nuclear magnetic resonance spectroscopy, high performance liquid chromatography, size exclusion chromatography with multi-angle laser light scattering, capillary electrophoresis and gel electrophoresis. These tests assure the uniformity of the polymer population and are important for monitoring quality control of dendrimer manufacture for GMP applications and in vivo usage. Extensive studies have been completed with dendrimers and show no evidence of toxicity when administered intravenously in in vivo studies (Roberts et al., J. Biomed. Mat. Res., 30:53 [1996] and Bourne et al., J. Magn. Reson. Imag., 3:15 [1996]).
- U.S. Pat. No. 4,507,466, U.S. Pat. No. 4,558,120, U.S. Pat. No. 4,568,737, and U.S. Pat. No. 4,587,329 each describe methods of making dense star polymers with terminal densities greater than conventional star polymers. These polymers have greater/more uniform reactivity than conventional star polymers, i.e. 3rd generation dense star polymers. These patents further describe the nature of the amidoamine dendrimers and the 3-dimensional molecular diameter of the dendrimers.
- U.S. Pat. No. 4,631,337 describes hydrolytically stable polymers.
- U.S. Pat. No. 4,694,064 describes rod-shaped dendrimers.
- U.S. Pat. No. 4,713,975 describes dense star polymers and their use to characterize surfaces of viruses, bacteria and proteins including enzymes. Bridged dense star polymers are described in U.S. Pat. No. 4,737,550.
- U.S. Pat. No. 4,857,599 and U.S. Pat. No. 4,871,779 describe dense star polymers on immobilized cores useful as ion-exchange resins, chelation resins and methods of making such polymers.
- U.S. Pat. No. 5,338,532 is directed to starburst conjugates of dendrimer(s) in association with at least one unit of carried agricultural, pharmaceutical or other material.
- This patent describes the use of dendrimers to provide means of delivery of high concentrations of carried materials per unit polymer, controlled delivery, targeted delivery and/or multiple species such as e.g., drugs antibiotics, general and specific toxins, metal ions, radionuclides, signal generators, antibodies, interleukins, hormones, interferons, viruses, viral fragments, pesticides, and antimicrobials.
- U.S. Pat. No. 5,773,527 discloses non-crosslinked polybranched polymers having a comb-burst configuration and methods of making the same.
- U.S. Pat. No. 5,631,329 describes a process to produce polybranched polymer of high molecular weight by forming a first set of branched polymers protected from branching; grafting to a core; deprotecting first set branched polymer, then forming a second set of branched polymers protected from branching and grafting to the core having the first set of branched polymers, etc.
- U.S. Pat. No. 5,902,863 describes dendrimer networks containing lipophilic organosilicone and hydrophilic polyanicloamine nanscopic domains.
- the networks are prepared from copolydendrimer precursors having PAMAM (hydrophilic) or polyproyleneimine interiors and organosilicon outer layers.
- PAMAM hydrophilic
- These dendrimers have a controllable size, shape and spatial distribution. They are hydrophobic dendrimers with an organosilicon outer layer that can be used for specialty membrane, protective coating, composites containing organic organometallic or inorganic additives, skin patch delivery, absorbants, chromatography personal care products and agricultural products.
- U.S. Pat. No. 5,795,582 describes the use of dendrimers as adjutants for influenza antigen. Use of the dendrimers produces antibody titer levels with reduced antigen dose.
- U.S. Pat. No. 5,898,005 and U.S. Pat. No. 5,861,319 describe specific immunobinding assays for determining concentration of an analyte.
- U.S. Pat. No. 5,661,025 provides details of a self-assembling polynucleotide delivery system comprising dendrimer polycation to aid in delivery of nucleotides to target site.
- This patent provides methods of introducing a polynucleotide into a eukaryotic cell in vitro comprising contacting the cell with a composition comprising a polynucleotide and a dendrimer polycation non-covalently coupled to the polynucleotide.
- Dendrimer-antibody conjugates for use in in vitro diagnostic applications has previously been demonstrated (Singh et al., Clin. Chem., 40:1845 [1994]), for the production of dendrimer-chelant-antibody constructs, and for the development of boronated dendrimer-antibody conjugates (for neutron capture therapy); each of these latter compounds may be used as a cancer therapeutic (Wu et al., Bioorg. Med. Chem. Lett., 4:449 [1994]; Wiener et al., Magn. Reson. Med. 31:1 [1994]; Barth et al., Bioconjugate Chem. 5:58 [1994]; and Barth et al.).
- Dendrimers have also been conjugated to fluorochromes or molecular beacons and shown to enter cells. They can then be detected within the cell in a manner compatible with sensing apparatus for evaluation of physiologic changes within cells (Baker et al., Anal. Chem. 69:990 [1997]). Finally, dendrimers have been constructed as differentiated block copolymers where the outer portions of the molecule may be digested with either enzyme or light-induced catalysis (Urdea and Hom, Science 261:534 [1993]). This would allow the controlled degradation of the polymer to release therapeutics at the disease site and could provide a mechanism for an external trigger to release the therapeutic agents.
- the present invention provides such nanodevices, wherein two or more dendrimers, each with a specific functionality are combined into a single complex.
- preferred complexes of the present invention are constructed from individual dendrimer modules around a core dendrimer. This provides a core-shell dendrimer or a cluster molecule as shown in FIG. 2.
- conjugates for each of the different activities e.g., one dendrimer conjugate for sensing, one for targeting and another for therapeutic carrier are produced.
- These different dendrimer modules are then clustered together and covalently linked in a manner that yields a single therapeutic device or complex.
- one dendrimer acts as a core around which other shell-type dendrimers are covalently attached.
- the core molecule is an amine-terminated dendrimer.
- the shell reagent dendrimers possess carboxylic acid/ester groups that allow covalent attachment by amide formation to the core.
- a highly concentrated mix of amino-terminated dendrimers with different functional groups of the same or higher generation are then added to a core dendrimer.
- a cluster then forms by amide formation between the terminal amine groups of the core and the free terminal carboxylic acid groups of the functional outer dendrimers.
- a limited number of bonds can form between the core dendrimer and each outer-layer dendrimer because of sterically induced stoichiometries.
- a molar excess of the outer-layer dendrimer is used to bias the reaction so that each outer core dendrimer reacts only with a single core molecule.
- a wide range of therapeutic agents find use with the present invention. Any therapeutic agent that can be associated with a dendrimer may be delivered using the methods, systems, and compositions of the present invention. To illustrate delivery of therapeutic agents, the following discussion focuses mainly on the delivery of cisplatin and taxol for the treatment of cancer. Also discussed are various photodynamic therapy compounds, and various antimicrobial compounds.
- Cisplatin and Taxol have a well-defined action of inducing apoptosis in tumor cells (See e.g., Lanni et al., Proc. Natl. Acad. Sci., 94:9679 [1997]; Tortora et al, Cancer Research 57:5107 [1997]; and Zaffaroni et al., Brit. J. Cancer 77:1378 [1998]).
- treatment with these and other chemotherapeutic agents is difficult to accomplish without incurring significant toxicity.
- the agents currently in use are generally poorly water soluble, quite toxic, and given at doses that affect normal cells as wells as diseased cells.
- paclitaxel (Taxol), one of the most promising anticancer compounds discovered, is poorly soluble in water.
- Paclitaxel has shown excellent antitumor activity in a wide variety of tumor models such as the B16 melanoma, L1210 leukemias, Mx-1 mammary tumors, and CS-1 colon tumor xenografts.
- the poor aqueous solubility of paclitaxel presents a problem for human administration.
- currently used paclitaxel formulations require a cremaphor to solubilize the drug.
- the human clinical dose range is 200-500 mg. This dose is dissolved in a 1:1 solution of ethanol:cremaphor and diluted to one liter of fluid given intravenously.
- the cremaphor currently used is polyethoxylated castor oil. It is given by infusion by dissolving in the cremaphor mixture and diluting with large volumes of an aqueous vehicle. Direct administration (e.g., subcutaneous) results in local toxicity and low levels of activity. Thus, there is a need for more efficient and effective delivery systems for these chemotherapeutic agents.
- the present invention overcomes these problems by providing methods and compositions for specific drug delivery.
- the present invention also provides the ability to administer combinations of agents (e.g., two or more different therapeutic agents) to produce an additive effect.
- agents e.g., two or more different therapeutic agents
- the use of multiple agent may be used to counter disease resistance to any single agent.
- resistance of some cancers to single drugs taxol
- cisplatin, conjugated to dendrimers is even able to efficiently kill cancer cells that are resistant to cisplatin (See, Example 4).
- the dendrimer conjugates prevent multidrug resistance channels from pumping the cisplatin out of the cell.
- the present invention also provides the opportunity to monitor therapeutic success following delivery of cisplatin and/or Taxol to a subject. For example, measuring the ability of these drugs to induce apoptosis in vitro is reported to be a marker for in vivo efficacy (Gibb, Gynecologic Oncology 65:13 [1997]). Therefore, in addition to the targeted delivery of either one or both of these drugs to provide effective anti-tumor therapy and reduce toxicity, the effectiveness of the therapeutic can be gauged by techniques of the present invention that monitor the induction of apoptosis. Importantly, both therapeutics are active against a wide-range of tumor types including, but not limited to, breast cancer and colon cancer (Akutsu et al., Eur. J. Cancer 31A:2341 [1995]).
- the therapeutic component of the nanodevice may comprise compounds including, but not limited to, adriamycin, 5-fluorouracil, etoposide, camptothecin, actinomycin-D, mitomycin C, or more preferably, cisplatin.
- the agent may be prepared and used as a combined therapeutic composition, or kit, by combining it with the immunotherapeutic agent, as described herein.
- the dendrimer systems further comprise one or more agents that directly cross-link nucleic acids (e.g., DNA) to facilitate DNA damage leading to a synergistic, antineoplastic agents of the present invention.
- agents such as cisplatin, and other DNA alkylating agents may be used.
- Cisplatin has been widely used to treat cancer, with efficacious doses used in clinical applications of 20 mg/M 2 for 5 days every three weeks for a total of three courses.
- the nanodevice may be delivered via any suitable method, including, but not limited to, injection intravenously, subcutaneously, intratumorally, intraperitoneally, or topically (e.g., to mucosal surfaces).
- Agents that damage DNA also include compounds that interfere with DNA replication, mitosis and chromosomal segregation.
- chemotherapeutic compounds include adriamycin, also known as doxorubicin, etoposide, verapamil, podophyllotoxin, and the like. Widely used in a clinical setting for the treatment of neoplasms, these compounds are administered through bolus injections intravenously at doses ranging from 25-75 Mg/M 2 at 21 day intervals for adriamycin, to 35-50 Mg/M 2 for etoposide intravenously or double the intravenous dose orally.
- nucleic acid precursors and subunits also lead to DNA damage and find use as chemotherapeutic agents in the present invention.
- a number of nucleic acid precursors have been developed. Particularly useful are agents that have undergone extensive testing and are readily available. As such, agents such as 5-fluorouracil (5-FU) are preferentially used by neoplastic tissue, making this agent particularly useful for targeting to neoplastic cells.
- the doses delivered may range from 3 to 15 mg/kg/day, although other doses may vary considerably according to various factors including stage of disease, amenability of the cells to the therapy, amount of resistance to the agents and the like.
- the anti-cancer therapeutic agents that find use in the present invention are those that are amenable to incorporation into dendrimeric structures or are otherwise associated with dendrimer structures such that they can be delivered into a subject, tissue, or cell without loss of fidelity of its anticancer effect.
- cancer therapeutic agents such as a platinum complex, verapamil, podophyllotoxin, carboplatin, procarbazine, mechlorethamine, cyclophosphamide, camptothecin, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosurea, adriamycin, dactinomycin, daunorubicin, doxorubicin, bleomycin, plicomycin, mitomycin, etoposide (VP16), tamoxifen, taxol, transplatinum, 5-fluorouracil, vincristin, vinblastin and methotrexate and other similar anti-cancer agents, those of skill in the art are referred to any number of instructive manuals including, but not limited to, the Physician's Desk reference and to Goodman and Gilman's āPharmaceutical Basis of Therapeuticsā ninth edition, Eds. Hardman et al., 1996.
- the drugs are preferably attached to the nanodevice with photocleavable linkers.
- photocleavable linkers For example, several heterobifunctional, photocleavable linkers that find use with the present invention are described by Ottl et al (Ottl et al., Bioconjugate Chem., 9:143 [1998]). These linkers can be either water or organic soluble. They contain an activated ester that can react with amines or alcohols and an epoxide that can react with a thiol group.
- the therapeutic agent when linked to the compositions of the present invention using such linkers, may be released in biologically active or activatable form through exposure of the target area to near-ultraviolet light.
- the alcohol group of taxol is reacted with the activated ester of the organic-soluble linker.
- This product in turn is reacted with the partially-thiolated surface of appropriate dendrimers (the primary amines of the dendrimers can be partially converted to thiol-containing groups by reaction with a sub-stoichiometric amount of 2-iminothiolano).
- the amino groups of the drug are reacted with the water-soluble form of the linker. If the amino groups are not reactive enough, a primary amino-containing active analog of cisplatin, such as Pt(II) sulfadiazine dichloride (Pasani et al., Inorg.
- the amino groups of cisplatin (or an analog thereof) is linked with a very hydrophobic photocleavable protecting group, such as the 2-nitrobenzyloxycarbonyl group (Pillai, V. N. R. Synthesis: 1-26 [1980]).
- a very hydrophobic photocleavable protecting group such as the 2-nitrobenzyloxycarbonyl group (Pillai, V. N. R. Synthesis: 1-26 [1980]).
- the drug is loaded into and very preferentially retained by the hydrophobic cavities within the PAMAM dendrimer (See e.g., Esfand et al., Pharm. Sci., 2:157 [1996]), insulated from the aqueous environment.
- near-UV light about 365 mn
- the hydrophobic group is cleaved, leaving the intact drug. Since the drug itself is hydrophilic, it diffuses out of the dendrimer and into the tumor cell, where it initiates apoptosis.
- photocleavable linkers are enzyme cleavable linkers.
- a number of photocleavable linkers have been demonstrated as effective anti-tumor conjugates and can be prepared by attaching cancer therapeutics, such as doxorubicin, to water-soluble polymers with appropriate short peptide linkers (See e.g., Vasey et al., Clin. Cancer Res., 5:83 [1999]).
- the linkers are stable outside of the cell, but are cleaved by thiolproteases once within the cell.
- the conjugate PK1 is used.
- enzyme-degradable linkers such as Gly-Phe-Leu-Gly may be used.
- the present invention is not limited by the nature of the therapeutic technique.
- other conjugates that find use with the present invention include, but are not limited to, using conjugated boron dusters for BNCT (Capala et al., Bioconjugate Chem., 7:7 [1996]), the use of radioisotopes, and conjugation of toxins such as ricin to the nanodevice.
- Photodynamic therapeutic agents may also be used as therapeteutic agents in the present invention.
- the dendrimeric compositions of the present invention containing photodynamic compounds are illuminated, resulting in the production of singlet oxygen and free radicals that diffuse out of the fiberless radiative effector to act on the biological target (e.g., tumor cells or bacterial cells).
- Some preferred photodynamic compounds include, but are not limited to, those that can participate in a type II photochemical reaction:
- PS photosenstizer
- PS*(1) excited singlet state of PS
- PS*(3) excited triplet state of PS
- h ā light quantum
- *O2 excited singlet state of oxygen
- T biological target.
- Other photodynamic compounds useful in the present invention include those that cause cytotoxity by a different mechanism than singlet oxygen production (e.g., copper benzochlorin, Selman, et al., Photochem. Photobiol., 57:681-85 [1993], incorporated herein by reference).
- Examples of photodynamic compounds that find use in the present invention include, but are not limited to Photofrin 2, phtalocyanins (See e.g., Brasseur et al., Photochem.
- toxic agents that directly produce free radicals are incorporated into the fiberless radiative effectors during polymerization.
- This approach allows for larger and longer lived fiberless radiative effectors and will not be limited by local oxygen supplies.
- Such toxic agents include, but are not limited to 2-methyl-4-nitro-quinoline-N-oxide (Aldrich) and 4,4-dinitro-(2,2) bipyridinyl-N,N dioxide (Aldrich), which produce hydroxyl radicals when illuminated with 360-400 nm light (Botchway et al., Photochem. Photobiol.
- Antimicrobial therapeutic agents may also be used as therapeteutic agents in the present invention. Any agent that can kill, inhibit, or otherwise attenuate the function of microbial organisms may be used, as well as any agent contemplated to have such activities. Antimicrobial agents include, but are not limited to, natural and synthetic antibiotics, antibodies, inhibitory proteins, antisense nucleic acids, membrane disruptive agents and the like, used alone or in combination. Indeed, any type of antibiotic may be used including, but not limited to, anti-bacterial agents, anti-viral agents, anti-fungal agents, and the like.
- the nano-devices of the present invention contain one or more signature identifying agents that are activated by, or are able to interact with, a signature component (āsignatureā).
- signature identifying agent is an antibody, preferably a monoclonal antibody, that specifically binds the signature (e.g., cell surface molecule specific to a cell to be targeted).
- tumor cells are identified.
- Tumor cells have a wide variety of signatures, including the defined expression of cancer-specific antigens such as Muc1, HER-2 and mutated p53 in breast cancer. These act as specific signatures for the cancer, being present in 30% (HER-2) to 70% (mutated p53) of breast cancers.
- a nanodevice of the present invention comprises a monoclonal antibody that specifically binds to a mutated version of p53 that is present in breast cancer.
- cancer cells expressing susceptibility genes are identified.
- the expression of a number of different cell surface receptors find use as targets for the binding and uptake of the nano-device.
- Such receptors include, but are not limited to, EGF receptor, folate receptor, FGR receptor 2, and the like.
- changes in gene expression associated with chromosomal abborations are the signature component.
- Burkitt lymphoma results from chromosome translocations that involve the Myc gene.
- a chromosome translocation means that a chromosome is broken, which allows it to associate with parts of other chromosomes.
- the classic chromosome translocation in Burkitt lymophoma involves chromosome 8, the site of the Myc gene. This changes the pattern of Myc expression, thereby disrupting its usual function in controlling cell growth and proliferation.
- gene expression associated with colon cancer are identified as the signature component.
- Two key genes are known to be involved in colon cancer: MSH2 on chromosome 2 and MLH1 on chromosome 3. Normally, the protein products of these genes help to repair mistakes made in DNA replication. If the MSH2 and MLH1 proteins are mutated, the mistakes in replication remain unrepaired, leading to damaged DNA and colon cancer.
- MEN1 gene involved in multiple endocrine neoplasia, has been known for several years to be found on chromosome 11, was more finely mapped in 1997, and serves as a signature for such cancers.
- an antibody specific for the altered protein or for the expressed gene to be detected is complexed with nanodevices of the present invention.
- adenocarcinoma of the colon has defined expression of CEA and mutated p53, both well-documented tumor signatures.
- the mutations of p53 in some of these cell lines are similar to that observed in some of the breast cancer cells and allows for the sharing of a p53 sensing component between the two nanodevices for each of these cancers (i.e., in assembling the nanodevice, dendrimers comprising the same signature identifying agent may be used for each cancer type).
- Both colon and breast cancer cells may be reliably studied using cell lines to produce tumors in nude mice, allowing for optimization and characterization in animals.
- tumor suppressors that find use as signatures in the present invention include, but are not limited to, p53, Muc1, CEA, p16, p21, p27, CCAM, RB, APC, DCC, NF-1, NF-2, WT-1, MEN-1, MEN-II, p73, VHL, FCC and MCC.
- the nanodevice comprises at least one dendrimer-based nanoscopic building block that can be readily imaged.
- the present invention is not limited by the nature of the imaging component used.
- imaging modules comprise surface modifications of quantum dots (See e.g., Chan and Nie, Science 281:2016 [1998]) such as zinc sulfide-capped cadmium selenide coupled to biomolecules (Sooklal, Adv. Mater., 10:1083 [1998]).
- the imaging module comprises dendrimers produced according to the ānanocompositeā concept (Balogh et al., Proc. of ACS PMSE 77:118 [1997] and Balogh and Tomalia, J. Am. Che. Soc., 120:7355 [1998]).
- dendrimers are produced by reactive encapsulation, where a reactant is preorganized by the dendrimer template and is then subsequently immobilized in/on the polymer molecule by a second reactant. Size, shape, size distribution and surface functionality of these nanoparticles are determined and controlled by the dendritic macromolecules.
- these materials have the solubility and compatibility of the host and have the optical or physiological properties of the guest molecule (i.e., the molecule that permits imaging). While the dendrimer host may vary according to the medium, it is possible to load the dendrimer hosts with different compounds and at various guest concentration levels. Complexes and composites may involve the use of a variety of metals or other inorganic materials. The high electron density of these materials considerably simplifies the imaging by electron microscopy and related scattering techniques. In addition, properties of inorganic atoms introduce new and measurable properties for imaging in either the presence or absence of interfering biological materials.
- encapsulation of gold, silver, cobalt, iron atoms/molecules and/or organic dye molecules such as fluorescein are encapsulated into dendrimers for use as nanoscopi composite labels/tracers, although any material that facilitates imaging or detection may be employed.
- imaging is based on the passive or active observation of local differences in density of selected physical properties of the investigated complex matter. These differences may be due to a different shape (e.g., mass density detected by atomic force microscopy), altered composition (e.g., radiopaques detected by X-ray), distinct light emission (e.g., fluorochromes detected by spectrophotometry), different diffraction (e.g., electron-beam detected by TEM), contrasted absorption (e.g., light detected by optical methods), or special radiation emission (e.g., isotope methods), etc.
- quality and sensitivity of imaging depend on the property observed and on the technique used.
- the imaging techniques for cancerous cells have to provide sufficient levels of sensitivity to observe small, local concentrations of selected cells. The earliest identification of cancer signatures requires high selectivity (i.e., highly specific recognition provided by appropriate targeting) and the highest possible sensitivity.
- Dendrimers have already been employed as biomedical imaging agents, perhaps most notably for magnetic resonance imaging (MRI) contrast enhancement agents (See e.g., Wiener et al., Mag. Reson. Med. 31:1 [1994]; an example using PAMAM dendrimers). These agents are typically constructed by conjugating chelated paramagnetic ions, such as Gd(III)-diethylenetriaminepentaacetic acid (Gd(III)-DTPA), to water-soluble dendrimers.
- MRI magnetic resonance imaging
- Gd(III)-DTPA chelated paramagnetic ions
- paramagnetic ions that may be useful in this context of the include, but are not limited to, gadolinium, manganese, copper, chromium, iron, cobalt, erbium, nickel, europium, technetium, indium, samarium, dysprosium, ruthenium, ytterbium, yttrium, and holmium ions and combinations thereof.
- the dendrimer is also conjugated to a targeting group, such as epidermal growth factor (EGF), to make the conjugate specifically bind to the desired cell type (e.g., in the case of EGF, EGFR-expressing tumor cells).
- EGF epidermal growth factor
- DTPA is attached to dendrimers via the isothiocyanate of DTPA as described by Wiener (Wiener et al., Mag. Reson. Med. 31:1 [1994]).
- Dendrimeric MRI agents are particularly effective due to the polyvalency, size and architecture of dendrimers, which results in molecules with large proton relaxation enhancements, high molecular relaxivity, and a high effective concentration of paramagnetic ions at the target site.
- Dendrimeric gadolinium contrast agents have even been used to differentiate between benign and malignant breast tumors using dynamic MRI, based on how the vasculature for the latter type of tumor images more densely (Adam et al., Ivest. Rad. 31:26 [1996]).
- MRI provides a particularly useful imaging system of the present invention.
- Static structural microscopic imaging of cancerous cells and tissues has traditionally been performed outside of the patient.
- Classical histology of tissue biopsies provides a fine illustrative example, and has proven a powerful adjunct to cancer diagnosis and treatment.
- a specimen is sliced thin (e.g., less than 40 microns), stained, fixed, and examined by a pathologist. If images are obtained, they are most often 2-D transmission bright-field projection images.
- Specialized dyes are employed to provide selective contrast, which is almost absent from the unstained tissue, and to also provide for the identification of aberrant cellular constituents.
- Quantifying sub-cellular structural features by using computer-assisted analysis, such as in nuclear ploidy determination, is often confounded by the loss of histologic context owing to the thinness of the specimen and the overall lack of 3-D information.
- static imaging approach it has been invaluable to allow for the identification of neoplasia in biopsied tissue.
- its use is often the crucial factor in the decision to perform invasive and risky combinations of chemotherapy, surgical procedures, and radiation treatments, which are often accompanied by severe collateral tissue damage, complications, and even patient death.
- the nanodevices of the present invention allow functional microscopic imaging of tumors and provide improved methods for imaging.
- the methods find use in vivo, in vitro, and ex vivo.
- dendrimers of the present invention are designed to emit light or other detectable signals upon exposure to light.
- the labeled dendrimers may be physically smaller than the optical resolution limit of the microscopy technique, they become self-luminous objects when excited and are readily observable and measurable using optical techniques.
- sensing fluorescent biosensors in a microscope involves the use of tunable excitation and emission filters and multiwavelength sources (Farkas et al., SPEI 2678:200 [1997]).
- NIR Near-infrared
- Biosensors that find use with the present invention include, but are not limited to, fluorescent dyes and molecular beacons.
- in vivo imaging is accomplished using functional imaging techniques.
- Functional imaging is a complementary and potentially more powerful techniques as compared to static structural imaging. Functional imaging is best known for its application at the macroscopic scale, with examples including functional Magnetic Resonance Imaging (fMRI) and Positron Emission Tomography (PET).
- fMRI Magnetic Resonance Imaging
- PET Positron Emission Tomography
- functional microscopic imaging may also be conducted and find use in in vivo and ex vivo analysis of living tissue.
- Functional microscopic imaging is an efficient combination of 3-D imaging, 3-D spatial multispectral volumetric assignment, and temporal sampling: in short a type of 3-D spectral microscopic movie loop. Interestingly, cells and tissues autofluoresce.
- biosensors which act to localize physiologic signals within the cell or tissue.
- biosensor-comprising dendrimers of the present invention are used to image upregulated receptor families such as the folate or EGF classes.
- functional biosensing therefore involves the detection of physiological abnormalities relevant to carcinogenesis or malignancy, even at early stages.
- a number of physiological conditions may be imaged using the compositions and methods of the present invention including, but not limited to, detection of nanoscopic dendrimeric biosensors for pH, oxygen concentration, Ca 2+ concentration, and other physiologically relevant analytes.
- the biological monitoring or sensing component of the nanodevice of the present invention is one which that can monitor the particular response in the tumor cell induced by an agent (e.g., a therapeutic agent provided by the therapeutic component of the nanodevice). While the present invention is not limited to any particular monitoring system, the invention is illustrated by methods and compositions for monitoring cancer treatments.
- the agent induces apoptosis in cells and monitoring involves the detection of apoptosis.
- the monitoring component is an agent that fluoresces at a particular wavelength when apoptosis occurs. For example, in a preferred embodiment, caspase activity activates green fluorescence in the monitoring component.
- Apoptotic cancer cells which have turned red as a result of being targeted by a particular signature with a red label, turn orange while residual cancer cells remain red. Normal cells induced to undergo apoptosis (e.g., through collateral damage), if present, will fluoresce green.
- fluorescent groups such as fluorescein are employed in the monitoring component. Fluorescein is easily attached to the dendrimer surface via the isothiocyanate derivatives, available from Molecular Probes, Inc. This allows the nanodevices to be imaged with the cells via confocal microscopy.
- Sensing of the effectiveness of the nanodevices is preferably achieved by using fluorogenic peptide enzyme substrates.
- apoptosis caused by the therapeutic agents results in the production of the peptidase caspase-1 (ICE).
- Calbiochem sells a number of peptide substrates for this enzyme that release a fluorescent moiety.
- a particularly useful peptide for use in the present invention is:
- MCA is the (7-methoxycoumarin-4-yl)acetyl and DNP is the 2,4-dinitrophenyl group (Talanian et al., J. Biol. Chem., 272: 9677 [1997]).
- the MCA group has greatly attenuated fluorescence, due to fluorogenic resonance energy transfer (FRET) to the DNP group.
- FRET fluorogenic resonance energy transfer
- the enzyme cleaves the peptide between the aspartic acid and glycine residues, the MCA and DNP are separated, and the MCA group strongly fluoresces green (excitation maximum at 325 nm and emission maximum at 392 nm).
- the lysine end of the peptide is linked to the nanodevice, so that the MCA group is released into the cytosol when it is cleaved.
- the lysine end of the peptide is a useful synthetic handle for conjugation because, for example, it can react with the activated ester group of a bifunctional linker such as Mal-PEG-OSu.
- a bifunctional linker such as Mal-PEG-OSu.
- the peptide and the fluorescent dyes are merely exemplary. It is contemplated that any peptide that effectively acts as a substrate for a caspase produced as a result of apoptosis finds use with the present invention.
- the nanodevice compositions are able to specifically target a particular cell type (e.g., tumor cell).
- a particular cell type e.g., tumor cell
- the nanodevice targets neoplastic cells through a cell surface moiety and is taken into the cell through receptor mediated endocytosis.
- any moiety known to be located on the surface of target cells finds use with the present invention.
- an antibody directed against such a moiety targets the compositions of the present invention to cell surfaces containing the moiety.
- the targeting moiety may be a ligand directed to a receptor present on the cell surface or vice versa.
- vitamins also may be used to target the therapeutics of the present invention to a particular cell.
- the targeting moiety may also function as a signatures component.
- tumor specific antigens including, but not limited to, carcinoembryonic antigen, prostate specific antigen, tyrosinase, ras, a sialyly lewis antigen, erb, MAGE-1, MAGE-3, BAGE, MN, gp100, gp75, p97, proteinase 3, a mucin, CD81, CID9, CD63; CD53, CD38, CO-029, CA125, GD2, GM2 and O-acetyl GD3, M-TAA, M-fetal or M-urinary find use with the present invention.
- the targeting moiety may be a tumor suppressor, a cytokine, a chemokine, a tumor specific receptor ligand, a receptor, an inducer of apoptosis, or a differentiating agent.
- Tumor suppressor proteins contemplated for targeting include, but are not limited to, p16, p21, p27, p53, p73, Rb, Wilms tumor (WT-1), DCC, neurofibromatosis type 1 (NF-1), von Hippel-Lindau (VHL) disease tumor suppressor, Maspin, Brush-1, BRCA-1, BRCA-2, the multiple tumor suppressor (MTS), gp95/p97 antigen of human melanoma, renal cell carcinoma-associated G250 antigen, KS 1/4 pan-carcinoma antigen, ovarian carcinoma antigen (CA125), prostate specific antigen, melanoma antigen gp75, CD9, CD63, CD53, CD37, R2, CD81, CO029, TI-1, L6 and SAS.
- WT-1 Wilms tumor
- DCC neurofibromatosis type 1
- VHL von Hippel-Lindau
- MTS multiple tumor suppressor
- targeting is directed to factors expressed by an oncogene.
- oncogene include, but are not limited to, tyrosine kinases, both membrane-associated and cytoplasmic forms, such as members of the Src family, serine/threonine kinases, such as Mos, growth factor and receptors, such as platelet derived growth factor (PDDG), SMALL GTPases (G proteins) including the ras family, cyclin-dependent protein kinases (cdk), members of the myc family members including c-myc, N-myc, and L-myc and bcl-2 and family members.
- PDDG platelet derived growth factor
- SMALL GTPases G proteins
- cdk cyclin-dependent protein kinases
- members of the myc family members including c-myc, N-myc, and L-myc and bcl-2 and family members.
- Cytokines that may be targeted by the present invention include, but are not limited to, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, ILA 1, IL-12, IL-13, IL-14, IL-15, TNF, GMCSF, ā -interferon and ā -interferon.
- Chemokines that may be used include, but are not limited to, M1P1 ā , M1P1 ā , and RANTES.
- Enzymes that may be targeted by the present invention include, but are not limited to, cytosine deaminase, hypoxanthine-guanine phosphoribosyltransferase, galactose-1-phosphate uridyltransferase, phenylalanine hydroxylase, glucocerbrosidase, sphingomyelinase, ā -L-iduronidase, glucose-6-phosphate dehydrogenase, HSV thymidine kinase, and human thymidine kinase.
- Receptors and their related ligands that find use in the context of the present invention include, but are not limited to, the folate receptor, adrenergic receptor, growth hormone receptor, luteinizing hormone receptor, estrogen receptor, epidermal growth factor receptor, fibroblast growth factor receptor, and the like.
- Hormones and their receptors that find use in the targeting aspect of the present invention include, but are not limited to, growth hormone, prolactin, placental lactogen, luteinizing hormone, foilicle-stimulating hormone, chorionic gonadotropin, thyroid-stimulating hormone, leptin, adrenocorticotropin (ACTH), angiotensin I, angiotensin II, ā -endorphin, ā -melanocyte stimulating hormone ( ā -MSH), cholecystokinin, endothelin I, galanin, gastric inhibitory peptide (GIP), glucagon, insulin, amylin, lipotropins, GLP-1 (7-37) neurophysins, and somatostatin.
- growth hormone prolactin, placental lactogen, luteinizing hormone, foilicle-stimulating hormone, chorionic gonadotropin, thyroid-stimulating hormone, leptin, adrenocortic
- the present invention contemplates that vitamins (both fat soluble and non-fat soluble vitamins) placed in the targeting component of the nanodevice may be used to target cells that have receptors for, or otherwise take up these vitamins.
- vitamins both fat soluble and non-fat soluble vitamins
- Particularly preferred for this aspect are the fat soluble vitamins, such as vitamin D and its analogues, vitamin E, Vitamin A, and the like or water soluble vitamins such as Vitamin C, and the like.
- any number of cancer cell targeting groups are attached to dendrimers.
- the targeting dendrimers are, in turn, conjugated to a core dendrimer.
- the nanodevice of the present invention is such that it is specific for targeting cancer cells (i.e., much more likely to attach to cancer cells and not to healthy cells).
- the polyvalency of dendrimers allows the attachment of polyethylene glycol (PEG) or polyethyloxazoline (PEOX) chains to help increase the blood circulation time and decrease the immunogenicity of the conjugates.
- targeting groups are conjugated to dendrimers with either short (e.g., direct coupling), medium (e.g., using small-molecule bifunctional linkers such as SPDP, sold by Pierce Chemical Company), or long (e.g., PEG bifunctional linkers, sold by Shearwater Polymers) linkages. Since dendrimers have surfaces with a large number of functional groups, more than one targeting group may be attached to each dendrimer. As a result, there are multiple binding events between the dendrimer and the target cell. In these embodiments, the dendrimers have a very high affinity for their target cells via this ācooperative bindingā or polyvalent interaction effect.
- EGF epidermal growth factor
- PAMAM dendrimers conjugated to EGF with the linker SPDP bind to the cell surface of human glioma cells and are endocytosed, accumulating in lysosomes (Casale et al., Bioconjugate Chem., 7:7 [1996]). Since EGF receptor density is up to 100 times greater on brain tumor cells compared to normal cells, EGF provides a useful targeting agent for these kinds of tumors. Since the EGF receptor is also overexpressed in breast and colon cancer, EGF may be used as a targeting agent for these cells as well.
- EGER fibroblast growth factor receptors
- the targeting moiety is an antibody or antigen binding fragment of an antibody (e.g., Fab units).
- an antibody e.g., Fab units
- Fab units a well-studied antigen found on the surface of many cancers (including breast HER2 tumors) is glycoprotein p185, which is exclusively expressed in malignant cells (Press et al., Oncogene 5:953 [1990]).
- Recombinant humanized anti-HER2 monoclonal antibodies rhuMabHER2
- rhuMabHER2 Recombinant humanized anti-HER2 monoclonal antibodies
- Antibodies can be generated to allow for the targeting of antigens or immunogens (e.g., tumor, tissue or pathogen specific antigens) on various biological targets (e.g., pathogens, tumor cells, normal tissue).
- antigens or immunogens e.g., tumor, tissue or pathogen specific antigens
- biological targets e.g., pathogens, tumor cells, normal tissue.
- antibodies include, but are not limited to polyclonal, monoclonal, chimeric, single chain, Fab fragments, and an Fab expression library.
- the antibodies recognize tumor specific epitopes (e.g., TAG-72 (Kjeldsen et al., Cancer Res. 48:2214-2220 [1988]; U.S. Pat. Nos. 5,892,020; 5,892,019; and 5,512,443); human carcinoma antigen (U.S. Pat. Nos. 5,693,763; 5,545,530; and 5,808,005); TP1 and TP3 antigens from osteocarcinoma cells (U.S. Pat. No. 5,855,866); Thomsen-Friedenreich (TF) antigen from adenocarcinoma cells (U.S. Pat. No.
- TAG-72 Kjeldsen et al., Cancer Res. 48:2214-2220 [1988]; U.S. Pat. Nos. 5,892,020; 5,892,019; and 5,512,443
- human carcinoma antigen U.S. Pat. Nos. 5,693,763; 5,545,530; and
- KC-4 antigen from human prostrate adenocarcinoma (U.S. Pat. Nos. 4,708,930 and 4,743,543); a human colorectal cancer antigen (U.S. Pat. No. 4,921,789); CA125 antigen from cystadenocarcinoma (U.S. Pat. No. 4,921,790); DF3 antigen from human breast carcinoma (U.S. Pat. Nos. 4,963,484 and 5,053,489); a human breast tumor antigen (U.S. Pat. No. 4,939,240); p97 antigen of human melanoma (U.S. Pat. No.
- carcinoma or orosomucoid-related antigen (CORA)(U.S. Pat. No. 4,914,021); a human pulmonary carcinoma antigen that reacts with human squamous cell lung carcinoma but not with human small cell lung carcinoma (U.S. Pat. No. 4,892,935); T and Tn haptens in glycoproteins of human breast carcinoma (Springer et al., Carbohydr. Res. 178:271-292 [1988]), MSA breast carcinoma glycoprotein termed (Tjandra et al., Br. J. Surg. 75:811-817 [1988]); MFGM breast carcinoma antigen (Ishida et al, Tumor Biol.
- CORA carcinoma or orosomucoid-related antigen
- the antibodies recognize specific pathogens (e.g., Legionella peomophilia, Mycobacterium tuberculosis, Clostridium tetani, Hemophilus influenzae, Neisseria gonorrhoeae, Treponema pallidum, Bacillus anthracis, Vibrio cholerae, Borrelia burgdorferi, Cornebacterium diphtheria, Staphylococcus aureus, human papilloma virus, human immunodeficiency virus, rubella virus, polio virus, and the like).
- pathogens e.g., Legionella peomophilia, Mycobacterium tuberculosis, Clostridium tetani, Hemophilus influenzae, Neisseria gonorrhoeae, Treponema pallidum, Bacillus anthracis, Vibrio cholerae, Borrelia burgdorferi, Cornebacterium diphtheria, Sta
- polyclonal antibodies Various procedures known in the art are used for the production of polyclonal antibodies.
- various host animals can be immunized by injection with the peptide corresponding to the desired epitope including but not limited to rabbits, mice, rats, sheep, goats, etc.
- the peptide is conjugated to an immunogenic carrier (e.g., diphtheria toxoid, bovine serum albumin (BSA), or keyhole limpet hemocyanin (KLH)).
- an immunogenic carrier e.g., diphtheria toxoid, bovine serum albumin (BSA), or keyhole limpet hemocyanin (KLH).
- BSA bovine serum albumin
- KLH keyhole limpet hemocyanin
- adjuvants are used to increase the immunological response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (Bacille Calmette-Guerin) and Corynebacterium parvum.
- BCG Bacille Calmette-Guerin
- any technique that provides for the production of antibody molecules by continuous cell lines in culture may be used (See e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.). These include, but are not limited to, the hybridoma technique originally developed by Kƶhler and Milstein (Kƶhler and Milstein, Nature 256:495-497 [1975]), as well as the trioma technique, the human B-cell hybridoma technique (See e.g., Kozbor et al. Immunol.
- monoclonal antibodies can be produced in germ-free animals utilizing recent technology (See e.g., PCT/US90/02545).
- human antibodies may be used and can be obtained by using human hybridomas (Cote et al., Proc. Natl. Acad. Sci. U.S.A.80:2026-2030 [1983]) or by transforming human B cells with EBV virus in vitro (Cole et al., in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, pp. 77-96 [1985]).
- Antibody fragments that contain the idiotype (antigen binding region) of the antibody molecule can be generated by known techniques.
- fragments include but are not limited to: the F(abā²)2 fragment that can be produced by pepsin digestion of the antibody molecule; the Fabā² fragments that can be generated by reducing the disulfide bridges of the F(abā²)2 fragment, and the Fab fragments that can be generated by treating the antibody molecule with papain and a reducing agent.
- screening for the desired antibody can be accomplished by techniques known in the art (e.g., radioimmunoassay, ELISA (enzyme-linked immunosorbant assay), āsandwichā immunoassays, immunoradiometric assays, gel diffusion precipitin reactions, immunodiffusion assays, in situ immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), Western Blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays, etc.), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc.).
- radioimmunoassay e.g., ELISA (enzyme-linked immunosorbant assay), āsandwichā immunoassays, immunoradiometric assays, gel diffusion precipitin reactions, immunodiffusion assays, in situ
- the dendrimer systems of the present invention have many advantages over liposomes, such as their greater stability, better control of their size and polydispersity, and generally lower toxicity and immunogenicity (See e.g., Duncan et al., Polymer Preprints 39:180 [1998]).
- anti-HER2 antibody fragments, as well as other targeting antibodies are conjugated to dendrimers, as targeting agents for the nanodevices of the present invention.
- the cell surface may be targeted with folic acid, EGF, FGF, and antibodies (or antibody fragments) to the tumor-associated antigens MUC1, cMet receptor and CD56 (NCAM).
- the nanodevice binds (via conjugated antibodies) to HER2, MUC1 or mutated p53.
- the bifunctional linkers SPDP and SMCC and the longer Mal-PEG-OSu linkers are particularly useful for antibody-dendrimer conjugation.
- many tumor cells contain surface lectins that bind to oligosaccharides, with specific recognition arising chiefly from the terminal carbohydrate residues of the latter (Sharon and Lis, Science 246:227 [1989]).
- Attaching appropriate monosaccharides to nonglycosylated proteins such as BSA provides a conjugate that binds to tumor lectin much more tightly than the free monosaccharide (Monsigny et al., Biochemie 70:1633 [1988]).
- Mannosylated PAMAM dendrimers bind mannoside-binding lectin up to 400 more avidly than monomeric mannosides (Page and Roy, Bioconjugate Chem., 8:714 [1997]).
- Sialylated dendrimers and other dendritic polymers bind to and inhibit a variety of sialate-binding viruses both in vitro and in vivo.
- monosaccharide residues e.g., ā -galactoside, for galactose-binding cells
- the attachment reaction are easily carried out via reaction of the terminal amines with commercially-available ā -galactosidyl-phenylisothiocyanate.
- the small size of the carbohydrates allows a high concentration to be present on the dendrimer surface.
- a very flexible method to identify and select appropriate peptide targeting groups is the phage display technique (See e.g., Cortese et al, Curr. Opin. Biotechol., 6:73 [1995]), which can be conveniently carried out using commercially available kits.
- the phage display procedure produces a large and diverse combinatorial library of peptides attached to the surface of phage, which are screened against immobilized surface receptors for tight binding. After the tight-binding, viral constructs are isolated and sequenced to identify the peptide sequences. The cycle is repeated using the best peptides as starting points for the next peptide library. Eventually, suitably high-affinity peptides are identified and then screened for biocompatibility and target specificity. In this way, it is possible to produce peptides that can be conjugated to dendrimers, producing multivalent conjugates with high specificity and affinity for the target cell receptors (e.g., tumor cell receptors) or other desired targets.
- target cell receptors
- the āpretargetingā approach See e.g., Goodwin and Meares, Cancer (suppl.) 80:2675 [1997]).
- An example of this strategy involves initial treatment of the patient with conjugates of tumor-specific monoclonal antibodies and streptavidin. Remaining soluble conjugate is removed from the bloodstream with an appropriate biotinylated clearing agent. When the tumor-localized conjugate is all that remains, a radiolabeled, biotinylated agent is introduced, which in turn localizes at the tumor sites by the strong and specific biotin-streptavidin interaction. Thus, the radioactive dose is maximized in dose proximity to the cancer cells and minimized in the rest of the body where it can harm healthy cells.
- biotinylated dendrimers may be used in the methods of the present invention, acting as a polyvalent receptor for the radiolabel in vivo, with a resulting amplification of the radioactive dosage per bound antibody conjugate.
- one or more multiply-biotinylated module(s) on the clustered dendrimer presents a polyvalent target for radiolabeled or boronated (Barth et al., Cancer Investigation 14:534 [1996]) avidin or streptavidin, again resulting in an amplified dose of radiation for the tumor cells.
- Dendrimers and clustered dendrimers may also be used as clearing agents by, for example, partially biotinylating a dendrimer that has a polyvalent galactose or mannose surface. The conjugate-clearing agent complex would then have a very strong affinity for the corresponding hepatocyte receptors.
- an enhanced permeability and retention (EPR) method is used in targeting.
- the enhanced permeability and retention (EPR) effect is a more āpassiveā way of targeting tumors (See, Duncan and Sat, Ann. Oncol., 9:39 [1998]).
- the EPR effect is the selective concentration of macromolecules and small particles in the tumor microenvironment, caused by the hyperpermeable vasculature and poor lymphatic drainage of tumors.
- the dendrimer compositions of the present invention provide ideal polymers for this application, in that they are relatively rigid, of narrow polydispersity, of controlled size and surface chemistry, and have interior ācargoā space that can carry and then release antitumor drugs.
- PAMAM dendrimer-platinates have been shown to accumulate in solid tumors (Pt levels about 50 times higher than those obtained with cisplatin) and have in vivo activity in solid tumor models for which cisplatin has no effect (Malik et al., Proc. Int'l. Symp. Control. Rel. Bioact. Mater., 24:107 [1997] and Duncan et al., Polymer Preprints 39:180 [1998]).
- the targeting moieties of the present invention may recognize a variety of other epitopes on biological targets (e.g., on pathogens).
- molecular recognition elements are incorporated to recognize, target or detect a variety of pathogenic organisms including, but not limited to, sialic acid to target HIV (Wies et al., Nature 333: 426 [1988]), influenza (White et al., Cell 56: 725 [1989]), Chlamydia (Infect. Imm.
- Neisseria meningitidis Neisseria meningitidis, Streptococcus suis, Salmonella, mumps, newcastle, and various viruses, including reovirus, Sendai virus, and myxovirus; and 9-OAC sialic acid to target coronavirus, encephalomyelitis virus, and rotavirus; non-sialic acid glycoproteins to detect cytomegalovirus (Virology 176: 337 [1990]) and measles virus (Virology 172: 386 [1989]); CD4 (Khatzman et al., Nature 312: 763 [1985]), vasoactive intestinal peptide (Sacerdote et al., J.
- ICAM-1 Marlin et al., Nature 344: 70 [1990]
- N-CAM N-CAM
- myelin-associated glycoprotein MAb Shephey et al., Proc. Natl. Acad. Sci.
- RNA to target rhinovirus polio virus receptor to target polio virus (Mendelsohn et al., Cell 56: 855 [1989]); fibroblast growth factor receptor to target herpes virus (Kaner et al., Science 248: 1410 [1990]); oligomannose to target Escherichia coli; ganglioside G M1 to target Neisseria meningitidis; and antibodies to detect a broad variety of pathogens (e.g., Neisseria gonorrhoeae, V. vulnificus, V. parahaemolyticus, V. cholerae, and V. alginolyticus ).
- pathogens e.g., Neisseria gonorrhoeae, V. vulnificus, V. parahaemolyticus, V. cholerae, and V. alginolyticus ).
- the targeting moities are preferably nucleic acids (e.g., RNA or DNA).
- the nucleic acid targeting moities are designed to hybridize by base pairing to a particular nucleic acid (e.g., chromosomal DNA, mRNA, or ribosomal RNA).
- the nucleic acids bind a ligand or biological target. Nucleic acids that bind the following proteins have been identified: reverse transcriptase, Rev and Tat proteins of HIV (Tuerk et al., Gene 137(1):33-9 [1993]); human nerve growth factor (Binkley et al., Nuc. Acids Res.
- Nucleic acids that bind ligands are preferably identified by the SELEX procedure (See e.g., U.S. Pat. Nos. 5,475,096; 5,270,163; and 5,475,096; and in PCT publications WO 97/38134, WO 98/33941, and WO 99/07724, all of which are herein incorporated by reference), although many methods are known in the art.
- the present section provides a description of the synthesis and formation of the individual components (i.e., individual dendrimers containing one or more of the components described above) of the nanodevice and the conjugation of such components into a nanodevice (e.g., the conjugation of one or more such dendrimers to a core dendrimer).
- the preparation of PAMAM dendrimers is performed according to a typical divergent (building up the macromolecule from an initiator core) synthesis. It involves a two-step growth sequence that consists of a Michael addition of amino groups to the double bond of methyl acrylate (MA) followed by the amidation of the resulting terminal carbomethoxy, ā(CO 2 CH 3 ) group, with ethylenediamine (EDA).
- a typical divergent building up the macromolecule from an initiator core
- EDA ethylenediamine
- ammonia is allowed to react under an inert nitrogen atmosphere with MA (molar ratio: 1:4.25) at 47Ā° C. for 48 hours.
- Carboxylate-surfaced dendrimers can be produced by hydrolysis of ester-terminated PAMAM dendrimers, or reaction of succinic anhydride with amine-surfaced dendrimers (e.g., full generation PAMAM, POPAM or POPAM-PAMAM hybrid dendrimers).
- Various dendrimers can be synthesized based on the core structure that initiates the polymerization process. These core structures dictate several important characteristics of the dendrimer molecule such as the overall shape, density, and surface functionality (Tomalia et al., Angew. Chem. Int. Ed. Engl., 29:5305 [1990]). Spherical dendrimers derived from ammonia possess trivalent initiator cores, whereas EDA is a tetra-valent initiator core. Recently, rod-shaped dendrimers have been reported which are based upon linear poly(ethyleneimine) cores of varying lengths the longer the core, the longer the rod (Yin et al., J. Am. Chem. Soc., 120:2678 [1998]).
- the dendrimers may be characterized for size and uniformity by any suitable analytical techniques. These include, but are not limited to, atomic force microscopy (AFM), electrospray-ionization mass spectroscopy, MALDI-TOF mass spectroscopy, 13 C nuclear magnetic resonance spectroscopy, high performance liquid chromatography (HPLC) size exclusion chromatography (SEC) (equipped with multi-angle laser light scattering, dual Uv and refractive index detectors), capillary electrophoresis and get electrophoresis.
- AFM atomic force microscopy
- MALDI-TOF mass spectroscopy MALDI-TOF mass spectroscopy
- 13 C nuclear magnetic resonance spectroscopy 13 C nuclear magnetic resonance spectroscopy
- HPLC high performance liquid chromatography
- SEC size exclusion chromatography
- capillary electrophoresis and get electrophoresis.
- PAMAM dendrimer modules each with an individual differentiated function are covalently bound to form a single device. This involves the synthesis of separate conjugates or nanocomposites for each of the required activities (e.g., one dendrimer conjugate for sensing, one for targeting and another for therapeutic carrier). These different dendrimers are then self-assembled and covalently linked in a manner that yields a single therapeutic device. In certain embodiments, one dendrimer acts as a core around which other dendrimers are covalently (i.e., āclustered dendrimersā).
- the core dendrimer is a POPAM dendrimer
- the outer dendrimers are PAMAM dendrimers.
- dendrimers may be complexed to one another without a core dendrimer (e.g., four dendrimers covalently linked to one another in a linear chain).
- the formation of clustered dendrimers involves the formation of amide bonds between the core and exterior dendrimers using the ester aminolysis technique.
- the ester aminolysis technique involves reacting various poly(amidoamine) PAMAM dendrimer core reagents with an excess of ester terminated PAMAM dendrimer shell reagents in methanol at 40Ā° C. (See e.g., Uppuluri et al., PMSE 80:55 [1999]).
- water is employed as the reaction medium.
- This method involves the self-assembly of amine terminated core reagents with an excess of carboxylate shell reagent followed by addition of a coupling agent (i.e., carboimide) to produce aminde linkages between the core and the shell components. These reactions take place at room temperature. Such embodiments are preferred when the reactions are conducted in the presence of biomolecules such as antibodies.
- a coupling agent i.e., carboimide
- the first step in the aqueous synthesis of these molecules involves self-assembly of the shell dendrimer molecules around a core dendrimer molecule, resulting in the efficient (i.e., maximum) packing of shell molecules around the core.
- the self-assembled cluster as shown in FIG. 5, is representative of the precursor used to make the covalently bonded core shell clustered dendrimer.
- a coupling reagent such as EDC, a carbodiimide reagent
- the reaction progress is monitored by size exclusion chromatography (SEC) and the loss of carboxylate functionality in the infrared region (FTIR) as well as by 1 H/ 13 C NMR and gel electrophoresis.
- SEC size exclusion chromatography
- FTIR infrared region
- 1 H/ 13 C NMR and gel electrophoresis The reaction is normally complete within an hour when run at room temperature.
- the size and shape of these higher molecular weight products is measured and compared to individual dendrimers by atomic force microscopy (AFM) and size exclusion chromatography SEC. These techniques demonstrate that core-shell dendrimers are indeed formed. Additional evidence is obtained, as desired, by gel electrophoresis, in which a higher molecular weight product is evident when the reaction is complete.
- the absolute molecular weight of the clustered dendrimer is determined by MALDI-TOF mass spectroscopy or by SEC equipped with a multi-angle laser light scattering detector (MALLS).
- the clustered dendrimer molecules formed by this method have narrow polydispersity by SEC (similar to that of large dendrimers). It takes about 3-4 weeks to convert PAMAM dendrimers of generation 6 to generation 9, but only about 1 day to synthesize clustered dendrimers with similar size, acceptable dispersity and shape (including purification procedures).
- any cross-linking reaction problems with the functional groups on the exterior dendrimer modules are circumvented by using standard protecting groups on the side chains that are reacting.
- Another solution is to use bifunctional linker strategies, e.g., first, reacting the surface of the core amino-surfaced dendrimer with 2-iminothiolane to generate a thiol surface, then reacting the product with maleimide linker groups on the shell dendrimers.
- a core-shell structure is used to assemble dendritic polymer components into a single molecular complex (See e.g., FIG. 10). This allows one to place each component of the nanodevice on a different polymer and assemble them as a single, supramolecular assembly.
- the unique aspect of this technology is that the core-shell configuration directs and limits the assembly; the larger the core and the smaller the shell molecules, the greater the number of shell dendrimers can associate with a core.
- the core of a cluster can be generation 7, amine surfaced PAMAM dendrimer; with an approximate molecular weight of 110 kDa, a 7 nm diameter and 512 surface primary amines (Tomalia et al., Angew. Chem. Int. Ed., 29:138 [1990]).
- the shell might be made up of generation 5 carboxyl-surfaced PAMAM dendrimer, with an approximate molecular weight of 27 kDa, a 5 nm diameter and 128 surface carboxyl groups. This would lead to the self-assembly (if performed in an excess of E5) of a supra-molecular complex where an average of 12 E5 molecules surround an E7 core.
- FIG. 10 shows that steric hindrance limits the number of associated shell polymers that bind to the core.
- individual dendrimer components of the multi-function clustered dendrimer are assembled though the use of linkers.
- linkers For example, in some embodiments, shell dendrimers are attached to a core dendrimer through linker groups using covalent or non-covalent interactions.
- linker groups using covalent or non-covalent interactions.
- Oligonucleotides are a powerful tool to assemble molecules in desired structural arrangements due to the ease with which they can be conjugated to other materials, the ability to hybridize with another oligonucleotide of complementary base specificity, the programmability of the sequence, and the stiffness of the resulting duplex structure.
- supramolecular core-shell structures using dendrimers and complementary oligonucleotides were created during the development of the present invention. These structures have a number of advantages over those produced with the prior assembly techniques.
- FIG. 11 shows a schematic dendrimer complex assembled using nucleic acid linkers. A method for preparing the complexes is provided in Example 5.
- the present invention is not limited by the nature of the nucleic acid used as the linker group.
- the nucleic acid attached to a dendrimer does not contain intrastrand secondary structure.
- secondary structure may be used to provide a desired function or property (e.g., stability, cleavage recognition site, etc.).
- the length of the nucleic acid linker may be selected to provide a desired distance between the core dendrimer and the shell dendrimers.
- nucleic acids are modified to enhance stability (e.g., in the bloodstream) and/or to facilitate entry into cells. Methods are known in the art for making such modifications.
- the nucleic acid molecules are labeled to allow detection or localization of the assemblies.
- the dendrimer complexes may be assembled and analyzed (e.g., to assure the structures have appropriate conformations). Because of the small size of these materials, a preferred method of characterizing the assembled complexes is atomic force microscopy. Use of atomic force microscopy clearly demonstrated the presence of dendrimer supramolecular assembles that are regular combinations of three and four modules (i.e., comprised a core and multiple shell dendrimers). Analysis of a single cluster demonstrated that the distance between the two components was 21 nm; almost exactly the theoretical distance predicted from the length of the oligonucleotide hybrid.
- the anti-tumor effects of various therapeutic agents on cancer cell lines and primary cell cultures may be evaluated using the nanodevices of the present invention.
- assays are conducted, in vitro, using established tumor cell line models or primary culture cells.
- the use of fresh tumor cells (as opposed to cultured lines) is preferable for confirmation of toxicity testing and efficacy because it allows more relevant determinations without artifacts induced by tissue culture (e.g., tumor cell selection, etc.).
- the nanodevices of the present invention are used to assay apoptosis of human tumor cells in vitro. Testing for apoptosis in the cells determines the efficacy of the therapeutic agent. Multiple aspects of apoptosis can and should be measured. These aspects include those described above, as well as aspects including, but are not limited to, measurement of phosphatidylserine (PS) translocation from the inner to outer surface of plasma membrane, measurement of DNA fragmentation, detection of apoptosis related proteins, and measurement of Caspase-3 activity.
- PS phosphatidylserine
- toxicity testing is performed. Toxicological information may be derived from numerous sources including, but not limited to, historical databases, in vitro testing, and in vivo animal studies.
- In vitro toxicological methods have gained popularity in recent years due to increasing desires for alternatives to animal experimentation and an increased perception to the potential ethical, commercial, and scientific value.
- In vitro toxicity testing systems have numerous advantages including improved efficiency, reduced cost, and reduced variability between experiments. These systems also reduce animal usage, eliminate confounding systemic effects (e.g., immunity), and control environmental conditions.
- any in vitro testing system may be used with the present invention
- the most common approach utilized for in vitro examination is the use of cultured cell models. These systems include freshly isolated cells, primary cells, or transformed cell cultures. Cell culture as the primary means of studying in vitro toxicology is advantageous due to rapid screening of multiple cultures, usefulness in identifying and assessing toxic effects at the cellular, subcellular, or molecular level. In vitro cell culture methods commonly indicate basic cellular toxicity through measurement of membrane integrity, metabolic activities, and subcellular perturbations.
- Commonly used indicators for membrane integrity include cell viability (cell count), clonal expansion tests, trypan blue exclusion, intracellular enzyme release (e.g., lactate dehydrogenase), membrane permeability of small ions (K 1 , Ca 2+ ), and intracellular accumulation of small molecules (e.g., 51 Cr, succinate).
- Subcellular perturbations include monitoring mitochondrial enzyme activity levels via, for example, the MTT test, determining cellular adenine triphosphate (ATP) levels, neutral red uptake into lysosomes, and quantification of total protein synthesis.
- Metabolic activity indicators include glutathione content, lipid peroxiidation, and lactate/pyruvate ratio.
- the MTT assay is a fast, accurate, and reliable methodology for obtaining cell viability measurements.
- the MTT assay was first developed by Mosmann (Mosmann, J. Immunol. Meth., 65:55 [1983]). It is a simple calorimetric assay numerous laboratories have utilized for obtaining toxicity results (See e.g., Kuhlmann et al., Arch. Toxicol., 72:536 [1998]). Briefly, the mitochondria produce ATP to provide sufficient energy for the cell. In order to do this, the mitochondria metabolize pyruvate to produce acetyl CoA.
- MTT succinate dehydrogenase
- MTT 3-(4,5-dimethylthiazol-2-yi)-2 diphenyl tetrazolium bromide
- MTT is a yellow substrate that is cleaved by succinate dehydrogenase forming a purple formazan product.
- the alteration in pigment identifies changes in mitochondria function. Nonviable cells are unable to produce formazan, and therefore, the amount produced directly correlates to the quantity of viable cells.
- Absorbance at 540 nm is utilized to measure the amount of formazan product.
- the results of the in vitro tests can be compared to in vivo toxicity tests in order to extrapolate to live animal conditions.
- acute toxicity from a single dose of the substance is assessed. Animals are monitored over 14 days for any signs of toxicity (increased temperature, breathing difficulty, death, etc).
- the standard of acute toxicity is the median lethal dose (LD 50 ), which is the predicted dose at which half of the treated population would be killed. The determination of this dose occurs by exposing test animals to a geometric series of doses under controlled conditions.
- Other tests include subacute toxicity testing, which measures the animal's response to repeated doses of the nanodevice for no longer than 14 days.
- Subchronic toxicity testing involves testing of a repeated dose for 90 days.
- Chronic toxicity testing is similar to subchronic testing but may last for over a 90-day period.
- In vivo testing can also be conducted to determine toxicity with respect to certain tissues.
- tumor toxicity i.e., effect of the compositions of the present invention on the survival of tumor tissue
- is determined e.g., by detecting changes in the size and/or growth of tumor tissues.
- the nanodevice compositions comprise transgenes for delivery and expression to a target cell or tissue, in vitro, ex vivo, or in vivo.
- the dendrimer complex comprises an expression vector construct containing, for example, a heterologous DNA encoding a gene of interest and the various regulatory elements that facilitate the production of the particular protein of interest in the target cells.
- the gene is a therapeutic gene that is used, for example, to treat cancer, to replace a defective gene, or a marker or reporter gene that is used for selection or monitoring purposes.
- the gene may be a heterologous piece of DNA.
- the heterologous DNA may be derived from more than one source (i.e., a multigene construct or a fusion protein). Further, the heterologous DNA may include a regulatory sequence derived from one source and the gene derived from a different source.
- Tissue-specific promoters may be used to effect transcription in specific tissues or cells so as to reduce potential toxicity or undesirable effects to non-targeted tissues.
- promoters such as the PSA, probasin, prostatic acid phosphatase or prostate-specific glandular kallikrein (hK2) may be used to target gene expression in the prostate.
- promoters may be used to target gene expression in other tissues (e.g., insulin, elastin amylase, pdr-1, pdx-l and glucokinase promoters target to the pancreas; albumin PEPCK, HBV enhancer, alpha fetoproteinapolipoprotein C, alpha-1 antitrypsin, vitellogenin, NF-AB and transthyretin promoters target to the liver; myosin H chain, muscle creatine kinase, dystrophin, calpain p94, skeletal alpha-actin, fast troponin 1 promoters target to skeletal muscle; keratin promoters target the skin; sm22 alpha; SM-a-actin promoters target smooth muscle; CFTR; human cytokeratin 18 (K18); pulmonary surfactant proteins A, B and Q CC-10; P1 promoters target lung tissue; endothelin-1; E-selectin;
- the nucleic acid may be either cDNA or genomic DNA.
- the nucleic acid can encode any suitable therapeutic protein.
- the nucleic acid encodes a tumor suppressor, cytokine, receptor, inducer of apoptosis, or differentiating agent.
- the nucleic acid may be an antisense nucleic acid.
- the antisense nucleic acid may be incorporated into the nanodevice of the present invention outside of the context of an expression vector.
- the nucleic acid encodes a tumor suppressor, cytokines, receptors, or inducers of apoptosis.
- Suitable tumor suppressors include BRCA1, BRCA2, C-CAM, p16, p211 p53, p73, or Rb.
- Suitable cytokines include GMCSF, IL-1, IL-2, IL-3, IL-4, IL-5, IL6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, ā -inteferon, ā -interferon, or TNF.
- Suitable receptors include CFTR, EGFR, estrogen receptor, IL-2 receptor, or VEGFR.
- Suitable inducers of apoptosis include AdE1B, Bad, Bak, Bax, Bid, Bik, Bim, Harakiri, or ICE-CED3 protease.
- nanodevices of the present invention provide means of ameliorating this problem by effectively administering a combined therapy approach.
- traditional combination therapy may be employed in combination with the nanodevices of the present invention.
- nanodevices may be used before, after, or in combination with the traditional therapies.
- compositions of the present invention to kill cells, inhibit cell growth, or metastasis, or angiogenesis, or otherwise reverse or reduce the malignant phenotype of tumor cells using the methods and compositions of the present invention in combination therapy, one contacts a ātargetā cell with the nanodevices compositions described herein and at least one other agent. These compositions are provided in a combined amount effective to kill or inhibit proliferation of the cell. This process may involve contacting the cells with the immunotherapeutic agent and the agent(s) or factor(s) at the same time.
- compositions or pharmacological formulations that includes both agents, or by contacting the cell with two distinct compositions or formulations, at the same time, wherein one composition includes, for example, an expression construct and the other includes a therapeutic agent.
- the nanodevice treatment may precede or follow the other agent treatment by intervals ranging from minutes to weeks.
- the other agent and immunotherapy are applied separately to the cell, one would generally ensure that a significant period of time did not expire between the time of each delivery, such that the agent and nanodevice would still be able to exert an advantageously combined effect on the cell.
- cells are contacted with both modalities within about 12-24 hours of each other and, more preferably, within about 6-12 hours of each other, with a delay time of only about 12 hours being most preferred.
- more than one administration of the immunotherapeutic composition of the present invention or the other agent are utilized.
- Various combinations may be employed, where nanodevice is āAā and the other agent is āBā, as exemplified below: A/B/A, B/A/B, B/B/A, A/A/B, B/A/A, A/B/B, B/B/B/A, B/B/A/B, A/A/B/B, A/B/A/B, A/B/A/A, B/A/B/A, B/A/A/B, B/B/B/A, A/A/A/B, B/A/A/A, B/A/A/B, B/A/A/A, A/B/A/A, A/B/B/B, B/A/B/B, B/B/A/B, B/B/A/B
- both agents are delivered to a cell in a combined amount effective to kill or disable the cell.
- Other factors that may be used in combination therapy with the nanodevices of the present invention include, but are not limited to, factors that cause DNA damage such as ā -rays, X-rays, and/or the directed delivery of radioisotopes to tumor cells.
- factors that cause DNA damage such as ā -rays, X-rays, and/or the directed delivery of radioisotopes to tumor cells.
- Other forms of DNA damaging factors are also contemplated such as microwaves and UV-irradiation.
- Dosage ranges for X-rays range from daily doses of 50 to 200 roentgens for prolonged periods of time (3 to 4 weeks), to single doses of 2000 to 6000 roentgens.
- Radioisotopes vary widely, and depend on the half-life of the isotope, the strength and type of radiation emitted, and the uptake by the neoplastic cells. The skilled artisan is directed to āRemington's Pharmaceutical Sciencesā 15th Edition, chapter 33, in particular pages 624-652. Some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject. Moreover, for human administration, preparations should meet sterility, pyrogenicity, general safety and purity standards as required by FDA Office of Biologics standards.
- the regional delivery of the nanodevice to patients with cancers is utilized to maximize the therapeutic effectiveness of the delivered agent.
- the chemo- or radiotherapy may be directed to particular, affected region of the subjects body.
- systemic delivery of the immunotherapeutic composition and/or the agent may be appropriate in certain circumstances, for example, where extensive metastasis has occurred.
- nanodevice In addition to combining the nanodevice with chemo- and radiotherapies, it also is contemplated that traditional gene therapies are used. For example, targeting of p53 or p16 mutations along with treatment of the nanodevices provides an improved anti-cancer treatment.
- the present invention contemplates the co-treatment with other tumor-related genes including, but not limited to, p21, Rb, APC, DCC, NF-I, NF-2, BCRA2, p16, FHIT, WT-I, MEN-I, MEN-II, BRCA1, VHL, FCC, MCC, ras, myc, neu, raf erb, src, fms, jun, trk, ret, gsp, hst, bcl, and abl.
- tumor-related genes including, but not limited to, p21, Rb, APC, DCC, NF-I, NF-2, BCRA2, p16, FHIT, WT-I, MEN-I, MEN-II, BRCA1, VHL, FCC, MCC, ras, myc, neu, raf erb, src, fms, jun, trk,
- In vivo and ex vivo treatments are applied using the appropriate methods worked out for the gene delivery of a particular construct for a particular subject.
- a particular construct for a particular subject.
- Similar figures may be extrapolated for liposomal or other non-viral formulations by comparing relative uptake efficiencies.
- an attractive feature of the present invention is that the therapeutic compositions may be delivered to local sites in a patient by a medical device.
- Medical devices that are suitable for use in the present invention include known devices for the localized delivery of therapeutic agents.
- Such devices include, but are not limited to, catheters such as injection catheters, balloon catheters, double balloon catheters, microporous balloon catheters, channel balloon catheters, infusion catheters, perfusion catheters, etc., which are, for example, coated with the therapeutic agents or through which the agents are administered; needle injection devices such as hypodermic needles and needle injection catheters; needleless injection devices such as jet injectors; coated stents, bifurcated stents, vascular grafts, stent grafts, etc.; and coated vaso-occlusive devices such as wire coils.
- Exemplary stents that are commercially available and may be used in the present application include the RADIUS (Scimed Life Systems, Inc.), the SYMPHONY (Boston Scientific Corporation), the Wallstent (Schneider Inc.), the PRECEDENT II (Boston Scientific Corporation) and the NIR (Medinol Inc.). Such devices are delivered to and/or implanted at target locations within the body by known techniques.
- the therapeutic complexes of the present invention comprise a photodynamic compound and a targeting agent that is administred to a patient.
- the targeting agent is then allowed a period of time to bind the ātargetā cell (e.g. about 1 minute to 24 hours) resulting in the formation of a target cell-target agent complex.
- the therapeutic complexes comprising the targeting agent and photodynamic compound are then illuminated (e.g., with a red laser, incandescent lamp, X-rays, or filtered sunlight).
- the light is aimed at the jugular vein or some other superficial blood or lymphatic vessel.
- the singlet oxygen and free radicals diffuse from the photodynamic compound to the target cell (e.g. cancer cell or pathogen) causing its destruction.
- the nanodevices are prepared as part of a pharmaceutical composition in a form appropriate for the intended application. Generally, this entails preparing compositions that are essentially free of pyrogens, as well as other impurities that could be harmful to humans or animals. However, in some embodiments of the present invention, a straight dendrimer formulation may be administered using one or more of the routes described herein.
- the nanodevices are used in conjunction with appropriate salts and buffers to render delivery of the compositions in a stable manner to allow for uptake by target cells. Buffers also are employed when the nanodevices are introduced into a patient.
- Aqueous compositions comprise an effective amount of the nanodevice to cells dispersed in a pharmaceutically acceptable carrier or aqueous medium. Such compositions also are referred to as inocula.
- pharmaceutically or pharmacologically acceptable refer to molecular entities and compositions that do not produce adverse, allergic, or other untoward reactions when administered to an animal or a human.
- pharmaceutically acceptable carrier includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. Except insofar as any conventional media or agent is incompatible with the vectors or cells of the present invention, its use in therapeutic compositions is contemplated. Supplementary active ingredients may also be incorporated into the compositions.
- the active compositions include classic pharmaceutical preparations. Administration of these compositions according to the present invention is via any common route so long as the target tissue is available via that route. This includes oral, nasal, buccal, rectal, vaginal or topical. Alternatively, administration may be by orthotopic, intradermal, subcutaneous, intramuscular, intraperitoneal or intravenous injection.
- the active nanodevices may also be administered parenterally or intraperitoneally or intratumorally.
- Solutions of the active compounds as free base or pharmacologically acceptable salts are prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose.
- Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- the pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- the carrier may be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils.
- the proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- the prevention of the action of microorganisms can be brought about by various antibacterial an antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
- isotonic agents for example, sugars or sodium chloride.
- Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above.
- the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- the dendrimer compositions are administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective.
- the formulations are easily administered in a variety of dosage forms such as injectable solutions, drug release capsules and the like.
- parenteral administration in an aqueous solution for example, the solution is suitably buffered, if necessary, and the liquid diluent first rendered isotonic with sufficient saline or glucose.
- aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration.
- one dosage could be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, āRemington's Pharmaceutical Sciencesā 15th Edition, pages 1035-1038 and 1570-1580).
- the active particles or agents are formulated within a therapeutic mixture to comprise about 0.0001 to 1.0 milligrams, or about 0.001 to 0.1 milligrams, or about 0.1 to 1.0 or even about 10 milligrams per dose or so. Multiple doses may be administered.
- vaginal suppositories are solid dosage forms of various weights and shapes, usually medicated, for insertion into the rectum, vagina or the urethra. After insertion, suppositories soften, melt or dissolve in the cavity fluids.
- traditional binders and carriers may include, for example, polyalkylene glycols or triglycerides; such suppositories may be formed from mixtures containing the active ingredient in the range of 0.5% to 10%, preferably 1%-2%.
- Vaginal suppositories or pessaries are usually globular or oviform and weighing about 5 g each.
- Vaginal medications are available in a variety of physical forms, e.g., creams, gels or liquids, which depart from the classical concept of suppositories.
- suppositories may be used in connection with colon cancer.
- the nanodevices also may be formulated as inhalants for the treatment of lung cancer and such like.
- sarcomas and carcinomas including, but not limited to, fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, Ewing's tumor, lymphangioendotheliosarcoma, synovioma, mesothelioma, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, bas
- the present therapy can be employed in the treatment of any pathogenic disease for which a specific signature has been identified or which can be targeted for a given pathogen.
- pathogens contemplated to be treatable with the methods of the present invention include, but are not limited to, Legionella peomophilia, Mycobacterium tuberculosis, Clostridium tetani, Hemophilus influenzae, Neisseria gonorrhoeae, Treponema pallidum, Bacillus anthracis, Vibrio cholerae, Borrelia burgdorferi, Cornebacterium diphtheria, Staphylococcus aureus, human papilloma virus, human immunodeficiency virus, rubella virus, polio virus, and the like.
- This Example describes quantitative MTT biocompatibility/cytotoxicity assays in both mouse and rat primary fibroblasts to measure cytotoxicity of various individual dendrimers and core-shell dendrimer molecules.
- the cytotoxicity of PAMAM dendrimers (G5 and G7 generations), POPAM dendrimers (generations 2, 3, and 4), and core-shell dendrimer molecules i.e., POPAM ācoreā dendrimer molecules covalently linked to 2 or 3 PAMAM āshellā dendrimers
- POPAM ācoreā dendrimer molecules covalently linked to 2 or 3 PAMAM āshellā dendrimers were analyzed employing a standard quantitative MTT assay (See Kuhlmann et al., 1998; Sladowski et al., 1993; Wang et al., 1996; Watanabe et al., 1994).
- both the mouse and rat primary fibroblasts were cultured for 24 hours with MTT (3-(4,5-dimethylthiazol-2-yi)-2 diphenyl tetrazolium bromide), and either PAMAM dendrimers, POMAM dendrimers, or the core-shell dendrimer molecules.
- MTT 3-(4,5-dimethylthiazol-2-yi)-2 diphenyl tetrazolium bromide
- PAMAM dendrimers POMAM dendrimers
- core-shell dendrimer molecules the quantity of viable cells was then measured by absorbance at 540 nm in order to detect the formazan product (purple) resulting from the cleavage of MTT (yellow) present only in viable cells.
- the results of these assays revealed a sharp distinction between the cytotoxicity of the POPAM dendrimers and both the PAPAM dendrimers and the core-shell dendrimers of the present invention.
- the PAPAM dendrimers G5 and G7 generations assayed produced no significant in vitro cytotoxicity at concentrations up to 40 ā g/ml.
- the three types of POPAM dendrimers generations 2, 3, and 4 induced concentration-related cytotoxic effects with CL 50 concentrations of 40, 12, and 12 ā g/ml respectively for murine fibroblasts, and 30, 9, and 9 ā g/ml respectively for rat fibroblasts.
- the core-shell dendrimer molecules did not share the cytotoxicity problems of POPAM dendrimers as only concentrations of the core-shell dendrimers higher than 30 ā g/ml produced detectable toxicity, with only 5-10% of the cells killed after 24 hours exposure to 40 ā g/ml.
- This example describes the construction of a multifunctional dendrimer molecule with both targeting and signaling units.
- this example describes the construction of a generation 5 (G5) PAMAM dendrimer conjugated to folic acid and fluorescein where remaining amino surface groups on the dendrimer are ācappedā with acetic anhydride or glycidol.
- the toxicity and efficacy of the nanodevices of the present invention may be assayed in vitro.
- the nanodevices are tested in cell culture models.
- the efficacy of nanodevice for diagnosing, monitoring, and treating breast cancer may assayed in breast cancer cell lines.
- dendrimers that target breast cancer cells are generated by conjugating ligands or antibodies that specifically recognize receptors over-expressed by a particular breast cancer cell line.
- the SUM-52 cell line has an amplification of and over-expresses the FGFR-2, c-MET, and NCAM-1 genes.
- the products of all of these genes are expressed to high levels on the surface of SUM-52 cells and are not expressed to appreciable levels on normal cells, or on other breast cancer cells.
- Libraries of dendrimers containing candidate binding partners for any of these surface exposed factors are exposed to the cells and candidate with specific and high binding affinity are identified. Similar assays may be conducted with imaging components, therapeutic components, and the like. For example, a library of dendrimers comprising different therapeutic agents are exposed to the cell line. The ability of the agent to alter cell growth or kill the cell, while not harming normal cells is screened. Ideally, such assays are conducted in multi-well plates to allow the screening of large numbers of candidates simultaneouly or in a short time period. In preferred embodiments, the screening assays are automated.
- screening for anti-cancer compounds that induce apoptosis can be automated by providing a system for detecting the calorimetric changes induced by apoptosis (e.g., colorimetric changes caused by the imaging components of the present invention, as described above).
- apoptosis e.g., colorimetric changes caused by the imaging components of the present invention, as described above.
- any number of cell lines may be used in the screening assays.
- the cell lines SUM-190 and SUM-225 have an amplification of and overexpress HER-2.
- antibodies such as the humanized version of 4D5 (herceptin) can be used to target dendrimers specifically to these cells.
- SUM-149, SUM-159, and SUM-229 all over-express the EGFR.
- EGR, TGF- ā , or amphiregulin are used to target dendrimers to these cells.
- SUM-44 cells express HER-4 and thus are horrted using heregulin-dendrimer conjugates.
- a variety of human mammary cell lines available from ATCC may be used as controls including BT20, MCF7, UACC-893, and UACC812. These cells differ in the expression of HER-2 and MUC1. Screening assays may be performed in isolated cell populations and mixed cell populations.
- This example describes the killing of cisplatin resistant cell using cisplatin conjugated to dendrimers.
- cell viability was assessed using the tetrazolium-based colorimetric MTT assay (discussed in more detail below) (Mosmann, J. Immunol. Meth., 65:55 [1983]).
- Human cell line 16N2 was grown in serum free, Ham's F-12 medium supplemented with 5% BSA, insulin, and hydrocortisone. Cells were seeded in 96-well microtitre plates at 1 ā 10 4 /well. After 24 hours, the medium was changed and cisplatin (Stem Chemicals) or Dendrimer/Platin conjugates were added to the wells.
- a dendrimer stock solution (10 wt% in MeOH; 0.05g, 0.43 ā mol) was placed in a 25 mL round-bottom flask flushed with dry nitrogen, and 4 times molar excess of acetic anhydride was added dropwise at 4Ā° C.
- Triethylamine base (Aldrich) (0.23 g; 2.3 mmol) was added to the reaction mixture with mild stirring at room temperature for 24 hours, followed by addition of 1 mL of MeOH (Aldrich, 99.8%) to dilute the mixture. This solution was then allowed to react at room temperature for 24 hours.
- the product solution was rotary evaporated to remove MeOH and transferred to 3.5k MWCO dialysis tubing (Spectrum).
- the potentiometric titration of an aqueous solution of intact G7 and G5 dendrimers was performed using a Coming 420 pH meter with a Coming glass combination electrode at 20Ā° C.
- lyophilized G7 and G5 dendrimers were dissolved respectively at 10 mL of 0.1N NaCl solution to prevent any electrostatic interactions within the dendrimers caused by strong positive charges of amino group (See e.g., Kabanov et al., Macromolecules 32:1904 [1999]).
- the dendrimers were fully protonated by the addition of a 0.1N HCl standard solution (Aldrich), then titrated with 0.1N NaOH standard solution at 3 min time intervals to achieve constancy to measure pH values.
- the first 16 nucleotides of a 50-base oligomer served as a spacer and the last 34 serve as a recognition element for the complementary target sequence. Sequences were selected such that on hybridization, recognition segments of the linkage could link the core and shell dendrimers tightly together. In addition, the recognition segment was designed to be cut by SfiI restriction enzyme so that any fragmentation pattern of this tectodendrimer may be observed from use in vivo.
- the sequence analysis of the core and shell oligonucleotides is as follows from the data of Vector NTI system.
- Core ssDNA (50mer) 5ā²-GGGGGGGGTTTTTTTTggccATATAggccTTTTggccTATATggccTTTT-3ā² (SEQ ID NO:2) MW 5,535.1 +TL,44 %G + C 8.0 Tm 0.7 %GCTm 66.1 ā G ā 104.2 3ā² ā G ā 16.7 ā H ā 447.0 ā S ā 1143.9
- Shell ssDNA (50 mer) 5ā²-GGGGGGGGAAAAAAAAAAggccATATAggccAAAAggccTATATggccAAAA-3ā² (SEQ ID NO:3) MW 5,679.3 %G + C 8.0 Tm 1.1 %GCTm 6.1 ā G ā 104.4 3ā² ā G ā 17.1 ā H ā 446.1 ā S ā 1140.1
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Epidemiology (AREA)
- Virology (AREA)
- Nanotechnology (AREA)
- Biochemistry (AREA)
- Polymers & Plastics (AREA)
- Biotechnology (AREA)
- Medical Informatics (AREA)
- Cardiology (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Hematology (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Diabetes (AREA)
- Vascular Medicine (AREA)
- Pulmonology (AREA)
- AIDS & HIV (AREA)
- Tropical Medicine & Parasitology (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
- The present application is a continuation application of International Application PCT/US01/15204, filed May 11, 2001 which designates the United States, which itself is a continuation-in-part of co-pending application Ser. No. 09/570,198, filed May 12, 2000.
- The present invention relates to novel therapeutic and diagnostic systems. More particularly, the present invention is directed to dendrimer based multifunctional compositions and systems for use in disease diagnosis and therapy (e.g., cancer diagnosis and therapy). The compositions and systems generally comprise two or more separate components for targeting, imaging, sensing, and/or triggering release of a therapeutic or diagnostic material and monitoring the response to therapy of a cell or tissue (e.g., a tumor).
- New initiatives in chemotherapeutics and radiopharmaceutics have improved the survival of patients with many forms of neoplasm. Several cancers now have five year survival rates greater than 80 percent. However, despite these successes, many problems still exist concerning cancer therapy. For example, many common neoplasms, such as colon cancer, respond poorly to available therapies.
- For tumor types that are responsive to current methods, only a fraction of cancers respond well to the therapies. In addition, despite the improvements in therapy for many cancers, most currently used therapeutic agents have severe side effects. These side effects often limit the usefulness of chemotherapeutic agents and result in a significant portion of cancer patients without any therapeutic options Other types of therapeutic initiatives, such as gene therapy or immunotherapy, may prove to be more specific and have fewer side effects than chemotherapy. However, while showing some progress in a few clinical trials, the practical use of these approaches remains somewhat limited at this time.
- Despite the limited success of existing therapies, the understanding of the underlying biology of neoplastic cells has advanced. The cellular events involved in neoplastic transformation and altered cell growth are now identified and the multiple steps in carcinogenesis of several human tumors have been documented (See e.g., Isaacs, Cancer 70:1810 [1992]). Oncogenes that cause unregulated cell growth have been identified and characterized as to genetic origin and function. Specific pathways that regulate the cell replication cycle have been characterized in detail and the proteins involved in this regulation have been cloned and characterized. Also, molecules that mediate apoptosis and negatively regulate cell growth have been clarified in detail (Kerr et al., Cancer 73:2013 [1994]). It has now been demonstrated that manipulation of these cell regulatory pathways has been able to stop growth and induce apoptosis in neoplastic cells (See e.g., Cohen and Tohoku, Exp. Med., 168:351 [1992] and Fujiwara et al., J. Natl. Cancer Inst., 86:458 [1994]). The metabolic pathways that control cell growth and replication in neoplastic cells are important therapeutic targets.
- Despite these impressive accomplishments, many obstacles still exist before these therapies can be used to treat cancer cells in vivo. For example, these therapies require the identification of specific pathophysiologic changes in an individual's particular tumor cells. This requires mechanical invasion (biopsy) of a tumor and diagnosis typically by in vitro cell culture and testing. The tumor phenotype then has to be analyzed before a therapy can be selected and implemented. Such steps are time consuming, complex, and expensive.
- There is a need for treatment methods that are selective for tumor cells compared to normal cells. Current therapies are only relatively specific for tumor cells. Although tumor targeting addresses this selectivity issue, it is not adequate, as most tumors do not have unique antigens. Further, the therapy ideally should have several, different mechanisms of action that work in parallel to prevent the selection of resistant neoplasms, and should be releasable by the physician after verification of the location and type of tumor. Finally, the therapy ideally should allow the physician to identify residual or minimal disease before and immediately after treatment, and to monitor the response to therapy. This is crucial since a few remaining cells may result in re-growth, or worse, lead to a tumor that is resistant to therapy. Identifying residual disease at the end of therapy (i.e., rather than after tumor regrowth) would facilitate eradication of the few remaining tumor cells.
- Thus, an ideal therapy should have the ability to target a tumor, image the extent of the tumor and identify the presence of the therapeutic agent in the tumor cells. It ideally allows the physician to determine why cells transformed to a neoplasm, to select therapeutic molecules based on the pathophysiologic abnormalities in the tumor cells, to activate the therapeutic agents only in abnormal cells, to document the response to the therapy, and to identify residual disease.
- The present invention relates to novel therapeutic and diagnostic systems. More particularly, the present invention is directed to dendrimer based multifunctional compositions and systems for use in disease diagnosis and therapy (e.g., cancer diagnosis and therapy). The compositions and systems generally comprise two or more distinct components for targeting, imaging, sensing, and/or triggering release of a therapeutic or diagnostic material and monitoring the response to therapy of a cell or tissue (e.g., a tumor).
- For example, the present invention provides a composition comprising a dendrimer complex, said dendrimer complex comprising first and second dendrimers, the first dendrimer comprising a first agent and the second dendrimer comprising a second agent, wherein the first agent is different than the second agent. In preferred embodiments, the first and said second agents are selected from the group consisting of therapeutic agents, biological monitoring agents, biological imaging agents, targeting agents, and agents capable of identifying a specific signature of cellular abnormality. In some embodiments, the first dendrimer is covalently linked to the second dendrimer. In certain embodiments, the dendrimer complex includes additional dendrimers. For example, in some embodiments, the complex comprises a third dendrimer (e.g., a third-dendrimer covalently linked to the first and second dendrimers). In yet other embodiments, the dendrimer complex comprises fourth, fifth, or additional dendrimers. Each of the dendrimers may comprise an agent.
- In some embodiments, the present invention provides a composition comprising: a first dendrimer comprising a first agent; and a second dendrimer comprising a second agent, wherein the first and second dendrimers are complexed (e.g., covalently attached) with at least one dendrimer (e.g., to each other, to a common third dendrimer, or each individually to a third and fourth dendrimers respectively), and wherein the first agent is different than the second agent, and wherein the first and the second agents are selected from the group consisting of therapeutic agents, biological monitoring agents (i.e., agents capable of monitoring biological materials or events), biological imaging agents (i.e., agents capable of imaging biological materials or events), targeting agents (i.e., agents capable of targeting a biological materialāi.e., specifically interacting with the biological material), and agents capable of identifying a specific signature of cellular identity (i.e., capable of identifying a characteristic of a cell that helps differentiate the cell from other cell typesāe.g., a cellular proteins specific for a particular cellular abnormality). The present invention is not limited by the nature of the dendrimers. Dendrimers suitable for use with the present invention include, but are not limited to, polyamidoamine (PAMAM), polypropylamine (POPAM), polyethylenimine, iptycene, aliphatic poly(ether), and/or aromatic polyether dendrimers. Each dendrimer of the dendrimer complex may be of similar or different chemical nature than the other dendrimers (e.g., the first dendrimer may comprises a PAMAM dendrimer, while the second dendrimer may comprises a POPAM dendrimer). In some embodiments, the first or second dendrimer may further comprises an additional agent.
- In some embodiments of the present invention, the dendrimer complex may further comprises one or more additional dendrimers. For example, the composition may further comprises a third dendrimer; wherein the third-dendrimer is complexed with at least one other dendrimer. In some embodiments, a third agent is complexed with the third dendrimer. In some embodiments, the first and second dendrimers are each complexed to a third dendrimer. In preferred embodiments, the first and second dendrimers comprise PAMAM dendrimers and the third dendrimer comprises a POPAM dendrimer. In certain embodiments, the present invention further comprises fourth and/or fifth dendrimers comprising agents (e.g., third and fourth agents), wherein the fourth and/or fifth dendrimer is also complexed (e.g., covalently attached) to the third dendrimer. The present invention is not limited by the number of dendrimers complexed to one another.
- In some embodiments of the present invention, the first agent is a therapeutic agent and the second agent is a biological monitoring agent. In preferred embodiments, the therapeutic agent includes, but is not limited to, a chemotherapeutic agent, an anti-oncogenic agent, an anti-vascularizing agent, a anti-microbial or anti-pathogenic agent, and an expression construct comprising a nucleic acid encoding a therapeutic protein. In some embodiments, the therapeutic agent is protected with a protecting group selected from photo-labile, radio-labile, and enzyme-labile protecting groups. In preferred embodiments, the chemotherapeutic agents include, but are not limited to, platinum complex, verapamil, podophyllotoxin, carboplatin, procarbazine, mechlorethamine, cyclophosphamide, camptothecin, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosurea, adriamycin, dactinomycin, daunorubicin, doxorubicin, bleomycin, plicomycin, mitomycin, etoposide, tamoxifen, taxol, transplatinum, 5-fluorouracil, vincristin, vinblastin, and methotrexate. In some embodiments, the anti-oncogenic agent comprises an antisense nucleic acid. In certain embodiments, the antisense nucleic acid comprises a sequence complementary to an RNA of an oncogene. In preferred embodiments, the oncogene includes, but is not limited to, abl, Bcl-2, Bcl-x1, erb, fms, gsp, hst, jun, myc, neu, raf, ras, ret, src, or trk. In some embodiments, the nucleic acid encoding a therapeutic protein encodes a factor including, but not limited to, a tumor suppressor, cytokine, receptor, inducer of apoptosis, or differentiating agent. In preferred embodiments, the tumor suppressor includes, but is not limited to, BRCA1, BRCA2, C-CAM, p16, p21, p53, p73, Rb, and p27. In preferred embodiments, the cytokine includes, but is not limited to, GMCSF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, Ī²-interferon, Ī³-interferon, and TNF. In preferred embodiments, the receptor includes, but is not limited to, CFTR, EGFR, estrogen receptor, IL-2 receptor, and VEGFR. In preferred embodiments, the inducer of apoptosis includes, but is not limited to, AdE1B, Bad, Bak, Bax, Bid, Bik, Bim, Harakid, and ICE-CED3 protease. In some embodiments, the therapeutic agent comprises a short-half life radioisotope.
- In some embodiments of the present invention, the biological monitoring agent comprises an agent that measures an effect of a therapeutic agent (e.g., directly or indirectly measures a cellular factor or reaction induced by a therapeutic agent), however, the present invention is not limited by the nature of the biological monitoring agent. In some embodiments, the monitoring agent is capable of measuring the amount of or detecting apoptosis caused by the therapeutic agent.
- In some embodiments of the present invention, the imaging agent comprises a radioactive label including, but not limited to,14C, 36CI, 57Co, 58Co, 51Cr, 1251,1311, 111In, 152Eu, 59Fe, 67Ga, 32P, 186Re, 35S, 75Se, Tc-99m, and 169Yb, however, the present invention is not limited by the nature of the imaging agent.
- In some embodiments of the present invention, the targeting agent includes, but is not limited to an antibody, receptor ligand, hormone, vitamin, and antigen, however, the present invention is not limited by the nature of the targeting agent. In some embodiments, the antibody is specific for a disease specific antigen. In some preferred embodiments, the disease specific antigen comprises a tumor specific antigen. In some embodiments, the receptor ligand includes, but is not limited to, a ligand for CFTR, EGFR, estrogen receptor, FGR2, folate receptor, IL-2 receptor, glycoprotein, and VEGFR.
- In some embodiments of the present invention, the first and second dendrimers (and third, fourth, . . . ) are attached to one another through linker groups. In some preferred embodiments, the linker groups comprise nucleic acid linkers. For example, in some embodiments, the first dendrimer comprises a first nucleic acid linker and the second dendrimer comprises a second nucleic acid linker, wherein the first nucleic acid linker is hybridized to the second nucleic acid linker. In some embodiments, a duplex formed from hybridization of the first linker to the second linker comprises a cleavage site (e.g., a nuclease recognition site such as a restriction endonuclease site).
- The present invention also provides methods for treating a cell with a dendrimer complex comprising: providing a cell and a composition comprising a dendrimer complex, and exposing the cell to the dendrimer complex. In some embodiments, the dendrimer complex comprises a first dendrimer comprising a first agent, and a second dendrimer comprising a second agent, wherein the first and second dendrimers are complexed with at least one dendrimer, and wherein the first agent is different than the second agent, and wherein the first and the second agents are selected from the group consisting of therapeutic agents, biological monitoring agents, biological imaging agents, targeting agents, and agents capable of identifying a specific signature of cellular abnormality; and exposing the cell to the composition. The present invention is not limited by the nature of the cell type or the exposing step. For example, cells of the present invention include, but are not limited to, cell residing in vitro (e.g., cell culture cells) and cells residing in vivo (e.g., cells of a human or animal subject or pathogenic cells). In preferred embodiments, where the cell resides in a subject (e.g., a human or animal subject), the subject has a disease (e.g., the cell is a disease cell such as a tumor cell). In some embodiments, the disease includes, but is not limited to, cancer, cardiovascular disease, inflammatory disease, and prion-type disease (i.e., diseases associated with or caused by a prion).
- In some embodiments of the present invention, the therapeutic agent is in inactive form and is rendered active following administration of the composition to the subject. For example, the agent, upon exposure to light or a change in pH (e.g., due to exposure to a particular intracellular environment) is altered to assume its active form. In these embodiments, the agent may be attached to a protective linker (e.g., photo-cleavable, enzyme-cleavable, pH-cleavable) to make it inactive and become active upon exposure to the appropriate activating agent (e.g., UV light, a cleavage enzyme, or a change in pH).
- In some embodiments of the present invention, the subject has a tumor or is suspected of having cancer. In certain embodiments the cancer includes, but is not limited to, lung, breast, melanoma, colon, renal, testicular, ovarian, lung, prostate, hepatic, germ cancer, epithelial, prostate, head and neck, pancreatic cancer, glioblastoma, astrocytoma, oligodendroglioma, ependymomas, neurofibrosarcoma, meningia, liver, spleen, lymph node, small intestine, colon, stomach, thyroid, endometrium, prostate, skin, esophagus, and bone marrow cancer. In some embodiments, compositions comprising nanodevices, and any other desired components (e.g., pharmaceutically acceptable carriers, adjuvants and exipients) are administered to the subject. The present invention is not limited by the route of administration. Such administration routes include, but are not limited to, endoscopic, intratracheal, intralesion, percutaneous, intravenous, subcutaneous, and intratumoral administration.
- The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.
- FIG. 1 shows several generations of spherical, dendritic polymers, with each generation increasing the size, molecular weight and number of primary amine groups on the surface of the polymer.
- FIG. 2 shows different options for design of dendrimer-based nanodevices.
- FIG. 3 shows a component structure of nanodevices for breast and colon cancer in some embodiments of the present invention.
- FIGS.4A-D show functions of therapeutic nanodevices in some embodiment of the present invention.
- FIG. 4A shows ātargeting and imagingā applications, wherein the nano-device targets neoplastic cells through a cell-surface moiety and is taken into the cell through receptor mediated endocytosis. The tumor 00 is imaged through MRI.
- FIG. 4B shows āsensing cancer signatureā applications, wherein red fluorescence is activated by the presence of the cancer signature (Muc1, Her2, or mutated p53 through quantum dot-like aggregation or loss of 1 quenching).
- FIG. 4C shows ātriggered release of therapeuticā applications, wherein laser light is targeted to red-emitting cells and cleaves photo-labile protecting group from drug (e.g., platinum or Taxol releasing it from dendrimer matrix).
- FIG. 4D shows āmonitoring response to therapyā applications, wherein a drug induces apoptosis in cells, and caspase activity activates green fluorescence. Apoptotic cancer cells turn orange while residual cancer cells remain red. Normal cells induced to apoptose (collateral damage) if they fluoresce green.
- FIG. 5 shows a photograph of an atomic force microscopy (AFM) image of large (generation 9 MW 800 kDA) PAMAM dendritic polymers of the present invention. There is uniformity in size and shape. Three larger, noncovalently bonded clusters of dendrimers also are present in the figure.
- FIG. 6 shows aqueous synthesis of clustered dendrimers in some embodiments of the present invention.
- FIG. 7 shows a dendrimer synthesis procedure in some embodiments of the present invention.
- FIG. 8 shows a dendrimer synthesis procedure in some embodiments of the present invention.
- FIG. 9 shows a graph indicating the toxicity level of certain dendrimers comprising a therapeutic agent.
- FIG. 10 shows a representation of a core-shell structure in some embodiments of the present invention.
- FIG. 11 shows a representation of a core (Gx)-shell structure comprising nucleic acid linkers in some embodiments of the present invention.
- The present invention relates to novel therapeutic and diagnostic complexes. More particularly, the present invention is directed to dendrimer-based multifunctional compositions and systems for use in disease diagnosis and therapy (e.g., cancer diagnosis and therapy). The compositions and systems generally comprise two or more separate components for targeting, imaging, sensing, and/or triggering release of a therapeutic or diagnostic material and monitoring the response to therapy of a cell or tissue (e.g., a tumor).
- For example, the present invention provides nanodevices comprising two or more dendrimers, each complexed with one or more components for targeting, imaging, sensing, and/or triggering release of a therapeutic or diagnostic material and monitoring the response to therapy of a cell or tissue. In some embodiments of the present invention, the nanodevice comprises a core dendrimer complexed (e.g., covalently linked) to other dendrimer subunits containing the above functionalities. The present invention demonstrates that such compositions are non-toxic and present new methods for treating, detecting, and monitoring various physiological conditions. For example, in some embodiments, the nanodevices contain a dendrimer subunit that targets the nanodevice to particular cells or tissues (e.g., contains binding agents that recognize and are specific cellular components). In other embodiments, the nanodevices contain a dendrimer subunit that images a cell, a cellular component, or cellular reactions (e.g., provides a detectable signal upon exposure to the cell, component, or reaction). In yet other embodiments, the nanodevices contain a dendrimer subunit that provides a signature identifying agent such that, directly or indirectly, the presence of a cell or cellular condition is identified (e.g., identifying a cancer cell through interaction of the signature identifying agent with a cancer-specific factor). In still further embodiments, the nanodevices contain a dendrimer subunit that provides a therapeutic or diagnostic agent for delivery or release into a cell or subject.
- Thus, the present invention provides a variety of useful therapeutic and diagnostic compositions for treating and characterizing cells or subjects with various pathologies or physiological conditions. The nanodevices of the present invention comprises any number of dendrimer components to give the desired functionality. For example, in cancer therapy, the present invention provides nanodevices that comprise a core dendrimer covalently linked to individual dendrimer units comprising signature identifying agents, imaging agents, therapeutic agents, targeting agents, and monitoring agents, respectively. For example, for breast cancer (See e.g., FIG. 3 showing complexes for use in breast and colon cancer; and FIG. 4 as described above), the core dendrimer is complexed with a first dendrimer comprising a gadolinium contrast agent for imaging the tissue by MRI, a second dendrimer comprising a therapeutic agent (e.g., Taxol or cisplatin) for treating the cancer, a third dendrimer comprising a ligand for binding to a folate receptor for targeting the cancer cells, a fourth dendrimer comprising a fluorogenic component for detecting mutated p53 protein for identifying the cancer signature, and a fifth dendrimer comprising a fluorogenic marker of apoptosis to monitor treatment with the therapeutic agent. In some embodiments, the core dendrimer comprises any of the desired components. In yet other embodiments, two or more of the functionalities are provided on a single dendrimer.
- In preferred embodiments, of the present invention, libraries of individual dendrimers comprising the above functionalities are created for use in generating any desired nanodevice complexes. For example, libraries of dendrimers each containing one of a host of therapeutic agents are created. The same procedure is conducted for target agents, imaging agents, and the like. Such libraries provide the ability to mix-and-match components to generate the optimum therapeutic or diagnostic complexes for a desired application. The nanodevices may be generated rationally, or may be generated randomly and screened for desired activities. Thus, the present invention provides non-toxic systems with a wide range of therapeutic and diagnostic uses.
- To facilitate an understanding of the present invention, a number of terms and phrases are defined below:
- As used herein, the term ādendrimer complexā refers to a complex comprising two or more dendrimers in physical association with one another (e.g., covalent or non-covalent attachment to one another). For example, two dendrimers covalently linked to one another (e.g., directly or through a linking group) provide a dendrimer complex.
- As used herein, the term āagentā refers to a composition that possesses a biologically relevant activity or property. Biologically relevant activities are activities associated with biological reactions or events or that allow the detection, monitoring, or characterization biological reactions or events. Biologically relevant activities include, but are not limited to, therapeutic activities (e.g., the ability to improve biological health or prevent the continued degeneration associated with an undesired biological condition), targeting activities (e.g., the ability to bind or associate with a biological molecule or complex), monitoring activities (e.g., the ability to monitor the progress of a biological event or to monitor changes in a biological composition), imaging activities (e.g., the ability to observe or otherwise detect biological compositions or reactions), and signature identifying activities (e.g., the ability to recognize certain cellular compositions or conditions and produce a detectable response indicative of the presence of the composition or condition). The agents of the present invention are not limited to these particular illustrative examples. Indeed any useful agent may be used including agents that deliver or destroy biological materials, cosmetic agents, and the like. In preferred embodiments of the present invention, the agent or agents are associated with at least one dendrimer (e.g., incorporated into the dendrimer, surface exposed on the dendrimer, etc.). In some embodiments of the present invention, two or more dendrimers are present in a composition where any one dendrimer may have an agent that āis different thanā an agent of another dendrimer. āDifferent thanā refers to agents that are distinct from one another in chemical makeup and/or functionality.
- As used herein, the term ānanodeviceā refers to small (e.g., invisible to the unaided human eye) compositions containing or associated with one or more āagents.ā In its simplest form, the nanodevice consists of a physical composition (e.g., a dendrimer) associated with at least one agent that provides biological functionality (e.g., a therapeutic agent). However, the nanodevice may comprise additional components (e.g., additional dendrimers and/or agents).
- In preferred embodiments of the present invention, the physical composition of the nanodevice comprises at least one dendrimer and a biological functionality is provided by at least one agent associated with a dendrimer.
- The term ābiologically active,ā as used herein, refers to a protein or other biologically active molecules (e.g., catalytic RNA) having structural, regulatory, or biochemical functions of a naturally occurring molecule.
- The term āagonist,ā as used herein, refers to a molecule which, when interacting with an biologically active molecule, causes a change (e.g., enhancement) in the biologically active molecule, which modulates the activity of the biologically active molecule. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind or interact with biologically active molecules. For example, agonists can alter the activity of gene transcription by interacting with RNA polymerase directly or through a transcription factor.
- The terms āantagonistā or āinhibitor,ā as used herein, refer to a molecule which, when interacting with a biologically active molecule, blocks or modulates the biological activity of the biologically active molecule. Antagonists and inhibitors may include proteins, nucleic acids, carbohydrates, or any other molecules that bind or interact with biologically active molecules. Inhibitors and antagonists can effect the biology of entire cells, organs, or organisms (e.g., an inhibitor that slows tumor growth).
- The term āmodulate,ā as used herein, refers to a change in the biological activity of a biologically active molecule. Modulation can be an increase or a decrease in activity, a change in binding characteristics, or any other change in the biological, functional, or immunological properties of biologically active molecules.
- The term āgeneā refers to a nucleic acid (e.g., DNA) sequence that comprises coding sequences necessary for the production of a polypeptide or precursor. The polypeptide can be encoded by a full length coding sequence or by any portion of the coding sequence so long as the desired activity or functional properties (e.g., enzymatic activity, ligand binding, signal transduction, etc.) of the full-length or fragment are retained. The term also encompasses the coding region of a structural gene and the including sequences located adjacent to the coding region on both the 5ā² and 3ā² ends for a distance of about 1 kb or more on either end such that the gene corresponds to the length of the full-length mRNA. The sequences that are located 5ā² of the coding region and which are present on the mRNA are referred to as 5ā² non-translated sequences. The sequences that are located 3ā² or downstream of the coding region and which are present on the mRNA are referred to as 3ā² non-translated sequences. The term āgeneā encompasses both cDNA and genomic forms of a gene. A genomic form or clone of a gene contains the coding region interrupted with non-coding sequences termed āintronsā or āintervening regionsā or āintervening sequences.ā Introns are segments of a gene which are transcribed into nuclear RNA (hnRNA); introns may contain regulatory elements such as enhancers. Introns are removed or āspliced outā from the nuclear or primary transcript; introns therefore are absent in the messenger RNA (mRNA) transcript. The mRNA functions during translation to specify the sequence or order of amino acids in a nascent polypeptide.
- As used herein, the terms ānucleic acid molecule encoding,ā āDNA sequence encoding,ā and āDNA encodingā refer to the order or sequence of deoxyribonucleotides along a strand of deoxyribonucleic acid. The order of these deoxyribonucleotides determines the order of amino acids along the polypeptide (protein) chain. The DNA sequence thus codes for the amino acid sequence.
- As used herein, the terms ācomplementaryā or ācomplementarityā are used in reference to polynucleotides (i.e., a sequence of nucleotides) related by the base-pairing rules. For example, for the sequence āA-G-T,ā is complementary to the sequence āT-C-A.ā Complementarity may be āpartial,ā in which only some of the nucleic acids' bases are matched according to the base pairing rules. Or, there may be ācompleteā or ātotalā complementarity between the nucleic acids. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. This is of particular importance in amplification reactions, as well as detection methods that depend upon binding between nucleic acids.
- As used herein, the term āhybridizationā is used in reference to the pairing of complementary nucleic acids. Hybridization and the strength of hybridization (i.e., the strength of the association between the nucleic acids) is impacted by such factors as the degree of complementary between the nucleic acids, stringency of the conditions involved, the Tm of the formed hybrid, and the G:C ratio within the nucleic acids.
- As used herein, the term āTmā is used in reference to the āmelting temperature.ā The melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half dissociated into single strands. The equation for calculating the Tm of nucleic acids is well known in the art. As indicated by standard references, a simple estimate of the Tm value may be calculated by the equation: Tm=81.5+0.41(% G+C), when a nucleic acid is in aqueous solution at 1 M NaCl (See e.g., Anderson and Young, Quantitative Filter Hybridization, in Nucleic Acid Hybridization [1985]). Other references include more sophisticated computations that take structural as well as sequence characteristics into account for the calculation of Tm.
- As used herein the term āstringencyā is used in reference to the conditions of temperature, ionic strength, and the presence of other compounds such as organic solvents, under which nucleic acid hybridizations are conducted. Those skilled in the art will recognize that āstringencyā conditions may be altered by varying the parameters just described either individually or in concert. With āhigh stringencyā conditions, nucleic acid base pairing will occur only between nucleic acid fragments that have a high frequency of complementary base sequences (e.g., hybridization under āhigh stringencyā conditions may occur between homologs with about 85-100% identity, preferably about 70-100% identity). With medium stringency conditions, nucleic acid base pairing will occur between nucleic acids with an intermediate frequency of complementary base sequences (e.g., hybridization under āmedium stringencyā conditions may occur between homologs with about 50-70% identity). Thus, conditions of āweakā or ālowā stringency are often required with nucleic acids that are derived from organisms that are genetically diverse, as the frequency of complementary sequences is usually less.
- āHigh stringency conditionsā when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42Ā° C. in a solution consisting of 5Ć SSPE (43.8 g/l NaCl, 6.9 g/l NaH2PO4.H2O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5Ć Denhardt's reagent and 100 Ī¼g/ml denatured salmon sperm DNA followed by washing in a solution comprising 0.1Ć SSPE, 1.0% SDS at 42Ā° C. when a probe of about 500 nucleotides in length is employed.
- āMedium stringency conditionsā when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42Ā° C. in a solution consisting of 5Ć SSPE (43.8 g/l NaCl, 6.9 g/l NaH2PO4.H2O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5Ć Denhardt's reagent and 100 Ī¼g/ml denatured salmon sperm DNA followed by washing in a solution comprising 1.0Ć SSPE, 1.0% SDS at 42Ā° C. when a probe of about 500 nucleotides in length is employed.
- āLow stringency conditionsā comprise conditions equivalent to binding or hybridization at 42Ā° C. in a solution consisting of 5Ć SSPE (43.8 g/l NaCl, 6.9 g/l NaH2PO4.H2O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.1% SDS, 5Ć Denhardt's reagent [50Ć Denhardt's contains per 500 ml: 5 g Ficoll (
Type 400, Pharamcia), 5 g BSA (Fraction V; Sigma)] and 100 Ī¼g/ml denatured salmon sperm DNA followed by washing in a solution comprising 5Ć SSPE, 0.1% SDS at 42Ā° C. when a probe of about 500 nucleotides in length is employed. - As used herein, the term āantisenseā is used in reference to DNA or RNA sequences that are complementary to a specific DNA or RNA sequence (e.g., mRNA). Included within this definition are antisense RNA (āasRNAā) molecules involved in gene regulation by bacteria. Antisense RNA may be produced by any method, including synthesis by splicing the gene(s) of interest in a reverse orientation to a viral promoter which permits the synthesis of a coding strand. Once introduced into an embryo, this transcribed strand combines with natural mRNA produced by the embryo to form duplexes. These duplexes then block either the further transcription of the mRNA or its translation. In this manner, mutant phenotypes may be generated. The term āantisense strandā is used in reference to a nucleic acid strand that is complementary to the āsenseā strand. The designation (ā) (i.e., ānegativeā) is sometimes used in reference to the antisense strand, with the designation (+) sometimes used in reference to the sense (i.e., āpositiveā) strand.
- The term āantigenic determinantā as used herein refers to that portion of an antigen that makes contact with a particular antibody (i.e., an epitope). When a protein or fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to a given region or three-dimensional structure on the protein; these regions or structures are referred to as antigenic determinants. An antigenic determinant may compete with the intact antigen (i.e., the āimmunogenā used to elicit the immune response) for binding to an antibody.
- The terms āspecific bindingā or āspecifically bindingā when used in reference to the interaction of an antibody and a protein or peptide means that the interaction is dependent upon the presence of a particular structure (i.e., the antigenic determinant or epitope) on the protein; in other words the antibody is recognizing and binding to a specific protein structure rather than to proteins in general. For example, if an antibody is specific for epitope āA,ā the presence of a protein containing epitope A (or free, unlabelled A) in a reaction containing labelled āAā and the antibody will reduce the amount of labelled A bound to the antibody.
- The term ātransgeneā as used herein refers to a foreign gene that is placed into an organism by, for example, introducing the foreign gene into newly fertilized eggs or early embryos. The term āforeign geneā refers to any nucleic acid (e.g., gene sequence) that is introduced into the genome of an animal by experimental manipulations and may include gene sequences found in that animal so long as the introduced gene does not reside in the same location as does the naturally-occurring gene.
- As used herein, the term āvectorā is used in reference to nucleic acid molecules that transfer DNA segment(s) from one cell to another. The term āvehicleā is sometimes used interchangeably with āvector.ā Vectors are often derived from plasmids, bacteriophages, or plant or animal viruses.
- The term āexpression vectorā as used herein refers to a recombinant DNA molecule containing a desired coding sequence and appropriate nucleic acid sequences necessary for the expression of the operably linked coding sequence in a particular host organism. Nucleic acid sequences necessary for expression in prokaryotes usually include a promoter, an operator (optional), and a ribosome binding site, often along with other sequences. Eukaryotic cells are known to utilize promoters, enhancers, and termination and polyadenylation signals.
- As used herein, the term āgene transfer systemā refers to any means of delivering a composition comprising a nucleic acid sequence to a cell or tissue. For example, gene transfer systems include, but are not limited to vectors (e.g., retroviral, adenoviral, adeno-associated viral, and other nucleic acid-based delivery systems), microinjection of naked nucleic acid, and polymer-based delivery systems (e.g., liposome-based and metallic particle-based systems). As used herein, the term āviral gene transfer systemā refers to gene transfer systems comprising viral elements (e.g., intact viruses and modified viruses) to facilitate delivery of the sample to a desired cell or tissue. As used herein, the term āadenovirus gene transfer systemā refers to gene transfer systems comprising intact or altered viruses belonging to the family Adenoviridae.
- The term ātransfectionā as used herein refers to the introduction of foreign DNA into eukaryotic cells. Transfection may be accomplished by a variety of means known to the art including calcium phosphate-DNA co-precipitation, DEAE-dextran-mediated transfection, polybrene-mediated transfection, electroporation, microinjection, liposome fusion, lipofection, protoplast fusion, retroviral infection, and biolistics.
- As used herein, the term ācell cultureā refers to any in vitro culture of cells. Included within this term are continuous cell lines (e.g., with an immortal phenotype), primary cell cultures, finite cell lines (e.g., non-transformed cells), and any other cell population maintained in vitro.
- As used herein, the term āin vitroā refers to an artificial environment and to processes or reactions that occur within an artificial environment. In vitro environments can consist of, but are not limited to, test tubes and cell culture. The term āin vivoā refers to the natural environment (e.g., an animal or a cell) and to processes or reaction that occur within a natural environment.
- The term ātest compoundā refers to any chemical entity, pharmaceutical, drug, and the like that can be used to treat or prevent a disease, illness, sickness, or disorder of bodily function. Test compounds comprise both known and potential therapeutic compounds. A test compound can be determined to be therapeutic by screening using the screening methods of the present invention. A āknown therapeutic compoundā refers to a therapeutic compound that has been shown (e.g., through animal trials or prior experience with administration to humans) to be effective in such treatment or prevention.
- The term āsampleā as used herein is used in its broadest sense and includes environmental and biological samples. Environmental samples include material from the environment such as soil and water. Biological samples may be animal, including, human, fluid (e.g., blood, plasma and serum), solid (e.g., stool), tissue, liquid foods (e.g., milk), and solid foods (e.g., vegetables).
- As used herein, the terms āphotosensitizer,ā and āphotodynamic dye,ā refer to materials which undergo transformation to an excited state upon exposure to a light quantum (hv). Examples of photosensitizers and photodynamic dyes include, but are not limited to,
Photofrin 2, benzoporphyrin, m-tetrahydroxyphenylchlorin, tin etiopurpurin, copper benzochlorin, and other porphyrins. - The present invention provides novel systems and compositions for the treatment and monitoring of diseases (e.g., cancer). For example, the present invention provides systems and compositions that target, image, and sense pathophysiological defects, provide the appropriate therapeutic based on the diseased state, monitor the response to the delivered therapeutic, and identify residual disease. In preferred embodiments of the present invention, the compositions are small enough to readily enter a patient's or subjects cells.
- In preferred embodiments, the systems and compositions of the present invention are used in treatment and monitoring during cancer therapy. However, the systems and compositions of the present invention find use in the treatment and monitoring of a variety of disease states or other physiological conditions, and the present invention is not limited to use with any particular disease state or condition. Other disease states that find particular use with the present invention include, but are not limited to, cardiovascular disease, inflammatory disease, and other proliferative disorders.
- In preferred embodiments, the present invention provides nanodevices comprising dendrimer subunits. In preferred embodiments, the nanodevices are limited to a few hundred nanometers in diameter to facilitate internalization into cells.
- Preferred embodiments of the present invention provide a composition comprising two or more different dendrimer structures, each including at least one functional component, including, but not limited to, therapeutic agents, biological monitoring components, biological imaging components, targeting components, and components to identify the specific signature of cellular abnormalities. These components ultimately form a therapeutic and/or diagnostic complexes in which each of the different components is located within a distinct dendrimer carrier. As such, the therapeutic nanodevice or complex is made up of at least two separate dendrimer carriers being specifically complexed with or covalently linked to at least one of the other dendrimer compositions of the complexes.
- The following discussion describes individual component parts of the nanodevice and methods of making and using the same in some embodiments of the present invention. To illustrate the design and use of the systems and compositions of the present invention, the discussion focuses on specific embodiments of the use of the compositions in the treatment and monitoring of breast adenocarcinoma and colon adenocarcinoma. These specific embodiments are intended only to illustrate certain preferred embodiments of the present invention and are not intended to limit the scope thereof. In these embodiments, the nanodevices of the present invention target the neoplastic cells through cell-surface moieties and are taken up by the tumor cell for example through receptor mediated endocytosis. The imaging component of the device allows the tumor to be imaged for example through the use of MRI. In those devices containing a sensing component, red fluorescence is activated by the presence of the particular cancer signature (e.g., Muc1, Her2 or mutated p53). This allows a triggered release of a therapeutic agent contained in the therapeutic component of the nanodevice. The release is facilitated by the therapeutic component being attached to a labile protecting group, such as, for example, cisplatin being attached to a photolabile protecting group that becomes released by laser light directed at those cells emitting the color of fluorescence activated as mentioned above (e.g., red-emitting) cells. Optionally the therapeutic device also may have a component to monitor the response of the tumor to therapy. For example, where the drug induces apoptosis of the cell, the caspase activity of the cells may be used to activate a green fluorescence. This allows apoptotic cells to turn orange, (combination of red and green) while residual cells remain red. Any normal cells that are induced to undergo apoptosis in collateral damage fluoresce green.
- As is clear from the above example, the use of the compositions of the present invention facilitates non-intrusive sensing, signaling, and intervention for cancer. Since specific protocols of molecular alterations in cancer cells are identified using this technique, non-intrusive sensing through the dendritic molecules is achieved and may then be employed automatically against various tumor phenotypes. If the polymer array approach is employed, the targeting, sensing, and therapeutic conjugates are interchanged to address varied tumor types or different pathophysiological alterations. Thus, the array approach provides common, interchangeable therapeutic platforms that transcend any single type of tumor or cellular abnormality.
- In preferred embodiments of the present invention, the nanodevices comprises dendrimers. Dendrimeric polymers have been described extensively (See, Tomalia, Advanced Materials 6:529 [1994]; Angew, Chem. Int. Ed. Engl., 29:138 [1990]; incorporated herein by reference in their entireties). Dendrimers polymers are synthesized as defined spherical structures typically ranging from 1 to 20 nanometers in diameter. Several generations of polyamidoamine (B-alanine subunit) dendrimers are shown in FIG. 1. Molecular weight and the number of terminal groups increase exponentially as a function of generation (the number of layers) of the polymer. Different types of dendrimers can be synthesized based on the core structure that initiates the polymerization process.
- The dendrimer core structures dictate several characteristics of the molecule such as the overall shape, density and surface functionality (Tomalia et al., Chem. Int. Ed. Engl., 29:5305 [1990]. Spherical dendrimers have ammonia as a trivalent initiator core or ethylenediamine (EDA) as a tetravalent initiator core. Recently described rod-shaped dendrimers (Yin et al., J. Am. Chem. Soc., 120:2678 [1998]) use polyethyleneimine linear cores of varying lengths; the longer the core, the longer the rod. Dendritic macromolecules are available commercially in kilogram quantities and are produced under current good manufacturing processes (GMP) for biotechnology applications.
- Dendrimers may be characterized by a number of techniques including, but not limited to, electrospray-ionization mass spectroscopy,13C nuclear magnetic resonance spectroscopy, high performance liquid chromatography, size exclusion chromatography with multi-angle laser light scattering, capillary electrophoresis and gel electrophoresis. These tests assure the uniformity of the polymer population and are important for monitoring quality control of dendrimer manufacture for GMP applications and in vivo usage. Extensive studies have been completed with dendrimers and show no evidence of toxicity when administered intravenously in in vivo studies (Roberts et al., J. Biomed. Mat. Res., 30:53 [1996] and Bourne et al., J. Magn. Reson. Imag., 6:305 [1996]).
- Numerous U.S. patents describe methods and compositions for producing dendrimers. Examples of some of these patents are given below in order to provide a description of some dendrimer compositions that may be useful in the present invention, however it should be understood that these are merely illustrative examples and numerous other similar dendrimer compositions could be used in the present invention.
- U.S. Pat. No. 4,507,466, U.S. Pat. No. 4,558,120, U.S. Pat. No. 4,568,737, and U.S. Pat. No. 4,587,329 each describe methods of making dense star polymers with terminal densities greater than conventional star polymers. These polymers have greater/more uniform reactivity than conventional star polymers, i.e. 3rd generation dense star polymers. These patents further describe the nature of the amidoamine dendrimers and the 3-dimensional molecular diameter of the dendrimers.
- U.S. Pat. No. 4,631,337 describes hydrolytically stable polymers. U.S. Pat. No. 4,694,064 describes rod-shaped dendrimers. U.S. Pat. No. 4,713,975 describes dense star polymers and their use to characterize surfaces of viruses, bacteria and proteins including enzymes. Bridged dense star polymers are described in U.S. Pat. No. 4,737,550. U.S. Pat. No. 4,857,599 and U.S. Pat. No. 4,871,779 describe dense star polymers on immobilized cores useful as ion-exchange resins, chelation resins and methods of making such polymers.
- U.S. Pat. No. 5,338,532 is directed to starburst conjugates of dendrimer(s) in association with at least one unit of carried agricultural, pharmaceutical or other material. This patent describes the use of dendrimers to provide means of delivery of high concentrations of carried materials per unit polymer, controlled delivery, targeted delivery and/or multiple species such as e.g., drugs antibiotics, general and specific toxins, metal ions, radionuclides, signal generators, antibodies, interleukins, hormones, interferons, viruses, viral fragments, pesticides, and antimicrobials.
- Other useful dendrimer type compositions are described in U.S. Pat. No. 5,387,617, U.S. Pat. No. 5,393,797, and U.S. Pat. No. 5,393,795 in which dense star polymers are modified by capping with a hydrophobic group capable of providing a hydrophobic outer shell. U.S. Pat. No. 5,527,524 discloses the use of amino terminated dendrimers in antibody conjugates.
- The use of dendrimers as metal ion carriers is described in U.S. Pat. No. 5,560,929. U.S. Pat. No. 5,773,527 discloses non-crosslinked polybranched polymers having a comb-burst configuration and methods of making the same. U.S. Pat. No. 5,631,329 describes a process to produce polybranched polymer of high molecular weight by forming a first set of branched polymers protected from branching; grafting to a core; deprotecting first set branched polymer, then forming a second set of branched polymers protected from branching and grafting to the core having the first set of branched polymers, etc.
- U.S. Pat. No. 5,902,863 describes dendrimer networks containing lipophilic organosilicone and hydrophilic polyanicloamine nanscopic domains. The networks are prepared from copolydendrimer precursors having PAMAM (hydrophilic) or polyproyleneimine interiors and organosilicon outer layers. These dendrimers have a controllable size, shape and spatial distribution. They are hydrophobic dendrimers with an organosilicon outer layer that can be used for specialty membrane, protective coating, composites containing organic organometallic or inorganic additives, skin patch delivery, absorbants, chromatography personal care products and agricultural products.
- U.S. Pat. No. 5,795,582 describes the use of dendrimers as adjutants for influenza antigen. Use of the dendrimers produces antibody titer levels with reduced antigen dose. U.S. Pat. No. 5,898,005 and U.S. Pat. No. 5,861,319 describe specific immunobinding assays for determining concentration of an analyte. U.S. Pat. No. 5,661,025 provides details of a self-assembling polynucleotide delivery system comprising dendrimer polycation to aid in delivery of nucleotides to target site. This patent provides methods of introducing a polynucleotide into a eukaryotic cell in vitro comprising contacting the cell with a composition comprising a polynucleotide and a dendrimer polycation non-covalently coupled to the polynucleotide.
- Dendrimer-antibody conjugates for use in in vitro diagnostic applications has previously been demonstrated (Singh et al., Clin. Chem., 40:1845 [1994]), for the production of dendrimer-chelant-antibody constructs, and for the development of boronated dendrimer-antibody conjugates (for neutron capture therapy); each of these latter compounds may be used as a cancer therapeutic (Wu et al., Bioorg. Med. Chem. Lett., 4:449 [1994]; Wiener et al., Magn. Reson. Med. 31:1 [1994]; Barth et al., Bioconjugate Chem. 5:58 [1994]; and Barth et al.).
- Some of these conjugates have also been employed in the magnetic resonance imaging of tumors (Wu et al., [1994] and Wiener et al., [1994], supra). Results from this work have documented that, when administered in vivo, antibodies can direct dendrimer-associated therapeutic agents to antigen-bearing tumors. Dendrimers also have been shown to specifically enter cells and carry either chemotherapeutic agents or genetic therapeutics. In particular, studies show that cisplatin encapsulated in dendrimer polymers has increased efficacy and is less toxic than cisplatin delivered by other means (Duncan and Malik, Control Rel. Bioact. Mater. 23:105 [1996]).
- Dendrimers have also been conjugated to fluorochromes or molecular beacons and shown to enter cells. They can then be detected within the cell in a manner compatible with sensing apparatus for evaluation of physiologic changes within cells (Baker et al., Anal. Chem. 69:990 [1997]). Finally, dendrimers have been constructed as differentiated block copolymers where the outer portions of the molecule may be digested with either enzyme or light-induced catalysis (Urdea and Hom, Science 261:534 [1993]). This would allow the controlled degradation of the polymer to release therapeutics at the disease site and could provide a mechanism for an external trigger to release the therapeutic agents.
- While single dendrimers have been shown to contain these particular functions, to date, there has been no demonstration of a device that encompasses more than one of these modalities in a specific configuration. The present invention provides such nanodevices, wherein two or more dendrimers, each with a specific functionality are combined into a single complex. For example, preferred complexes of the present invention are constructed from individual dendrimer modules around a core dendrimer. This provides a core-shell dendrimer or a cluster molecule as shown in FIG. 2. Prior to the constuction of the multi-dendrimer complex, separate conjugates for each of the different activities, e.g., one dendrimer conjugate for sensing, one for targeting and another for therapeutic carrier are produced. These different dendrimer modules are then clustered together and covalently linked in a manner that yields a single therapeutic device or complex.
- In this approach, one dendrimer acts as a core around which other shell-type dendrimers are covalently attached. In a preferred embodiment, the core molecule is an amine-terminated dendrimer. The shell reagent dendrimers possess carboxylic acid/ester groups that allow covalent attachment by amide formation to the core. A highly concentrated mix of amino-terminated dendrimers with different functional groups of the same or higher generation are then added to a core dendrimer. A cluster then forms by amide formation between the terminal amine groups of the core and the free terminal carboxylic acid groups of the functional outer dendrimers. A limited number of bonds can form between the core dendrimer and each outer-layer dendrimer because of sterically induced stoichiometries. In some embodiments, a molar excess of the outer-layer dendrimer is used to bias the reaction so that each outer core dendrimer reacts only with a single core molecule.
- A wide range of therapeutic agents find use with the present invention. Any therapeutic agent that can be associated with a dendrimer may be delivered using the methods, systems, and compositions of the present invention. To illustrate delivery of therapeutic agents, the following discussion focuses mainly on the delivery of cisplatin and taxol for the treatment of cancer. Also discussed are various photodynamic therapy compounds, and various antimicrobial compounds.
- i. Cisplatin and Taxol
- Cisplatin and Taxol have a well-defined action of inducing apoptosis in tumor cells (See e.g., Lanni et al., Proc. Natl. Acad. Sci., 94:9679 [1997]; Tortora et al, Cancer Research 57:5107 [1997]; and Zaffaroni et al., Brit. J. Cancer 77:1378 [1998]). However, treatment with these and other chemotherapeutic agents is difficult to accomplish without incurring significant toxicity. The agents currently in use are generally poorly water soluble, quite toxic, and given at doses that affect normal cells as wells as diseased cells. For example, paclitaxel (Taxol), one of the most promising anticancer compounds discovered, is poorly soluble in water. Paclitaxel has shown excellent antitumor activity in a wide variety of tumor models such as the B16 melanoma, L1210 leukemias, Mx-1 mammary tumors, and CS-1 colon tumor xenografts. However, the poor aqueous solubility of paclitaxel presents a problem for human administration. Accordingly, currently used paclitaxel formulations require a cremaphor to solubilize the drug. The human clinical dose range is 200-500 mg. This dose is dissolved in a 1:1 solution of ethanol:cremaphor and diluted to one liter of fluid given intravenously. The cremaphor currently used is polyethoxylated castor oil. It is given by infusion by dissolving in the cremaphor mixture and diluting with large volumes of an aqueous vehicle. Direct administration (e.g., subcutaneous) results in local toxicity and low levels of activity. Thus, there is a need for more efficient and effective delivery systems for these chemotherapeutic agents.
- The present invention overcomes these problems by providing methods and compositions for specific drug delivery. The present invention also provides the ability to administer combinations of agents (e.g., two or more different therapeutic agents) to produce an additive effect. The use of multiple agent may be used to counter disease resistance to any single agent. For example, resistance of some cancers to single drugs (taxol) has been reported (Yu et al, Molecular Cell. 2:581 [1998]). Experiments conducted during the development of the present invention have demonstrated that cisplatin, conjugated to dendrimers, is even able to efficiently kill cancer cells that are resistant to cisplatin (See, Example 4). Although an understanding of the mechanism is not necessary to practice the present invention and the present invention is not so limited, it is contemplated that the dendrimer conjugates prevent multidrug resistance channels from pumping the cisplatin out of the cell.
- The present invention also provides the opportunity to monitor therapeutic success following delivery of cisplatin and/or Taxol to a subject. For example, measuring the ability of these drugs to induce apoptosis in vitro is reported to be a marker for in vivo efficacy (Gibb, Gynecologic Oncology 65:13 [1997]). Therefore, in addition to the targeted delivery of either one or both of these drugs to provide effective anti-tumor therapy and reduce toxicity, the effectiveness of the therapeutic can be gauged by techniques of the present invention that monitor the induction of apoptosis. Importantly, both therapeutics are active against a wide-range of tumor types including, but not limited to, breast cancer and colon cancer (Akutsu et al., Eur. J. Cancer 31A:2341 [1995]).
- Although the above discussion describes two specific agents, any pharmaceutical that is routinely used in a cancer therapy context finds use in the present invention. In treating cancer according to the invention, the therapeutic component of the nanodevice may comprise compounds including, but not limited to, adriamycin, 5-fluorouracil, etoposide, camptothecin, actinomycin-D, mitomycin C, or more preferably, cisplatin. The agent may be prepared and used as a combined therapeutic composition, or kit, by combining it with the immunotherapeutic agent, as described herein.
- In some embodiments of the present invention, the dendrimer systems further comprise one or more agents that directly cross-link nucleic acids (e.g., DNA) to facilitate DNA damage leading to a synergistic, antineoplastic agents of the present invention. Agents such as cisplatin, and other DNA alkylating agents may be used. Cisplatin has been widely used to treat cancer, with efficacious doses used in clinical applications of 20 mg/M2 for 5 days every three weeks for a total of three courses. The nanodevice may be delivered via any suitable method, including, but not limited to, injection intravenously, subcutaneously, intratumorally, intraperitoneally, or topically (e.g., to mucosal surfaces).
- Agents that damage DNA also include compounds that interfere with DNA replication, mitosis and chromosomal segregation. Such chemotherapeutic compounds include adriamycin, also known as doxorubicin, etoposide, verapamil, podophyllotoxin, and the like. Widely used in a clinical setting for the treatment of neoplasms, these compounds are administered through bolus injections intravenously at doses ranging from 25-75 Mg/M2 at 21 day intervals for adriamycin, to 35-50 Mg/M2 for etoposide intravenously or double the intravenous dose orally.
- Agents that disrupt the synthesis and fidelity of nucleic acid precursors and subunits also lead to DNA damage and find use as chemotherapeutic agents in the present invention. A number of nucleic acid precursors have been developed. Particularly useful are agents that have undergone extensive testing and are readily available. As such, agents such as 5-fluorouracil (5-FU) are preferentially used by neoplastic tissue, making this agent particularly useful for targeting to neoplastic cells. The doses delivered may range from 3 to 15 mg/kg/day, although other doses may vary considerably according to various factors including stage of disease, amenability of the cells to the therapy, amount of resistance to the agents and the like.
- The anti-cancer therapeutic agents that find use in the present invention are those that are amenable to incorporation into dendrimeric structures or are otherwise associated with dendrimer structures such that they can be delivered into a subject, tissue, or cell without loss of fidelity of its anticancer effect. For a more detailed description of cancer therapeutic agents such as a platinum complex, verapamil, podophyllotoxin, carboplatin, procarbazine, mechlorethamine, cyclophosphamide, camptothecin, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosurea, adriamycin, dactinomycin, daunorubicin, doxorubicin, bleomycin, plicomycin, mitomycin, etoposide (VP16), tamoxifen, taxol, transplatinum, 5-fluorouracil, vincristin, vinblastin and methotrexate and other similar anti-cancer agents, those of skill in the art are referred to any number of instructive manuals including, but not limited to, the Physician's Desk reference and to Goodman and Gilman's āPharmaceutical Basis of Therapeuticsā ninth edition, Eds. Hardman et al., 1996.
- In preferred embodiments, the drugs are preferably attached to the nanodevice with photocleavable linkers. For example, several heterobifunctional, photocleavable linkers that find use with the present invention are described by Ottl et al (Ottl et al., Bioconjugate Chem., 9:143 [1998]). These linkers can be either water or organic soluble. They contain an activated ester that can react with amines or alcohols and an epoxide that can react with a thiol group. In between the two groups is a 3,4-dimethoxy6-nitrophenyl photoisomerization group, which, when exposed to near-ultraviolet light (365 nm), releases the amine or alcohol in intact form. Thus, the therapeutic agent, when linked to the compositions of the present invention using such linkers, may be released in biologically active or activatable form through exposure of the target area to near-ultraviolet light.
- In an exemplary embodiment, the alcohol group of taxol is reacted with the activated ester of the organic-soluble linker. This product in turn is reacted with the partially-thiolated surface of appropriate dendrimers (the primary amines of the dendrimers can be partially converted to thiol-containing groups by reaction with a sub-stoichiometric amount of 2-iminothiolano). In the case of cisplatin, the amino groups of the drug are reacted with the water-soluble form of the linker. If the amino groups are not reactive enough, a primary amino-containing active analog of cisplatin, such as Pt(II) sulfadiazine dichloride (Pasani et al., Inorg. Chim. Acta 80:99 [1983] and Abel et al., Eur. J. Cancer 9:4 [1973]) can be used. Thus conjugated, the drug is inactive and will not harm normal cells. When the conjugate is localized within tumor cells, it is exposed to laser light of the appropriate near-UV wavelength, causing the active drug to be released into the cell.
- Similarly, in other embodiments of the present invention, the amino groups of cisplatin (or an analog thereof) is linked with a very hydrophobic photocleavable protecting group, such as the 2-nitrobenzyloxycarbonyl group (Pillai, V. N. R. Synthesis: 1-26 [1980]). With this hydrophobic group attached, the drug is loaded into and very preferentially retained by the hydrophobic cavities within the PAMAM dendrimer (See e.g., Esfand et al., Pharm. Sci., 2:157 [1996]), insulated from the aqueous environment. When exposed to near-UV light (about 365 mn), the hydrophobic group is cleaved, leaving the intact drug. Since the drug itself is hydrophilic, it diffuses out of the dendrimer and into the tumor cell, where it initiates apoptosis.
- An alternative to photocleavable linkers are enzyme cleavable linkers. A number of photocleavable linkers have been demonstrated as effective anti-tumor conjugates and can be prepared by attaching cancer therapeutics, such as doxorubicin, to water-soluble polymers with appropriate short peptide linkers (See e.g., Vasey et al., Clin. Cancer Res., 5:83 [1999]). The linkers are stable outside of the cell, but are cleaved by thiolproteases once within the cell. In a preferred embodiment, the conjugate PK1 is used. As an alternative to the photocleavable linker strategy, enzyme-degradable linkers, such as Gly-Phe-Leu-Gly may be used.
- The present invention is not limited by the nature of the therapeutic technique. For example, other conjugates that find use with the present invention include, but are not limited to, using conjugated boron dusters for BNCT (Capala et al., Bioconjugate Chem., 7:7 [1996]), the use of radioisotopes, and conjugation of toxins such as ricin to the nanodevice.
- ii. Photodynamic Therapy
- Photodynamic therapeutic agents may also be used as therapeteutic agents in the present invention. In some embodiments, the dendrimeric compositions of the present invention containing photodynamic compounds are illuminated, resulting in the production of singlet oxygen and free radicals that diffuse out of the fiberless radiative effector to act on the biological target (e.g., tumor cells or bacterial cells). Some preferred photodynamic compounds include, but are not limited to, those that can participate in a type II photochemical reaction:
- PS+hĪ½āPS*(1)
- PS*(1)āPS*(3)
- PS*(3)+O2āPS+*O2
- *O2+Tācytotoxity
- where PS=photosenstizer, PS*(1)=excited singlet state of PS, PS*(3)=excited triplet state of PS, hĪ½=light quantum, *O2=excited singlet state of oxygen, and T=biological target. Other photodynamic compounds useful in the present invention include those that cause cytotoxity by a different mechanism than singlet oxygen production (e.g., copper benzochlorin, Selman, et al., Photochem. Photobiol., 57:681-85 [1993], incorporated herein by reference). Examples of photodynamic compounds that find use in the present invention include, but are not limited to
Photofrin 2, phtalocyanins (See e.g., Brasseur et al., Photochem. Photobiol., 47:705-11 [1988]), benzoporphyrin, tetrahydroxyphenylporphyrins, naphtalocyanines (See e.g., Firey and Rodgers, Photochem. Photobiol., 45:535-38 [1987]), sapphyrins (Sessler et al., Proc. SPIE, 1426:318-29 [1991]), porphinones (Chang et al., Proc. SPIE, 1203:281-86 [1990]), tin etiopurpurin, ether substituted porphyrins (Pandey et al., Photochem. Photobiol., 53:65-72 [1991]), and cationic dyes such as the phenoxazines (See e.g., Cincotta et al., SPIE Proc., 1203:202-10 [1990]). - In other embodiments, toxic agents that directly produce free radicals (i.e., do not produce singlet oxygen) are incorporated into the fiberless radiative effectors during polymerization. This approach allows for larger and longer lived fiberless radiative effectors and will not be limited by local oxygen supplies. Such toxic agents include, but are not limited to 2-methyl-4-nitro-quinoline-N-oxide (Aldrich) and 4,4-dinitro-(2,2) bipyridinyl-N,N dioxide (Aldrich), which produce hydroxyl radicals when illuminated with 360-400 nm light (Botchway et al., Photochem. Photobiol. 67(7):635-40 [1998]); malachite green and isofuran blue (Molecular Probes), which produce hydroxyl radicals upon stimulation with about 630 nm light (Jay et al., PNAS 91:2659 [1994]; Haugland, Handbook of Fluorescent Probes and Research Chemicals, 6th ed., Molecular Probes, Eugene, Oreg. [1994]); potassium nitrosylpentachlororuthenate (Molecular Probes) (abs=516 nm), Roussin's black salt and Roussin's red salt (abs 313-546 nm), serve as sources of NO which is toxic to cells (Murphy et al., Neuropharm. 33:1375-85 [1994]; Bourassa et al., JACS 119:2853-60 [1997]); and other photolytic nitric oxide and hydroxyl donors (De Leo and Ford, JACS 121:1980-81 [1999]).
- iii. Antimicrobial Therapeutic Agents
- Antimicrobial therapeutic agents may also be used as therapeteutic agents in the present invention. Any agent that can kill, inhibit, or otherwise attenuate the function of microbial organisms may be used, as well as any agent contemplated to have such activities. Antimicrobial agents include, but are not limited to, natural and synthetic antibiotics, antibodies, inhibitory proteins, antisense nucleic acids, membrane disruptive agents and the like, used alone or in combination. Indeed, any type of antibiotic may be used including, but not limited to, anti-bacterial agents, anti-viral agents, anti-fungal agents, and the like.
- In certain embodiments, the nano-devices of the present invention contain one or more signature identifying agents that are activated by, or are able to interact with, a signature component (āsignatureā). In preferred embodiments, the signature identifying agent is an antibody, preferably a monoclonal antibody, that specifically binds the signature (e.g., cell surface molecule specific to a cell to be targeted).
- In some embodiments of the present invention, tumor cells are identified. Tumor cells have a wide variety of signatures, including the defined expression of cancer-specific antigens such as Muc1, HER-2 and mutated p53 in breast cancer. These act as specific signatures for the cancer, being present in 30% (HER-2) to 70% (mutated p53) of breast cancers. In a preferred embodiment, a nanodevice of the present invention comprises a monoclonal antibody that specifically binds to a mutated version of p53 that is present in breast cancer.
- In some embodiments of the present invention, cancer cells expressing susceptibility genes are identified. For example, in some embodiments, there are two breast cancer susceptibility genes that are used as specific signatures for breast cancer: BRCA1 on chromosome 17 and BRCA2 on chromosome 13. When an individual carries a mutation in either BRCA1 or BRCA2, they are at an increased risk of being diagnosed with breast or ovarian cancer at some point in their lives. These genes participate in repairing radiation-induced breaks in double-stranded DNA. It is thought that mutations in BRCA1 or BRCA2 might disable this mechanism, leading to more errors in DNA replication and ultimately to cancerous growth.
- In addition, the expression of a number of different cell surface receptors find use as targets for the binding and uptake of the nano-device. Such receptors include, but are not limited to, EGF receptor, folate receptor,
FGR receptor 2, and the like. - In some embodiments of the present invention, changes in gene expression associated with chromosomal abborations are the signature component. For example, Burkitt lymphoma results from chromosome translocations that involve the Myc gene. A chromosome translocation means that a chromosome is broken, which allows it to associate with parts of other chromosomes. The classic chromosome translocation in Burkitt lymophoma involves chromosome 8, the site of the Myc gene. This changes the pattern of Myc expression, thereby disrupting its usual function in controlling cell growth and proliferation.
- In other embodiments, gene expression associated with colon cancer are identified as the signature component. Two key genes are known to be involved in colon cancer: MSH2 on
chromosome 2 and MLH1 onchromosome 3. Normally, the protein products of these genes help to repair mistakes made in DNA replication. If the MSH2 and MLH1 proteins are mutated, the mistakes in replication remain unrepaired, leading to damaged DNA and colon cancer. MEN1 gene, involved in multiple endocrine neoplasia, has been known for several years to be found on chromosome 11, was more finely mapped in 1997, and serves as a signature for such cancers. In preferred embodiments of the present invention, an antibody specific for the altered protein or for the expressed gene to be detected is complexed with nanodevices of the present invention. - In yet another embodiment, adenocarcinoma of the colon has defined expression of CEA and mutated p53, both well-documented tumor signatures. The mutations of p53 in some of these cell lines are similar to that observed in some of the breast cancer cells and allows for the sharing of a p53 sensing component between the two nanodevices for each of these cancers (i.e., in assembling the nanodevice, dendrimers comprising the same signature identifying agent may be used for each cancer type). Both colon and breast cancer cells may be reliably studied using cell lines to produce tumors in nude mice, allowing for optimization and characterization in animals.
- From the discussion above it is clear that there are many different tumor signatures that find use with the present invention, some of which are specific to a particular type of cancer and others which are promiscuous in their origin. The present invention is not limited to any particular tumor signature or any other disease-specific signature. For example, tumor suppressors that find use as signatures in the present invention include, but are not limited to, p53, Muc1, CEA, p16, p21, p27, CCAM, RB, APC, DCC, NF-1, NF-2, WT-1, MEN-1, MEN-II, p73, VHL, FCC and MCC.
- In some embodiments of the present invention, the nanodevice comprises at least one dendrimer-based nanoscopic building block that can be readily imaged. The present invention is not limited by the nature of the imaging component used. In some embodiments of the present invention, imaging modules comprise surface modifications of quantum dots (See e.g., Chan and Nie, Science 281:2016 [1998]) such as zinc sulfide-capped cadmium selenide coupled to biomolecules (Sooklal, Adv. Mater., 10:1083 [1998]).
- However, in preferred embodiments, the imaging module comprises dendrimers produced according to the ānanocompositeā concept (Balogh et al., Proc. of ACS PMSE 77:118 [1997] and Balogh and Tomalia, J. Am. Che. Soc., 120:7355 [1998]). In these embodiments, dendrimers are produced by reactive encapsulation, where a reactant is preorganized by the dendrimer template and is then subsequently immobilized in/on the polymer molecule by a second reactant. Size, shape, size distribution and surface functionality of these nanoparticles are determined and controlled by the dendritic macromolecules. These materials have the solubility and compatibility of the host and have the optical or physiological properties of the guest molecule (i.e., the molecule that permits imaging). While the dendrimer host may vary according to the medium, it is possible to load the dendrimer hosts with different compounds and at various guest concentration levels. Complexes and composites may involve the use of a variety of metals or other inorganic materials. The high electron density of these materials considerably simplifies the imaging by electron microscopy and related scattering techniques. In addition, properties of inorganic atoms introduce new and measurable properties for imaging in either the presence or absence of interfering biological materials. In some embodiments of the present invention, encapsulation of gold, silver, cobalt, iron atoms/molecules and/or organic dye molecules such as fluorescein are encapsulated into dendrimers for use as nanoscopi composite labels/tracers, although any material that facilitates imaging or detection may be employed.
- In some embodiments of the present invention, imaging is based on the passive or active observation of local differences in density of selected physical properties of the investigated complex matter. These differences may be due to a different shape (e.g., mass density detected by atomic force microscopy), altered composition (e.g., radiopaques detected by X-ray), distinct light emission (e.g., fluorochromes detected by spectrophotometry), different diffraction (e.g., electron-beam detected by TEM), contrasted absorption (e.g., light detected by optical methods), or special radiation emission (e.g., isotope methods), etc. Thus, quality and sensitivity of imaging depend on the property observed and on the technique used. The imaging techniques for cancerous cells have to provide sufficient levels of sensitivity to observe small, local concentrations of selected cells. The earliest identification of cancer signatures requires high selectivity (i.e., highly specific recognition provided by appropriate targeting) and the highest possible sensitivity.
- A. Magnetic Resonance Imaging
- Once the targeted nanodevice has attached to (or been internalized into) tumor cells, one or more modules on the device serve to image its location. Dendrimers have already been employed as biomedical imaging agents, perhaps most notably for magnetic resonance imaging (MRI) contrast enhancement agents (See e.g., Wiener et al., Mag. Reson. Med. 31:1 [1994]; an example using PAMAM dendrimers). These agents are typically constructed by conjugating chelated paramagnetic ions, such as Gd(III)-diethylenetriaminepentaacetic acid (Gd(III)-DTPA), to water-soluble dendrimers. Other paramagnetic ions that may be useful in this context of the include, but are not limited to, gadolinium, manganese, copper, chromium, iron, cobalt, erbium, nickel, europium, technetium, indium, samarium, dysprosium, ruthenium, ytterbium, yttrium, and holmium ions and combinations thereof. In some embodiments of the present invention, the dendrimer is also conjugated to a targeting group, such as epidermal growth factor (EGF), to make the conjugate specifically bind to the desired cell type (e.g., in the case of EGF, EGFR-expressing tumor cells). In a preferred embodiment of the present invention, DTPA is attached to dendrimers via the isothiocyanate of DTPA as described by Wiener (Wiener et al., Mag. Reson. Med. 31:1 [1994]).
- Dendrimeric MRI agents are particularly effective due to the polyvalency, size and architecture of dendrimers, which results in molecules with large proton relaxation enhancements, high molecular relaxivity, and a high effective concentration of paramagnetic ions at the target site. Dendrimeric gadolinium contrast agents have even been used to differentiate between benign and malignant breast tumors using dynamic MRI, based on how the vasculature for the latter type of tumor images more densely (Adam et al., Ivest. Rad. 31:26 [1996]). Thus, MRI provides a particularly useful imaging system of the present invention.
- B. Microscopic Imaging
- Static structural microscopic imaging of cancerous cells and tissues has traditionally been performed outside of the patient. Classical histology of tissue biopsies provides a fine illustrative example, and has proven a powerful adjunct to cancer diagnosis and treatment. After removal, a specimen is sliced thin (e.g., less than 40 microns), stained, fixed, and examined by a pathologist. If images are obtained, they are most often 2-D transmission bright-field projection images. Specialized dyes are employed to provide selective contrast, which is almost absent from the unstained tissue, and to also provide for the identification of aberrant cellular constituents. Quantifying sub-cellular structural features by using computer-assisted analysis, such as in nuclear ploidy determination, is often confounded by the loss of histologic context owing to the thinness of the specimen and the overall lack of 3-D information. Despite the limitations of the static imaging approach, it has been invaluable to allow for the identification of neoplasia in biopsied tissue. Furthermore, its use is often the crucial factor in the decision to perform invasive and risky combinations of chemotherapy, surgical procedures, and radiation treatments, which are often accompanied by severe collateral tissue damage, complications, and even patient death.
- The nanodevices of the present invention allow functional microscopic imaging of tumors and provide improved methods for imaging. The methods find use in vivo, in vitro, and ex vivo. For example, in one embodiment of the present invention, dendrimers of the present invention are designed to emit light or other detectable signals upon exposure to light. Although the labeled dendrimers may be physically smaller than the optical resolution limit of the microscopy technique, they become self-luminous objects when excited and are readily observable and measurable using optical techniques. In some embodiments of the present invention, sensing fluorescent biosensors in a microscope involves the use of tunable excitation and emission filters and multiwavelength sources (Farkas et al., SPEI 2678:200 [1997]). In embodiments where the imaging agents are present in deeper tissue, longer wavelengths in the Near-infrared (NIR) are used (See e.g., Lester et al., Cell Mol. Biol. 44:29 [1998]). Dendrimeric biosensing in the Near-IR has been demonstrated with dendrimeric biosensing antenna-like architectures (Shortreed et al., J. Phys. Chem., 101:6318 [1997]). Biosensors that find use with the present invention include, but are not limited to, fluorescent dyes and molecular beacons.
- In some embodiments of the present invention, in vivo imaging is accomplished using functional imaging techniques. Functional imaging is a complementary and potentially more powerful techniques as compared to static structural imaging. Functional imaging is best known for its application at the macroscopic scale, with examples including functional Magnetic Resonance Imaging (fMRI) and Positron Emission Tomography (PET). However, functional microscopic imaging may also be conducted and find use in in vivo and ex vivo analysis of living tissue. Functional microscopic imaging is an efficient combination of 3-D imaging, 3-D spatial multispectral volumetric assignment, and temporal sampling: in short a type of 3-D spectral microscopic movie loop. Interestingly, cells and tissues autofluoresce. When excited by several wavelengths, providing much of the basic 3-D structure needed to characterize several cellular components (e.g., the nucleus) without specific labeling. Oblique light illumination is also useful to collect structural information and is used routinely. As opposed to structural spectral microimaging, functional spectral microimaging may be used with biosensors, which act to localize physiologic signals within the cell or tissue. For example, in some embodiments of the present invention, biosensor-comprising dendrimers of the present invention are used to image upregulated receptor families such as the folate or EGF classes. In such embodiments, functional biosensing therefore involves the detection of physiological abnormalities relevant to carcinogenesis or malignancy, even at early stages. A number of physiological conditions may be imaged using the compositions and methods of the present invention including, but not limited to, detection of nanoscopic dendrimeric biosensors for pH, oxygen concentration, Ca2+ concentration, and other physiologically relevant analytes.
- The biological monitoring or sensing component of the nanodevice of the present invention is one which that can monitor the particular response in the tumor cell induced by an agent (e.g., a therapeutic agent provided by the therapeutic component of the nanodevice). While the present invention is not limited to any particular monitoring system, the invention is illustrated by methods and compositions for monitoring cancer treatments. In preferred embodiments of the present invention, the agent induces apoptosis in cells and monitoring involves the detection of apoptosis. In particular embodiments, the monitoring component is an agent that fluoresces at a particular wavelength when apoptosis occurs. For example, in a preferred embodiment, caspase activity activates green fluorescence in the monitoring component. Apoptotic cancer cells, which have turned red as a result of being targeted by a particular signature with a red label, turn orange while residual cancer cells remain red. Normal cells induced to undergo apoptosis (e.g., through collateral damage), if present, will fluoresce green.
- In these embodiments, fluorescent groups such as fluorescein are employed in the monitoring component. Fluorescein is easily attached to the dendrimer surface via the isothiocyanate derivatives, available from Molecular Probes, Inc. This allows the nanodevices to be imaged with the cells via confocal microscopy.
- Sensing of the effectiveness of the nanodevices is preferably achieved by using fluorogenic peptide enzyme substrates. For example, apoptosis caused by the therapeutic agents results in the production of the peptidase caspase-1 (ICE). Calbiochem sells a number of peptide substrates for this enzyme that release a fluorescent moiety. A particularly useful peptide for use in the present invention is:
- MCA-Tyr-Glu-Val-Asp-Gly-Trp-Lys-(DNP)-NH2 (SEQ ID NO:1)
- where MCA is the (7-methoxycoumarin-4-yl)acetyl and DNP is the 2,4-dinitrophenyl group (Talanian et al., J. Biol. Chem., 272: 9677 [1997]). In this peptide, the MCA group has greatly attenuated fluorescence, due to fluorogenic resonance energy transfer (FRET) to the DNP group. When the enzyme cleaves the peptide between the aspartic acid and glycine residues, the MCA and DNP are separated, and the MCA group strongly fluoresces green (excitation maximum at 325 nm and emission maximum at 392 nm).
- In preferred embodiments of the present invention, the lysine end of the peptide is linked to the nanodevice, so that the MCA group is released into the cytosol when it is cleaved. The lysine end of the peptide is a useful synthetic handle for conjugation because, for example, it can react with the activated ester group of a bifunctional linker such as Mal-PEG-OSu. Thus the appearance of green fluorescence in the target cells produced using these methods provides a clear indication that apoptosis has begun (if the cell already has a red color from the presence of aggregated quantum dots, the cell turns orange from the combined colors).
- Additional fluorescent dyes that find use with the present invention include, but are not limited to, acridine orange, reported as sensitive to DNA changes in apoptotic cells (Abrams et al., Development 117:29 [1993]) and cis-parinaric acid, sensitive to the lipid peroxidation that accompanies apoptosis (Hockenbery et al., Cell 75:241 [1993]). It should be noted that the peptide and the fluorescent dyes are merely exemplary. It is contemplated that any peptide that effectively acts as a substrate for a caspase produced as a result of apoptosis finds use with the present invention.
- As described above, another component of the present invention is that the nanodevice compositions are able to specifically target a particular cell type (e.g., tumor cell). Generally, the nanodevice targets neoplastic cells through a cell surface moiety and is taken into the cell through receptor mediated endocytosis.
- Any moiety known to be located on the surface of target cells (e.g., tumor cells) finds use with the present invention. For example, an antibody directed against such a moiety targets the compositions of the present invention to cell surfaces containing the moiety. Alternatively, the targeting moiety may be a ligand directed to a receptor present on the cell surface or vice versa. Similarly, vitamins also may be used to target the therapeutics of the present invention to a particular cell.
- In some embodiments of the present invention, the targeting moiety may also function as a signatures component. For example, tumor specific antigens including, but not limited to, carcinoembryonic antigen, prostate specific antigen, tyrosinase, ras, a sialyly lewis antigen, erb, MAGE-1, MAGE-3, BAGE, MN, gp100, gp75, p97,
proteinase 3, a mucin, CD81, CID9, CD63; CD53, CD38, CO-029, CA125, GD2, GM2 and O-acetyl GD3, M-TAA, M-fetal or M-urinary find use with the present invention. Alternatively the targeting moiety may be a tumor suppressor, a cytokine, a chemokine, a tumor specific receptor ligand, a receptor, an inducer of apoptosis, or a differentiating agent. - Tumor suppressor proteins contemplated for targeting include, but are not limited to, p16, p21, p27, p53, p73, Rb, Wilms tumor (WT-1), DCC, neurofibromatosis type 1 (NF-1), von Hippel-Lindau (VHL) disease tumor suppressor, Maspin, Brush-1, BRCA-1, BRCA-2, the multiple tumor suppressor (MTS), gp95/p97 antigen of human melanoma, renal cell carcinoma-associated G250 antigen,
KS 1/4 pan-carcinoma antigen, ovarian carcinoma antigen (CA125), prostate specific antigen, melanoma antigen gp75, CD9, CD63, CD53, CD37, R2, CD81, CO029, TI-1, L6 and SAS. Of course these are merely exemplary tumor suppressors and it is envisioned that the present invention may be used in conjunction with any other agent that is or becomes known to those of skill in the art as a tumor suppressor. - In preferred embodiments of the present invention targeting is directed to factors expressed by an oncogene. These include, but are not limited to, tyrosine kinases, both membrane-associated and cytoplasmic forms, such as members of the Src family, serine/threonine kinases, such as Mos, growth factor and receptors, such as platelet derived growth factor (PDDG), SMALL GTPases (G proteins) including the ras family, cyclin-dependent protein kinases (cdk), members of the myc family members including c-myc, N-myc, and L-myc and bcl-2 and family members.
- Cytokines that may be targeted by the present invention include, but are not limited to, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10,
ILA 1, IL-12, IL-13, IL-14, IL-15, TNF, GMCSF, Ī²-interferon and Ī³-interferon. Chemokines that may be used include, but are not limited to, M1P1Ī±, M1P1Ī², and RANTES. - Enzymes that may be targeted by the present invention include, but are not limited to, cytosine deaminase, hypoxanthine-guanine phosphoribosyltransferase, galactose-1-phosphate uridyltransferase, phenylalanine hydroxylase, glucocerbrosidase, sphingomyelinase, Ī±-L-iduronidase, glucose-6-phosphate dehydrogenase, HSV thymidine kinase, and human thymidine kinase.
- Receptors and their related ligands that find use in the context of the present invention include, but are not limited to, the folate receptor, adrenergic receptor, growth hormone receptor, luteinizing hormone receptor, estrogen receptor, epidermal growth factor receptor, fibroblast growth factor receptor, and the like.
- Hormones and their receptors that find use in the targeting aspect of the present invention include, but are not limited to, growth hormone, prolactin, placental lactogen, luteinizing hormone, foilicle-stimulating hormone, chorionic gonadotropin, thyroid-stimulating hormone, leptin, adrenocorticotropin (ACTH), angiotensin I, angiotensin II, Ī²-endorphin, Ī²-melanocyte stimulating hormone (Ī²-MSH), cholecystokinin, endothelin I, galanin, gastric inhibitory peptide (GIP), glucagon, insulin, amylin, lipotropins, GLP-1 (7-37) neurophysins, and somatostatin.
- In addition, the present invention contemplates that vitamins (both fat soluble and non-fat soluble vitamins) placed in the targeting component of the nanodevice may be used to target cells that have receptors for, or otherwise take up these vitamins. Particularly preferred for this aspect are the fat soluble vitamins, such as vitamin D and its analogues, vitamin E, Vitamin A, and the like or water soluble vitamins such as Vitamin C, and the like.
- In some embodiments of the present invention, any number of cancer cell targeting groups are attached to dendrimers. The targeting dendrimers are, in turn, conjugated to a core dendrimer. Thus the nanodevice of the present invention is such that it is specific for targeting cancer cells (i.e., much more likely to attach to cancer cells and not to healthy cells). In addition, the polyvalency of dendrimers allows the attachment of polyethylene glycol (PEG) or polyethyloxazoline (PEOX) chains to help increase the blood circulation time and decrease the immunogenicity of the conjugates.
- In preferred embodiments of the present invention, targeting groups are conjugated to dendrimers with either short (e.g., direct coupling), medium (e.g., using small-molecule bifunctional linkers such as SPDP, sold by Pierce Chemical Company), or long (e.g., PEG bifunctional linkers, sold by Shearwater Polymers) linkages. Since dendrimers have surfaces with a large number of functional groups, more than one targeting group may be attached to each dendrimer. As a result, there are multiple binding events between the dendrimer and the target cell. In these embodiments, the dendrimers have a very high affinity for their target cells via this ācooperative bindingā or polyvalent interaction effect.
- For steric reasons, the smaller the ligands, the more can be attached to the surface of a dendrimer. Recently, Wiener reported that dendrimers with attached folic acid would specifically accumulate on the surface and within tumor cells expressing the high-affinity folate receptor (hFR) (Wiener et al., Invest. Radiol., 32:748 [1997]). The hFR receptor is expressed or upregulated on epithelial tumors, including breast cancers. Control cells lacking hFR showed no significant accumulation of folate-derivatized dendrimers. Folic acid can be attached to full generation PAMAM dendrimers via a carbodiimide coupling reaction. Folic acid is a good targeting candidate for the dendrimers, with its small size and a simple conjugation procedure.
- A larger, yet still relatively small ligand is epidermal growth factor (EGF), a single-chain peptide with 53 amino acid residues. It has been shown that PAMAM dendrimers conjugated to EGF with the linker SPDP bind to the cell surface of human glioma cells and are endocytosed, accumulating in lysosomes (Casale et al., Bioconjugate Chem., 7:7 [1996]). Since EGF receptor density is up to 100 times greater on brain tumor cells compared to normal cells, EGF provides a useful targeting agent for these kinds of tumors. Since the EGF receptor is also overexpressed in breast and colon cancer, EGF may be used as a targeting agent for these cells as well. Similarly, the fibroblast growth factor receptors (EGER) also bind the relatively small polypeptides (FGF), and many are known to be expressed at high levels in breast tumor cell lines (particularly FGF1, 2 and 4) (Penault-Llorca et al., Int. J. Cancer 61:170 [1995]).
- In preferred embodiments of the present invention, the targeting moiety is an antibody or antigen binding fragment of an antibody (e.g., Fab units). For example, a well-studied antigen found on the surface of many cancers (including breast HER2 tumors) is glycoprotein p185, which is exclusively expressed in malignant cells (Press et al., Oncogene 5:953 [1990]). Recombinant humanized anti-HER2 monoclonal antibodies (rhuMabHER2) have even been shown to inhibit the growth of HER2 overexpressing breast cancer cells, and are being evaluated (in conjunction with conventional chemotherapeutics) in phase III clinical trials for the treatment of advanced breast cancer (Pegrarn et al., Proc. Am. Soc. Clin. Oncol., 14:106 [1995]). Park and Papahadjopoulos have attached Fab fragments of rhuMabHER2 to small unilamellar liposomes, which then can be loaded with the chemotherapeutic doxorubicin (dox) and targeted to HER2 overexpressing tumor xenografts (Park et al., Cancer Lett., 118:153 [1997] and Kirpotin et al., Biochem., 36:66 [1997]). These dox-loaded āimmunoliposomesā showed increased cytotoxicity against tumors compared to corresponding non-targeted dox-loaded liposomes or free dox, and decreased systemic toxicity compared to free dox.
- Antibodies can be generated to allow for the targeting of antigens or immunogens (e.g., tumor, tissue or pathogen specific antigens) on various biological targets (e.g., pathogens, tumor cells, normal tissue). Such antibodies include, but are not limited to polyclonal, monoclonal, chimeric, single chain, Fab fragments, and an Fab expression library.
- In some preferred embodiments, the antibodies recognize tumor specific epitopes (e.g., TAG-72 (Kjeldsen et al., Cancer Res. 48:2214-2220 [1988]; U.S. Pat. Nos. 5,892,020; 5,892,019; and 5,512,443); human carcinoma antigen (U.S. Pat. Nos. 5,693,763; 5,545,530; and 5,808,005); TP1 and TP3 antigens from osteocarcinoma cells (U.S. Pat. No. 5,855,866); Thomsen-Friedenreich (TF) antigen from adenocarcinoma cells (U.S. Pat. No. 5,110,911); āKC-4 antigenā from human prostrate adenocarcinoma (U.S. Pat. Nos. 4,708,930 and 4,743,543); a human colorectal cancer antigen (U.S. Pat. No. 4,921,789); CA125 antigen from cystadenocarcinoma (U.S. Pat. No. 4,921,790); DF3 antigen from human breast carcinoma (U.S. Pat. Nos. 4,963,484 and 5,053,489); a human breast tumor antigen (U.S. Pat. No. 4,939,240); p97 antigen of human melanoma (U.S. Pat. No. 4,918,164); carcinoma or orosomucoid-related antigen (CORA)(U.S. Pat. No. 4,914,021); a human pulmonary carcinoma antigen that reacts with human squamous cell lung carcinoma but not with human small cell lung carcinoma (U.S. Pat. No. 4,892,935); T and Tn haptens in glycoproteins of human breast carcinoma (Springer et al., Carbohydr. Res. 178:271-292 [1988]), MSA breast carcinoma glycoprotein termed (Tjandra et al., Br. J. Surg. 75:811-817 [1988]); MFGM breast carcinoma antigen (Ishida et al, Tumor Biol. 10:12-22 [1989]); DU-PAN-2 pancreatic carcinoma antigen (Lan et al., Cancer Res. 45:305-310 [1985]); CA125 ovarian carcinoma antigen (Hanisch et al., Carbohydr. Res. 178:29-47 [1988]); YH206 lung carcinoma antigen (Hinoda et al., (1988) Cancer J. 42:653-658 [1988]). Each of the foregoing references are specifically incorporated herein by reference.
- In other preferred embodiments, the antibodies recognize specific pathogens (e.g.,Legionella peomophilia, Mycobacterium tuberculosis, Clostridium tetani, Hemophilus influenzae, Neisseria gonorrhoeae, Treponema pallidum, Bacillus anthracis, Vibrio cholerae, Borrelia burgdorferi, Cornebacterium diphtheria, Staphylococcus aureus, human papilloma virus, human immunodeficiency virus, rubella virus, polio virus, and the like).
- Various procedures known in the art are used for the production of polyclonal antibodies. For the production of antibody, various host animals can be immunized by injection with the peptide corresponding to the desired epitope including but not limited to rabbits, mice, rats, sheep, goats, etc. In a preferred embodiment, the peptide is conjugated to an immunogenic carrier (e.g., diphtheria toxoid, bovine serum albumin (BSA), or keyhole limpet hemocyanin (KLH)). Various adjuvants are used to increase the immunological response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (Bacille Calmette-Guerin) and Corynebacterium parvum.
- For preparation of monoclonal antibodies, any technique that provides for the production of antibody molecules by continuous cell lines in culture may be used (See e.g., Harlow and Lane,Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.). These include, but are not limited to, the hybridoma technique originally developed by Kƶhler and Milstein (Kƶhler and Milstein, Nature 256:495-497 [1975]), as well as the trioma technique, the human B-cell hybridoma technique (See e.g., Kozbor et al. Immunol. Today 4:72 [1983]), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96 [1985]).
- In an additional embodiment of the invention, monoclonal antibodies can be produced in germ-free animals utilizing recent technology (See e.g., PCT/US90/02545). According to the invention, human antibodies may be used and can be obtained by using human hybridomas (Cote et al., Proc. Natl. Acad. Sci. U.S.A.80:2026-2030 [1983]) or by transforming human B cells with EBV virus in vitro (Cole et al., inMonoclonal Antibodies and Cancer Therapy, Alan R. Liss, pp. 77-96 [1985]).
- According to the invention, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778; herein incorporated by reference) can be adapted to produce specific single chain antibodies. An additional embodiment of the invention utilizes the techniques described for the construction of Fab expression libraries (Huse et al., Science 246:1275-1281 [1989]) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.
- Antibody fragments that contain the idiotype (antigen binding region) of the antibody molecule can be generated by known techniques. For example, such fragments include but are not limited to: the F(abā²)2 fragment that can be produced by pepsin digestion of the antibody molecule; the Fabā² fragments that can be generated by reducing the disulfide bridges of the F(abā²)2 fragment, and the Fab fragments that can be generated by treating the antibody molecule with papain and a reducing agent.
- In the production of antibodies, screening for the desired antibody can be accomplished by techniques known in the art (e.g., radioimmunoassay, ELISA (enzyme-linked immunosorbant assay), āsandwichā immunoassays, immunoradiometric assays, gel diffusion precipitin reactions, immunodiffusion assays, in situ immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), Western Blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays, etc.), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc.).
- The dendrimer systems of the present invention have many advantages over liposomes, such as their greater stability, better control of their size and polydispersity, and generally lower toxicity and immunogenicity (See e.g., Duncan et al., Polymer Preprints 39:180 [1998]). Thus, in some embodiments of the present invention, anti-HER2 antibody fragments, as well as other targeting antibodies are conjugated to dendrimers, as targeting agents for the nanodevices of the present invention.
- For breast cancer, the cell surface may be targeted with folic acid, EGF, FGF, and antibodies (or antibody fragments) to the tumor-associated antigens MUC1, cMet receptor and CD56 (NCAM). Once internalized into the cell, the nanodevice binds (via conjugated antibodies) to HER2, MUC1 or mutated p53.
- The bifunctional linkers SPDP and SMCC and the longer Mal-PEG-OSu linkers are particularly useful for antibody-dendrimer conjugation. In addition, many tumor cells contain surface lectins that bind to oligosaccharides, with specific recognition arising chiefly from the terminal carbohydrate residues of the latter (Sharon and Lis, Science 246:227 [1989]). Attaching appropriate monosaccharides to nonglycosylated proteins such as BSA provides a conjugate that binds to tumor lectin much more tightly than the free monosaccharide (Monsigny et al., Biochemie 70:1633 [1988]).
- Mannosylated PAMAM dendrimers bind mannoside-binding lectin up to 400 more avidly than monomeric mannosides (Page and Roy, Bioconjugate Chem., 8:714 [1997]). Sialylated dendrimers and other dendritic polymers bind to and inhibit a variety of sialate-binding viruses both in vitro and in vivo. By conjugating multiple monosaccharide residues (e.g., Ī±-galactoside, for galactose-binding cells) to dendrimers, polyvalent conjugates are created with a high affinity for the corresponding type of tumor cell. The attachment reaction are easily carried out via reaction of the terminal amines with commercially-available Ī±-galactosidyl-phenylisothiocyanate. The small size of the carbohydrates allows a high concentration to be present on the dendrimer surface.
- A very flexible method to identify and select appropriate peptide targeting groups is the phage display technique (See e.g., Cortese et al, Curr. Opin. Biotechol., 6:73 [1995]), which can be conveniently carried out using commercially available kits. The phage display procedure produces a large and diverse combinatorial library of peptides attached to the surface of phage, which are screened against immobilized surface receptors for tight binding. After the tight-binding, viral constructs are isolated and sequenced to identify the peptide sequences. The cycle is repeated using the best peptides as starting points for the next peptide library. Eventually, suitably high-affinity peptides are identified and then screened for biocompatibility and target specificity. In this way, it is possible to produce peptides that can be conjugated to dendrimers, producing multivalent conjugates with high specificity and affinity for the target cell receptors (e.g., tumor cell receptors) or other desired targets.
- Related to the targeting approaches described above is the āpretargetingā approach (See e.g., Goodwin and Meares, Cancer (suppl.) 80:2675 [1997]). An example of this strategy involves initial treatment of the patient with conjugates of tumor-specific monoclonal antibodies and streptavidin. Remaining soluble conjugate is removed from the bloodstream with an appropriate biotinylated clearing agent. When the tumor-localized conjugate is all that remains, a radiolabeled, biotinylated agent is introduced, which in turn localizes at the tumor sites by the strong and specific biotin-streptavidin interaction. Thus, the radioactive dose is maximized in dose proximity to the cancer cells and minimized in the rest of the body where it can harm healthy cells.
- It has been shown that if streptavidin molecules bound to a polystyrene well are first treated with a biotinylated dendrimer, and then radiolabeled streptavidinis introduced, up to four of the labeled streptavidin molecules are bound per polystyrene-bound streptavidin (Wilbur et al., Bioconjugate Chem., 9:813 [1998]). Thus, biotinylated dendrimers may be used in the methods of the present invention, acting as a polyvalent receptor for the radiolabel in vivo, with a resulting amplification of the radioactive dosage per bound antibody conjugate. In the preferred embodiments of the present invention, one or more multiply-biotinylated module(s) on the clustered dendrimer presents a polyvalent target for radiolabeled or boronated (Barth et al., Cancer Investigation 14:534 [1996]) avidin or streptavidin, again resulting in an amplified dose of radiation for the tumor cells.
- Dendrimers and clustered dendrimers may also be used as clearing agents by, for example, partially biotinylating a dendrimer that has a polyvalent galactose or mannose surface. The conjugate-clearing agent complex would then have a very strong affinity for the corresponding hepatocyte receptors.
- In other embodiments of the present invention, an enhanced permeability and retention (EPR) method is used in targeting. The enhanced permeability and retention (EPR) effect is a more āpassiveā way of targeting tumors (See, Duncan and Sat, Ann. Oncol., 9:39 [1998]). The EPR effect is the selective concentration of macromolecules and small particles in the tumor microenvironment, caused by the hyperpermeable vasculature and poor lymphatic drainage of tumors. The dendrimer compositions of the present invention provide ideal polymers for this application, in that they are relatively rigid, of narrow polydispersity, of controlled size and surface chemistry, and have interior ācargoā space that can carry and then release antitumor drugs. In fact, PAMAM dendrimer-platinates have been shown to accumulate in solid tumors (Pt levels about 50 times higher than those obtained with cisplatin) and have in vivo activity in solid tumor models for which cisplatin has no effect (Malik et al., Proc. Int'l. Symp. Control. Rel. Bioact. Mater., 24:107 [1997] and Duncan et al., Polymer Preprints 39:180 [1998]).
- The targeting moieties of the present invention may recognize a variety of other epitopes on biological targets (e.g., on pathogens). In some embodiments, molecular recognition elements are incorporated to recognize, target or detect a variety of pathogenic organisms including, but not limited to, sialic acid to target HIV (Wies et al., Nature 333: 426 [1988]), influenza (White et al., Cell 56: 725 [1989]), Chlamydia (Infect. Imm. 57: 2378 [1989]), Neisseria meningitidis, Streptococcus suis, Salmonella, mumps, newcastle, and various viruses, including reovirus, Sendai virus, and myxovirus; and 9-OAC sialic acid to target coronavirus, encephalomyelitis virus, and rotavirus; non-sialic acid glycoproteins to detect cytomegalovirus (Virology 176: 337 [1990]) and measles virus (Virology 172: 386 [1989]); CD4 (Khatzman et al., Nature 312: 763 [1985]), vasoactive intestinal peptide (Sacerdote et al., J. of Neuroscience Research 18: 102 [1987]), and peptide T (Ruff et al., FEBS Letters 211: 17 [1987]) to target HIV; epidermal growth factor to target vaccinia (Epstein et al., Nature 318: 663 [1985]); acetylcholine receptor to target rabies (Lentz et al., Science 215: 182 [1982]); Cd3 complement receptor to target Epstein-Barr virus (Carel et al., J. Biol. Chem. 265: 12293 [1990]); Ī²-adrenergic receptor to target reovirus (Co et al., Proc. Natl. Acad. Sci. 82: 1494 [1985]); ICAM-1 (Marlin et al., Nature 344: 70 [1990]), N-CAM, and myelin-associated glycoprotein MAb (Shephey et al., Proc. Natl. Acad. Sci. 85: 7743 [1988]) to target rhinovirus; polio virus receptor to target polio virus (Mendelsohn et al., Cell 56: 855 [1989]); fibroblast growth factor receptor to target herpes virus (Kaner et al., Science 248: 1410 [1990]); oligomannose to targetEscherichia coli; ganglioside GM1 to target Neisseria meningitidis; and antibodies to detect a broad variety of pathogens (e.g., Neisseria gonorrhoeae, V. vulnificus, V. parahaemolyticus, V. cholerae, and V. alginolyticus).
- In some embodiments of the present invention, the targeting moities are preferably nucleic acids (e.g., RNA or DNA). In some embodiments, the nucleic acid targeting moities are designed to hybridize by base pairing to a particular nucleic acid (e.g., chromosomal DNA, mRNA, or ribosomal RNA). In other embodiments, the nucleic acids bind a ligand or biological target. Nucleic acids that bind the following proteins have been identified: reverse transcriptase, Rev and Tat proteins of HIV (Tuerk et al., Gene 137(1):33-9 [1993]); human nerve growth factor (Binkley et al., Nuc. Acids Res. 23(16):3198-205 [1995]); and vascular endothelial growth factor (Jellinek et al., Biochem. 83(34):10450-6 [1994]). Nucleic acids that bind ligands are preferably identified by the SELEX procedure (See e.g., U.S. Pat. Nos. 5,475,096; 5,270,163; and 5,475,096; and in PCT publications WO 97/38134, WO 98/33941, and WO 99/07724, all of which are herein incorporated by reference), although many methods are known in the art.
- The present section provides a description of the synthesis and formation of the individual components (i.e., individual dendrimers containing one or more of the components described above) of the nanodevice and the conjugation of such components into a nanodevice (e.g., the conjugation of one or more such dendrimers to a core dendrimer).
- In preferred embodiments of the present invention, the preparation of PAMAM dendrimers is performed according to a typical divergent (building up the macromolecule from an initiator core) synthesis. It involves a two-step growth sequence that consists of a Michael addition of amino groups to the double bond of methyl acrylate (MA) followed by the amidation of the resulting terminal carbomethoxy, ā(CO2CH3) group, with ethylenediamine (EDA). When ammonia is used as the initiator core reagent, this synthesis may be represented by reactions shown in FIG. 7.
- In the first step of this process, ammonia is allowed to react under an inert nitrogen atmosphere with MA (molar ratio: 1:4.25) at 47Ā° C. for 48 hours. The resulting compound is referred to as generation=0, the star-branched PAMAM tri-ester. The next step involves reacting the tri-ester with an excess of EDA to produce the star-branched PAMAM tri-amine (G=O). This reaction is performed under an inert atmosphere (nitrogen) in methanol and requires 48 hours at 0Ā° C. for completion. Reiteration of this Michael addition and amidation sequence produces generation=1.
- Preparation of this tri-amine completes the first full cycle of the divergent synthesis of PAMAM dendrimers. Repetition of this reaction sequence results in the synthesis of larger generation (G=1-5) dendrimers (i.e., ester- and amine-terminated molecules, respectively). For example, the second iteration of this sequence produces
generation 1, with an hexa-ester and hexa-amine surface, respectively. The same reactions are performed in the same way as for all subsequent generations from 1 to 9, building up layers of branch cells giving a core-shell architecture with precise molecular weights and numbers of terminal groups as shown above. Carboxylate-surfaced dendrimers can be produced by hydrolysis of ester-terminated PAMAM dendrimers, or reaction of succinic anhydride with amine-surfaced dendrimers (e.g., full generation PAMAM, POPAM or POPAM-PAMAM hybrid dendrimers). - Various dendrimers can be synthesized based on the core structure that initiates the polymerization process. These core structures dictate several important characteristics of the dendrimer molecule such as the overall shape, density, and surface functionality (Tomalia et al., Angew. Chem. Int. Ed. Engl., 29:5305 [1990]). Spherical dendrimers derived from ammonia possess trivalent initiator cores, whereas EDA is a tetra-valent initiator core. Recently, rod-shaped dendrimers have been reported which are based upon linear poly(ethyleneimine) cores of varying lengths the longer the core, the longer the rod (Yin et al., J. Am. Chem. Soc., 120:2678 [1998]).
- The dendrimers may be characterized for size and uniformity by any suitable analytical techniques. These include, but are not limited to, atomic force microscopy (AFM), electrospray-ionization mass spectroscopy, MALDI-TOF mass spectroscopy,13C nuclear magnetic resonance spectroscopy, high performance liquid chromatography (HPLC) size exclusion chromatography (SEC) (equipped with multi-angle laser light scattering, dual Uv and refractive index detectors), capillary electrophoresis and get electrophoresis. These analytical methods assure the uniformity of the dendrimer population and are important in the quality control of dendrimer production for eventual use in in vivo applications. Most importantly, extensive work has been performed with dendrimers showing no evidence of toxicity when administered intravenously (Roberts et al., J. Biomed. Mater. Res., 30:53 [1996] and Bourne et al., J. Magnetic Resonance Imaging, 6:305 [1996]).
- To produce a single dendritic device possessing the various functional modules required for active sensing, targeting, imaging and therapeutic delivery, multiple PAMAM dendrimer modules, each with an individual differentiated function are covalently bound to form a single device. This involves the synthesis of separate conjugates or nanocomposites for each of the required activities (e.g., one dendrimer conjugate for sensing, one for targeting and another for therapeutic carrier). These different dendrimers are then self-assembled and covalently linked in a manner that yields a single therapeutic device. In certain embodiments, one dendrimer acts as a core around which other dendrimers are covalently (i.e., āclustered dendrimersā). In preferred embodiments, the core dendrimer is a POPAM dendrimer, while the outer dendrimers are PAMAM dendrimers. In yet other embodiments, dendrimers may be complexed to one another without a core dendrimer (e.g., four dendrimers covalently linked to one another in a linear chain).
- In one preferred embodiments of the present invention the formation of clustered dendrimers involves the formation of amide bonds between the core and exterior dendrimers using the ester aminolysis technique. The ester aminolysis technique involves reacting various poly(amidoamine) PAMAM dendrimer core reagents with an excess of ester terminated PAMAM dendrimer shell reagents in methanol at 40Ā° C. (See e.g., Uppuluri et al., PMSE 80:55 [1999]). In an alternative embodiment, water is employed as the reaction medium. This method involves the self-assembly of amine terminated core reagents with an excess of carboxylate shell reagent followed by addition of a coupling agent (i.e., carboimide) to produce aminde linkages between the core and the shell components. These reactions take place at room temperature. Such embodiments are preferred when the reactions are conducted in the presence of biomolecules such as antibodies.
- The first step in the aqueous synthesis of these molecules involves self-assembly of the shell dendrimer molecules around a core dendrimer molecule, resulting in the efficient (i.e., maximum) packing of shell molecules around the core. The self-assembled cluster, as shown in FIG. 5, is representative of the precursor used to make the covalently bonded core shell clustered dendrimer. In the next step, using a coupling reagent (such as EDC, a carbodiimide reagent), the core and shell molecules are covalently linked as shown in FIG. 6. The reaction progress is monitored by size exclusion chromatography (SEC) and the loss of carboxylate functionality in the infrared region (FTIR) as well as by1H/13C NMR and gel electrophoresis. The reaction is normally complete within an hour when run at room temperature.
- In some embodiments of the present invention, the size and shape of these higher molecular weight products is measured and compared to individual dendrimers by atomic force microscopy (AFM) and size exclusion chromatography SEC. These techniques demonstrate that core-shell dendrimers are indeed formed. Additional evidence is obtained, as desired, by gel electrophoresis, in which a higher molecular weight product is evident when the reaction is complete. The absolute molecular weight of the clustered dendrimer is determined by MALDI-TOF mass spectroscopy or by SEC equipped with a multi-angle laser light scattering detector (MALLS).
- The clustered dendrimer molecules formed by this method have narrow polydispersity by SEC (similar to that of large dendrimers). It takes about 3-4 weeks to convert PAMAM dendrimers of generation 6 to generation 9, but only about 1 day to synthesize clustered dendrimers with similar size, acceptable dispersity and shape (including purification procedures).
- For the multi-function clustered dendrimer, any cross-linking reaction problems with the functional groups on the exterior dendrimer modules are circumvented by using standard protecting groups on the side chains that are reacting. Another solution is to use bifunctional linker strategies, e.g., first, reacting the surface of the core amino-surfaced dendrimer with 2-iminothiolane to generate a thiol surface, then reacting the product with maleimide linker groups on the shell dendrimers.
- As discussed above, in some embodiments of the present invention a core-shell structure is used to assemble dendritic polymer components into a single molecular complex (See e.g., FIG. 10). This allows one to place each component of the nanodevice on a different polymer and assemble them as a single, supramolecular assembly. The unique aspect of this technology is that the core-shell configuration directs and limits the assembly; the larger the core and the smaller the shell molecules, the greater the number of shell dendrimers can associate with a core. For example, the core of a cluster can be generation 7, amine surfaced PAMAM dendrimer; with an approximate molecular weight of 110 kDa, a 7 nm diameter and 512 surface primary amines (Tomalia et al.,Angew. Chem. Int. Ed., 29:138 [1990]). The shell might be made up of
generation 5 carboxyl-surfaced PAMAM dendrimer, with an approximate molecular weight of 27 kDa, a 5 nm diameter and 128 surface carboxyl groups. This would lead to the self-assembly (if performed in an excess of E5) of a supra-molecular complex where an average of 12 E5 molecules surround an E7 core. FIG. 10 shows that steric hindrance limits the number of associated shell polymers that bind to the core. - There may be problems in attempting to assemble dendrimer-based nanodevices using this approach with multifunctional groups using covalently linked PAMAM dendrimers. For example, in some embodiments, the self-assembly of these components requires different charges on the core and surface polymers. This leaves excess charge on the shell polymer that may inhibit the function of the device, particularly as relates to targeting and internalizing into cells. Also important is that after the polymers self-assembly, in some embodiments, they are covalently linked. The chemistry involved in this step can affect the functional subunits of the nanodevice and in some cases destroy them. Thus, an alternative technique should be employed to assemble the supramolecular complex.
- In some embodiments of the present invention, individual dendrimer components of the multi-function clustered dendrimer are assembled though the use of linkers. For example, in some embodiments, shell dendrimers are attached to a core dendrimer through linker groups using covalent or non-covalent interactions. One illustrative example of such linking is demonstrated by the use of nucleic acid linkers, which provide a number of advantages.
- Oligonucleotides are a powerful tool to assemble molecules in desired structural arrangements due to the ease with which they can be conjugated to other materials, the ability to hybridize with another oligonucleotide of complementary base specificity, the programmability of the sequence, and the stiffness of the resulting duplex structure. Using this concept, supramolecular core-shell structures using dendrimers and complementary oligonucleotides were created during the development of the present invention. These structures have a number of advantages over those produced with the prior assembly techniques. For example, they are self assembling at low temperature without harsh chemicals, they provide the ability to specifically couple different subunits based on different oligonucleotide complementarities, and they provide the ability to design nuclease digestion sites or other cleavable sites into the oligonucleotide couplers to make the complex ābiodegradableā and allow the subunits to be excreted through the kidney (e.g., they may be designed to fall apart once they've reached the target site, such that the smaller fragments may be excreted through the kidney). FIG. 11 shows a schematic dendrimer complex assembled using nucleic acid linkers. A method for preparing the complexes is provided in Example 5.
- The present invention is not limited by the nature of the nucleic acid used as the linker group. In some preferred embodiments, the nucleic acid attached to a dendrimer does not contain intrastrand secondary structure. However, in some embodiments secondary structure may be used to provide a desired function or property (e.g., stability, cleavage recognition site, etc.). The length of the nucleic acid linker may be selected to provide a desired distance between the core dendrimer and the shell dendrimers. In some embodiments of the present invention, nucleic acids are modified to enhance stability (e.g., in the bloodstream) and/or to facilitate entry into cells. Methods are known in the art for making such modifications. In some embodiments, the nucleic acid molecules are labeled to allow detection or localization of the assemblies.
- Once nucleic acid linkers are attached to the dendrimers, the dendrimer complexes may be assembled and analyzed (e.g., to assure the structures have appropriate conformations). Because of the small size of these materials, a preferred method of characterizing the assembled complexes is atomic force microscopy. Use of atomic force microscopy clearly demonstrated the presence of dendrimer supramolecular assembles that are regular combinations of three and four modules (i.e., comprised a core and multiple shell dendrimers). Analysis of a single cluster demonstrated that the distance between the two components was 21 nm; almost exactly the theoretical distance predicted from the length of the oligonucleotide hybrid. This analysis was then applied to a population of the molecules, and all were found to have distances of approximately 20 nm between the components. This documented the uniformity of the supramolecular structures that were developed. Given the fact that these supramolecular assemblies can connect components in a consistent manner, they can be used for almost any type of combined delivery of material from vaccine components to drugs to imaging agents.
- The anti-tumor effects of various therapeutic agents on cancer cell lines and primary cell cultures may be evaluated using the nanodevices of the present invention. For example, in preferred embodiments, assays are conducted, in vitro, using established tumor cell line models or primary culture cells. The use of fresh tumor cells (as opposed to cultured lines) is preferable for confirmation of toxicity testing and efficacy because it allows more relevant determinations without artifacts induced by tissue culture (e.g., tumor cell selection, etc.).
- A. Quantifying the Induction of Apoptosis of Human Tumor Cells In vitro
- In an exemplary embodiment of the present invention, the nanodevices of the present invention are used to assay apoptosis of human tumor cells in vitro. Testing for apoptosis in the cells determines the efficacy of the therapeutic agent. Multiple aspects of apoptosis can and should be measured. These aspects include those described above, as well as aspects including, but are not limited to, measurement of phosphatidylserine (PS) translocation from the inner to outer surface of plasma membrane, measurement of DNA fragmentation, detection of apoptosis related proteins, and measurement of Caspase-3 activity.
- B. In Vitro Toxicology
- In some embodiments of the present invention, to gain a general perspective into the safety of a particular nanodevice platform or component of that system, toxicity testing is performed. Toxicological information may be derived from numerous sources including, but not limited to, historical databases, in vitro testing, and in vivo animal studies.
- In vitro toxicological methods have gained popularity in recent years due to increasing desires for alternatives to animal experimentation and an increased perception to the potential ethical, commercial, and scientific value. In vitro toxicity testing systems have numerous advantages including improved efficiency, reduced cost, and reduced variability between experiments. These systems also reduce animal usage, eliminate confounding systemic effects (e.g., immunity), and control environmental conditions.
- Although any in vitro testing system may be used with the present invention, the most common approach utilized for in vitro examination is the use of cultured cell models. These systems include freshly isolated cells, primary cells, or transformed cell cultures. Cell culture as the primary means of studying in vitro toxicology is advantageous due to rapid screening of multiple cultures, usefulness in identifying and assessing toxic effects at the cellular, subcellular, or molecular level. In vitro cell culture methods commonly indicate basic cellular toxicity through measurement of membrane integrity, metabolic activities, and subcellular perturbations. Commonly used indicators for membrane integrity include cell viability (cell count), clonal expansion tests, trypan blue exclusion, intracellular enzyme release (e.g., lactate dehydrogenase), membrane permeability of small ions (K1, Ca2+), and intracellular accumulation of small molecules (e.g., 51Cr, succinate). Subcellular perturbations include monitoring mitochondrial enzyme activity levels via, for example, the MTT test, determining cellular adenine triphosphate (ATP) levels, neutral red uptake into lysosomes, and quantification of total protein synthesis. Metabolic activity indicators include glutathione content, lipid peroxiidation, and lactate/pyruvate ratio.
- C. MTT assay
- The MTT assay is a fast, accurate, and reliable methodology for obtaining cell viability measurements. The MTT assay was first developed by Mosmann (Mosmann, J. Immunol. Meth., 65:55 [1983]). It is a simple calorimetric assay numerous laboratories have utilized for obtaining toxicity results (See e.g., Kuhlmann et al., Arch. Toxicol., 72:536 [1998]). Briefly, the mitochondria produce ATP to provide sufficient energy for the cell. In order to do this, the mitochondria metabolize pyruvate to produce acetyl CoA. Within the mitochondria, acetyl CoA reacts with various enzymes in the tricarboxylic acid cycle resulting in subsequent production of ATP. One of the enzymes particularly useful in the MTT assay is succinate dehydrogenase. MTT (3-(4,5-dimethylthiazol-2-yi)-2 diphenyl tetrazolium bromide) is a yellow substrate that is cleaved by succinate dehydrogenase forming a purple formazan product. The alteration in pigment identifies changes in mitochondria function. Nonviable cells are unable to produce formazan, and therefore, the amount produced directly correlates to the quantity of viable cells. Absorbance at 540 nm is utilized to measure the amount of formazan product.
- The results of the in vitro tests can be compared to in vivo toxicity tests in order to extrapolate to live animal conditions. Typically, acute toxicity from a single dose of the substance is assessed. Animals are monitored over 14 days for any signs of toxicity (increased temperature, breathing difficulty, death, etc). Traditionally, the standard of acute toxicity is the median lethal dose (LD50), which is the predicted dose at which half of the treated population would be killed. The determination of this dose occurs by exposing test animals to a geometric series of doses under controlled conditions. Other tests include subacute toxicity testing, which measures the animal's response to repeated doses of the nanodevice for no longer than 14 days. Subchronic toxicity testing involves testing of a repeated dose for 90 days. Chronic toxicity testing is similar to subchronic testing but may last for over a 90-day period. In vivo testing can also be conducted to determine toxicity with respect to certain tissues. For example, in some embodiments of the present invention tumor toxicity (i.e., effect of the compositions of the present invention on the survival of tumor tissue) is determined (e.g., by detecting changes in the size and/or growth of tumor tissues).
- In particular embodiments of the present invention, the nanodevice compositions comprise transgenes for delivery and expression to a target cell or tissue, in vitro, ex vivo, or in vivo. In such embodiments, rather than containing the actual protein, the dendrimer complex comprises an expression vector construct containing, for example, a heterologous DNA encoding a gene of interest and the various regulatory elements that facilitate the production of the particular protein of interest in the target cells.
- In some embodiments, the gene is a therapeutic gene that is used, for example, to treat cancer, to replace a defective gene, or a marker or reporter gene that is used for selection or monitoring purposes. In the context of a gene therapy vector, the gene may be a heterologous piece of DNA. The heterologous DNA may be derived from more than one source (i.e., a multigene construct or a fusion protein). Further, the heterologous DNA may include a regulatory sequence derived from one source and the gene derived from a different source.
- Tissue-specific promoters may be used to effect transcription in specific tissues or cells so as to reduce potential toxicity or undesirable effects to non-targeted tissues. For example, promoters such as the PSA, probasin, prostatic acid phosphatase or prostate-specific glandular kallikrein (hK2) may be used to target gene expression in the prostate. Similarly, promoters may be used to target gene expression in other tissues (e.g., insulin, elastin amylase, pdr-1, pdx-l and glucokinase promoters target to the pancreas; albumin PEPCK, HBV enhancer, alpha fetoproteinapolipoprotein C, alpha-1 antitrypsin, vitellogenin, NF-AB and transthyretin promoters target to the liver; myosin H chain, muscle creatine kinase, dystrophin, calpain p94, skeletal alpha-actin,
fast troponin 1 promoters target to skeletal muscle; keratin promoters target the skin; sm22 alpha; SM-a-actin promoters target smooth muscle; CFTR; human cytokeratin 18 (K18); pulmonary surfactant proteins A, B and Q CC-10; P1 promoters target lung tissue; endothelin-1; E-selectin; von Willebrand factor; KDR/flk-1 target the endothelium; tyrosinase targets melanocytes). - The nucleic acid may be either cDNA or genomic DNA. The nucleic acid can encode any suitable therapeutic protein. Preferably, the nucleic acid encodes a tumor suppressor, cytokine, receptor, inducer of apoptosis, or differentiating agent. The nucleic acid may be an antisense nucleic acid. In such embodiments, the antisense nucleic acid may be incorporated into the nanodevice of the present invention outside of the context of an expression vector.
- In preferred embodiments, the nucleic acid encodes a tumor suppressor, cytokines, receptors, or inducers of apoptosis. Suitable tumor suppressors include BRCA1, BRCA2, C-CAM, p16, p211 p53, p73, or Rb. Suitable cytokines include GMCSF, IL-1, IL-2, IL-3, IL-4, IL-5, IL6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, Ī²-inteferon, Ī³-interferon, or TNF. Suitable receptors include CFTR, EGFR, estrogen receptor, IL-2 receptor, or VEGFR. Suitable inducers of apoptosis include AdE1B, Bad, Bak, Bax, Bid, Bik, Bim, Harakiri, or ICE-CED3 protease.
- Tumor cell resistance to DNA damaging agents represents a major problem in clinical oncology. The nanodevices of the present invention provide means of ameliorating this problem by effectively administering a combined therapy approach. However, it should be noted that traditional combination therapy may be employed in combination with the nanodevices of the present invention. For example, in some embodiments of the present invention, nanodevices may be used before, after, or in combination with the traditional therapies.
- To kill cells, inhibit cell growth, or metastasis, or angiogenesis, or otherwise reverse or reduce the malignant phenotype of tumor cells using the methods and compositions of the present invention in combination therapy, one contacts a ātargetā cell with the nanodevices compositions described herein and at least one other agent. These compositions are provided in a combined amount effective to kill or inhibit proliferation of the cell. This process may involve contacting the cells with the immunotherapeutic agent and the agent(s) or factor(s) at the same time. This may be achieved by contacting the cell with a single composition or pharmacological formulation that includes both agents, or by contacting the cell with two distinct compositions or formulations, at the same time, wherein one composition includes, for example, an expression construct and the other includes a therapeutic agent.
- Alternatively, the nanodevice treatment may precede or follow the other agent treatment by intervals ranging from minutes to weeks. In embodiments where the other agent and immunotherapy are applied separately to the cell, one would generally ensure that a significant period of time did not expire between the time of each delivery, such that the agent and nanodevice would still be able to exert an advantageously combined effect on the cell. In such instances, it is contemplated that cells are contacted with both modalities within about 12-24 hours of each other and, more preferably, within about 6-12 hours of each other, with a delay time of only about 12 hours being most preferred. In some situations, it may be desirable to extend the time period for treatment significantly, however, where several days (2 to 7) to several weeks (1 to 8) lapse between the respective administrations.
- In some embodiments, more than one administration of the immunotherapeutic composition of the present invention or the other agent are utilized. Various combinations may be employed, where nanodevice is āAā and the other agent is āBā, as exemplified below:
A/B/A, B/A/B, B/B/A, A/A/B, B/A/A, A/B/B, B/B/B/A, B/B/A/B, A/A/B/B, A/B/A/B, A/B/B/A, B/B/A/A, B/A/B/A, B/A/A/B, B/B/B/A, A/A/A/B, B/A/A/A, A/B/A/A, A/A/B/A, A/B/B/B, B/A/B/B, B/B/A/B - Other combinations are contemplated. Again, to achieve cell killing, both agents are delivered to a cell in a combined amount effective to kill or disable the cell.
- Other factors that may be used in combination therapy with the nanodevices of the present invention include, but are not limited to, factors that cause DNA damage such as Ī³-rays, X-rays, and/or the directed delivery of radioisotopes to tumor cells. Other forms of DNA damaging factors are also contemplated such as microwaves and UV-irradiation. Dosage ranges for X-rays range from daily doses of 50 to 200 roentgens for prolonged periods of time (3 to 4 weeks), to single doses of 2000 to 6000 roentgens. Dosage ranges for radioisotopes vary widely, and depend on the half-life of the isotope, the strength and type of radiation emitted, and the uptake by the neoplastic cells. The skilled artisan is directed to āRemington's Pharmaceutical Sciencesā 15th Edition, chapter 33, in particular pages 624-652. Some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject. Moreover, for human administration, preparations should meet sterility, pyrogenicity, general safety and purity standards as required by FDA Office of Biologics standards.
- In preferred embodiments of the present invention, the regional delivery of the nanodevice to patients with cancers is utilized to maximize the therapeutic effectiveness of the delivered agent. Similarly, the chemo- or radiotherapy may be directed to particular, affected region of the subjects body. Alternatively, systemic delivery of the immunotherapeutic composition and/or the agent may be appropriate in certain circumstances, for example, where extensive metastasis has occurred.
- In addition to combining the nanodevice with chemo- and radiotherapies, it also is contemplated that traditional gene therapies are used. For example, targeting of p53 or p16 mutations along with treatment of the nanodevices provides an improved anti-cancer treatment. The present invention contemplates the co-treatment with other tumor-related genes including, but not limited to, p21, Rb, APC, DCC, NF-I, NF-2, BCRA2, p16, FHIT, WT-I, MEN-I, MEN-II, BRCA1, VHL, FCC, MCC, ras, myc, neu, raf erb, src, fms, jun, trk, ret, gsp, hst, bcl, and abl.
- In vivo and ex vivo treatments are applied using the appropriate methods worked out for the gene delivery of a particular construct for a particular subject. For example, for viral vectors, one typically delivers 1Ć104, 1Ć105, 1Ć106, 1Ć107, 1Ć108, 1Ć109, 1Ć1010, 1Ć1011 or 1Ć1012 infectious particles to the patient. Similar figures may be extrapolated for liposomal or other non-viral formulations by comparing relative uptake efficiencies.
- An attractive feature of the present invention is that the therapeutic compositions may be delivered to local sites in a patient by a medical device. Medical devices that are suitable for use in the present invention include known devices for the localized delivery of therapeutic agents. Such devices include, but are not limited to, catheters such as injection catheters, balloon catheters, double balloon catheters, microporous balloon catheters, channel balloon catheters, infusion catheters, perfusion catheters, etc., which are, for example, coated with the therapeutic agents or through which the agents are administered; needle injection devices such as hypodermic needles and needle injection catheters; needleless injection devices such as jet injectors; coated stents, bifurcated stents, vascular grafts, stent grafts, etc.; and coated vaso-occlusive devices such as wire coils.
- Exemplary devices are described in U.S. Pat. Nos. 5,935,114; 5,908,413; 5,792,105; 5,693,014; 5,674,192; 5,876,445; 5,913,894; 5,868,719; 5,851,228; 5,843,089; 5,800,519; 5,800,508; 5,800,391; 5,354,308; 5,755,722; 5,733,303; 5,866,561; 5,857,998; 5,843,003; and 5,933,145; the entire contents of which are incorporated herein by reference. Exemplary stents that are commercially available and may be used in the present application include the RADIUS (Scimed Life Systems, Inc.), the SYMPHONY (Boston Scientific Corporation), the Wallstent (Schneider Inc.), the PRECEDENT II (Boston Scientific Corporation) and the NIR (Medinol Inc.). Such devices are delivered to and/or implanted at target locations within the body by known techniques.
- In some embodiments, the therapeutic complexes of the present invention comprise a photodynamic compound and a targeting agent that is administred to a patient. In some embodiments, the targeting agent is then allowed a period of time to bind the ātargetā cell (e.g. about 1 minute to 24 hours) resulting in the formation of a target cell-target agent complex. In some embodiments, the therapeutic complexes comprising the targeting agent and photodynamic compound are then illuminated (e.g., with a red laser, incandescent lamp, X-rays, or filtered sunlight). In some embodiments, the light is aimed at the jugular vein or some other superficial blood or lymphatic vessel. In some embodiments, the singlet oxygen and free radicals diffuse from the photodynamic compound to the target cell (e.g. cancer cell or pathogen) causing its destruction.
- Where clinical applications are contemplated, in some embodiments of the present invention, the nanodevices are prepared as part of a pharmaceutical composition in a form appropriate for the intended application. Generally, this entails preparing compositions that are essentially free of pyrogens, as well as other impurities that could be harmful to humans or animals. However, in some embodiments of the present invention, a straight dendrimer formulation may be administered using one or more of the routes described herein.
- In preferred embodiments, the nanodevices are used in conjunction with appropriate salts and buffers to render delivery of the compositions in a stable manner to allow for uptake by target cells. Buffers also are employed when the nanodevices are introduced into a patient. Aqueous compositions comprise an effective amount of the nanodevice to cells dispersed in a pharmaceutically acceptable carrier or aqueous medium. Such compositions also are referred to as inocula. The phrase āpharmaceutically or pharmacologically acceptableā refer to molecular entities and compositions that do not produce adverse, allergic, or other untoward reactions when administered to an animal or a human. As used herein, pharmaceutically acceptable carrierā includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. Except insofar as any conventional media or agent is incompatible with the vectors or cells of the present invention, its use in therapeutic compositions is contemplated. Supplementary active ingredients may also be incorporated into the compositions.
- In some embodiments of the present invention, the active compositions include classic pharmaceutical preparations. Administration of these compositions according to the present invention is via any common route so long as the target tissue is available via that route. This includes oral, nasal, buccal, rectal, vaginal or topical. Alternatively, administration may be by orthotopic, intradermal, subcutaneous, intramuscular, intraperitoneal or intravenous injection.
- The active nanodevices may also be administered parenterally or intraperitoneally or intratumorally. Solutions of the active compounds as free base or pharmacologically acceptable salts are prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. The carrier may be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial an antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it may be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Upon formulation, the dendrimer compositions are administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms such as injectable solutions, drug release capsules and the like. For parenteral administration in an aqueous solution, for example, the solution is suitably buffered, if necessary, and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. For example, one dosage could be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, āRemington's Pharmaceutical Sciencesā 15th Edition, pages 1035-1038 and 1570-1580). In some embodiments of the present invention, the active particles or agents are formulated within a therapeutic mixture to comprise about 0.0001 to 1.0 milligrams, or about 0.001 to 0.1 milligrams, or about 0.1 to 1.0 or even about 10 milligrams per dose or so. Multiple doses may be administered.
- Additional formulations that are suitable for other modes of administration include vaginal suppositories and pessaries. A rectal pessary or suppository may also be used. Suppositories are solid dosage forms of various weights and shapes, usually medicated, for insertion into the rectum, vagina or the urethra. After insertion, suppositories soften, melt or dissolve in the cavity fluids. In general, for suppositories, traditional binders and carriers may include, for example, polyalkylene glycols or triglycerides; such suppositories may be formed from mixtures containing the active ingredient in the range of 0.5% to 10%, preferably 1%-2%. Vaginal suppositories or pessaries are usually globular or oviform and weighing about 5 g each. Vaginal medications are available in a variety of physical forms, e.g., creams, gels or liquids, which depart from the classical concept of suppositories. In addition, suppositories may be used in connection with colon cancer. The nanodevices also may be formulated as inhalants for the treatment of lung cancer and such like.
- In specific embodiments of the present invention methods and compositions are provided for the treatment of tumors in cancer therapy. It is contemplated that the present therapy can be employed in the treatment of any cancer for which a specific signature has been identified or which can be targeted. Cell proliferative disorders, or cancers, contemplated to be treatable with the methods of the present invention include human sarcomas and carcinomas, including, but not limited to, fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, Ewing's tumor, lymphangioendotheliosarcoma, synovioma, mesothelioma, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, retinoblastoma; leukemias, acute lymphocytic leukemia and acute myelocytic leukemia (myeloblastic, promyelocytic, myelomonocytic, monocytic and erythroleukemia); chronic leukemia (chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia); and polycythemia vera, lymphoma (Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenstrbm's macroglobulinemia, and heavy chain disease.
- It is contemplated that the present therapy can be employed in the treatment of any pathogenic disease for which a specific signature has been identified or which can be targeted for a given pathogen. Examples of pathogens contemplated to be treatable with the methods of the present invention include, but are not limited to, Legionella peomophilia, Mycobacterium tuberculosis, Clostridium tetani, Hemophilus influenzae, Neisseria gonorrhoeae, Treponema pallidum, Bacillus anthracis, Vibrio cholerae, Borrelia burgdorferi, Cornebacterium diphtheria, Staphylococcus aureus, human papilloma virus, human immunodeficiency virus, rubella virus, polio virus, and the like.
- The following examples are provided to demonstrate and further illustrate certain preferred embodiments of the present invention and are not to be construed as limiting the scope thereof.
- This Example describes quantitative MTT biocompatibility/cytotoxicity assays in both mouse and rat primary fibroblasts to measure cytotoxicity of various individual dendrimers and core-shell dendrimer molecules. In particular, the cytotoxicity of PAMAM dendrimers (G5 and G7 generations), POPAM dendrimers (
generations - Briefly, both the mouse and rat primary fibroblasts were cultured for 24 hours with MTT (3-(4,5-dimethylthiazol-2-yi)-2 diphenyl tetrazolium bromide), and either PAMAM dendrimers, POMAM dendrimers, or the core-shell dendrimer molecules. The quantity of viable cells was then measured by absorbance at 540 nm in order to detect the formazan product (purple) resulting from the cleavage of MTT (yellow) present only in viable cells.
- The results of these assays revealed a sharp distinction between the cytotoxicity of the POPAM dendrimers and both the PAPAM dendrimers and the core-shell dendrimers of the present invention. Specifically, the PAPAM dendrimers (G5 and G7 generations) assayed produced no significant in vitro cytotoxicity at concentrations up to 40 Ī¼g/ml. In contrast, the three types of POPAM dendrimers (
generations - This example describes the construction of a multifunctional dendrimer molecule with both targeting and signaling units. In particular, this example describes the construction of a generation 5 (G5) PAMAM dendrimer conjugated to folic acid and fluorescein where remaining amino surface groups on the dendrimer are ācappedā with acetic anhydride or glycidol.
- The schematic for production of the dendrimers if provided in FIG. 8. Conjugation of the G5 PAMAM dendrimers was carried out by reacting G5 PAMAM G5 with fluorescein isothiocyanate and N(Et)3. This fluorescein construct was then reacted with folic acid and EDC. Reaction of the remaining amino surface groups of the product with either acetic anhydride or glycidol resulted in their conversion to acetamido or bis(2,3-hydroxypropyl)amino moieties, respectively. These biologically- and charge-neutral ācappingā groups gave the folate/fluorescein products and high aqueous solubility. G5 PAMAM dendrimers were purified via ultrafiltration of pH-neutralized material in 1:1 DMSO/water.
- The toxicity and efficacy of the nanodevices of the present invention may be assayed in vitro. In preferred embodiments, the nanodevices are tested in cell culture models. For example, the efficacy of nanodevice for diagnosing, monitoring, and treating breast cancer may assayed in breast cancer cell lines. For example, dendrimers that target breast cancer cells are generated by conjugating ligands or antibodies that specifically recognize receptors over-expressed by a particular breast cancer cell line. For example, the SUM-52 cell line has an amplification of and over-expresses the FGFR-2, c-MET, and NCAM-1 genes. The products of all of these genes are expressed to high levels on the surface of SUM-52 cells and are not expressed to appreciable levels on normal cells, or on other breast cancer cells. Libraries of dendrimers containing candidate binding partners for any of these surface exposed factors are exposed to the cells and candidate with specific and high binding affinity are identified. Similar assays may be conducted with imaging components, therapeutic components, and the like. For example, a library of dendrimers comprising different therapeutic agents are exposed to the cell line. The ability of the agent to alter cell growth or kill the cell, while not harming normal cells is screened. Ideally, such assays are conducted in multi-well plates to allow the screening of large numbers of candidates simultaneouly or in a short time period. In preferred embodiments, the screening assays are automated. For example, screening for anti-cancer compounds that induce apoptosis can be automated by providing a system for detecting the calorimetric changes induced by apoptosis (e.g., colorimetric changes caused by the imaging components of the present invention, as described above).
- Any number of cell lines may be used in the screening assays. For example, for breast cancer, the cell lines SUM-190 and SUM-225 have an amplification of and overexpress HER-2. Thus, antibodies, such as the humanized version of 4D5 (herceptin), can be used to target dendrimers specifically to these cells. SUM-149, SUM-159, and SUM-229 all over-express the EGFR. Thus, EGR, TGF-Ī±, or amphiregulin are used to target dendrimers to these cells. SUM-44 cells express HER-4 and thus are trageted using heregulin-dendrimer conjugates. A variety of human mammary cell lines available from ATCC may be used as controls including BT20, MCF7, UACC-893, and UACC812. These cells differ in the expression of HER-2 and MUC1. Screening assays may be performed in isolated cell populations and mixed cell populations.
- This example describes the killing of cisplatin resistant cell using cisplatin conjugated to dendrimers. In these experiments, cell viability was assessed using the tetrazolium-based colorimetric MTT assay (discussed in more detail below) (Mosmann, J. Immunol. Meth., 65:55 [1983]). Human cell line 16N2 was grown in serum free, Ham's F-12 medium supplemented with 5% BSA, insulin, and hydrocortisone. Cells were seeded in 96-well microtitre plates at 1Ć104/well. After 24 hours, the medium was changed and cisplatin (Stem Chemicals) or Dendrimer/Platin conjugates were added to the wells. Cell viability was evaluated after 72 hours by MTT assay. The results are shown in FIG. 9. In FIG. 9, drug concentration is expressed in platinum equivalents. Results are expressed as a percentage of the dead cells with respect to control cells grown in the absence of drug. Data represent mean+/āSEM (n=4). The
Polymer 1 andPolymer 2 samples are both generation 3.5 PAMAM dendrimers conjugated with different content of platinum (E3.5-COONa:Pt with 19.25 and 20.26% of Pt, respectively). The hydrogel compound is ageneration 4 PAMAM dendrimer conjugated with Pt (E4NH2:Pt gel containing 6.25% Pt). - As a first step toward controlling the oligonucleotides conjugation to the surface primary amino groups of the dendrimers, partial and complete modification of amines with acetic anhydride was performed. The number of the amino groups before and after conjugation was determined by1H NMR and potentiometric titration.
- 1) Complete acetamide capping of G7 and G5 PAMAM by N-acetylation
- A dendrimer stock solution (10 wt% in MeOH; 0.05g, 0.43 Ī¼mol) was placed in a 25 mL round-bottom flask flushed with dry nitrogen, and 4 times molar excess of acetic anhydride was added dropwise at 4Ā° C. Triethylamine base (Aldrich) (0.23 g; 2.3 mmol) was added to the reaction mixture with mild stirring at room temperature for 24 hours, followed by addition of 1 mL of MeOH (Aldrich, 99.8%) to dilute the mixture. This solution was then allowed to react at room temperature for 24 hours. The product solution was rotary evaporated to remove MeOH and transferred to 3.5k MWCO dialysis tubing (Spectrum). It was then dialyzed against double distilled water (1 8.2MĪ©, MiliQ) for 3 days, replacing the
DI water 5 times during this period. After dialysis, the sample was freeze-dried at ā52Ā° C. for 24 hours to yield white power (57 mg, 94%). The product was analyzed by 1H-NMR. - 2) Determination of actual number of terminal amino groups of G7 and G5.
- The potentiometric titration of an aqueous solution of intact G7 and G5 dendrimers was performed using a Coming 420 pH meter with a Coming glass combination electrode at 20Ā° C. In brief, lyophilized G7 and G5 dendrimers were dissolved respectively at 10 mL of 0.1N NaCl solution to prevent any electrostatic interactions within the dendrimers caused by strong positive charges of amino group (See e.g., Kabanov et al., Macromolecules 32:1904 [1999]). The dendrimers were fully protonated by the addition of a 0.1N HCl standard solution (Aldrich), then titrated with 0.1N NaOH standard solution at 3 min time intervals to achieve constancy to measure pH values.
- 3) Partial acetamide capping of G7 and G5 PAMAM by stochiometric N-acetylation
- Using the actual number of primary NH2 group on the surface of dendrimers, the molar ratio of acetic anhydride to the amino groups was determined and reacted at same method mentioned above. Each of core and shell dendrimer was expected to have 89% and 90% acetamide capping respectively by the addition of 89% of acetic anhydride to the amino groups in terms of molar ratio. Table 1 summarized the stochiometry of the partial acetylation for G7 and G5 PAMAM dendrimers.
TABLE 1 Partial acetylation stochiometry of core and shell dendrimers g M.W. mol Eq. d (g/cm3) mL molar ratio Core E7 0.1 115243 8.68Eā07 1 Ė1 434 Acetic anhydride 0.0342 102.09 3.35Eā04 386.26 1.082 0.0316 434 Ć 0.89 Triethylamine 0.0407 101.19 4.02Eā04 463.512 0.726 0.0561 434 Ć 0.89 Ć 1.2 MeOH (solvent) 1 Shell E5 0.1 28682 3.49Eā06 1 Ė1 119 Acetic anhydride 0.0381 102.09 3.73Eā04 107.1 1.082 0.0352 119 Ć 0.9 Triethylamine 0.0453 101.19 4.48Eā04 128.52 0.726 0.0625 119 Ć 0.9 Ć 1.2 MeOH (solvent) 1 - 4) Sequence design
- The first 16 nucleotides of a 50-base oligomer served as a spacer and the last 34 serve as a recognition element for the complementary target sequence. Sequences were selected such that on hybridization, recognition segments of the linkage could link the core and shell dendrimers tightly together. In addition, the recognition segment was designed to be cut by SfiI restriction enzyme so that any fragmentation pattern of this tectodendrimer may be observed from use in vivo. The sequence analysis of the core and shell oligonucleotides is as follows from the data of Vector NTI system.
Core ssDNA (50mer) 5ā²-GGGGGGGGTTTTTTTTggccATATAggccTTTTggccTATATggccTTTT-3ā² (SEQ ID NO:2) MW 5,535.1 +TL,44 %G + C 8.0 Tm 0.7 %GCTm 66.1 ĪG ā104.2 3ā²ĪG ā16.7 ĪH ā447.0 ĪS ā1143.9 Shell ssDNA (50 mer) 5ā²-GGGGGGGGAAAAAAAAggccATATAggccAAAAggccTATATggccAAAA-3ā² (SEQ ID NO:3) MW 5,679.3 %G + C 8.0 Tm 1.1 %GCTm 6.1 ĪG ā104.4 3ā²ĪG ā17.1 ĪH ā446.1 ĪS ā1140.1 - This construct virtually eliminates hairpin formations in either oligonucleotide and dramatically reduces the potential for core/core and shell/shell hybridization. It also allows for more precise control of core/shell hybridization using the differential of the Tm of the core/shell hybrid vs. the core/core or shell/shell hybrids. This will further reduce the incidence of unwanted crosslinking (gel formation). Furthermore, addition of extra nucleotides on the 3ā² end of and between the restriction sites should improve the ability of SfiI to recognize and cut the dsDNA recognition site during in vivo linker accessibility/degradation testing. Thus, the theoretical formation of core/shell dimer was assumed as follows.
Core-5ā²-GGGGGGGGTTTTTTTTggccATATAggccTTTTggccTATATggccTTTT-3ā² āāāāāāāāāāāāāāāāāāāāā|||||||||||||||||||||||||||||||||||||| āāāāāāāāāāāāāāāāāāāāā|||||||||||||||||||||||||||||||||||||| āāāāāāāāāāāāāāāāā3ā²- AAAAccggTATATccggAAAAccggATATAccggAAAAAAAAGGGGGGGG-5ā²ā-Shell - All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in biochemistry, immunology, chemistry, molecular biology, the medical fields or related fields are intended to be within the scope of the following claims.
Claims (25)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/940,243 US20020165179A1 (en) | 2000-05-12 | 2001-08-27 | Multifunctional nanodevice platform |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/570,198 US6471968B1 (en) | 2000-05-12 | 2000-05-12 | Multifunctional nanodevice platform |
PCT/US2001/015204 WO2001087348A2 (en) | 2000-05-12 | 2001-05-11 | Multifunctional nanodevice platform |
US09/940,243 US20020165179A1 (en) | 2000-05-12 | 2001-08-27 | Multifunctional nanodevice platform |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/570,198 Continuation-In-Part US6471968B1 (en) | 2000-05-12 | 2000-05-12 | Multifunctional nanodevice platform |
PCT/US2001/015204 Continuation WO2001087348A2 (en) | 2000-05-12 | 2001-05-11 | Multifunctional nanodevice platform |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020165179A1 true US20020165179A1 (en) | 2002-11-07 |
Family
ID=24278661
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/570,198 Expired - Fee Related US6471968B1 (en) | 2000-05-12 | 2000-05-12 | Multifunctional nanodevice platform |
US09/940,243 Abandoned US20020165179A1 (en) | 2000-05-12 | 2001-08-27 | Multifunctional nanodevice platform |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/570,198 Expired - Fee Related US6471968B1 (en) | 2000-05-12 | 2000-05-12 | Multifunctional nanodevice platform |
Country Status (9)
Country | Link |
---|---|
US (2) | US6471968B1 (en) |
EP (1) | EP1301211A2 (en) |
JP (1) | JP2004515457A (en) |
CN (2) | CN1471407A (en) |
AU (1) | AU2001261420A1 (en) |
BR (1) | BR0110748A (en) |
CA (1) | CA2408535C (en) |
MX (1) | MXPA02011142A (en) |
WO (1) | WO2001087348A2 (en) |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030059764A1 (en) * | 2000-10-18 | 2003-03-27 | Ilya Ravkin | Multiplexed cell analysis system |
US20030129654A1 (en) * | 1999-04-15 | 2003-07-10 | Ilya Ravkin | Coded particles for multiplexed analysis of biological samples |
US20030166015A1 (en) * | 1999-04-15 | 2003-09-04 | Zarowitz Michael A. | Multiplexed analysis of cell-substrate interactions |
US20030207249A1 (en) * | 1999-04-15 | 2003-11-06 | Beske Oren E. | Connection of cells to substrates using association pairs |
US20040018485A1 (en) * | 1999-04-15 | 2004-01-29 | Ilya Ravkin | Multiplexed analysis of cells |
US20040072937A1 (en) * | 2001-02-10 | 2004-04-15 | Tomalia Donald A. | Nanocomposites of dendritic polymers |
WO2004041310A1 (en) * | 2002-11-08 | 2004-05-21 | Danmarks FĆødevareforskning | Preparation of chemically well-defined carbohydrate dendrimer conjugates |
US20070009980A1 (en) * | 2004-06-01 | 2007-01-11 | Applera Corporation | Continuous fluorogenic analyte assays with dendritic amplification of signal |
WO2007016466A2 (en) * | 2005-07-29 | 2007-02-08 | Sloan-Kettering Institute For Cancer Research | Single wall nanotube constructs and uses therefor |
WO2007035311A2 (en) * | 2005-09-16 | 2007-03-29 | University Of Massachusetts Lowell | Anti-oxidant synergy formulation nanoemulsions to treat cancer |
US20070190151A1 (en) * | 2006-01-24 | 2007-08-16 | Central Michigan University Board Of Trustees | Method of preparing dendritic drugs |
US7488451B2 (en) | 2003-09-15 | 2009-02-10 | Millipore Corporation | Systems for particle manipulation |
WO2009026540A1 (en) * | 2007-08-22 | 2009-02-26 | Colorado School Of Mines | Lanthanide nanoparticle conjugates and uses thereof |
US20090104119A1 (en) * | 2004-08-25 | 2009-04-23 | Majoros Istvan J | Dendrimer Based Compositions And Methods Of Using The Same |
US20090286864A1 (en) * | 2007-06-01 | 2009-11-19 | Taewoong Medical Co., Ltd. | Coating agent for drug releasing stent, preparation method thereof and drug releasing stent coated therewith |
US20100158850A1 (en) * | 2008-12-23 | 2010-06-24 | The Regents Of The University Of Michigan | Dendrimer based modular platforms |
US20100160299A1 (en) * | 2008-09-30 | 2010-06-24 | The Regents Of The University Of Michigan | Dendrimer conjugates |
US7846400B2 (en) | 2007-10-30 | 2010-12-07 | The Invention Science Fund I, Llc | Substrates for nitric oxide releasing devices |
US7862598B2 (en) * | 2007-10-30 | 2011-01-04 | The Invention Science Fund I, Llc | Devices and systems that deliver nitric oxide |
US7897399B2 (en) | 2007-10-30 | 2011-03-01 | The Invention Science Fund I, Llc | Nitric oxide sensors and systems |
WO2011031487A2 (en) * | 2009-08-25 | 2011-03-17 | The Regents Of The University Of California | Nanotechnological delivery of microbicides and other substances |
WO2011059609A2 (en) | 2009-10-13 | 2011-05-19 | The Regents Of The University Of Michigan | Dendrimer compositions and methods of synthesis |
US7975699B2 (en) | 2007-10-30 | 2011-07-12 | The Invention Science Fund I, Llc | Condoms configured to facilitate release of nitric oxide |
US8221690B2 (en) | 2007-10-30 | 2012-07-17 | The Invention Science Fund I, Llc | Systems and devices that utilize photolyzable nitric oxide donors |
US8252834B2 (en) | 2008-03-12 | 2012-08-28 | The Regents Of The University Of Michigan | Dendrimer conjugates |
US8318181B2 (en) | 2005-12-01 | 2012-11-27 | University Of Massachusetts Lowell | Botulinum nanoemulsions |
US8642093B2 (en) | 2007-10-30 | 2014-02-04 | The Invention Science Fund I, Llc | Methods and systems for use of photolyzable nitric oxide donors |
US8877508B2 (en) | 2007-10-30 | 2014-11-04 | The Invention Science Fund I, Llc | Devices and systems that deliver nitric oxide |
US8912323B2 (en) | 2009-10-30 | 2014-12-16 | The Regents Of The University Of Michigan | Multifunctional small molecules |
US8968705B2 (en) | 2008-08-22 | 2015-03-03 | Colorado School Of Mines | Gold/lanthanide nanoparticle conjugates and uses thereof |
US8980332B2 (en) | 2007-10-30 | 2015-03-17 | The Invention Science Fund I, Llc | Methods and systems for use of photolyzable nitric oxide donors |
US9017644B2 (en) | 2008-11-07 | 2015-04-28 | The Regents Of The University Of Michigan | Methods of treating autoimmune disorders and/or inflammatory disorders |
WO2015109255A1 (en) * | 2014-01-16 | 2015-07-23 | Genisphere, Llc | Lateral flow assays using dna dendrimers |
US9402911B2 (en) | 2011-12-08 | 2016-08-02 | The Regents Of The University Of Michigan | Multifunctional small molecules |
US9486408B2 (en) | 2005-12-01 | 2016-11-08 | University Of Massachusetts Lowell | Botulinum nanoemulsions |
US9486409B2 (en) | 2006-12-01 | 2016-11-08 | Anterios, Inc. | Peptide nanoparticles and uses therefor |
US9724299B2 (en) | 2006-12-01 | 2017-08-08 | Anterios, Inc. | Amphiphilic entity nanoparticles |
US10016364B2 (en) | 2005-07-18 | 2018-07-10 | University Of Massachusetts Lowell | Compositions and methods for making and using nanoemulsions |
US10016451B2 (en) | 2007-05-31 | 2018-07-10 | Anterios, Inc. | Nucleic acid nanoparticles and uses therefor |
US10080823B2 (en) | 2007-10-30 | 2018-09-25 | Gearbox Llc | Substrates for nitric oxide releasing devices |
US10570442B2 (en) * | 2005-10-21 | 2020-02-25 | New York University | Compositions and methods for analyzing immobilized nucleic acids |
US11311496B2 (en) | 2016-11-21 | 2022-04-26 | Eirion Therapeutics, Inc. | Transdermal delivery of large agents |
Families Citing this family (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6494879B2 (en) * | 1998-10-15 | 2002-12-17 | Scimed Life Systems, Inc. | Treating urinary retention |
ES2624689T3 (en) * | 1999-12-16 | 2017-07-17 | Monsanto Technology Llc | New constructions of expression in plants |
US20040146918A1 (en) * | 2000-02-18 | 2004-07-29 | Weiner Michael L. | Hybrid nucleic acid assembly |
EP1282436B1 (en) * | 2000-05-19 | 2008-06-11 | Amylin Pharmaceuticals, Inc. | Treatment of acute coronary syndrome with glp-1 |
JP2006508635A (en) | 2002-05-06 | 2006-03-16 | ćć¼ćć»ćŖćć»ćŖć¼ćøćØć³ćļ¼ć¶ć»ć¦ććć¼ć·ćć¤ć»ćŖćć»ćććµć¹ć»ć·ć¹ćć | Targeting protein for delivering therapeutic or diagnostic reagents |
US7549985B2 (en) * | 2002-06-26 | 2009-06-23 | The Regents Of The University Of Michigan | Method and system to create and acoustically manipulate a microbubble |
US7474919B2 (en) * | 2002-08-29 | 2009-01-06 | The Regents Of The University Of Michigan | Laser-based method and system for enhancing optical breakdown |
WO2004025284A1 (en) * | 2002-08-29 | 2004-03-25 | The Regents Of The University Of Michigan | Laser-based method and system for enhanced optical breakdown |
US7367948B2 (en) * | 2002-08-29 | 2008-05-06 | The Regents Of The University Of Michigan | Acoustic monitoring method and system in laser-induced optical breakdown (LIOB) |
WO2004019993A1 (en) * | 2002-08-30 | 2004-03-11 | Ramot At Tel Aviv University Ltd. | Self-immolative dendrimers releasing many active moieties upon a single activating event |
EP1549614A4 (en) * | 2002-10-03 | 2008-04-16 | Targegen Inc | Vasculostatic agents and methods of use thereof |
US20050282814A1 (en) * | 2002-10-03 | 2005-12-22 | Targegen, Inc. | Vasculostatic agents and methods of use thereof |
US20070148074A1 (en) * | 2003-01-16 | 2007-06-28 | Mostafa Sadoqi | Nanoparticle based stabilization of ir fluorescent dyes |
US20060239907A1 (en) * | 2003-06-03 | 2006-10-26 | The Trustees Of The University Of Pennsylvania | Stealthy nano agents |
WO2005018681A1 (en) * | 2003-06-03 | 2005-03-03 | The Trustees Of The University Of Pennsylvania | Nanoradiopharmaceuticals and methods of use |
US20040258614A1 (en) * | 2003-06-20 | 2004-12-23 | University Of Maryland, Baltimore | Microparticles for microarterial imaging and radiotherapy |
US20050008861A1 (en) * | 2003-07-08 | 2005-01-13 | Nanoproducts Corporation | Silver comprising nanoparticles and related nanotechnology |
WO2005036180A1 (en) * | 2003-10-08 | 2005-04-21 | The Government Of The United States Of America As Represented By The Secretary Of Department Of Health And Human Services | Analysis methods using biomarkers concentrated with biomarkers attractant molecules |
US7449605B2 (en) * | 2003-11-03 | 2008-11-11 | Ilypsa, Inc. | Crosslinked amine polymers |
US7459502B2 (en) * | 2003-11-03 | 2008-12-02 | Ilypsa, Inc. | Pharmaceutical compositions comprising crosslinked polyamine polymers |
US7608674B2 (en) | 2003-11-03 | 2009-10-27 | Ilypsa, Inc. | Pharmaceutical compositions comprising cross-linked small molecule amine polymers |
US7385012B2 (en) * | 2003-11-03 | 2008-06-10 | Ilypsa, Inc. | Polyamine polymers |
US7335795B2 (en) * | 2004-03-22 | 2008-02-26 | Ilypsa, Inc. | Crosslinked amine polymers |
US7767768B2 (en) * | 2003-11-03 | 2010-08-03 | Ilypsa, Inc. | Crosslinked amine polymers |
WO2005062854A2 (en) | 2003-12-19 | 2005-07-14 | University Of Cincinnati | Polyamides for nucleic acid delivery |
US20050171424A1 (en) * | 2004-01-13 | 2005-08-04 | The Gov. Of The Usa As Rep. By The Secretary Of The Dept. Of Health And Human Services | Methods for imaging the lymphatic system using dendrimer-based contrast agents |
EP2543376A1 (en) * | 2004-04-08 | 2013-01-09 | Targegen, Inc. | Benzotriazine inhibitors of kinases |
EP1743174B1 (en) * | 2004-04-20 | 2013-03-20 | Emory University | Multimodality nanostructures, methods of fabrication thereof, and methods of use thereof |
EP1766061B1 (en) * | 2004-05-20 | 2013-07-17 | Quest Diagnostics Investments Incorporated | Single label comparative hybridization |
NZ553492A (en) | 2004-08-25 | 2010-11-26 | Targegen Inc | Triazole derivatives and methods of use |
KR100604976B1 (en) | 2004-09-03 | 2006-07-28 | ķźµė²ģøģ°ģøėķźµ | Water-Soluble Nanoparticles Stabilized with Multi-Functional Group Ligands |
KR100652251B1 (en) | 2004-09-03 | 2006-12-01 | ķźµė²ģøģ°ģøėķźµ | Method for Preparing Water-soluble Nanoparticles via Multi-Functional Group Ligand Assisted Surface Modification Processes |
WO2006044716A2 (en) | 2004-10-15 | 2006-04-27 | Washington University In St.Louis | CELL PERMEABLE NANOCONJUGATES OF SHELL-CROSSLINKED KNEDEL (SCK) AND PEPTIDE NUCLEIC ACIDS ('PNAs') WITH UNIQUELY EXPRESSED OR OVER-EXPRESSED mRNA TARGETING SEQUENCES FOR EARLY DIAGNOSIS AND THERAPY OF CANCER |
US20120269886A1 (en) | 2004-12-22 | 2012-10-25 | Nitto Denko Corporation | Therapeutic agent for pulmonary fibrosis |
KR101454286B1 (en) | 2004-12-22 | 2014-10-27 | ėķ ė“ģ½ ź°ė¶ģķ¤ź°ģ“ģ¤ | Drug carrier and drug carrier kit for inhibiting fibrosis |
US20060204443A1 (en) * | 2005-03-11 | 2006-09-14 | The Government Of The Usa As Represented By The Secretary Of The Dept. Of Health & Human Services | Methods for tumor treatment using dendrimer conjugates |
EP1888510A4 (en) | 2005-05-27 | 2013-01-16 | Univ North Carolina | Nitric oxide-releasing particles for nitric oxide therapeutics and biomedical applications |
US20060269480A1 (en) * | 2005-05-31 | 2006-11-30 | Ramot At Tel Aviv University Ltd. | Multi-triggered self-immolative dendritic compounds |
EP1893216A4 (en) * | 2005-06-08 | 2012-08-08 | Targegen Inc | Methods and compositions for the treatment of ocular disorders |
US20070041934A1 (en) * | 2005-08-12 | 2007-02-22 | Regents Of The University Of Michigan | Dendrimer based compositions and methods of using the same |
PL1937284T3 (en) | 2005-10-18 | 2016-05-31 | Starpharma Pty Ltd | Microbicidal dendrimer composition delivery system |
US8258259B2 (en) | 2005-10-25 | 2012-09-04 | Starpharma Pty Limited | Macromolecular compounds having controlled stoichiometry |
US8604042B2 (en) * | 2005-11-01 | 2013-12-10 | Targegen, Inc. | Bi-aryl meta-pyrimidine inhibitors of kinases |
RU2589878C2 (en) * | 2005-11-01 | 2016-07-10 | Š¢Š°ŃŠ³ŠµŠ“Š¶ŠµŠ½, ŠŠ½Šŗ. | Bi-aryl-meta-pyrimidine kinase inhibitors |
US8133900B2 (en) * | 2005-11-01 | 2012-03-13 | Targegen, Inc. | Use of bi-aryl meta-pyrimidine inhibitors of kinases |
US9012620B2 (en) | 2005-11-25 | 2015-04-21 | Mologen Ag | DNA constructs for specific inhibition of gene expression by RNA interference |
US20090317802A1 (en) * | 2005-12-09 | 2009-12-24 | Bhatia Sangeeta N | Compositions and Methods to Monitor RNA Delivery to Cells |
US9572886B2 (en) | 2005-12-22 | 2017-02-21 | Nitto Denko Corporation | Agent for treating myelofibrosis |
CN104524596B (en) * | 2006-01-20 | 2018-10-09 | ęčÆč”份ęéå ¬åø | Modified macromolecular |
US8492098B2 (en) | 2006-02-21 | 2013-07-23 | The Trustees Of Tufts College | Methods and arrays for target analyte detection and determination of reaction components that affect a reaction |
EP1996209B1 (en) | 2006-03-22 | 2015-11-04 | Starpharma Pty Limited | Contraceptive composition |
US7691858B2 (en) * | 2006-04-25 | 2010-04-06 | Targegen, Inc. | Kinase inhibitors and methods of use thereof |
US8501478B2 (en) | 2006-06-15 | 2013-08-06 | University Of Cincinnati | Trehalose click polymers for delivery of biologically active molecules |
WO2008008356A2 (en) * | 2006-07-11 | 2008-01-17 | The Regents Of The University Of Michigan | Fret-based apoptosis detector |
PL2052011T3 (en) | 2006-08-11 | 2021-03-08 | Starpharma Pty Limited | Targeted polylysine dendrimer therapeutic agent |
US20080213377A1 (en) * | 2006-12-08 | 2008-09-04 | Bhatia Sangeeta N | Delivery of Nanoparticles and/or Agents to Cells |
US20080220434A1 (en) * | 2007-02-07 | 2008-09-11 | Perscitus Biosciences, Llc | Detection Of Molecule Proximity |
TWI407971B (en) | 2007-03-30 | 2013-09-11 | Nitto Denko Corp | Cancer cells and tumor-related fibroblasts |
CA2684725A1 (en) * | 2007-04-19 | 2009-01-15 | The Regents Of The University Of Michigan | Dendrimer based compositions and methods of using the same |
US7507539B2 (en) | 2007-07-30 | 2009-03-24 | Quest Diagnostics Investments Incorporated | Substractive single label comparative hybridization |
WO2009036368A2 (en) | 2007-09-14 | 2009-03-19 | Nitto Denko Corporation | Drug carriers |
AU2009217237A1 (en) * | 2008-02-22 | 2009-08-27 | Inter-K Pty Limited | Therapeutic peptides |
BRPI0906016A2 (en) | 2008-02-27 | 2015-06-30 | Kci Licensing Inc | System for healing a wound at a tissue site, a method to facilitate removal of a surgical field from a tissue site and kit |
US20100068283A1 (en) * | 2008-09-16 | 2010-03-18 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Ex VIVO modifiable particle or polymeric material medicament carrier |
US20100069821A1 (en) * | 2008-09-16 | 2010-03-18 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Ex vivo modifiable medicament release-sites final dosage form |
US20100068153A1 (en) * | 2008-09-16 | 2010-03-18 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Ex vivo activatable final dosage form |
WO2011028658A1 (en) * | 2009-09-02 | 2011-03-10 | The Trustees Of The University Of Pennsylvania | Gadolinium-linked nanoclusters |
WO2011038117A2 (en) | 2009-09-23 | 2011-03-31 | The Regents Of The University Of California | Chemically amplified response strategies for medical sciences |
CN101695476B (en) * | 2009-10-26 | 2011-10-19 | åęå¤§å¦ | Method for preparing medical nanoparticles |
WO2011072290A2 (en) * | 2009-12-11 | 2011-06-16 | The Regents Of The University Of Michigan | Targeted dendrimer-drug conjugates |
JP5959440B2 (en) | 2010-01-19 | 2016-08-02 | ćć¬ćøćć³ćć»ć¢ć³ćć»ćć§ćć¦ćŗć»ćŖćć»ćć¼ćć¼ćć»ć«ć¬ććø | Modified opsonin for pathogen detection and treatment |
US8758778B2 (en) | 2010-09-16 | 2014-06-24 | The Regents Of The University Of California | Polymeric nano-carriers with a linear dual response mechanism and uses thereof |
WO2012060847A1 (en) | 2010-11-07 | 2012-05-10 | Targegen, Inc. | Compositions and methods for treating myelofibrosis |
US10669522B2 (en) | 2011-02-07 | 2020-06-02 | Life Technologies Corporation | Compositions and methods for stabilizing susceptible compounds |
US9693957B2 (en) | 2011-07-08 | 2017-07-04 | The University Of North Carolina At Chapel Hill | Metal bisphosphonate nanoparticles for anti-cancer therapy and imaging and for treating bone disorders |
EP3081937B1 (en) | 2011-07-18 | 2019-11-13 | President and Fellows of Harvard College | Engineered microbe-targeting molecules and uses thereof |
US20150258195A1 (en) | 2012-08-28 | 2015-09-17 | The Regents Of The University Of California | Polymeric nanocarriers with light-triggered release mechanism |
WO2014144325A1 (en) * | 2013-03-15 | 2014-09-18 | President And Fellows Of Harvard College | Methods and compositions for improving detection and/or capture of a target entity |
WO2014190040A1 (en) | 2013-05-21 | 2014-11-27 | President And Fellows Of Harvard College | Engineered heme-binding compositions and uses thereof |
JP6297440B2 (en) * | 2013-07-31 | 2018-03-20 | ćć¤ćć³ć”ćć£ć«ć«ć·ć¹ćć ćŗę Ŗå¼ä¼ē¤¾ | Contrast agent |
WO2015095604A2 (en) | 2013-12-18 | 2015-06-25 | President And Fellows Of Harvard College | Methods and assays relating to circulating tumor cells |
CN103675288B (en) * | 2013-12-26 | 2015-10-28 | ę³øå·å»å¦é¢ | A kind of blood platelet marker and preparation method thereof |
CN105934464B (en) | 2014-01-13 | 2018-11-13 | åč²å¾·Ā·č“ååå-å”åøå° | Dendrimer composition, synthetic method and its application |
KR101566345B1 (en) * | 2014-03-21 | 2015-11-23 | ķźµģėŖ ź³µķģ°źµ¬ģ | A method to improve the tumor diagnostic efficiency of multivalent ligands by regulating the stoichiometric ratio between inner surface functionalities and ligand moieties for tumor targeting |
EP3763378A1 (en) | 2015-08-06 | 2021-01-13 | President and Fellows of Harvard College | Improved microbe-binding molecules and uses thereof |
WO2017044768A1 (en) * | 2015-09-10 | 2017-03-16 | Massachusetts Institute Of Technology | Rna triple helix structures, compositions, and methods |
MA39136B2 (en) | 2016-06-21 | 2021-04-30 | Univ Euro Mediterraneenne De Fes | New giant macromolecules: poly-dendrimeres |
EP3612585A4 (en) | 2017-04-17 | 2020-12-30 | University of Southern California | Method to generate biocompatible dendritic polymers for analyte detection with multimodal labeling and signal amplification |
EP3823961A4 (en) * | 2018-07-19 | 2022-06-08 | Starpharma Pty Limited | Therapeutic dendrimer |
Family Cites Families (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4631337A (en) | 1983-01-07 | 1986-12-23 | The Dow Chemical Company | Hydrolytically-stable dense star polyamine |
US4558120A (en) | 1983-01-07 | 1985-12-10 | The Dow Chemical Company | Dense star polymer |
US4568737A (en) | 1983-01-07 | 1986-02-04 | The Dow Chemical Company | Dense star polymers and dendrimers |
US4507466A (en) | 1983-01-07 | 1985-03-26 | The Dow Chemical Corporation | Dense star polymers having core, core branches, terminal groups |
US4737550A (en) | 1983-01-07 | 1988-04-12 | The Dow Chemical Company | Bridged dense star polymers |
US4939240A (en) | 1983-03-04 | 1990-07-03 | Health Research, Inc. | Monoclonal antibodies to human breast carcinoma cells and their use in diagnosis and therapy |
US4587329A (en) | 1984-08-17 | 1986-05-06 | The Dow Chemical Company | Dense star polymers having two dimensional molecular diameter |
US4708930A (en) | 1984-11-09 | 1987-11-24 | Coulter Corporation | Monoclonal antibody to a human carcinoma tumor associated antigen |
US4918164A (en) | 1987-09-10 | 1990-04-17 | Oncogen | Tumor immunotherapy using anti-idiotypic antibodies |
US4743543A (en) | 1985-09-09 | 1988-05-10 | Coulter Corporation | Method for enhancing and/or accelerating immunoassay detection of human carcinoma tumor associated antigen in a pathology sample |
US4871779A (en) | 1985-12-23 | 1989-10-03 | The Dow Chemical Company | Ion exchange/chelation resins containing dense star polymers having ion exchange or chelate capabilities |
US4694064A (en) | 1986-02-28 | 1987-09-15 | The Dow Chemical Company | Rod-shaped dendrimer |
US4713975A (en) | 1986-05-30 | 1987-12-22 | The Dow Chemical Company | Dense star polymers for calibrating/characterizing sub-micron apertures |
JPS6319561A (en) | 1986-07-11 | 1988-01-27 | Kyowa Hakko Kogyo Co Ltd | Anti-human lung cancer monoclonal antibody |
US5338532A (en) | 1986-08-18 | 1994-08-16 | The Dow Chemical Company | Starburst conjugates |
US5560929A (en) | 1986-08-18 | 1996-10-01 | The Dow Chemical Company | Structured copolymers and their use as absorbents, gels and carriers of metal ions |
EP0271180B2 (en) * | 1986-08-18 | 1997-06-18 | The Dow Chemical Company | Starburst conjugates |
US5527524A (en) | 1986-08-18 | 1996-06-18 | The Dow Chemical Company | Dense star polymer conjugates |
US4946778A (en) | 1987-09-21 | 1990-08-07 | Genex Corporation | Single polypeptide chain binding molecules |
US4921790A (en) | 1987-04-24 | 1990-05-01 | Research Corporation | Tumor specific assay for CA125 ovarian cancer antigen |
US5892019A (en) | 1987-07-15 | 1999-04-06 | The United States Of America, As Represented By The Department Of Health And Human Services | Production of a single-gene-encoded immunoglobulin |
WO1989000692A1 (en) | 1987-07-15 | 1989-01-26 | The United States Of America, As Represented By Th | Second generation monoclonal antibodies having binding specificity to tag-72 and human carcinomas and methods for employing the same |
US4963484A (en) | 1988-01-29 | 1990-10-16 | Dana-Farber Cancer Institute, Inc. | Genetically engineered polypeptides with determinants of the human DF3 breast carcinoma-associated antigen |
US5053489A (en) | 1988-01-29 | 1991-10-01 | Dana-Farber Cancer Institute, Inc. | Genetically engineered polypeptides with determinants of the human DF3 breast carcinoma-associated antigen |
US4857599A (en) | 1988-02-08 | 1989-08-15 | The Dow Chemical Company | Modified dense star polymers |
US4914021A (en) | 1988-03-04 | 1990-04-03 | New England Deaconess Hospital Corporation | Carcinoma orosomucoid-related antigen, a monoclonal antibody thereto, and their uses |
US4921789A (en) | 1988-04-20 | 1990-05-01 | New England Deaconess Hospital Corporation | Marker for colorectal carcinoma and methods of detecting the same |
JPH0734015B2 (en) | 1988-04-25 | 1995-04-12 | åå ē“č¬å·„ę„ę Ŗå¼ä¼ē¤¾ | New method for measuring trace components |
SE463851B (en) | 1988-09-02 | 1991-02-04 | Amsu Ltd | COMPOSITION FOR TREATMENT OF ERECT DYSFUNCTION THROUGH URETRA |
US5318529A (en) | 1989-09-06 | 1994-06-07 | Boston Scientific Corporation | Angioplasty balloon catheter and adaptor |
US5110911A (en) | 1989-11-02 | 1992-05-05 | Biomira, Inc. | Human tumor-associated thomsen-friedenreich antigen |
US5843089A (en) | 1990-12-28 | 1998-12-01 | Boston Scientific Corporation | Stent lining |
US5674192A (en) | 1990-12-28 | 1997-10-07 | Boston Scientific Corporation | Drug delivery |
US5270163A (en) | 1990-06-11 | 1993-12-14 | University Research Corporation | Methods for identifying nucleic acid ligands |
US5861254A (en) | 1997-01-31 | 1999-01-19 | Nexstar Pharmaceuticals, Inc. | Flow cell SELEX |
KR970002255B1 (en) | 1990-06-11 | 1997-02-26 | ė„ģ¤ģ¤ķ ķģė§ģķ°ģ»¬ė, ģøķ¬. | Nucleic acid ligands |
US5874218A (en) | 1990-06-11 | 1999-02-23 | Nexstar Pharmaceuticals, Inc. | Method for detecting a target compound in a substance using a nucleic acid ligand |
US5631329A (en) | 1990-08-27 | 1997-05-20 | Dendritech, Inc. | Process for producing hyper-comb-branched polymers |
US5773527A (en) | 1990-08-27 | 1998-06-30 | Dendritech, Inc. | Non-crosslinked, polybranched polymers |
US5876445A (en) | 1991-10-09 | 1999-03-02 | Boston Scientific Corporation | Medical stents for body lumens exhibiting peristaltic motion |
ATE239506T1 (en) | 1992-03-05 | 2003-05-15 | Univ Texas | USE OF IMMUNOCONJUGATES FOR THE DIAGNOSIS AND/OR THERAPY OF VASCULARIZED TUMORS |
US6113946A (en) | 1992-04-03 | 2000-09-05 | The Regents Of The University Of California | Self-assembling polynucleotide delivery system comprising dendrimer polycations |
US5354308A (en) | 1992-05-01 | 1994-10-11 | Beth Israel Hospital Association | Metal wire stent |
WO1994013806A1 (en) | 1992-12-11 | 1994-06-23 | The Dow Chemical Company | Multivalent single chain antibodies |
US5387617A (en) | 1993-01-22 | 1995-02-07 | The Dow Chemical Company | Small cell foams and blends and a process for their preparation |
AU6102494A (en) | 1993-02-05 | 1994-08-29 | Epigen, Inc. | Human carcinoma antigen (hca), hca antibodies, hca immunoassays, methods of imaging and therapy |
US5898005A (en) * | 1993-02-24 | 1999-04-27 | Dade Behring Inc. | Rapid detection of analytes with receptors immobilized on soluble submicron particles |
WO1994019693A1 (en) | 1993-02-24 | 1994-09-01 | Baxter Diagnostics Inc. | Immobilization of specific binding assay reagents |
US5913894A (en) | 1994-12-05 | 1999-06-22 | Meadox Medicals, Inc. | Solid woven tubular prosthesis |
JP3694524B2 (en) | 1993-08-23 | 2005-09-14 | ćć¹ćć³ ćµć¤ćØć³ćć£ćć£ććÆ ć³ć¼ćć¬ć¤ć·ć§ć³ | Improved balloon catheter |
US5609627A (en) | 1994-02-09 | 1997-03-11 | Boston Scientific Technology, Inc. | Method for delivering a bifurcated endoluminal prosthesis |
ES2104518T1 (en) | 1994-03-07 | 1997-10-16 | Dow Chemical Co | CONJUGATES BIOACTIVE DENDRIMEROS AND / OR DIRECTORS TO DIANA. |
US5733303A (en) | 1994-03-17 | 1998-03-31 | Medinol Ltd. | Flexible expandable stent |
WO1995029646A1 (en) | 1994-04-29 | 1995-11-09 | Boston Scientific Corporation | Medical prosthetic stent and method of manufacture |
US5857998A (en) | 1994-06-30 | 1999-01-12 | Boston Scientific Corporation | Stent and therapeutic delivery system |
US5620417A (en) | 1994-07-07 | 1997-04-15 | Cardiovascular Imaging Systems Incorporated | Rapid exchange delivery catheter |
US5755722A (en) | 1994-12-22 | 1998-05-26 | Boston Scientific Corporation | Stent placement device with medication dispenser and method |
US6013443A (en) | 1995-05-03 | 2000-01-11 | Nexstar Pharmaceuticals, Inc. | Systematic evolution of ligands by exponential enrichment: tissue SELEX |
JP3390449B2 (en) | 1995-06-01 | 2003-03-24 | ćć¼ćććÆć¹ ć”ćć£ć«ć«ćŗ ć¤ć³ć³ć¼ćć¬ć¤ććć | Implantable endoluminal prosthesis |
US6083708A (en) * | 1995-08-11 | 2000-07-04 | Dade Behring Inc. | Polypeptide: dendrimer complexes |
US5795582A (en) | 1996-02-07 | 1998-08-18 | Novavax, Inc. | Adjuvant properties of poly (amidoamine) dendrimers |
US5792105A (en) | 1996-09-11 | 1998-08-11 | Boston Scientific Corporation | Multichannel balloon catheter for delivering fluid |
US5868719A (en) | 1997-01-15 | 1999-02-09 | Boston Scientific Corporation | Drug delivery balloon catheter device |
US5933145A (en) | 1997-04-17 | 1999-08-03 | Microsoft Corporation | Method and system for visually indicating a selection query |
US6143558A (en) | 1997-07-08 | 2000-11-07 | The Regents Of The University Of Michigan | Optical fiberless sensors for analyzing cellular analytes |
US5902863A (en) | 1997-07-21 | 1999-05-11 | Dow Corning Corporation | Dendrimer-based networks containing lyophilic organosilicon and hydrophilic polyamidoamine nanoscopic domains |
US5866561A (en) | 1997-08-21 | 1999-02-02 | Scimed Life Systems, Inc. | Local delivery of estrogen for angiogenesis |
GB9718129D0 (en) * | 1997-08-27 | 1997-10-29 | Isis Innovation | Branched structures |
US5908413A (en) | 1997-10-03 | 1999-06-01 | Scimed Life Systems, Inc. | Radiopaque catheter and method of manufacture thereof |
GB9811403D0 (en) * | 1998-05-27 | 1998-07-22 | Isis Innovation | Polynucleotide multimers and their use in hybridisation assays |
WO2001002861A1 (en) * | 1999-06-29 | 2001-01-11 | Dako A/S | Detection using dendrimers bearing labels and probes |
-
2000
- 2000-05-12 US US09/570,198 patent/US6471968B1/en not_active Expired - Fee Related
-
2001
- 2001-05-11 CN CNA018113214A patent/CN1471407A/en active Pending
- 2001-05-11 MX MXPA02011142A patent/MXPA02011142A/en unknown
- 2001-05-11 CA CA002408535A patent/CA2408535C/en not_active Expired - Fee Related
- 2001-05-11 AU AU2001261420A patent/AU2001261420A1/en not_active Abandoned
- 2001-05-11 EP EP01935316A patent/EP1301211A2/en not_active Withdrawn
- 2001-05-11 BR BR0110748-8A patent/BR0110748A/en not_active Application Discontinuation
- 2001-05-11 JP JP2001583815A patent/JP2004515457A/en active Pending
- 2001-05-11 WO PCT/US2001/015204 patent/WO2001087348A2/en active Application Filing
- 2001-05-11 CN CNA2008101289920A patent/CN101347623A/en active Pending
- 2001-08-27 US US09/940,243 patent/US20020165179A1/en not_active Abandoned
Cited By (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060160929A1 (en) * | 1997-09-05 | 2006-07-20 | Tomalia Donald A | Nanocomposites of dendritic polymers |
US7786188B2 (en) | 1997-09-05 | 2010-08-31 | Sumitomo Chemical Company, Limited | Nanocomposites of dendritic polymers |
US20040018485A1 (en) * | 1999-04-15 | 2004-01-29 | Ilya Ravkin | Multiplexed analysis of cells |
US20030207249A1 (en) * | 1999-04-15 | 2003-11-06 | Beske Oren E. | Connection of cells to substrates using association pairs |
US20030166015A1 (en) * | 1999-04-15 | 2003-09-04 | Zarowitz Michael A. | Multiplexed analysis of cell-substrate interactions |
US20030129654A1 (en) * | 1999-04-15 | 2003-07-10 | Ilya Ravkin | Coded particles for multiplexed analysis of biological samples |
US20030059764A1 (en) * | 2000-10-18 | 2003-03-27 | Ilya Ravkin | Multiplexed cell analysis system |
US7557070B2 (en) | 2000-10-18 | 2009-07-07 | Millipore Corporation | Multiplexed cell analysis system |
US20040072937A1 (en) * | 2001-02-10 | 2004-04-15 | Tomalia Donald A. | Nanocomposites of dendritic polymers |
WO2004041310A1 (en) * | 2002-11-08 | 2004-05-21 | Danmarks FĆødevareforskning | Preparation of chemically well-defined carbohydrate dendrimer conjugates |
US7488451B2 (en) | 2003-09-15 | 2009-02-10 | Millipore Corporation | Systems for particle manipulation |
US20070009980A1 (en) * | 2004-06-01 | 2007-01-11 | Applera Corporation | Continuous fluorogenic analyte assays with dendritic amplification of signal |
US20090104119A1 (en) * | 2004-08-25 | 2009-04-23 | Majoros Istvan J | Dendrimer Based Compositions And Methods Of Using The Same |
US10016364B2 (en) | 2005-07-18 | 2018-07-10 | University Of Massachusetts Lowell | Compositions and methods for making and using nanoemulsions |
WO2007016466A2 (en) * | 2005-07-29 | 2007-02-08 | Sloan-Kettering Institute For Cancer Research | Single wall nanotube constructs and uses therefor |
WO2007016466A3 (en) * | 2005-07-29 | 2007-11-29 | Sloan Kettering Inst Cancer | Single wall nanotube constructs and uses therefor |
WO2007035311A2 (en) * | 2005-09-16 | 2007-03-29 | University Of Massachusetts Lowell | Anti-oxidant synergy formulation nanoemulsions to treat cancer |
US20090306198A1 (en) * | 2005-09-16 | 2009-12-10 | Robert Nicolosi | Anti-Oxidant Synergy Formulation Nanoemulsions to Treat Caner |
WO2007035311A3 (en) * | 2005-09-16 | 2007-10-11 | Univ Massachusetts Lowell | Anti-oxidant synergy formulation nanoemulsions to treat cancer |
US10570442B2 (en) * | 2005-10-21 | 2020-02-25 | New York University | Compositions and methods for analyzing immobilized nucleic acids |
US9486408B2 (en) | 2005-12-01 | 2016-11-08 | University Of Massachusetts Lowell | Botulinum nanoemulsions |
US8318181B2 (en) | 2005-12-01 | 2012-11-27 | University Of Massachusetts Lowell | Botulinum nanoemulsions |
US10532019B2 (en) | 2005-12-01 | 2020-01-14 | University Of Massachusetts Lowell | Botulinum nanoemulsions |
US10576034B2 (en) | 2005-12-01 | 2020-03-03 | University Of Massachusetts Lowell | Botulinum nanoemulsions |
US9603941B2 (en) | 2006-01-24 | 2017-03-28 | Minghui Chai | Method of preparing dendritic drugs |
US20070190151A1 (en) * | 2006-01-24 | 2007-08-16 | Central Michigan University Board Of Trustees | Method of preparing dendritic drugs |
US10905637B2 (en) | 2006-12-01 | 2021-02-02 | Anterios, Inc. | Peptide nanoparticles and uses therefor |
US10285941B2 (en) | 2006-12-01 | 2019-05-14 | Anterios, Inc. | Amphiphilic entity nanoparticles |
US10758485B2 (en) | 2006-12-01 | 2020-09-01 | Anterios, Inc. | Amphiphilic entity nanoparticles |
US9724299B2 (en) | 2006-12-01 | 2017-08-08 | Anterios, Inc. | Amphiphilic entity nanoparticles |
US9486409B2 (en) | 2006-12-01 | 2016-11-08 | Anterios, Inc. | Peptide nanoparticles and uses therefor |
US10016451B2 (en) | 2007-05-31 | 2018-07-10 | Anterios, Inc. | Nucleic acid nanoparticles and uses therefor |
US20090286864A1 (en) * | 2007-06-01 | 2009-11-19 | Taewoong Medical Co., Ltd. | Coating agent for drug releasing stent, preparation method thereof and drug releasing stent coated therewith |
US7994213B2 (en) * | 2007-06-01 | 2011-08-09 | Taewoong Medical Co., Ltd. | Coating agent for drug releasing stent, preparation method thereof and drug releasing stent coated therewith |
US20090060840A1 (en) * | 2007-08-22 | 2009-03-05 | Boyes Stephen G | Lanthanide Nanoparticle Conjugates and Uses Thereof |
WO2009026540A1 (en) * | 2007-08-22 | 2009-02-26 | Colorado School Of Mines | Lanthanide nanoparticle conjugates and uses thereof |
US8916135B2 (en) | 2007-08-22 | 2014-12-23 | Colorado School Of Mines | Lanthanide nanoparticle conjugates and uses thereof |
US20090060839A1 (en) * | 2007-08-22 | 2009-03-05 | Boyes Stephen G | Gold Nanoparticle Conjugates and Uses Thereof |
US9382346B2 (en) | 2007-08-22 | 2016-07-05 | Colorado School Of Mines | Gold nanoparticle conjugates and uses thereof |
US9175015B2 (en) | 2007-08-22 | 2015-11-03 | Colorado School Of Mines | Gold nanoparticle conjugates and uses thereof |
US8221690B2 (en) | 2007-10-30 | 2012-07-17 | The Invention Science Fund I, Llc | Systems and devices that utilize photolyzable nitric oxide donors |
US8349262B2 (en) | 2007-10-30 | 2013-01-08 | The Invention Science Fund I, Llc | Nitric oxide permeable housings |
US7975699B2 (en) | 2007-10-30 | 2011-07-12 | The Invention Science Fund I, Llc | Condoms configured to facilitate release of nitric oxide |
US10080823B2 (en) | 2007-10-30 | 2018-09-25 | Gearbox Llc | Substrates for nitric oxide releasing devices |
US7897399B2 (en) | 2007-10-30 | 2011-03-01 | The Invention Science Fund I, Llc | Nitric oxide sensors and systems |
US8642093B2 (en) | 2007-10-30 | 2014-02-04 | The Invention Science Fund I, Llc | Methods and systems for use of photolyzable nitric oxide donors |
US8980332B2 (en) | 2007-10-30 | 2015-03-17 | The Invention Science Fund I, Llc | Methods and systems for use of photolyzable nitric oxide donors |
US7846400B2 (en) | 2007-10-30 | 2010-12-07 | The Invention Science Fund I, Llc | Substrates for nitric oxide releasing devices |
US7862598B2 (en) * | 2007-10-30 | 2011-01-04 | The Invention Science Fund I, Llc | Devices and systems that deliver nitric oxide |
US8877508B2 (en) | 2007-10-30 | 2014-11-04 | The Invention Science Fund I, Llc | Devices and systems that deliver nitric oxide |
US8445528B2 (en) | 2008-03-12 | 2013-05-21 | The Regents Of The University Of Michigan | Dendrimer conjugates |
US8252834B2 (en) | 2008-03-12 | 2012-08-28 | The Regents Of The University Of Michigan | Dendrimer conjugates |
US8968705B2 (en) | 2008-08-22 | 2015-03-03 | Colorado School Of Mines | Gold/lanthanide nanoparticle conjugates and uses thereof |
US10406111B2 (en) | 2008-08-22 | 2019-09-10 | Colorado School Of Mines | Gold/lanthanide nanoparticle conjugates and uses thereof |
US8980907B2 (en) | 2008-09-30 | 2015-03-17 | The Regents Of The University Of Michigan | Dendrimer conjugates |
US20100160299A1 (en) * | 2008-09-30 | 2010-06-24 | The Regents Of The University Of Michigan | Dendrimer conjugates |
US8889635B2 (en) | 2008-09-30 | 2014-11-18 | The Regents Of The University Of Michigan | Dendrimer conjugates |
US9017644B2 (en) | 2008-11-07 | 2015-04-28 | The Regents Of The University Of Michigan | Methods of treating autoimmune disorders and/or inflammatory disorders |
US20100158850A1 (en) * | 2008-12-23 | 2010-06-24 | The Regents Of The University Of Michigan | Dendrimer based modular platforms |
WO2011031487A2 (en) * | 2009-08-25 | 2011-03-17 | The Regents Of The University Of California | Nanotechnological delivery of microbicides and other substances |
WO2011031487A3 (en) * | 2009-08-25 | 2011-07-14 | The Regents Of The University Of California | Nanotechnological delivery of microbicides and other substances |
WO2011059609A2 (en) | 2009-10-13 | 2011-05-19 | The Regents Of The University Of Michigan | Dendrimer compositions and methods of synthesis |
US8945508B2 (en) | 2009-10-13 | 2015-02-03 | The Regents Of The University Of Michigan | Dendrimer compositions and methods of synthesis |
US8912323B2 (en) | 2009-10-30 | 2014-12-16 | The Regents Of The University Of Michigan | Multifunctional small molecules |
US9402911B2 (en) | 2011-12-08 | 2016-08-02 | The Regents Of The University Of Michigan | Multifunctional small molecules |
WO2015109255A1 (en) * | 2014-01-16 | 2015-07-23 | Genisphere, Llc | Lateral flow assays using dna dendrimers |
US11311496B2 (en) | 2016-11-21 | 2022-04-26 | Eirion Therapeutics, Inc. | Transdermal delivery of large agents |
Also Published As
Publication number | Publication date |
---|---|
CA2408535A1 (en) | 2001-11-22 |
JP2004515457A (en) | 2004-05-27 |
MXPA02011142A (en) | 2004-06-22 |
WO2001087348A3 (en) | 2002-10-31 |
WO2001087348A2 (en) | 2001-11-22 |
EP1301211A2 (en) | 2003-04-16 |
CN101347623A (en) | 2009-01-21 |
AU2001261420A1 (en) | 2001-11-26 |
US6471968B1 (en) | 2002-10-29 |
CN1471407A (en) | 2004-01-28 |
CA2408535C (en) | 2009-08-11 |
BR0110748A (en) | 2004-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2408535C (en) | Compositions comprising dendrimer complexes | |
AU2010200056B2 (en) | Dendrimer based compositions and methods of using the same | |
US8445528B2 (en) | Dendrimer conjugates | |
Medina et al. | Dendrimers as carriers for delivery of chemotherapeutic agents | |
Wu et al. | Dendrimers in medicine: therapeutic concepts and pharmaceutical challenges | |
McNerny et al. | Understanding specific and nonspecific toxicities: a requirement for the development of dendrimerābased pharmaceuticals | |
Wolinsky et al. | Therapeutic and diagnostic applications of dendrimers for cancer treatment | |
Jiang et al. | Progress and challenges in developing aptamer-functionalized targeted drug delivery systems | |
Svenson | Dendrimers as versatile platform in drug delivery applications | |
US20090208580A1 (en) | Functionalized dendrimer-encapsulated and dendrimer-stabilized nanoparticles | |
US20070041934A1 (en) | Dendrimer based compositions and methods of using the same | |
Taratula et al. | A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided drug delivery and photodynamic therapy | |
Kaminskas et al. | Association of chemotherapeutic drugs with dendrimer nanocarriers: an assessment of the merits of covalent conjugation compared to noncovalent encapsulation | |
Kesharwani et al. | Dendrimer as nanocarrier for drug delivery | |
US20090053139A1 (en) | Dendrimer based compositions and methods of using the same | |
Misra et al. | Cancer nanotechnology: application of nanotechnology in cancer therapy | |
Jang et al. | Bioinspired application of dendrimers: from bio-mimicry to biomedical applications | |
US20090088376A1 (en) | Dendrimer based compositions and methods of using the same | |
Rastogi et al. | Dendrimer as nanocarrier for drug delivery and drug targeting therapeutics: a fundamental to advanced systematic review | |
Viswanath et al. | Perspectives on dendritic architectures and their biological applications: From core to cell | |
Kumar et al. | Dendrimers: potential drug carrier for novel drug delivery system | |
Li et al. | Fabrication of AIE-Featured Probe-Incorporated Multifunctional Polymeric Micelles for Cellular Imaging and Intelligent Delivery of Paclitaxel | |
Das et al. | An overview of dendrimers and their biomedical applications | |
Villaverde | Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. | |
Patil et al. | Nanotechnology for cancer: Application of nanotechnology in the treatment of cancer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: REGENTS OF THE UNIVERSITY OF MICHIGAN, THE, MICHIG Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAKER, JAMES R., JR.;REEL/FRAME:012510/0358 Effective date: 20011116 |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF MICHIGAN;REEL/FRAME:021599/0585 Effective date: 20051117 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH - DIRECTOR DEITR, MA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF MICHIGAN;REEL/FRAME:047468/0327 Effective date: 20181109 |