US20020092535A1 - Coronary artery by-pass method - Google Patents
Coronary artery by-pass method Download PDFInfo
- Publication number
- US20020092535A1 US20020092535A1 US10/062,409 US6240902A US2002092535A1 US 20020092535 A1 US20020092535 A1 US 20020092535A1 US 6240902 A US6240902 A US 6240902A US 2002092535 A1 US2002092535 A1 US 2002092535A1
- Authority
- US
- United States
- Prior art keywords
- myocardium
- recess
- set forth
- method set
- head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B17/22012—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
- A61B17/2202—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/22—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
- A61B18/24—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2493—Transmyocardial revascularisation [TMR] devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00106—Sensing or detecting at the treatment site ultrasonic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00243—Type of minimally invasive operation cardiac
- A61B2017/00247—Making holes in the wall of the heart, e.g. laser Myocardial revascularization
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00681—Aspects not otherwise provided for
- A61B2017/00694—Aspects not otherwise provided for with means correcting for movement of or for synchronisation with the body
- A61B2017/00703—Aspects not otherwise provided for with means correcting for movement of or for synchronisation with the body correcting for movement of heart, e.g. ECG-triggered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B17/22012—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
- A61B17/2202—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter
- A61B2017/22021—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter electric leads passing through the catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00345—Vascular system
- A61B2018/00351—Heart
- A61B2018/00392—Transmyocardial revascularisation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2059—Mechanical position encoders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2063—Acoustic tracking systems, e.g. using ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/061—Measuring instruments not otherwise provided for for measuring dimensions, e.g. length
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/064—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/378—Surgical systems with images on a monitor during operation using ultrasound
- A61B2090/3782—Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument
- A61B2090/3784—Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument both receiver and transmitter being in the instrument or receiver being also transmitter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2210/00—Anatomical parts of the body
- A61M2210/12—Blood circulatory system
- A61M2210/125—Heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0067—Catheters; Hollow probes characterised by the distal end, e.g. tips
- A61M25/0068—Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0067—Catheters; Hollow probes characterised by the distal end, e.g. tips
- A61M25/0082—Catheter tip comprising a tool
Definitions
- This invention relates to a method for effectuating a coronary artery bypass.
- Coronary arteries frequently become clogged with plaque which at the very least impairs the efficiency of the heart's pumping action and can lead to heart attack.
- the conventional treatment for a clogged coronary artery is a coronary by-pass operation wherein one or more venous segments are inserted between the aorta and the coronary artery.
- the inserted venous segments or transplants by-pass the clogged portion of the coronary artery and thus provide for a free or unobstructed flow of blood to the heart.
- a new coronary artery by-pass technique is disclosed in U.S. Pat. No. 5,429,144. That technique utilizes a stent made of a biocompatible material and comprises steps of moving the stent in a collapsed configuration through a blood vessel of a patient's vascular system to the patient's heart, inserting the stent in the patient's myocardium so that the stent extends at least partially through the myocardium and only within the myocardium, and upon the disposition of the stent in the myocardium, expanding the stent from the collapsed configuration to a substantially tubular expanded configuration so that a blood flow path is formed at least partially through the myocardium.
- the stent may be disposed in the myocardium so that it extends only partially through the myocardium, from a coronary artery, upstream of a vascular obstruction, or from the left ventricle of the heart.
- the stent may extend completely through the myocardium to establish a blood flow path from the left ventricle to a coronary artery, downstream of a vascular obstruction.
- the stent is deployed so that it extends only within the myocardium and does not protrude beyond the heart tissues, either into the left ventricle or into the coronary artery.
- the stent of U.S. Pat. No. 5,429,144 extends only partially through the myocardium and thus terminates within the cardiac tissues
- the stent guides blood directly into the heart tissues and particularly into cardiac vesicles which naturally occur in the myocardium.
- the blood is naturally distributed from the vesicles into the cardiac tissues and is collected by the veins of the heart.
- the stent terminates within the myocardium and extends from a coronary artery, upstream of a vascular obstruction, the stent maintains its expanded form during diastole, so that blood pumped from the heart is forced into the stent and from thence into the cardiac tissues.
- the stent may collapse during systole, under the compressive forces exerted by the contracting heart muscle.
- blood is delivered to the myocardium during diastole: blood flows into the stent from the left ventricle as the ventricle is filling with blood.
- the stent may maintain its expanded form during systole, despite the compressive forces exerted by the contracting heart muscle. In that case, blood is forced into the stent and from thence into the cardiac tissues during heart contraction.
- the coronary bypass method further comprises inserting a distal end portion of a catheter into the perforation or recess prior to the ejection of the stent, and sensing pressure on the catheter along the distal end portion, thereby determining a thickness of the myocardium at the perforation or recess.
- the stent is cut from a piece of stent material so that the stent has a length corresponding to the sensed or measured thickness of the myocardium at the perforation or recess.
- U.S. Pat. No. 5,429,144 describes the use of a drill head during diastole to cut a perforation into the myocardium.
- the synchronization or coordination of the drilling and stent ejecting steps with heart action is implementable by computer.
- the stent is disposed in the myocardium so that the stent extends only partially through the myocardium from the patient's left ventricle, the stent is inserted into the myocardium from the left ventricle. Accordingly, a distal end of the catheter is passed into the left ventricle prior to the deployment of the stent, while the stent is moved in its collapsed configuration through the catheter and into the left ventricle of the heart.
- An object of the present invention is to provide an improved method for forming a coronary artery by-pass to thereby enable the oxygenation of cardiac tissues.
- Another object of the present invention is to provide a method for forming a coronary artery by-pass which does not require leaving a device in the patient.
- a further object of the present invention is to provide such a method which is less invasive and less traumatic to the patient than conventional by-pass surgery.
- the present invention is directed to a stent-less coronary artery by-pass wherein one or more recesses are formed in the myocardium.
- the recesses open sufficiently during diastole to permit blood flow into the myocardium and the vesicles therein.
- a cardiovascular treatment method in accordance with the present invention utilizes an elongate flexible surgical instrument (e,.g. catheter) having a distal end.
- a distal end portion of the instrument is inserted into a vascular system of a patient.
- a surgical head at the distal end of the instrument is positioned so that the head is disposed adjacent to myocardium tissue of the patient.
- the head is operated to form a recess in the myocardium tissue.
- a thickness of the myocardium tissue is measured, the recess formed during the operation having a length determined in accordance with the measured thickness of the myocardium tissue.
- the thickness measurement partially determines the length of the recess.
- the angle of entry of the recess with respect to the heart wall also partially determines the length of the recess: the greater the angle, the longer the recess can be for a given myocardium thickness.
- the thickness of the myocardium may be measured by generating an ultrasonic pressure wave, sensing reflected pressure waves and analyzing the reflected pressure waves to determine the thickness.
- the ultrasonic pressure wave generator e.g., a piezoelectric crystal
- the ultrasonic wave sensor also a piezoelectric crystal
- the ultrasonic pressure wave generator may be disposed in the catheter wall at the distal tip thereof, or at the distal tip of an ancillary instrument inserted through a lumen of the catheter.
- Measuring the thickness of the myocardium may be implemented by operating a computer aided tomography scanning machine, a magnetic resonance imaging machine or an echocardiogram device.
- the recess terminates in the myocardium tissue and is formed from the left ventricle of the patient. Accordingly, the surgical head is disposed adjacent to an inner side of the myocardium tissue, inside the left ventricle, so that the recess extends from the left ventricle
- the surgical head is a contact laser tip.
- operating the surgical head includes transmitting monochromatic coherent electromagnetic radiation (laser energy) through the contact laser tip to the myocardium tissue.
- the surgical head may include a drill tip, the operating of the head including pushing the drill tip into the myocardium tissue and rotating the drill tip during the step of pushing.
- FIG. 1 is a schematic cross-sectional view of a human heart, showing a plurality of recesses formed in the myocardium for providing a plurality of pathways for guiding blood directly into the cardiac tissues from the left ventricle, in accordance with the present invention.
- FIG. 2 is a partial cross-sectional view, on a larger scale, showing one of the recesses of FIG. 1.
- FIG. 3 is partially a schematic longitudinal cross-sectional view and partially a block diagram of an instrument assembly for forming the recesses shown in FIG. 1.
- FIG. 4 is partially a schematic longitudinal cross-sectional view and partially a block diagram of another instrument assembly for forming the recesses shown in FIG. 1.
- the present invention seeks to oxygenate the cardiac muscle or myocardium MYO (FIG. 1) where a coronary artery AC is blocked with vascular plaque material VP.
- a distal end portion of an angioplastic instrument 12 or 14 (FIGS. 3, 4) is inserted through a femoral artery (not shown) and the aorta AO into the left ventricle VL.
- a distal end of a steerable catheter 16 or 18 (FIGS. 3, 4) is inserted along a predetermined path 92 , 94 , 96 through the vascular system of the patient and into left ventricle VL.
- Instrument 12 or 14 is then operated to form a plurality of recesses 86 , 88 and 90 in myocardium MYO for providing a plurality of pathways for guiding blood directly into the cardiac tissues from left ventricle VL.
- Recesses 86 , 88 , and 90 extend from left ventricle VL and terminate within myocardium MYO. Each recess 86 , 88 , and 90 thus extends only partially into myocardium MYO.
- angioplastic surgical instrument 12 includes a piezoelectric transducer 20 disposed at a distal tip of catheter 16 and electrically connected to an ultrasonic frequency generator 22 .
- Another piezoelectric transducer 24 disposed at the distal tip of catheter 16 is operatively coupled to a wave analyzer 26 which serves to determine the thickness of myocardium MYO upon disposition of the distal end of catheter 16 inside left ventricle VL.
- Wave analyzer 26 is connected to a display 28 for indicating a computed heart wall thickness to a vascular surgeon.
- an optical fiber 30 is inserted through a lumen 32 of catheter 16 .
- fiber 30 extends to a laser source 34
- a distal end fiber 30 is provided with a surgical head in the form of a tapered contact tip 36 of conventional crystalline material.
- Tip 36 delivers coherent monochromatic electromagnetic radiation from laser source 34 to target tissues of the patient's heart HP (FIG. 1).
- a position encoder 38 is operatively linked to fiber 30 for measuring a linear displacement of the fiber during the formation of recesses 86 , 88 , 90 .
- Encoder 38 is connected to display 28 for indicating a measured fiber displacement to a vascular surgeon.
- catheter 18 is provided with a pair of lumens 40 and 42 which receive an ultrasonic probe 44 and an optical fiber 46 , respectively.
- Ultrasonic probe 44 includes an electroacoustic piezoelectric transducer 48 disposed at a distal tip of the probe and electrically connected to an ultrasonic frequency generator 50 .
- An acoustoelectric piezoelectric transducer 52 also disposed at the distal tip of probe 44 is operatively coupled to a wave analyzer 54 .
- Analyzer 54 processes reflected ultrasonic wave pressures, sensed by transducer 52 , to determine the thickness of myocardium MYO (FIG. 1) upon disposition of the distal end of catheter 18 with probe 44 inside left ventricle VL. The results of the thickness computations of analyzer 54 are transmitted to a monitor 56 for display.
- optical fiber 46 extends at one end to a laser source 58 and is provided at an opposite end with a surgical head in the form of a tapered contact tip 60 .
- Tip 60 is made of conventional crystalline material and functions to deliver coherent monochromatic electromagnetic radiation from laser source 58 to target tissues of the patient's heart HP (FIG. 1).
- a position encoder 62 is coupled to fiber 46 for measuring a linear displacement of the fiber during the formation of recesses 86 , 88 , 90 .
- Encoder 62 is connected to monitor 56 for indicating a measured fiber displacement.
- catheter 18 incorporates in its wall a plurality of strain gauges 64 distributed along the catheter. Strain gauges 64 are operatively connected to a computer or microprocessor 66 which analyzes the signals from the strain gauges to determine the configuration of catheter 18 inside the patient. The computed configuration is displayed on monitor 56 , together with an image of internal organs of the patient. The image of the internal organs is produced, for example, by magnetic resonance imaging (MRI), computer aided tomography (CAT) or an echocardiograph.
- MRI magnetic resonance imaging
- CAT computer aided tomography
- echocardiograph an echocardiograph
- an a-c electrical current of ultrasonic frequency is transmitted from generator 22 or 50 to transducer 20 or 48 to produce an ultrasonic pressure wave.
- This pressure wave is reflected from inner and outer surfaces (not designated) of myocardium MY.
- the reflected ultrasonic pressure waves are sensed by transducer 24 or 52 and analyzed by analyzer 26 or 54 to determine the thickness of myocardium MYO in an area located immediately in front of the distal end of catheter 16 or probe 44 .
- a vascular surgeon can determine an appropriate length for a recess 86 , 88 , or 90 to be formed in the myocardium.
- Recesses 86 , 88 , and 90 have a length sufficiently large to effectuate artificial cardiac vascularization but small enough to not traverse the myocardium.
- laser fiber 30 or 46 (FIGS. 3,4) is ejected from catheter 16 or 18 and contact tip 36 or 60 is placed in contact with the myocardium tissues. Laser energy is transmitted from source 34 or 58 to form recess 86 at angle a 1 in myocardium MYO. Fiber 30 or 46 is advanced a predetermined distance into myocardium MYO, the distance of penetration of tip 36 or 60 being ascertained by position encoder 38 or 62 .
- recesses 86 , 88 and 90 as described hereinabove may be implemented in part via a computer programmed to enable the timing of heart perforation, catheter insertion, and other operations so that those operations are performed only during the diastolic phase of a cardiac cycle.
- the programming and utilization of a computer in such a procedure will be clear to one skilled in the art from the teachings of U.S. Pat. No. 4,788,975 to Shturman et al., the disclosure of which is hereby incorporated by reference.
- laser energy is transmitted along fiber 30 or 46 to form recess 86 , 88 or 90 only during a diastolic phase of a cardiac cycle.
- tip 36 or 60 may be left in place in myocardium MYO during a limited number of systolic iterations, to enable completion of recess formation.
- the contact tip 36 or 60 may be removed during systole and reinserted during diastole until the recesses are formed.
- one or more recesses may be formed to connect left ventricle VL with coronary artery AC, as described in U.S. Pat. No. 5,429,144, the disclosure of which is hereby incorporated by reference.
- the formation of recesses 86 , 88 and 90 may be implemented with a rotary drill rather than a contact laser.
- U.S. Pat. No. 5,429,144 also discloses steering componentry which enables an operator to control, from outside the patient, an orientation of the distal tip of catheter 16 or 18 upon insertion of the catheter into the patient.
- the measurement of cardiac wall thickness may be alternatively accomplished via an MRI machine, a CAT scanner or by an echocardiogram.
- a “measuring rod” of a predetermined length may be inserted through the angioplastic catheter.
- a computer connected to a CAT-scanner, an MRI machine or other imaging device then automatically determines myocardium thickness by comparing the dimensions thereof to the known length of the “measuring rod.”
- the computer with scanner input may be additionally used to determine optimal locations and insertion angles of multiple stents, e.g., stents 86 , 88 , and 90 .
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Physics & Mathematics (AREA)
- Robotics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Otolaryngology (AREA)
- Mechanical Engineering (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
A cardiovascular treatment method utilizes an elongate flexible surgical instrument (e.g., catheter) having a distal end. A distal end portion of the instrument is inserted into a vascular system of a patient. A surgical head at the distal end of the instrument is positioned so that the head is disposed adjacent to myocardium tissue of the patient. The head is operated to form a recess in the myocardium tissue. Prior to operating the head to form the recess, a thickness of the myocardium tissue is measured, the recess formed during the operation having a length determined in accordance with the measured thickness of the myocardium tissue. The thickness measurement partially determines the length of the recess. The angle of entry of the recess with respect to the heart wall also partially determines the length of the recess: the greater the angle, the longer the recess can be for a given myocardium thickness.
Description
- This invention relates to a method for effectuating a coronary artery bypass.
- Coronary arteries frequently become clogged with plaque which at the very least impairs the efficiency of the heart's pumping action and can lead to heart attack. The conventional treatment for a clogged coronary artery is a coronary by-pass operation wherein one or more venous segments are inserted between the aorta and the coronary artery. The inserted venous segments or transplants by-pass the clogged portion of the coronary artery and thus provide for a free or unobstructed flow of blood to the heart.
- Such conventional coronary artery by-pass surgery is expensive, time-consuming, and traumatic to the patient. Hospital stay subsequent to surgery and convalescence are prolonged.
- A new coronary artery by-pass technique is disclosed in U.S. Pat. No. 5,429,144. That technique utilizes a stent made of a biocompatible material and comprises steps of moving the stent in a collapsed configuration through a blood vessel of a patient's vascular system to the patient's heart, inserting the stent in the patient's myocardium so that the stent extends at least partially through the myocardium and only within the myocardium, and upon the disposition of the stent in the myocardium, expanding the stent from the collapsed configuration to a substantially tubular expanded configuration so that a blood flow path is formed at least partially through the myocardium.
- Pursuant to U.S. Pat. No. 5,429,144, the stent may be disposed in the myocardium so that it extends only partially through the myocardium, from a coronary artery, upstream of a vascular obstruction, or from the left ventricle of the heart. Alternatively, the stent may extend completely through the myocardium to establish a blood flow path from the left ventricle to a coronary artery, downstream of a vascular obstruction. In any case, the stent is deployed so that it extends only within the myocardium and does not protrude beyond the heart tissues, either into the left ventricle or into the coronary artery.
- Where the stent of U.S. Pat. No. 5,429,144 extends only partially through the myocardium and thus terminates within the cardiac tissues, the stent guides blood directly into the heart tissues and particularly into cardiac vesicles which naturally occur in the myocardium. The blood is naturally distributed from the vesicles into the cardiac tissues and is collected by the veins of the heart. Where the stent terminates within the myocardium and extends from a coronary artery, upstream of a vascular obstruction, the stent maintains its expanded form during diastole, so that blood pumped from the heart is forced into the stent and from thence into the cardiac tissues. Where the stent terminates within the myocardium and extends from the left ventricle, the stent may collapse during systole, under the compressive forces exerted by the contracting heart muscle. In that case, blood is delivered to the myocardium during diastole: blood flows into the stent from the left ventricle as the ventricle is filling with blood. Alternatively, where the stent terminates within the myocardium and extends from the left ventricle, the stent may maintain its expanded form during systole, despite the compressive forces exerted by the contracting heart muscle. In that case, blood is forced into the stent and from thence into the cardiac tissues during heart contraction.
- According to U.S. Pat. No. 5,429,144, the coronary bypass method further comprises inserting a distal end portion of a catheter into the perforation or recess prior to the ejection of the stent, and sensing pressure on the catheter along the distal end portion, thereby determining a thickness of the myocardium at the perforation or recess. The stent is cut from a piece of stent material so that the stent has a length corresponding to the sensed or measured thickness of the myocardium at the perforation or recess.
- U.S. Pat. No. 5,429,144 describes the use of a drill head during diastole to cut a perforation into the myocardium. The synchronization or coordination of the drilling and stent ejecting steps with heart action is implementable by computer. Where the stent is disposed in the myocardium so that the stent extends only partially through the myocardium from the patient's left ventricle, the stent is inserted into the myocardium from the left ventricle. Accordingly, a distal end of the catheter is passed into the left ventricle prior to the deployment of the stent, while the stent is moved in its collapsed configuration through the catheter and into the left ventricle of the heart.
- An object of the present invention is to provide an improved method for forming a coronary artery by-pass to thereby enable the oxygenation of cardiac tissues.
- Another object of the present invention is to provide a method for forming a coronary artery by-pass which does not require leaving a device in the patient.
- A further object of the present invention is to provide such a method which is less invasive and less traumatic to the patient than conventional by-pass surgery.
- Basically, the present invention is directed to a stent-less coronary artery by-pass wherein one or more recesses are formed in the myocardium. The recesses open sufficiently during diastole to permit blood flow into the myocardium and the vesicles therein.
- A cardiovascular treatment method in accordance with the present invention utilizes an elongate flexible surgical instrument (e,.g. catheter) having a distal end. A distal end portion of the instrument is inserted into a vascular system of a patient. A surgical head at the distal end of the instrument is positioned so that the head is disposed adjacent to myocardium tissue of the patient. The head is operated to form a recess in the myocardium tissue. Prior to operating the head to form the recess, a thickness of the myocardium tissue is measured, the recess formed during the operation having a length determined in accordance with the measured thickness of the myocardium tissue. The thickness measurement partially determines the length of the recess. The angle of entry of the recess with respect to the heart wall also partially determines the length of the recess: the greater the angle, the longer the recess can be for a given myocardium thickness.
- The thickness of the myocardium may be measured by generating an ultrasonic pressure wave, sensing reflected pressure waves and analyzing the reflected pressure waves to determine the thickness. The ultrasonic pressure wave generator (e.g., a piezoelectric crystal) and the ultrasonic wave sensor (also a piezoelectric crystal) may be disposed in the catheter wall at the distal tip thereof, or at the distal tip of an ancillary instrument inserted through a lumen of the catheter.
- Measuring the thickness of the myocardium may be implemented by operating a computer aided tomography scanning machine, a magnetic resonance imaging machine or an echocardiogram device.
- Generally, it is contemplated that the recess terminates in the myocardium tissue and is formed from the left ventricle of the patient. Accordingly, the surgical head is disposed adjacent to an inner side of the myocardium tissue, inside the left ventricle, so that the recess extends from the left ventricle
- According to a feature of the present invention, the surgical head is a contact laser tip. In that case, operating the surgical head includes transmitting monochromatic coherent electromagnetic radiation (laser energy) through the contact laser tip to the myocardium tissue. Alternatively, the surgical head may include a drill tip, the operating of the head including pushing the drill tip into the myocardium tissue and rotating the drill tip during the step of pushing.
- FIG. 1 is a schematic cross-sectional view of a human heart, showing a plurality of recesses formed in the myocardium for providing a plurality of pathways for guiding blood directly into the cardiac tissues from the left ventricle, in accordance with the present invention.
- FIG. 2 is a partial cross-sectional view, on a larger scale, showing one of the recesses of FIG. 1.
- FIG. 3 is partially a schematic longitudinal cross-sectional view and partially a block diagram of an instrument assembly for forming the recesses shown in FIG. 1.
- FIG. 4 is partially a schematic longitudinal cross-sectional view and partially a block diagram of another instrument assembly for forming the recesses shown in FIG. 1.
- The present invention seeks to oxygenate the cardiac muscle or myocardium MYO (FIG. 1) where a coronary artery AC is blocked with vascular plaque material VP. To that end, a distal end portion of an
angioplastic instrument 12 or 14 (FIGS. 3, 4) is inserted through a femoral artery (not shown) and the aorta AO into the left ventricle VL. More particularly, a distal end of asteerable catheter 16 or 18 (FIGS. 3, 4) is inserted along apredetermined path Instrument recesses recess - As illustrated in FIG. 3, angioplastic
surgical instrument 12 includes apiezoelectric transducer 20 disposed at a distal tip ofcatheter 16 and electrically connected to anultrasonic frequency generator 22. Anotherpiezoelectric transducer 24 disposed at the distal tip ofcatheter 16 is operatively coupled to awave analyzer 26 which serves to determine the thickness of myocardium MYO upon disposition of the distal end ofcatheter 16 inside left ventricle VL.Wave analyzer 26 is connected to adisplay 28 for indicating a computed heart wall thickness to a vascular surgeon. - As further illustrated in FIG. 3, an
optical fiber 30 is inserted through alumen 32 ofcatheter 16. At a proximal end,fiber 30 extends to alaser source 34, while at adistal end fiber 30 is provided with a surgical head in the form of atapered contact tip 36 of conventional crystalline material.Tip 36 delivers coherent monochromatic electromagnetic radiation fromlaser source 34 to target tissues of the patient's heart HP (FIG. 1). Aposition encoder 38 is operatively linked tofiber 30 for measuring a linear displacement of the fiber during the formation ofrecesses Encoder 38 is connected to display 28 for indicating a measured fiber displacement to a vascular surgeon. - As depicted in FIG. 4,
catheter 18 is provided with a pair oflumens ultrasonic probe 44 and anoptical fiber 46, respectively.Ultrasonic probe 44 includes an electroacousticpiezoelectric transducer 48 disposed at a distal tip of the probe and electrically connected to anultrasonic frequency generator 50. An acoustoelectricpiezoelectric transducer 52 also disposed at the distal tip ofprobe 44 is operatively coupled to awave analyzer 54.Analyzer 54 processes reflected ultrasonic wave pressures, sensed bytransducer 52, to determine the thickness of myocardium MYO (FIG. 1) upon disposition of the distal end ofcatheter 18 withprobe 44 inside left ventricle VL. The results of the thickness computations ofanalyzer 54 are transmitted to amonitor 56 for display. - As additionally depicted in FIG. 4,
optical fiber 46 extends at one end to alaser source 58 and is provided at an opposite end with a surgical head in the form of atapered contact tip 60.Tip 60 is made of conventional crystalline material and functions to deliver coherent monochromatic electromagnetic radiation fromlaser source 58 to target tissues of the patient's heart HP (FIG. 1). Aposition encoder 62 is coupled tofiber 46 for measuring a linear displacement of the fiber during the formation ofrecesses Encoder 62 is connected to monitor 56 for indicating a measured fiber displacement. - As further shown in FIG. 4,
catheter 18 incorporates in its wall a plurality ofstrain gauges 64 distributed along the catheter. Strain gauges 64 are operatively connected to a computer ormicroprocessor 66 which analyzes the signals from the strain gauges to determine the configuration ofcatheter 18 inside the patient. The computed configuration is displayed onmonitor 56, together with an image of internal organs of the patient. The image of the internal organs is produced, for example, by magnetic resonance imaging (MRI), computer aided tomography (CAT) or an echocardiograph. - Upon insertion of the distal end of
catheter generator transducer transducer analyzer catheter 16 orprobe 44. Provided with cardiac wall thickness information viadisplay 28 or monitor 56, a vascular surgeon can determine an appropriate length for arecess Recesses - Upon the determination of the entry location, entry angle a1 and the depth or length of the
recess 86 to be formed,laser fiber 30 or 46 (FIGS. 3,4) is ejected fromcatheter contact tip source recess 86 at angle a1 in myocardium MYO.Fiber tip position encoder - The formation of
recesses - As stated above, it is contemplated that laser energy is transmitted along
fiber recess tip contact tip - After a cardiac vascularization operation as described above is completed, blood drains into
recesses - In addition to one or
more recesses recesses catheter - Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. It is to be noted, for example, that the measurement of cardiac wall thickness may be alternatively accomplished via an MRI machine, a CAT scanner or by an echocardiogram. For example, a “measuring rod” of a predetermined length may be inserted through the angioplastic catheter. A computer connected to a CAT-scanner, an MRI machine or other imaging device then automatically determines myocardium thickness by comparing the dimensions thereof to the known length of the “measuring rod.” The computer with scanner input may be additionally used to determine optimal locations and insertion angles of multiple stents, e.g.,
stents - Accordingly, it is to be understood that the drawings and descriptions herein are profferred by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.
Claims (17)
1. A cardiovascular treatment method comprising the steps of:
providing an elongate flexible surgical instrument having a distal end;
inserting a distal end portion of said instrument into a vascular system of a patient;
disposing a surgical head at said distal end of said instrument so that said head is disposed adjacent to myocardium tissue of the patient;
operating said head to form a recess in the myocardium tissue; and
prior to operating said head to form said recess, measuring a thickness of said myocardium tissue, said recess having a length determined in accordance with the measured thickness of said myocardium tissue.
2. The method set forth in claim 1 wherein measuring said thickness includes generating an ultrasonic pressure wave, sensing reflected pressure waves and analyzing the reflected pressure waves to determine said thickness.
3. The method set forth in claim 2 wherein the generating of said ultrasonic pressure wave includes operating a transducer disposed at said distal end of said instrument.
4. The method set forth in claim 1 wherein measuring said thickness includes operating a magnetic resonance imaging machine.
5. The method set forth in claim 1 wherein measuring said thickness includes operating a computer aided tomography scanning machine.
6. The method set forth in claim 1 wherein measuring said thickness includes taking an echocardiogram.
7. The method set forth in claim 1 wherein said recess terminates in said myocardium tissue.
8. The method set forth in claim 1 wherein distal end portion is inserted into a left ventricle of the patient, said head being disposed adjacent to an inner side of said myocardium tissue, inside said left ventricle, said recess extending from said left ventricle into said myocardium tissue.
9. The method set forth in claim 8 wherein said recess terminates in said myocardium tissue.
10. The method set forth in claim 1 wherein said surgical head is a contact laser tip, the operating of said head including transmitting monochromatic coherent electromagnetic radiation through said tip to said myocardium tissue.
11. The method set forth in claim 1 wherein said surgical head includes a drill tip, the operating of said head including pushing said drill tip into said myocardium tissue and rotating said drill tip during said step of pushing.
12. The method set forth in claim 1 wherein the operating of said surgical head is implemented during diastole.
13. The method set forth in claim 12 , further comprising operating a computer to synchronize the operating of said surgical head with the rhythm of said heart.
14. The method set forth in claim 1 wherein said surgical head is operated so that said recess extends only partially through said myocardium tissue from a coronary artery of the patient.
15. The method set forth in claim 1 wherein said surgical head is operated so that said recess extends only partially through said myocardium tissue from the left ventricle of the patient.
16. A method for supplying blood to the heart, comprising the step of directing blood directly into the myocardium via at least one recess formed surgically in the myocardium and extending only partially through the myocardium and only within the myocardium.
17. The method set forth in claim 16 wherein said step of directing includes the steps of, during diastole, guiding blood into said myocardium through said recess and, during systole, closing said recess.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/062,409 US20020092535A1 (en) | 1996-06-19 | 2002-02-05 | Coronary artery by-pass method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/665,950 US5662124A (en) | 1996-06-19 | 1996-06-19 | Coronary artery by-pass method |
US08/893,643 US5908028A (en) | 1996-06-19 | 1997-07-11 | Coronary artery by-pass method |
US09/315,383 US6363939B1 (en) | 1996-06-19 | 1999-05-18 | Coronary artery by-pass method |
US10/062,409 US20020092535A1 (en) | 1996-06-19 | 2002-02-05 | Coronary artery by-pass method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/315,383 Continuation US6363939B1 (en) | 1996-06-19 | 1999-05-18 | Coronary artery by-pass method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020092535A1 true US20020092535A1 (en) | 2002-07-18 |
Family
ID=24672206
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/665,950 Expired - Lifetime US5662124A (en) | 1996-06-19 | 1996-06-19 | Coronary artery by-pass method |
US08/893,643 Expired - Fee Related US5908028A (en) | 1996-06-19 | 1997-07-11 | Coronary artery by-pass method |
US09/315,383 Expired - Fee Related US6363939B1 (en) | 1996-06-19 | 1999-05-18 | Coronary artery by-pass method |
US10/062,409 Abandoned US20020092535A1 (en) | 1996-06-19 | 2002-02-05 | Coronary artery by-pass method |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/665,950 Expired - Lifetime US5662124A (en) | 1996-06-19 | 1996-06-19 | Coronary artery by-pass method |
US08/893,643 Expired - Fee Related US5908028A (en) | 1996-06-19 | 1997-07-11 | Coronary artery by-pass method |
US09/315,383 Expired - Fee Related US6363939B1 (en) | 1996-06-19 | 1999-05-18 | Coronary artery by-pass method |
Country Status (1)
Country | Link |
---|---|
US (4) | US5662124A (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020058897A1 (en) * | 1998-09-10 | 2002-05-16 | Percardia, Inc. | Designs for left ventricular conduit |
US6582444B2 (en) | 1999-08-04 | 2003-06-24 | Percardia, Inc. | Blood flow conduit delivery system and method of use |
US6605053B1 (en) | 1999-09-10 | 2003-08-12 | Percardia, Inc. | Conduit designs and related methods for optimal flow control |
US6605113B2 (en) | 1999-08-04 | 2003-08-12 | Percardia Inc. | Vascular graft bypass |
US6610100B2 (en) | 1998-09-10 | 2003-08-26 | Percardia, Inc. | Designs for left ventricular conduit |
US6641610B2 (en) | 1998-09-10 | 2003-11-04 | Percardia, Inc. | Valve designs for left ventricular conduits |
US20030216801A1 (en) * | 2002-05-17 | 2003-11-20 | Heartstent Corporation | Transmyocardial implant with natural vessel graft and method |
US6694983B2 (en) | 1998-09-10 | 2004-02-24 | Percardia, Inc. | Delivery methods for left ventricular conduit |
US20050101903A1 (en) * | 2001-08-16 | 2005-05-12 | Percardia, Inc. | Interventional diagnostic catheter and a method for using a catheter to access artificial cardiac shunts |
US20050228334A1 (en) * | 1996-08-13 | 2005-10-13 | Percardia, Inc. | Method to deliver blood from a heart chamber to vessel |
US7704222B2 (en) | 1998-09-10 | 2010-04-27 | Jenavalve Technology, Inc. | Methods and conduits for flowing blood from a heart chamber to a blood vessel |
US10993805B2 (en) | 2008-02-26 | 2021-05-04 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11065138B2 (en) | 2016-05-13 | 2021-07-20 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
US20210282857A1 (en) * | 2018-07-17 | 2021-09-16 | The Johns Hopkins University | Internal laser light delivery for photoacoustic-guided drilling |
US11185405B2 (en) | 2013-08-30 | 2021-11-30 | Jenavalve Technology, Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US11197754B2 (en) | 2017-01-27 | 2021-12-14 | Jenavalve Technology, Inc. | Heart valve mimicry |
US11337800B2 (en) | 2015-05-01 | 2022-05-24 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
US11357624B2 (en) | 2007-04-13 | 2022-06-14 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
US11517431B2 (en) | 2005-01-20 | 2022-12-06 | Jenavalve Technology, Inc. | Catheter system for implantation of prosthetic heart valves |
US11564794B2 (en) | 2008-02-26 | 2023-01-31 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11589981B2 (en) | 2010-05-25 | 2023-02-28 | Jenavalve Technology, Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
US12121461B2 (en) | 2015-03-20 | 2024-10-22 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath |
Families Citing this family (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5683366A (en) * | 1992-01-07 | 1997-11-04 | Arthrocare Corporation | System and method for electrosurgical tissue canalization |
US6156031A (en) * | 1995-08-09 | 2000-12-05 | Eclipse Surgical Technologies | Transmyocardial revascularization using radiofrequency energy |
AU729466B2 (en) * | 1995-10-13 | 2001-02-01 | Transvascular, Inc. | A device, system and method for interstitial transvascular intervention |
DE69724255T2 (en) * | 1996-02-02 | 2004-06-03 | Transvascular, Inc., Menlo Park | SYSTEM FOR INTERSTITIAL TRANSVASCULAR SURGICAL INTERVENTIONS |
US5766164A (en) * | 1996-07-03 | 1998-06-16 | Eclipse Surgical Technologies, Inc. | Contiguous, branched transmyocardial revascularization (TMR) channel, method and device |
US5662124A (en) | 1996-06-19 | 1997-09-02 | Wilk Patent Development Corp. | Coronary artery by-pass method |
US6120520A (en) | 1997-05-27 | 2000-09-19 | Angiotrax, Inc. | Apparatus and methods for stimulating revascularization and/or tissue growth |
US6165188A (en) * | 1996-12-02 | 2000-12-26 | Angiotrax, Inc. | Apparatus for percutaneously performing myocardial revascularization having controlled cutting depth and methods of use |
US6051008A (en) * | 1996-12-02 | 2000-04-18 | Angiotrax, Inc. | Apparatus having stabilization members for percutaneously performing surgery and methods of use |
US6102926A (en) | 1996-12-02 | 2000-08-15 | Angiotrax, Inc. | Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use |
US6155264A (en) * | 1997-03-06 | 2000-12-05 | Scimed Life Systems, Inc. | Percutaneous bypass by tunneling through vessel wall |
US6026814A (en) | 1997-03-06 | 2000-02-22 | Scimed Life Systems, Inc. | System and method for percutaneous coronary artery bypass |
US6035856A (en) * | 1997-03-06 | 2000-03-14 | Scimed Life Systems | Percutaneous bypass with branching vessel |
US6086534A (en) * | 1997-03-07 | 2000-07-11 | Cardiogenesis Corporation | Apparatus and method of myocardial revascularization using ultrasonic pulse-echo distance ranging |
EP0981295A4 (en) * | 1997-04-11 | 2005-02-02 | Transvascular Inc | Methods and apparatus for transmyocardial direct coronary revascularization |
US6024703A (en) * | 1997-05-07 | 2000-02-15 | Eclipse Surgical Technologies, Inc. | Ultrasound device for axial ranging |
US6213126B1 (en) | 1997-06-19 | 2001-04-10 | Scimed Life Systems, Inc. | Percutaneous artery to artery bypass using heart tissue as a portion of a bypass conduit |
US6092526A (en) | 1997-06-19 | 2000-07-25 | Scimed Life Systems, Inc. | Percutaneous chamber-to-artery bypass |
US6443158B1 (en) | 1997-06-19 | 2002-09-03 | Scimed Life Systems, Inc. | Percutaneous coronary artery bypass through a venous vessel |
US5908029A (en) * | 1997-08-15 | 1999-06-01 | Heartstent Corporation | Coronary artery bypass with reverse flow |
US6156029A (en) * | 1997-11-25 | 2000-12-05 | Eclipse Surgical Technologies, Inc. | Selective treatment of endocardial/myocardial boundary |
US6197324B1 (en) | 1997-12-18 | 2001-03-06 | C. R. Bard, Inc. | System and methods for local delivery of an agent |
US6251418B1 (en) * | 1997-12-18 | 2001-06-26 | C.R. Bard, Inc. | Systems and methods for local delivery of an agent |
EP1655002A3 (en) | 1998-01-30 | 2008-04-09 | Wilk Patent Development Corporation | Transmyocardial coronary artery bypass and revascularization |
ES2255155T3 (en) | 1998-02-05 | 2006-06-16 | Biosense Webster, Inc. | DEVICE FOR THE INTRACARDIAC ADMINISTRATION OF PHARMACOS. |
JP4535468B2 (en) * | 1998-02-05 | 2010-09-01 | バイオセンス・ウエブスター・インコーポレーテツド | Intracardiac drug delivery |
US20020144696A1 (en) | 1998-02-13 | 2002-10-10 | A. Adam Sharkawy | Conduits for use in placing a target vessel in fluid communication with a source of blood |
US6651670B2 (en) | 1998-02-13 | 2003-11-25 | Ventrica, Inc. | Delivering a conduit into a heart wall to place a coronary vessel in communication with a heart chamber and removing tissue from the vessel or heart wall to facilitate such communication |
US6808498B2 (en) | 1998-02-13 | 2004-10-26 | Ventrica, Inc. | Placing a guide member into a heart chamber through a coronary vessel and delivering devices for placing the coronary vessel in communication with the heart chamber |
US7027398B2 (en) * | 2001-04-12 | 2006-04-11 | General Instrument Corporation | Method and apparatus for monitoring voice conversations from customer premises equipment |
JP4184602B2 (en) | 1998-03-31 | 2008-11-19 | メドトロニック バスキュラー インコーポレイテッド | Catheter, system and method for percutaneous in situ arterio-venous bypass |
US6325813B1 (en) | 1998-08-18 | 2001-12-04 | Scimed Life Systems, Inc. | Method and apparatus for stabilizing vascular wall |
US6406488B1 (en) * | 1998-08-27 | 2002-06-18 | Heartstent Corporation | Healing transmyocardial implant |
DE69930756T2 (en) | 1998-09-10 | 2006-08-31 | Percardia, Inc. | TMR DEVICE |
US6196230B1 (en) * | 1998-09-10 | 2001-03-06 | Percardia, Inc. | Stent delivery system and method of use |
US6689121B1 (en) | 1998-09-24 | 2004-02-10 | C. R. Bard, Inc. | Systems and methods for treating ischemia |
US6432126B1 (en) | 1998-09-30 | 2002-08-13 | C.R. Bard, Inc. | Flexible vascular inducing implants |
US6248112B1 (en) | 1998-09-30 | 2001-06-19 | C. R. Bard, Inc. | Implant delivery system |
US6251079B1 (en) | 1998-09-30 | 2001-06-26 | C. R. Bard, Inc. | Transthoracic drug delivery device |
US6458092B1 (en) | 1998-09-30 | 2002-10-01 | C. R. Bard, Inc. | Vascular inducing implants |
US6692520B1 (en) | 1998-12-15 | 2004-02-17 | C. R. Bard, Inc. | Systems and methods for imbedded intramuscular implants |
US7025773B2 (en) | 1999-01-15 | 2006-04-11 | Medtronic, Inc. | Methods and devices for placing a conduit in fluid communication with a target vessel |
US7578828B2 (en) | 1999-01-15 | 2009-08-25 | Medtronic, Inc. | Methods and devices for placing a conduit in fluid communication with a target vessel |
US6409697B2 (en) | 1999-05-04 | 2002-06-25 | Heartstent Corporation | Transmyocardial implant with forward flow bias |
US6986784B1 (en) | 1999-05-14 | 2006-01-17 | C. R. Bard, Inc. | Implant anchor systems |
US7147633B2 (en) | 1999-06-02 | 2006-12-12 | Boston Scientific Scimed, Inc. | Method and apparatus for treatment of atrial fibrillation |
US6638237B1 (en) | 1999-08-04 | 2003-10-28 | Percardia, Inc. | Left ventricular conduits and methods for delivery |
WO2001010340A1 (en) | 1999-08-04 | 2001-02-15 | Percardia, Inc. | Corkscrew reinforced left ventricle to coronary artery channel |
US7033372B1 (en) | 1999-08-04 | 2006-04-25 | Percardia, Inc. | Corkscrew reinforced left ventricle to coronary artery channel |
EP1229845A2 (en) * | 1999-11-05 | 2002-08-14 | Microheart, Inc. | Method and apparatus for demand injury in stimulating angiogenesis |
US6748258B1 (en) | 1999-11-05 | 2004-06-08 | Scimed Life Systems, Inc. | Method and devices for heart treatment |
US6676679B1 (en) | 1999-11-05 | 2004-01-13 | Boston Scientific Corporation | Method and apparatus for recurrent demand injury in stimulating angiogenesis |
EP1267729A2 (en) * | 2000-03-23 | 2003-01-02 | SciMed Life Systems, Inc. | Pressure sensor for therapeutic delivery device and method |
US7214223B2 (en) * | 2000-03-24 | 2007-05-08 | Boston Scientific Scimed, Inc. | Photoatherolytic catheter apparatus and method |
US6854467B2 (en) | 2000-05-04 | 2005-02-15 | Percardia, Inc. | Methods and devices for delivering a ventricular stent |
WO2002000278A2 (en) | 2000-06-26 | 2002-01-03 | Microheart, Inc. | Method and apparatus for treating ischemic tissue |
EP1301228B1 (en) | 2000-07-13 | 2008-07-23 | Abbott Cardiovascular Systems Inc. | Deployment system for myocardial cellular material |
US7204847B1 (en) | 2000-07-28 | 2007-04-17 | C. R. Bard, Inc. | Implant anchor systems |
US6546276B1 (en) | 2000-09-12 | 2003-04-08 | Claudio I. Zanelli | Ultrasonic based detection of interventional medical device contact and alignment |
US6436059B1 (en) | 2000-09-12 | 2002-08-20 | Claudio I. Zanelli | Detection of imd contact and alignment based on changes in frequency response characteristics |
US6976990B2 (en) | 2001-01-25 | 2005-12-20 | Percardia, Inc. | Intravascular ventriculocoronary bypass via a septal passageway |
US20020123786A1 (en) * | 2001-03-02 | 2002-09-05 | Ventrica, Inc. | Methods and devices for bypassing an obstructed target vessel by placing the vessel in communication with a heart chamber containing blood |
EP1377209A1 (en) * | 2001-04-02 | 2004-01-07 | Université de Lausanne | Cardiac stabilizers |
US6949118B2 (en) | 2002-01-16 | 2005-09-27 | Percardia, Inc. | Encased implant and methods |
US7008397B2 (en) | 2002-02-13 | 2006-03-07 | Percardia, Inc. | Cardiac implant and methods |
US7326219B2 (en) | 2002-09-09 | 2008-02-05 | Wilk Patent Development | Device for placing transmyocardial implant |
US20040147868A1 (en) * | 2003-01-27 | 2004-07-29 | Earl Bardsley | Myocardial implant with collar |
US8308708B2 (en) | 2003-07-15 | 2012-11-13 | Abbott Cardiovascular Systems Inc. | Deployment system for myocardial cellular material |
CN1860643B (en) * | 2003-09-30 | 2010-04-21 | 皇家飞利浦电子股份有限公司 | Electroacoustic cable for magnetic resonance applications |
US20090013350A1 (en) * | 2005-08-11 | 2009-01-08 | Vvond, Llc | Display of movie titles in a library |
US8159959B2 (en) * | 2005-11-07 | 2012-04-17 | Vudu, Inc. | Graphic user interface for playing video data |
US20090024602A1 (en) * | 2005-11-07 | 2009-01-22 | Vvond, Llc | Method and apparatus for searching a video library by genre |
US8535308B2 (en) | 2007-10-08 | 2013-09-17 | Biosense Webster (Israel), Ltd. | High-sensitivity pressure-sensing probe |
US8357152B2 (en) | 2007-10-08 | 2013-01-22 | Biosense Webster (Israel), Ltd. | Catheter with pressure sensing |
US8437832B2 (en) | 2008-06-06 | 2013-05-07 | Biosense Webster, Inc. | Catheter with bendable tip |
US9101734B2 (en) | 2008-09-09 | 2015-08-11 | Biosense Webster, Inc. | Force-sensing catheter with bonded center strut |
US9326700B2 (en) | 2008-12-23 | 2016-05-03 | Biosense Webster (Israel) Ltd. | Catheter display showing tip angle and pressure |
US8600472B2 (en) | 2008-12-30 | 2013-12-03 | Biosense Webster (Israel), Ltd. | Dual-purpose lasso catheter with irrigation using circumferentially arranged ring bump electrodes |
US8475450B2 (en) | 2008-12-30 | 2013-07-02 | Biosense Webster, Inc. | Dual-purpose lasso catheter with irrigation |
US10688278B2 (en) | 2009-11-30 | 2020-06-23 | Biosense Webster (Israel), Ltd. | Catheter with pressure measuring tip |
US8920415B2 (en) | 2009-12-16 | 2014-12-30 | Biosense Webster (Israel) Ltd. | Catheter with helical electrode |
US8521462B2 (en) | 2009-12-23 | 2013-08-27 | Biosense Webster (Israel), Ltd. | Calibration system for a pressure-sensitive catheter |
US8529476B2 (en) | 2009-12-28 | 2013-09-10 | Biosense Webster (Israel), Ltd. | Catheter with strain gauge sensor |
US8608735B2 (en) * | 2009-12-30 | 2013-12-17 | Biosense Webster (Israel) Ltd. | Catheter with arcuate end section |
US8374670B2 (en) | 2010-01-22 | 2013-02-12 | Biosense Webster, Inc. | Catheter having a force sensing distal tip |
US8798952B2 (en) | 2010-06-10 | 2014-08-05 | Biosense Webster (Israel) Ltd. | Weight-based calibration system for a pressure sensitive catheter |
US8226580B2 (en) | 2010-06-30 | 2012-07-24 | Biosense Webster (Israel), Ltd. | Pressure sensing for a multi-arm catheter |
US8380276B2 (en) | 2010-08-16 | 2013-02-19 | Biosense Webster, Inc. | Catheter with thin film pressure sensing distal tip |
US8731859B2 (en) | 2010-10-07 | 2014-05-20 | Biosense Webster (Israel) Ltd. | Calibration system for a force-sensing catheter |
US8979772B2 (en) | 2010-11-03 | 2015-03-17 | Biosense Webster (Israel), Ltd. | Zero-drift detection and correction in contact force measurements |
US9220433B2 (en) | 2011-06-30 | 2015-12-29 | Biosense Webster (Israel), Ltd. | Catheter with variable arcuate distal section |
US9662169B2 (en) | 2011-07-30 | 2017-05-30 | Biosense Webster (Israel) Ltd. | Catheter with flow balancing valve |
US9687289B2 (en) | 2012-01-04 | 2017-06-27 | Biosense Webster (Israel) Ltd. | Contact assessment based on phase measurement |
WO2018014021A2 (en) * | 2016-07-15 | 2018-01-18 | North Carolina State University | Ultrasound transducer and array for intravascular thrombolysis |
Citations (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3971363A (en) * | 1975-05-05 | 1976-07-27 | Nasa | Myocardium wall thickness transducer and measuring method |
US4249541A (en) * | 1979-04-26 | 1981-02-10 | David S. Pratt | Biopsy device |
US4658817A (en) * | 1985-04-01 | 1987-04-21 | Children's Hospital Medical Center | Method and apparatus for transmyocardial revascularization using a laser |
US4995857A (en) * | 1989-04-07 | 1991-02-26 | Arnold John R | Left ventricular assist device and method for temporary and permanent procedures |
US4997431A (en) * | 1989-08-30 | 1991-03-05 | Angeion Corporation | Catheter |
US5111832A (en) * | 1990-07-24 | 1992-05-12 | Sanjeev Saksena | Processes for the control of tachyarrhythmias by in vivo laser ablation of human heart tissue |
US5180366A (en) * | 1990-10-10 | 1993-01-19 | Woods W T | Apparatus and method for angioplasty and for preventing re-stenosis |
US5193546A (en) * | 1991-05-15 | 1993-03-16 | Alexander Shaknovich | Coronary intravascular ultrasound imaging method and apparatus |
US5287861A (en) * | 1992-10-30 | 1994-02-22 | Wilk Peter J | Coronary artery by-pass method and associated catheter |
US5292309A (en) * | 1993-01-22 | 1994-03-08 | Schneider (Usa) Inc. | Surgical depth measuring instrument and method |
US5327913A (en) * | 1992-03-25 | 1994-07-12 | Taheri Syde A | Percutaneus cardiomyoplasty method |
US5330486A (en) * | 1992-07-29 | 1994-07-19 | Wilk Peter J | Laparoscopic or endoscopic anastomosis technique and associated instruments |
US5380316A (en) * | 1990-12-18 | 1995-01-10 | Advanced Cardiovascular Systems, Inc. | Method for intra-operative myocardial device revascularization |
US5389096A (en) * | 1990-12-18 | 1995-02-14 | Advanced Cardiovascular Systems | System and method for percutaneous myocardial revascularization |
US5409019A (en) * | 1992-10-30 | 1995-04-25 | Wilk; Peter J. | Coronary artery by-pass method |
US5409012A (en) * | 1993-12-30 | 1995-04-25 | Boston Scientific Corporation | Sample collection using catheter with expandable member |
US5411552A (en) * | 1990-05-18 | 1995-05-02 | Andersen; Henning R. | Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis |
US5423744A (en) * | 1992-12-22 | 1995-06-13 | Gencheff; Nelson | Catheter system for the deployment of biological material |
US5429144A (en) * | 1992-10-30 | 1995-07-04 | Wilk; Peter J. | Coronary artery by-pass method |
US5533957A (en) * | 1994-05-06 | 1996-07-09 | Trustees Of Boston University | Method of tissue retroperfusion |
US5593434A (en) * | 1992-01-31 | 1997-01-14 | Advanced Cardiovascular Systems, Inc. | Stent capable of attachment within a body lumen |
US5611778A (en) * | 1992-05-14 | 1997-03-18 | Vygon | Surgical instrument for performing epidural anesthesia |
US5618299A (en) * | 1993-04-23 | 1997-04-08 | Advanced Cardiovascular Systems, Inc. | Ratcheting stent |
US5725523A (en) * | 1996-03-29 | 1998-03-10 | Mueller; Richard L. | Lateral-and posterior-aspect method and apparatus for laser-assisted transmyocardial revascularization and other surgical applications |
US5728091A (en) * | 1995-06-07 | 1998-03-17 | Cardiogenesis Corporation | Optical fiber for myocardial channel formation |
US5733267A (en) * | 1995-04-05 | 1998-03-31 | Scimed Life Systems, Inc. | Pull back stent delivery system |
US5738096A (en) * | 1993-07-20 | 1998-04-14 | Biosense, Inc. | Cardiac electromechanics |
US5738680A (en) * | 1996-04-05 | 1998-04-14 | Eclipse Surgical Technologies, Inc. | Laser device with piercing tip for transmyocardial revascularization procedures |
US5746709A (en) * | 1996-04-25 | 1998-05-05 | Medtronic, Inc. | Intravascular pump and bypass assembly and method for using the same |
US5758663A (en) * | 1992-04-10 | 1998-06-02 | Wilk; Peter J. | Coronary artery by-pass method |
US5766164A (en) * | 1996-07-03 | 1998-06-16 | Eclipse Surgical Technologies, Inc. | Contiguous, branched transmyocardial revascularization (TMR) channel, method and device |
US5782823A (en) * | 1996-04-05 | 1998-07-21 | Eclipse Surgical Technologies, Inc. | Laser device for transmyocardial revascularization procedures including means for enabling a formation of a pilot hole in the epicardium |
US5860951A (en) * | 1992-01-07 | 1999-01-19 | Arthrocare Corporation | Systems and methods for electrosurgical myocardial revascularization |
US5885259A (en) * | 1996-01-19 | 1999-03-23 | Scimed Life Systems, Inc. | Increasing radius curve catheter |
US5891133A (en) * | 1996-03-29 | 1999-04-06 | Eclipse Surgical Technologies, Inc. | Apparatus for laser-assisted intra-coronary transmyocardial revascularization and other applications |
US5893848A (en) * | 1996-10-24 | 1999-04-13 | Plc Medical Systems, Inc. | Gauging system for monitoring channel depth in percutaneous endocardial revascularization |
US5908028A (en) * | 1996-06-19 | 1999-06-01 | Wilk Patent Development Corp. | Coronary artery by-pass method |
US6019756A (en) * | 1996-04-05 | 2000-02-01 | Eclipse Surgical Technologies, Inc. | Laser device for transmyocardial revascularization procedures |
US6027497A (en) * | 1996-03-29 | 2000-02-22 | Eclipse Surgical Technologies, Inc. | TMR energy delivery system |
US6068638A (en) * | 1995-10-13 | 2000-05-30 | Transvascular, Inc. | Device, system and method for interstitial transvascular intervention |
US6080163A (en) * | 1996-03-04 | 2000-06-27 | Myocardial Stents, Inc. | Device and method for trans myocardial revascularization (TMR) |
US6080170A (en) * | 1996-07-26 | 2000-06-27 | Kensey Nash Corporation | System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels |
US6168614B1 (en) * | 1990-05-18 | 2001-01-02 | Heartport, Inc. | Valve prosthesis for implantation in the body |
US6168624B1 (en) * | 1996-05-21 | 2001-01-02 | Amnon Sudai | Apparatus and methods for revascularization and perfusion |
US6171303B1 (en) * | 1996-01-08 | 2001-01-09 | Biosense, Inc. | Methods and apparatus for myocardial revascularization |
US6190353B1 (en) * | 1995-10-13 | 2001-02-20 | Transvascular, Inc. | Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
US6196230B1 (en) * | 1998-09-10 | 2001-03-06 | Percardia, Inc. | Stent delivery system and method of use |
US6251104B1 (en) * | 1995-05-10 | 2001-06-26 | Eclipse Surgical Technologies, Inc. | Guiding catheter system for ablating heart tissue |
US6253768B1 (en) * | 1999-08-04 | 2001-07-03 | Percardia, Inc. | Vascular graft bypass |
US6254564B1 (en) * | 1998-09-10 | 2001-07-03 | Percardia, Inc. | Left ventricular conduit with blood vessel graft |
US6261304B1 (en) * | 1998-09-10 | 2001-07-17 | Percardia, Inc. | Delivery methods for left ventricular conduit |
US6267757B1 (en) * | 1995-08-09 | 2001-07-31 | Eclipse Surgical Technologies, Inc. | Revascularization with RF ablation |
US20020002349A1 (en) * | 1996-10-11 | 2002-01-03 | Transvascular, Inc. | Systems and methods for delivering drugs to selected locations within the body |
US20020004662A1 (en) * | 1999-08-04 | 2002-01-10 | Percardia, Inc. | Blood flow conduit delivery system and method of use |
US20020029079A1 (en) * | 1996-10-11 | 2002-03-07 | Transvascular, Inc. | Devices for forming and/or maintaining connections between adjacent anatomical conduits |
US20020032478A1 (en) * | 2000-08-07 | 2002-03-14 | Percardia, Inc. | Myocardial stents and related methods of providing direct blood flow from a heart chamber to a coronary vessel |
US20020045928A1 (en) * | 2000-05-04 | 2002-04-18 | Percardia, Inc. | Methods and devices for delivering a ventricular stent |
US6375615B1 (en) * | 1995-10-13 | 2002-04-23 | Transvascular, Inc. | Tissue penetrating catheters having integral imaging transducers and their methods of use |
US6379319B1 (en) * | 1996-10-11 | 2002-04-30 | Transvascular, Inc. | Systems and methods for directing and snaring guidewires |
US20020058897A1 (en) * | 1998-09-10 | 2002-05-16 | Percardia, Inc. | Designs for left ventricular conduit |
US20030045828A1 (en) * | 1998-01-30 | 2003-03-06 | Wilk Peter J. | Left ventricular conduits to coronary arteries and methods for coronary bypass |
US20030044315A1 (en) * | 1995-04-20 | 2003-03-06 | Peter Boekstegers | Method and device for the selective perfusion of fluids through blood vessels, controlled by the pressure in the blood vessels |
US20030105514A1 (en) * | 1998-09-10 | 2003-06-05 | Percardia, Inc. | Designs for left ventricular conduit |
US6579311B1 (en) * | 1996-02-02 | 2003-06-17 | Transvascular, Inc. | Method for interstitial transvascular intervention |
US20040019348A1 (en) * | 1993-02-22 | 2004-01-29 | Stevens John H. | Method and apparatus for thoracoscopic intracardiac procedures |
US20040037946A1 (en) * | 2001-01-31 | 2004-02-26 | Percardia | Methods for surface modification |
US6701932B2 (en) * | 1996-08-13 | 2004-03-09 | Percardia, Inc. | Method and apparatus for revascularizing a coronary vessel with an implant having a tapered myocardial leg |
US6709444B1 (en) * | 1996-02-02 | 2004-03-23 | Transvascular, Inc. | Methods for bypassing total or near-total obstructions in arteries or other anatomical conduits |
US6726677B1 (en) * | 1995-10-13 | 2004-04-27 | Transvascular, Inc. | Stabilized tissue penetrating catheters |
US20040106931A1 (en) * | 1999-08-04 | 2004-06-03 | Percardia, Inc. | Left ventricular conduits and methods for delivery |
US20050101903A1 (en) * | 2001-08-16 | 2005-05-12 | Percardia, Inc. | Interventional diagnostic catheter and a method for using a catheter to access artificial cardiac shunts |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3995617A (en) * | 1972-05-31 | 1976-12-07 | Watkins David H | Heart assist method and catheter |
US4469098A (en) * | 1978-12-18 | 1984-09-04 | Davi Samantha K | Apparatus for and method of utilizing energy to excise pathological tissue |
US4546499A (en) * | 1982-12-13 | 1985-10-15 | Possis Medical, Inc. | Method of supplying blood to blood receiving vessels |
US4785815A (en) * | 1985-10-23 | 1988-11-22 | Cordis Corporation | Apparatus for locating and ablating cardiac conduction pathways |
US4861330A (en) * | 1987-03-12 | 1989-08-29 | Gene Voss | Cardiac assist device and method |
US4953553A (en) * | 1989-05-11 | 1990-09-04 | Advanced Cardiovascular Systems, Inc. | Pressure monitoring guidewire with a flexible distal portion |
US4985014A (en) * | 1989-07-11 | 1991-01-15 | Orejola Wilmo C | Ventricular venting loop |
US5700259A (en) | 1990-09-24 | 1997-12-23 | Plc Medical Systems, Inc. | Thoracoscopic transmyocardial revascularization handpiece assembly |
US6132422A (en) | 1990-09-24 | 2000-10-17 | Plc Medical Systems, Inc. | Handpiece for transmyocardial vascularization heart-synchronized pulsed laser system |
US5143093A (en) * | 1990-10-05 | 1992-09-01 | Harvinder Sahota | Methods of angioplasty treatment of stenotic regions |
NZ272209A (en) | 1991-05-01 | 2001-02-23 | Univ Columbia | Myocardial revascularisation of the heart by a laser |
US5190058A (en) * | 1991-05-22 | 1993-03-02 | Medtronic, Inc. | Method of using a temporary stent catheter |
US5470320A (en) | 1992-04-10 | 1995-11-28 | Tiefenbrun; Jonathan | Method and related device for obtaining access to a hollow organ |
US5258008A (en) | 1992-07-29 | 1993-11-02 | Wilk Peter J | Surgical stapling device and associated method |
US5957916A (en) | 1994-05-25 | 1999-09-28 | The Trustees Of Columbia University In The City Of New York | Myocardial revascularization through the endocardial surface using a laser |
US5951541A (en) | 1995-06-07 | 1999-09-14 | Cardiogenesis Corporation | Channel forming device with a secured distal extremity |
US6132451A (en) | 1995-06-07 | 2000-10-17 | Eclipse Surgical Technologies, Inc. | Optical fiber for myocardial channel formation |
CA2244080A1 (en) | 1996-02-02 | 1997-08-07 | Transvascular, Inc. | Methods and apparatus for blocking flow through blood vessels |
WO1997027893A1 (en) | 1996-02-02 | 1997-08-07 | Transvascular, Inc. | Methods and apparatus for blocking flow through blood vessels |
US5713894A (en) | 1996-02-27 | 1998-02-03 | Murphy-Chutorian; Douglas | Combined mechanical/optical system for transmyocardial revascularization |
US5832929A (en) | 1996-03-22 | 1998-11-10 | Plc Medical Systems, Inc. | Video assisted thoracoscopic transmyocardial revascularization surgical method |
US5725521A (en) | 1996-03-29 | 1998-03-10 | Eclipse Surgical Technologies, Inc. | Depth stop apparatus and method for laser-assisted transmyocardial revascularization and other surgical applications |
US5989284A (en) | 1997-02-18 | 1999-11-23 | Hearten Medical, Inc. | Method and device for soft tissue modification |
EP1655002A3 (en) | 1998-01-30 | 2008-04-09 | Wilk Patent Development Corporation | Transmyocardial coronary artery bypass and revascularization |
-
1996
- 1996-06-19 US US08/665,950 patent/US5662124A/en not_active Expired - Lifetime
-
1997
- 1997-07-11 US US08/893,643 patent/US5908028A/en not_active Expired - Fee Related
-
1999
- 1999-05-18 US US09/315,383 patent/US6363939B1/en not_active Expired - Fee Related
-
2002
- 2002-02-05 US US10/062,409 patent/US20020092535A1/en not_active Abandoned
Patent Citations (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3971363A (en) * | 1975-05-05 | 1976-07-27 | Nasa | Myocardium wall thickness transducer and measuring method |
US4249541A (en) * | 1979-04-26 | 1981-02-10 | David S. Pratt | Biopsy device |
US4658817A (en) * | 1985-04-01 | 1987-04-21 | Children's Hospital Medical Center | Method and apparatus for transmyocardial revascularization using a laser |
US4995857A (en) * | 1989-04-07 | 1991-02-26 | Arnold John R | Left ventricular assist device and method for temporary and permanent procedures |
US4997431A (en) * | 1989-08-30 | 1991-03-05 | Angeion Corporation | Catheter |
US5106386A (en) * | 1989-08-30 | 1992-04-21 | Angelase, Inc. | Catheter |
US6168614B1 (en) * | 1990-05-18 | 2001-01-02 | Heartport, Inc. | Valve prosthesis for implantation in the body |
US5411552A (en) * | 1990-05-18 | 1995-05-02 | Andersen; Henning R. | Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis |
US5111832A (en) * | 1990-07-24 | 1992-05-12 | Sanjeev Saksena | Processes for the control of tachyarrhythmias by in vivo laser ablation of human heart tissue |
US5180366A (en) * | 1990-10-10 | 1993-01-19 | Woods W T | Apparatus and method for angioplasty and for preventing re-stenosis |
US5925033A (en) * | 1990-12-18 | 1999-07-20 | Cardiogenesis Corporation | Method for intra-operative myocardial revascularization |
US5389096A (en) * | 1990-12-18 | 1995-02-14 | Advanced Cardiovascular Systems | System and method for percutaneous myocardial revascularization |
US5380316A (en) * | 1990-12-18 | 1995-01-10 | Advanced Cardiovascular Systems, Inc. | Method for intra-operative myocardial device revascularization |
US5193546A (en) * | 1991-05-15 | 1993-03-16 | Alexander Shaknovich | Coronary intravascular ultrasound imaging method and apparatus |
US5873855A (en) * | 1992-01-07 | 1999-02-23 | Arthrocare Corporation | Systems and methods for electrosurgical myocardial revascularization |
US6032674A (en) * | 1992-01-07 | 2000-03-07 | Arthrocare Corporation | Systems and methods for myocardial revascularization |
US5860951A (en) * | 1992-01-07 | 1999-01-19 | Arthrocare Corporation | Systems and methods for electrosurgical myocardial revascularization |
US5593434A (en) * | 1992-01-31 | 1997-01-14 | Advanced Cardiovascular Systems, Inc. | Stent capable of attachment within a body lumen |
US5327913A (en) * | 1992-03-25 | 1994-07-12 | Taheri Syde A | Percutaneus cardiomyoplasty method |
US5758663A (en) * | 1992-04-10 | 1998-06-02 | Wilk; Peter J. | Coronary artery by-pass method |
US5611778A (en) * | 1992-05-14 | 1997-03-18 | Vygon | Surgical instrument for performing epidural anesthesia |
US5330486A (en) * | 1992-07-29 | 1994-07-19 | Wilk Peter J | Laparoscopic or endoscopic anastomosis technique and associated instruments |
US5409019A (en) * | 1992-10-30 | 1995-04-25 | Wilk; Peter J. | Coronary artery by-pass method |
US5287861A (en) * | 1992-10-30 | 1994-02-22 | Wilk Peter J | Coronary artery by-pass method and associated catheter |
US5429144A (en) * | 1992-10-30 | 1995-07-04 | Wilk; Peter J. | Coronary artery by-pass method |
US5423744A (en) * | 1992-12-22 | 1995-06-13 | Gencheff; Nelson | Catheter system for the deployment of biological material |
US5292309A (en) * | 1993-01-22 | 1994-03-08 | Schneider (Usa) Inc. | Surgical depth measuring instrument and method |
US20040019348A1 (en) * | 1993-02-22 | 2004-01-29 | Stevens John H. | Method and apparatus for thoracoscopic intracardiac procedures |
US5618299A (en) * | 1993-04-23 | 1997-04-08 | Advanced Cardiovascular Systems, Inc. | Ratcheting stent |
US5738096A (en) * | 1993-07-20 | 1998-04-14 | Biosense, Inc. | Cardiac electromechanics |
US5409012A (en) * | 1993-12-30 | 1995-04-25 | Boston Scientific Corporation | Sample collection using catheter with expandable member |
US5533957A (en) * | 1994-05-06 | 1996-07-09 | Trustees Of Boston University | Method of tissue retroperfusion |
US5733267A (en) * | 1995-04-05 | 1998-03-31 | Scimed Life Systems, Inc. | Pull back stent delivery system |
US20030044315A1 (en) * | 1995-04-20 | 2003-03-06 | Peter Boekstegers | Method and device for the selective perfusion of fluids through blood vessels, controlled by the pressure in the blood vessels |
US6251104B1 (en) * | 1995-05-10 | 2001-06-26 | Eclipse Surgical Technologies, Inc. | Guiding catheter system for ablating heart tissue |
US5728091A (en) * | 1995-06-07 | 1998-03-17 | Cardiogenesis Corporation | Optical fiber for myocardial channel formation |
US6039727A (en) * | 1995-06-07 | 2000-03-21 | Cardiogenesis Corporation | Channel forming device with penetration limiter |
US6267757B1 (en) * | 1995-08-09 | 2001-07-31 | Eclipse Surgical Technologies, Inc. | Revascularization with RF ablation |
US20040122318A1 (en) * | 1995-10-13 | 2004-06-24 | Transvascular, Inc. | Tissue penetrating catheters having integral imaging transducers and their methods of use |
US6068638A (en) * | 1995-10-13 | 2000-05-30 | Transvascular, Inc. | Device, system and method for interstitial transvascular intervention |
US6190353B1 (en) * | 1995-10-13 | 2001-02-20 | Transvascular, Inc. | Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
US6231587B1 (en) * | 1995-10-13 | 2001-05-15 | Transvascular, Inc. | Devices for connecting anatomical conduits such as vascular structures |
US6746464B1 (en) * | 1995-10-13 | 2004-06-08 | Transvascular, Inc. | Device, system and method for interstitial transvascular intervention |
US6375615B1 (en) * | 1995-10-13 | 2002-04-23 | Transvascular, Inc. | Tissue penetrating catheters having integral imaging transducers and their methods of use |
US6726677B1 (en) * | 1995-10-13 | 2004-04-27 | Transvascular, Inc. | Stabilized tissue penetrating catheters |
US20040059280A1 (en) * | 1995-10-13 | 2004-03-25 | Trans Vascular, Inc. | Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
US6171303B1 (en) * | 1996-01-08 | 2001-01-09 | Biosense, Inc. | Methods and apparatus for myocardial revascularization |
US5885259A (en) * | 1996-01-19 | 1999-03-23 | Scimed Life Systems, Inc. | Increasing radius curve catheter |
US20040073238A1 (en) * | 1996-02-02 | 2004-04-15 | Transvascular, Inc. | Device, system and method for interstitial transvascular intervention |
US6709444B1 (en) * | 1996-02-02 | 2004-03-23 | Transvascular, Inc. | Methods for bypassing total or near-total obstructions in arteries or other anatomical conduits |
US6579311B1 (en) * | 1996-02-02 | 2003-06-17 | Transvascular, Inc. | Method for interstitial transvascular intervention |
US6080163A (en) * | 1996-03-04 | 2000-06-27 | Myocardial Stents, Inc. | Device and method for trans myocardial revascularization (TMR) |
US5891133A (en) * | 1996-03-29 | 1999-04-06 | Eclipse Surgical Technologies, Inc. | Apparatus for laser-assisted intra-coronary transmyocardial revascularization and other applications |
US6036685A (en) * | 1996-03-29 | 2000-03-14 | Eclipse Surgical Technologies. Inc. | Lateral- and posterior-aspect method for laser-assisted transmyocardial revascularization and other surgical applications |
US6027497A (en) * | 1996-03-29 | 2000-02-22 | Eclipse Surgical Technologies, Inc. | TMR energy delivery system |
US5725523A (en) * | 1996-03-29 | 1998-03-10 | Mueller; Richard L. | Lateral-and posterior-aspect method and apparatus for laser-assisted transmyocardial revascularization and other surgical applications |
US5782823A (en) * | 1996-04-05 | 1998-07-21 | Eclipse Surgical Technologies, Inc. | Laser device for transmyocardial revascularization procedures including means for enabling a formation of a pilot hole in the epicardium |
US6019756A (en) * | 1996-04-05 | 2000-02-01 | Eclipse Surgical Technologies, Inc. | Laser device for transmyocardial revascularization procedures |
US5738680A (en) * | 1996-04-05 | 1998-04-14 | Eclipse Surgical Technologies, Inc. | Laser device with piercing tip for transmyocardial revascularization procedures |
US5746709A (en) * | 1996-04-25 | 1998-05-05 | Medtronic, Inc. | Intravascular pump and bypass assembly and method for using the same |
US6168624B1 (en) * | 1996-05-21 | 2001-01-02 | Amnon Sudai | Apparatus and methods for revascularization and perfusion |
US6363939B1 (en) * | 1996-06-19 | 2002-04-02 | Wilk Patent Development Corp. | Coronary artery by-pass method |
US5908028A (en) * | 1996-06-19 | 1999-06-01 | Wilk Patent Development Corp. | Coronary artery by-pass method |
US5766164A (en) * | 1996-07-03 | 1998-06-16 | Eclipse Surgical Technologies, Inc. | Contiguous, branched transmyocardial revascularization (TMR) channel, method and device |
US6080170A (en) * | 1996-07-26 | 2000-06-27 | Kensey Nash Corporation | System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels |
US20040122347A1 (en) * | 1996-08-13 | 2004-06-24 | Percardia, Inc. | Method and apparatus for revascularizing a coronary vessel with an implant having a tapered myocardial leg |
US6701932B2 (en) * | 1996-08-13 | 2004-03-09 | Percardia, Inc. | Method and apparatus for revascularizing a coronary vessel with an implant having a tapered myocardial leg |
US6379319B1 (en) * | 1996-10-11 | 2002-04-30 | Transvascular, Inc. | Systems and methods for directing and snaring guidewires |
US20020029079A1 (en) * | 1996-10-11 | 2002-03-07 | Transvascular, Inc. | Devices for forming and/or maintaining connections between adjacent anatomical conduits |
US20020002349A1 (en) * | 1996-10-11 | 2002-01-03 | Transvascular, Inc. | Systems and methods for delivering drugs to selected locations within the body |
US5893848A (en) * | 1996-10-24 | 1999-04-13 | Plc Medical Systems, Inc. | Gauging system for monitoring channel depth in percutaneous endocardial revascularization |
US20050101904A1 (en) * | 1998-01-30 | 2005-05-12 | Percardia, Inc. | Left ventricular conduits to coronary arteries and methods for coronary bypass |
US20030045828A1 (en) * | 1998-01-30 | 2003-03-06 | Wilk Peter J. | Left ventricular conduits to coronary arteries and methods for coronary bypass |
US20030055371A1 (en) * | 1998-01-30 | 2003-03-20 | Percardia, Inc. | Left ventricular conduits to coronary arteries and methods for coronary bypass |
US6409751B1 (en) * | 1998-09-10 | 2002-06-25 | Percardia, Inc. | Stent delivery system and method of use |
US20040118415A1 (en) * | 1998-09-10 | 2004-06-24 | Hall Todd A. | Delivery methods for left ventricular conduit |
US6881199B2 (en) * | 1998-09-10 | 2005-04-19 | Percardia, Inc. | Left ventricular conduit with blood vessel graft |
US20050033220A1 (en) * | 1998-09-10 | 2005-02-10 | Percardia, Inc. | Left ventricular conduit with blood vessel graft |
US6254564B1 (en) * | 1998-09-10 | 2001-07-03 | Percardia, Inc. | Left ventricular conduit with blood vessel graft |
US6694983B2 (en) * | 1998-09-10 | 2004-02-24 | Percardia, Inc. | Delivery methods for left ventricular conduit |
US20050004505A1 (en) * | 1998-09-10 | 2005-01-06 | Percardia, Inc. | Designs for left ventricular conduit |
US20030105514A1 (en) * | 1998-09-10 | 2003-06-05 | Percardia, Inc. | Designs for left ventricular conduit |
US6261304B1 (en) * | 1998-09-10 | 2001-07-17 | Percardia, Inc. | Delivery methods for left ventricular conduit |
US6196230B1 (en) * | 1998-09-10 | 2001-03-06 | Percardia, Inc. | Stent delivery system and method of use |
US20020007138A1 (en) * | 1998-09-10 | 2002-01-17 | Percardia, Inc. | Left ventricular conduit with blood vessel graft |
US20020058897A1 (en) * | 1998-09-10 | 2002-05-16 | Percardia, Inc. | Designs for left ventricular conduit |
US6387119B2 (en) * | 1998-09-10 | 2002-05-14 | Percardia, Inc. | Delivery methods for left ventricular conduit |
US20040106931A1 (en) * | 1999-08-04 | 2004-06-03 | Percardia, Inc. | Left ventricular conduits and methods for delivery |
US20020004662A1 (en) * | 1999-08-04 | 2002-01-10 | Percardia, Inc. | Blood flow conduit delivery system and method of use |
US6253768B1 (en) * | 1999-08-04 | 2001-07-03 | Percardia, Inc. | Vascular graft bypass |
US20040006298A1 (en) * | 1999-08-04 | 2004-01-08 | Percardia, Inc. | Vascular graft bypass |
US6582444B2 (en) * | 1999-08-04 | 2003-06-24 | Percardia, Inc. | Blood flow conduit delivery system and method of use |
US20020045928A1 (en) * | 2000-05-04 | 2002-04-18 | Percardia, Inc. | Methods and devices for delivering a ventricular stent |
US20050004648A1 (en) * | 2000-05-04 | 2005-01-06 | Percardia, Inc. | Methods and devices for delivering a ventricular stent |
US6854467B2 (en) * | 2000-05-04 | 2005-02-15 | Percardia, Inc. | Methods and devices for delivering a ventricular stent |
US20020032478A1 (en) * | 2000-08-07 | 2002-03-14 | Percardia, Inc. | Myocardial stents and related methods of providing direct blood flow from a heart chamber to a coronary vessel |
US20040037946A1 (en) * | 2001-01-31 | 2004-02-26 | Percardia | Methods for surface modification |
US20050101903A1 (en) * | 2001-08-16 | 2005-05-12 | Percardia, Inc. | Interventional diagnostic catheter and a method for using a catheter to access artificial cardiac shunts |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050228334A1 (en) * | 1996-08-13 | 2005-10-13 | Percardia, Inc. | Method to deliver blood from a heart chamber to vessel |
US20060155239A1 (en) * | 1996-08-13 | 2006-07-13 | Percardia, Inc. | Method to deliver blood from a heart chamber to vessel |
US8216174B2 (en) | 1998-09-10 | 2012-07-10 | Jenavalve Technology, Inc. | Methods and conduits for flowing blood from a heart chamber to a blood vessel |
US7736327B2 (en) | 1998-09-10 | 2010-06-15 | Jenavalve Technology, Inc. | Methods and conduits for flowing blood from a heart chamber to a blood vessel |
US7704222B2 (en) | 1998-09-10 | 2010-04-27 | Jenavalve Technology, Inc. | Methods and conduits for flowing blood from a heart chamber to a blood vessel |
US6610100B2 (en) | 1998-09-10 | 2003-08-26 | Percardia, Inc. | Designs for left ventricular conduit |
US6641610B2 (en) | 1998-09-10 | 2003-11-04 | Percardia, Inc. | Valve designs for left ventricular conduits |
US8597226B2 (en) | 1998-09-10 | 2013-12-03 | Jenavalve Technology, Inc. | Methods and conduits for flowing blood from a heart chamber to a blood vessel |
US20020058897A1 (en) * | 1998-09-10 | 2002-05-16 | Percardia, Inc. | Designs for left ventricular conduit |
US6694983B2 (en) | 1998-09-10 | 2004-02-24 | Percardia, Inc. | Delivery methods for left ventricular conduit |
US20030212413A1 (en) * | 1999-08-04 | 2003-11-13 | Percardia, Inc. | Blood flow conduit delivery system and method of use |
US6605113B2 (en) | 1999-08-04 | 2003-08-12 | Percardia Inc. | Vascular graft bypass |
US6582444B2 (en) | 1999-08-04 | 2003-06-24 | Percardia, Inc. | Blood flow conduit delivery system and method of use |
US6605053B1 (en) | 1999-09-10 | 2003-08-12 | Percardia, Inc. | Conduit designs and related methods for optimal flow control |
US20050101903A1 (en) * | 2001-08-16 | 2005-05-12 | Percardia, Inc. | Interventional diagnostic catheter and a method for using a catheter to access artificial cardiac shunts |
US20030216801A1 (en) * | 2002-05-17 | 2003-11-20 | Heartstent Corporation | Transmyocardial implant with natural vessel graft and method |
US11517431B2 (en) | 2005-01-20 | 2022-12-06 | Jenavalve Technology, Inc. | Catheter system for implantation of prosthetic heart valves |
US11357624B2 (en) | 2007-04-13 | 2022-06-14 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
US10993805B2 (en) | 2008-02-26 | 2021-05-04 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11154398B2 (en) | 2008-02-26 | 2021-10-26 | JenaValve Technology. Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11564794B2 (en) | 2008-02-26 | 2023-01-31 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US11589981B2 (en) | 2010-05-25 | 2023-02-28 | Jenavalve Technology, Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
US11185405B2 (en) | 2013-08-30 | 2021-11-30 | Jenavalve Technology, Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US12121461B2 (en) | 2015-03-20 | 2024-10-22 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath |
US11337800B2 (en) | 2015-05-01 | 2022-05-24 | Jenavalve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
US11065138B2 (en) | 2016-05-13 | 2021-07-20 | Jenavalve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
US11197754B2 (en) | 2017-01-27 | 2021-12-14 | Jenavalve Technology, Inc. | Heart valve mimicry |
US20210282857A1 (en) * | 2018-07-17 | 2021-09-16 | The Johns Hopkins University | Internal laser light delivery for photoacoustic-guided drilling |
Also Published As
Publication number | Publication date |
---|---|
US5908028A (en) | 1999-06-01 |
US5662124A (en) | 1997-09-02 |
US6363939B1 (en) | 2002-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5662124A (en) | Coronary artery by-pass method | |
CA2242356C (en) | Methods and apparatus for myocardial revascularization | |
EP1051129B1 (en) | Transmyocardial coronary artery bypass and revascularization | |
CA2179508C (en) | Method and instrument for establishing the receiving site of a coronary artery bypass graft | |
US6171251B1 (en) | Method and apparatus for optimizing direct vessel implants for myocardial revascularization | |
US6447504B1 (en) | System for treatment of heart tissue using viability map | |
JP5833079B2 (en) | Apparatus for guiding and positioning an intravascular device | |
US6869429B2 (en) | Apparatus for exterior arterial ablation | |
US20050014995A1 (en) | Direct, real-time imaging guidance of cardiac catheterization | |
ATE322230T1 (en) | TMR DEVICE | |
WO1999035978A1 (en) | Method and apparatus for the guided bypass of coronary occlusions | |
JPH06509957A (en) | cardiac blood extraction deep needle assembly | |
AU687807C (en) | Method and instrument for establishing the receiving site of a coronary artery bypass graft | |
AU691808C (en) | Method, instrument and anastomotic fitting for use when performing an end-to-side anastomosis | |
AU2003203575B2 (en) | Transmyocardial coronary artery bypass and revascularization | |
AU2006200130A1 (en) | Transmyocardial coronary artery bypass and revascularization | |
WO2003055133A9 (en) | Intervention tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |