US20020070473A1 - Blends of fluoroeleastomer interpolymers with thermo fluoroplastic interpolymers and the use of such blends in hoses - Google Patents
Blends of fluoroeleastomer interpolymers with thermo fluoroplastic interpolymers and the use of such blends in hoses Download PDFInfo
- Publication number
- US20020070473A1 US20020070473A1 US10/071,634 US7163402A US2002070473A1 US 20020070473 A1 US20020070473 A1 US 20020070473A1 US 7163402 A US7163402 A US 7163402A US 2002070473 A1 US2002070473 A1 US 2002070473A1
- Authority
- US
- United States
- Prior art keywords
- fluorointerpolymer
- hose
- layer
- hexafluoropropylene
- vinylidene fluoride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 62
- 229920002313 fluoropolymer Polymers 0.000 title description 2
- 239000000446 fuel Substances 0.000 claims abstract description 62
- 230000004888 barrier function Effects 0.000 claims abstract description 42
- 229920001971 elastomer Polymers 0.000 claims abstract description 29
- 229920001897 terpolymer Polymers 0.000 claims abstract description 23
- 229920001577 copolymer Polymers 0.000 claims abstract description 22
- 239000000806 elastomer Substances 0.000 claims abstract description 21
- 238000007334 copolymerization reaction Methods 0.000 claims abstract description 15
- 239000000178 monomer Substances 0.000 claims abstract description 14
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 claims abstract description 13
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims abstract description 12
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims abstract description 9
- 230000003014 reinforcing effect Effects 0.000 claims description 18
- 229920001169 thermoplastic Polymers 0.000 claims description 18
- 239000004416 thermosoftening plastic Substances 0.000 claims description 17
- 229920000459 Nitrile rubber Polymers 0.000 claims description 13
- 230000001681 protective effect Effects 0.000 claims description 12
- 239000000835 fiber Substances 0.000 claims description 10
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 8
- 229910052731 fluorine Inorganic materials 0.000 claims description 8
- 239000011737 fluorine Substances 0.000 claims description 8
- 239000006229 carbon black Substances 0.000 claims description 6
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 claims description 5
- 229920003051 synthetic elastomer Polymers 0.000 claims description 4
- 239000004709 Chlorinated polyethylene Substances 0.000 claims description 3
- 239000004952 Polyamide Substances 0.000 claims description 3
- 229920002647 polyamide Polymers 0.000 claims description 3
- 239000004800 polyvinyl chloride Substances 0.000 claims description 3
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 3
- 229920000742 Cotton Polymers 0.000 claims description 2
- 229920000297 Rayon Polymers 0.000 claims description 2
- 239000004760 aramid Substances 0.000 claims description 2
- 229920003235 aromatic polyamide Polymers 0.000 claims description 2
- 238000010276 construction Methods 0.000 claims description 2
- 239000003365 glass fiber Substances 0.000 claims description 2
- 229920002681 hypalon Polymers 0.000 claims description 2
- 229920001084 poly(chloroprene) Polymers 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 239000002964 rayon Substances 0.000 claims description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims 3
- YFNZPKRLZBIKTA-UHFFFAOYSA-N 1,1-difluorobuta-1,2,3-triene Chemical compound FC(F)=C=C=C YFNZPKRLZBIKTA-UHFFFAOYSA-N 0.000 claims 1
- OIXNFJTTYAIBNF-UHFFFAOYSA-N 2-(chloromethyl)oxirane;oxirane Chemical compound C1CO1.ClCC1CO1 OIXNFJTTYAIBNF-UHFFFAOYSA-N 0.000 claims 1
- IJDNGURDROLMKU-UHFFFAOYSA-N FC(C(C(F)(F)F)(C(C(C=C(F)F)(F)F)(F)F)F)(F)F Chemical compound FC(C(C(F)(F)F)(C(C(C=C(F)F)(F)F)(F)F)F)(F)F IJDNGURDROLMKU-UHFFFAOYSA-N 0.000 claims 1
- 239000006258 conductive agent Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 76
- 229920001973 fluoroelastomer Polymers 0.000 description 19
- 230000035699 permeability Effects 0.000 description 18
- 239000000945 filler Substances 0.000 description 8
- 239000005060 rubber Substances 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- ADTHJEKIUIOLBX-UHFFFAOYSA-N 1,1,3,4,4,5,5,6,6,6-decafluoro-3-(trifluoromethyl)hex-1-ene Chemical compound FC(C(F)(F)F)(C(C(C(F)(F)F)(C=C(F)F)F)(F)F)F ADTHJEKIUIOLBX-UHFFFAOYSA-N 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000012779 reinforcing material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OQMIRQSWHKCKNJ-UHFFFAOYSA-N 1,1-difluoroethene;1,1,2,3,3,3-hexafluoroprop-1-ene Chemical compound FC(F)=C.FC(F)=C(F)C(F)(F)F OQMIRQSWHKCKNJ-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 229920002449 FKM Polymers 0.000 description 2
- 239000004812 Fluorinated ethylene propylene Substances 0.000 description 2
- 229920000271 Kevlar® Polymers 0.000 description 2
- 229920000800 acrylic rubber Polymers 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 229920005558 epichlorohydrin rubber Polymers 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- -1 isopropylidene-bis(4-hydroxyphenyl) Chemical group 0.000 description 2
- 239000004761 kevlar Substances 0.000 description 2
- 229920009441 perflouroethylene propylene Polymers 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- XSQHUYDRSDBCHN-UHFFFAOYSA-N 2,3-dimethyl-2-propan-2-ylbutanenitrile Chemical compound CC(C)C(C)(C#N)C(C)C XSQHUYDRSDBCHN-UHFFFAOYSA-N 0.000 description 1
- ODBCKCWTWALFKM-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhex-3-yne Chemical compound CC(C)(C)OOC(C)(C)C#CC(C)(C)OOC(C)(C)C ODBCKCWTWALFKM-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- PZQOTJJEMXLHKG-UHFFFAOYSA-N 3-(1,1,1,3,3,3-hexafluoropropan-2-ylidene)-5,6-bis(4-hydroxyphenyl)cyclohexa-1,5-diene-1,4-diol Chemical compound FC(C(C(F)(F)F)=C1C(C(=C(C(O)=C1)C1=CC=C(C=C1)O)C1=CC=C(C=C1)O)O)(F)F PZQOTJJEMXLHKG-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229920000784 Nomex Polymers 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229920010741 Ultra High Molecular Weight Polyethylene (UHMWPE) Polymers 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- XGDAKJKCJURQAF-UHFFFAOYSA-N azane;carbamic acid Chemical compound N.N.NC(O)=O XGDAKJKCJURQAF-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- IRLQAJPIHBZROB-UHFFFAOYSA-N buta-2,3-dienenitrile Chemical compound C=C=CC#N IRLQAJPIHBZROB-UHFFFAOYSA-N 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004763 nomex Substances 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 229920003249 vinylidene fluoride hexafluoropropylene elastomer Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B1/00—Layered products having a non-planar shape
- B32B1/08—Tubular products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D23/00—Producing tubular articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L11/08—Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
- F16L11/081—Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L11/08—Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
- F16L11/085—Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more braided layers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/50—Testing arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/04—Selecting arrangements for multiplex systems for time-division multiplexing
- H04Q11/0428—Integrated services digital network, i.e. systems for transmission of different types of digitised signals, e.g. speech, data, telecentral, television signals
- H04Q11/0478—Provisions for broadband connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q3/00—Selecting arrangements
- H04Q3/0016—Arrangements providing connection between exchanges
- H04Q3/0062—Provisions for network management
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2597/00—Tubular articles, e.g. hoses, pipes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L2011/047—Hoses, i.e. flexible pipes made of rubber or flexible plastics with a diffusion barrier layer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J2203/00—Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
- H04J2203/0001—Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
- H04J2203/0062—Testing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1379—Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1379—Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
- Y10T428/1383—Vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit is sandwiched between layers [continuous layer]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1386—Natural or synthetic rubber or rubber-like compound containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/139—Open-ended, self-supporting conduit, cylinder, or tube-type article
- Y10T428/1393—Multilayer [continuous layer]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/3154—Of fluorinated addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/3154—Of fluorinated addition polymer from unsaturated monomers
- Y10T428/31544—Addition polymer is perhalogenated
Definitions
- the present invention relates generally to hoses and particularly to fuel transport hoses such as fuel filler and fuel filler neck hoses having reduced permeability to fuel vapors. More particularly, this invention relates to blends of fluorelastomer interpolymers with fluorothermoplastic interpolymers, and to the use of such blends as a barrier layer for fuel transport hoses to reduce the permeability of such hoses to fuel vapors.
- a blend of a first fluorointerpolymer having elastomer characteristics and a second fluorointerpolymer having thermoplastic characteristics unexpectedly provides a composition which not only meets the low permeability standard for fuel vapor, but also is relatively inexpensive to produce, exhibits good service life and, when used in the manufacture of fuel transfer hoses, has a good push-on value, seals well, has good low temperature properties and resists kinking and wrinkling of the hose structure while being formed in conventional molding techniques.
- a composition having improved fuel vapor barrier properties comprises a blend of a first fluorointerpolymer which comprises a copolymer, terpolymer or mixture thereof formed by the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene, vinylidene fluoride and tetrafluoroethylene, and a second fluorointerpolymer which comprises a copolymer, terpolymer or mixture thereof formed by the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene-vinylidene fluoride and tetrafluoroethylene, wherein the first fluororointerpolymer exhibits elastomeric characteristics and said second fluorointerpolymer exhibits thermoplastic characteristics.
- a hose having improved fuel vapor barrier properties comprises a barrier layer comprising a blend of about 20 to 80 weight percent of a first fluorointerpolymer with about 80 to 20 weight percent of a second fluorointerpolymer, the first interpolymer comprising a copolymer, terpolymer or mixture thereof formed by the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene, vinylidene fluoride and tetrafluoroethylene, and the second fluorointerpolymer comprising a copolymer, terpolymer or mixture thereof formed by the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene, vinylidene fluoride and tetrafluroethylene wherein the first fluorointerpolymer exhibits elastomeric characteristics and the second fluorointerpolymer exhibits
- the hose structure comprises a conductive or non-conductive barrier layer comprising a blend of a first fluorointerpolymer having elastomer characteristics and a second fluorointerpolymer having thermoplastic characteristics; and a protective cover adjacent to and surrounding the conductive barrier layer.
- the hose structure comprises a conductive or non-conductive barrier layer comprising a blend of a first fluorointerpolymer having elastomeric characteristics and a second fluoro-interpolymer having thermoplastic characteristics as a barrier layer forming the interior wall of the hose; an elastomeric layer adjacent to and surrounding the outermost surface of the barrier layer; a reinforcing layer adjacent to and surrounding the outermost surface of the elastomeric layer; and a protective cover layer adjacent to and surrounding the outer surface of the reinforcing layer.
- the hose structure comprises a conductive or non-conductive elastomeric layer which forms the interior surface of the hose; a barrier layer comprising a blend of a first fluorointerpolymer having elastomer characteristics adjacent to and surrounding the outermost surface of the first elastomeric layer; a reinforcing layer adjacent to and surrounding the elastomeric layer; and a protective cover layer adjacent to and surrounding the reinforcing layer.
- the hose structure comprises a first conductive or non-conductive elastomer layer which forms the interior surface of the hose; a barrier layer comprising a blend of a first fluorointerpolymer having elastomer characteristics and a second fluorointerpolymer having thermoplastic characteristics adjacent to and surrounding the outer most surface of the first elastomeric layer; a second elastomeric layer adjacent to and surrounding the outermost surface of the barrier layer; a reinforcing layer adjacent to and surrounding the outermost surface of the second elastomeric layer; and a protective cover layer adjacent to and surrounding the reinforcing layer.
- the hoses of the invention reduce the permeability of hydrocarbon vapors, particularly fuel vapors from the hose to below proposed industry standards have good low temperature properties, have good push-on values, exhibit extended service life, and are relatively inexpensive to produce without any wrinkles caused by sharp turns, curves and bends during the formation of the hose on a forming mandrel or pins.
- the first fluorointerpolymer having elastomeric properties comprises a blend of a first fluorointerpolymer which comprises a copolymer, terpolymer or mixture thereof formed by the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene, vinylidene fluoride and tetrafluoroethylene, and a second fluorointerpolymer which comprises a copolymer, terpolymer or mixture thereof formed from the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene, vinylidene fluoride and tetrafluoroethylene, wherein the first fluorointerpolymer exhibits elastomeric characteristics and the second fluorointerpolymer exhibit
- a hydrocarbon-resistant hose such as a fuel transfer hose, e.g., fuel filler hose that satisfies the industry standards for permeability particularly with respect to fuel vapors, that avoids kinking and wrinkling in conventional molding techniques, that has an extended service life, and that is relatively inexpensive to produce.
- FIG. 1 is perspective cutaway view of a tubular member which illustrates a first manifestation of the present invention.
- FIG. 2 is a perspective cutaway view of a tubular member illustrating another manifestation of the present invention.
- FIG. 3 is a perspective cutaway view of a tubular member illustrating still another manifestation of the present invention.
- FIG. 4 is a perspective cutaway view of a tubular member which illustrates yet another manifestation of the present invention.
- FIG. 5 is a perspective cutaway view of a tubular member which illustrates another manifestation of the present invention.
- a blend of a first fluorointerpolymer having elastomer characteristics and a second fluorointerpolymer having thermoplastic characteristics provides a barrier layer for use in the manufacture of fuel transport hoses such as fuel filler and fuel filler neck hoses, and the like, wherein such barrier layer unexpectedly provides low levels of permeability of fuel vapors from the fuel hose.
- the permeation rates of fuel vapors from the fuel hose of the present invention satisfies the proposed industry standards.
- FIG. 1 is perspective cutaway view of a tubular member which illustrates a first manifestation of the present invention wherein a hose 100 is constructed which comprises a barrier layer 10 and a protective cover layer 18 .
- FIG. 2 illustrates a second manifestation wherein a hose 200 comprises a barrier layer 10 forming the interior wall of the hose 200 ; a reinforcing layer 16 adjacent to and surrounding the outermost surface of the barrier layer 10 ; and an outer cover 18 as the exterior protective surface of the hose 200 .
- FIG. 3 illustrates a third manifestation wherein a hose 300 comprises a barrier layer 10 forming the interior wall of the hose 300 ; an elastomeric layer 12 adjacent to and surrounding the outermost surface of the barrier layer 10 ; a reinforcing layer 16 adjacent to and surrounding the elastomeric layer 12 ; and an outer cover 18 as the exterior protective surface of the hose 300 .
- FIG. 4 A fourth manifestation of the invention is illustrated in FIG. 4 where the hose 400 comprises an elastomeric layer 12 forming the interior wall surface of the hose; a barrier layer 10 adjacent to and surrounding the outermost surface of the elastomer layer 12 ; a reinforcing layer 16 ; and an outer cover 18 as the exterior surface of the hose 400 .
- FIG. 5 illustrates a fifth manifestation of the invention in which hose 500 has a structure similar to the hose 400 shown in FIG. 4, except that a second elastomeric layer 14 resides between the barrier layer 10 and the reinforcing member 16 .
- fluorointerpolymer as used herein means the polymer produced by the copolymerization of two or more fluoromonomers and, therefore, is meant to encompass copolymers, terpolymers, etc.
- hydrocarbon as used herein is meant to include fuels such as gasoline, oils, air conditioning gases, organic chemicals, and the like.
- the barrier layer 10 of the invention is formed from a blend of at least two fluorointerpolymers wherein at least one of the fluorointerpolymers is characterized as a fluoroelastomer and at least one of the fluorointerpolymers is characterized as a fluorothermoplastic.
- the barrier layer 10 is a fluoroelastomer which comprises hexafluoropropylene-vinylidene fluoride copolymer or vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, blended with a fluorothermoplastic such as tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride terpolymer.
- a fluorothermoplastic such as tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride terpolymer.
- the fluoroelastomer component of the blend has a fluorine content of about 65 to 73% and the fluorothermoplastic component of the blend has a typical fluorine content of 70 to 75%.
- the hexafluoropropylene-vinylidene fluoride fluoroelastomer is commercially available from DuPont under the name Viton A, Viton 345 or Viton 60.
- the vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluoroelastomer is commercially available from 3M under the name Fluorel FT2350 or FE5830QD.
- the tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride fluoroplastic terpolymer is a fluorothermoplastic such as Dyneon THV, which is commercially available from Dyneon.
- the blend comprises about 20 to 80% by weight fluoroelastomer and about 80 to 20% by weight fluorothermoplastic. Since the permeability of the fuel hose to fuel vapors decreases with an increase in the fluorine content of the blend, a higher ratio of the fluorothermoplastic component which typically contains a higher percentage of fluorine by weight than the fluoroelastomer component may be employed in the blend 10 , however, the plastic-like properties of the fluorothermoplastic components are prone to cause kinking of the hose when the fluorothermoplastic component is too high Typically the fluorine content of the blend is about 70 to 75 weight percent.
- the barrier layer preferably comprises about 50 to 70% by weight of the elastomeric fluorointerpolymer and about 30 to 50% by weight of the thermoplastic fluorointerpolymer. Blends comprising about 70% by weight of the elastomeric interpolymer and about 30% by weight of the thermoplastic interpolymer have been found to provide a good balance between reduced fuel vapor permeability and good physical properties of the hose.
- the thickness of the barrier layer 10 is about 5 to 25 mils, preferably about 13 to 14 mils.
- composition of the present invention are either unvulcanized or vulcanized using any of the art established vulcanizing agents such as peroxides, polyols, polyammines, etc.
- the peroxide vulcanizing agent includes, for example, dicumylperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy) hexyne-3, etc.
- the polyol vulcanizing agent includes, e.g., hexafluoroisopropylidene-bis(4-hydroxyphenyl) hydroquinone, isopropylidene-bis(4-hydroxyphenyl), or the like.
- the polyamine vulcanizing agent includes, e.g., hexamethylenediamine carbamate, alicyclic diamine carbamate, etc.
- the amount of vulcanizing agent employed is generally that which is customarily used in the art. Typically, about 0.5 to 10% vulcanizing agent is employed depending on the vulcanizing agent.
- the elastomer layer 12 may be a conductive elastomer such as a conductive acrylonitrile-butadiene rubber, conductive ethylene-acrylate rubber and the like or a conductive fluoroelastomer such as hexafluoropropylene-vinylidene fluoride copolymer or vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer.
- a conductive elastomer such as a conductive acrylonitrile-butadiene rubber, conductive ethylene-acrylate rubber and the like
- a conductive fluoroelastomer such as hexafluoropropylene-vinylidene fluoride copolymer or vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer.
- the elastomer layer 14 is typically a material which has properties causing it to easily adhere to both the cuter cover material and the barrier blend, particularly, when vulcanized.
- the tubular layer 14 is an elastomer which also affords heat resistance, fuel resistance and good flexibility to the hose, Such materials are well known in the art.
- the elastomeric layer 14 typically is a non-conductive material selected from a group consisting of butadiene-acrylonitrile rubber, epichlorohydrin rubber, ethylene-acrylate rubber, and the like.
- the elastomeric layer 14 is butadiene-acrylonitrile rubber.
- the outer cover 18 of the hose is a protective layer of any of the commercially recognized materials for such use such as elastomers, thermoplastic polymers, thermosetting polymers, and the like.
- the protective layer is a synthetic elastomer having good heat resistance, oil resistance, weather resistance and flame resistance.
- the outer cover layer is a synthetic elastomer selected from the group consisting of styrene-butadiene rubber (SBR); butadiene-nitrile rubber such as butadiene-acrylonitrile rubber; chlorinated polyethylene; chlorosulfonated polyethylene; vinylethylene-acrylic rubber, acrylic rubber; epichlorohydrin rubber such as Hydrin 200, a copolymer of epichlorohydrin and ethylene oxide available from DuPont ECO; polychloroprene rubber (CR); polyvinyl chloride; ethylene-propylene copolymers (EPM); ethylene-propylene-diene terpolymer (EPDM); ultra high molecular weight polyethylene (UHMWPE); high density polyethylene (HDPE) and blends thereof.
- the synthetic elastomer is chloropolyethylene.
- the reinforcing member 16 is a material which affords physical strength to the finished hose.
- the reinforcing member is selected from a group consisting of glass fibers, cotton fibers, polyamide fibers, polyester fibers, and rayon fibers.
- the reinforcing material is an aromatic polyamide such as Kevlar or Nomex both of which are manufactured by DuPont.
- the reinforcing material may be either knitted, braided, or spiraled to form the reinforcing member. In a preferred aspect of the invention, the reinforcing material is spiraled. While the reinforcing layer may be a preferred component of the hose structure, it is not critical and may or may not be used in the manufacture of certain hoses depending upon the requirements of the manufacturer.
- the inner most layer of fuel hoses is made conductive to prevent the buildup of static electricity generated by the flow of fuel along the inner surface of the hose.
- a build up of static electricity over time has been known to cause the formation of pin holes in the hose allowing the fuel to leak out through the holes.
- the barrier layer 10 or the elastomer layer 12 is made conductive by compounding the layer material with carbon black or other industry recognized ingredients to provide conductivity to the barrier layer. While the amount of carbon black added is not critical, excess carbon black tends to make the material more difficult to process. In vapor or vent applications, the innermost layer of the hose need not be conductive.
- the barrier layer 10 is a conductive blend of a fluoroelastomer and a fluorothermoplastic wherein the fluorine content of the blend is about 70 to 75 weight percent and the ratio of fluoroelastomer to fluorothermoplastic is about 70:30.
- the blend 10 is made conductive by incorporating carbon black into the composition.
- the elastomeric inner tubular layer 12 which forms the inner tubular wall of the fuel transfer hose is a fluoroelastomer or elastomer having good conductive properties and fuel resistance.
- the conductive fluoroelastomer or elastomer inner tubular layer 12 is selected from the group consisting of nitrile rubber (NBR), thermoplastic fluoroelastomer, such as hexafluoropropylene vinylidene fluoride copolymers or hexafluorenopropylene-vinylidene fluoride-tetrafluoroethylene terpolymers, polyvinyl chloride, and blends thereof.
- NBR nitrile rubber
- thermoplastic fluoroelastomer such as hexafluoropropylene vinylidene fluoride copolymers or hexafluorenopropylene-vinylidene fluoride-tetrafluoroethylene terpolymers, polyvinyl chloride, and blends thereof.
- the elastomeric, inner tubular layer is conductive NBR such as butadiene-acrylonitrile rubber.
- the methods of producing the fuel transfer hose of the present invention are known in the art. For example, separate extrusion, tandem extrusion, or coextrusion processes may be used. For versatility and cost reasons, the preferred methods for producing the fuel filler transfer of the present invention are separate extrusion and tandem extrusion.
- Production of the preferred embodiment of the present invention is as follows. First, the conductive layer of acrylonitrile-butadiene rubber is extruded into a tube and then immediately fed through another extruder during which the barrier layer comprising a blend of vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluoroelastomer with tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride fluorothermoplastic is applied. After the tube has been extruded and the appropriate layers applied, strands of reinforcing fibers such as Kevlar are spiraled onto the tube.
- the barrier layer comprising a blend of vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluoroelastomer with tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride fluorothermoplastic is applied.
- a protective cover of chloropolyethylene is then applied to the reinforced tube by a cross-head extruder.
- the chloropolyethylene is drawn down onto the reinforced tube by use of a vacuum.
- the covered reinforced tube is then placed on a mandrel and vulcanized. The tube is then manually removed from the mandrel.
- FEP fluorinated ethylene-propylene copolymers
- Teflon which is available from DuPont
- additives such as antioxidants, processing aids, etc. can be employed in carrying out the present invention and it is within the scope of this invention to incorporate herein any such additives as commonly used in making fuel line hoses.
- the blended fluoroelastomer/fluorothermoplastic barrier layer of the present invention is useful in reducing the permeability of fuel vapors from the fuel transfer hose; however, it is also useful in reducing the permeability of chemical vapors such as in air conditioning hoses, oil hoses, and the like where severe chemical resistance or vapor permeation resistance is required.
- fluoroelastomer/fluorothermoplastic blend is particularly useful in hose construction to reduce permeability of fuel vapor
- these blends can be used in the manufacture of other articles where reduced fuel or hydrocarbon vapor is desired such as o-rings, gaskets, diaphragms, etc.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Signal Processing (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
A compostion having improved fuel vapor barrier properties comprising a blend of about 20 to 80 weight percent of a first fluorointerpolymer with about 80 to 20 weight percent of a second fluorointerpolymer, the first fluorointerpolymer comprising a copolymer, terpolymer or mixture thereof formed by the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene, vinylidene fluoride and tetrafluoroethylene, and the second fluorointerpolymer comprising a copolymer, terpolymer or mixture thereof formed by the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene, vinylidene fluoride and tetrafluorotheylene, wherein the first fluorointerpolymer exhibits elastomer characteristics and the second fluorointerpolymer exhibits thermoplstic characteristics.
Description
- The present invention relates generally to hoses and particularly to fuel transport hoses such as fuel filler and fuel filler neck hoses having reduced permeability to fuel vapors. More particularly, this invention relates to blends of fluorelastomer interpolymers with fluorothermoplastic interpolymers, and to the use of such blends as a barrier layer for fuel transport hoses to reduce the permeability of such hoses to fuel vapors.
- Recent environmental regulations imposed on the automotive industry severely limit the amount of fuel vapor that can permeate from the fuel systems of motor vehicles. Choosing the right polymer to provide high performance, long service life, and reduced permeability of fuel in the fuel systems of motor vehicles while maintaining costs at an acceptable level has been more difficult for automotive designers than ever before. Typically, fuel transfer and fuel vapor hoses have been made of butadiene-acrylonitrile rubber as the tube, but such hoses have a high permeability to fuel. Other hoses have a fluoroelastomer as the inner wall surface layer of the hose, but such hoses have higher permeability to fuel vapors. Attempts to produce fuel transfer hoses with reduced permeability to fuel vapors have included the use of corrugated polyamide and fluorocarbon thermoplastic tubes. However, these structures are very expensive.
- Other attempts to produce a fuel filler neck hose with reduced permeability to fuel vapors used a tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride terpolymer liner and a thicker layer of hexafluoropropylene-vinylidene fluoride copolymer or other suitable elastomer as the conductive inner part of the tube. See, for example, U.S. Pat. No. 4,606,952 to Sugimoto and U.S. Pat. No. 5,430,603 to Albino et al. Such hose structures have a tendency to wrinkle on the inner radius of the forming mandrel or pin causing a cosmetic defect.
- Accordingly, there is a need for an improved fuel hose that meets present industry standards.
- In accordance with the present invention a blend of a first fluorointerpolymer having elastomer characteristics and a second fluorointerpolymer having thermoplastic characteristics unexpectedly provides a composition which not only meets the low permeability standard for fuel vapor, but also is relatively inexpensive to produce, exhibits good service life and, when used in the manufacture of fuel transfer hoses, has a good push-on value, seals well, has good low temperature properties and resists kinking and wrinkling of the hose structure while being formed in conventional molding techniques.
- In a first embodiment of the invention, a composition having improved fuel vapor barrier properties is provided. The composition comprises a blend of a first fluorointerpolymer which comprises a copolymer, terpolymer or mixture thereof formed by the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene, vinylidene fluoride and tetrafluoroethylene, and a second fluorointerpolymer which comprises a copolymer, terpolymer or mixture thereof formed by the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene-vinylidene fluoride and tetrafluoroethylene, wherein the first fluororointerpolymer exhibits elastomeric characteristics and said second fluorointerpolymer exhibits thermoplastic characteristics.
- In a second embodiment of the invention, a hose having improved fuel vapor barrier properties is provided. The hose comprises a barrier layer comprising a blend of about 20 to 80 weight percent of a first fluorointerpolymer with about 80 to 20 weight percent of a second fluorointerpolymer, the first interpolymer comprising a copolymer, terpolymer or mixture thereof formed by the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene, vinylidene fluoride and tetrafluoroethylene, and the second fluorointerpolymer comprising a copolymer, terpolymer or mixture thereof formed by the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene, vinylidene fluoride and tetrafluroethylene wherein the first fluorointerpolymer exhibits elastomeric characteristics and the second fluorointerpolymer exhibits thermoplastic characteristics. The hose not only exhibits reduced permeability to fuel vapors, but also avoids kinking and wrinkling in conventional molding techniques, provides extended service life, and is relatively inexpensive to produce.
- In a first manifestation of the hose of the present invention, the hose structure comprises a conductive or non-conductive barrier layer comprising a blend of a first fluorointerpolymer having elastomer characteristics and a second fluorointerpolymer having thermoplastic characteristics; and a protective cover adjacent to and surrounding the conductive barrier layer.
- In a second manifestation of the hose of the present invention, the hose structure comprises a conductive or non-conductive barrier layer comprising a blend of a first fluorointerpolymer having elastomeric characteristics and a second fluoro-interpolymer having thermoplastic characteristics as a barrier layer forming the interior wall of the hose; an elastomeric layer adjacent to and surrounding the outermost surface of the barrier layer; a reinforcing layer adjacent to and surrounding the outermost surface of the elastomeric layer; and a protective cover layer adjacent to and surrounding the outer surface of the reinforcing layer.
- In a third manifestation of the invention, the hose structure comprises a conductive or non-conductive elastomeric layer which forms the interior surface of the hose; a barrier layer comprising a blend of a first fluorointerpolymer having elastomer characteristics adjacent to and surrounding the outermost surface of the first elastomeric layer; a reinforcing layer adjacent to and surrounding the elastomeric layer; and a protective cover layer adjacent to and surrounding the reinforcing layer.
- In a fourth manifestation of the invention, the hose structure comprises a first conductive or non-conductive elastomer layer which forms the interior surface of the hose; a barrier layer comprising a blend of a first fluorointerpolymer having elastomer characteristics and a second fluorointerpolymer having thermoplastic characteristics adjacent to and surrounding the outer most surface of the first elastomeric layer; a second elastomeric layer adjacent to and surrounding the outermost surface of the barrier layer; a reinforcing layer adjacent to and surrounding the outermost surface of the second elastomeric layer; and a protective cover layer adjacent to and surrounding the reinforcing layer.
- Surprisingly, the hoses of the invention reduce the permeability of hydrocarbon vapors, particularly fuel vapors from the hose to below proposed industry standards have good low temperature properties, have good push-on values, exhibit extended service life, and are relatively inexpensive to produce without any wrinkles caused by sharp turns, curves and bends during the formation of the hose on a forming mandrel or pins.
- It is an object of the invention to provide a blend of a first fluorointerpolymer having elastomer characteristics and a second fluorointerpolymer having thermoplastic characteristics wherein the first fluorointerpolymer having elastomeric properties comprises a blend of a first fluorointerpolymer which comprises a copolymer, terpolymer or mixture thereof formed by the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene, vinylidene fluoride and tetrafluoroethylene, and a second fluorointerpolymer which comprises a copolymer, terpolymer or mixture thereof formed from the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene, vinylidene fluoride and tetrafluoroethylene, wherein the first fluorointerpolymer exhibits elastomeric characteristics and the second fluorointerpolymer exhibits thermoplastic characteristics. The blend, when employed as a barrier layer in fuel transport hoses, provides low permeability to hydrocarbon fuel vapors.
- It is another object of the invention to provide a hydrocarbon-resistant hose such as a fuel transfer hose, e.g., fuel filler hose that satisfies the industry standards for permeability particularly with respect to fuel vapors, that avoids kinking and wrinkling in conventional molding techniques, that has an extended service life, and that is relatively inexpensive to produce.
- Other objects and advantages of the invention will be apparent from the following description and the appended claims.
- FIG. 1 is perspective cutaway view of a tubular member which illustrates a first manifestation of the present invention.
- FIG. 2 is a perspective cutaway view of a tubular member illustrating another manifestation of the present invention.
- FIG. 3 is a perspective cutaway view of a tubular member illustrating still another manifestation of the present invention.
- FIG. 4 is a perspective cutaway view of a tubular member which illustrates yet another manifestation of the present invention.
- FIG. 5 is a perspective cutaway view of a tubular member which illustrates another manifestation of the present invention.
- In accordance with the invention, a blend of a first fluorointerpolymer having elastomer characteristics and a second fluorointerpolymer having thermoplastic characteristics provides a barrier layer for use in the manufacture of fuel transport hoses such as fuel filler and fuel filler neck hoses, and the like, wherein such barrier layer unexpectedly provides low levels of permeability of fuel vapors from the fuel hose. The permeation rates of fuel vapors from the fuel hose of the present invention satisfies the proposed industry standards.
- FIG. 1 is perspective cutaway view of a tubular member which illustrates a first manifestation of the present invention wherein a
hose 100 is constructed which comprises abarrier layer 10 and aprotective cover layer 18. - FIG. 2 illustrates a second manifestation wherein a
hose 200 comprises abarrier layer 10 forming the interior wall of thehose 200; a reinforcinglayer 16 adjacent to and surrounding the outermost surface of thebarrier layer 10; and anouter cover 18 as the exterior protective surface of thehose 200. - FIG. 3 illustrates a third manifestation wherein a
hose 300 comprises abarrier layer 10 forming the interior wall of thehose 300; anelastomeric layer 12 adjacent to and surrounding the outermost surface of thebarrier layer 10; a reinforcinglayer 16 adjacent to and surrounding theelastomeric layer 12; and anouter cover 18 as the exterior protective surface of thehose 300. - A fourth manifestation of the invention is illustrated in FIG. 4 where the
hose 400 comprises anelastomeric layer 12 forming the interior wall surface of the hose; abarrier layer 10 adjacent to and surrounding the outermost surface of theelastomer layer 12; a reinforcinglayer 16; and anouter cover 18 as the exterior surface of thehose 400. - FIG. 5 illustrates a fifth manifestation of the invention in which
hose 500 has a structure similar to thehose 400 shown in FIG. 4, except that a secondelastomeric layer 14 resides between thebarrier layer 10 and the reinforcingmember 16. - The term fluorointerpolymer as used herein means the polymer produced by the copolymerization of two or more fluoromonomers and, therefore, is meant to encompass copolymers, terpolymers, etc.
- The term “hydrocarbon” as used herein is meant to include fuels such as gasoline, oils, air conditioning gases, organic chemicals, and the like.
- The
barrier layer 10 of the invention is formed from a blend of at least two fluorointerpolymers wherein at least one of the fluorointerpolymers is characterized as a fluoroelastomer and at least one of the fluorointerpolymers is characterized as a fluorothermoplastic. Preferably, thebarrier layer 10 is a fluoroelastomer which comprises hexafluoropropylene-vinylidene fluoride copolymer or vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, blended with a fluorothermoplastic such as tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride terpolymer. Most preferably the fluoroelastomer component of the blend has a fluorine content of about 65 to 73% and the fluorothermoplastic component of the blend has a typical fluorine content of 70 to 75%. The hexafluoropropylene-vinylidene fluoride fluoroelastomer is commercially available from DuPont under the name Viton A, Viton 345 or Viton 60. The vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluoroelastomer is commercially available from 3M under the name Fluorel FT2350 or FE5830QD. The tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride fluoroplastic terpolymer is a fluorothermoplastic such as Dyneon THV, which is commercially available from Dyneon. - Typically, the blend comprises about 20 to 80% by weight fluoroelastomer and about 80 to 20% by weight fluorothermoplastic. Since the permeability of the fuel hose to fuel vapors decreases with an increase in the fluorine content of the blend, a higher ratio of the fluorothermoplastic component which typically contains a higher percentage of fluorine by weight than the fluoroelastomer component may be employed in the
blend 10, however, the plastic-like properties of the fluorothermoplastic components are prone to cause kinking of the hose when the fluorothermoplastic component is too high Typically the fluorine content of the blend is about 70 to 75 weight percent. The barrier layer preferably comprises about 50 to 70% by weight of the elastomeric fluorointerpolymer and about 30 to 50% by weight of the thermoplastic fluorointerpolymer. Blends comprising about 70% by weight of the elastomeric interpolymer and about 30% by weight of the thermoplastic interpolymer have been found to provide a good balance between reduced fuel vapor permeability and good physical properties of the hose. Typically, the thickness of thebarrier layer 10 is about 5 to 25 mils, preferably about 13 to 14 mils. - The composition of the present invention are either unvulcanized or vulcanized using any of the art established vulcanizing agents such as peroxides, polyols, polyammines, etc. The peroxide vulcanizing agent includes, for example, dicumylperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy) hexyne-3, etc. The polyol vulcanizing agent includes, e.g., hexafluoroisopropylidene-bis(4-hydroxyphenyl) hydroquinone, isopropylidene-bis(4-hydroxyphenyl), or the like. The polyamine vulcanizing agent includes, e.g., hexamethylenediamine carbamate, alicyclic diamine carbamate, etc. The amount of vulcanizing agent employed is generally that which is customarily used in the art. Typically, about 0.5 to 10% vulcanizing agent is employed depending on the vulcanizing agent.
- The
elastomer layer 12 may be a conductive elastomer such as a conductive acrylonitrile-butadiene rubber, conductive ethylene-acrylate rubber and the like or a conductive fluoroelastomer such as hexafluoropropylene-vinylidene fluoride copolymer or vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer. - The
elastomer layer 14 is typically a material which has properties causing it to easily adhere to both the cuter cover material and the barrier blend, particularly, when vulcanized. Preferably thetubular layer 14 is an elastomer which also affords heat resistance, fuel resistance and good flexibility to the hose, Such materials are well known in the art. Theelastomeric layer 14 typically is a non-conductive material selected from a group consisting of butadiene-acrylonitrile rubber, epichlorohydrin rubber, ethylene-acrylate rubber, and the like. Preferably, theelastomeric layer 14 is butadiene-acrylonitrile rubber. - The
outer cover 18 of the hose is a protective layer of any of the commercially recognized materials for such use such as elastomers, thermoplastic polymers, thermosetting polymers, and the like. Typically, the protective layer is a synthetic elastomer having good heat resistance, oil resistance, weather resistance and flame resistance. Preferably, the outer cover layer is a synthetic elastomer selected from the group consisting of styrene-butadiene rubber (SBR); butadiene-nitrile rubber such as butadiene-acrylonitrile rubber; chlorinated polyethylene; chlorosulfonated polyethylene; vinylethylene-acrylic rubber, acrylic rubber; epichlorohydrin rubber such asHydrin 200, a copolymer of epichlorohydrin and ethylene oxide available from DuPont ECO; polychloroprene rubber (CR); polyvinyl chloride; ethylene-propylene copolymers (EPM); ethylene-propylene-diene terpolymer (EPDM); ultra high molecular weight polyethylene (UHMWPE); high density polyethylene (HDPE) and blends thereof. Preferably, the synthetic elastomer is chloropolyethylene. - The reinforcing
member 16 is a material which affords physical strength to the finished hose. Typically, the reinforcing member is selected from a group consisting of glass fibers, cotton fibers, polyamide fibers, polyester fibers, and rayon fibers. Preferably, the reinforcing material is an aromatic polyamide such as Kevlar or Nomex both of which are manufactured by DuPont. The reinforcing material may be either knitted, braided, or spiraled to form the reinforcing member. In a preferred aspect of the invention, the reinforcing material is spiraled. While the reinforcing layer may be a preferred component of the hose structure, it is not critical and may or may not be used in the manufacture of certain hoses depending upon the requirements of the manufacturer. - As is common practice in the industry, the inner most layer of fuel hoses, whether it is a
barrier layer 10 or anelastomer layer 12, is made conductive to prevent the buildup of static electricity generated by the flow of fuel along the inner surface of the hose. Such a build up of static electricity over time has been known to cause the formation of pin holes in the hose allowing the fuel to leak out through the holes. Typically, thebarrier layer 10 or theelastomer layer 12 is made conductive by compounding the layer material with carbon black or other industry recognized ingredients to provide conductivity to the barrier layer. While the amount of carbon black added is not critical, excess carbon black tends to make the material more difficult to process. In vapor or vent applications, the innermost layer of the hose need not be conductive. - In the first embodiment of the hose of this invention as shown in FIG. 1, the
barrier layer 10 is a conductive blend of a fluoroelastomer and a fluorothermoplastic wherein the fluorine content of the blend is about 70 to 75 weight percent and the ratio of fluoroelastomer to fluorothermoplastic is about 70:30. Theblend 10 is made conductive by incorporating carbon black into the composition. - In the second and third embodiments of the invention as shown in FIGS. 2 and 3, the elastomeric inner
tubular layer 12 which forms the inner tubular wall of the fuel transfer hose is a fluoroelastomer or elastomer having good conductive properties and fuel resistance. Preferably, the conductive fluoroelastomer or elastomer innertubular layer 12 is selected from the group consisting of nitrile rubber (NBR), thermoplastic fluoroelastomer, such as hexafluoropropylene vinylidene fluoride copolymers or hexafluorenopropylene-vinylidene fluoride-tetrafluoroethylene terpolymers, polyvinyl chloride, and blends thereof. Preferably, the elastomeric, inner tubular layer is conductive NBR such as butadiene-acrylonitrile rubber. - The methods of producing the fuel transfer hose of the present invention are known in the art. For example, separate extrusion, tandem extrusion, or coextrusion processes may be used. For versatility and cost reasons, the preferred methods for producing the fuel filler transfer of the present invention are separate extrusion and tandem extrusion.
- Production of the preferred embodiment of the present invention is as follows. First, the conductive layer of acrylonitrile-butadiene rubber is extruded into a tube and then immediately fed through another extruder during which the barrier layer comprising a blend of vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluoroelastomer with tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride fluorothermoplastic is applied. After the tube has been extruded and the appropriate layers applied, strands of reinforcing fibers such as Kevlar are spiraled onto the tube. A protective cover of chloropolyethylene is then applied to the reinforced tube by a cross-head extruder. The chloropolyethylene is drawn down onto the reinforced tube by use of a vacuum. The covered reinforced tube is then placed on a mandrel and vulcanized. The tube is then manually removed from the mandrel.
- Other polymers, e.g., fluorinated ethylene-propylene (FEP) copolymers such as Teflon, which is available from DuPont, may be used as a component in the fluoroelastomer component, the thermoplastic component or as an additional component in the preparation of the blend.
- Other additives such as antioxidants, processing aids, etc. can be employed in carrying out the present invention and it is within the scope of this invention to incorporate herein any such additives as commonly used in making fuel line hoses.
- The blended fluoroelastomer/fluorothermoplastic barrier layer of the present invention is useful in reducing the permeability of fuel vapors from the fuel transfer hose; however, it is also useful in reducing the permeability of chemical vapors such as in air conditioning hoses, oil hoses, and the like where severe chemical resistance or vapor permeation resistance is required.
- The use of the novel blended fluoroelastomer/fluorothermoplastic barrier layer in the fuel transfer hose of the present invention presents a means of unexpectedly achieving almost complete impermeability of fuel filler neck hoses to fuel vapors.
- While the fluoroelastomer/fluorothermoplastic blend is particularly useful in hose construction to reduce permeability of fuel vapor, these blends can be used in the manufacture of other articles where reduced fuel or hydrocarbon vapor is desired such as o-rings, gaskets, diaphragms, etc.
- Having described the invention in detail and by reference to preferred embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.
Claims (20)
1. A composition having improved fuel vapor barrier properties comprising a blend of about 20 to 80 weight percent of a first fluorointerpolymer with about 80 to 20 weight percent of a second fluorointerpolymer, said first fluorointerpolymer comprising a copolymer, terpolymer or mixture thereof formed by the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene, vinylidene fluoride and tetrafluoroethylene, and said second fluorointerpolymer comprising a copolymer, terpolymer or mixture thereof formed by the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene, vinylidene fluoride and tetrafluorotheylene, wherein said first fluorointerpolymer exhibits elastomer characteristics and said second fluorointerpolymer exhibits thermoplastic characteristics.
2. The composition of claim 1 wherein said first fluorointerpolymer has a fluorine content of about 65 to 73 weight percent and said second fluorointerpolymer has a fluorine content of about 70 to 75 weight percent.
3. The composition of claim 2 wherein said first fluorointerpolymer is a vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer having elastomeric characteristics and said second fluorointerpolymer in a hexafluoropropylene-tetrafluoroethylene-vinylidene fluoride terpolymer having thermoplastic characteristics.
4. The composition of claim 1 further comprising a conductive material.
5. The composition of claim 4 wherein said conductive agent is carbon black.
6. A fuel hose having improved fuel vapor barrier properties comprising:
a barrier layer comprising a blend of about 20 to 80 weight percent of a first fluorointerpolymer with about 80 to 20 weight percent of a second fluorointerpolymer, said first fluorointerpolymer comprising a copolymer, terpolymer or a mixture thereof formed by the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene, vinylidene fluoride, and tetrafluoroethylene, and said second fluorointerpolymer comprises a copolymer, terpolymer or mixture thereof formed by the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene, vinylidene fluoride and tetrofluororethylene; and
a protective cover layer.
7. The hose of claim 6 further comprising a reinforcing layer.
8. The hose of claim 7 further comprising one or more elastomeric layers.
9. The hose of claim 8 wherein one of said one or more elastomeric layers resides between said barrier layer and said reinforcing layer, and said reinforcing layer resides between said elastomeric layer and said protective cover layer.
10. The hose of claim 6 wherein said barrier layer is about 5 to 25 mils thick.
11. The hose of claim 7 wherein said reinforcing layer is a layer of fibers selected from the group consisting of polyamide fibers, polyester fibers, rayon fibers, glass fibers and cotton fibers.
12. The hose of claim 13 wherein said fibers are aromatic polyamide fibers.
13. The hose of claim 12 wherein said fibers are knitted, braided or spiraled in the construction of said hose.
14. The hose of claim 6 wherein said protective cover layer is a layer of synthetic elastomer selected from the group consisting of styrene-butadiene rubber, nitrile-butadiene rubber, chloroprene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, epichlorohydrin ethylene oxide, polyvinyl chloride, and blends thereof.
15. The hose of claim 14 wherein said protective cover is chlorinated polyethylene.
16. The hose of claim 8 wherein barrier layer or one of said one or more elastomeric layers forms an inner tubular layer of said hose.
17. The hose of claim 16 wherein said inner tubular layer further comprises a conductive material.
18. The hose of claim 17 wherein said conductive material is carbon black.
19. The hose of claim 9 wherein said elastomeric layer is acrylonitrile-butadiene rubber
20. In a hose for transporting fuels, the improvement which comprises employing, as a barrier layer, a blend of about 20 to 80 weight percent of a first fluorointerpolymer with about 80 to 20 weight percent of a second fluorointerpolymer, said first fluorointerpolymer comprising a copolymer, terpolymer or mixture thereof formed by the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene, vinylidene vinylidene fluoride, and tetrafluoroethylene, and a second fluorointerpolymer comprising a copolymer, terpolymer or mixture thereof formed by the copolymerization of two or more monomers selected from the group consisting of hexafluoropropylene, vinylidene fluoride and tetrofluorethylene, wherein said first fluorointerpolymer exhibits elastomer characteristics and said second fluorointerpolymer exhibits thermoplastic characteristics.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/071,634 US20020070473A1 (en) | 1998-05-22 | 2002-02-07 | Blends of fluoroeleastomer interpolymers with thermo fluoroplastic interpolymers and the use of such blends in hoses |
US11/757,659 US20070218233A1 (en) | 1998-05-22 | 2007-06-04 | Fuel impermeable, fuel resistant hose having improved high temperature resistant characteristics |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/083,294 US6203873B1 (en) | 1998-05-22 | 1998-05-22 | Blends of fluoroelastomer interpolymers with thermo fluoroplastic interpolymers and the use of such blends in hoses |
US09/754,674 US6365250B2 (en) | 1998-05-22 | 2001-01-04 | Blends of fluoroelastomer interpolymers with thermo fluoroplastic interpolymers and the use of such blends in hoses |
US10/071,634 US20020070473A1 (en) | 1998-05-22 | 2002-02-07 | Blends of fluoroeleastomer interpolymers with thermo fluoroplastic interpolymers and the use of such blends in hoses |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/754,674 Division US6365250B2 (en) | 1998-05-01 | 2001-01-04 | Blends of fluoroelastomer interpolymers with thermo fluoroplastic interpolymers and the use of such blends in hoses |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/823,894 Continuation-In-Part US6960377B2 (en) | 1998-05-01 | 2004-04-13 | Fuel hose and its production |
US10/823,893 Continuation-In-Part US7228877B2 (en) | 1998-05-01 | 2004-04-13 | Flexible hose having reduced fuel vapor permeability and method of manufacturing such hose |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020070473A1 true US20020070473A1 (en) | 2002-06-13 |
Family
ID=22177404
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/083,294 Expired - Fee Related US6203873B1 (en) | 1998-05-01 | 1998-05-22 | Blends of fluoroelastomer interpolymers with thermo fluoroplastic interpolymers and the use of such blends in hoses |
US09/754,674 Expired - Fee Related US6365250B2 (en) | 1998-05-01 | 2001-01-04 | Blends of fluoroelastomer interpolymers with thermo fluoroplastic interpolymers and the use of such blends in hoses |
US10/071,634 Abandoned US20020070473A1 (en) | 1998-05-22 | 2002-02-07 | Blends of fluoroeleastomer interpolymers with thermo fluoroplastic interpolymers and the use of such blends in hoses |
US10/823,893 Expired - Fee Related US7228877B2 (en) | 1998-05-01 | 2004-04-13 | Flexible hose having reduced fuel vapor permeability and method of manufacturing such hose |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/083,294 Expired - Fee Related US6203873B1 (en) | 1998-05-01 | 1998-05-22 | Blends of fluoroelastomer interpolymers with thermo fluoroplastic interpolymers and the use of such blends in hoses |
US09/754,674 Expired - Fee Related US6365250B2 (en) | 1998-05-01 | 2001-01-04 | Blends of fluoroelastomer interpolymers with thermo fluoroplastic interpolymers and the use of such blends in hoses |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/823,893 Expired - Fee Related US7228877B2 (en) | 1998-05-01 | 2004-04-13 | Flexible hose having reduced fuel vapor permeability and method of manufacturing such hose |
Country Status (9)
Country | Link |
---|---|
US (4) | US6203873B1 (en) |
EP (1) | EP1124677A4 (en) |
JP (1) | JP2002516197A (en) |
KR (1) | KR100545432B1 (en) |
AR (1) | AR016030A1 (en) |
AU (1) | AU759941B2 (en) |
BR (1) | BR9910647A (en) |
CA (1) | CA2331282A1 (en) |
WO (1) | WO1999061227A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040187948A1 (en) * | 1998-05-01 | 2004-09-30 | Jerry Shifman | Flexible hose having reduced fuel vapor permeability and method of manufacturing such hose |
US20060275610A1 (en) * | 2001-06-04 | 2006-12-07 | Saint-Gobain Performance Plastics Corporation | Multi-layer release films |
US20070190335A1 (en) * | 2006-02-13 | 2007-08-16 | Saint-Gobain Performance Plastics Corporation | Multi-layer release films |
US20070202311A1 (en) * | 2006-02-28 | 2007-08-30 | Saint-Gobain Performance Plastics Corporation | Multi-layer release films |
US20070218233A1 (en) * | 1998-05-22 | 2007-09-20 | Jeremy Duke | Fuel impermeable, fuel resistant hose having improved high temperature resistant characteristics |
WO2009071183A1 (en) * | 2007-12-06 | 2009-06-11 | Veritas Ag | Multi-layer conduit |
ITTO20080657A1 (en) * | 2008-09-05 | 2010-03-06 | Dayco Fluid Technologies Spa | TUBE INCLUDING A LAYER INCLUDING A FLUORINE PLASTOMER AND AN ELASTOMERIC MATERIAL |
Families Citing this family (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6378562B1 (en) * | 1992-04-14 | 2002-04-30 | Itt Industries, Inc. | Multi-layer tubing having electrostatic dissipation for handling hydrocarbon fluids |
US6960377B2 (en) * | 1998-05-01 | 2005-11-01 | Dayco Products, Llc | Fuel hose and its production |
AU2001229402A1 (en) * | 2000-01-13 | 2001-07-24 | Digimarc Corporation | Authenticating metadata and embedding metadata in watermarks of media signals |
US6538069B2 (en) | 2000-06-05 | 2003-03-25 | Immix Technologies, Inc. | Polymer blends of PVDF thermoplastics blended with FKM fluoroelastomers |
JP3951611B2 (en) * | 2000-10-03 | 2007-08-01 | 東海ゴム工業株式会社 | Automotive hose |
JP3951651B2 (en) * | 2001-09-04 | 2007-08-01 | 東海ゴム工業株式会社 | Automotive hose |
US6926038B1 (en) * | 2001-12-31 | 2005-08-09 | Eaton Corporation | Hose structure, formulation for a rubber tube used therein and method of making the hose structure |
DE10203626B4 (en) * | 2002-01-30 | 2004-01-08 | Veritas Ag | Multi-layer pipe or hose |
EP1493955A4 (en) * | 2002-04-09 | 2009-03-11 | Mitsuboshi Corp Ltd | Multi-layer tube |
AU2003223556A1 (en) * | 2002-04-11 | 2003-10-27 | Avon Property Management Co. | Fuel filler hose |
US6759129B2 (en) | 2002-04-18 | 2004-07-06 | 3M Innovative Properties Company | Adhesion and bonding of multi-layer articles including a fluoropolymer layer |
US6849314B2 (en) * | 2002-04-18 | 2005-02-01 | 3M Innovative Properties Company | Fluoropolymer blends and multilayer articles |
US20030198770A1 (en) * | 2002-04-18 | 2003-10-23 | 3M Innovative Properties Company | Composite fluoropolymer-perfluoropolymer assembly |
US7569275B2 (en) † | 2002-04-18 | 2009-08-04 | 3M Innovative Properties Company | Fluoropolymer articles |
US20040076783A1 (en) * | 2002-10-22 | 2004-04-22 | Andrew Norman | Corrugated liquid and vapor carrying fuel tubes and method |
US6734254B1 (en) | 2003-01-13 | 2004-05-11 | 3M Innovative Properties Company | Co-curable blends featuring bromine-and iodine-containing fluoroplastic polymers |
US6742952B1 (en) | 2003-02-28 | 2004-06-01 | Bic Corporation | Transparent or translucent tubular structure |
US6776226B1 (en) | 2003-03-12 | 2004-08-17 | National Starch And Chemical Investment Holding Corporation | Electronic device containing thermal interface material |
US20040180209A1 (en) * | 2003-03-12 | 2004-09-16 | Chih-Min Cheng | Thermal interface material |
US6880862B2 (en) * | 2003-04-10 | 2005-04-19 | Dayco Products, Llc | Conductive tubular insert for a fuel transport system, and method |
US6874573B2 (en) * | 2003-07-31 | 2005-04-05 | National Starch And Chemical Investment Holding Corporation | Thermal interface material |
US7156125B2 (en) * | 2003-09-15 | 2007-01-02 | Teleflex Fluid Systems, Inc. | Coaxial hose assembly and method of making same |
DE102004010861A1 (en) * | 2004-03-05 | 2005-09-22 | Veritas Ag | Flexible hose, in particular charge air hose |
US7135122B2 (en) * | 2004-03-31 | 2006-11-14 | Freudenberg-Nok General Partnership | Polytetrafluoroethylene composites |
US7452577B2 (en) * | 2004-06-30 | 2008-11-18 | Freudenberg-Nok General Partnership | Electron beam curing of fabricated polymeric structures |
US7342072B2 (en) * | 2004-06-30 | 2008-03-11 | Freudenberg-Nok General Partnership | Bimodal compounds having an elastomeric moiety |
US7244329B2 (en) * | 2004-06-30 | 2007-07-17 | Freudenberg-Nok General Partnership | Electron beam curing in a composite having a flow resistant adhesive layer |
US20060000801A1 (en) * | 2004-06-30 | 2006-01-05 | Park Edward H | Surface bonding in halogenated polymeric components |
US7521508B2 (en) | 2004-06-30 | 2009-04-21 | Freudenberg-Nok General Partnership | Electron beam inter-curing of plastic and elastomer blends |
US7230038B2 (en) * | 2004-06-30 | 2007-06-12 | Freudenberg-Nok General Partnership | Branched chain fluoropolymers |
WO2006042763A1 (en) * | 2004-10-19 | 2006-04-27 | Arkema France | Multilayer tube based on a polyamide and a fluoropolymer for transferring fluids |
FR2876768B1 (en) * | 2004-10-19 | 2007-01-05 | Arkema Sa | MULTILAYER TUBE BASED ON POLYAMIDE AND FLUORINE POLYMER FOR THE TRANSFER OF FLUIDS |
FR2876769B1 (en) * | 2004-10-19 | 2007-01-05 | Arkema Sa | MULTILAYER TUBE BASED ON POLYAMIDE AND FLUORINE POLYMER FOR THE TRANSFER OF FLUIDS |
FR2876766B1 (en) * | 2004-10-19 | 2007-01-05 | Arkema Sa | PIPE BASED ON VULCANIZED ELASTOMER AND MODIFIED FLUORINE POLYMER |
WO2006045636A1 (en) * | 2004-10-19 | 2006-05-04 | Arkema France | Tube based on a vulcanized elastomer and a modified fluoropolymer |
FR2876770B1 (en) * | 2004-10-19 | 2007-01-05 | Arkema Sa | MULTILAYER TUBE BASED ON POLYAMIDE AND FLUORINE POLYMER FOR THE TRANSFER OF FLUIDS |
FR2876771B1 (en) * | 2004-10-19 | 2007-01-05 | Arkema Sa | MULTILAYER TUBE BASED ON POLYAMIDE AND FLUORINE POLYMER FOR THE TRANSFER OF FLUIDS |
FR2876772B1 (en) * | 2004-10-19 | 2007-01-05 | Arkema Sa | MULTILAYER TUBE BASED ON POLYAMIDE AND FLUORINE POLYMER FOR THE TRANSFER OF FLUIDS |
FR2876767B1 (en) * | 2004-10-19 | 2007-02-02 | Arkema Sa | MULTILAYER TUBE BASED ON POLYAMIDE AND FLUORINE POLYMER FOR THE TRANSFER OF FLUIDS |
EP1802461A1 (en) * | 2004-10-19 | 2007-07-04 | Arkema France | Multilayer tube based on a polyamide and a fluoropolymer for transferring fluids |
US20060099368A1 (en) * | 2004-11-08 | 2006-05-11 | Park Edward H | Fuel hose with a fluoropolymer inner layer |
US20060100368A1 (en) * | 2004-11-08 | 2006-05-11 | Park Edward H | Elastomer gum polymer systems |
US7381765B2 (en) * | 2004-11-08 | 2008-06-03 | Freudenberg-Nok General Partnership | Electrostatically dissipative fluoropolymers |
WO2006057331A1 (en) * | 2004-11-26 | 2006-06-01 | Daikin Industries, Ltd. | Thermoplastic polymer composition |
US7263975B2 (en) * | 2005-01-25 | 2007-09-04 | Dana Corporation | Plastic coated metal fuel rail |
US7552520B2 (en) * | 2005-06-13 | 2009-06-30 | Dayco Products, Llc | Extruded seal having a corrugated axial surface, a method of manufacturing such seals, and a method of using such seals |
US7479316B2 (en) * | 2005-06-13 | 2009-01-20 | Dayco Products, Llc | Extruded binary seal |
US20070045967A1 (en) * | 2005-08-31 | 2007-03-01 | Freudenberg-Nok General Partnership | Assemblies sealed with multilayer composite torsion seals having a layer of dispersed fluoroelastomer in thermoplastic |
US20070048476A1 (en) * | 2005-08-31 | 2007-03-01 | Freudenberg-Nok General Partnership | Assemblies sealed with multilayer composite compression seals having a layer of dispersed fluoroelastomer in thermoplastic |
US20070044906A1 (en) * | 2005-08-31 | 2007-03-01 | Freudenberg-Nok General Partnership | Multilayer polymeric composites having a layer of dispersed fluoroelastomer in thermoplastic |
WO2007075803A2 (en) * | 2005-12-21 | 2007-07-05 | 3M Innovative Properties Company | Highly water repellent fluoropolymer coating |
US20070261752A1 (en) * | 2006-04-13 | 2007-11-15 | Stant Manufacturing Inc. | Multiple-layer fluid fuel apparatus |
US8623251B2 (en) * | 2006-07-12 | 2014-01-07 | Parker-Hannifin Corporation | Extruded and configured lathe-cut packer elements |
US20080053551A1 (en) * | 2006-08-30 | 2008-03-06 | Dayco Products,Llc | Multilayer hose construction |
US20080053597A1 (en) * | 2006-08-31 | 2008-03-06 | Dayco Products, Llc | Multilayer hose |
US7863365B2 (en) | 2006-12-20 | 2011-01-04 | Freudenberg-Nok General Partnership | Robust magnetizable elastomeric thermoplastic blends |
JP2008265273A (en) * | 2007-03-27 | 2008-11-06 | Tokai Rubber Ind Ltd | Heat-resistant hose |
JP2009006575A (en) * | 2007-06-28 | 2009-01-15 | Nissan Motor Co Ltd | Multi-layer hose |
JP4450018B2 (en) * | 2007-06-28 | 2010-04-14 | 日産自動車株式会社 | Multilayer hose |
KR101000468B1 (en) | 2010-10-04 | 2010-12-15 | 주식회사 엠에스코리아 | Mult-composition pipe and method for manufacturing the same |
CN102155591B (en) * | 2011-01-06 | 2013-07-17 | 济南先河科技开发有限公司 | High-power hot-stretched high molecular weight polyethylene film composite tubular product and preparation method thereof |
JP6101255B2 (en) | 2011-06-14 | 2017-03-22 | フェデラル−モーグル・パワートレイン・リミテッド・ライアビリティ・カンパニーFederal−Mogul Powertrain Llc | Coated textile sleeve and method of manufacturing the same |
DE102012005026A1 (en) * | 2012-03-12 | 2013-09-12 | Veritas Ag | Flexible hose line |
US9694528B2 (en) | 2012-12-28 | 2017-07-04 | Eaton Corporation | Method for forming a layered tube and layer therein |
US9851026B2 (en) | 2012-12-28 | 2017-12-26 | Eaton Corporation | Layered tube and layer for use in same |
US9830797B2 (en) * | 2012-12-28 | 2017-11-28 | Eaton Corporation | High pressure hose with polymeric tube |
WO2014113202A1 (en) * | 2012-12-28 | 2014-07-24 | Agc Chemicals Americas, Inc. | A layered tube for a hose assembly |
CA2912260C (en) * | 2013-05-10 | 2021-10-26 | Agc Chemicals Americas, Inc. | A layered tube and layer for use in same |
EP2894380B1 (en) * | 2014-01-10 | 2017-11-22 | ContiTech USA, Inc. | Low permeation curb pump hose |
DE102014103479A1 (en) * | 2014-03-14 | 2015-09-17 | Veritas Ag | Hose line for a fluid |
US9915382B1 (en) * | 2014-05-16 | 2018-03-13 | Argu/America, Inc. | Pipe for slurry transport |
EP3164633B1 (en) * | 2014-07-02 | 2020-01-29 | Cooper-Standard Automotive, Inc. | Hose, abrasion resistant composition, and process of making a hose |
CN104453739B (en) * | 2014-12-04 | 2017-08-04 | 中国石油天然气股份有限公司 | Nonmetal flexible composite continuous pipe |
CN107405886A (en) * | 2014-12-19 | 2017-11-28 | 威扬斯技术公司 | Low extractable flexible pipe |
NL1041400B1 (en) * | 2015-07-14 | 2017-01-30 | Wavin Bv | Multilayered pipe and method of manufacturing the same. |
US10807342B2 (en) | 2015-12-15 | 2020-10-20 | Agc Chemicals Americas, Inc. | Layered tube and layer for use in same |
EP3205493B1 (en) | 2016-02-10 | 2018-10-17 | Veritas Ag | Hose line for a fluid and method for producing such a hose line |
CN108700227A (en) * | 2016-02-19 | 2018-10-23 | 株式会社八兴 | Static dissipative pitch tube |
MX2018014803A (en) | 2016-06-01 | 2019-03-14 | Wavin Bv | A multi-layered pipe and a method for forming a multi-layered pipe. |
US20170350541A1 (en) * | 2016-06-02 | 2017-12-07 | Contitech Techno-Chemie Gmbh | Light weight, high performance tubed fuel line |
EP3360677A1 (en) * | 2017-02-10 | 2018-08-15 | Eaton Intelligent Power Limited | Non conductive rubber hose |
DE102017223546A1 (en) * | 2017-12-21 | 2019-06-27 | Contitech Ag | Barrier layer for hoses |
US10781946B1 (en) | 2019-04-18 | 2020-09-22 | Contitech Usa, Inc. | All rubber low sulfur and extraction PED hose |
CN110668386A (en) * | 2019-10-29 | 2020-01-10 | 上海仪耐新材料科技有限公司 | Portable refuelable equipment |
CN114479321B (en) * | 2022-03-09 | 2023-03-14 | 中海石油(中国)有限公司 | High-gas-barrier nylon and polyvinylidene fluoride blend and preparation method thereof |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3864228A (en) * | 1971-04-26 | 1975-02-04 | Electronized Chem Corp | Moldable and heat recoverable composition comprising an admixture of vinylidene fluoride/hexafluoropropylene copolymer and a polymer of vinylidene fluoride |
US4130535A (en) | 1975-07-21 | 1978-12-19 | Monsanto Company | Thermoplastic vulcanizates of olefin rubber and polyolefin resin |
USRE32230E (en) * | 1977-04-22 | 1986-08-26 | Nissan Motor Co., Ltd. | Rubber hose for automotive fuel line |
US4330017A (en) * | 1977-04-22 | 1982-05-18 | Nissan Motor Company, Limited | Rubber hose for automotive fuel line |
DE3337519A1 (en) | 1982-10-15 | 1984-05-10 | Japan Synthetic Rubber Co., Ltd., Tokyo | RUBBER LAMINATE |
US4555543A (en) * | 1984-04-13 | 1985-11-26 | Chemical Fabrics Corporation | Fluoropolymer coating and casting compositions and films derived therefrom |
DE3573797D1 (en) * | 1984-07-09 | 1989-11-23 | Du Pont | Fluorinated thermoplastic elastomer compositions |
CA1272540A (en) | 1985-01-31 | 1990-08-07 | Yoshiaki Zama | Vulcanizable rubber compositions and applications thereof |
US4758455A (en) * | 1985-07-10 | 1988-07-19 | Handy & Harman Automotive Group Inc. | Composite fuel and vapor tube having increased heat resistance |
US5109071A (en) * | 1986-04-22 | 1992-04-28 | Raychem Corporation | Fluoropolymer compositions |
JPH0697076B2 (en) * | 1986-12-16 | 1994-11-30 | 横浜ゴム株式会社 | Low permeability hose |
US4828923A (en) | 1987-04-10 | 1989-05-09 | Nippon Zeon Co., Ltd. | Rubber laminates of fluororubber and nitrile rubber |
US5006594A (en) | 1988-12-30 | 1991-04-09 | E. I. Du Pont De Nemours And Company | Fluorinated thermoplastic elastomers containing polymeric additives and process for preparing such elastomers |
JPH0733878B2 (en) * | 1989-05-29 | 1995-04-12 | 東海ゴム工業株式会社 | Refrigerant transport hose |
US5057345A (en) | 1989-08-17 | 1991-10-15 | Raychem Corporation | Fluoroopolymer blends |
JP2787073B2 (en) | 1989-10-13 | 1998-08-13 | ジェイエスアール株式会社 | Rubber composition |
US5051480A (en) | 1989-10-16 | 1991-09-24 | Monsanto Company | Elastomeric blends |
US5053450A (en) | 1989-10-16 | 1991-10-01 | Monsanto Company | Elastomer compositions |
CA2029979A1 (en) | 1989-11-16 | 1991-05-17 | Kenneth D. Goebel | Polymer blend composition |
US5371143A (en) | 1989-11-16 | 1994-12-06 | Minnesota Mining And Manufacturing Company | Polymer blend composition of fluorinated elastomers, thermoplastic polymers and thermoplastics elastomers |
US5061965A (en) | 1990-04-30 | 1991-10-29 | Xerox Corporation | Fusing assembly with release agent donor member |
TW222650B (en) | 1991-04-01 | 1994-04-21 | Dow Corning | |
US5194508A (en) | 1992-04-07 | 1993-03-16 | The B. F. Goodrich Company | Macromers of vinylidene fluoride. Acrylate-terminated poly(vinylidene fluoride) and its copolymeric thermoplastic elastomers |
NZ245901A (en) * | 1992-06-02 | 1994-07-26 | Atochem North America Elf | Pigmented blend for powder coatings containing a vdf/tfe/hfp terpolymer |
JP3134511B2 (en) * | 1992-07-09 | 2001-02-13 | ダイキン工業株式会社 | New fluoro rubber composition |
DE69430050D1 (en) * | 1993-09-10 | 2002-04-11 | Tokai Rubber Ind Ltd | FUEL HOSE METHOD AND DEVICE FOR PRODUCING IT |
US5320888A (en) * | 1993-11-12 | 1994-06-14 | E. I. Du Pont De Nemours And Company | Fluoroelastomer laminates |
US5430603A (en) | 1994-02-25 | 1995-07-04 | Titeflex Corporation | Externally non-conductive hose assembly |
US5941286A (en) | 1994-06-30 | 1999-08-24 | Cadillac Rubber & Plastics, Inc. | Composite fuel and vapor barrier tube and process for making same |
US5588469A (en) * | 1994-10-17 | 1996-12-31 | Marugo Rubber Industries, Ltd. | Hose for automotive fuel piping |
US5679425A (en) * | 1994-11-23 | 1997-10-21 | Plumley Companies, Inc. | Hose for fuel handling systems |
US5639528A (en) * | 1995-04-24 | 1997-06-17 | The Goodyear Tire & Rubber Company | Hose construction containing fluoroplastic terpolymers |
JPH08302137A (en) * | 1995-04-27 | 1996-11-19 | Nissei Denki Kk | Fluororesin composition |
DE19611311A1 (en) | 1996-03-22 | 1997-09-25 | Dyneon Gmbh | Laminate |
JP3319309B2 (en) * | 1996-10-18 | 2002-08-26 | 豊田合成株式会社 | Reinforced rubber hose |
US6479161B1 (en) | 1997-06-06 | 2002-11-12 | Daikin Industries, Ltd. | Fluorine-containing adhesive and adhesive film and laminated article made by using the same |
DE19726802C1 (en) | 1997-06-24 | 1998-06-10 | Dyneon Gmbh | Aqueous dispersion of different fluoro-polymers giving compact, thick film with high dielectric strength |
US6117508A (en) | 1997-06-27 | 2000-09-12 | Dyneon Llc | Composite articles including a fluoropolymer blend |
US6077609A (en) | 1997-06-27 | 2000-06-20 | Dyneon Llc | Composite articles including fluoropolymers and non-fluorinated polymers and method for making the same |
US5908704A (en) * | 1997-06-30 | 1999-06-01 | Norton Performance Plastics Corporation | Interlayer film for protective glazing laminates |
US6203873B1 (en) * | 1998-05-22 | 2001-03-20 | Dayco Products, Inc. | Blends of fluoroelastomer interpolymers with thermo fluoroplastic interpolymers and the use of such blends in hoses |
US6960377B2 (en) * | 1998-05-01 | 2005-11-01 | Dayco Products, Llc | Fuel hose and its production |
US6602565B1 (en) * | 1998-08-10 | 2003-08-05 | Tokai Rubber Industries, Ltd. | Method of producing fuel hose and fuel hose obtained thereby |
US5957164A (en) * | 1998-09-10 | 1999-09-28 | Aeroquip Corporation | Refrigerant hose |
US6277919B1 (en) | 1999-05-13 | 2001-08-21 | Dyneon Llc | Polymer processing additive containing a multimodal fluoropolymer and melt processable thermoplastic polymer composition employing the same |
US6489420B1 (en) | 2000-06-27 | 2002-12-03 | Dyneon Llc | Fluoropolymers with improved characteristics |
US6310141B1 (en) | 2000-06-27 | 2001-10-30 | Dyneon Llc | Fluoropolymer-containing compositions |
US6686012B1 (en) | 2000-08-23 | 2004-02-03 | 3M Innovative Properties Company | Multi-layer articles including a fluoroplastic layer |
ITMI20012041A1 (en) * | 2001-10-02 | 2003-04-02 | St Microelectronics Srl | PULL-UP CIRCUIT FOR INPUT / OUTPUT TERMINALS OF ELECTRONIC APPLIANCES |
US7291369B2 (en) * | 2001-10-03 | 2007-11-06 | 3M Innovative Properties Company | Multi-layer articles including a fluoroelastomer layer and a barrier layer and method of making the same |
-
1998
- 1998-05-22 US US09/083,294 patent/US6203873B1/en not_active Expired - Fee Related
-
1999
- 1999-05-17 AR ARP990102342 patent/AR016030A1/en active IP Right Grant
- 1999-05-19 CA CA002331282A patent/CA2331282A1/en not_active Abandoned
- 1999-05-19 BR BR9910647-7A patent/BR9910647A/en not_active Application Discontinuation
- 1999-05-19 AU AU44070/99A patent/AU759941B2/en not_active Ceased
- 1999-05-19 KR KR1020007013072A patent/KR100545432B1/en not_active IP Right Cessation
- 1999-05-19 EP EP99927085A patent/EP1124677A4/en not_active Withdrawn
- 1999-05-19 JP JP2000550664A patent/JP2002516197A/en not_active Withdrawn
- 1999-05-19 WO PCT/US1999/011186 patent/WO1999061227A1/en active IP Right Grant
-
2001
- 2001-01-04 US US09/754,674 patent/US6365250B2/en not_active Expired - Fee Related
-
2002
- 2002-02-07 US US10/071,634 patent/US20020070473A1/en not_active Abandoned
-
2004
- 2004-04-13 US US10/823,893 patent/US7228877B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7228877B2 (en) * | 1998-05-01 | 2007-06-12 | Dayco Products, Llc | Flexible hose having reduced fuel vapor permeability and method of manufacturing such hose |
US20040187948A1 (en) * | 1998-05-01 | 2004-09-30 | Jerry Shifman | Flexible hose having reduced fuel vapor permeability and method of manufacturing such hose |
US20070218233A1 (en) * | 1998-05-22 | 2007-09-20 | Jeremy Duke | Fuel impermeable, fuel resistant hose having improved high temperature resistant characteristics |
US20060275610A1 (en) * | 2001-06-04 | 2006-12-07 | Saint-Gobain Performance Plastics Corporation | Multi-layer release films |
US7776446B2 (en) | 2001-06-04 | 2010-08-17 | Saint-Gobain Performance Plastics Corporation | Multi-layer release films |
US7776428B2 (en) | 2006-02-13 | 2010-08-17 | Saint-Gobain Performance Plastics Corporation | Multi-layer release films |
US20070190335A1 (en) * | 2006-02-13 | 2007-08-16 | Saint-Gobain Performance Plastics Corporation | Multi-layer release films |
US20070202311A1 (en) * | 2006-02-28 | 2007-08-30 | Saint-Gobain Performance Plastics Corporation | Multi-layer release films |
WO2009071183A1 (en) * | 2007-12-06 | 2009-06-11 | Veritas Ag | Multi-layer conduit |
US20100282355A1 (en) * | 2007-12-06 | 2010-11-11 | Veritas Ag | Multilayer conduit |
DE102007058721B4 (en) * | 2007-12-06 | 2014-02-13 | Veritas Ag | Multilayer pipe |
ITTO20080657A1 (en) * | 2008-09-05 | 2010-03-06 | Dayco Fluid Technologies Spa | TUBE INCLUDING A LAYER INCLUDING A FLUORINE PLASTOMER AND AN ELASTOMERIC MATERIAL |
WO2010026474A1 (en) * | 2008-09-05 | 2010-03-11 | Dytech - Dynamic Fluid Technologies S.P.A. | Pipe comprising a layer comprising a fluorinated plastomer and an elastomeric material |
Also Published As
Publication number | Publication date |
---|---|
EP1124677A4 (en) | 2001-09-05 |
WO1999061227A1 (en) | 1999-12-02 |
KR20010043735A (en) | 2001-05-25 |
AU759941B2 (en) | 2003-05-01 |
US6203873B1 (en) | 2001-03-20 |
US6365250B2 (en) | 2002-04-02 |
EP1124677A1 (en) | 2001-08-22 |
JP2002516197A (en) | 2002-06-04 |
US20010001395A1 (en) | 2001-05-24 |
US20040187948A1 (en) | 2004-09-30 |
BR9910647A (en) | 2001-01-30 |
US7228877B2 (en) | 2007-06-12 |
CA2331282A1 (en) | 1999-12-02 |
AU4407099A (en) | 1999-12-13 |
AR016030A1 (en) | 2001-05-30 |
KR100545432B1 (en) | 2006-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6203873B1 (en) | Blends of fluoroelastomer interpolymers with thermo fluoroplastic interpolymers and the use of such blends in hoses | |
US6960377B2 (en) | Fuel hose and its production | |
US5427831A (en) | Fluoropolymer laminates | |
USRE37775E1 (en) | Hose assembly | |
JPH10506455A (en) | Fuel transport pipe | |
AU2001265114B2 (en) | Thermoplastic tubing | |
EP0582302A1 (en) | Fuel transporting hose having inner layer made of fluorine-contained resin | |
US20040076783A1 (en) | Corrugated liquid and vapor carrying fuel tubes and method | |
EP0716632B1 (en) | Composite fuel and vapor barrier tube and process for making same | |
US20070065616A1 (en) | Fuel filler hose | |
US20070218233A1 (en) | Fuel impermeable, fuel resistant hose having improved high temperature resistant characteristics | |
US20080053597A1 (en) | Multilayer hose | |
US20030049401A1 (en) | Low permeation nitrile-butadiene rubber tube with aluminum barrier layer | |
US20080053551A1 (en) | Multilayer hose construction | |
MXPA00011464A (en) | Blends of fluoroelastomer interpolymers with thermo fluoroplastic interpolymers and the use of such blends in hoses | |
JP2019038254A (en) | Laminate and tube | |
JPH05169573A (en) | Hose |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |