US20020060321A1 - Minimally- patterned, thin-film semiconductor devices for display applications - Google Patents
Minimally- patterned, thin-film semiconductor devices for display applications Download PDFInfo
- Publication number
- US20020060321A1 US20020060321A1 US09/904,435 US90443501A US2002060321A1 US 20020060321 A1 US20020060321 A1 US 20020060321A1 US 90443501 A US90443501 A US 90443501A US 2002060321 A1 US2002060321 A1 US 2002060321A1
- Authority
- US
- United States
- Prior art keywords
- transistor
- data line
- electrode
- thin
- pixel electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 47
- 239000004065 semiconductor Substances 0.000 title description 53
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 42
- 239000010703 silicon Substances 0.000 claims abstract description 42
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000002245 particle Substances 0.000 claims description 110
- 238000000034 method Methods 0.000 claims description 78
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 75
- 238000004519 manufacturing process Methods 0.000 claims description 41
- 239000012530 fluid Substances 0.000 claims description 36
- 239000000758 substrate Substances 0.000 claims description 35
- 238000004891 communication Methods 0.000 claims description 20
- 230000008021 deposition Effects 0.000 claims description 17
- 239000003990 capacitor Substances 0.000 claims description 15
- 230000000903 blocking effect Effects 0.000 claims description 4
- 239000010408 film Substances 0.000 claims description 4
- 238000004804 winding Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 75
- 239000002775 capsule Substances 0.000 description 45
- 230000008569 process Effects 0.000 description 43
- 229920000642 polymer Polymers 0.000 description 40
- 239000000976 ink Substances 0.000 description 38
- 239000000049 pigment Substances 0.000 description 36
- -1 poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 33
- 239000002609 medium Substances 0.000 description 26
- 229910052751 metal Inorganic materials 0.000 description 25
- 239000002184 metal Substances 0.000 description 25
- 239000000975 dye Substances 0.000 description 24
- 230000003287 optical effect Effects 0.000 description 21
- 238000000576 coating method Methods 0.000 description 20
- 239000007788 liquid Substances 0.000 description 20
- 238000000151 deposition Methods 0.000 description 17
- 239000012071 phase Substances 0.000 description 17
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 16
- 239000004020 conductor Substances 0.000 description 16
- 239000000203 mixture Substances 0.000 description 15
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 14
- 239000011230 binding agent Substances 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 13
- 239000002904 solvent Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000003921 oil Substances 0.000 description 12
- 238000000059 patterning Methods 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 11
- 230000008030 elimination Effects 0.000 description 10
- 238000003379 elimination reaction Methods 0.000 description 10
- 238000013461 design Methods 0.000 description 9
- 230000005684 electric field Effects 0.000 description 9
- 230000037230 mobility Effects 0.000 description 9
- 239000000178 monomer Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000003491 array Methods 0.000 description 8
- 238000005538 encapsulation Methods 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 239000004973 liquid crystal related substance Substances 0.000 description 7
- 239000003094 microcapsule Substances 0.000 description 7
- 238000006116 polymerization reaction Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 5
- 239000008346 aqueous phase Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000004202 carbamide Substances 0.000 description 5
- 238000005354 coacervation Methods 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 5
- 229920000126 latex Polymers 0.000 description 5
- 238000005191 phase separation Methods 0.000 description 5
- 238000007639 printing Methods 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 230000006641 stabilisation Effects 0.000 description 5
- 238000011105 stabilization Methods 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 4
- 150000001412 amines Chemical group 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 239000003607 modifier Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 229920000123 polythiophene Polymers 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 238000012695 Interfacial polymerization Methods 0.000 description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 238000012674 dispersion polymerization Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 229920000767 polyaniline Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000000344 soap Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- ULQISTXYYBZJSJ-UHFFFAOYSA-N 12-hydroxyoctadecanoic acid Chemical compound CCCCCCC(O)CCCCCCCCCCC(O)=O ULQISTXYYBZJSJ-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical compound NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229920002367 Polyisobutene Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 150000004996 alkyl benzenes Chemical class 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N alpha-ketodiacetal Natural products O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 2
- 238000000498 ball milling Methods 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000003857 carboxamides Chemical class 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 239000012769 display material Substances 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000007720 emulsion polymerization reaction Methods 0.000 description 2
- 239000002272 engine oil additive Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000005189 flocculation Methods 0.000 description 2
- 230000016615 flocculation Effects 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- FRVCGRDGKAINSV-UHFFFAOYSA-L iron(2+);octadecanoate Chemical compound [Fe+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O FRVCGRDGKAINSV-UHFFFAOYSA-L 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 2
- 239000012457 nonaqueous media Substances 0.000 description 2
- 150000004028 organic sulfates Chemical class 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 2
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- SKYXLDSRLNRAPS-UHFFFAOYSA-N 1,2,4-trifluoro-5-methoxybenzene Chemical compound COC1=CC(F)=C(F)C=C1F SKYXLDSRLNRAPS-UHFFFAOYSA-N 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- 229940114072 12-hydroxystearic acid Drugs 0.000 description 1
- WCOXQTXVACYMLM-UHFFFAOYSA-N 2,3-bis(12-hydroxyoctadecanoyloxy)propyl 12-hydroxyoctadecanoate Chemical compound CCCCCCC(O)CCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCC(O)CCCCCC)COC(=O)CCCCCCCCCCC(O)CCCCCC WCOXQTXVACYMLM-UHFFFAOYSA-N 0.000 description 1
- LXOFYPKXCSULTL-UHFFFAOYSA-N 2,4,7,9-tetramethyldec-5-yne-4,7-diol Chemical compound CC(C)CC(C)(O)C#CC(C)(O)CC(C)C LXOFYPKXCSULTL-UHFFFAOYSA-N 0.000 description 1
- MFYSUUPKMDJYPF-UHFFFAOYSA-N 2-[(4-methyl-2-nitrophenyl)diazenyl]-3-oxo-n-phenylbutanamide Chemical compound C=1C=CC=CC=1NC(=O)C(C(=O)C)N=NC1=CC=C(C)C=C1[N+]([O-])=O MFYSUUPKMDJYPF-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- BYACHAOCSIPLCM-UHFFFAOYSA-N 2-[2-[bis(2-hydroxyethyl)amino]ethyl-(2-hydroxyethyl)amino]ethanol Chemical compound OCCN(CCO)CCN(CCO)CCO BYACHAOCSIPLCM-UHFFFAOYSA-N 0.000 description 1
- IAFBRPFISOTXSO-UHFFFAOYSA-N 2-[[2-chloro-4-[3-chloro-4-[[1-(2,4-dimethylanilino)-1,3-dioxobutan-2-yl]diazenyl]phenyl]phenyl]diazenyl]-n-(2,4-dimethylphenyl)-3-oxobutanamide Chemical compound C=1C=C(C)C=C(C)C=1NC(=O)C(C(=O)C)N=NC(C(=C1)Cl)=CC=C1C(C=C1Cl)=CC=C1N=NC(C(C)=O)C(=O)NC1=CC=C(C)C=C1C IAFBRPFISOTXSO-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- 229940095095 2-hydroxyethyl acrylate Drugs 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- HNNQYHFROJDYHQ-UHFFFAOYSA-N 3-(4-ethylcyclohexyl)propanoic acid 3-(3-ethylcyclopentyl)propanoic acid Chemical class CCC1CCC(CCC(O)=O)C1.CCC1CCC(CCC(O)=O)CC1 HNNQYHFROJDYHQ-UHFFFAOYSA-N 0.000 description 1
- YYPNJNDODFVZLE-UHFFFAOYSA-N 3-methylbut-2-enoic acid Chemical compound CC(C)=CC(O)=O YYPNJNDODFVZLE-UHFFFAOYSA-N 0.000 description 1
- LHYQAEFVHIZFLR-UHFFFAOYSA-L 4-(4-diazonio-3-methoxyphenyl)-2-methoxybenzenediazonium;dichloride Chemical compound [Cl-].[Cl-].C1=C([N+]#N)C(OC)=CC(C=2C=C(OC)C([N+]#N)=CC=2)=C1 LHYQAEFVHIZFLR-UHFFFAOYSA-L 0.000 description 1
- LQGKDMHENBFVRC-UHFFFAOYSA-N 5-aminopentan-1-ol Chemical compound NCCCCCO LQGKDMHENBFVRC-UHFFFAOYSA-N 0.000 description 1
- FLCAEMBIQVZWIF-UHFFFAOYSA-N 6-(dimethylamino)-2-methylhex-2-enamide Chemical compound CN(C)CCCC=C(C)C(N)=O FLCAEMBIQVZWIF-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- PIEQFSVTZMAUJA-UHFFFAOYSA-N 7-hydroxy-8-{[4-(phenyldiazenyl)phenyl]diazenyl}naphthalene-1,3-disulfonic acid Chemical compound OC1=CC=C2C=C(S(O)(=O)=O)C=C(S(O)(=O)=O)C2=C1N=NC(C=C1)=CC=C1N=NC1=CC=CC=C1 PIEQFSVTZMAUJA-UHFFFAOYSA-N 0.000 description 1
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical group C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- CQPFMGBJSMSXLP-ZAGWXBKKSA-M Acid orange 7 Chemical compound OC1=C(C2=CC=CC=C2C=C1)/N=N/C1=CC=C(C=C1)S(=O)(=O)[O-].[Na+] CQPFMGBJSMSXLP-ZAGWXBKKSA-M 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- XKJMBINCVNINCA-UHFFFAOYSA-N Alfalone Chemical compound CON(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XKJMBINCVNINCA-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241000557626 Corvus corax Species 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical class OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 208000032750 Device leakage Diseases 0.000 description 1
- 229920003345 Elvax® Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 239000004890 Hydrophobing Agent Substances 0.000 description 1
- 241000692870 Inachis io Species 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 229920003298 Nucrel® Polymers 0.000 description 1
- GZOLTFIRJJHAFU-UHFFFAOYSA-N OC(C(=O)OCC(O)CO)CCCCCCCCCCCCCCCC.C=CC Chemical compound OC(C(=O)OCC(O)CO)CCCCCCCCCCCCCCCC.C=CC GZOLTFIRJJHAFU-UHFFFAOYSA-N 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 241000083869 Polyommatus dorylas Species 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 description 1
- 229930189237 Rotalin Natural products 0.000 description 1
- SZKKRCSOSQAJDE-UHFFFAOYSA-N Schradan Chemical group CN(C)P(=O)(N(C)C)OP(=O)(N(C)C)N(C)C SZKKRCSOSQAJDE-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- MRQIXHXHHPWVIL-ISLYRVAYSA-N Sudan I Chemical compound OC1=CC=C2C=CC=CC2=C1\N=N\C1=CC=CC=C1 MRQIXHXHHPWVIL-ISLYRVAYSA-N 0.000 description 1
- YCUVUDODLRLVIC-UHFFFAOYSA-N Sudan black B Chemical class C1=CC(=C23)NC(C)(C)NC2=CC=CC3=C1N=NC(C1=CC=CC=C11)=CC=C1N=NC1=CC=CC=C1 YCUVUDODLRLVIC-UHFFFAOYSA-N 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- SLINHMUFWFWBMU-UHFFFAOYSA-N Triisopropanolamine Chemical compound CC(O)CN(CC(C)O)CC(C)O SLINHMUFWFWBMU-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- CQPFMGBJSMSXLP-UHFFFAOYSA-M acid orange 7 Chemical compound [Na+].OC1=CC=C2C=CC=CC2=C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 CQPFMGBJSMSXLP-UHFFFAOYSA-M 0.000 description 1
- 238000010669 acid-base reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- BTBJBAZGXNKLQC-UHFFFAOYSA-N ammonium lauryl sulfate Chemical compound [NH4+].CCCCCCCCCCCCOS([O-])(=O)=O BTBJBAZGXNKLQC-UHFFFAOYSA-N 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 239000001000 anthraquinone dye Substances 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- KSCQDDRPFHTIRL-UHFFFAOYSA-N auramine O Chemical compound [H+].[Cl-].C1=CC(N(C)C)=CC=C1C(=N)C1=CC=C(N(C)C)C=C1 KSCQDDRPFHTIRL-UHFFFAOYSA-N 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- YSIQDTZQRDDQNF-UHFFFAOYSA-L barium(2+);2,3-di(nonyl)naphthalene-1-sulfonate Chemical compound [Ba+2].C1=CC=C2C(S([O-])(=O)=O)=C(CCCCCCCCC)C(CCCCCCCCC)=CC2=C1.C1=CC=C2C(S([O-])(=O)=O)=C(CCCCCCCCC)C(CCCCCCCCC)=CC2=C1 YSIQDTZQRDDQNF-UHFFFAOYSA-L 0.000 description 1
- AGXUVMPSUKZYDT-UHFFFAOYSA-L barium(2+);octadecanoate Chemical compound [Ba+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O AGXUVMPSUKZYDT-UHFFFAOYSA-L 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- YLZSIUVOIFJGQZ-UHFFFAOYSA-N bis[4-(dimethylamino)phenyl]methanol Chemical compound C1=CC(N(C)C)=CC=C1C(O)C1=CC=C(N(C)C)C=C1 YLZSIUVOIFJGQZ-UHFFFAOYSA-N 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- MKFUUBCXQNCPIP-UHFFFAOYSA-L calcium;2,3-di(nonyl)naphthalene-1-sulfonate Chemical compound [Ca+2].C1=CC=C2C(S([O-])(=O)=O)=C(CCCCCCCCC)C(CCCCCCCCC)=CC2=C1.C1=CC=C2C(S([O-])(=O)=O)=C(CCCCCCCCC)C(CCCCCCCCC)=CC2=C1 MKFUUBCXQNCPIP-UHFFFAOYSA-L 0.000 description 1
- OOCMUZJPDXYRFD-UHFFFAOYSA-L calcium;2-dodecylbenzenesulfonate Chemical compound [Ca+2].CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O.CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O OOCMUZJPDXYRFD-UHFFFAOYSA-L 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- IVKVYYVDZLZGGY-UHFFFAOYSA-K chromium(3+);octadecanoate Chemical compound [Cr+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O IVKVYYVDZLZGGY-UHFFFAOYSA-K 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- ZXJXZNDDNMQXFV-UHFFFAOYSA-M crystal violet Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1[C+](C=1C=CC(=CC=1)N(C)C)C1=CC=C(N(C)C)C=C1 ZXJXZNDDNMQXFV-UHFFFAOYSA-M 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- 229920000359 diblock copolymer Polymers 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- FBELJLCOAHMRJK-UHFFFAOYSA-L disodium;2,2-bis(2-ethylhexyl)-3-sulfobutanedioate Chemical compound [Na+].[Na+].CCCCC(CC)CC(C([O-])=O)(C(C([O-])=O)S(O)(=O)=O)CC(CC)CCCC FBELJLCOAHMRJK-UHFFFAOYSA-L 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- QHZOMAXECYYXGP-UHFFFAOYSA-N ethene;prop-2-enoic acid Chemical compound C=C.OC(=O)C=C QHZOMAXECYYXGP-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 229920005648 ethylene methacrylic acid copolymer Polymers 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 125000005908 glyceryl ester group Chemical group 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001056 green pigment Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 1
- 125000003651 hexanedioyl group Chemical group C(CCCCC(=O)*)(=O)* 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 150000002462 imidazolines Chemical group 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 235000019239 indanthrene blue RS Nutrition 0.000 description 1
- UHOKSCJSTAHBSO-UHFFFAOYSA-N indanthrone blue Chemical compound C1=CC=C2C(=O)C3=CC=C4NC5=C6C(=O)C7=CC=CC=C7C(=O)C6=CC=C5NC4=C3C(=O)C2=C1 UHOKSCJSTAHBSO-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000010902 jet-milling Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- RQZHWDLISAJCLK-UHFFFAOYSA-M lithium;heptanoate Chemical compound [Li+].CCCCCCC([O-])=O RQZHWDLISAJCLK-UHFFFAOYSA-M 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- HPBJPFJVNDHMEG-UHFFFAOYSA-L magnesium;octanoate Chemical compound [Mg+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O HPBJPFJVNDHMEG-UHFFFAOYSA-L 0.000 description 1
- FDZZZRQASAIRJF-UHFFFAOYSA-M malachite green Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](C)C)C=C1 FDZZZRQASAIRJF-UHFFFAOYSA-M 0.000 description 1
- 229940107698 malachite green Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- RBQRWNWVPQDTJJ-UHFFFAOYSA-N methacryloyloxyethyl isocyanate Chemical compound CC(=C)C(=O)OCCN=C=O RBQRWNWVPQDTJJ-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- IWVKTOUOPHGZRX-UHFFFAOYSA-N methyl 2-methylprop-2-enoate;2-methylprop-2-enoic acid Chemical compound CC(=C)C(O)=O.COC(=O)C(C)=C IWVKTOUOPHGZRX-UHFFFAOYSA-N 0.000 description 1
- VUQUOGPMUUJORT-UHFFFAOYSA-N methyl 4-methylbenzenesulfonate Chemical compound COS(=O)(=O)C1=CC=C(C)C=C1 VUQUOGPMUUJORT-UHFFFAOYSA-N 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 238000012703 microemulsion polymerization Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229960003574 milrinone Drugs 0.000 description 1
- VWUPWEAFIOQCGF-UHFFFAOYSA-N milrinone lactate Chemical compound [H+].CC(O)C([O-])=O.N1C(=O)C(C#N)=CC(C=2C=CN=CC=2)=C1C VWUPWEAFIOQCGF-UHFFFAOYSA-N 0.000 description 1
- DIOQZVSQGTUSAI-UHFFFAOYSA-N n-butylhexane Natural products CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical class CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- JLFNLZLINWHATN-UHFFFAOYSA-N pentaethylene glycol Chemical compound OCCOCCOCCOCCOCCO JLFNLZLINWHATN-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000205 poly(isobutyl methacrylate) Polymers 0.000 description 1
- 229920000196 poly(lauryl methacrylate) Polymers 0.000 description 1
- 229920003216 poly(methylphenylsiloxane) Polymers 0.000 description 1
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000120 polyethyl acrylate Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000001044 red dye Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 229940083575 sodium dodecyl sulfate Drugs 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- HFQQZARZPUDIFP-UHFFFAOYSA-M sodium;2-dodecylbenzenesulfonate Chemical compound [Na+].CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O HFQQZARZPUDIFP-UHFFFAOYSA-M 0.000 description 1
- WSFQLUVWDKCYSW-UHFFFAOYSA-M sodium;2-hydroxy-3-morpholin-4-ylpropane-1-sulfonate Chemical compound [Na+].[O-]S(=O)(=O)CC(O)CN1CCOCC1 WSFQLUVWDKCYSW-UHFFFAOYSA-M 0.000 description 1
- MNCGMVDMOKPCSQ-UHFFFAOYSA-M sodium;2-phenylethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=CC1=CC=CC=C1 MNCGMVDMOKPCSQ-UHFFFAOYSA-M 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical class O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical compound OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- YXZRCLVVNRLPTP-UHFFFAOYSA-J turquoise blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Cu+2].NC1=NC(Cl)=NC(NC=2C=C(NS(=O)(=O)C3=CC=4C(=C5NC=4NC=4[N-]C(=C6C=CC(=CC6=4)S([O-])(=O)=O)NC=4NC(=C6C=C(C=CC6=4)S([O-])(=O)=O)NC=4[N-]C(=C6C=CC(=CC6=4)S([O-])(=O)=O)N5)C=C3)C(=CC=2)S([O-])(=O)=O)=N1 YXZRCLVVNRLPTP-UHFFFAOYSA-J 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000013035 waterborne resin Substances 0.000 description 1
- 239000001052 yellow pigment Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- 150000003754 zirconium Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/60—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1255—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66742—Thin film unipolar transistors
- H01L29/6675—Amorphous silicon or polysilicon transistors
- H01L29/66757—Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66742—Thin film unipolar transistors
- H01L29/6675—Amorphous silicon or polysilicon transistors
- H01L29/66765—Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
Definitions
- the present invention relates generally to electronic displays and methods of manufacturing the electronic displays, and more particularly to, semiconductor devices for electronic display applications and methods of manufacturing the semiconductor devices.
- Some encapsulated, particle-based displays offer a useful means of creating electronic displays.
- encapsulated particle-based displays including encapsulated electrophoretic displays, encapsulated suspended particle displays, and rotating ball displays.
- Encapsulated, particle-based displays can be made highly reflective, bistable, and optically and electrically efficient. To obtain a high-resolution display, however, individual pixels of a display must be addressable without interference from adjacent pixels.
- One way to achieve this objective is to provide an array of nonlinear elements, such as transistors or diodes where each transistor or diode is associated with each pixel. An addressing electrode is connected to each pixel through the transistor or the diode.
- a transistor includes a gate electrode, an insulating dielectric layer, a dielectric layer and source and drain electrodes.
- Application of a voltage to the gate electrode provides an electric field across the dielectric layer, which dramatically increases the source-to-drain conductivity of the semiconductor layer. This change allows for electrical conduction between the source and the drain electrodes.
- the gate electrode, the source electrode, and the drain electrode are patterned.
- the semiconductor layer is also patterned in order to minimize stray conduction (i.e., cross-talk) between neighboring circuit elements.
- Liquid crystal displays commonly employ amorphous silicon (“a-Si”), thin-film transistors (“TFT”) as switching devices for display pixels.
- a-Si amorphous silicon
- TFT thin-film transistors
- Such TFTs typically have a bottom-gate configuration.
- a thin-film capacitor typically holds a charge transferred by the switching TFT.
- Thin-film transistors can be fabricated to provide high performance. Fabrication processes, however, can result in significant cost.
- the transistor and capacitor include bottom electrodes 153 , 155 , a silicon nitride (“SiN”) dielectric layer 154 , an a-Si layer 156 , an n + a-Si contact layer 158 , drain and pixel electrodes 159 , and capacitor top electrode 192 .
- the a-Si layer 156 , the n + a-Si contact layer 158 and the electrodes 159 are all patterned layers.
- the n + a-Si contact layer 158 is typically 40 nm thick and provides an ohmic contact between the a-Si layer 156 and the electrodes 159 .
- the patterning of the n + a-Si layer 158 generally requires overetching to assure complete removal of the n + a-Si contact layer 158 along the channel portion of the a-Si layer 156 .
- a portion of the a-Si layer 156 is removed during this overetch step.
- the a-Si layer 156 as-deposited, is traditionally 160 nm or more in thickness.
- the high cost of manufacturing thin-film transistors results in part from patterning steps, which typically require the use of expensive photolithography equipment and masks, coating steps, and etching steps.
- An a-Si layer is typically patterned to leave islands of semiconductor material and thereby reduce leakage currents. Formation of the structures illustrated in FIG. 1 might require three lithography steps and four etching steps. Trends toward making higher performance devices make precision patterning even more important and manufacturing cost even greater.
- the invention is based in part on the realization that a low cost display device transistor array having a shared, very thin a-Si layer may support good image resolution while providing tolerable leakage currents.
- the invention features electronic circuits that have a lower manufacturing cost and methods of making electronic circuits that involve simpler processing steps.
- the circuits are particularly useful for addressing display media in a display device.
- the circuits comprise thin-film transistors (“TFT”) that share a continuous semiconductor layer, herein referred to as the “active layer”, that mediates current between source and drain of each transistor in an array of transistors.
- TFT thin-film transistors
- the semiconductor layer may be unpatterned.
- the layer may be continuous in two dimensions, e.g., it may be shared by, and continuous between, TFTs in a two-dimensional array.
- the display medium controlled by the circuits may be tolerant of leakage currents that flow through the continuous semiconductor layer.
- Devices of the invention are of particular use in the fabrication of electrophoretic displays.
- the continuous semiconductor layer is a very thin layer, for example, most effective at less than approximately 40 nm in thickness, and supports the active regions for an array of TFTs.
- Prior art transistors typically require deposition of heavily doped silicon material, e.g., n + a-Si, at the interface between metal-to-silicon contacts. The heavily doped material assists formation of an ohmic rather than a Schottky contact.
- various embodiments of TFTs of the invention require no heavily doped material, e.g., n + a-Si, at contact interfaces, e.g., the interface of the semiconductor layer to a source metal electrode or a drain metal electrode.
- TFT arrays may be fabricated with no patterning of a semiconductor layer, i.e. the active layer, or deposition and patterning of a heavily doped semiconductor layer at contact interfaces. This may eliminate a photolithographic step and a dry etching step, in addition to eliminating formation of a heavily doped layer at metal contact interfaces.
- Elimination of n + a-Si from fabrication may further eliminate associated costs due to a related deposition chamber and hazards entailed by use of highly toxic and flammable PH 3 gas.
- Related elimination of a dry etch step permits use of all-wet fabrication, further reducing fabrication costs.
- the above features of the invention provide increased fabrication throughput.
- Use of a thinner semiconductor active layer reduces semiconductor deposition time. Elimination of a heavily doped semiconductor layer, and elimination of patterning of the semiconductor active layer, further increase fabrication throughput.
- a SiN layer, an a-Si layer and a metal 2 layer are deposited in the same deposition system, again improving manufacturing throughput.
- the invention may provide improved fabrication yield, due to simplified processing. Moreover, some embodiments may utilize a roll-to-roll substrate fabrication process. Continuous deposition of the gate dielectric, a-Si, and source-drain electrode metal without a break in vacuum, for example, as well as an all-wet etching process, are compatible with roll-to-roll processing.
- the spacing between transistors may be selected to obtain acceptable leakage currents.
- the geometry of the transistors may be selected to obtain an acceptable leakage current between a first data line and a second data line.
- the spacing between the first data line and a first pixel electrode may be chosen to provide an acceptable leakage current between the first data line and the first pixel electrode.
- Use of a very thin active layer may permit closer packing of devices than otherwise possible.
- the invention features a thin-film transistor array that includes at least first and second transistors.
- Each of the first and second transistors include a shared silicon layer, i.e., an active layer, having a thickness less than 40 nm.
- the shared silicon layer extends continuously between the first and second transistors.
- Each transistor further has a source electrode and a drain electrode spaced from the source electrode, both in direct contact with the silicon layer.
- Each transistor also has a gate electrode disposed adjacent to the silicon layer.
- the silicon layer may consist of unpatterned silicon. Hence, the silicon may be a continuous film of material, use of which may reduce the number of process steps involved in manufacturing the transistor array.
- the silicon layer may consist of amorphous silicon, and the silicon layer may be undoped.
- the first transistor may be a bottom gate or a top gate transistor.
- the first transistor may include a first pixel electrode of an electronic display, the first pixel electrode in communication with the source electrode of the first transistor, and the drain electrode of the first transistor is in communication with a first data line of the electronic display.
- a distance between the first pixel electrode and the first data line may be selected to provide an acceptable leakage current between the first pixel electrode and the first data line.
- transistor geometry may be adjusted to reduce leakage to tolerable levels.
- Different geometrical aspects of a transistor array may be selected to reduce leakage.
- the distances between a pixel electrode and each of the adjacent data lines may be selected to provide an acceptable leakage current between the first data line and the second data line.
- At least one of the first data line, the second data line, the first transistor and the first pixel electrode may have a geometry selected to provide an acceptable leakage between the first data line and the second data line.
- the invention features an electronic display.
- the display includes a display medium, a first pixel electrode and a second pixel electrode adjacent to the display medium, and a first thin-film transistor and a second thin-film transistor in respective electrical communication with the first pixel electrode and the second pixel electrode, and comprising a shared continuous amorphous silicon layer that has a thickness less than 40 nm and provides channels for the first thin-film transistor and the second thin-film transistor.
- the electronic display may include any of a variety of display media, for example, an electrophoretic medium.
- An electrophoretic medium may have at least one type of particle and a suspending fluid, and may be encapsulated.
- the electronic display may further include a light blocking layer provided adjacent to the silicon layer.
- transistor geometrical features may be adjusted to reduce leakage currents.
- the invention features a method of manufacturing an array of thin-film transistors.
- the method includes the steps of providing a substrate, forming adjacent to the substrate an unpatterned silicon layer having a thickness less than 40 nm. At least one patterned drain electrode is formed for each of the transistors. Drain electrodes are formed in direct contact with the unpatterned silicon layer. At least at least one patterned source electrode is provided for each of the transistors. The source electrodes are in direct contact with the unpatterned silicon layer. At least one gate electrode is provided for each of the transistors. The gate electrode is disposed adjacent to the unpatterned silicon layer.
- a dielectric layer may be formed adjacent to the at least one gate electrode. Forming the dielectric layer, forming the unpatterned silicon layer and forming the metal layer which will, after patterning, form the source and drain electrodes may occur during one visit of the substrate inside a single deposition chamber. Providing a substrate may include unwinding the substrate from a first roll and winding the substrate onto a second roll.
- the method may further include providing a first pixel electrode of an electronic display in communication with the source electrode of the first transistor, and providing a first data line of the electronic display in communication with the drain electrode of the first transistor.
- the method may further include providing a second pixel electrode of an electronic display in communication with the source electrode of the second transistor and providing a second data line of the electronic display in communication with the drain electrode of the second transistor.
- Geometrical parameters include the shapes of features and the spacings between features.
- Features include, for example, the data lines, the transistors and the pixel electrodes.
- Forming may include mask steps consisting of a first mask step and a second mask step. At least one patterned gate electrode is formed in the first mask step, and at least one drain and one source electrode is formed the second mask step. Hence some embodiments include exactly two mask steps. (As in many prior art processes, and additional mask step may be required to form contacts adjacent the edges of the display.)
- FIG. 1 shows a diagrammatic cross-sectional view of a prior art TFT and capacitor.
- FIG. 2 shows a cross-sectional view of an array of thin-film transistors according to one embodiment of the present invention.
- FIG. 3 shows a top view of one embodiment of an electronic display, with the display medium removed.
- FIG. 4 illustrates locations of resistive leakage paths for the display of FIG. 3.
- FIG. 5 a shows an underneath plan view of an embodiment of a thin-film transistor with the substrate omitted.
- FIG. 5 b shows a diagrammatic cross sectional view that corresponds to the transistor embodiment shown in FIG. 5 a.
- FIG. 6 shows a graph of drain current versus gate voltage for a sample of a two-mask transistor of the type shown in FIG. 5 a.
- FIG. 7 shows a cross-sectional view of an array of thin-film transistors according to one embodiment of the present invention.
- FIG. 8 shows a cross-sectional view of an array of thin-film transistors according to one embodiment of the present invention.
- FIG. 9 shows a cross-sectional view of an array of thin-film transistors according to one embodiment of the present invention.
- FIG. 10 shows a cross-sectional view of an array of thin-film transistors according to one embodiment of the present invention.
- FIG. 11 shows a cross-sectional view of an electronic display according to one embodiment of the present invention.
- FIG. 12 shows a diagrammatic cross-sectional view of a transistor and capacitor of an array, according to one embodiment of the invention.
- FIG. 13 shows a graph of drain current versus gate voltage for a sample transistor of an embodiment with a 10 nm thick a-Si layer.
- FIG. 14 shows a graph of drain current versus drain voltage for the sample transistor of FIG. 13.
- FIG. 15 shows a graph of transient voltage switching and holding of a sample transistor array.
- FIG. 16 a shows a diagrammatic cross-sectional view of an electronic display according to one embodiment of the present invention.
- FIG. 16 b shows a diagrammatic cross-sectional view of an electronic display according to one embodiment of the present invention.
- FIG. 16 c shows a diagrammatic cross-sectional view of an electronic display according to one embodiment of the present invention.
- FIG. 16 d shows a diagrammatic cross-sectional view of an electronic display according to one embodiment of the present invention.
- the invention features minimally-patterned semiconductor devices for display applications.
- the semiconductor devices are an array of thin-film transistors.
- An array of TFTs may include a continuous a-Si layer of approximately 40 nm or less in thickness, preferably 30 nm or less, most preferably 20 nm or less, without heavily doped a-Si at metal contact interfaces.
- general considerations of transistor array design and leakage currents will be discussed. Simplified arrays for displays that can tolerate leakage in a variety of semiconductor materials that provide for TFT active layers, are described. Then, arrays employing very thin a-Si for the active layer are described. A final section describes some display media that may be used with TFT arrays in the fabrication of a display.
- an array of transistors 10 includes a substrate 12 , a gate electrode 14 for each transistor provided adjacent to the substrate 12 , a gate dielectric layer 16 provided adjacent to the substrate 12 and the gate electrodes 14 , a semiconductor layer 18 provided adjacent to the gate dielectric layer 16 , and a source electrode 20 and a drain electrode 22 for each transistor provided adjacent to the semiconductor layer 18 .
- the sizes of the electrodes 20 , 22 may vary in various transistor designs.
- the substrate 12 may be, for example: a silicon wafer; a glass plate; a steel foil; or a plastic sheet (for example a polyimide sheet).
- the gate electrodes 14 can be any conductive material such as metal or conductive polymer.
- the materials for use as the semiconductor layer 18 can be inorganic materials such as amorphous silicon or polysilicon.
- the semiconductor layer 18 can be formed of organic semiconductors such as: polythiophene and its derivatives; oligothiophenes; and pentacene. In general, any semiconductive material useful in creating conventional thin film transistors can be used in this embodiment.
- the material for the gate dielectric layer 16 can be an organic or an inorganic material. Examples of suitable materials include, but are not limited to, polyimides, silicon dioxide, and a variety of inorganic coatings and glasses.
- the source and drain electrodes 20 , 22 may be made of any conductive material such as metal or conductive polymer.
- the array of transistors illustrated in FIG. 2 can be manufactured using any one of many appropriate methods.
- vacuum based methods such as chemical vapor deposition, evaporation, or sputtering can be used to deposit the materials necessary to form the transistor and thereafter the deposited material can be patterned.
- wet printing methods or transfer methods can be used to deposit the materials necessary to form the transistors.
- the array of transistors described in reference to FIG. 2 can be used for addressing an electronic display.
- This embodiment is applicable to a variety of electronic displays, including: electrophoretic displays; liquid crystal displays; emissive displays (including organic light emitting materials); and, rotating ball displays.
- electrophoretic displays liquid crystal displays
- emissive displays including organic light emitting materials
- rotating ball displays for liquid crystal displays, error limits place a demand on the time-averaged square of the voltage across the pixel.
- the acceptable tolerance in voltage variation will depend upon how emission varies with current through the pixel. In general, display types that have switching elements with a threshold associated with switching, rather than a gradual change in optical state, will be more tolerant of errors.
- the semiconductor layer 18 is not, resulting in significant reduction in processing efforts and cost.
- This circuit design can exhibit cross-talk between adjacent transistors that reside in rows and columns of transistors in an array. The degree of cross-talk, however, can be reduced to a level that is acceptable for some applications.
- a degree of cross-talk can be tolerated. For example, if only a few gray level states of a display are addressed, then small stray voltages may not significantly affect the overall appearance of the display. In addition, if the display is designed for moderate resolution, then neighboring circuit elements will be far apart from each other, reducing the degree of cross-talk.
- cross-talk errors are noticeable in displays only if they cause unwanted optical changes in pixel areas surrounding any one particular pixel element.
- a pixel has only two possible switching states, i.e. either dark or light, then small deviations in the electronic signal due to cross-talk may not substantially change the optical appearance of the pixel.
- intermediate optical states i.e. gray levels
- the display pixel elements will be more sensitive to errors.
- a monochrome display may be able to tolerate leakage currents in excess of 10%, whereas a 256-level display would typically require a much lower leakage level of approximately 0.2%.
- a tolerance level may be estimated by dividing 100% by twice the number of gray levels, because typically the leakage current should not cause more than one-half a gray level error.
- the display incorporates pixels with a limited number of gray levels. In this case, a given pixel is less sensitive to cross-talk induced voltage errors because it is switched between a limited number of optical states.
- the acceptable leakage will depend on the extent of error in the electrical signal seen by a pixel and how that affects the optical state of the pixel. This will depend on the display medium.
- the switching electronic signal depends on both the magnitude and duration of the voltage applied. The acceptable leakage corresponds to a maximum tolerable error in the optical state of a display pixel.
- An array of transistors with acceptable cross-talk can be prepared by following the design rules provided herein in reference to FIG. 3, which illustrates a plan-view of the conductive leads and the elements for driving a display.
- An array comprises: data lines 30 , 32 ; select lines 36 , 46 ; and pixel electrodes 34 , 38 , 40 , 42 .
- To address a pixel electrode 34 , 38 , 40 , 42 voltages are applied to appropriate data lines 30 , 32 and select lines 36 , 46 .
- voltages are applied to data line 30 and select line 36 .
- Changes in the optical characteristics of a display element are achieved by addressing a pixel electrode 34 , 38 , 40 , 42 that is associated with the display element.
- a preferred embodiment includes two design criteria for a properly functioning display.
- Many video displays produce video output by periodically updating still images presented in rapid succession at some frame rate. Each image is presented for a period of time, i.e., a frame time.
- the optical character is determined primarily by the time-varying voltage profile on the pixel electrode, such as for electrophoretic and twisted-nematic displays, the impact of current leakage on the voltage profile preferably is sufficiently small during the frame time.
- a pixel voltage preferably does not change by an unacceptable amount during a frame time because a pixel preferably maintains a given optical state during this interval of time.
- a large current leakage between the data line 30 and pixel electrode 34 may cause an unintended shift in the pixel voltage, thus changing the optical state of that pixel during the presentation of a single image by a display.
- parasitic leakage currents can cause unwanted light emission from the pixel.
- the conduction between adjacent data lines 30 , 32 is greatly facilitated by the presence of a column of pixel electrodes 34 , 40 .
- An efficient conduction path can be approximated as follows. Current can leak from the first data line 30 to the adjacent column of pixel electrodes 34 .
- the display has a first row of pixel electrodes 34 , 38 and a second row of pixel electrodes 40 , 42 . More generally, if there are N rows in a particular display, N being an integer, then there are N conduction paths in parallel between adjacent data lines 30 , 32 and the resistive pathway between adjacent data lines 30 , 32 can be approximated by the resistive elements shown in FIG. 4.
- RTFT is the resistance between the first data line 30 and the pixel electrode 34 through the thin-film transistor channel in the “off” state
- R 1 is the resistance across the gap between the first data line 30 and the pixel electrode 34
- R 2 is the resistance across the gap between the pixel electrode 34 and the second data line 32 .
- the resistive pathway provided directly between adjacent data lines 30 , 32 along the region between neighboring pixel electrodes 34 , 40 can be neglected as being insignificant in comparison to the pathway provided by the pixel electrodes 34 , 40 , i.e. the pixel electrodes 34 , 40 are good conductors.
- the resistance across adjacent data lines 30 , 32 (R dd ) can be expressed as:
- N is the number of rows of pixel electrodes
- ⁇ is the bulk resistivity of the semiconducting layer
- L is the distance between source and drain electrodes
- L 1 is the distance between a data line and the adjacent pixel electrode
- L 2 is the distance between the pixel electrode and the neighboring data line
- Y p is a width of a pixel electrode
- W is the channel width
- h is the thickness of the continuous semiconductor layer.
- a properly functioning display will have a resistance between adjacent data lines 30 , 32 that is much greater than the resistance between the data lines 30 , 32 and the voltage source (R d ).
- R d the resistance between the data lines 30 , 32 and the voltage source
- the data line also should not charge up an adjacent pixel while the select line is off (row unselected). This demand can be translated as:
- R p is the resistance through the pixel electrode and the electro-optic medium to the electrode on the opposed side of the medium.
- the resistivity (undoped) is approximately 10 8 ohm-cm.
- a typical semiconductor thickness is about 500 angstroms. This information and pixel dimensions can be used to calculate the relevant resistances.
- the minimum spacing of a pixel electrode 34 to a data line 30 , L ms can be derived from a consideration of the effect of the leakage on the pixel voltage. In order to avoid undesirable voltage shifts on the pixel, the following condition must be met:
- I leak is the leakage current from the data line to the pixel electrode through the unpatterned semiconductor layer
- T f is the frame time
- C p is the total capacitance of the pixel.
- ⁇ V p is the maximum tolerance for leakage-induced voltage shifts on the pixel electrode. This value depends on how voltage shifts affect the optical state of the pixel and the tolerance defined by the display parameters.
- I leak at the minimum spacing, can be expressed by:
- I leak ⁇ wh ( V p ⁇ V d )/L ms
- ⁇ is the conductivity of the semiconductor material
- w is the width of the leakage path
- h is the thickness of the underlying semiconductor material
- V d is the voltage of the data line.
- FIG. 5 a A preferred embodiment of a thin-film transistor for use in an encapsulated electrophoretic display is shown in FIG. 5 a.
- this preferred embodiment includes data lines 30 ′, 32 ′, a selection line 36 ′, a pixel electrode 34 ′, and a capacitor top electrode 92 ′.
- Various physical dimensions are indicated, in microns.
- FIG. 5 a The embodiment of FIG. 5 a is illustrated in cross section in FIG. 5 b, though not to scale.
- the embodiment includes bottom gate electrode 53 ′ and bottom capacitor electrode 55 ′, a silicon nitride (“SiN”) dielectric layer 54 ′, an amorphous silicon layer 56 ′, amorphous silicon contacts 58 ′ drain and pixel electrodes 59 ′ , and capacitor top electrode 92 ′.
- SiN silicon nitride
- Other embodiments may employ different materials, for example, other dielectric materials such as silicon dioxide.
- samples were prepared through either a two-mask process, as preferred, or a three-mask process, for comparison.
- the amorphous silicon layer 56 ′ was not patterned while in the three mask process the amorphous silicon layer 56 ′ was patterned.
- the physical and experimentally measured electrical characteristics for these two samples are given in the table below. On/Off Threshold Max. Drain Min.
- the leakage current and On/Off ratio for the unpatterned sample are poorer than for the patterned sample.
- the unpatterned sample is both suitable and preferable for many display applications, as discussed above.
- FIG. 6 the drain current versus gate voltage characteristics of the two-mask sample are shown. The drain current can be caused to vary by over five orders of magnitude by changing the gate voltage from zero to 30 volts. This large range makes this transistor suitable for many display applications.
- an array of bottom gate transistors 50 include a substrate 52 , a patterned gate electrode 53 for each transistor provided adjacent the substrate 52 , a dielectric layer 54 provided adjacent the gate electrodes 53 and the substrate 52 , an amorphous silicon layer 56 provided adjacent the dielectric layer 54 , a plurality of patterned n + doped amorphous silicon contact layers 58 provided adjacent the amorphous silicon doped layer 56 , and patterned source, drain or pixel electrodes 59 provided adjacent the patterned n + doped amorphous silicon contacts layers 58 .
- Each patterned n + doped amorphous silicon contact layers 58 is provided between the amorphous silicon layer 56 and a patterned electrode 59 to provide better electrical contact.
- the contacts layers 58 at the metal-semiconductor interface ensure ohmic behavior.
- the contacts 58 can be deposited by the addition of PH 3 to SiH 4 in the gas phase.
- the contacts 58 can also be achieved by direct ion implantation of n-type dopants in selected areas of the intrinsic amorphous silicon layer 56 followed by high temperature annealing as an alternative to the additional n + amorphous silicon deposition step.
- the contacts 58 are not essential to produce a sufficiently functioning transistor.
- an array of top gate transistors 60 include a substrate 62 , patterned source, drain, and/or pixel electrodes 64 for each transistor provided adjacent the substrate 62 , a patterned n + amorphous silicon contact 66 provided adjacent each electrode 64 , an amorphous silicon layer 68 provided adjacent the contacts 66 and the substrate 62 , a dielectric layer 70 provided adjacent to the boron doped amorphous silicon layer 68 , and a gate electrode 72 for each transistor provided adjacent to the dielectric layer 70 .
- an array of bottom gate transistors 80 is substantially similar to the transistors 50 of FIG. 7.
- the transistors 80 of FIG. 9 include a passivation layer 82 provided above the exposed regions of the amorphous silicon layer 56 .
- the passivation layer 82 can be deposited after the patterning of the electrodes 59 .
- the passivation layer 82 can consist of silicon nitride.
- a light blocking layer is incorporated into the array of transistors to shield any exposed silicon layer 56 .
- the light blocking layer can be either light absorbing or reflective.
- an array of bottom gate transistors 90 is substantially similar to the array of transistors 80 of FIG. 9.
- the array of transistors 90 further incorporates a substrate capacitor 292 .
- the substrate capacitor 292 can be formed by extending the pixel electrode 94 over the preceding gate line 53 b.
- the capacitance is directly proportional to the area of overlap.
- inexpensive displays can be constructed by minimizing the number of patterning steps.
- Such a display can take different forms, including but not limited to: large area displays, displays with low-to-moderate pixel density, or microencapsulated electrophoretic display devices.
- the semiconductor layer 18 , 56 , or 68 is unpatterned.
- the dielectric layer 16 , 54 , or 70 is unpatterned.
- an electronic display can incorporate an array of transistors as described above.
- an electronic display may include a transparent over-layer 101 supporting an electrode 102 , a display medium 106 provided next to the electrode 102 , a plurality of pixel electrodes 104 provided next to the display medium 106 , and a plurality of discrete electronic devices (e.g., transistors) provided next to and in electrical communication with the pixel electrodes 104 supported by a substrate 110 provided next to and in electrical communication with the discrete electronic devices.
- the discrete electronic devices in this embodiment, are transistors.
- the gate electrodes 112 , the gate dielectric layer 100 , the semiconductor layer 118 and the source electrodes 120 of the transistors are shown in this cross-section.
- the over-layer 101 can be made of a transparent material.
- the over-layer 101 can also be a flexible substrate.
- the over-layer 101 can consist of polyester.
- the electrode 102 can be a common electrode.
- the electrode 102 can be a plurality of row electrodes.
- the electrode 102 can consist of a transparent conductive material.
- an indium tin oxide (ITO), polyaniline or polythiophene coating can be provided on an inner surface of the over-layer 101 .
- the display medium 106 can include a plurality of microcapsules 124 dispersed in a binder 126 (not shown in drawing). Each microcapsule 124 can include an electro-optical material.
- An electro-optical material refers to a material which displays an optical property in response to an electrical signal. Electro-optical material, for example, can be electrophoretic particles or liquid crystals dispersed in a solvent. An electro-optical material can also be bichromal spheres dispersed in a solvent. Details of electro-optical materials within the microcapsules 124 will be discussed below. An important property of the electro-optical material within the microcapsules 124 is that the material is capable of displaying one visible state upon application of an electric field and a different visual state upon application of a different electric field.
- the display medium 106 comprises a particle-based display medium.
- the particle-based display medium comprises an electronic ink.
- An electronic ink is an optoelectronically active material which comprises at least two phases: an electrophoretic contrast medium phase and a coating/binding phase.
- the electrophoretic phase comprises, in some embodiments, a single species of electrophoretic particles dispersed in a clear or dyed medium, or more than one species of electrophoretic particles having distinct physical and electrical characteristics dispersed in a clear or dyed medium.
- the electrophoretic phase is encapsulated, that is, there is a capsule wall phase between the two phases.
- the coating/binding phase includes, in one embodiment, a polymer matrix that surrounds the electrophoretic phase.
- the polymer in the polymeric binder is capable of being dried, crosslinked, or otherwise cured as in traditional inks, and therefore a printing process can be used to deposit the electronic ink onto a substrate.
- the optical quality of an electronic ink is quite distinct from other electronic display materials.
- the electronic ink provides a high degree of both reflectance and contrast because it is pigment based (as are ordinary printing inks).
- the light scattered from the electronic ink comes from a very thin layer of pigment close to the top of the viewing surface. In this respect it resembles an ordinary, printed image.
- electronic ink is easily viewed from a wide range of viewing angles in the same manner as a printed page, and such ink approximates a Lambertian contrast curve more closely than any other electronic display material. Since electronic ink can be printed, it can be included on the same surface with any other printed material, including traditional inks.
- Electronic ink can be made optically stable in all display configurations, that is, the ink can be set to a persistent optical state. Fabrication of a display by printing an electronic ink is particularly useful in low power applications because of this stability.
- Electronic ink displays are novel in that they can be addressed by DC voltages and draw very little current.
- the conductive leads and electrodes used to deliver the voltage to electronic ink displays can be of relatively high resistivity.
- the ability to use resistive conductors substantially widens the number and type of materials that can be used as conductors in electronic ink displays.
- ITO indium tin oxide
- the replacement of ITO with other materials can provide benefits in appearance, processing capabilities (printed conductors), flexibility, and durability. Additionally, the printed electrodes are in contact only with a solid binder, not with a fluid layer (like liquid crystals). This means that some conductive materials, which would otherwise dissolve or be degraded by contact with liquid crystals, can be used in an electronic ink application. These include opaque metallic inks for the rear electrode (e.g., silver and graphite inks), as well as conductive transparent inks for either substrate.
- opaque metallic inks for the rear electrode e.g., silver and graphite inks
- conductive transparent inks for either substrate.
- These conductive coatings include conducting or semiconducting colloids, examples of which are indium tin oxide and antimony-doped tin oxide.
- Organic conductors (polymeric conductors and molecular organic conductors) also may be used. Polymers include, but are not limited to, polyaniline and derivatives, polythiophene and derivatives, poly(3,4-ethylenedioxythiophene) (PEDOT) and derivatives, polypyrrole and derivatives, and polyphenylenevinylene (PPV) and derivatives.
- Organic molecular conductors include, but are not limited to, derivatives of naphthalene, phthalocyanine, and pentacene. Polymer layers can be made thinner and more transparent than with traditional displays because conductivity requirements are not as stringent.
- the pixel electrodes 104 can be bonded to the display medium 106 through a binder.
- the binder for example, can be a pressure sensitive adhesive.
- the pixel electrodes 104 can be made from any conductive material.
- the pixel electrodes 104 can be transparent or opaque.
- the pixel electrodes 104 can be made from aluminum, chrome, solder paste, copper, copper-clad polyimide, graphite inks, silver inks and other metal containing conductive inks.
- the pixel electrodes 104 can be formed on a substrate 110 and subsequently bonded to the display medium 106 .
- the discrete electronic devices can be non-linear devices such as transistor for addressing the pixels of the display.
- the non-linear devices can be diodes.
- the electrodes 112 , 120 can be made of any conductive material, either transparent or opaque.
- the conductive material can be printed, coated, or vacuum sputtered.
- the electrodes 102 , 112 , 120 can also be made using transparent materials such as indium tin oxide and conductive polymers such as polyaniline or polythiophenes.
- the electrodes 102 , 112 , 120 can be made of opaque materials such as aluminum, chrome, solder paste, copper, copper-clad polyimide, graphite inks, silver inks and other metal-containing conductive inks.
- the architecture of the electronic display shown in FIG. 11 is exemplary only and other architectures for an electronic display may also be used in accordance with this invention.
- an a-Si active layer is traditionally patterned to leave islands of semiconductor material.
- the structures shown in FIG. 1 typically require three lithography steps and four etching steps.
- some embodiments of the invention, as described above in reference to FIG. 5 b, employ two masks in a simplified fabrication process.
- another embodiment of the invention provides further fabrication improvements through use of very thin a-Si for the active layer.
- one embodiment that employs a very thin a-Si layer includes a gate electrode 53 a, a bottom capacitor electrode 55 a, a SiN dielectric layer 54 a, an a-Si layer 56 a, drain and pixel electrodes 59 a, and a capacitor top electrode 92 a.
- This embodiment may be fabricated with a two-mask process, and without use of highly doped a-Si to assist formation of ohmic contacts.
- the a-Si layer 56 a may be formed with no further treatment after deposition, such as a chemical treatment to vary electrical properties.
- the a-Si layer 56 a preferably extends continuously from a transistor to neighboring transistors that reside both in rows and columns in an array of transistors.
- a bottom gate with top pixel electrode structure is advantageous for electro-optic display applications. Such a structure positions the pixel electrodes closely to the electro-optic display medium. Thus, drive voltage and energy consumption may be reduce. Moreover, leakage current may be reduced.
- the a-Si layer 56 a has a thickness of approximately 40 nm or less.
- the use of a very thin a-Si layer as an active layer in a TFT obviates the requirement of heavily doped n + a-Si lying between the a-Si layer 56 a and the electrodes 59 a. See Thomasson, et al., IEEE Elec. Dev. Lett., Vol. 18, no. 3, 1717 (1997).
- gate induced carrier concentration substantially reduces the metal to channel Schottky barrier. Hence, carriers may tunnel from the metal source and drain contacts to the channel, without reducing the TFT current and substantially affecting performance.
- Elimination of an n + a-Si layer at the metal to active layer interface reduces the number and difficulty of process steps by, for example, eliminating deposition and etching of n + a-Si. This may also permit use of a very thin a-Si active layer due to elimination of the need to overetch the n + a-Si layer.
- a very thin a-Si layer as the active layer may provide further advantages. If left unpatterned, an active layer of, for example, 10 nm thick a-Si may reduce leakage currents due to increased lateral resistance relative to that of a thicker, continuous active layer. Hence, as discussed above, device dimensions may be reduced while still achieving acceptable leakage current levels. Thus, use of very thin a-Si as an active layer may permit dense packing of electronic components while still employing a simple two-mask fabrication process.
- the embodiment illustrated in FIG. 12 may be fabricated as follows. A first metal layer is deposited and patterned to form the gate electrode 53 a and the capacitor's bottom electrode 55 a. The SiN dielectric layer 54 a, the a-Si layer 56 a, and a second metal layer are then deposited. The drain and pixel electrodes 59 a are formed from the second metal layer by, for example, wet etching.
- FIGS. 13 - 15 electrical measurements were obtained from sample TFT arrays having the structure of the embodiment illustrated in FIG. 12.
- FIG. 13 shows the drain current versus gate voltage of a TFT in an array having a shared 10 nm thick a-Si layer.
- the threshold voltage is approximately 13 volts, which is somewhat greater than the threshold voltage of 3 to 4 volts for a typical TFT having a conventional structure.
- the mobility of the TFT is 0.15 cM 2 /Vs.
- the drain current on/off ratio is greater than 2 ⁇ 10 5 .
- FIG. 14 shows the drain current versus drain voltage for a TFT in the same sample array used to obtain the data presented in FIG. 13.
- the contact resistance between the source and drain electrodes and the intrinsic a-Si layer partially limits the drain current at low drain voltage in this sample TFT.
- the on/off ratio is good, and the mobility and on-current are sufficient to drive, for example, an active matrix display pixel.
- FIG. 15 shows a transient voltage switching-and-holding plot of a pixel electrode in a sample 40 dpi display fabricated with TFTs similar to those used to obtain the data presented in FIG. 13 and FIG. 14.
- the pixel electrode has a dynamic range of 0 to 15 volts when the voltage range of the gate voltage and the drain voltage are set to 30 volts.
- the voltage holding range of the sample pixel is approximately 90 w.
- the measured dynamic range and voltage holding ratio are sufficient to drive, for example, an electrophoretic medium display.
- TFT arrays may be fabricated at low cost. Fabrication may utilize only two patterning steps. No patterning of a semiconductor active layer is required; this may, for example, eliminate a photolithographic step and a dry etching step. A heavily doped semiconductor layer may be eliminated at the metal to semiconductor active layer interface; this may, for example, eliminate a dry etching step.
- n + a-Si from fabrication may eliminate associated costs that arise from the requirement of a deposition chamber, as well as hazards entailed by use of highly toxic and flammable PH 3 gas.
- Related elimination of a dry etch step permits use of all-wet fabrication, further reducing fabrication costs.
- the above features of the invention further permit increased fabrication throughput.
- Use of a thinner semiconductor active layer reduces semiconductor deposition time. Elimination of a heavily doped semiconductor layer, and elimination of patterning of the semiconductor active layer, further increase fabrication throughput.
- a SiN layer, an a-Si layer and a metal 2 layer are deposited in the same deposition system, again improving manufacturing throughput.
- the invention may provide improved fabrication yield, due to simplified processing. Moreover, some embodiments may utilize a roll-to-roll substrate fabrication process. Continuous deposition of a semiconductor stack and metal 2 without a break in vacuum, as well as an all-wet etching process, are compatible with roll-to-roll processing.
- a particle is any component that is charged or capable of acquiring a charge (i.e., has or is capable of acquiring electrophoretic mobility), and, in some cases, this mobility may be zero or close to zero (i.e., the particles will not move).
- the particles may be neat pigments, dyed (laked) pigments or pigment/polymer composites, or any other component that is charged or capable of acquiring a charge.
- Typical considerations for the electrophoretic particle are its optical properties, electrical properties, and surface chemistry.
- the particles may be organic or inorganic compounds, and they may either absorb light or scatter light.
- the particles for use in the invention may further include scattering pigments, absorbing pigments and luminescent particles.
- the particles may be retroreflective, such as corner cubes, or they may be electroluminescent, such as zinc sulfide particles, which emit light when excited by an AC field, or they may be photoluminescent.
- the particles may be surface treated so as to improve charging or interaction with a charging agent, or to improve dispersibility.
- a preferred particle for use in electrophoretic displays of the invention is Titania.
- the titania particles may be coated with a metal oxide, such as aluminum oxide or silicon oxide, for example.
- the titania particles may have one, two, or more layers of metal-oxide coating.
- a titania particle for use in electrophoretic displays of the invention may have a coating of aluminum oxide and a coating of silicon oxide. The coatings may be added to the particle in any order.
- the electrophoretic particle is usually a pigment, a polymer, a laked pigment, or some combination of the above.
- a neat pigment can be any pigment, and, usually for a light colored particle, pigments such as, for example, rutile (titania), anatase (titania), barium sulfate, kaolin, or zinc oxide are useful. Some typical particles have high refractive indices, high scattering coefficients, and low absorption coefficients. Other particles are absorptive, such as carbon black or colored pigments used in paints and inks. The pigment should also be insoluble in the suspending fluid. Yellow pigments such as diarylide yellow, hansa yellow, and benzidin yellow have also found use in similar displays. Any other reflective material can be employed for a light colored particle, including non-pigment materials, such as metallic particles.
- Useful neat pigments include, but are not limited to, PbCrO 4 , Cyan blue GT 55-3295 (American Cyanamid Company, Wayne, N.J.), Cibacron Black BG (Ciba Company, Inc., Newport, Del.), Cibacron Turquoise Blue G (Ciba), Cibalon Black BGL (Ciba), Orasol Black BRG (Ciba), Orasol Black RBL (Ciba), Acetamine Blac, CBS (E. I.
- CF (GAF) (15710), Diamond Black PBBA Ex (GAF) (16505); Direct Deep Black EA Ex CF (GAF) (30235), Hansa Yellow G (GAF) (11680); Indanthrene Black BBK Powd. (GAF) (59850), Indocarbon CLGS Conc. CF (GAF) (53295), Katigen Deep Black NND Hi Conc. CF (GAF) (15711), Rapidogen Black 3 G (GAF) (Azoic Blk. 4); Sulphone Cyanine Black BA-CF (GAF) (26370), Zambezi Black VD Ex Conc.
- Particles may also include laked, or dyed, pigments.
- Laked pigments are particles that have a dye precipitated on them or which are stained.
- Lakes are metal salts of readily soluble anionic dyes. These are dyes of azo, triphenylmethane or anthraquinone structure containing one or more sulphonic or carboxylic acid groupings. They are usually precipitated by a calcium, barium or aluminum salt onto a substrate. Typical examples are peacock blue lake (CI Pigment Blue 24) and Persian orange (lake of CI Acid Orange 7), Black M Toner (GAF) (a mixture of carbon black and black dye precipitated on a lake).
- CI Pigment Blue 24 and Persian orange (lake of CI Acid Orange 7)
- GAF Black M Toner
- a dark particle of the dyed type may be constructed from any light absorbing material, such as carbon black, or inorganic black materials.
- the dark material may also be selectively absorbing.
- a dark green pigment may be used.
- Black particles may also be formed by staining latices with metal oxides, such latex copolymers consisting of any of butadiene, styrene, isoprene, methacrylic acid, methyl methacrylate, acrylonitrile, vinyl chloride, acrylic acid, sodium styrene sulfonate, vinyl acetate, chlorostyrene, dimethylaminopropylmethacrylamide, isocyanoethyl methacrylate and N-(isobutoxymethacrylamide), and optionally including conjugated diene compounds such as diacrylate, triacrylate, dimethylacrylate and trimethacrylate.
- Black particles may also be formed by a dispersion polymerization technique.
- the pigments and polymers may form multiple domains within the electrophoretic particle, or be aggregates of smaller pigment/polymer combined particles.
- a central pigment core may be surrounded by a polymer shell.
- the pigment, polymer, or both can contain a dye.
- the optical purpose of the particle may be to scatter light, absorb light, or both. Useful sizes may range from 1 nm up to about 100 ⁇ m, as long as the particles are smaller than the bounding capsule.
- the density of the electrophoretic particle may be substantially matched to that of the suspending (i.e., electrophoretic) fluid.
- a suspending fluid has a density that is “substantially matched” to the density of the particle if the difference in their respective densities is between about zero and about two g/ml. This difference is preferably between about zero and about 0.5 g/ml.
- Useful polymers for the particles include, but are not limited to: polystyrene, polyethylene, polypropylene, phenolic resins, Du Pont Elvax resins (ethylene-vinyl acetate copolymers), polyesters, polyacrylates, polymethacrylates, ethylene acrylic acid or methacrylic acid copolymers (Nucrel Resins—DuPont, Primacor Resins—Dow Chemical), acrylic copolymers and terpolymers (Elvacite Resins, DuPont) and PMMA.
- Useful materials for homopolymer/pigment phase separation in high shear melt include, but are not limited to, polyethylene, polypropylene, polymethylmethacrylate, polyisobutylmethacrylate, polystyrene, polybutadiene, polyisoprene, polyisobutylene, polylauryl methacrylate, polystearyl methacrylate, polyisobornyl methacrylate, poly-t-butyl methacrylate, polyethyl methacrylate, polymethyl acrylate, polyethyl acrylate, polyacrylonitrile, and copolymers of two or more of these materials.
- Some useful pigment/polymer complexes that are commercially available include, but are not limited to, Process Magenta PM 1776 (Magruder Color Company, Inc., Elizabeth, N.J.), Methyl Violet PMA VM6223 (Magruder Color Company, Inc., Elizabeth, N.J.), and Naphthol FGR RF6257 (Magruder Color Company, Inc., Elizabeth, N.J.).
- the pigment-polymer composite may be formed by a physical process, (e.g., attrition or ball milling), a chemical process (e.g., microencapsulation or dispersion polymerization), or any other process known in the art of particle production. From the following non-limiting examples, it may be seen that the processes and materials for both the fabrication of particles and the charging thereof are generally derived from the art of liquid toner, or liquid immersion development. Thus any of the known processes from liquid development are particularly, but not exclusively, relevant.
- One general requirement from the liquid toner industry that is not shared by encapsulated electrophoretic inks is that the toner must be capable of “fixing” the image, i.e., heat fusing together to create a uniform film after the deposition of the toner particles.
- Typical manufacturing techniques for particles are drawn from the liquid toner and other arts and include ball milling, attrition, jet milling, etc.
- the process will be illustrated for the case of a pigmented polymeric particle.
- the pigment is compounded in the polymer, usually in some kind of high shear mechanism such as a screw extruder.
- the composite material is then (wet or dry) ground to a starting size of around 10 ⁇ m. It is then dispersed in a carrier liquid, for example ISOPAR® (Exxon, Houston, Tex.), optionally with some charge control agent(s), and milled under high shear for several hours down to a final particle size and/or size distribution.
- a carrier liquid for example ISOPAR® (Exxon, Houston, Tex.), optionally with some charge control agent(s), and milled under high shear for several hours down to a final particle size and/or size distribution.
- Another manufacturing technique for particles drawn from the liquid toner field is to add the polymer, pigment, and suspending fluid to a media mill.
- the mill is started and simultaneously heated to temperature at which the polymer swells substantially with the solvent. This temperature is typically near 100° C. In this state, the pigment is easily encapsulated into the swollen polymer.
- the mill is gradually cooled back to ambient temperature while stirring. The milling may be continued for some time to achieve a small enough particle size, typically a few microns in diameter.
- the charging agents may be added at this time.
- more suspending fluid may be added.
- Chemical processes such as dispersion polymerization, mini- or micro-emulsion polymerization, suspension polymerization precipitation, phase separation, solvent evaporation, in situ polymerization, seeded emulsion polymerization, or any process which falls under the general category of microencapsulation may be used.
- a typical process of this type is a phase separation process wherein a dissolved polymeric material is precipitated out of solution onto a dispersed pigment surface through solvent dilution, evaporation, or a thermal change.
- Other processes include chemical means for staining polymeric latices, for example with metal oxides or dyes.
- the suspending fluid containing the particles can be chosen based on properties such as density, refractive index, and solubility.
- a preferred suspending fluid has a low dielectric constant (about 2), high volume resistivity (about 10 ⁇ 15 ohm-cm), low viscosity (less than 5 cst), low toxicity and environmental impact, low water solubility (less than 10 ppm), high specific gravity (greater than 1.5), a high boiling point (greater than 90° C.), and a low refractive index (less than 1.2).
- the choice of suspending fluid may be based on concerns of chemical inertness, density matching to the electrophoretic particle, or chemical compatibility with both the electrophoretic particle and bounding capsule.
- the viscosity of the fluid should be low when you want the particles to move.
- the refractive index of the suspending fluid may also be substantially matched to that of the particles.
- the refractive index of a suspending fluid “is substantially matched” to that of a particle if the difference between their respective refractive indices is between about zero and about 0.3, and is preferably between about 0.05 and about 0.2.
- the fluid may be chosen to be a poor solvent for some polymers, which is advantageous for use in the fabrication of microparticles because it increases the range of polymeric materials useful in fabricating particles of polymers and pigments.
- Organic solvents such as halogenated organic solvents, saturated linear or branched hydrocarbons, silicone oils, and low molecular weight halogen-containing polymers are some useful suspending fluids.
- the suspending fluid may comprise a single fluid.
- the fluid will, however, often be a blend of more than one fluid in order to tune its chemical and physical properties.
- the fluid may contain surface modifiers to modify the surface energy or charge of the electrophoretic particle or bounding capsule. Reactants or solvents for the microencapsulation process (oil soluble monomers, for example) can also be contained in the suspending fluid. Charge control agents can also be added to the suspending fluid.
- Useful organic solvents include, but are not limited to, epoxides, such as, for example, decane epoxide and dodecane epoxide; vinyl ethers, such as, for example, cyclohexyl vinyl ether and Decave® (International Flavors & Fragrances, Inc., New York, N.Y.); and aromatic hydrocarbons, such as, for example, toluene and naphthalene.
- Useful halogenated organic solvents include, but are not limited to, tetrafluorodibromoethylene, tetrachloroethylene, trifluorochloroethylene, 1,2,4-trichlorobenzene, carbon tetrachloride.
- Useful hydrocarbons include, but are not limited to, dodecane, tetradecane, the aliphatic hydrocarbons in the Isopar® series (Exxon, Houston, Tex.), Norpar® (series of normal paraffinic liquids), Shell-Sol® (Shell, Houston, Tex.), and Sol-Trol® (Shell), naphtha, and other petroleum solvents. These materials usually have low densities.
- silicone oils include, but are not limited to, octamethyl cyclosiloxane and higher molecular weight cyclic siloxanes, poly (methyl phenyl siloxane), hexamethyldisiloxane, and polydimethylsiloxane. These materials usually have low densities.
- Useful low molecular weight halogen-containing polymers include, but are not limited to, poly(chlorotrifluoroethylene) polymer (Halogenated hydrocarbon Inc., River Edge, N.J.), Galden® (a perfluorinated ether from Ausimont, Morristown, N.J.), or Krytox® from DuPont (Wilmington, Del.).
- the suspending fluid is a poly(chlorotrifluoroethylene) polymer.
- this polymer has a degree of polymerization from about 2 to about 10. Many of the above materials are available in a range of viscosities, densities, and boiling points.
- the fluid must be capable of being formed into small droplets prior to a capsule being formed.
- Processes for forming small droplets include flow-through jets, membranes, nozzles, or orifices, as well as shear-based emulsifying schemes.
- the formation of small drops may be assisted by electrical or sonic fields.
- Surfactants and polymers can be used to aid in the stabilization and emulsification of the droplets in the case of an emulsion type encapsulation.
- a preferred surfactant for use in displays of the invention is sodium dodecylsulfate.
- the suspending fluid can contain an optically absorbing dye.
- This dye must be soluble in the fluid, but will generally be insoluble in the other components of the capsule.
- the dye can be a pure compound, or blends of dyes to achieve a particular color, including black.
- the dyes can be fluorescent, which would produce a display in which the fluorescence properties depend on the position of the particles.
- the dyes can be photoactive, changing to another color or becoming colorless upon irradiation with either visible or ultraviolet light, providing another means for obtaining an optical response. Dyes could also be polymerizable, forming a solid absorbing polymer inside the bounding shell.
- dyes that can be chosen for use in encapsulated electrophoretic display. Properties important here include light fastness, solubility in the suspending liquid, color, and cost. These are generally from the class of azo, anthraquinone, and triphenylmethane type dyes and may be chemically modified so as to increase the solubility in the oil phase and reduce the adsorption by the particle surface.
- Useful azo dyes include, but are not limited to: the Oil Red dyes, and the Sudan Red and Sudan Black series of dyes.
- Useful anthraquinone dyes include, but are not limited to: the Oil Blue dyes, and the Macrolex Blue series of dyes.
- Useful triphenylmethane dyes include, but are not limited to, Michler's hydrol, Malachite Green, Crystal Violet, and Auramine O.
- Charge control agents are used to provide good electrophoretic mobility to the electrophoretic particles.
- Stabilizers are used to prevent agglomeration of the electrophoretic particles, as well as prevent the electrophoretic particles from irreversibly depositing onto the capsule wall.
- Either component can be constructed from materials across a wide range of molecular weights (low molecular weight, oligomeric, or polymeric), and may be pure or a mixture.
- suitable charge control agents are generally adapted from the liquid toner art.
- the charge control agent used to modify and/or stabilize the particle surface charge is applied as generally known in the arts of liquid toners, electrophoretic displays, non-aqueous paint dispersions, and engine-oil additives.
- charging species may be added to non-aqueous media in order to increase electrophoretic mobility or increase electrostatic stabilization.
- the materials can improve steric stabilization as well.
- Different theories of charging are postulated, including selective ion adsorption, proton transfer, and contact electrification.
- An optional charge control agent or charge director may be used. These constituents typically consist of low molecular weight surfactants, polymeric agents, or blends of one or more components and serve to stabilize or otherwise modify the sign and/or magnitude of the charge on the electrophoretic particles.
- the charging properties of the pigment itself may be accounted for by taking into account the acidic or basic surface properties of the pigment, or the charging sites may take place on the carrier resin surface (if present), or a combination of the two. Additional pigment properties which may be relevant are the particle size distribution, the chemical composition, and the lightfastness.
- the charge control agent used to modify and/or stabilize the particle surface charge is applied as generally known in the arts of liquid toners, electrophoretic displays, non-aqueous paint dispersions, and engine-oil additives. In all of these arts, charging species may be added to non-aqueous media in order to increase electrophoretic mobility or increase electrostatic stabilization. The materials can improve steric stabilization as well. Different theories of charging are postulated, including selective ion adsorption, proton transfer, and contact electrification.
- Charge adjuvants may also be added. These materials increase the effectiveness of the charge control agents or charge directors.
- the charge adjuvant may be a polyhydroxy compound or an aminoalcohol compound, which are preferably soluble in the suspending fluid in an amount of at least 2% by weight.
- polyhydroxy compounds which contain at least two hydroxyl groups include, but are not limited to, ethylene glycol, 2,4,7,9-tetramethyl-decyne-4,7-diol, poly(propylene glycol), pentaethylene glycol, tripropylene glycol, triethylene glycol, glycerol, pentaerythritol, glycerol tris(12-hydroxystearate), propylene glycerol monohydroxystearate, and ethylene glycol monohydroxystrearate.
- the charge adjuvant is preferably present in the suspending fluid in an amount of about 1 to about 100 mg/g of the particle mass, and more preferably about 50 to about 200 mg/g.
- the surface of the particle may also be chemically modified to aid dispersion, to improve surface charge, and to improve the stability of the dispersion, for example.
- Surface modifiers include organic siloxanes, organohalogen silanes and other functional silane coupling agents (Dow Corning® Z-6070, Z-6124, and 3 additive, Midland, Mich.); organic titanates and zirconates (Tyzor® TOT, TBT, and TE Series, DuPont, Wilmington, Del.); hydrophobing agents, such as long chain (C12 to C50) alkyl and alkyl benzene sulphonic acids, fatty amines or diamines and their salts or quaternary derivatives; and amphipathic polymers which can be covalently bonded to the particle surface.
- charging results as an acid-base reaction between some moiety present in the continuous phase and the particle surface.
- useful materials are those which are capable of participating in such a reaction, or any other charging reaction as known in the art.
- charge control agents which are useful include organic sulfates or sulfonates, metal soaps, block or comb copolymers, organic amides, organic zwitterions, and organic phosphates and phosphonates.
- Useful organic sulfates and sulfonates include, but are not limited to, sodium bis(2-ethyl hexyl) sulfosuccinate, calcium dodecyl benzene sulfonate, calcium petroleum sulfonate, neutral or basic barium dinonylnaphthalene sulfonate, neutral or basic calcium dinonylnaphthalene sulfonate, dodecylbenzenesulfonic acid sodium salt, and ammonium lauryl sulphate.
- Useful metal soaps include, but are not limited to, basic or neutral barium petronate, calcium petronate, Co—, Ca—, Cu—, Mn—, Ni—, Zn—, and Fe— salts of naphthenic acid, Ba—, Al—, Zn—, Cu—, Pb—, and Fe— salts of stearic acid, divalent and trivalent metal carboxylates, such as aluminum tristearate, aluminum octoanate, lithium heptanoate, iron stearate, iron distearate, barium stearate, chromium stearate, magnesium octanoate, calcium stearate, iron naphthenate, and zinc naphthenate, Mn— and Zn— heptanoate, and Ba—, Al—, Co—, Mn—, and Zn— octanoate.
- Useful block or comb copolymers include, but are not limited to, AB diblock copolymers of (A) polymers of 2-(N,N)-dimethylaminoethyl methacrylate quaternized with methyl-p-toluenesulfonate and (B) poly-2-ethylhexyl methacrylate, and comb graft copolymers with oil soluble tails of poly (12-hydroxystearic acid) and having a molecular weight of about 1800, pendant on an oil-soluble anchor group of poly (methyl methacrylate-methacrylic acid).
- Useful organic amides include, but are not limited to, polyisobutylene succinimides such as OLOA 1200 and 3700, and N-vinyl pyrrolidone polymers.
- Useful organic zwitterions include, but are not limited to, lecithin.
- Useful organic phosphates and phosphonates include, but are not limited to, the sodium salts of phosphated mono- and di-glycerides with saturated and unsaturated acid substituents.
- Particle dispersion stabilizers may be added to prevent particle flocculation or attachment to the capsule walls.
- nonaqueous surfactants include, but are not limited to, glycol ethers, acetylenic glycols, alkanolamides, sorbitol derivatives, alkyl amines, quaternary amines, imidazolines, dialkyl oxides, and sulfosuccinates.
- Encapsulation of the internal phase may be accomplished in a number of different ways. Numerous suitable procedures for microencapsulation are detailed in both Microencapsulation, Processes and Applications, (I. E. Vandegaer, ed.), Plenum Press, New York, N.Y. (1974) and Gutcho, Microcapsules and Mircroencapsulation Techniques, Nuyes Data Corp., Park Ridge, N.J. (1976). The processes fall into several general categories, all of which can be applied to the present invention: interfacial polymerization, in situ polymerization, physical processes, such as coextrusion and other phase separation processes, in-liquid curing, and simple/complex coacervation.
- Useful materials for simple coacervation processes include, but are not limited to, gelatin, polyvinyl alcohol, polyvinyl acetate, and cellulosic derivatives, such as, for example, carboxymethylcellulose.
- Useful materials for complex coacervation processes include, but are not limited to, gelatin, acacia, carageenan, carboxymethylcellulose, hydrolyzed styrene anhydride copolymers, agar, alginate, casein, albumin, methyl vinyl ether co-maleic anhydride, and cellulose phthalate.
- Useful materials for phase separation processes include, but are not limited to, polystyrene, PMMA, polyethyl methacrylate, polybutyl methacrylate, ethyl cellulose, polyvinyl pyridine, and poly acrylonitrile.
- Useful materials for in situ polymerization processes include, but are not limited to, polyhydroxyamides, with aldehydes, melamine, or urea and formaldehyde; water-soluble oligomers of the condensate of melamine, or urea and formaldehyde; and vinyl monomers, such as, for example, styrene, MMA and acrylonitrile.
- useful materials for interfacial polymerization processes include, but are not limited to, diacyl chlorides, such as, for example, sebacoyl, adipoyl, and di- or poly- amines or alcohols, and isocyanates.
- useful emulsion polymerization materials may include, but are not limited to, styrene, vinyl acetate, acrylic acid, butyl acrylate, t-butyl acrylate, methyl methacrylate, and butyl methacrylate.
- Capsules produced may be dispersed into a curable carrier, resulting in an ink which may be printed or coated on large and arbitrarily shaped or curved surfaces using conventional printing and coating techniques.
- a curable carrier resulting in an ink which may be printed or coated on large and arbitrarily shaped or curved surfaces using conventional printing and coating techniques.
- one skilled in the art will select an encapsulation procedure and wall material based on the desired capsule properties. These properties include the distribution of capsule radii; electrical, mechanical, diffusion, and optical properties of the capsule wall; and chemical compatibility with the internal phase of the capsule.
- the capsule wall generally has a high electrical resistivity. Although it is possible to use walls with relatively low resistivities, this may limit performance in requiring relatively higher addressing voltages.
- the capsule wall should also be mechanically strong (although if the finished capsule powder is to be dispersed in a curable polymeric binder for coating, mechanical strength is not as critical).
- the capsule wall should generally not be porous. If, however, it is desired to use an encapsulation procedure that produces porous capsules, these can be overcoated in a post-processing step (i.e., a second encapsulation). Moreover, if the capsules are to be dispersed in a curable binder, the binder will serve to close the pores.
- the capsule walls should be optically clear.
- the wall material may, however, be chosen to match the refractive index of the internal phase of the capsule (i.e., the suspending fluid) or a binder in which the capsules are to be dispersed. For some applications (e.g., interposition between two fixed electrodes), monodispersed capsule radii are desirable.
- An encapsulation procedure involves a polymerization between urea and formaldehyde in an aqueous phase of an oil/water emulsion in the presence of a negatively charged, carboxyl-substituted, linear hydrocarbon polyelectrolyte material.
- the resulting capsule wall is a urea/formaldehyde copolymer, which discretely encloses the internal phase.
- the capsule is clear, mechanically strong, and has good resistivity properties.
- the related technique of in situ polymerization utilizes an oil/water emulsion, which is formed by dispersing the electrophoretic composition (i.e., the dielectric liquid containing a suspension of the pigment particles) in an aqueous environment.
- the monomers polymerize to form a polymer with higher affinity for the internal phase than for the aqueous phase, thus condensing around the emulsified oily droplets.
- urea and formaldehyde condense in the presence of poly(acrylic acid) (See, e.g., U.S. Pat. No. 4,001,140).
- any of a variety of cross-linking agents borne in aqueous solution is deposited around microscopic oil droplets.
- Such cross-linking agents include aldehydes, especially formaldehyde, glyoxal, or glutaraldehyde; alum; zirconium salts; and poly isocyanates.
- the coacervation approach also utilizes an oil/water emulsion.
- One or more colloids are coacervated (i.e., agglomerated) out of the aqueous phase and deposited as shells around the oily droplets through control of temperature, pH and/or relative concentrations, thereby creating the microcapsule.
- Materials suitable for coacervation include gelatins and gum arabic.
- the interfacial polymerization approach relies on the presence of an oil-soluble monomer in the electrophoretic composition, which once again is present as an emulsion in an aqueous phase.
- the monomers in the minute hydrophobic droplets react with a monomer introduced into the aqueous phase, polymerizing at the interface between the droplets and the surrounding aqueous medium and forming shells around the droplets.
- the resulting walls are relatively thin and may be permeable, this process does not require the elevated temperatures characteristic of some other processes, and therefore affords greater flexibility in terms of choosing the dielectric liquid.
- Coating aids can be used to improve the uniformity and quality of the coated or printed electrophoretic ink material.
- Wetting agents are typically added to adjust the interfacial tension at the coating/substrate interface and to adjust the liquid/air surface tension.
- Wetting agents include, but are not limited to, anionic and cationic surfactants, and nonionic species, such as silicone or fluoropolymer based materials.
- Dispersing agents may be used to modify the interfacial tension between the capsules and binder, providing control over flocculation and particle settling.
- Surface tension modifiers can be added to adjust the air/ink interfacial tension.
- Polysiloxanes are typically used in such an application to improve surface leveling while minimizing other defects within the coating.
- Surface tension modifiers include, but are not limited to, fluorinated surfactants, such as, for example, the Zonyl® series from DuPont (Wilmington, Del.), the Fluorod® series from 3M (St. Paul, Minn.), and the fluoroakyl series from Autochem (Glen Rock, N.J.); siloxanes, such as, for example, Silwet® from Union Carbide (Danbury, Conn.); and polyethoxy and polypropoxy alcohols.
- fluorinated surfactants such as, for example, the Zonyl® series from DuPont (Wilmington, Del.), the Fluorod® series from 3M (St. Paul, Minn.), and the fluoroakyl series from Autochem (Glen Rock, N.J
- Antifoams such as silicone and silicone-free polymeric materials, may be added to enhance the movement of air from within the ink to the surface and to facilitate the rupture of bubbles at the coating surface.
- Other useful antifoams include, but are not limited to, glyceryl esters, polyhydric alcohols, compounded antifoams, such as oil solutions of alkyl benzenes, natural fats, fatty acids, and metallic soaps, and silicone antifoaming agents made from the combination of dimethyl siloxane polymers and silica.
- Stabilizers such as uv-absorbers and antioxidants may also be added to improve the lifetime of the ink.
- the binder is used as a non-conducting, adhesive medium supporting and protecting the capsules, as well as binding the electrode materials to the capsule dispersion. Binders are available in many forms and chemical types. Among these are water-soluble polymers, water-borne polymers, oil-soluble polymers, thermoset and thermoplastic polymers, and radiation-cured polymers.
- water-soluble polymers are the various polysaccharides, the polyvinyl alcohols, N-methylpyrrolidone, N-vinylpyrrollidone, the various Carbowax® species (Union Carbide, Danbury, Conn.), and poly-2-hydroxyethylacrylate.
- the water-dispersed or water-borne systems are generally latex compositions, typified by the Neorez® and Neocryl® resins (Zeneca Resins, Wilmington, Mass.), Acrysol® (Rohm and Haas, Philadelphia, Pa.), Bayhydrol® (Bayer, Pittsburgh, Pa.), and the Cytec Industries (West Paterson, N.J.) HP line.
- Neorez® and Neocryl® resins Zeneca Resins, Wilmington, Mass.
- Acrysol® Rohm and Haas, Philadelphia, Pa.
- Bayhydrol® Bayhydrol®
- Cytec Industries West Paterson, N.J. HP line.
- a typical application of a water-borne resin and aqueous capsules follows. A volume of particles is centrifuged at low speed to separate excess water. After a given centrifugation process, for example 10 minutes at 60 ⁇ G, the capsules are found at the bottom of the centrifuge tube, while the water portion is at the top. The water portion is carefully removed (by decanting or pipetting). The mass of the remaining capsules is measured, and a mass of resin is added such that the mass of resin is between one eighth and one tenth of the weight of the capsules. This mixture is gently mixed on an oscillating mixer for approximately one half hour. After about one half hour, the mixture is ready to be coated onto the appropriate substrate.
- thermoset systems are exemplified by the family of epoxies. These binary systems can vary greatly in viscosity, and the reactivity of the pair determines the “pot life” of the mixture. If the pot life is long enough to allow a coating operation, capsules may be coated in an ordered arrangement in a coating process prior to the resin curing and hardening.
- Thermoplastic polymers which are often polyesters, are molten at high temperatures.
- a typical application of this type of product is hot-melt glue.
- a dispersion of heat-resistant capsules could be coated in such a medium. The solidification process begins during cooling, and the final hardness, clarity and flexibility are affected by the branching and molecular weight of the polymer.
- Oil or solvent-soluble polymers are often similar in composition to the water-borne system, with the obvious exception of the water itself.
- the latitude in formulation for solvent systems is enormous, limited only by solvent choices and polymer solubility.
- Of considerable concern in solvent-based systems is the viability of the capsule itself—the integrity of the capsule wall cannot be compromised in any way by the solvent.
- Radiation cure resins are generally found among the solvent-based systems. Capsules may be dispersed in such a medium and coated, and the resin may then be cured by a timed exposure to a threshold level of very violet radiation, either long or short wavelength. As in all cases of curing polymer resins, final properties are determined by the branching and molecular weights of the monomers, oligomers and crosslinkers.
- a number of “water-reducible” monomers and oligomers are, however, marketed. In the strictest sense, they are not water soluble, but water is an acceptable diluent at low concentrations and can be dispersed relatively easily in the mixture. Under these circumstances, water is used to reduce the viscosity (initially from thousands to hundreds of thousands centipoise). Water-based capsules, such as those made from a protein or polysaccharide material, for example, could be dispersed in such a medium and coated, provided the viscosity could be sufficiently lowered. Curing in such systems is generally by ultraviolet radiation.
- FIG. 16 a shows a diagrammatic cross-section of an electrophoretic display 130 constructed using electronic ink.
- the binder 132 includes at least one capsule 134 , which is filled with a plurality of particles 136 and a dyed suspending fluid 138 .
- the particles 136 are titania particles.
- FIG. 16 b shows a cross-section of another electrophoretic display 140 constructed using electronic ink.
- This display comprises a first set of particles 142 and a second set of particles 144 in a capsule 141 .
- the first set of particles 142 and the second set of particles 144 have contrasting optical properties.
- the first set of particles 142 and the second set of particles 144 can have differing electrophoretic mobilities.
- the first set of particles 142 and the second set of particles 144 can have contrasting colors.
- the first set of particles 142 can be white, while the second set of particles 144 can be black.
- the capsule 141 further includes a substantially clear fluid.
- the capsule 141 has electrodes 146 and 146 ′ disposed adjacent it.
- the electrodes 146 , 146 ′ are connected to a source of voltage 148 , which may provide an electric field to the capsule 141 .
- a source of voltage 148 which may provide an electric field to the capsule 141 .
- the first set of particles 142 move toward electrode 146 ′, while the second set of particles 144 move toward electrode 146 .
- the first set of particles 142 move rapidly toward electrode 146 ′, while the second set of particles 144 move only slowly or not at all towards electrode 146 , so that the first set of particles packs preferentially at the microcapsule surface adjacent to electrode 146 ′.
- FIG. 16 c shows a diagrammatic cross-section of a suspended particle display 250 .
- the suspended particle display 250 includes needle-like particles 252 in a transparent fluid 254 .
- the particles 252 change their orientation upon application of an AC field across the electrodes 256 , 256 ′. When the AC field is applied, the particles 252 are oriented perpendicular with respect to the display surface and the display appears transparent. When the AC field is removed, the particles 252 are randomly oriented and the display 250 appears opaque.
- a display 160 can comprise a plurality of bichromal spheres, as illustrated in FIG. 16 d.
- a bichromal sphere typically comprises a positively charged hemisphere 162 of a first color and a negatively charged hemisphere 164 of a second color in a liquid medium 166 .
- the sphere rotates and displays the color of one of the two hemispheres 162 , 164 .
- an array of transistors with reduced cross-talk is prepared by increasing the resistivity of the semiconductor layer.
- the semiconductor layer is an amorphous silicon that is slightly n-type as deposited
- the semiconductor can be lightly doped with boron or an equivalent p-type dopant to increase the resistivity of the semiconductor layer. If the semiconductor layer is doped with too much boron, the semiconductor layer will become p-type and the resistivity will decrease.
- the boron doping can be adjusted to provide the minimum required “on” current for the transistor to drive a pixel of a display, while concurrently maintaining sufficient isolation between neighboring elements or signals.
- the spacing between neighboring source and drain electrodes of the transistors and the metal signal lines must be sufficiently large to suppress charge leakage through the underlying semiconductor layer in this embodiment.
- This minimum spacing can be derived via a resistance calculation if the leakage current, electrode potential, semiconductor conductivity and thickness of various materials are known.
- an array of active or passive elements can be prepared in accordance with the present invention.
- the array of elements can be used in devices other than displays.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Thin Film Transistor (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
- The present application claims the benefit under 35 USC §119(e) of United States Provisional Patent Application Ser. No. 60/218,490, filed Jul. 14, 200, the entire contents of which are incorporated herein by reference. The present application is filed simultaneously with United States Patent Application entitled “Fabrication of Electronic Circuit Elements Using Patterned Semiconductor Layers”, attorney docket number INK-100, the entire contents of which are incorporated herein by reference.
- The present invention relates generally to electronic displays and methods of manufacturing the electronic displays, and more particularly to, semiconductor devices for electronic display applications and methods of manufacturing the semiconductor devices.
- Some encapsulated, particle-based displays offer a useful means of creating electronic displays. There exist many versions of encapsulated particle-based displays including encapsulated electrophoretic displays, encapsulated suspended particle displays, and rotating ball displays.
- Encapsulated, particle-based displays can be made highly reflective, bistable, and optically and electrically efficient. To obtain a high-resolution display, however, individual pixels of a display must be addressable without interference from adjacent pixels. One way to achieve this objective is to provide an array of nonlinear elements, such as transistors or diodes where each transistor or diode is associated with each pixel. An addressing electrode is connected to each pixel through the transistor or the diode.
- The processes for manufacturing active matrix arrays of thin-film transistors and diodes are well established in the display technology. Thin-film transistors, for example, can be fabricated using various deposition and photolithography techniques. A transistor includes a gate electrode, an insulating dielectric layer, a dielectric layer and source and drain electrodes. Application of a voltage to the gate electrode provides an electric field across the dielectric layer, which dramatically increases the source-to-drain conductivity of the semiconductor layer. This change allows for electrical conduction between the source and the drain electrodes. Typically, the gate electrode, the source electrode, and the drain electrode are patterned. In general, the semiconductor layer is also patterned in order to minimize stray conduction (i.e., cross-talk) between neighboring circuit elements.
- Liquid crystal displays commonly employ amorphous silicon (“a-Si”), thin-film transistors (“TFT”) as switching devices for display pixels. Such TFTs typically have a bottom-gate configuration. Within one pixel, a thin-film capacitor typically holds a charge transferred by the switching TFT. Thin-film transistors can be fabricated to provide high performance. Fabrication processes, however, can result in significant cost.
- Referring to FIG. 1, a thin-film transistor, having typical contact structures, and a capacitor are illustrated in cross-section. The transistor and capacitor include
bottom electrodes dielectric layer 154, an a-Silayer 156, an n+ a-Sicontact layer 158, drain andpixel electrodes 159, andcapacitor top electrode 192. The a-Silayer 156, the n+ a-Sicontact layer 158 and theelectrodes 159 are all patterned layers. - The n+ a-Si
contact layer 158 is typically 40 nm thick and provides an ohmic contact between the a-Silayer 156 and theelectrodes 159. The patterning of the n+ a-Silayer 158 generally requires overetching to assure complete removal of the n+ a-Sicontact layer 158 along the channel portion of the a-Silayer 156. Thus, a portion of the a-Silayer 156 is removed during this overetch step. Hence, the a-Silayer 156, as-deposited, is traditionally 160 nm or more in thickness. - The high cost of manufacturing thin-film transistors results in part from patterning steps, which typically require the use of expensive photolithography equipment and masks, coating steps, and etching steps. An a-Si layer is typically patterned to leave islands of semiconductor material and thereby reduce leakage currents. Formation of the structures illustrated in FIG. 1 might require three lithography steps and four etching steps. Trends toward making higher performance devices make precision patterning even more important and manufacturing cost even greater.
- Certain electronic devices, however, require low cost rather than high performance components. For such devices, it remains desirable to have means to obtain better yield and lower cost of manufacturing.
- The invention is based in part on the realization that a low cost display device transistor array having a shared, very thin a-Si layer may support good image resolution while providing tolerable leakage currents. The invention features electronic circuits that have a lower manufacturing cost and methods of making electronic circuits that involve simpler processing steps. The circuits are particularly useful for addressing display media in a display device.
- In a preferred embodiment, the circuits comprise thin-film transistors (“TFT”) that share a continuous semiconductor layer, herein referred to as the “active layer”, that mediates current between source and drain of each transistor in an array of transistors. The semiconductor layer may be unpatterned. The layer may be continuous in two dimensions, e.g., it may be shared by, and continuous between, TFTs in a two-dimensional array. The display medium controlled by the circuits may be tolerant of leakage currents that flow through the continuous semiconductor layer. Devices of the invention are of particular use in the fabrication of electrophoretic displays.
- In a preferred embodiment, the continuous semiconductor layer is a very thin layer, for example, most effective at less than approximately 40 nm in thickness, and supports the active regions for an array of TFTs. Prior art transistors typically require deposition of heavily doped silicon material, e.g., n+ a-Si, at the interface between metal-to-silicon contacts. The heavily doped material assists formation of an ohmic rather than a Schottky contact. In contrast, various embodiments of TFTs of the invention require no heavily doped material, e.g., n+ a-Si, at contact interfaces, e.g., the interface of the semiconductor layer to a source metal electrode or a drain metal electrode.
- Embodiments that require no n+ a-Si material at interface provide numerous potential advantages over the prior art. For example, TFT arrays may be fabricated with no patterning of a semiconductor layer, i.e. the active layer, or deposition and patterning of a heavily doped semiconductor layer at contact interfaces. This may eliminate a photolithographic step and a dry etching step, in addition to eliminating formation of a heavily doped layer at metal contact interfaces.
- Elimination of n+ a-Si from fabrication may further eliminate associated costs due to a related deposition chamber and hazards entailed by use of highly toxic and flammable PH3 gas. Related elimination of a dry etch step permits use of all-wet fabrication, further reducing fabrication costs.
- Moreover, the above features of the invention provide increased fabrication throughput. Use of a thinner semiconductor active layer reduces semiconductor deposition time. Elimination of a heavily doped semiconductor layer, and elimination of patterning of the semiconductor active layer, further increase fabrication throughput. In some embodiments, a SiN layer, an a-Si layer and a
metal 2 layer are deposited in the same deposition system, again improving manufacturing throughput. - The invention may provide improved fabrication yield, due to simplified processing. Moreover, some embodiments may utilize a roll-to-roll substrate fabrication process. Continuous deposition of the gate dielectric, a-Si, and source-drain electrode metal without a break in vacuum, for example, as well as an all-wet etching process, are compatible with roll-to-roll processing.
- Though use of an unpatterned active layer may increase device leakage, appropriate design and application of a TFT array may provide acceptable performance. The spacing between transistors may be selected to obtain acceptable leakage currents. The geometry of the transistors may be selected to obtain an acceptable leakage current between a first data line and a second data line. Alternatively, the spacing between the first data line and a first pixel electrode may be chosen to provide an acceptable leakage current between the first data line and the first pixel electrode. Use of a very thin active layer may permit closer packing of devices than otherwise possible.
- Accordingly, in a first aspect, the invention features a thin-film transistor array that includes at least first and second transistors. Each of the first and second transistors include a shared silicon layer, i.e., an active layer, having a thickness less than 40 nm. The shared silicon layer extends continuously between the first and second transistors. Each transistor further has a source electrode and a drain electrode spaced from the source electrode, both in direct contact with the silicon layer. Each transistor also has a gate electrode disposed adjacent to the silicon layer.
- The silicon layer may consist of unpatterned silicon. Hence, the silicon may be a continuous film of material, use of which may reduce the number of process steps involved in manufacturing the transistor array. The silicon layer may consist of amorphous silicon, and the silicon layer may be undoped.
- Use of an extremely thin silicon layer may obviate a need for a highly doped layer of material lying between the extremely thin silicon layer and source and drain contacts. Prior art thin-film transistor arrays typical require the highly doped layer to provide a good ohmic contact.
- The first transistor may be a bottom gate or a top gate transistor. The first transistor may include a first pixel electrode of an electronic display, the first pixel electrode in communication with the source electrode of the first transistor, and the drain electrode of the first transistor is in communication with a first data line of the electronic display. A distance between the first pixel electrode and the first data line may be selected to provide an acceptable leakage current between the first pixel electrode and the first data line. Though use of an unpatterned silicon layer may lead to increased leakage current, transistor geometry may be adjusted to reduce leakage to tolerable levels.
- Different geometrical aspects of a transistor array may be selected to reduce leakage. The distances between a pixel electrode and each of the adjacent data lines may be selected to provide an acceptable leakage current between the first data line and the second data line. At least one of the first data line, the second data line, the first transistor and the first pixel electrode may have a geometry selected to provide an acceptable leakage between the first data line and the second data line.
- In a second aspect, the invention features an electronic display. The display includes a display medium, a first pixel electrode and a second pixel electrode adjacent to the display medium, and a first thin-film transistor and a second thin-film transistor in respective electrical communication with the first pixel electrode and the second pixel electrode, and comprising a shared continuous amorphous silicon layer that has a thickness less than 40 nm and provides channels for the first thin-film transistor and the second thin-film transistor.
- The electronic display may include any of a variety of display media, for example, an electrophoretic medium. An electrophoretic medium may have at least one type of particle and a suspending fluid, and may be encapsulated.
- The electronic display may further include a light blocking layer provided adjacent to the silicon layer. As described above, transistor geometrical features may be adjusted to reduce leakage currents.
- In a third aspect, the invention features a method of manufacturing an array of thin-film transistors. The method includes the steps of providing a substrate, forming adjacent to the substrate an unpatterned silicon layer having a thickness less than 40 nm. At least one patterned drain electrode is formed for each of the transistors. Drain electrodes are formed in direct contact with the unpatterned silicon layer. At least at least one patterned source electrode is provided for each of the transistors. The source electrodes are in direct contact with the unpatterned silicon layer. At least one gate electrode is provided for each of the transistors. The gate electrode is disposed adjacent to the unpatterned silicon layer.
- A dielectric layer may be formed adjacent to the at least one gate electrode. Forming the dielectric layer, forming the unpatterned silicon layer and forming the metal layer which will, after patterning, form the source and drain electrodes may occur during one visit of the substrate inside a single deposition chamber. Providing a substrate may include unwinding the substrate from a first roll and winding the substrate onto a second roll.
- The method may further include providing a first pixel electrode of an electronic display in communication with the source electrode of the first transistor, and providing a first data line of the electronic display in communication with the drain electrode of the first transistor. The method may further include providing a second pixel electrode of an electronic display in communication with the source electrode of the second transistor and providing a second data line of the electronic display in communication with the drain electrode of the second transistor.
- Various geometrical parameters may be adjusted to provide acceptable leakage currents. Geometrical parameters include the shapes of features and the spacings between features. Features include, for example, the data lines, the transistors and the pixel electrodes.
- Forming may include mask steps consisting of a first mask step and a second mask step. At least one patterned gate electrode is formed in the first mask step, and at least one drain and one source electrode is formed the second mask step. Hence some embodiments include exactly two mask steps. (As in many prior art processes, and additional mask step may be required to form contacts adjacent the edges of the display.)
- The foregoing and other objects, features and advantages of the present invention, as well as the invention itself, will be more fully understood from the following description of preferred embodiments, when read together with the accompanying drawings, in which:
- FIG. 1 shows a diagrammatic cross-sectional view of a prior art TFT and capacitor.
- FIG. 2 shows a cross-sectional view of an array of thin-film transistors according to one embodiment of the present invention.
- FIG. 3 shows a top view of one embodiment of an electronic display, with the display medium removed.
- FIG. 4 illustrates locations of resistive leakage paths for the display of FIG. 3.
- FIG. 5a shows an underneath plan view of an embodiment of a thin-film transistor with the substrate omitted.
- FIG. 5b shows a diagrammatic cross sectional view that corresponds to the transistor embodiment shown in FIG. 5a.
- FIG. 6 shows a graph of drain current versus gate voltage for a sample of a two-mask transistor of the type shown in FIG. 5a.
- FIG. 7 shows a cross-sectional view of an array of thin-film transistors according to one embodiment of the present invention.
- FIG. 8 shows a cross-sectional view of an array of thin-film transistors according to one embodiment of the present invention.
- FIG. 9 shows a cross-sectional view of an array of thin-film transistors according to one embodiment of the present invention.
- FIG. 10 shows a cross-sectional view of an array of thin-film transistors according to one embodiment of the present invention.
- FIG. 11 shows a cross-sectional view of an electronic display according to one embodiment of the present invention.
- FIG. 12 shows a diagrammatic cross-sectional view of a transistor and capacitor of an array, according to one embodiment of the invention.
- FIG. 13 shows a graph of drain current versus gate voltage for a sample transistor of an embodiment with a 10 nm thick a-Si layer.
- FIG. 14 shows a graph of drain current versus drain voltage for the sample transistor of FIG. 13.
- FIG. 15 shows a graph of transient voltage switching and holding of a sample transistor array.
- FIG. 16a shows a diagrammatic cross-sectional view of an electronic display according to one embodiment of the present invention.
- FIG. 16b shows a diagrammatic cross-sectional view of an electronic display according to one embodiment of the present invention.
- FIG. 16c shows a diagrammatic cross-sectional view of an electronic display according to one embodiment of the present invention.
- FIG. 16d shows a diagrammatic cross-sectional view of an electronic display according to one embodiment of the present invention.
- In one aspect, the invention features minimally-patterned semiconductor devices for display applications. In a preferred embodiment, the semiconductor devices are an array of thin-film transistors. An array of TFTs may include a continuous a-Si layer of approximately 40 nm or less in thickness, preferably 30 nm or less, most preferably 20 nm or less, without heavily doped a-Si at metal contact interfaces. In the following, general considerations of transistor array design and leakage currents will be discussed. Simplified arrays for displays that can tolerate leakage in a variety of semiconductor materials that provide for TFT active layers, are described. Then, arrays employing very thin a-Si for the active layer are described. A final section describes some display media that may be used with TFT arrays in the fabrication of a display.
- Referring to FIG. 2, an array of
transistors 10 includes asubstrate 12, agate electrode 14 for each transistor provided adjacent to thesubstrate 12, agate dielectric layer 16 provided adjacent to thesubstrate 12 and thegate electrodes 14, asemiconductor layer 18 provided adjacent to thegate dielectric layer 16, and asource electrode 20 and adrain electrode 22 for each transistor provided adjacent to thesemiconductor layer 18. The sizes of theelectrodes - For fabrication of thin-film transistors, the
substrate 12 may be, for example: a silicon wafer; a glass plate; a steel foil; or a plastic sheet (for example a polyimide sheet). Thegate electrodes 14, for example, can be any conductive material such as metal or conductive polymer. The materials for use as thesemiconductor layer 18, for example, can be inorganic materials such as amorphous silicon or polysilicon. Alternatively, thesemiconductor layer 18 can be formed of organic semiconductors such as: polythiophene and its derivatives; oligothiophenes; and pentacene. In general, any semiconductive material useful in creating conventional thin film transistors can be used in this embodiment. The material for thegate dielectric layer 16 can be an organic or an inorganic material. Examples of suitable materials include, but are not limited to, polyimides, silicon dioxide, and a variety of inorganic coatings and glasses. The source and drainelectrodes - The array of transistors illustrated in FIG. 2 can be manufactured using any one of many appropriate methods. For example, vacuum based methods such as chemical vapor deposition, evaporation, or sputtering can be used to deposit the materials necessary to form the transistor and thereafter the deposited material can be patterned. Alternatively, wet printing methods or transfer methods can be used to deposit the materials necessary to form the transistors.
- The array of transistors described in reference to FIG. 2 can be used for addressing an electronic display. This embodiment is applicable to a variety of electronic displays, including: electrophoretic displays; liquid crystal displays; emissive displays (including organic light emitting materials); and, rotating ball displays. For liquid crystal displays, error limits place a demand on the time-averaged square of the voltage across the pixel. For current-driven, emissive displays, the acceptable tolerance in voltage variation will depend upon how emission varies with current through the pixel. In general, display types that have switching elements with a threshold associated with switching, rather than a gradual change in optical state, will be more tolerant of errors.
- In the embodiment of FIG. 2, while the
electrodes semiconductor layer 18 is not, resulting in significant reduction in processing efforts and cost. This circuit design can exhibit cross-talk between adjacent transistors that reside in rows and columns of transistors in an array. The degree of cross-talk, however, can be reduced to a level that is acceptable for some applications. - For some applications, a degree of cross-talk can be tolerated. For example, if only a few gray level states of a display are addressed, then small stray voltages may not significantly affect the overall appearance of the display. In addition, if the display is designed for moderate resolution, then neighboring circuit elements will be far apart from each other, reducing the degree of cross-talk.
- In general, cross-talk errors are noticeable in displays only if they cause unwanted optical changes in pixel areas surrounding any one particular pixel element. In particular, if a pixel has only two possible switching states, i.e. either dark or light, then small deviations in the electronic signal due to cross-talk may not substantially change the optical appearance of the pixel. When intermediate optical states, i.e. gray levels, are being addressed, however, the display pixel elements will be more sensitive to errors. Here, it is more likely that an incorrect gray level will be displayed by a pixel.
- Depending on a particular display type and application, a smaller or larger error tolerance can be preferred. A monochrome display, for example, may be able to tolerate leakage currents in excess of 10%, whereas a 256-level display would typically require a much lower leakage level of approximately 0.2%. A tolerance level may be estimated by dividing 100% by twice the number of gray levels, because typically the leakage current should not cause more than one-half a gray level error. In a preferred embodiment, the display incorporates pixels with a limited number of gray levels. In this case, a given pixel is less sensitive to cross-talk induced voltage errors because it is switched between a limited number of optical states.
- For a particular display, the acceptable leakage will depend on the extent of error in the electrical signal seen by a pixel and how that affects the optical state of the pixel. This will depend on the display medium. For displays that depend on a DC signal to switch, including electrophoretic and rotating ball displays, and ferroelectric liquid crystal displays, the switching electronic signal depends on both the magnitude and duration of the voltage applied. The acceptable leakage corresponds to a maximum tolerable error in the optical state of a display pixel.
- An array of transistors with acceptable cross-talk can be prepared by following the design rules provided herein in reference to FIG. 3, which illustrates a plan-view of the conductive leads and the elements for driving a display. An array comprises: data lines30, 32;
select lines pixel electrodes pixel electrode select lines particular pixel electrode 34, voltages are applied todata line 30 andselect line 36. Changes in the optical characteristics of a display element are achieved by addressing apixel electrode - A preferred embodiment includes two design criteria for a properly functioning display. First, referring to FIG. 3, the resistive leakage between neighboring data lines30, 32 must be small such that the voltage applied to each data lines 30, 32 can be controlled to within desired tolerances by the associated driver elements. A resistive leakage between neighboring data lines is too large when it leads to unacceptable resistive voltage drops in the driver circuit or in the data lines. Second, the current leakage to the pixel electrode from each of the two
adjacent data lines - Many video displays produce video output by periodically updating still images presented in rapid succession at some frame rate. Each image is presented for a period of time, i.e., a frame time. When the optical character is determined primarily by the time-varying voltage profile on the pixel electrode, such as for electrophoretic and twisted-nematic displays, the impact of current leakage on the voltage profile preferably is sufficiently small during the frame time. A pixel voltage preferably does not change by an unacceptable amount during a frame time because a pixel preferably maintains a given optical state during this interval of time.
- For example, a large current leakage between the
data line 30 andpixel electrode 34 may cause an unintended shift in the pixel voltage, thus changing the optical state of that pixel during the presentation of a single image by a display. In a display using emissive material, such parasitic leakage currents can cause unwanted light emission from the pixel. - The following discussion illustrates how the above described two design criteria can be calculated. Since the semiconductor layer is much thinner than the lateral gaps between the electrical elements, resistance calculations can employ a thin-film approximation.
- The First Design Criterion
- The conduction between
adjacent data lines pixel electrodes first data line 30 to the adjacent column ofpixel electrodes 34. Note that the display has a first row ofpixel electrodes 34, 38 and a second row ofpixel electrodes adjacent data lines adjacent data lines - Referring to FIG. 4, RTFT is the resistance between the
first data line 30 and thepixel electrode 34 through the thin-film transistor channel in the “off” state, R1 is the resistance across the gap between thefirst data line 30 and thepixel electrode 34 and R2 is the resistance across the gap between thepixel electrode 34 and thesecond data line 32. The resistive pathway provided directly betweenadjacent data lines pixel electrodes pixel electrodes pixel electrodes adjacent data lines 30, 32 (Rdd) can be expressed as: -
- N is the number of rows of pixel electrodes, ρ is the bulk resistivity of the semiconducting layer, L is the distance between source and drain electrodes, L1 is the distance between a data line and the adjacent pixel electrode, L2 is the distance between the pixel electrode and the neighboring data line, Yp is a width of a pixel electrode, W is the channel width, and h is the thickness of the continuous semiconductor layer.
- A properly functioning display will have a resistance between
adjacent data lines - R 1 +R 2 >>NR d
- and
- R TFT >>NR d
- The data line also should not charge up an adjacent pixel while the select line is off (row unselected). This demand can be translated as:
- R TFT >>R p
- and
- R 2 >>R p
- where Rp is the resistance through the pixel electrode and the electro-optic medium to the electrode on the opposed side of the medium.
- For amorphous silicon, the resistivity (undoped) is approximately 108 ohm-cm. A typical semiconductor thickness is about 500 angstroms. This information and pixel dimensions can be used to calculate the relevant resistances.
- The Second Design Criterion
- The minimum spacing of a
pixel electrode 34 to adata line 30, Lms, can be derived from a consideration of the effect of the leakage on the pixel voltage. In order to avoid undesirable voltage shifts on the pixel, the following condition must be met: - I leak T f ≦C p ΔV p
- where Ileak is the leakage current from the data line to the pixel electrode through the unpatterned semiconductor layer, Tf is the frame time, and Cp is the total capacitance of the pixel. ΔVp is the maximum tolerance for leakage-induced voltage shifts on the pixel electrode. This value depends on how voltage shifts affect the optical state of the pixel and the tolerance defined by the display parameters.
- Ileak, at the minimum spacing, can be expressed by:
- Ileak =σwh(V p −V d)/Lms
- where σ is the conductivity of the semiconductor material, w is the width of the leakage path, h is the thickness of the underlying semiconductor material, and Vd is the voltage of the data line.
- Combining the above two equations gives the following relation that defines a minimum spacing Lms:
- L ms ≧σwh(V p −V d)T f /C pix ΔV p.
- The above discussion applies to embodiments with a single leakage source. If there are multiple leakage sources, Ileak will include leakage currents from each leakage source and the minimum spacing Lms for each leakage path must be derived accordingly.
- A preferred embodiment of a thin-film transistor for use in an encapsulated electrophoretic display is shown in FIG. 5a. Referring to FIG. 5a, this preferred embodiment includes
data lines 30′, 32′, aselection line 36′, apixel electrode 34′, and acapacitor top electrode 92′. Various physical dimensions are indicated, in microns. - The embodiment of FIG. 5a is illustrated in cross section in FIG. 5b, though not to scale. Referring to FIG. 5b, the embodiment includes
bottom gate electrode 53′ andbottom capacitor electrode 55′, a silicon nitride (“SiN”)dielectric layer 54′, anamorphous silicon layer 56′,amorphous silicon contacts 58′ drain andpixel electrodes 59′ , andcapacitor top electrode 92′. Other embodiments may employ different materials, for example, other dielectric materials such as silicon dioxide. - To illustrate the operating characteristics of the embodiment of FIGS. 5a and 5 b, samples were prepared through either a two-mask process, as preferred, or a three-mask process, for comparison. In the two-mask process, the
amorphous silicon layer 56′ was not patterned while in the three mask process theamorphous silicon layer 56′ was patterned. The physical and experimentally measured electrical characteristics for these two samples are given in the table below.On/Off Threshold Max. Drain Min. Drain Storage Sample WL Ratio Mobility Voltage Gm Current Current capacitance Patterned 200/20 1 × 108 .55 cm2/Vs 5.0 V 18.9 nA/ V 210 μA 0.1 pA 19.1 pF Unpatterned 160/20 3.3 × 105 .43 cm2/Vs 5.0 V 23.4 nA/ V 220 μA 60 pA 18.4 pF - The leakage current and On/Off ratio for the unpatterned sample, as expected, are poorer than for the patterned sample. The unpatterned sample, however, is both suitable and preferable for many display applications, as discussed above. Referring to FIG. 6, the drain current versus gate voltage characteristics of the two-mask sample are shown. The drain current can be caused to vary by over five orders of magnitude by changing the gate voltage from zero to 30 volts. This large range makes this transistor suitable for many display applications.
- Further alternative embodiments of a thin-film transistor array are now given. Referring to FIG. 7, an array of
bottom gate transistors 50 include asubstrate 52, apatterned gate electrode 53 for each transistor provided adjacent thesubstrate 52, adielectric layer 54 provided adjacent thegate electrodes 53 and thesubstrate 52, anamorphous silicon layer 56 provided adjacent thedielectric layer 54, a plurality of patterned n+ doped amorphous silicon contact layers 58 provided adjacent the amorphous silicon dopedlayer 56, and patterned source, drain orpixel electrodes 59 provided adjacent the patterned n+ doped amorphous silicon contacts layers 58. Each patterned n+ doped amorphous silicon contact layers 58 is provided between theamorphous silicon layer 56 and a patternedelectrode 59 to provide better electrical contact. The contacts layers 58 at the metal-semiconductor interface ensure ohmic behavior. Thecontacts 58 can be deposited by the addition of PH3 to SiH4 in the gas phase. Thecontacts 58 can also be achieved by direct ion implantation of n-type dopants in selected areas of the intrinsicamorphous silicon layer 56 followed by high temperature annealing as an alternative to the additional n+ amorphous silicon deposition step. Thecontacts 58, however, are not essential to produce a sufficiently functioning transistor. - Referring to FIG. 8, an array of
top gate transistors 60 include asubstrate 62, patterned source, drain, and/orpixel electrodes 64 for each transistor provided adjacent thesubstrate 62, a patterned n+amorphous silicon contact 66 provided adjacent eachelectrode 64, anamorphous silicon layer 68 provided adjacent thecontacts 66 and thesubstrate 62, adielectric layer 70 provided adjacent to the boron dopedamorphous silicon layer 68, and agate electrode 72 for each transistor provided adjacent to thedielectric layer 70. - Referring to FIG. 9, an array of
bottom gate transistors 80 is substantially similar to thetransistors 50 of FIG. 7. Thetransistors 80 of FIG. 9 include apassivation layer 82 provided above the exposed regions of theamorphous silicon layer 56. Thepassivation layer 82 can be deposited after the patterning of theelectrodes 59. For example, thepassivation layer 82 can consist of silicon nitride. In one embodiment, a light blocking layer is incorporated into the array of transistors to shield any exposedsilicon layer 56. The light blocking layer can be either light absorbing or reflective. - Referring to FIG. 10, an array of
bottom gate transistors 90 is substantially similar to the array oftransistors 80 of FIG. 9. The array oftransistors 90 further incorporates a substrate capacitor 292. The substrate capacitor 292 can be formed by extending thepixel electrode 94 over the precedinggate line 53 b. The capacitance is directly proportional to the area of overlap. - In one alternative, inexpensive displays can be constructed by minimizing the number of patterning steps. Such a display can take different forms, including but not limited to: large area displays, displays with low-to-moderate pixel density, or microencapsulated electrophoretic display devices. In the preferred embodiment the
semiconductor layer dielectric layer - An electronic display can incorporate an array of transistors as described above. Referring to FIG. 11, an electronic display may include a
transparent over-layer 101 supporting anelectrode 102, adisplay medium 106 provided next to theelectrode 102, a plurality ofpixel electrodes 104 provided next to thedisplay medium 106, and a plurality of discrete electronic devices (e.g., transistors) provided next to and in electrical communication with thepixel electrodes 104 supported by asubstrate 110 provided next to and in electrical communication with the discrete electronic devices. The discrete electronic devices, in this embodiment, are transistors. Thegate electrodes 112, thegate dielectric layer 100, thesemiconductor layer 118 and thesource electrodes 120 of the transistors are shown in this cross-section. - The
over-layer 101 can be made of a transparent material. Theover-layer 101 can also be a flexible substrate. For example, theover-layer 101 can consist of polyester. Theelectrode 102 can be a common electrode. Alternatively, theelectrode 102 can be a plurality of row electrodes. Theelectrode 102 can consist of a transparent conductive material. For example, an indium tin oxide (ITO), polyaniline or polythiophene coating can be provided on an inner surface of theover-layer 101. - The
display medium 106 can include a plurality ofmicrocapsules 124 dispersed in a binder 126 (not shown in drawing). Eachmicrocapsule 124 can include an electro-optical material. An electro-optical material refers to a material which displays an optical property in response to an electrical signal. Electro-optical material, for example, can be electrophoretic particles or liquid crystals dispersed in a solvent. An electro-optical material can also be bichromal spheres dispersed in a solvent. Details of electro-optical materials within themicrocapsules 124 will be discussed below. An important property of the electro-optical material within themicrocapsules 124 is that the material is capable of displaying one visible state upon application of an electric field and a different visual state upon application of a different electric field. - In one embodiment, the
display medium 106 comprises a particle-based display medium. In one detailed embodiment, the particle-based display medium comprises an electronic ink. An electronic ink is an optoelectronically active material which comprises at least two phases: an electrophoretic contrast medium phase and a coating/binding phase. The electrophoretic phase comprises, in some embodiments, a single species of electrophoretic particles dispersed in a clear or dyed medium, or more than one species of electrophoretic particles having distinct physical and electrical characteristics dispersed in a clear or dyed medium. In some embodiments the electrophoretic phase is encapsulated, that is, there is a capsule wall phase between the two phases. The coating/binding phase includes, in one embodiment, a polymer matrix that surrounds the electrophoretic phase. In this embodiment, the polymer in the polymeric binder is capable of being dried, crosslinked, or otherwise cured as in traditional inks, and therefore a printing process can be used to deposit the electronic ink onto a substrate. - The optical quality of an electronic ink is quite distinct from other electronic display materials. The most notable difference is that the electronic ink provides a high degree of both reflectance and contrast because it is pigment based (as are ordinary printing inks). The light scattered from the electronic ink comes from a very thin layer of pigment close to the top of the viewing surface. In this respect it resembles an ordinary, printed image. Also, electronic ink is easily viewed from a wide range of viewing angles in the same manner as a printed page, and such ink approximates a Lambertian contrast curve more closely than any other electronic display material. Since electronic ink can be printed, it can be included on the same surface with any other printed material, including traditional inks. Electronic ink can be made optically stable in all display configurations, that is, the ink can be set to a persistent optical state. Fabrication of a display by printing an electronic ink is particularly useful in low power applications because of this stability.
- Electronic ink displays are novel in that they can be addressed by DC voltages and draw very little current. As such, the conductive leads and electrodes used to deliver the voltage to electronic ink displays can be of relatively high resistivity. The ability to use resistive conductors substantially widens the number and type of materials that can be used as conductors in electronic ink displays. In particular, the use of costly vacuum-sputtered indium tin oxide (ITO) conductors, a standard material in liquid crystal devices, is not required.
- Aside from cost savings, the replacement of ITO with other materials can provide benefits in appearance, processing capabilities (printed conductors), flexibility, and durability. Additionally, the printed electrodes are in contact only with a solid binder, not with a fluid layer (like liquid crystals). This means that some conductive materials, which would otherwise dissolve or be degraded by contact with liquid crystals, can be used in an electronic ink application. These include opaque metallic inks for the rear electrode (e.g., silver and graphite inks), as well as conductive transparent inks for either substrate.
- These conductive coatings include conducting or semiconducting colloids, examples of which are indium tin oxide and antimony-doped tin oxide. Organic conductors (polymeric conductors and molecular organic conductors) also may be used. Polymers include, but are not limited to, polyaniline and derivatives, polythiophene and derivatives, poly(3,4-ethylenedioxythiophene) (PEDOT) and derivatives, polypyrrole and derivatives, and polyphenylenevinylene (PPV) and derivatives. Organic molecular conductors include, but are not limited to, derivatives of naphthalene, phthalocyanine, and pentacene. Polymer layers can be made thinner and more transparent than with traditional displays because conductivity requirements are not as stringent.
- The
pixel electrodes 104 can be bonded to thedisplay medium 106 through a binder. The binder, for example, can be a pressure sensitive adhesive. Thepixel electrodes 104 can be made from any conductive material. Thepixel electrodes 104 can be transparent or opaque. For example, thepixel electrodes 104 can be made from aluminum, chrome, solder paste, copper, copper-clad polyimide, graphite inks, silver inks and other metal containing conductive inks. Thepixel electrodes 104 can be formed on asubstrate 110 and subsequently bonded to thedisplay medium 106. - The discrete electronic devices can be non-linear devices such as transistor for addressing the pixels of the display. Alternatively, the non-linear devices can be diodes.
- The
electrodes electrodes electrodes - The architecture of the electronic display shown in FIG. 11 is exemplary only and other architectures for an electronic display may also be used in accordance with this invention.
- Very Thin a-Si Active Layer
- To reduce leakage currents, as noted in the description of FIG. 1, an a-Si active layer is traditionally patterned to leave islands of semiconductor material. The structures shown in FIG. 1 typically require three lithography steps and four etching steps. In contrast, some embodiments of the invention, as described above in reference to FIG. 5b, employ two masks in a simplified fabrication process. As described in the following, another embodiment of the invention provides further fabrication improvements through use of very thin a-Si for the active layer.
- Referring to FIG. 12, one embodiment that employs a very thin a-Si layer includes a gate electrode53 a, a
bottom capacitor electrode 55 a, a SiN dielectric layer 54 a, an a-Si layer 56 a, drain andpixel electrodes 59 a, and a capacitor top electrode 92 a. This embodiment, may be fabricated with a two-mask process, and without use of highly doped a-Si to assist formation of ohmic contacts. The a-Si layer 56 a may be formed with no further treatment after deposition, such as a chemical treatment to vary electrical properties. The a-Si layer 56 a preferably extends continuously from a transistor to neighboring transistors that reside both in rows and columns in an array of transistors. - A bottom gate with top pixel electrode structure is advantageous for electro-optic display applications. Such a structure positions the pixel electrodes closely to the electro-optic display medium. Thus, drive voltage and energy consumption may be reduce. Moreover, leakage current may be reduced.
- In preferred embodiments, the a-Si layer56 a has a thickness of approximately 40 nm or less. The use of a very thin a-Si layer as an active layer in a TFT obviates the requirement of heavily doped n+ a-Si lying between the a-Si layer 56 a and the
electrodes 59 a. See Thomasson, et al., IEEE Elec. Dev. Lett., Vol. 18, no. 3, 1717 (1997). For example, by employing intrinsic a-Si of 10 nm thickness, gate induced carrier concentration substantially reduces the metal to channel Schottky barrier. Hence, carriers may tunnel from the metal source and drain contacts to the channel, without reducing the TFT current and substantially affecting performance. - Elimination of an n+ a-Si layer at the metal to active layer interface reduces the number and difficulty of process steps by, for example, eliminating deposition and etching of n+ a-Si. This may also permit use of a very thin a-Si active layer due to elimination of the need to overetch the n+ a-Si layer.
- Use of a very thin a-Si layer as the active layer may provide further advantages. If left unpatterned, an active layer of, for example, 10 nm thick a-Si may reduce leakage currents due to increased lateral resistance relative to that of a thicker, continuous active layer. Hence, as discussed above, device dimensions may be reduced while still achieving acceptable leakage current levels. Thus, use of very thin a-Si as an active layer may permit dense packing of electronic components while still employing a simple two-mask fabrication process.
- The embodiment illustrated in FIG. 12 may be fabricated as follows. A first metal layer is deposited and patterned to form the gate electrode53 a and the capacitor's
bottom electrode 55 a. The SiN dielectric layer 54 a, the a-Si layer 56 a, and a second metal layer are then deposited. The drain andpixel electrodes 59 a are formed from the second metal layer by, for example, wet etching. - Referring to FIGS.13-15, electrical measurements were obtained from sample TFT arrays having the structure of the embodiment illustrated in FIG. 12. FIG. 13 shows the drain current versus gate voltage of a TFT in an array having a shared 10 nm thick a-Si layer. The threshold voltage is approximately 13 volts, which is somewhat greater than the threshold voltage of 3 to 4 volts for a typical TFT having a conventional structure. The mobility of the TFT is 0.15 cM2/Vs. The drain current on/off ratio is greater than 2×105.
- FIG. 14 shows the drain current versus drain voltage for a TFT in the same sample array used to obtain the data presented in FIG. 13. The contact resistance between the source and drain electrodes and the intrinsic a-Si layer partially limits the drain current at low drain voltage in this sample TFT. The on/off ratio, however, is good, and the mobility and on-current are sufficient to drive, for example, an active matrix display pixel.
- FIG. 15 shows a transient voltage switching-and-holding plot of a pixel electrode in a
sample 40 dpi display fabricated with TFTs similar to those used to obtain the data presented in FIG. 13 and FIG. 14. The pixel electrode has a dynamic range of 0 to 15 volts when the voltage range of the gate voltage and the drain voltage are set to 30 volts. The voltage holding range of the sample pixel is approximately 90 w. The measured dynamic range and voltage holding ratio are sufficient to drive, for example, an electrophoretic medium display. - Various embodiments of the invention have numerous advantages over the prior art. TFT arrays may be fabricated at low cost. Fabrication may utilize only two patterning steps. No patterning of a semiconductor active layer is required; this may, for example, eliminate a photolithographic step and a dry etching step. A heavily doped semiconductor layer may be eliminated at the metal to semiconductor active layer interface; this may, for example, eliminate a dry etching step.
- Elimination of n+ a-Si from fabrication may eliminate associated costs that arise from the requirement of a deposition chamber, as well as hazards entailed by use of highly toxic and flammable PH3 gas. Related elimination of a dry etch step permits use of all-wet fabrication, further reducing fabrication costs.
- The above features of the invention further permit increased fabrication throughput. Use of a thinner semiconductor active layer reduces semiconductor deposition time. Elimination of a heavily doped semiconductor layer, and elimination of patterning of the semiconductor active layer, further increase fabrication throughput. In some embodiments, a SiN layer, an a-Si layer and a
metal 2 layer are deposited in the same deposition system, again improving manufacturing throughput. - The invention may provide improved fabrication yield, due to simplified processing. Moreover, some embodiments may utilize a roll-to-roll substrate fabrication process. Continuous deposition of a semiconductor stack and
metal 2 without a break in vacuum, as well as an all-wet etching process, are compatible with roll-to-roll processing. - Materials for Use in Electrophoretic Displays Useful materials for constructing encapsulated electrophoretic displays are discussed in detail below. Many of these materials will be known to those skilled in the art of constructing conventional electrophoretic displays, or those skilled in the art of microencapsulation. The combination of these materials and processes, along with the other necessary components found in an encapsulated electrophoretic display, comprise the invention described herein.
- A. Particles
- There is much flexibility in the choice of particles for use in electrophoretic displays, as described above. For purposes of this invention, a particle is any component that is charged or capable of acquiring a charge (i.e., has or is capable of acquiring electrophoretic mobility), and, in some cases, this mobility may be zero or close to zero (i.e., the particles will not move). The particles may be neat pigments, dyed (laked) pigments or pigment/polymer composites, or any other component that is charged or capable of acquiring a charge. Typical considerations for the electrophoretic particle are its optical properties, electrical properties, and surface chemistry. The particles may be organic or inorganic compounds, and they may either absorb light or scatter light. The particles for use in the invention may further include scattering pigments, absorbing pigments and luminescent particles. The particles may be retroreflective, such as corner cubes, or they may be electroluminescent, such as zinc sulfide particles, which emit light when excited by an AC field, or they may be photoluminescent. Finally, the particles may be surface treated so as to improve charging or interaction with a charging agent, or to improve dispersibility.
- A preferred particle for use in electrophoretic displays of the invention is Titania. The titania particles may be coated with a metal oxide, such as aluminum oxide or silicon oxide, for example. The titania particles may have one, two, or more layers of metal-oxide coating. For example, a titania particle for use in electrophoretic displays of the invention may have a coating of aluminum oxide and a coating of silicon oxide. The coatings may be added to the particle in any order.
- The electrophoretic particle is usually a pigment, a polymer, a laked pigment, or some combination of the above. A neat pigment can be any pigment, and, usually for a light colored particle, pigments such as, for example, rutile (titania), anatase (titania), barium sulfate, kaolin, or zinc oxide are useful. Some typical particles have high refractive indices, high scattering coefficients, and low absorption coefficients. Other particles are absorptive, such as carbon black or colored pigments used in paints and inks. The pigment should also be insoluble in the suspending fluid. Yellow pigments such as diarylide yellow, hansa yellow, and benzidin yellow have also found use in similar displays. Any other reflective material can be employed for a light colored particle, including non-pigment materials, such as metallic particles.
- Useful neat pigments include, but are not limited to, PbCrO4, Cyan blue GT 55-3295 (American Cyanamid Company, Wayne, N.J.), Cibacron Black BG (Ciba Company, Inc., Newport, Del.), Cibacron Turquoise Blue G (Ciba), Cibalon Black BGL (Ciba), Orasol Black BRG (Ciba), Orasol Black RBL (Ciba), Acetamine Blac, CBS (E. I. du Pont de Nemours and Company, Inc., Wilmington, Del.), Crocein Scarlet N Ex (du Pont) (27290), Fiber Black VF (DuPont) (30235), Luxol Fast Black L (DuPont) (Solv. Black 17), Nirosine Base No. 424 (DuPont) (50415 B), Oil Black BG (DuPont) (Solv. Black 16), Rotalin Black RM (DuPont), Sevron Brilliant Red 3 B (DuPont); Basic Black DSC (Dye Specialties, Inc.), Hectolene Black (Dye Specialties, Inc.), Azosol Brilliant Blue B (GAF, Dyestuff and Chemical Division, Wayne, N.J.) (Solv. Blue 9), Azosol Brilliant Green BA (GAF) (Solv. Green 2), Azosol Fast Brilliant Red B (GAF), Azosol Fast Orange RA Conc. (GAF) (Solv. Orange 20), Azosol Fast Yellow GRA Conc. (GAF) (13900 A), Basic Black KMPA (GAF), Benzofix Black CW-CF (GAF) (35435), Cellitazol BNFV Ex Soluble CF (GAF) (Disp. Black 9), Celliton Fast Blue AF Ex Conc (GAF) (Disp. Blue 9), Cyper Black IA (GAF) (Basic Blk. 3), Diamine Black CAP Ex Conc (GAF) (30235), Diamond Black EAN Hi Con. CF (GAF) (15710), Diamond Black PBBA Ex (GAF) (16505); Direct Deep Black EA Ex CF (GAF) (30235), Hansa Yellow G (GAF) (11680); Indanthrene Black BBK Powd. (GAF) (59850), Indocarbon CLGS Conc. CF (GAF) (53295), Katigen Deep Black NND Hi Conc. CF (GAF) (15711), Rapidogen Black 3 G (GAF) (Azoic Blk. 4); Sulphone Cyanine Black BA-CF (GAF) (26370), Zambezi Black VD Ex Conc. (GAF) (30015); Rubanox Red CP-1495 (The Sherwin-Williams Company, Cleveland, Ohio) (15630); Raven 11 (Columbian Carbon Company, Atlanta, Ga.), (carbon black aggregates with a particle size of about 25 μm), Statex B-12 (Columbian Carbon Co.) (a furnace black of 33 μm average particle size), and chrome green.
- Particles may also include laked, or dyed, pigments. Laked pigments are particles that have a dye precipitated on them or which are stained. Lakes are metal salts of readily soluble anionic dyes. These are dyes of azo, triphenylmethane or anthraquinone structure containing one or more sulphonic or carboxylic acid groupings. They are usually precipitated by a calcium, barium or aluminum salt onto a substrate. Typical examples are peacock blue lake (CI Pigment Blue 24) and Persian orange (lake of CI Acid Orange 7), Black M Toner (GAF) (a mixture of carbon black and black dye precipitated on a lake).
- A dark particle of the dyed type may be constructed from any light absorbing material, such as carbon black, or inorganic black materials. The dark material may also be selectively absorbing. For example, a dark green pigment may be used. Black particles may also be formed by staining latices with metal oxides, such latex copolymers consisting of any of butadiene, styrene, isoprene, methacrylic acid, methyl methacrylate, acrylonitrile, vinyl chloride, acrylic acid, sodium styrene sulfonate, vinyl acetate, chlorostyrene, dimethylaminopropylmethacrylamide, isocyanoethyl methacrylate and N-(isobutoxymethacrylamide), and optionally including conjugated diene compounds such as diacrylate, triacrylate, dimethylacrylate and trimethacrylate. Black particles may also be formed by a dispersion polymerization technique.
- In the systems containing pigments and polymers, the pigments and polymers may form multiple domains within the electrophoretic particle, or be aggregates of smaller pigment/polymer combined particles. Alternatively, a central pigment core may be surrounded by a polymer shell. The pigment, polymer, or both can contain a dye. The optical purpose of the particle may be to scatter light, absorb light, or both. Useful sizes may range from 1 nm up to about 100 μm, as long as the particles are smaller than the bounding capsule. In a preferred embodiment, the density of the electrophoretic particle may be substantially matched to that of the suspending (i.e., electrophoretic) fluid. As defined herein, a suspending fluid has a density that is “substantially matched” to the density of the particle if the difference in their respective densities is between about zero and about two g/ml. This difference is preferably between about zero and about 0.5 g/ml.
- Useful polymers for the particles include, but are not limited to: polystyrene, polyethylene, polypropylene, phenolic resins, Du Pont Elvax resins (ethylene-vinyl acetate copolymers), polyesters, polyacrylates, polymethacrylates, ethylene acrylic acid or methacrylic acid copolymers (Nucrel Resins—DuPont, Primacor Resins—Dow Chemical), acrylic copolymers and terpolymers (Elvacite Resins, DuPont) and PMMA. Useful materials for homopolymer/pigment phase separation in high shear melt include, but are not limited to, polyethylene, polypropylene, polymethylmethacrylate, polyisobutylmethacrylate, polystyrene, polybutadiene, polyisoprene, polyisobutylene, polylauryl methacrylate, polystearyl methacrylate, polyisobornyl methacrylate, poly-t-butyl methacrylate, polyethyl methacrylate, polymethyl acrylate, polyethyl acrylate, polyacrylonitrile, and copolymers of two or more of these materials. Some useful pigment/polymer complexes that are commercially available include, but are not limited to, Process Magenta PM 1776 (Magruder Color Company, Inc., Elizabeth, N.J.), Methyl Violet PMA VM6223 (Magruder Color Company, Inc., Elizabeth, N.J.), and Naphthol FGR RF6257 (Magruder Color Company, Inc., Elizabeth, N.J.).
- The pigment-polymer composite may be formed by a physical process, (e.g., attrition or ball milling), a chemical process (e.g., microencapsulation or dispersion polymerization), or any other process known in the art of particle production. From the following non-limiting examples, it may be seen that the processes and materials for both the fabrication of particles and the charging thereof are generally derived from the art of liquid toner, or liquid immersion development. Thus any of the known processes from liquid development are particularly, but not exclusively, relevant.
- New and useful electrophoretic particles may still be discovered, but a number of particles already known to those skilled in the art of electrophoretic displays and liquid toners can also prove useful. In general, the polymer requirements for liquid toners and encapsulated electrophoretic inks are similar, in that the pigment or dye must be easily incorporated therein, either by a physical, chemical, or physicochemical process, may aid in the colloidal stability, and may contain charging sites or may be able to incorporate materials which contain charging sites. One general requirement from the liquid toner industry that is not shared by encapsulated electrophoretic inks is that the toner must be capable of “fixing” the image, i.e., heat fusing together to create a uniform film after the deposition of the toner particles.
- Typical manufacturing techniques for particles are drawn from the liquid toner and other arts and include ball milling, attrition, jet milling, etc. The process will be illustrated for the case of a pigmented polymeric particle. In such a case the pigment is compounded in the polymer, usually in some kind of high shear mechanism such as a screw extruder. The composite material is then (wet or dry) ground to a starting size of around 10 μm. It is then dispersed in a carrier liquid, for example ISOPAR® (Exxon, Houston, Tex.), optionally with some charge control agent(s), and milled under high shear for several hours down to a final particle size and/or size distribution.
- Another manufacturing technique for particles drawn from the liquid toner field is to add the polymer, pigment, and suspending fluid to a media mill. The mill is started and simultaneously heated to temperature at which the polymer swells substantially with the solvent. This temperature is typically near 100° C. In this state, the pigment is easily encapsulated into the swollen polymer. After a suitable time, typically a few hours, the mill is gradually cooled back to ambient temperature while stirring. The milling may be continued for some time to achieve a small enough particle size, typically a few microns in diameter. The charging agents may be added at this time. Optionally, more suspending fluid may be added.
- Chemical processes such as dispersion polymerization, mini- or micro-emulsion polymerization, suspension polymerization precipitation, phase separation, solvent evaporation, in situ polymerization, seeded emulsion polymerization, or any process which falls under the general category of microencapsulation may be used. A typical process of this type is a phase separation process wherein a dissolved polymeric material is precipitated out of solution onto a dispersed pigment surface through solvent dilution, evaporation, or a thermal change. Other processes include chemical means for staining polymeric latices, for example with metal oxides or dyes.
- B. Suspending Fluid
- The suspending fluid containing the particles can be chosen based on properties such as density, refractive index, and solubility. A preferred suspending fluid has a low dielectric constant (about 2), high volume resistivity (about 10^ 15 ohm-cm), low viscosity (less than 5 cst), low toxicity and environmental impact, low water solubility (less than 10 ppm), high specific gravity (greater than 1.5), a high boiling point (greater than 90° C.), and a low refractive index (less than 1.2).
- The choice of suspending fluid may be based on concerns of chemical inertness, density matching to the electrophoretic particle, or chemical compatibility with both the electrophoretic particle and bounding capsule. The viscosity of the fluid should be low when you want the particles to move. The refractive index of the suspending fluid may also be substantially matched to that of the particles. As used herein, the refractive index of a suspending fluid “is substantially matched” to that of a particle if the difference between their respective refractive indices is between about zero and about 0.3, and is preferably between about 0.05 and about 0.2.
- Additionally, the fluid may be chosen to be a poor solvent for some polymers, which is advantageous for use in the fabrication of microparticles because it increases the range of polymeric materials useful in fabricating particles of polymers and pigments. Organic solvents, such as halogenated organic solvents, saturated linear or branched hydrocarbons, silicone oils, and low molecular weight halogen-containing polymers are some useful suspending fluids. The suspending fluid may comprise a single fluid. The fluid will, however, often be a blend of more than one fluid in order to tune its chemical and physical properties. Furthermore, the fluid may contain surface modifiers to modify the surface energy or charge of the electrophoretic particle or bounding capsule. Reactants or solvents for the microencapsulation process (oil soluble monomers, for example) can also be contained in the suspending fluid. Charge control agents can also be added to the suspending fluid.
- Useful organic solvents include, but are not limited to, epoxides, such as, for example, decane epoxide and dodecane epoxide; vinyl ethers, such as, for example, cyclohexyl vinyl ether and Decave® (International Flavors & Fragrances, Inc., New York, N.Y.); and aromatic hydrocarbons, such as, for example, toluene and naphthalene. Useful halogenated organic solvents include, but are not limited to, tetrafluorodibromoethylene, tetrachloroethylene, trifluorochloroethylene, 1,2,4-trichlorobenzene, carbon tetrachloride. These materials have high densities. Useful hydrocarbons include, but are not limited to, dodecane, tetradecane, the aliphatic hydrocarbons in the Isopar® series (Exxon, Houston, Tex.), Norpar® (series of normal paraffinic liquids), Shell-Sol® (Shell, Houston, Tex.), and Sol-Trol® (Shell), naphtha, and other petroleum solvents. These materials usually have low densities. Useful examples of silicone oils include, but are not limited to, octamethyl cyclosiloxane and higher molecular weight cyclic siloxanes, poly (methyl phenyl siloxane), hexamethyldisiloxane, and polydimethylsiloxane. These materials usually have low densities. Useful low molecular weight halogen-containing polymers include, but are not limited to, poly(chlorotrifluoroethylene) polymer (Halogenated hydrocarbon Inc., River Edge, N.J.), Galden® (a perfluorinated ether from Ausimont, Morristown, N.J.), or Krytox® from DuPont (Wilmington, Del.). In a preferred embodiment, the suspending fluid is a poly(chlorotrifluoroethylene) polymer. In a particularly preferred embodiment, this polymer has a degree of polymerization from about 2 to about 10. Many of the above materials are available in a range of viscosities, densities, and boiling points.
- The fluid must be capable of being formed into small droplets prior to a capsule being formed. Processes for forming small droplets include flow-through jets, membranes, nozzles, or orifices, as well as shear-based emulsifying schemes. The formation of small drops may be assisted by electrical or sonic fields. Surfactants and polymers can be used to aid in the stabilization and emulsification of the droplets in the case of an emulsion type encapsulation. A preferred surfactant for use in displays of the invention is sodium dodecylsulfate.
- It can be advantageous in some displays for the suspending fluid to contain an optically absorbing dye. This dye must be soluble in the fluid, but will generally be insoluble in the other components of the capsule. There is much flexibility in the choice of dye material. The dye can be a pure compound, or blends of dyes to achieve a particular color, including black. The dyes can be fluorescent, which would produce a display in which the fluorescence properties depend on the position of the particles. The dyes can be photoactive, changing to another color or becoming colorless upon irradiation with either visible or ultraviolet light, providing another means for obtaining an optical response. Dyes could also be polymerizable, forming a solid absorbing polymer inside the bounding shell.
- There are many dyes that can be chosen for use in encapsulated electrophoretic display. Properties important here include light fastness, solubility in the suspending liquid, color, and cost. These are generally from the class of azo, anthraquinone, and triphenylmethane type dyes and may be chemically modified so as to increase the solubility in the oil phase and reduce the adsorption by the particle surface.
- A number of dyes already known to those skilled in the art of electrophoretic displays will prove useful. Useful azo dyes include, but are not limited to: the Oil Red dyes, and the Sudan Red and Sudan Black series of dyes. Useful anthraquinone dyes include, but are not limited to: the Oil Blue dyes, and the Macrolex Blue series of dyes. Useful triphenylmethane dyes include, but are not limited to, Michler's hydrol, Malachite Green, Crystal Violet, and Auramine O.
- C. Charge Control Agents and Particle Stabilizers
- Charge control agents are used to provide good electrophoretic mobility to the electrophoretic particles. Stabilizers are used to prevent agglomeration of the electrophoretic particles, as well as prevent the electrophoretic particles from irreversibly depositing onto the capsule wall. Either component can be constructed from materials across a wide range of molecular weights (low molecular weight, oligomeric, or polymeric), and may be pure or a mixture. In particular, suitable charge control agents are generally adapted from the liquid toner art. The charge control agent used to modify and/or stabilize the particle surface charge is applied as generally known in the arts of liquid toners, electrophoretic displays, non-aqueous paint dispersions, and engine-oil additives. In all of these arts, charging species may be added to non-aqueous media in order to increase electrophoretic mobility or increase electrostatic stabilization. The materials can improve steric stabilization as well. Different theories of charging are postulated, including selective ion adsorption, proton transfer, and contact electrification.
- An optional charge control agent or charge director may be used. These constituents typically consist of low molecular weight surfactants, polymeric agents, or blends of one or more components and serve to stabilize or otherwise modify the sign and/or magnitude of the charge on the electrophoretic particles.
- The charging properties of the pigment itself may be accounted for by taking into account the acidic or basic surface properties of the pigment, or the charging sites may take place on the carrier resin surface (if present), or a combination of the two. Additional pigment properties which may be relevant are the particle size distribution, the chemical composition, and the lightfastness. The charge control agent used to modify and/or stabilize the particle surface charge is applied as generally known in the arts of liquid toners, electrophoretic displays, non-aqueous paint dispersions, and engine-oil additives. In all of these arts, charging species may be added to non-aqueous media in order to increase electrophoretic mobility or increase electrostatic stabilization. The materials can improve steric stabilization as well. Different theories of charging are postulated, including selective ion adsorption, proton transfer, and contact electrification.
- Charge adjuvants may also be added. These materials increase the effectiveness of the charge control agents or charge directors. The charge adjuvant may be a polyhydroxy compound or an aminoalcohol compound, which are preferably soluble in the suspending fluid in an amount of at least 2% by weight. Examples of polyhydroxy compounds which contain at least two hydroxyl groups include, but are not limited to, ethylene glycol, 2,4,7,9-tetramethyl-decyne-4,7-diol, poly(propylene glycol), pentaethylene glycol, tripropylene glycol, triethylene glycol, glycerol, pentaerythritol, glycerol tris(12-hydroxystearate), propylene glycerol monohydroxystearate, and ethylene glycol monohydroxystrearate. Examples of aminoalcohol compounds which contain at least one alcohol function and one amine function in the same molecule include, but are not limited to, triisopropanolamine, triethanolamine, ethanolamine, 3-amino-1-propanol, o-aminophenol, 5-amino-1-pentanol, and tetrakis(2-hydroxyethyl)ethylene-diamine. The charge adjuvant is preferably present in the suspending fluid in an amount of about 1 to about 100 mg/g of the particle mass, and more preferably about 50 to about 200 mg/g.
- The surface of the particle may also be chemically modified to aid dispersion, to improve surface charge, and to improve the stability of the dispersion, for example. Surface modifiers include organic siloxanes, organohalogen silanes and other functional silane coupling agents (Dow Corning® Z-6070, Z-6124, and 3 additive, Midland, Mich.); organic titanates and zirconates (Tyzor® TOT, TBT, and TE Series, DuPont, Wilmington, Del.); hydrophobing agents, such as long chain (C12 to C50) alkyl and alkyl benzene sulphonic acids, fatty amines or diamines and their salts or quaternary derivatives; and amphipathic polymers which can be covalently bonded to the particle surface.
- In general, it is believed that charging results as an acid-base reaction between some moiety present in the continuous phase and the particle surface. Thus useful materials are those which are capable of participating in such a reaction, or any other charging reaction as known in the art.
- Different non-limiting classes of charge control agents which are useful include organic sulfates or sulfonates, metal soaps, block or comb copolymers, organic amides, organic zwitterions, and organic phosphates and phosphonates. Useful organic sulfates and sulfonates include, but are not limited to, sodium bis(2-ethyl hexyl) sulfosuccinate, calcium dodecyl benzene sulfonate, calcium petroleum sulfonate, neutral or basic barium dinonylnaphthalene sulfonate, neutral or basic calcium dinonylnaphthalene sulfonate, dodecylbenzenesulfonic acid sodium salt, and ammonium lauryl sulphate. Useful metal soaps include, but are not limited to, basic or neutral barium petronate, calcium petronate, Co—, Ca—, Cu—, Mn—, Ni—, Zn—, and Fe— salts of naphthenic acid, Ba—, Al—, Zn—, Cu—, Pb—, and Fe— salts of stearic acid, divalent and trivalent metal carboxylates, such as aluminum tristearate, aluminum octoanate, lithium heptanoate, iron stearate, iron distearate, barium stearate, chromium stearate, magnesium octanoate, calcium stearate, iron naphthenate, and zinc naphthenate, Mn— and Zn— heptanoate, and Ba—, Al—, Co—, Mn—, and Zn— octanoate. Useful block or comb copolymers include, but are not limited to, AB diblock copolymers of (A) polymers of 2-(N,N)-dimethylaminoethyl methacrylate quaternized with methyl-p-toluenesulfonate and (B) poly-2-ethylhexyl methacrylate, and comb graft copolymers with oil soluble tails of poly (12-hydroxystearic acid) and having a molecular weight of about 1800, pendant on an oil-soluble anchor group of poly (methyl methacrylate-methacrylic acid). Useful organic amides include, but are not limited to, polyisobutylene succinimides such as OLOA 1200 and 3700, and N-vinyl pyrrolidone polymers. Useful organic zwitterions include, but are not limited to, lecithin. Useful organic phosphates and phosphonates include, but are not limited to, the sodium salts of phosphated mono- and di-glycerides with saturated and unsaturated acid substituents.
- Particle dispersion stabilizers may be added to prevent particle flocculation or attachment to the capsule walls. For the typical high resistivity liquids used as suspending fluids in electrophoretic displays, nonaqueous surfactants may be used. These include, but are not limited to, glycol ethers, acetylenic glycols, alkanolamides, sorbitol derivatives, alkyl amines, quaternary amines, imidazolines, dialkyl oxides, and sulfosuccinates.
- D. Encapsulation
- There is a long and rich history to encapsulation, with numerous processes and polymers having proven useful in creating capsules.
- Encapsulation of the internal phase may be accomplished in a number of different ways. Numerous suitable procedures for microencapsulation are detailed in bothMicroencapsulation, Processes and Applications, (I. E. Vandegaer, ed.), Plenum Press, New York, N.Y. (1974) and Gutcho, Microcapsules and Mircroencapsulation Techniques, Nuyes Data Corp., Park Ridge, N.J. (1976). The processes fall into several general categories, all of which can be applied to the present invention: interfacial polymerization, in situ polymerization, physical processes, such as coextrusion and other phase separation processes, in-liquid curing, and simple/complex coacervation.
- Numerous materials and processes should prove useful in formulating displays of the present invention. Useful materials for simple coacervation processes include, but are not limited to, gelatin, polyvinyl alcohol, polyvinyl acetate, and cellulosic derivatives, such as, for example, carboxymethylcellulose. Useful materials for complex coacervation processes include, but are not limited to, gelatin, acacia, carageenan, carboxymethylcellulose, hydrolyzed styrene anhydride copolymers, agar, alginate, casein, albumin, methyl vinyl ether co-maleic anhydride, and cellulose phthalate. Useful materials for phase separation processes include, but are not limited to, polystyrene, PMMA, polyethyl methacrylate, polybutyl methacrylate, ethyl cellulose, polyvinyl pyridine, and poly acrylonitrile. Useful materials for in situ polymerization processes include, but are not limited to, polyhydroxyamides, with aldehydes, melamine, or urea and formaldehyde; water-soluble oligomers of the condensate of melamine, or urea and formaldehyde; and vinyl monomers, such as, for example, styrene, MMA and acrylonitrile. Finally, useful materials for interfacial polymerization processes include, but are not limited to, diacyl chlorides, such as, for example, sebacoyl, adipoyl, and di- or poly- amines or alcohols, and isocyanates. Useful emulsion polymerization materials may include, but are not limited to, styrene, vinyl acetate, acrylic acid, butyl acrylate, t-butyl acrylate, methyl methacrylate, and butyl methacrylate.
- Capsules produced may be dispersed into a curable carrier, resulting in an ink which may be printed or coated on large and arbitrarily shaped or curved surfaces using conventional printing and coating techniques. In the context of the present invention, one skilled in the art will select an encapsulation procedure and wall material based on the desired capsule properties. These properties include the distribution of capsule radii; electrical, mechanical, diffusion, and optical properties of the capsule wall; and chemical compatibility with the internal phase of the capsule.
- The capsule wall generally has a high electrical resistivity. Although it is possible to use walls with relatively low resistivities, this may limit performance in requiring relatively higher addressing voltages. The capsule wall should also be mechanically strong (although if the finished capsule powder is to be dispersed in a curable polymeric binder for coating, mechanical strength is not as critical). The capsule wall should generally not be porous. If, however, it is desired to use an encapsulation procedure that produces porous capsules, these can be overcoated in a post-processing step (i.e., a second encapsulation). Moreover, if the capsules are to be dispersed in a curable binder, the binder will serve to close the pores. The capsule walls should be optically clear. The wall material may, however, be chosen to match the refractive index of the internal phase of the capsule (i.e., the suspending fluid) or a binder in which the capsules are to be dispersed. For some applications (e.g., interposition between two fixed electrodes), monodispersed capsule radii are desirable.
- An encapsulation procedure involves a polymerization between urea and formaldehyde in an aqueous phase of an oil/water emulsion in the presence of a negatively charged, carboxyl-substituted, linear hydrocarbon polyelectrolyte material. The resulting capsule wall is a urea/formaldehyde copolymer, which discretely encloses the internal phase. The capsule is clear, mechanically strong, and has good resistivity properties.
- The related technique of in situ polymerization utilizes an oil/water emulsion, which is formed by dispersing the electrophoretic composition (i.e., the dielectric liquid containing a suspension of the pigment particles) in an aqueous environment. The monomers polymerize to form a polymer with higher affinity for the internal phase than for the aqueous phase, thus condensing around the emulsified oily droplets. In one especially useful in situ polymerization processes, urea and formaldehyde condense in the presence of poly(acrylic acid) (See, e.g., U.S. Pat. No. 4,001,140). In other useful process, any of a variety of cross-linking agents borne in aqueous solution is deposited around microscopic oil droplets. Such cross-linking agents include aldehydes, especially formaldehyde, glyoxal, or glutaraldehyde; alum; zirconium salts; and poly isocyanates. The entire disclosures of the 4,001,140 and 4,273,672 patents are hereby incorporated by reference herein.
- The coacervation approach also utilizes an oil/water emulsion. One or more colloids are coacervated (i.e., agglomerated) out of the aqueous phase and deposited as shells around the oily droplets through control of temperature, pH and/or relative concentrations, thereby creating the microcapsule. Materials suitable for coacervation include gelatins and gum arabic.
- The interfacial polymerization approach relies on the presence of an oil-soluble monomer in the electrophoretic composition, which once again is present as an emulsion in an aqueous phase. The monomers in the minute hydrophobic droplets react with a monomer introduced into the aqueous phase, polymerizing at the interface between the droplets and the surrounding aqueous medium and forming shells around the droplets. Although the resulting walls are relatively thin and may be permeable, this process does not require the elevated temperatures characteristic of some other processes, and therefore affords greater flexibility in terms of choosing the dielectric liquid.
- Coating aids can be used to improve the uniformity and quality of the coated or printed electrophoretic ink material. Wetting agents are typically added to adjust the interfacial tension at the coating/substrate interface and to adjust the liquid/air surface tension. Wetting agents include, but are not limited to, anionic and cationic surfactants, and nonionic species, such as silicone or fluoropolymer based materials. Dispersing agents may be used to modify the interfacial tension between the capsules and binder, providing control over flocculation and particle settling.
- Surface tension modifiers can be added to adjust the air/ink interfacial tension. Polysiloxanes are typically used in such an application to improve surface leveling while minimizing other defects within the coating. Surface tension modifiers include, but are not limited to, fluorinated surfactants, such as, for example, the Zonyl® series from DuPont (Wilmington, Del.), the Fluorod® series from 3M (St. Paul, Minn.), and the fluoroakyl series from Autochem (Glen Rock, N.J.); siloxanes, such as, for example, Silwet® from Union Carbide (Danbury, Conn.); and polyethoxy and polypropoxy alcohols. Antifoams, such as silicone and silicone-free polymeric materials, may be added to enhance the movement of air from within the ink to the surface and to facilitate the rupture of bubbles at the coating surface. Other useful antifoams include, but are not limited to, glyceryl esters, polyhydric alcohols, compounded antifoams, such as oil solutions of alkyl benzenes, natural fats, fatty acids, and metallic soaps, and silicone antifoaming agents made from the combination of dimethyl siloxane polymers and silica. Stabilizers such as uv-absorbers and antioxidants may also be added to improve the lifetime of the ink.
- Other additives to control properties like coating viscosity and foaming can also be used in the coating fluid. Stabilizers (UV-absorbers, antioxidants) and other additives which could prove useful in practical materials.
- E. Binder Material
- The binder is used as a non-conducting, adhesive medium supporting and protecting the capsules, as well as binding the electrode materials to the capsule dispersion. Binders are available in many forms and chemical types. Among these are water-soluble polymers, water-borne polymers, oil-soluble polymers, thermoset and thermoplastic polymers, and radiation-cured polymers.
- Among the water-soluble polymers are the various polysaccharides, the polyvinyl alcohols, N-methylpyrrolidone, N-vinylpyrrollidone, the various Carbowax® species (Union Carbide, Danbury, Conn.), and poly-2-hydroxyethylacrylate.
- The water-dispersed or water-borne systems are generally latex compositions, typified by the Neorez® and Neocryl® resins (Zeneca Resins, Wilmington, Mass.), Acrysol® (Rohm and Haas, Philadelphia, Pa.), Bayhydrol® (Bayer, Pittsburgh, Pa.), and the Cytec Industries (West Paterson, N.J.) HP line. These are generally latices of polyurethanes, occasionally compounded with one or more of the acrylics, polyesters, polycarbonates or silicones, each lending the final cured resin in a specific set of properties defined by glass transition temperature, degree of “tack,” softness, clarity, flexibility, water permeability and solvent resistance, elongation modulus and tensile strength, thermoplastic flow, and solids level. Some water-borne systems can be mixed with reactive monomers and catalyzed to form more complex resins. Some can be further cross-linked by the use of a crosslinking reagent, such as an aziridine, for example, which reacts with carboxyl groups.
- A typical application of a water-borne resin and aqueous capsules follows. A volume of particles is centrifuged at low speed to separate excess water. After a given centrifugation process, for example 10 minutes at 60×G, the capsules are found at the bottom of the centrifuge tube, while the water portion is at the top. The water portion is carefully removed (by decanting or pipetting). The mass of the remaining capsules is measured, and a mass of resin is added such that the mass of resin is between one eighth and one tenth of the weight of the capsules. This mixture is gently mixed on an oscillating mixer for approximately one half hour. After about one half hour, the mixture is ready to be coated onto the appropriate substrate.
- The thermoset systems are exemplified by the family of epoxies. These binary systems can vary greatly in viscosity, and the reactivity of the pair determines the “pot life” of the mixture. If the pot life is long enough to allow a coating operation, capsules may be coated in an ordered arrangement in a coating process prior to the resin curing and hardening.
- Thermoplastic polymers, which are often polyesters, are molten at high temperatures. A typical application of this type of product is hot-melt glue. A dispersion of heat-resistant capsules could be coated in such a medium. The solidification process begins during cooling, and the final hardness, clarity and flexibility are affected by the branching and molecular weight of the polymer.
- Oil or solvent-soluble polymers are often similar in composition to the water-borne system, with the obvious exception of the water itself. The latitude in formulation for solvent systems is enormous, limited only by solvent choices and polymer solubility. Of considerable concern in solvent-based systems is the viability of the capsule itself—the integrity of the capsule wall cannot be compromised in any way by the solvent.
- Radiation cure resins are generally found among the solvent-based systems. Capsules may be dispersed in such a medium and coated, and the resin may then be cured by a timed exposure to a threshold level of very violet radiation, either long or short wavelength. As in all cases of curing polymer resins, final properties are determined by the branching and molecular weights of the monomers, oligomers and crosslinkers.
- A number of “water-reducible” monomers and oligomers are, however, marketed. In the strictest sense, they are not water soluble, but water is an acceptable diluent at low concentrations and can be dispersed relatively easily in the mixture. Under these circumstances, water is used to reduce the viscosity (initially from thousands to hundreds of thousands centipoise). Water-based capsules, such as those made from a protein or polysaccharide material, for example, could be dispersed in such a medium and coated, provided the viscosity could be sufficiently lowered. Curing in such systems is generally by ultraviolet radiation.
- Referring to FIG. 16a, an embodiment of an electrophoretic display that employs a thin-film transistor array of the present invention is shown. FIG. 16a shows a diagrammatic cross-section of an
electrophoretic display 130 constructed using electronic ink. Thebinder 132 includes at least onecapsule 134, which is filled with a plurality ofparticles 136 and a dyed suspendingfluid 138. In one embodiment, theparticles 136 are titania particles. When a direct-current electric field of the appropriate polarity is applied across thecapsule 134, theparticles 136 move to the viewed surface of the display and scatter light. When the applied electric field is reversed, theparticles 136 move to the rear surface of the display and the viewed surface of the display then appears dark. - FIG. 16b shows a cross-section of another
electrophoretic display 140 constructed using electronic ink. This display comprises a first set ofparticles 142 and a second set ofparticles 144 in acapsule 141. The first set ofparticles 142 and the second set ofparticles 144 have contrasting optical properties. For example, the first set ofparticles 142 and the second set ofparticles 144 can have differing electrophoretic mobilities. In addition, the first set ofparticles 142 and the second set ofparticles 144 can have contrasting colors. For example, the first set ofparticles 142 can be white, while the second set ofparticles 144 can be black. Thecapsule 141 further includes a substantially clear fluid. Thecapsule 141 haselectrodes electrodes voltage 148, which may provide an electric field to thecapsule 141. In one embodiment, upon application of an electric field across theelectrodes particles 142 move towardelectrode 146′, while the second set ofparticles 144 move towardelectrode 146. In another embodiment, upon application of an electric field across theelectrodes particles 142 move rapidly towardelectrode 146′, while the second set ofparticles 144 move only slowly or not at all towardselectrode 146, so that the first set of particles packs preferentially at the microcapsule surface adjacent to electrode 146′. - FIG. 16c shows a diagrammatic cross-section of a suspended particle display 250. The suspended particle display 250 includes needle-like particles 252 in a transparent fluid 254. The particles 252 change their orientation upon application of an AC field across the electrodes 256, 256′. When the AC field is applied, the particles 252 are oriented perpendicular with respect to the display surface and the display appears transparent. When the AC field is removed, the particles 252 are randomly oriented and the display 250 appears opaque.
- In another detailed embodiment, a
display 160 can comprise a plurality of bichromal spheres, as illustrated in FIG. 16d. A bichromal sphere typically comprises a positively chargedhemisphere 162 of a first color and a negatively chargedhemisphere 164 of a second color in aliquid medium 166. Upon application of an electric field across the sphere through a pair ofelectrodes hemispheres - In an alternative embodiment, an array of transistors with reduced cross-talk is prepared by increasing the resistivity of the semiconductor layer. For example, where the semiconductor layer is an amorphous silicon that is slightly n-type as deposited, the semiconductor can be lightly doped with boron or an equivalent p-type dopant to increase the resistivity of the semiconductor layer. If the semiconductor layer is doped with too much boron, the semiconductor layer will become p-type and the resistivity will decrease. For example, in a display application, the boron doping can be adjusted to provide the minimum required “on” current for the transistor to drive a pixel of a display, while concurrently maintaining sufficient isolation between neighboring elements or signals. As discussed, the spacing between neighboring source and drain electrodes of the transistors and the metal signal lines must be sufficiently large to suppress charge leakage through the underlying semiconductor layer in this embodiment. This minimum spacing can be derived via a resistance calculation if the leakage current, electrode potential, semiconductor conductivity and thickness of various materials are known.
- While the invention has been particularly shown and described with reference to specific preferred embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. For example, an array of active or passive elements can be prepared in accordance with the present invention. The array of elements can be used in devices other than displays.
Claims (30)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/904,435 US20020060321A1 (en) | 2000-07-14 | 2001-07-12 | Minimally- patterned, thin-film semiconductor devices for display applications |
AU2002222969A AU2002222969A1 (en) | 2000-07-14 | 2001-07-13 | Fabrication of electronic circuit elements |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21849000P | 2000-07-14 | 2000-07-14 | |
US09/904,435 US20020060321A1 (en) | 2000-07-14 | 2001-07-12 | Minimally- patterned, thin-film semiconductor devices for display applications |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020060321A1 true US20020060321A1 (en) | 2002-05-23 |
Family
ID=22815333
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/904,435 Abandoned US20020060321A1 (en) | 2000-07-14 | 2001-07-12 | Minimally- patterned, thin-film semiconductor devices for display applications |
US09/904,109 Expired - Fee Related US6683333B2 (en) | 2000-07-14 | 2001-07-12 | Fabrication of electronic circuit elements using unpatterned semiconductor layers |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/904,109 Expired - Fee Related US6683333B2 (en) | 2000-07-14 | 2001-07-12 | Fabrication of electronic circuit elements using unpatterned semiconductor layers |
Country Status (3)
Country | Link |
---|---|
US (2) | US20020060321A1 (en) |
AU (1) | AU2002222969A1 (en) |
WO (1) | WO2002007216A2 (en) |
Cited By (174)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020130832A1 (en) * | 2001-03-13 | 2002-09-19 | Baucom Allan Scott | Apparatus for displaying drawings |
US20020171910A1 (en) * | 2001-05-15 | 2002-11-21 | Pullen Anthony Edward | Electrophoretic displays containing magnetic particles |
US20020180687A1 (en) * | 2001-04-02 | 2002-12-05 | E Ink Corporation | Electrophoretic medium and display with improved image stability |
US20030011867A1 (en) * | 2001-07-09 | 2003-01-16 | Loxley Andrew L. | Electro-optic display and adhesive composition for use therein |
US20030025855A1 (en) * | 2001-07-09 | 2003-02-06 | E Lnk Corporation | Electro-optic display and lamination adhesive |
US20030038755A1 (en) * | 2001-08-16 | 2003-02-27 | E Ink Corporation | Light modulation by frustration of total internal reflection |
US20030053189A1 (en) * | 2001-09-14 | 2003-03-20 | E Ink Corporation | Methods for addressing electro-optic materials |
US20030067737A1 (en) * | 2001-10-09 | 2003-04-10 | Schmidt Dominik J. | On chip capacitor |
US20030137521A1 (en) * | 1999-04-30 | 2003-07-24 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US20030214695A1 (en) * | 2002-03-18 | 2003-11-20 | E Ink Corporation | Electro-optic displays, and methods for driving same |
WO2003107315A2 (en) | 2002-06-13 | 2003-12-24 | E Ink Corporation | Methods for driving electro-optic displays |
US20040014265A1 (en) * | 2002-04-24 | 2004-01-22 | E Ink Corporation | Processes for forming backplanes for electro-optic displays |
US20040012839A1 (en) * | 2002-05-23 | 2004-01-22 | E Ink Corporation | Capsules, materials for use therein and electrophoretic media and displays containing such capsules |
US20040027327A1 (en) * | 2002-06-10 | 2004-02-12 | E Ink Corporation | Components and methods for use in electro-optic displays |
US20040105036A1 (en) * | 2002-08-06 | 2004-06-03 | E Ink Corporation | Protection of electro-optic displays against thermal effects |
US20040112750A1 (en) * | 2002-09-03 | 2004-06-17 | E Ink Corporation | Electrophoretic medium with gaseous suspending fluid |
US20040136048A1 (en) * | 1995-07-20 | 2004-07-15 | E Ink Corporation | Dielectrophoretic displays |
US20040155857A1 (en) * | 2002-09-03 | 2004-08-12 | E Ink Corporation | Electro-optic displays |
US20040196215A1 (en) * | 2002-12-16 | 2004-10-07 | E Ink Corporation | Backplanes for electro-optic displays |
US6816147B2 (en) | 2000-08-17 | 2004-11-09 | E Ink Corporation | Bistable electro-optic display, and method for addressing same |
US20040224445A1 (en) * | 2001-04-16 | 2004-11-11 | Schmidt Dominik J. | On chip capacitor |
US20040226820A1 (en) * | 2003-03-25 | 2004-11-18 | E Ink Corporation | Processes for the production of electrophoretic displays |
US6822782B2 (en) | 2001-05-15 | 2004-11-23 | E Ink Corporation | Electrophoretic particles and processes for the production thereof |
US20040233509A1 (en) * | 2002-12-23 | 2004-11-25 | E Ink Corporation | Flexible electro-optic displays |
US20040252360A1 (en) * | 2001-07-09 | 2004-12-16 | E Ink Corporation | Electro-optic display and lamination adhesive for use therein |
US20040257635A1 (en) * | 2003-01-31 | 2004-12-23 | E Ink Corporation | Construction of electrophoretic displays |
US20050001812A1 (en) * | 1999-04-30 | 2005-01-06 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US20050007653A1 (en) * | 2003-03-27 | 2005-01-13 | E Ink Corporation | Electro-optic assemblies, and materials for use therein |
US20050012980A1 (en) * | 2003-05-02 | 2005-01-20 | E Ink Corporation | Electrophoretic displays with controlled amounts of pigment |
US20050024353A1 (en) * | 2001-11-20 | 2005-02-03 | E Ink Corporation | Methods for driving electro-optic displays |
US20050041004A1 (en) * | 2003-08-19 | 2005-02-24 | E Ink Corporation | Method for controlling electro-optic display |
US20050062714A1 (en) * | 2003-09-19 | 2005-03-24 | E Ink Corporation | Methods for reducing edge effects in electro-optic displays |
US20050078099A1 (en) * | 2002-04-24 | 2005-04-14 | E Ink Corporation | Electro-optic displays, and components for use therein |
US20050105162A1 (en) * | 2001-03-19 | 2005-05-19 | Paolini Richard J.Jr. | Electrophoretic medium and process for the production thereof |
US20050122565A1 (en) * | 2003-11-05 | 2005-06-09 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US20050122284A1 (en) * | 2003-11-25 | 2005-06-09 | E Ink Corporation | Electro-optic displays, and methods for driving same |
WO2005054933A2 (en) | 2003-11-26 | 2005-06-16 | E Ink Corporation | Electro-optic displays with reduced remnant voltage |
US20050152022A1 (en) * | 2003-12-31 | 2005-07-14 | E Ink Corporation | Electro-optic displays, and method for driving same |
US20050151709A1 (en) * | 2003-10-08 | 2005-07-14 | E Ink Corporation | Electro-wetting displays |
US20050168801A1 (en) * | 2004-01-16 | 2005-08-04 | E Ink Corporation | Process for sealing electro-optic displays |
US20050179642A1 (en) * | 2001-11-20 | 2005-08-18 | E Ink Corporation | Electro-optic displays with reduced remnant voltage |
US20050190137A1 (en) * | 2004-02-27 | 2005-09-01 | E Ink Corporation | Backplanes for electro-optic displays |
US20050213191A1 (en) * | 2004-03-23 | 2005-09-29 | E Ink Corporation | Light modulators |
US20050253777A1 (en) * | 2004-05-12 | 2005-11-17 | E Ink Corporation | Tiled displays and methods for driving same |
US20050270261A1 (en) * | 1999-04-30 | 2005-12-08 | Danner Guy M | Methods for driving electro-optic displays, and apparatus for use therein |
US20060023296A1 (en) * | 2004-07-27 | 2006-02-02 | E Ink Corporation | Electro-optic displays |
US20060176267A1 (en) * | 2003-07-24 | 2006-08-10 | E Ink Corporation | Improvements in electro-optic displays |
US20060209388A1 (en) * | 2005-01-26 | 2006-09-21 | E Ink Corporation | Electrophoretic displays using gaseous fluids |
US20070091417A1 (en) * | 2005-10-25 | 2007-04-26 | E Ink Corporation | Electrophoretic media and displays with improved binder |
WO2007104003A2 (en) | 2006-03-08 | 2007-09-13 | E Ink Corporation | Methods for production of electro-optic displays |
US20070223079A1 (en) * | 2006-03-22 | 2007-09-27 | E Ink Corporation | Electro-optic media produced using ink jet printing |
US20070241333A1 (en) * | 2006-04-17 | 2007-10-18 | Samsung Electronics Co. Ltd. | Amorphous silicon thin film transistor, organic light-emitting display device including the same and method thereof |
US20070286975A1 (en) * | 2003-11-05 | 2007-12-13 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US20080013155A1 (en) * | 2006-07-11 | 2008-01-17 | E Ink Corporation | Electrophoretic medium and display with improved image stability |
US20080013156A1 (en) * | 2006-07-13 | 2008-01-17 | E Ink Corporation | Particles for use in electrophoretic displays |
US20080074730A1 (en) * | 2006-09-22 | 2008-03-27 | E Ink Corporation | Electro-optic display and materials for use therein |
US20080102559A1 (en) * | 2006-10-25 | 2008-05-01 | Xerox Corporation | Electronic devices |
US20080129667A1 (en) * | 2004-03-31 | 2008-06-05 | E Ink Corporation | Methods for driving electro-optic displays |
US20080254272A1 (en) * | 2007-01-22 | 2008-10-16 | E Ink Corporation | Multi-layer sheet for use in electro-optic displays |
US20080299859A1 (en) * | 2002-06-10 | 2008-12-04 | E Ink Corporation | Sub-assemblies and processes for the production of electro-optic displays |
US20080302419A1 (en) * | 2005-09-08 | 2008-12-11 | Sumitomo Chemical Company, Limited | Polymer Comprising Unit Comprising Fluorocyclopentane Ring Fused With Aromatic Ring and Organic Thin Film and Organic Thin Film Element Both Comprising the Same |
US20090004442A1 (en) * | 2007-06-28 | 2009-01-01 | E Ink Corporation | Processes for the production of electro-optic displays, and color filters for use therein |
US20090065878A1 (en) * | 2007-09-06 | 2009-03-12 | Xerox Corporation | Diketopyrrolopyrrole-based derivatives for thin film transistors |
US20090065766A1 (en) * | 2007-09-06 | 2009-03-12 | Xerox Corporation. | Diketopyrrolopyrrole-based polymers |
US20090085909A1 (en) * | 2007-09-28 | 2009-04-02 | Innolux Display Corp. | Electro-wetting display device |
US20090120495A1 (en) * | 2007-11-08 | 2009-05-14 | Samsung Electronics Co., Ltd. | Alternating copolymers of phenylene vinylene and oligoarylene vinylene, preparation method thereof, and organic thin flim transister comprising the same |
US20090231661A1 (en) * | 2005-06-23 | 2009-09-17 | E Ink Corporation | Edge seals for, and processes for assembly of, electro-optic displays |
US20090242878A1 (en) * | 2008-03-27 | 2009-10-01 | Xerox Corporation | Optimization of new polymer semiconductors for better mobility and processibality |
US7649674B2 (en) | 2002-06-10 | 2010-01-19 | E Ink Corporation | Electro-optic display with edge seal |
US7649666B2 (en) | 2006-12-07 | 2010-01-19 | E Ink Corporation | Components and methods for use in electro-optic displays |
US7667886B2 (en) | 2007-01-22 | 2010-02-23 | E Ink Corporation | Multi-layer sheet for use in electro-optic displays |
US7672040B2 (en) | 2003-11-05 | 2010-03-02 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US7679814B2 (en) | 2001-04-02 | 2010-03-16 | E Ink Corporation | Materials for use in electrophoretic displays |
US20100259468A1 (en) * | 2009-04-13 | 2010-10-14 | Sony Corporation | Display apparatus |
US7826129B2 (en) | 2007-03-06 | 2010-11-02 | E Ink Corporation | Materials for use in electrophoretic displays |
US7839564B2 (en) | 2002-09-03 | 2010-11-23 | E Ink Corporation | Components and methods for use in electro-optic displays |
US7843624B2 (en) | 2006-03-08 | 2010-11-30 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US7843621B2 (en) | 2002-06-10 | 2010-11-30 | E Ink Corporation | Components and testing methods for use in the production of electro-optic displays |
US7843626B2 (en) | 2001-07-09 | 2010-11-30 | E Ink Corporation | Electro-optic display and materials for use therein |
US7848006B2 (en) | 1995-07-20 | 2010-12-07 | E Ink Corporation | Electrophoretic displays with controlled amounts of pigment |
US7848007B2 (en) | 1995-07-20 | 2010-12-07 | E Ink Corporation | Electrophoretic medium and process for the production thereof |
US7893435B2 (en) | 2000-04-18 | 2011-02-22 | E Ink Corporation | Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough |
US7910175B2 (en) | 2003-03-25 | 2011-03-22 | E Ink Corporation | Processes for the production of electrophoretic displays |
US7952557B2 (en) | 2001-11-20 | 2011-05-31 | E Ink Corporation | Methods and apparatus for driving electro-optic displays |
US7986450B2 (en) | 2006-09-22 | 2011-07-26 | E Ink Corporation | Electro-optic display and materials for use therein |
US7999787B2 (en) | 1995-07-20 | 2011-08-16 | E Ink Corporation | Methods for driving electrophoretic displays using dielectrophoretic forces |
US8009348B2 (en) | 1999-05-03 | 2011-08-30 | E Ink Corporation | Machine-readable displays |
US8034209B2 (en) | 2007-06-29 | 2011-10-11 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US8040594B2 (en) | 1997-08-28 | 2011-10-18 | E Ink Corporation | Multi-color electrophoretic displays |
US8049947B2 (en) | 2002-06-10 | 2011-11-01 | E Ink Corporation | Components and methods for use in electro-optic displays |
US8054526B2 (en) | 2008-03-21 | 2011-11-08 | E Ink Corporation | Electro-optic displays, and color filters for use therein |
US8098418B2 (en) | 2009-03-03 | 2012-01-17 | E. Ink Corporation | Electro-optic displays, and color filters for use therein |
US20120015474A1 (en) * | 2010-07-19 | 2012-01-19 | Yung-Chun Wu | Method for fabricating silicon heterojunction solar cells |
US8115729B2 (en) | 1999-05-03 | 2012-02-14 | E Ink Corporation | Electrophoretic display element with filler particles |
US8125501B2 (en) | 2001-11-20 | 2012-02-28 | E Ink Corporation | Voltage modulated driver circuits for electro-optic displays |
US8139050B2 (en) | 1995-07-20 | 2012-03-20 | E Ink Corporation | Addressing schemes for electronic displays |
US20120085993A1 (en) * | 2010-10-06 | 2012-04-12 | Ming-Chou Chen | Semiconducting polymers and optoelectronic devices incorporating same |
US8174490B2 (en) | 2003-06-30 | 2012-05-08 | E Ink Corporation | Methods for driving electrophoretic displays |
US8177942B2 (en) | 2003-11-05 | 2012-05-15 | E Ink Corporation | Electro-optic displays, and materials for use therein |
EP2487540A1 (en) | 2006-09-18 | 2012-08-15 | E-Ink Corporation | Color electro-optic displays |
US8270064B2 (en) | 2009-02-09 | 2012-09-18 | E Ink Corporation | Electrophoretic particles, and processes for the production thereof |
US8305341B2 (en) | 1995-07-20 | 2012-11-06 | E Ink Corporation | Dielectrophoretic displays |
US20120287180A1 (en) * | 2010-03-09 | 2012-11-15 | Hewlett-Packard Indigo B.V. | Positively charged ink composition |
US8314784B2 (en) | 2008-04-11 | 2012-11-20 | E Ink Corporation | Methods for driving electro-optic displays |
US8319759B2 (en) | 2003-10-08 | 2012-11-27 | E Ink Corporation | Electrowetting displays |
US8363299B2 (en) | 2002-06-10 | 2013-01-29 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
EP2555182A1 (en) | 2007-02-02 | 2013-02-06 | E Ink Corporation | Electrophoretic displays having transparent electrode and conductor connected thereto |
US8390301B2 (en) | 2006-03-08 | 2013-03-05 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US8390918B2 (en) | 2001-04-02 | 2013-03-05 | E Ink Corporation | Electrophoretic displays with controlled amounts of pigment |
US8446664B2 (en) | 2010-04-02 | 2013-05-21 | E Ink Corporation | Electrophoretic media, and materials for use therein |
WO2013074167A1 (en) | 2011-11-18 | 2013-05-23 | Avon Products, Inc. | Use of electrophoretic microcapsules in a cosmetic composition |
US8593396B2 (en) | 2001-11-20 | 2013-11-26 | E Ink Corporation | Methods and apparatus for driving electro-optic displays |
US8610988B2 (en) | 2006-03-09 | 2013-12-17 | E Ink Corporation | Electro-optic display with edge seal |
US8654436B1 (en) | 2009-10-30 | 2014-02-18 | E Ink Corporation | Particles for use in electrophoretic displays |
EP2711770A2 (en) | 2005-10-18 | 2014-03-26 | E Ink Corporation | Components for electro-optic displays |
US8754859B2 (en) | 2009-10-28 | 2014-06-17 | E Ink Corporation | Electro-optic displays with touch sensors and/or tactile feedback |
US8902153B2 (en) | 2007-08-03 | 2014-12-02 | E Ink Corporation | Electro-optic displays, and processes for their production |
US9005494B2 (en) | 2004-01-20 | 2015-04-14 | E Ink Corporation | Preparation of capsules |
EP2916312A1 (en) | 2001-11-20 | 2015-09-09 | E Ink Corporation | Methods for driving bistable electro-optic displays |
US9170467B2 (en) | 2005-10-18 | 2015-10-27 | E Ink Corporation | Color electro-optic displays, and processes for the production thereof |
EP2947647A2 (en) | 2003-06-30 | 2015-11-25 | E Ink Corporation | Methods for driving electro-optic displays |
US9293511B2 (en) | 1998-07-08 | 2016-03-22 | E Ink Corporation | Methods for achieving improved color in microencapsulated electrophoretic devices |
US9412314B2 (en) | 2001-11-20 | 2016-08-09 | E Ink Corporation | Methods for driving electro-optic displays |
US9470950B2 (en) | 2002-06-10 | 2016-10-18 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
WO2016191673A1 (en) | 2015-05-27 | 2016-12-01 | E Ink Corporation | Methods and circuitry for driving display devices |
US9530363B2 (en) | 2001-11-20 | 2016-12-27 | E Ink Corporation | Methods and apparatus for driving electro-optic displays |
US9529240B2 (en) | 2014-01-17 | 2016-12-27 | E Ink Corporation | Controlled polymeric material conductivity for use in a two-phase electrode layer |
US9620067B2 (en) | 2003-03-31 | 2017-04-11 | E Ink Corporation | Methods for driving electro-optic displays |
US9664978B2 (en) | 2002-10-16 | 2017-05-30 | E Ink Corporation | Electrophoretic displays |
US9671635B2 (en) | 2014-02-07 | 2017-06-06 | E Ink Corporation | Electro-optic display backplane structures with drive components and pixel electrodes on opposed surfaces |
US9715155B1 (en) | 2013-01-10 | 2017-07-25 | E Ink Corporation | Electrode structures for electro-optic displays |
US9726957B2 (en) | 2013-01-10 | 2017-08-08 | E Ink Corporation | Electro-optic display with controlled electrochemical reactions |
EP3220383A1 (en) | 2012-02-01 | 2017-09-20 | E Ink Corporation | Methods for driving electro-optic displays |
US9835925B1 (en) | 2015-01-08 | 2017-12-05 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
US9966018B2 (en) | 2002-06-13 | 2018-05-08 | E Ink Corporation | Methods for driving electro-optic displays |
US9964831B2 (en) | 2007-11-14 | 2018-05-08 | E Ink Corporation | Electro-optic assemblies, and adhesives and binders for use therein |
US10048564B2 (en) | 2003-11-05 | 2018-08-14 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US10175550B2 (en) | 2014-11-07 | 2019-01-08 | E Ink Corporation | Applications of electro-optic displays |
US10190743B2 (en) | 2012-04-20 | 2019-01-29 | E Ink Corporation | Illumination systems for reflective displays |
WO2019089042A1 (en) | 2017-11-03 | 2019-05-09 | E Ink Corporation | Processes for producing electro-optic displays |
US10319313B2 (en) | 2007-05-21 | 2019-06-11 | E Ink Corporation | Methods for driving video electro-optic displays |
US10317767B2 (en) | 2014-02-07 | 2019-06-11 | E Ink Corporation | Electro-optic display backplane structure with drive components and pixel electrodes on opposed surfaces |
US10324577B2 (en) | 2017-02-28 | 2019-06-18 | E Ink Corporation | Writeable electrophoretic displays including sensing circuits and styli configured to interact with sensing circuits |
US10446585B2 (en) | 2014-03-17 | 2019-10-15 | E Ink Corporation | Multi-layer expanding electrode structures for backplane assemblies |
US10466565B2 (en) | 2017-03-28 | 2019-11-05 | E Ink Corporation | Porous backplane for electro-optic display |
US10475396B2 (en) | 2015-02-04 | 2019-11-12 | E Ink Corporation | Electro-optic displays with reduced remnant voltage, and related apparatus and methods |
US10495941B2 (en) | 2017-05-19 | 2019-12-03 | E Ink Corporation | Foldable electro-optic display including digitization and touch sensing |
US10527899B2 (en) | 2016-05-31 | 2020-01-07 | E Ink Corporation | Backplanes for electro-optic displays |
US10573257B2 (en) | 2017-05-30 | 2020-02-25 | E Ink Corporation | Electro-optic displays |
WO2020060960A1 (en) | 2018-09-17 | 2020-03-26 | E Ink Corporation | Backplanes with hexagonal and triangular electrodes |
WO2020097462A1 (en) | 2018-11-09 | 2020-05-14 | E Ink Corporation | Electro-optic displays |
WO2020122917A1 (en) | 2018-12-13 | 2020-06-18 | E Ink Corporation | Illumination systems for reflective displays |
US10726798B2 (en) | 2003-03-31 | 2020-07-28 | E Ink Corporation | Methods for operating electro-optic displays |
US10824042B1 (en) | 2017-10-27 | 2020-11-03 | E Ink Corporation | Electro-optic display and composite materials having low thermal sensitivity for use therein |
US10882042B2 (en) | 2017-10-18 | 2021-01-05 | E Ink Corporation | Digital microfluidic devices including dual substrates with thin-film transistors and capacitive sensing |
US11081066B2 (en) | 2018-02-15 | 2021-08-03 | E Ink Corporation | Via placement for slim border electro-optic display backplanes with decreased capacitive coupling between t-wires and pixel electrodes |
US11175561B1 (en) | 2018-04-12 | 2021-11-16 | E Ink Corporation | Electrophoretic display media with network electrodes and methods of making and using the same |
US11250794B2 (en) | 2004-07-27 | 2022-02-15 | E Ink Corporation | Methods for driving electrophoretic displays using dielectrophoretic forces |
US11397361B2 (en) | 2015-06-29 | 2022-07-26 | E Ink Corporation | Method for mechanical and electrical connection to display electrodes |
US11404013B2 (en) | 2017-05-30 | 2022-08-02 | E Ink Corporation | Electro-optic displays with resistors for discharging remnant charges |
US11467466B2 (en) | 2012-04-20 | 2022-10-11 | E Ink Corporation | Illumination systems for reflective displays |
US11511096B2 (en) | 2018-10-15 | 2022-11-29 | E Ink Corporation | Digital microfluidic delivery device |
US11513415B2 (en) | 2020-06-03 | 2022-11-29 | E Ink Corporation | Foldable electrophoretic display module including non-conductive support plate |
US11521565B2 (en) | 2018-12-28 | 2022-12-06 | E Ink Corporation | Crosstalk reduction for electro-optic displays |
US11537024B2 (en) | 2018-12-30 | 2022-12-27 | E Ink California, Llc | Electro-optic displays |
US11565489B2 (en) | 2018-01-29 | 2023-01-31 | Applied Materials, Inc. | Wetting layers for optical device enhancement |
EP4156164A1 (en) | 2013-07-31 | 2023-03-29 | E Ink Corporation | Methods for driving electro-optic displays |
US11733580B2 (en) | 2010-05-21 | 2023-08-22 | E Ink Corporation | Method for driving two layer variable transmission display |
WO2023164078A1 (en) | 2022-02-25 | 2023-08-31 | E Ink Corporation | Electro-optic displays with edge seal components and methods of making the same |
WO2023167901A1 (en) | 2022-03-01 | 2023-09-07 | E Ink California, Llc | Temperature compensation in electro-optic displays |
WO2023211699A1 (en) | 2022-04-27 | 2023-11-02 | E Ink Corporation | Electro-optic display stacks with segmented electrodes and methods of making the same |
US11892739B2 (en) | 2020-02-07 | 2024-02-06 | E Ink Corporation | Electrophoretic display layer with thin film top electrode |
US11935495B2 (en) | 2021-08-18 | 2024-03-19 | E Ink Corporation | Methods for driving electro-optic displays |
US20240161689A1 (en) * | 2022-04-11 | 2024-05-16 | Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Pixel driving circuit, driving method thereof, and display panel |
Families Citing this family (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6866760B2 (en) | 1998-08-27 | 2005-03-15 | E Ink Corporation | Electrophoretic medium and process for the production thereof |
US7002728B2 (en) * | 1997-08-28 | 2006-02-21 | E Ink Corporation | Electrophoretic particles, and processes for the production thereof |
US7247379B2 (en) * | 1997-08-28 | 2007-07-24 | E Ink Corporation | Electrophoretic particles, and processes for the production thereof |
US7119759B2 (en) * | 1999-05-03 | 2006-10-10 | E Ink Corporation | Machine-readable displays |
US7038655B2 (en) * | 1999-05-03 | 2006-05-02 | E Ink Corporation | Electrophoretic ink composed of particles with field dependent mobilities |
US8853696B1 (en) | 1999-06-04 | 2014-10-07 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device and electronic device |
JP3719172B2 (en) * | 2000-08-31 | 2005-11-24 | セイコーエプソン株式会社 | Display device and electronic device |
US7230750B2 (en) * | 2001-05-15 | 2007-06-12 | E Ink Corporation | Electrophoretic media and processes for the production thereof |
US20090009852A1 (en) * | 2001-05-15 | 2009-01-08 | E Ink Corporation | Electrophoretic particles and processes for the production thereof |
TWI264121B (en) | 2001-11-30 | 2006-10-11 | Semiconductor Energy Lab | A display device, a method of manufacturing a semiconductor device, and a method of manufacturing a display device |
US6953735B2 (en) | 2001-12-28 | 2005-10-11 | Semiconductor Energy Laboratory Co., Ltd. | Method for fabricating a semiconductor device by transferring a layer to a support with curvature |
US6885146B2 (en) | 2002-03-14 | 2005-04-26 | Semiconductor Energy Laboratory Co., Ltd. | Display device comprising substrates, contrast medium and barrier layers between contrast medium and each of substrates |
US6885028B2 (en) * | 2002-03-25 | 2005-04-26 | Sharp Kabushiki Kaisha | Transistor array and active-matrix substrate |
EP1497867A2 (en) | 2002-04-24 | 2005-01-19 | E Ink Corporation | Electronic displays |
US7670623B2 (en) * | 2002-05-31 | 2010-03-02 | Materials Modification, Inc. | Hemostatic composition |
US7583427B2 (en) * | 2002-06-10 | 2009-09-01 | E Ink Corporation | Components and methods for use in electro-optic displays |
US20110199671A1 (en) * | 2002-06-13 | 2011-08-18 | E Ink Corporation | Methods for driving electrophoretic displays using dielectrophoretic forces |
US20030230818A1 (en) * | 2002-06-18 | 2003-12-18 | Xerox Corporation | Micelle encapsulation of particle containing liquid droplets |
US7312916B2 (en) * | 2002-08-07 | 2007-12-25 | E Ink Corporation | Electrophoretic media containing specularly reflective particles |
US7560160B2 (en) * | 2002-11-25 | 2009-07-14 | Materials Modification, Inc. | Multifunctional particulate material, fluid, and composition |
KR20050105173A (en) * | 2003-01-17 | 2005-11-03 | 다이오드 설류션즈, 아이엔씨. | Display employing organic material |
JP2005072528A (en) * | 2003-08-28 | 2005-03-17 | Shin Etsu Chem Co Ltd | Thin film field effect transistor and its manufacturing method |
CN101084580A (en) * | 2003-12-22 | 2007-12-05 | 皇家飞利浦电子股份有限公司 | Non-volatile ferroelectric memory device and manufacturing method |
KR100592503B1 (en) * | 2004-02-10 | 2006-06-23 | 진 장 | Fabrication method of thin-film transistor array with self-organized organic semiconductor |
US7205171B2 (en) * | 2004-02-11 | 2007-04-17 | Au Optronics Corporation | Thin film transistor and manufacturing method thereof including a lightly doped channel |
US7492339B2 (en) * | 2004-03-26 | 2009-02-17 | E Ink Corporation | Methods for driving bistable electro-optic displays |
CA2592055A1 (en) * | 2004-12-27 | 2006-07-06 | Quantum Paper, Inc. | Addressable and printable emissive display |
US7730610B2 (en) * | 2005-09-29 | 2010-06-08 | Panasonic Corporation | Method of mounting electronic circuit constituting member and relevant mounting apparatus |
KR20070076221A (en) * | 2006-01-18 | 2007-07-24 | 삼성전자주식회사 | Electro phoretic indication display |
TW200736786A (en) * | 2006-03-31 | 2007-10-01 | Prime View Int Co Ltd | Thin film transistor array substrate and electronic ink display device |
KR100801961B1 (en) * | 2006-05-26 | 2008-02-12 | 한국전자통신연구원 | Organic Inverter with Dual-Gate Organic Thin-Film Transistor |
KR100795801B1 (en) | 2006-07-19 | 2008-01-21 | 삼성에스디아이 주식회사 | Electrophoretic display apparatus |
US20080024429A1 (en) * | 2006-07-25 | 2008-01-31 | E Ink Corporation | Electrophoretic displays using gaseous fluids |
US7492497B2 (en) * | 2006-08-02 | 2009-02-17 | E Ink Corporation | Multi-layer light modulator |
US7709307B2 (en) * | 2006-08-24 | 2010-05-04 | Kovio, Inc. | Printed non-volatile memory |
KR100790761B1 (en) * | 2006-09-29 | 2008-01-03 | 한국전자통신연구원 | Inverter |
TW200835995A (en) * | 2006-10-10 | 2008-09-01 | Cbrite Inc | Electro-optic display |
US7898042B2 (en) * | 2006-11-07 | 2011-03-01 | Cbrite Inc. | Two-terminal switching devices and their methods of fabrication |
CN101627476B (en) * | 2006-11-07 | 2013-03-27 | 希百特股份有限公司 | Metal-insulator-metal (mim) devices and fabrication methods thereof |
US9741901B2 (en) | 2006-11-07 | 2017-08-22 | Cbrite Inc. | Two-terminal electronic devices and their methods of fabrication |
KR100816498B1 (en) * | 2006-12-07 | 2008-03-24 | 한국전자통신연구원 | The organic inverter including surface treatment layer and the manufacturing method thereof |
US20100035377A1 (en) * | 2006-12-22 | 2010-02-11 | Cbrite Inc. | Transfer Coating Method |
TW200842401A (en) | 2006-12-22 | 2008-11-01 | Cbrite Inc | Hemispherical coating method for micro-elements |
US8122467B2 (en) * | 2007-05-07 | 2012-02-21 | Ryan Steelberg | Open API video system and method of making and using same |
US8852467B2 (en) | 2007-05-31 | 2014-10-07 | Nthdegree Technologies Worldwide Inc | Method of manufacturing a printable composition of a liquid or gel suspension of diodes |
US8133768B2 (en) * | 2007-05-31 | 2012-03-13 | Nthdegree Technologies Worldwide Inc | Method of manufacturing a light emitting, photovoltaic or other electronic apparatus and system |
US8877101B2 (en) | 2007-05-31 | 2014-11-04 | Nthdegree Technologies Worldwide Inc | Method of manufacturing a light emitting, power generating or other electronic apparatus |
US9425357B2 (en) | 2007-05-31 | 2016-08-23 | Nthdegree Technologies Worldwide Inc. | Diode for a printable composition |
US8846457B2 (en) | 2007-05-31 | 2014-09-30 | Nthdegree Technologies Worldwide Inc | Printable composition of a liquid or gel suspension of diodes |
US9018833B2 (en) | 2007-05-31 | 2015-04-28 | Nthdegree Technologies Worldwide Inc | Apparatus with light emitting or absorbing diodes |
US9343593B2 (en) | 2007-05-31 | 2016-05-17 | Nthdegree Technologies Worldwide Inc | Printable composition of a liquid or gel suspension of diodes |
US8415879B2 (en) | 2007-05-31 | 2013-04-09 | Nthdegree Technologies Worldwide Inc | Diode for a printable composition |
US8384630B2 (en) | 2007-05-31 | 2013-02-26 | Nthdegree Technologies Worldwide Inc | Light emitting, photovoltaic or other electronic apparatus and system |
US8889216B2 (en) | 2007-05-31 | 2014-11-18 | Nthdegree Technologies Worldwide Inc | Method of manufacturing addressable and static electronic displays |
US9419179B2 (en) | 2007-05-31 | 2016-08-16 | Nthdegree Technologies Worldwide Inc | Diode for a printable composition |
US8809126B2 (en) | 2007-05-31 | 2014-08-19 | Nthdegree Technologies Worldwide Inc | Printable composition of a liquid or gel suspension of diodes |
US8674593B2 (en) | 2007-05-31 | 2014-03-18 | Nthdegree Technologies Worldwide Inc | Diode for a printable composition |
US9534772B2 (en) | 2007-05-31 | 2017-01-03 | Nthdegree Technologies Worldwide Inc | Apparatus with light emitting diodes |
GB2450381B (en) * | 2007-06-22 | 2009-11-11 | Cambridge Display Tech Ltd | Organic thin film transistors |
US8460983B1 (en) | 2008-01-21 | 2013-06-11 | Kovio, Inc. | Method for modifying and controlling the threshold voltage of thin film transistors |
US7992332B2 (en) | 2008-05-13 | 2011-08-09 | Nthdegree Technologies Worldwide Inc. | Apparatuses for providing power for illumination of a display object |
US8127477B2 (en) | 2008-05-13 | 2012-03-06 | Nthdegree Technologies Worldwide Inc | Illuminating display systems |
KR101002665B1 (en) * | 2008-07-02 | 2010-12-21 | 삼성모바일디스플레이주식회사 | Thin Film Transistor, The method for Using The Same and Organic Light Emitting Display Device Comprising the TFT |
US8068271B2 (en) * | 2008-10-22 | 2011-11-29 | Cospheric Llc | Rotating element transmissive displays |
US8049954B2 (en) * | 2009-06-05 | 2011-11-01 | Cospheric Llc | Color rotating element displays |
US8508835B2 (en) | 2010-11-02 | 2013-08-13 | Creator Technology B.V. | Display comprising an increased inter-pixel gap |
KR101834464B1 (en) * | 2011-11-25 | 2018-03-06 | 삼성디스플레이 주식회사 | Organic light emitting display device and manufacturing method thereof |
KR101884738B1 (en) * | 2011-12-23 | 2018-08-31 | 삼성디스플레이 주식회사 | Organic light emitting display apparatus and method of manufacturing organic light emitting display apparatus |
KR101996438B1 (en) * | 2012-12-13 | 2019-07-05 | 삼성디스플레이 주식회사 | Substrate for display device, display device and method of manufacturing the same |
WO2014129519A1 (en) | 2013-02-20 | 2014-08-28 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method, semiconductor device, and peeling apparatus |
GB2515750B (en) * | 2013-07-01 | 2017-11-15 | Flexenable Ltd | Supressing Leakage Currents in a Multi - TFT Device |
GB2519082B (en) | 2013-10-08 | 2019-10-23 | Flexenable Ltd | Reducing parasitic leakages in transistor arrays |
CN105793957B (en) | 2013-12-12 | 2019-05-03 | 株式会社半导体能源研究所 | Stripping means and stripping off device |
US10312731B2 (en) | 2014-04-24 | 2019-06-04 | Westrock Shared Services, Llc | Powered shelf system for inductively powering electrical components of consumer product packages |
US11777059B2 (en) | 2019-11-20 | 2023-10-03 | Lumileds Llc | Pixelated light-emitting diode for self-aligned photoresist patterning |
Family Cites Families (176)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE25822E (en) | 1961-10-27 | 1965-07-20 | Magnetic writing materials set | |
US3384565A (en) | 1964-07-23 | 1968-05-21 | Xerox Corp | Process of photoelectrophoretic color imaging |
DE2029463C3 (en) | 1969-06-12 | 1973-11-15 | Matsushita Electric Industrial Co. Ltd., Kadoma, Osaka (Japan) | Image recording and / or fermentation device |
US3612758A (en) | 1969-10-03 | 1971-10-12 | Xerox Corp | Color display device |
US3767392A (en) | 1970-04-15 | 1973-10-23 | Matsushita Electric Ind Co Ltd | Electrophoretic light image reproduction process |
US3792308A (en) | 1970-06-08 | 1974-02-12 | Matsushita Electric Ind Co Ltd | Electrophoretic display device of the luminescent type |
US3670323A (en) | 1970-12-14 | 1972-06-13 | Zenith Radio Corp | Image-display devices comprising particle light modulators with storage |
US3850627A (en) | 1971-01-06 | 1974-11-26 | Xerox Corp | Electrophoretic imaging method |
JPS5121531B2 (en) | 1971-07-29 | 1976-07-03 | ||
GB1458045A (en) | 1973-08-15 | 1976-12-08 | Secr Defence | Display systems |
US4045327A (en) | 1974-08-28 | 1977-08-30 | Matsushita Electric Industrial Co., Ltd. | Electrophoretic matrix panel |
US4041481A (en) | 1974-10-05 | 1977-08-09 | Matsushita Electric Industrial Co., Ltd. | Scanning apparatus for an electrophoretic matrix display panel |
JPS584762B2 (en) | 1976-02-20 | 1983-01-27 | 株式会社日立製作所 | Percent display device |
FR2351191A1 (en) | 1976-05-11 | 1977-12-09 | Thomson Csf | PERFECTED ELECTROPHORESIS DEVICE |
US4088395A (en) | 1976-05-27 | 1978-05-09 | American Cyanamid Company | Paper counter-electrode for electrochromic devices |
US4068927A (en) | 1976-09-01 | 1978-01-17 | North American Philips Corporation | Electrophoresis display with buried lead lines |
US4071430A (en) | 1976-12-06 | 1978-01-31 | North American Philips Corporation | Electrophoretic image display having an improved switching time |
US4203106A (en) | 1977-11-23 | 1980-05-13 | North American Philips Corporation | X-Y addressable electrophoretic display device with control electrode |
US4261653A (en) | 1978-05-26 | 1981-04-14 | The Bendix Corporation | Light valve including dipolar particle construction and method of manufacture |
US4218302A (en) | 1979-08-02 | 1980-08-19 | U.S. Philips Corporation | Electrophoretic display devices |
US4324456A (en) | 1979-08-02 | 1982-04-13 | U.S. Philips Corporation | Electrophoretic projection display systems |
JPS56104387A (en) | 1980-01-22 | 1981-08-20 | Citizen Watch Co Ltd | Display unit |
US4311361A (en) | 1980-03-13 | 1982-01-19 | Burroughs Corporation | Electrophoretic display using a non-Newtonian fluid as a threshold device |
US4305807A (en) | 1980-03-13 | 1981-12-15 | Burroughs Corporation | Electrophoretic display device using a liquid crystal as a threshold device |
US4418346A (en) | 1981-05-20 | 1983-11-29 | Batchelder J Samuel | Method and apparatus for providing a dielectrophoretic display of visual information |
US4390403A (en) | 1981-07-24 | 1983-06-28 | Batchelder J Samuel | Method and apparatus for dielectrophoretic manipulation of chemical species |
US4450440A (en) | 1981-12-24 | 1984-05-22 | U.S. Philips Corporation | Construction of an epid bar graph |
US4522472A (en) | 1982-02-19 | 1985-06-11 | North American Philips Corporation | Electrophoretic image display with reduced drives and leads |
FR2527843B1 (en) | 1982-06-01 | 1986-01-24 | Thomson Csf | ELECTRODE COMPRISING AN ELECTROCHROMIC POLYMER FILM WHICH CAN BE USED IN AN ENERGY STORAGE OR DISPLAY DEVICE |
FR2527844B1 (en) | 1982-06-01 | 1986-01-24 | Thomson Csf | ELECTROCHROMIC DEVICE THAT CAN BE USED FOR ENERGY STORAGE AND ELECTROCHROMIC DISPLAY SYSTEM |
US4439507A (en) | 1982-09-21 | 1984-03-27 | Xerox Corporation | Layered photoresponsive imaging device with photogenerating pigments dispersed in a polyhydroxy ether composition |
GB8328750D0 (en) | 1983-10-27 | 1983-11-30 | Philp R | Contact-less electronic connectors |
JPS614020A (en) | 1984-06-18 | 1986-01-09 | Nissha Printing Co Ltd | Multicolor liquid crystal display device |
US4732830A (en) | 1984-11-13 | 1988-03-22 | Copytele, Inc. | Electrophoretic display panels and associated methods |
US4655897A (en) | 1984-11-13 | 1987-04-07 | Copytele, Inc. | Electrophoretic display panels and associated methods |
US4648956A (en) | 1984-12-31 | 1987-03-10 | North American Philips Corporation | Electrode configurations for an electrophoretic display device |
US4741604A (en) | 1985-02-01 | 1988-05-03 | Kornfeld Cary D | Electrode arrays for cellular displays |
US4643528A (en) | 1985-03-18 | 1987-02-17 | Manchester R & D Partnership | Encapsulated liquid crystal and filler material |
US4598960A (en) | 1985-04-29 | 1986-07-08 | Copytele, Inc. | Methods and apparatus for connecting closely spaced large conductor arrays employing multi-conductor carrier boards |
US4686524A (en) | 1985-11-04 | 1987-08-11 | North American Philips Corporation | Photosensitive electrophoretic displays |
US4742345A (en) | 1985-11-19 | 1988-05-03 | Copytele, Inc. | Electrophoretic display panel apparatus and methods therefor |
US4746917A (en) | 1986-07-14 | 1988-05-24 | Copytele, Inc. | Method and apparatus for operating an electrophoretic display between a display and a non-display mode |
EP0344367B1 (en) | 1988-05-03 | 1994-08-24 | Copytele Inc. | Monolithic flat panel display apparatus |
US4850919A (en) | 1986-09-11 | 1989-07-25 | Copytele, Inc. | Monolithic flat panel display apparatus and methods for fabrication thereof |
US5194852A (en) | 1986-12-01 | 1993-03-16 | More Edward S | Electro-optic slate for direct entry and display and/or storage of hand-entered textual and graphic information |
US5279694A (en) | 1986-12-04 | 1994-01-18 | Copytele, Inc. | Chip mounting techniques for display apparatus |
US4892607A (en) | 1986-12-04 | 1990-01-09 | Copytele, Inc. | Chip mounting techniques for display apparatus |
US5028841A (en) | 1989-07-18 | 1991-07-02 | Copytele, Inc. | Chip mounting techniques for display apparatus |
US4833464A (en) | 1987-09-14 | 1989-05-23 | Copytele, Inc. | Electrophoretic information display (EPID) apparatus employing grey scale capability |
US5161233A (en) | 1988-05-17 | 1992-11-03 | Dai Nippon Printing Co., Ltd. | Method for recording and reproducing information, apparatus therefor and recording medium |
US4883561A (en) | 1988-03-29 | 1989-11-28 | Bell Communications Research, Inc. | Lift-off and subsequent bonding of epitaxial films |
US4846931A (en) | 1988-03-29 | 1989-07-11 | Bell Communications Research, Inc. | Method for lifting-off epitaxial films |
US5250932A (en) | 1988-04-13 | 1993-10-05 | Ube Industries, Ltd. | Liquid crystal display device |
US5070326A (en) | 1988-04-13 | 1991-12-03 | Ube Industries Ltd. | Liquid crystal display device |
US4947159A (en) | 1988-04-18 | 1990-08-07 | 501 Copytele, Inc. | Power supply apparatus capable of multi-mode operation for an electrophoretic display panel |
US5731116A (en) | 1989-05-17 | 1998-03-24 | Dai Nippon Printing Co., Ltd. | Electrostatic information recording medium and electrostatic information recording and reproducing method |
US5502889A (en) | 1988-06-10 | 1996-04-02 | Sheldahl, Inc. | Method for electrically and mechanically connecting at least two conductive layers |
US4931019A (en) | 1988-09-01 | 1990-06-05 | Pennwalt Corporation | Electrostatic image display apparatus |
US5119218A (en) | 1988-09-28 | 1992-06-02 | Ube Industries, Ltd. | Liquid crystal display device having varistor elements |
NL8802409A (en) | 1988-09-30 | 1990-04-17 | Philips Nv | DISPLAY DEVICE, SUPPORT PLATE PROVIDED WITH DIODE AND SUITABLE FOR THE DISPLAY DEVICE AND METHOD FOR MANUFACTURING THE SUPPORT PLATE. |
US4947157A (en) | 1988-10-03 | 1990-08-07 | 501 Copytele, Inc. | Apparatus and methods for pulsing the electrodes of an electrophoretic display for achieving faster display operation |
JPH02131221A (en) | 1988-11-11 | 1990-05-21 | Pioneer Electron Corp | Photoconduction type liquid crystal light valve |
US5892244A (en) | 1989-01-10 | 1999-04-06 | Mitsubishi Denki Kabushiki Kaisha | Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor |
US5041824A (en) | 1989-03-02 | 1991-08-20 | Copytele, Inc. | Semitransparent electrophoretic information displays (EPID) employing mesh like electrodes |
EP0816876B1 (en) | 1989-03-16 | 2003-05-28 | Dai Nippon Printing Co., Ltd. | Preparation and reproduction of filters and preparation of filter photographic materials |
US5587264A (en) | 1989-03-16 | 1996-12-24 | Dai Nippon Printing Co. Ltd. | Electrostatic information recording medium and electrostatic information recording and reproducing method |
US5053763A (en) | 1989-05-01 | 1991-10-01 | Copytele, Inc. | Dual anode flat panel electrophoretic display apparatus |
US5302235A (en) | 1989-05-01 | 1994-04-12 | Copytele, Inc. | Dual anode flat panel electrophoretic display apparatus |
JPH03109526A (en) | 1989-06-20 | 1991-05-09 | Japan Synthetic Rubber Co Ltd | Active matrix substrate for liquid crystal display device |
US5220316A (en) | 1989-07-03 | 1993-06-15 | Benjamin Kazan | Nonlinear resistor control circuit and use in liquid crystal displays |
US5066946A (en) | 1989-07-03 | 1991-11-19 | Copytele, Inc. | Electrophoretic display panel with selective line erasure |
JPH0344621A (en) | 1989-07-12 | 1991-02-26 | Alps Electric Co Ltd | Method and device for displaying and display medium tube used therein |
US5128785A (en) | 1989-08-08 | 1992-07-07 | Ube Industries, Ltd. | Liquid crystal display device substantially free from cross-talk having varistor layers coupled to signal lines and picture electrodes |
US5254981A (en) | 1989-09-15 | 1993-10-19 | Copytele, Inc. | Electrophoretic display employing gray scale capability utilizing area modulation |
JP2712046B2 (en) | 1989-10-18 | 1998-02-10 | 宇部興産株式会社 | Liquid crystal display |
CA2027440C (en) | 1989-11-08 | 1995-07-04 | Nicholas K. Sheridon | Paper-like computer output display and scanning system therefor |
US5128226A (en) | 1989-11-13 | 1992-07-07 | Eastman Kodak Company | Electrophotographic element containing barrier layer |
US5177476A (en) | 1989-11-24 | 1993-01-05 | Copytele, Inc. | Methods of fabricating dual anode, flat panel electrophoretic displays |
US5077157A (en) | 1989-11-24 | 1991-12-31 | Copytele, Inc. | Methods of fabricating dual anode, flat panel electrophoretic displays |
EP0443571A3 (en) | 1990-02-23 | 1992-04-15 | Ube Industries, Ltd. | Liquid crystal display panel |
JPH049916A (en) | 1990-04-27 | 1992-01-14 | Victor Co Of Japan Ltd | Recording device and recording head |
FR2662290B1 (en) | 1990-05-15 | 1992-07-24 | France Telecom | METHOD FOR PRODUCING A DISPLAY SCREEN WITH ACTIVE MATRIX AND STORAGE CAPACITORS AND SCREEN OBTAINED BY THIS PROCESS. |
JP2554769B2 (en) | 1990-05-16 | 1996-11-13 | 株式会社東芝 | Liquid crystal display |
GB2244860A (en) | 1990-06-04 | 1991-12-11 | Philips Electronic Associated | Fabricating mim type device array and display devices incorporating such arrays |
US5699102A (en) | 1990-10-15 | 1997-12-16 | Eastman Kodak Company | Non-impact copier/printer system communicating rosterized, printer independant data |
US5250938A (en) | 1990-12-19 | 1993-10-05 | Copytele, Inc. | Electrophoretic display panel having enhanced operation |
JP3053224B2 (en) | 1990-12-20 | 2000-06-19 | 東燃株式会社 | Method for producing steel sheet or molded steel sheet having ceramic coating |
US5362671A (en) | 1990-12-31 | 1994-11-08 | Kopin Corporation | Method of fabricating single crystal silicon arrayed devices for display panels |
US5223823A (en) | 1991-03-11 | 1993-06-29 | Copytele, Inc. | Electrophoretic display panel with plural electrically independent anode elements |
JP2603037B2 (en) | 1991-03-11 | 1997-04-23 | コピイテル,インコーポレイテッド | Electrophoretic display panel having a plurality of electrically independent anode elements |
US5187609A (en) | 1991-03-27 | 1993-02-16 | Disanto Frank J | Electrophoretic display panel with semiconductor coated elements |
DE69217938T2 (en) | 1991-05-06 | 1997-06-12 | Copytele Inc | ELECTROPHORETIC DISPLAY DEVICE WITH INCLINED GRID INSULATORS AND RELATED METHODS |
US5315312A (en) | 1991-05-06 | 1994-05-24 | Copytele, Inc. | Electrophoretic display panel with tapered grid insulators and associated methods |
US5375044A (en) | 1991-05-13 | 1994-12-20 | Guritz; Steven P. W. | Multipurpose optical display for articulating surfaces |
US5223115A (en) | 1991-05-13 | 1993-06-29 | Copytele, Inc. | Electrophoretic display with single character erasure |
CA2110297C (en) | 1991-05-30 | 1999-08-17 | Frank J. Disanto | Methods of fabricating dual anode, flat panel electrophoretic displays |
JP3086718B2 (en) | 1991-06-24 | 2000-09-11 | 株式会社東芝 | Liquid crystal display device |
US5689282A (en) | 1991-07-09 | 1997-11-18 | U.S. Philips Corporation | Display device with compensation for stray capacitance |
JP2958114B2 (en) | 1991-07-15 | 1999-10-06 | コピイテル,インコーポレイテッド | Electrophoretic display capable of gray scale display using area modulation method |
JPH0519306A (en) | 1991-07-16 | 1993-01-29 | Nippon Sheet Glass Co Ltd | Fully solid-state dimming device and dimming method with the same |
GB9115402D0 (en) | 1991-07-17 | 1991-09-04 | Philips Electronic Associated | Matrix display device and its method of operation |
JP3096925B2 (en) | 1991-07-22 | 2000-10-10 | 横浜ゴム株式会社 | Pneumatic radial tire |
WO1993004411A1 (en) | 1991-08-16 | 1993-03-04 | Eastman Kodak Company | Migration imaging with dyes or pigments to effect bleaching |
US5216416A (en) | 1991-08-19 | 1993-06-01 | Copytele, Inc. | Electrophoretic display panel with interleaved local anode |
EP0600878B1 (en) | 1991-08-29 | 1997-02-12 | Copytele Inc. | Electrophoretic display panel with internal mesh background screen |
DE69123605T2 (en) | 1991-09-17 | 1997-04-03 | Copytele Inc | SYSTEM FOR WRITING DATA ON AN ELECTROPHORETIC DISPLAY PANEL. |
US5527589A (en) | 1991-10-16 | 1996-06-18 | Dai Nippon Printing Co., Ltd. | Electrostatic information recording medium |
US5463492A (en) | 1991-11-01 | 1995-10-31 | Research Frontiers Incorporated | Light modulating film of improved clarity for a light valve |
US5247290A (en) | 1991-11-21 | 1993-09-21 | Copytele, Inc. | Method of operation for reducing power, increasing life and improving performance of epids |
US5266937A (en) | 1991-11-25 | 1993-11-30 | Copytele, Inc. | Method for writing data to an electrophoretic display panel |
US5174882A (en) | 1991-11-25 | 1992-12-29 | Copytele, Inc. | Electrode structure for an electrophoretic display apparatus |
EP0618715A4 (en) | 1991-12-13 | 1996-12-18 | Ace Denken Kk | Electronic notepad. |
US5412398A (en) | 1992-02-25 | 1995-05-02 | Copytele, Inc. | Electrophoretic display panel and associated methods for blinking displayed characters |
DE69324675T2 (en) | 1992-02-25 | 2000-09-07 | Copytele Inc., Huntington Station | ELECTROPHORETIC DISPLAY FOR FLASHING SIGNS DISPLAYED |
US5293528A (en) | 1992-02-25 | 1994-03-08 | Copytele, Inc. | Electrophoretic display panel and associated methods providing single pixel erase capability |
US5298833A (en) | 1992-06-22 | 1994-03-29 | Copytele, Inc. | Black electrophoretic particles for an electrophoretic image display |
FR2693005B1 (en) | 1992-06-26 | 1995-03-31 | Thomson Lcd | Circuit encapsulation and passivation arrangement for flat screens. |
US5270843A (en) | 1992-08-31 | 1993-12-14 | Jiansheng Wang | Directly formed polymer dispersed liquid crystal light shutter displays |
TW226478B (en) | 1992-12-04 | 1994-07-11 | Semiconductor Energy Res Co Ltd | Semiconductor device and method for manufacturing the same |
US5345251A (en) * | 1993-01-11 | 1994-09-06 | Copytele, Inc. | Electrophoretic display panel with interleaved cathode and anode |
EP0612102B1 (en) | 1993-02-15 | 2001-09-26 | Semiconductor Energy Laboratory Co., Ltd. | Process for the fabrication of a crystallised semiconductor layer |
US5402145A (en) | 1993-02-17 | 1995-03-28 | Copytele, Inc. | Electrophoretic display panel with arc driven individual pixels |
TW241377B (en) | 1993-03-12 | 1995-02-21 | Semiconductor Energy Res Co Ltd | |
JPH07152024A (en) | 1993-05-17 | 1995-06-16 | Sharp Corp | Liquid crystal display element |
GB9311129D0 (en) | 1993-05-28 | 1993-07-14 | Philips Electronics Uk Ltd | Electronic devices with-film circuit elements forming a sampling circuit |
US5477073A (en) | 1993-08-20 | 1995-12-19 | Casio Computer Co., Ltd. | Thin film semiconductor device including a driver and a matrix circuit |
WO1995007527A1 (en) | 1993-09-09 | 1995-03-16 | Copytele, Inc. | Electrophoretic display panel with selective character addressability |
WO1995010107A1 (en) | 1993-10-01 | 1995-04-13 | Copytele, Inc. | Electrophoretic display panel with selective character addressability |
US5824186A (en) | 1993-12-17 | 1998-10-20 | The Regents Of The University Of California | Method and apparatus for fabricating self-assembling microstructures |
US5904545A (en) | 1993-12-17 | 1999-05-18 | The Regents Of The University Of California | Apparatus for fabricating self-assembling microstructures |
US5545291A (en) | 1993-12-17 | 1996-08-13 | The Regents Of The University Of California | Method for fabricating self-assembling microstructures |
US5383008A (en) | 1993-12-29 | 1995-01-17 | Xerox Corporation | Liquid ink electrostatic image development system |
US5508720A (en) | 1994-02-02 | 1996-04-16 | Copytele, Inc. | Portable telecommunication device with removable electrophoretic display |
EP0699332B1 (en) | 1994-03-18 | 2000-01-12 | Koninklijke Philips Electronics N.V. | Active matrix display device and method of driving such a device |
US5744283A (en) | 1994-04-12 | 1998-04-28 | U.S. Philips Corporation | Method of photolithographically metallizing at least the inside of holes arranged in accordance with a pattern in a plate of an electrically insulating material |
EP0706678B1 (en) | 1994-04-28 | 1999-02-24 | Koninklijke Philips Electronics N.V. | Method of photolithographically producing a copper pattern on a plate of an electrically insulating material |
US5543589A (en) | 1994-05-23 | 1996-08-06 | International Business Machines Corporation | Touchpad with dual sensor that simplifies scanning |
EP0760872A4 (en) | 1994-05-26 | 1997-12-10 | Copytele Inc | Fluorinated dielectric suspensions for electrophoretic image displays and related methods |
US5623585A (en) | 1994-07-15 | 1997-04-22 | Eastman Kodak Company | Method and apparatus for parallel processing of a document image |
GB2324273B (en) | 1994-08-10 | 1998-12-30 | Chemitech Inc | Microcapsules for magnetic display |
US5602572A (en) | 1994-08-25 | 1997-02-11 | Minnesota Mining And Manufacturing Company | Thinned halftone dot patterns for inkjet printing |
DE4431441C1 (en) | 1994-09-03 | 1996-02-15 | Licentia Gmbh | Communication circuitry with remotely located system having sensors and control devices |
EP0709713A3 (en) | 1994-10-31 | 1997-03-26 | Fujikura Ltd | Electrically controlled color display device and method |
EP0791190B1 (en) | 1994-11-07 | 1999-09-29 | Minnesota Mining And Manufacturing Company | Signage articles and methods of making same |
US5650872A (en) | 1994-12-08 | 1997-07-22 | Research Frontiers Incorporated | Light valve containing ultrafine particles |
US5648801A (en) | 1994-12-16 | 1997-07-15 | International Business Machines Corporation | Grayscale printing system |
US5557534A (en) * | 1995-01-03 | 1996-09-17 | Xerox Corporation | Forming array with metal scan lines to control semiconductor gate lines |
DE19500694C2 (en) | 1995-01-12 | 1997-12-11 | Martin Hauck | RF imaging device |
KR100395380B1 (en) | 1995-05-02 | 2003-12-01 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | Apparatus for depositing cathode material on wire cathode and method for manufacturing wire cathode |
US5609978A (en) | 1995-06-06 | 1997-03-11 | Eastman Kodak Company | Method for producing an electronic image from a photographic element |
US5715511A (en) | 1995-06-29 | 1998-02-03 | Eastman Kodak Company | Lamination jacket and method for for fusing a transferable image to a digital disc |
NO302987B1 (en) | 1995-07-18 | 1998-05-11 | Opticom As | Optical logic element and methods for its preparation and optical addressing, respectively, and use thereof in an optical logic device |
US5686383A (en) | 1995-08-22 | 1997-11-11 | Eastman Kodak Company | Method of making a color filter array by colorant transfer and lamination |
GB2306229B (en) | 1995-10-13 | 1999-04-07 | Ibm | Diffusely reflective display cell |
US5650199A (en) | 1995-11-22 | 1997-07-22 | Aem, Inc. | Method of making a multilayer electronic component with inter-layer conductor connection utilizing a conductive via forming ink |
US5729663A (en) | 1995-12-07 | 1998-03-17 | Xerox Corporation | Method and apparatus for gray screening |
US5717514A (en) | 1995-12-15 | 1998-02-10 | Xerox Corporation | Polychromal segmented balls for a twisting ball display |
US5737115A (en) | 1995-12-15 | 1998-04-07 | Xerox Corporation | Additive color tristate light valve twisting ball display |
US5739801A (en) | 1995-12-15 | 1998-04-14 | Xerox Corporation | Multithreshold addressing of a twisting ball display |
US5625199A (en) | 1996-01-16 | 1997-04-29 | Lucent Technologies Inc. | Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors |
US5786875A (en) | 1996-03-15 | 1998-07-28 | Brader; Lawrence Allen | Thermal liquid crystal display using thermoelectric link |
WO1997048009A1 (en) | 1996-06-12 | 1997-12-18 | Opticom Asa | Optical logic element and optical logic device |
US5969376A (en) | 1996-08-23 | 1999-10-19 | Lucent Technologies Inc. | Organic thin film transistor having a phthalocyanine semiconductor layer |
US5715514A (en) | 1996-10-02 | 1998-02-03 | Xerox Corporation | Calibration method and system for sheet registration and deskewing |
US5930026A (en) | 1996-10-25 | 1999-07-27 | Massachusetts Institute Of Technology | Nonemissive displays and piezoelectric power supplies therefor |
US5740495A (en) | 1996-12-19 | 1998-04-14 | Eastman Kodak Company | Apparatus and method for adjusting cleaning system performance on an electrostatographic recording apparatus |
US5961804A (en) | 1997-03-18 | 1999-10-05 | Massachusetts Institute Of Technology | Microencapsulated electrophoretic display |
US5866284A (en) | 1997-05-28 | 1999-02-02 | Hewlett-Packard Company | Print method and apparatus for re-writable medium |
NO972803D0 (en) | 1997-06-17 | 1997-06-17 | Opticom As | Electrically addressable logic device, method of electrically addressing the same and use of device and method |
US5936259A (en) | 1997-10-16 | 1999-08-10 | Lucent Technologies Inc. | Thin film transistor and organic semiconductor material thereof |
EP0924551A1 (en) | 1997-12-18 | 1999-06-23 | The Technology Partnership Public Limited Company | Method and apparatus for matrix addressing of an electrophoretic display device |
JP3091722B2 (en) | 1998-03-30 | 2000-09-25 | 三洋電機株式会社 | Battery storage case |
US6239896B1 (en) | 1998-06-01 | 2001-05-29 | Canon Kabushiki Kaisha | Electrophotographic display device and driving method therefor |
DE69942442D1 (en) | 1999-01-11 | 2010-07-15 | Semiconductor Energy Lab | Semiconductor arrangement with driver TFT and pixel TFT on a substrate |
EP1724750B1 (en) | 1999-01-29 | 2008-08-27 | Seiko Epson Corporation | Electrophoretic ink display apparatus using a piezoelectric transducer |
EP1149420B1 (en) * | 1999-10-11 | 2015-03-04 | Creator Technology B.V. | Integrated circuit |
-
2001
- 2001-07-12 US US09/904,435 patent/US20020060321A1/en not_active Abandoned
- 2001-07-12 US US09/904,109 patent/US6683333B2/en not_active Expired - Fee Related
- 2001-07-13 WO PCT/US2001/022091 patent/WO2002007216A2/en active Application Filing
- 2001-07-13 AU AU2002222969A patent/AU2002222969A1/en not_active Abandoned
Cited By (355)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7259744B2 (en) | 1995-07-20 | 2007-08-21 | E Ink Corporation | Dielectrophoretic displays |
US7999787B2 (en) | 1995-07-20 | 2011-08-16 | E Ink Corporation | Methods for driving electrophoretic displays using dielectrophoretic forces |
US8305341B2 (en) | 1995-07-20 | 2012-11-06 | E Ink Corporation | Dielectrophoretic displays |
US7848007B2 (en) | 1995-07-20 | 2010-12-07 | E Ink Corporation | Electrophoretic medium and process for the production thereof |
US7848006B2 (en) | 1995-07-20 | 2010-12-07 | E Ink Corporation | Electrophoretic displays with controlled amounts of pigment |
US8139050B2 (en) | 1995-07-20 | 2012-03-20 | E Ink Corporation | Addressing schemes for electronic displays |
US20040136048A1 (en) * | 1995-07-20 | 2004-07-15 | E Ink Corporation | Dielectrophoretic displays |
US8040594B2 (en) | 1997-08-28 | 2011-10-18 | E Ink Corporation | Multi-color electrophoretic displays |
US9268191B2 (en) | 1997-08-28 | 2016-02-23 | E Ink Corporation | Multi-color electrophoretic displays |
US8441714B2 (en) | 1997-08-28 | 2013-05-14 | E Ink Corporation | Multi-color electrophoretic displays |
US9293511B2 (en) | 1998-07-08 | 2016-03-22 | E Ink Corporation | Methods for achieving improved color in microencapsulated electrophoretic devices |
US10319314B2 (en) | 1999-04-30 | 2019-06-11 | E Ink Corporation | Methods for driving electro-optic displays, and apparatus for use therein |
US7733311B2 (en) | 1999-04-30 | 2010-06-08 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US10909936B2 (en) | 1999-04-30 | 2021-02-02 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US7688297B2 (en) | 1999-04-30 | 2010-03-30 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US20060232531A1 (en) * | 1999-04-30 | 2006-10-19 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US7733335B2 (en) | 1999-04-30 | 2010-06-08 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US20050001812A1 (en) * | 1999-04-30 | 2005-01-06 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US20030137521A1 (en) * | 1999-04-30 | 2003-07-24 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US20100220121A1 (en) * | 1999-04-30 | 2010-09-02 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US8558785B2 (en) | 1999-04-30 | 2013-10-15 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US20050270261A1 (en) * | 1999-04-30 | 2005-12-08 | Danner Guy M | Methods for driving electro-optic displays, and apparatus for use therein |
US20060139311A1 (en) * | 1999-04-30 | 2006-06-29 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US20060139310A1 (en) * | 1999-04-30 | 2006-06-29 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US20070091418A1 (en) * | 1999-04-30 | 2007-04-26 | E Ink Corporation | Methods for driving electro-optic displays, and apparatus for use therein |
US8115729B2 (en) | 1999-05-03 | 2012-02-14 | E Ink Corporation | Electrophoretic display element with filler particles |
US8009348B2 (en) | 1999-05-03 | 2011-08-30 | E Ink Corporation | Machine-readable displays |
US7893435B2 (en) | 2000-04-18 | 2011-02-22 | E Ink Corporation | Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough |
US6816147B2 (en) | 2000-08-17 | 2004-11-09 | E Ink Corporation | Bistable electro-optic display, and method for addressing same |
US7705824B2 (en) | 2001-03-13 | 2010-04-27 | E Ink Corporation | Apparatus for displaying drawings |
US8553012B2 (en) | 2001-03-13 | 2013-10-08 | E Ink Corporation | Apparatus for displaying drawings |
US20020130832A1 (en) * | 2001-03-13 | 2002-09-19 | Baucom Allan Scott | Apparatus for displaying drawings |
US20060197737A1 (en) * | 2001-03-13 | 2006-09-07 | E Ink Corporation | Apparatus for displaying drawings |
US20060197736A1 (en) * | 2001-03-13 | 2006-09-07 | E Ink Corporation | Apparatus for displaying drawings |
US20050105162A1 (en) * | 2001-03-19 | 2005-05-19 | Paolini Richard J.Jr. | Electrophoretic medium and process for the production thereof |
US8390918B2 (en) | 2001-04-02 | 2013-03-05 | E Ink Corporation | Electrophoretic displays with controlled amounts of pigment |
US7170670B2 (en) | 2001-04-02 | 2007-01-30 | E Ink Corporation | Electrophoretic medium and display with improved image stability |
US20020180687A1 (en) * | 2001-04-02 | 2002-12-05 | E Ink Corporation | Electrophoretic medium and display with improved image stability |
US7679814B2 (en) | 2001-04-02 | 2010-03-16 | E Ink Corporation | Materials for use in electrophoretic displays |
US20040224445A1 (en) * | 2001-04-16 | 2004-11-11 | Schmidt Dominik J. | On chip capacitor |
US7015563B2 (en) * | 2001-04-16 | 2006-03-21 | Gallitzin Allegheny Llc | On chip capacitor |
US6822782B2 (en) | 2001-05-15 | 2004-11-23 | E Ink Corporation | Electrophoretic particles and processes for the production thereof |
US20020171910A1 (en) * | 2001-05-15 | 2002-11-21 | Pullen Anthony Edward | Electrophoretic displays containing magnetic particles |
US6870661B2 (en) | 2001-05-15 | 2005-03-22 | E Ink Corporation | Electrophoretic displays containing magnetic particles |
US20050018273A1 (en) * | 2001-05-15 | 2005-01-27 | E Ink Corporation | Electrophoretic particles and processes for the production thereof |
US20030011867A1 (en) * | 2001-07-09 | 2003-01-16 | Loxley Andrew L. | Electro-optic display and adhesive composition for use therein |
US20030025855A1 (en) * | 2001-07-09 | 2003-02-06 | E Lnk Corporation | Electro-optic display and lamination adhesive |
US6831769B2 (en) | 2001-07-09 | 2004-12-14 | E Ink Corporation | Electro-optic display and lamination adhesive |
US20040252360A1 (en) * | 2001-07-09 | 2004-12-16 | E Ink Corporation | Electro-optic display and lamination adhesive for use therein |
US6657772B2 (en) | 2001-07-09 | 2003-12-02 | E Ink Corporation | Electro-optic display and adhesive composition for use therein |
US7843626B2 (en) | 2001-07-09 | 2010-11-30 | E Ink Corporation | Electro-optic display and materials for use therein |
US20030038755A1 (en) * | 2001-08-16 | 2003-02-27 | E Ink Corporation | Light modulation by frustration of total internal reflection |
US6819471B2 (en) | 2001-08-16 | 2004-11-16 | E Ink Corporation | Light modulation by frustration of total internal reflection |
US6825970B2 (en) | 2001-09-14 | 2004-11-30 | E Ink Corporation | Methods for addressing electro-optic materials |
US20030053189A1 (en) * | 2001-09-14 | 2003-03-20 | E Ink Corporation | Methods for addressing electro-optic materials |
US7082026B2 (en) * | 2001-10-09 | 2006-07-25 | Schmidt Dominik J | On chip capacitor |
US20030067737A1 (en) * | 2001-10-09 | 2003-04-10 | Schmidt Dominik J. | On chip capacitor |
US8558783B2 (en) | 2001-11-20 | 2013-10-15 | E Ink Corporation | Electro-optic displays with reduced remnant voltage |
US9269311B2 (en) | 2001-11-20 | 2016-02-23 | E Ink Corporation | Methods and apparatus for driving electro-optic displays |
US9564088B2 (en) | 2001-11-20 | 2017-02-07 | E Ink Corporation | Electro-optic displays with reduced remnant voltage |
US9530363B2 (en) | 2001-11-20 | 2016-12-27 | E Ink Corporation | Methods and apparatus for driving electro-optic displays |
US8593396B2 (en) | 2001-11-20 | 2013-11-26 | E Ink Corporation | Methods and apparatus for driving electro-optic displays |
US20050179642A1 (en) * | 2001-11-20 | 2005-08-18 | E Ink Corporation | Electro-optic displays with reduced remnant voltage |
US7952557B2 (en) | 2001-11-20 | 2011-05-31 | E Ink Corporation | Methods and apparatus for driving electro-optic displays |
US9881564B2 (en) | 2001-11-20 | 2018-01-30 | E Ink Corporation | Electro-optic displays with reduced remnant voltage |
US8125501B2 (en) | 2001-11-20 | 2012-02-28 | E Ink Corporation | Voltage modulated driver circuits for electro-optic displays |
US20050024353A1 (en) * | 2001-11-20 | 2005-02-03 | E Ink Corporation | Methods for driving electro-optic displays |
US9886886B2 (en) | 2001-11-20 | 2018-02-06 | E Ink Corporation | Methods for driving electro-optic displays |
EP2916312A1 (en) | 2001-11-20 | 2015-09-09 | E Ink Corporation | Methods for driving bistable electro-optic displays |
US9412314B2 (en) | 2001-11-20 | 2016-08-09 | E Ink Corporation | Methods for driving electro-optic displays |
US6950220B2 (en) | 2002-03-18 | 2005-09-27 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US20050152018A1 (en) * | 2002-03-18 | 2005-07-14 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US7787169B2 (en) | 2002-03-18 | 2010-08-31 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US20030214695A1 (en) * | 2002-03-18 | 2003-11-20 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US20060223282A1 (en) * | 2002-04-24 | 2006-10-05 | E Ink Corporation | Processes for forming backplanes for electro-optic displays |
US9419024B2 (en) | 2002-04-24 | 2016-08-16 | E Ink Corporation | Methods for forming patterned semiconductors |
US7223672B2 (en) | 2002-04-24 | 2007-05-29 | E Ink Corporation | Processes for forming backplanes for electro-optic displays |
US20040014265A1 (en) * | 2002-04-24 | 2004-01-22 | E Ink Corporation | Processes for forming backplanes for electro-optic displays |
US7785988B2 (en) | 2002-04-24 | 2010-08-31 | E Ink Corporation | Processes for forming backplanes for electro-optic displays |
US20070069247A1 (en) * | 2002-04-24 | 2007-03-29 | E Ink Corporation | Electro-optic displays, and components for use therein |
US7442587B2 (en) | 2002-04-24 | 2008-10-28 | E Ink Corporation | Processes for forming backplanes for electro-optic displays |
US8373211B2 (en) | 2002-04-24 | 2013-02-12 | E Ink Corporation | Field effect transistor |
US8389381B2 (en) | 2002-04-24 | 2013-03-05 | E Ink Corporation | Processes for forming backplanes for electro-optic displays |
US8969886B2 (en) | 2002-04-24 | 2015-03-03 | E Ink Corporation | Electro-optic displays having backplanes comprising ring diodes |
US9632389B2 (en) * | 2002-04-24 | 2017-04-25 | E Ink Corporation | Backplane for electro-optic display |
US20050078099A1 (en) * | 2002-04-24 | 2005-04-14 | E Ink Corporation | Electro-optic displays, and components for use therein |
US20110194045A1 (en) * | 2002-04-24 | 2011-08-11 | E Ink Corporation | Electro-optic displays, and components for use therein |
US20060198014A1 (en) * | 2002-05-23 | 2006-09-07 | E Ink Corporation | Capsules, materials for use therein and electrophoretic media and displays containing such capsules |
US20060007528A1 (en) * | 2002-05-23 | 2006-01-12 | E Ink Corporation | Capsules, materials for use therein and electrophoretic media and displays containing such capsules |
US20040012839A1 (en) * | 2002-05-23 | 2004-01-22 | E Ink Corporation | Capsules, materials for use therein and electrophoretic media and displays containing such capsules |
EP2930559A1 (en) | 2002-06-10 | 2015-10-14 | E Ink Corporation | Adhesive front plane laminate for electro-optic display and process of forming an electro-optic display |
US20080054879A1 (en) * | 2002-06-10 | 2008-03-06 | E Ink Corporation | Components and methods for use in electro-optic displays |
US20080299859A1 (en) * | 2002-06-10 | 2008-12-04 | E Ink Corporation | Sub-assemblies and processes for the production of electro-optic displays |
US20090034057A1 (en) * | 2002-06-10 | 2009-02-05 | E Ink Corporation | Components and methods for use in electro-optic displays |
US8786929B2 (en) | 2002-06-10 | 2014-07-22 | E Ink Corporation | Components and methods for use in electro-optic displays |
US9612502B2 (en) | 2002-06-10 | 2017-04-04 | E Ink Corporation | Electro-optic display with edge seal |
US9563099B2 (en) | 2002-06-10 | 2017-02-07 | E Ink Corporation | Components and methods for use in electro-optic displays |
US20090109522A1 (en) * | 2002-06-10 | 2009-04-30 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
US9733540B2 (en) | 2002-06-10 | 2017-08-15 | E Ink Corporation | Components and methods for use in electro-optic displays |
US20090168067A1 (en) * | 2002-06-10 | 2009-07-02 | E Ink Corporation | Components and methods for use in electro-optic displays |
US8830560B2 (en) | 2002-06-10 | 2014-09-09 | E Ink Corporation | Electro-optic display with edge seal |
US8363299B2 (en) | 2002-06-10 | 2013-01-29 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
US8854721B2 (en) | 2002-06-10 | 2014-10-07 | E Ink Corporation | Components and testing methods for use in the production of electro-optic displays |
US7649674B2 (en) | 2002-06-10 | 2010-01-19 | E Ink Corporation | Electro-optic display with edge seal |
US9470950B2 (en) | 2002-06-10 | 2016-10-18 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
US20100039706A1 (en) * | 2002-06-10 | 2010-02-18 | E Ink Corporation | Electro-optic display with edge seal |
US8049947B2 (en) | 2002-06-10 | 2011-11-01 | E Ink Corporation | Components and methods for use in electro-optic displays |
US7843621B2 (en) | 2002-06-10 | 2010-11-30 | E Ink Corporation | Components and testing methods for use in the production of electro-optic displays |
US9778536B2 (en) | 2002-06-10 | 2017-10-03 | E Ink Corporation | Components and methods for use in electro-optic displays |
US11294255B2 (en) | 2002-06-10 | 2022-04-05 | E Ink Corporation | Components and methods for use in electro-optic displays |
US9921422B2 (en) | 2002-06-10 | 2018-03-20 | E Ink Corporation | Electro-optic display with edge seal |
US20040027327A1 (en) * | 2002-06-10 | 2004-02-12 | E Ink Corporation | Components and methods for use in electro-optic displays |
US9182646B2 (en) | 2002-06-10 | 2015-11-10 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
US7729039B2 (en) | 2002-06-10 | 2010-06-01 | E Ink Corporation | Components and methods for use in electro-optic displays |
US8482835B2 (en) | 2002-06-10 | 2013-07-09 | E Ink Corporation | Components and methods for use in electro-optic displays |
US8891155B2 (en) | 2002-06-10 | 2014-11-18 | E Ink Corporation | Electro-optic display with edge seal |
US20070207560A1 (en) * | 2002-06-10 | 2007-09-06 | E Ink Corporation | Components and methods for use in electro-optic displays |
US20100142030A1 (en) * | 2002-06-10 | 2010-06-10 | E Ink Corporation | Components and methods for use in electro-optic displays |
US20100149630A1 (en) * | 2002-06-10 | 2010-06-17 | E Ink Corporation | Components and methods for use in electro-optic displays |
US8068272B2 (en) | 2002-06-10 | 2011-11-29 | E Ink Corporation | Components and methods for use in electro-optic displays |
US8027081B2 (en) | 2002-06-10 | 2011-09-27 | E Ink Corporation | Electro-optic display with edge seal |
US20110075248A1 (en) * | 2002-06-10 | 2011-03-31 | E Ink Corporation | Components and methods for use in electro-optic displays |
US7791782B2 (en) | 2002-06-10 | 2010-09-07 | E Ink Corporation | Electro-optics displays, and processes for the production thereof |
US20050146774A1 (en) * | 2002-06-10 | 2005-07-07 | E Ink Corporation | Components and methods for use in electro-optic displays |
EP2916168A1 (en) | 2002-06-10 | 2015-09-09 | E Ink Corporation | Electrophoretic article, process for testing the same, and process for producing a solid electro-optic display |
US8077381B2 (en) | 2002-06-10 | 2011-12-13 | E Ink Corporation | Components and methods for use in electro-optic displays |
US9966018B2 (en) | 2002-06-13 | 2018-05-08 | E Ink Corporation | Methods for driving electro-optic displays |
WO2003107315A2 (en) | 2002-06-13 | 2003-12-24 | E Ink Corporation | Methods for driving electro-optic displays |
US20040105036A1 (en) * | 2002-08-06 | 2004-06-03 | E Ink Corporation | Protection of electro-optic displays against thermal effects |
US8129655B2 (en) | 2002-09-03 | 2012-03-06 | E Ink Corporation | Electrophoretic medium with gaseous suspending fluid |
US10599005B2 (en) | 2002-09-03 | 2020-03-24 | E Ink Corporation | Electro-optic displays |
US20110032595A1 (en) * | 2002-09-03 | 2011-02-10 | E Ink Corporation | Components and methods for use in electro-optic displays |
US7839564B2 (en) | 2002-09-03 | 2010-11-23 | E Ink Corporation | Components and methods for use in electro-optic displays |
US11520179B2 (en) | 2002-09-03 | 2022-12-06 | E Ink Corporation | Method of forming an electrophoretic display having a color filter array |
US20090225398A1 (en) * | 2002-09-03 | 2009-09-10 | E Ink Corporation | Electro-optic displays |
EP3056941A2 (en) | 2002-09-03 | 2016-08-17 | E Ink Corporation | Electro-phoretic displays |
US10444590B2 (en) | 2002-09-03 | 2019-10-15 | E Ink Corporation | Electro-optic displays |
US20040112750A1 (en) * | 2002-09-03 | 2004-06-17 | E Ink Corporation | Electrophoretic medium with gaseous suspending fluid |
US20040155857A1 (en) * | 2002-09-03 | 2004-08-12 | E Ink Corporation | Electro-optic displays |
US9075280B2 (en) * | 2002-09-03 | 2015-07-07 | E Ink Corporation | Components and methods for use in electro-optic displays |
US10331005B2 (en) | 2002-10-16 | 2019-06-25 | E Ink Corporation | Electrophoretic displays |
US9664978B2 (en) | 2002-10-16 | 2017-05-30 | E Ink Corporation | Electrophoretic displays |
US20080165122A1 (en) * | 2002-12-16 | 2008-07-10 | E Ink Corporation | Backplanes for electro-optic displays |
US8077141B2 (en) | 2002-12-16 | 2011-12-13 | E Ink Corporation | Backplanes for electro-optic displays |
US20040196215A1 (en) * | 2002-12-16 | 2004-10-07 | E Ink Corporation | Backplanes for electro-optic displays |
US20040233509A1 (en) * | 2002-12-23 | 2004-11-25 | E Ink Corporation | Flexible electro-optic displays |
US20040257635A1 (en) * | 2003-01-31 | 2004-12-23 | E Ink Corporation | Construction of electrophoretic displays |
US7910175B2 (en) | 2003-03-25 | 2011-03-22 | E Ink Corporation | Processes for the production of electrophoretic displays |
US20040226820A1 (en) * | 2003-03-25 | 2004-11-18 | E Ink Corporation | Processes for the production of electrophoretic displays |
US20050007653A1 (en) * | 2003-03-27 | 2005-01-13 | E Ink Corporation | Electro-optic assemblies, and materials for use therein |
US20050124751A1 (en) * | 2003-03-27 | 2005-06-09 | Klingenberg Eric H. | Electro-optic assemblies and materials for use therein |
EP2273307A1 (en) | 2003-03-27 | 2011-01-12 | E Ink Corporation | Electro-optic displays |
US10726798B2 (en) | 2003-03-31 | 2020-07-28 | E Ink Corporation | Methods for operating electro-optic displays |
US9620067B2 (en) | 2003-03-31 | 2017-04-11 | E Ink Corporation | Methods for driving electro-optic displays |
US20050012980A1 (en) * | 2003-05-02 | 2005-01-20 | E Ink Corporation | Electrophoretic displays with controlled amounts of pigment |
US9152003B2 (en) | 2003-05-12 | 2015-10-06 | E Ink Corporation | Electro-optic display with edge seal |
US8174490B2 (en) | 2003-06-30 | 2012-05-08 | E Ink Corporation | Methods for driving electrophoretic displays |
EP2947647A2 (en) | 2003-06-30 | 2015-11-25 | E Ink Corporation | Methods for driving electro-optic displays |
US7957053B2 (en) | 2003-07-24 | 2011-06-07 | E Ink Corporation | Electro-optic displays |
US20060176267A1 (en) * | 2003-07-24 | 2006-08-10 | E Ink Corporation | Improvements in electro-optic displays |
US20050041004A1 (en) * | 2003-08-19 | 2005-02-24 | E Ink Corporation | Method for controlling electro-optic display |
EP2698784A1 (en) | 2003-08-19 | 2014-02-19 | E Ink Corporation | Methods for controlling electro-optic displays |
US20050062714A1 (en) * | 2003-09-19 | 2005-03-24 | E Ink Corporation | Methods for reducing edge effects in electro-optic displays |
US20050151709A1 (en) * | 2003-10-08 | 2005-07-14 | E Ink Corporation | Electro-wetting displays |
US8319759B2 (en) | 2003-10-08 | 2012-11-27 | E Ink Corporation | Electrowetting displays |
US8994705B2 (en) | 2003-10-08 | 2015-03-31 | E Ink Corporation | Electrowetting displays |
US20070286975A1 (en) * | 2003-11-05 | 2007-12-13 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US7672040B2 (en) | 2003-11-05 | 2010-03-02 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US20050122565A1 (en) * | 2003-11-05 | 2005-06-09 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US10324354B2 (en) | 2003-11-05 | 2019-06-18 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US20070097489A1 (en) * | 2003-11-05 | 2007-05-03 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US10048563B2 (en) | 2003-11-05 | 2018-08-14 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US10048564B2 (en) | 2003-11-05 | 2018-08-14 | E Ink Corporation | Electro-optic displays, and materials for use therein |
EP2487674A2 (en) | 2003-11-05 | 2012-08-15 | E-Ink Corporation | Electro-optic displays |
US9152004B2 (en) | 2003-11-05 | 2015-10-06 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US8177942B2 (en) | 2003-11-05 | 2012-05-15 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US20050122284A1 (en) * | 2003-11-25 | 2005-06-09 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US9542895B2 (en) | 2003-11-25 | 2017-01-10 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US8928562B2 (en) | 2003-11-25 | 2015-01-06 | E Ink Corporation | Electro-optic displays, and methods for driving same |
WO2005054933A2 (en) | 2003-11-26 | 2005-06-16 | E Ink Corporation | Electro-optic displays with reduced remnant voltage |
US9829764B2 (en) | 2003-12-05 | 2017-11-28 | E Ink Corporation | Multi-color electrophoretic displays |
US9740076B2 (en) | 2003-12-05 | 2017-08-22 | E Ink Corporation | Multi-color electrophoretic displays |
US20050152022A1 (en) * | 2003-12-31 | 2005-07-14 | E Ink Corporation | Electro-optic displays, and method for driving same |
US20050168801A1 (en) * | 2004-01-16 | 2005-08-04 | E Ink Corporation | Process for sealing electro-optic displays |
US9005494B2 (en) | 2004-01-20 | 2015-04-14 | E Ink Corporation | Preparation of capsules |
US20050190137A1 (en) * | 2004-02-27 | 2005-09-01 | E Ink Corporation | Backplanes for electro-optic displays |
US20050213191A1 (en) * | 2004-03-23 | 2005-09-29 | E Ink Corporation | Light modulators |
EP3067744A2 (en) | 2004-03-23 | 2016-09-14 | E Ink Corporation | Light modulators |
US8289250B2 (en) | 2004-03-31 | 2012-10-16 | E Ink Corporation | Methods for driving electro-optic displays |
US20080129667A1 (en) * | 2004-03-31 | 2008-06-05 | E Ink Corporation | Methods for driving electro-optic displays |
US20050253777A1 (en) * | 2004-05-12 | 2005-11-17 | E Ink Corporation | Tiled displays and methods for driving same |
US20060023296A1 (en) * | 2004-07-27 | 2006-02-02 | E Ink Corporation | Electro-optic displays |
US11250794B2 (en) | 2004-07-27 | 2022-02-15 | E Ink Corporation | Methods for driving electrophoretic displays using dielectrophoretic forces |
US20060209388A1 (en) * | 2005-01-26 | 2006-09-21 | E Ink Corporation | Electrophoretic displays using gaseous fluids |
US20110069370A1 (en) * | 2005-06-23 | 2011-03-24 | E Ink Corporation | Edge seals for, and processes for assembly of, electro-optic displays |
US8830553B2 (en) | 2005-06-23 | 2014-09-09 | E Ink Corporation | Edge seals for, and processes for assembly of, electro-optic displays |
US8208193B2 (en) | 2005-06-23 | 2012-06-26 | E Ink Corporation | Edge seals for, and processes for assembly of, electro-optic displays |
US20090231661A1 (en) * | 2005-06-23 | 2009-09-17 | E Ink Corporation | Edge seals for, and processes for assembly of, electro-optic displays |
US7898717B2 (en) | 2005-06-23 | 2011-03-01 | E Ink Corporation | Edge seals for, and processes for assembly of, electro-optic displays |
US7932347B2 (en) * | 2005-09-08 | 2011-04-26 | Sumitomo Chemical Company, Limited | Polymer comprising unit comprising fluorocyclopentane ring fused with aromatic ring and organic thin film and organic thin film element both comprising the same |
US20080302419A1 (en) * | 2005-09-08 | 2008-12-11 | Sumitomo Chemical Company, Limited | Polymer Comprising Unit Comprising Fluorocyclopentane Ring Fused With Aromatic Ring and Organic Thin Film and Organic Thin Film Element Both Comprising the Same |
US9726959B2 (en) | 2005-10-18 | 2017-08-08 | E Ink Corporation | Color electro-optic displays, and processes for the production thereof |
US9170467B2 (en) | 2005-10-18 | 2015-10-27 | E Ink Corporation | Color electro-optic displays, and processes for the production thereof |
EP2711770A2 (en) | 2005-10-18 | 2014-03-26 | E Ink Corporation | Components for electro-optic displays |
US20070091417A1 (en) * | 2005-10-25 | 2007-04-26 | E Ink Corporation | Electrophoretic media and displays with improved binder |
US8390301B2 (en) | 2006-03-08 | 2013-03-05 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US7843624B2 (en) | 2006-03-08 | 2010-11-30 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
WO2007104003A2 (en) | 2006-03-08 | 2007-09-13 | E Ink Corporation | Methods for production of electro-optic displays |
EP2437114A1 (en) | 2006-03-08 | 2012-04-04 | E-Ink Corporation | Methods for production of electro-optic displays |
EP2309304A2 (en) | 2006-03-08 | 2011-04-13 | E-Ink Corporation | Methods for production of electro-optic displays |
US20070211331A1 (en) * | 2006-03-08 | 2007-09-13 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US7733554B2 (en) | 2006-03-08 | 2010-06-08 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US8610988B2 (en) | 2006-03-09 | 2013-12-17 | E Ink Corporation | Electro-optic display with edge seal |
US10444591B2 (en) | 2006-03-22 | 2019-10-15 | E Ink Corporation | Electro-optic media produced using ink jet printing |
US9910337B2 (en) | 2006-03-22 | 2018-03-06 | E Ink Corporation | Electro-optic media produced using ink jet printing |
US7952790B2 (en) | 2006-03-22 | 2011-05-31 | E Ink Corporation | Electro-optic media produced using ink jet printing |
US8830559B2 (en) | 2006-03-22 | 2014-09-09 | E Ink Corporation | Electro-optic media produced using ink jet printing |
US9164207B2 (en) | 2006-03-22 | 2015-10-20 | E Ink Corporation | Electro-optic media produced using ink jet printing |
US20070223079A1 (en) * | 2006-03-22 | 2007-09-27 | E Ink Corporation | Electro-optic media produced using ink jet printing |
US20110195629A1 (en) * | 2006-03-22 | 2011-08-11 | E Ink Corporation | Electro-optic media produced using ink jet printing |
US20070241333A1 (en) * | 2006-04-17 | 2007-10-18 | Samsung Electronics Co. Ltd. | Amorphous silicon thin film transistor, organic light-emitting display device including the same and method thereof |
US20080013155A1 (en) * | 2006-07-11 | 2008-01-17 | E Ink Corporation | Electrophoretic medium and display with improved image stability |
US7903319B2 (en) | 2006-07-11 | 2011-03-08 | E Ink Corporation | Electrophoretic medium and display with improved image stability |
US8199395B2 (en) | 2006-07-13 | 2012-06-12 | E Ink Corporation | Particles for use in electrophoretic displays |
US20080013156A1 (en) * | 2006-07-13 | 2008-01-17 | E Ink Corporation | Particles for use in electrophoretic displays |
US8018640B2 (en) | 2006-07-13 | 2011-09-13 | E Ink Corporation | Particles for use in electrophoretic displays |
EP2487540A1 (en) | 2006-09-18 | 2012-08-15 | E-Ink Corporation | Color electro-optic displays |
EP2309322A1 (en) | 2006-09-22 | 2011-04-13 | E-Ink Corporation | Electro-optic display and materials for use therein |
US7986450B2 (en) | 2006-09-22 | 2011-07-26 | E Ink Corporation | Electro-optic display and materials for use therein |
US20080074730A1 (en) * | 2006-09-22 | 2008-03-27 | E Ink Corporation | Electro-optic display and materials for use therein |
US20110034668A1 (en) * | 2006-10-25 | 2011-02-10 | Xerox Corporation | Electronic devices |
US20080102559A1 (en) * | 2006-10-25 | 2008-05-01 | Xerox Corporation | Electronic devices |
US7834132B2 (en) * | 2006-10-25 | 2010-11-16 | Xerox Corporation | Electronic devices |
US8153755B2 (en) * | 2006-10-25 | 2012-04-10 | Xerox Corporation | Electronic devices |
US7649666B2 (en) | 2006-12-07 | 2010-01-19 | E Ink Corporation | Components and methods for use in electro-optic displays |
EP2546693A2 (en) | 2006-12-19 | 2013-01-16 | E Ink Corporation | Electro-optic display with edge seal |
US8009344B2 (en) | 2007-01-22 | 2011-08-30 | E Ink Corporation | Multi-layer sheet for use in electro-optic displays |
US8498042B2 (en) | 2007-01-22 | 2013-07-30 | E Ink Corporation | Multi-layer sheet for use in electro-optic displays |
US20080254272A1 (en) * | 2007-01-22 | 2008-10-16 | E Ink Corporation | Multi-layer sheet for use in electro-optic displays |
US20100118384A1 (en) * | 2007-01-22 | 2010-05-13 | E Ink Corporation | Multi-layer sheet for use in electro-optic displays |
US7688497B2 (en) | 2007-01-22 | 2010-03-30 | E Ink Corporation | Multi-layer sheet for use in electro-optic displays |
US7667886B2 (en) | 2007-01-22 | 2010-02-23 | E Ink Corporation | Multi-layer sheet for use in electro-optic displays |
EP2555182A1 (en) | 2007-02-02 | 2013-02-06 | E Ink Corporation | Electrophoretic displays having transparent electrode and conductor connected thereto |
US7826129B2 (en) | 2007-03-06 | 2010-11-02 | E Ink Corporation | Materials for use in electrophoretic displays |
US9841653B2 (en) | 2007-03-06 | 2017-12-12 | E Ink Corporation | Materials for use in electrophoretic displays |
US9310661B2 (en) | 2007-03-06 | 2016-04-12 | E Ink Corporation | Materials for use in electrophoretic displays |
US10319313B2 (en) | 2007-05-21 | 2019-06-11 | E Ink Corporation | Methods for driving video electro-optic displays |
US9199441B2 (en) | 2007-06-28 | 2015-12-01 | E Ink Corporation | Processes for the production of electro-optic displays, and color filters for use therein |
US10527880B2 (en) | 2007-06-28 | 2020-01-07 | E Ink Corporation | Process for the production of electro-optic displays, and color filters for use therein |
US20090004442A1 (en) * | 2007-06-28 | 2009-01-01 | E Ink Corporation | Processes for the production of electro-optic displays, and color filters for use therein |
US8034209B2 (en) | 2007-06-29 | 2011-10-11 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US9554495B2 (en) | 2007-06-29 | 2017-01-24 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US8728266B2 (en) | 2007-06-29 | 2014-05-20 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US8902153B2 (en) | 2007-08-03 | 2014-12-02 | E Ink Corporation | Electro-optic displays, and processes for their production |
US7910684B2 (en) * | 2007-09-06 | 2011-03-22 | Xerox Corporation | Diketopyrrolopyrrole-based derivatives for thin film transistors |
US7932344B2 (en) * | 2007-09-06 | 2011-04-26 | Xerox Corporation | Diketopyrrolopyrrole-based polymers |
US20090065878A1 (en) * | 2007-09-06 | 2009-03-12 | Xerox Corporation | Diketopyrrolopyrrole-based derivatives for thin film transistors |
US20090065766A1 (en) * | 2007-09-06 | 2009-03-12 | Xerox Corporation. | Diketopyrrolopyrrole-based polymers |
US20090085909A1 (en) * | 2007-09-28 | 2009-04-02 | Innolux Display Corp. | Electro-wetting display device |
US7893190B2 (en) * | 2007-11-08 | 2011-02-22 | Samsung Electronics Co., Inc. | Alternating copolymers of phenylene vinylene and oligoarylene vinylene, preparation method thereof, and organic thin film transister comprising the same |
US20090120495A1 (en) * | 2007-11-08 | 2009-05-14 | Samsung Electronics Co., Ltd. | Alternating copolymers of phenylene vinylene and oligoarylene vinylene, preparation method thereof, and organic thin flim transister comprising the same |
US10036930B2 (en) | 2007-11-14 | 2018-07-31 | E Ink Corporation | Electro-optic assemblies, and adhesives and binders for use therein |
US9964831B2 (en) | 2007-11-14 | 2018-05-08 | E Ink Corporation | Electro-optic assemblies, and adhesives and binders for use therein |
EP3505585A1 (en) | 2007-11-14 | 2019-07-03 | E Ink Corporation | Adhesives and binders for use in electro-optic assemblies |
US8054526B2 (en) | 2008-03-21 | 2011-11-08 | E Ink Corporation | Electro-optic displays, and color filters for use therein |
US20090242878A1 (en) * | 2008-03-27 | 2009-10-01 | Xerox Corporation | Optimization of new polymer semiconductors for better mobility and processibality |
US8314784B2 (en) | 2008-04-11 | 2012-11-20 | E Ink Corporation | Methods for driving electro-optic displays |
US8270064B2 (en) | 2009-02-09 | 2012-09-18 | E Ink Corporation | Electrophoretic particles, and processes for the production thereof |
US8441716B2 (en) | 2009-03-03 | 2013-05-14 | E Ink Corporation | Electro-optic displays, and color filters for use therein |
US8098418B2 (en) | 2009-03-03 | 2012-01-17 | E. Ink Corporation | Electro-optic displays, and color filters for use therein |
US10439014B2 (en) | 2009-04-13 | 2019-10-08 | Sony Corporation | Display apparatus |
US10217805B2 (en) | 2009-04-13 | 2019-02-26 | Sony Corporation | Display apparatus |
US9123292B2 (en) * | 2009-04-13 | 2015-09-01 | Sony Corporation | Display apparatus |
US20100259468A1 (en) * | 2009-04-13 | 2010-10-14 | Sony Corporation | Display apparatus |
US9716133B2 (en) | 2009-04-13 | 2017-07-25 | Sony Corporation | Display apparatus |
US9379144B2 (en) | 2009-04-13 | 2016-06-28 | Sony Corporation | Display apparatus |
US11251248B2 (en) | 2009-04-13 | 2022-02-15 | Sony Group Corporation | Display apparatus |
US10971569B2 (en) | 2009-04-13 | 2021-04-06 | Sony Corporation | Display apparatus |
US9778500B2 (en) | 2009-10-28 | 2017-10-03 | E Ink Corporation | Electro-optic displays with touch sensors and/or tactile feedback |
US8754859B2 (en) | 2009-10-28 | 2014-06-17 | E Ink Corporation | Electro-optic displays with touch sensors and/or tactile feedback |
US8654436B1 (en) | 2009-10-30 | 2014-02-18 | E Ink Corporation | Particles for use in electrophoretic displays |
US8927635B2 (en) * | 2010-03-09 | 2015-01-06 | Hewlett-Packard Indigo B.V. | Positively charged ink composition |
US20120287180A1 (en) * | 2010-03-09 | 2012-11-15 | Hewlett-Packard Indigo B.V. | Positively charged ink composition |
US8446664B2 (en) | 2010-04-02 | 2013-05-21 | E Ink Corporation | Electrophoretic media, and materials for use therein |
US11733580B2 (en) | 2010-05-21 | 2023-08-22 | E Ink Corporation | Method for driving two layer variable transmission display |
US20120015474A1 (en) * | 2010-07-19 | 2012-01-19 | Yung-Chun Wu | Method for fabricating silicon heterojunction solar cells |
US20120085993A1 (en) * | 2010-10-06 | 2012-04-12 | Ming-Chou Chen | Semiconducting polymers and optoelectronic devices incorporating same |
US8993711B2 (en) * | 2010-10-06 | 2015-03-31 | Polyera Corporation | Semiconducting polymers and optoelectronic devices incorporating same |
WO2013074167A1 (en) | 2011-11-18 | 2013-05-23 | Avon Products, Inc. | Use of electrophoretic microcapsules in a cosmetic composition |
EP3783597A1 (en) | 2012-02-01 | 2021-02-24 | E Ink Corporation | Methods for driving electro-optic displays |
EP3220383A1 (en) | 2012-02-01 | 2017-09-20 | E Ink Corporation | Methods for driving electro-optic displays |
US11467466B2 (en) | 2012-04-20 | 2022-10-11 | E Ink Corporation | Illumination systems for reflective displays |
US10190743B2 (en) | 2012-04-20 | 2019-01-29 | E Ink Corporation | Illumination systems for reflective displays |
US12000560B2 (en) | 2012-04-20 | 2024-06-04 | E Ink Corporation | Illumination systems for reflective displays |
US11708958B2 (en) | 2012-04-20 | 2023-07-25 | E Ink Corporation | Illumination systems for reflective displays |
US11460165B2 (en) | 2012-04-20 | 2022-10-04 | E Ink Corporation | Illumination systems for reflective displays |
US11560997B2 (en) | 2012-04-20 | 2023-01-24 | E Ink Corporation | Hybrid reflective-emissive display for use as a signal light |
US9726957B2 (en) | 2013-01-10 | 2017-08-08 | E Ink Corporation | Electro-optic display with controlled electrochemical reactions |
US9715155B1 (en) | 2013-01-10 | 2017-07-25 | E Ink Corporation | Electrode structures for electro-optic displays |
US10429715B2 (en) | 2013-01-10 | 2019-10-01 | E Ink Corporation | Electrode structures for electro-optic displays |
US10520786B2 (en) | 2013-01-10 | 2019-12-31 | E Ink Corporation | Electrode structures for electro-optic displays |
US11513414B2 (en) | 2013-01-10 | 2022-11-29 | E Ink Corporation | Electro-optic displays including redox compounds |
EP4156165A2 (en) | 2013-07-31 | 2023-03-29 | E Ink Corporation | Methods for driving electro-optic displays |
EP4156164A1 (en) | 2013-07-31 | 2023-03-29 | E Ink Corporation | Methods for driving electro-optic displays |
US9529240B2 (en) | 2014-01-17 | 2016-12-27 | E Ink Corporation | Controlled polymeric material conductivity for use in a two-phase electrode layer |
US10795221B2 (en) | 2014-01-17 | 2020-10-06 | E Ink Corporation | Methods for making two-phase light-transmissive electrode layer with controlled conductivity |
US10151955B2 (en) | 2014-01-17 | 2018-12-11 | E Ink Corporation | Controlled polymeric material conductivity for use in a two-phase electrode layer |
US10317767B2 (en) | 2014-02-07 | 2019-06-11 | E Ink Corporation | Electro-optic display backplane structure with drive components and pixel electrodes on opposed surfaces |
US9671635B2 (en) | 2014-02-07 | 2017-06-06 | E Ink Corporation | Electro-optic display backplane structures with drive components and pixel electrodes on opposed surfaces |
US10446585B2 (en) | 2014-03-17 | 2019-10-15 | E Ink Corporation | Multi-layer expanding electrode structures for backplane assemblies |
US10175550B2 (en) | 2014-11-07 | 2019-01-08 | E Ink Corporation | Applications of electro-optic displays |
US10976634B2 (en) | 2014-11-07 | 2021-04-13 | E Ink Corporation | Applications of electro-optic displays |
US9835925B1 (en) | 2015-01-08 | 2017-12-05 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
US10254621B2 (en) | 2015-01-08 | 2019-04-09 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
US10475396B2 (en) | 2015-02-04 | 2019-11-12 | E Ink Corporation | Electro-optic displays with reduced remnant voltage, and related apparatus and methods |
WO2016191673A1 (en) | 2015-05-27 | 2016-12-01 | E Ink Corporation | Methods and circuitry for driving display devices |
US10997930B2 (en) | 2015-05-27 | 2021-05-04 | E Ink Corporation | Methods and circuitry for driving display devices |
US11398197B2 (en) | 2015-05-27 | 2022-07-26 | E Ink Corporation | Methods and circuitry for driving display devices |
US11397361B2 (en) | 2015-06-29 | 2022-07-26 | E Ink Corporation | Method for mechanical and electrical connection to display electrodes |
US10527899B2 (en) | 2016-05-31 | 2020-01-07 | E Ink Corporation | Backplanes for electro-optic displays |
US10324577B2 (en) | 2017-02-28 | 2019-06-18 | E Ink Corporation | Writeable electrophoretic displays including sensing circuits and styli configured to interact with sensing circuits |
US10466565B2 (en) | 2017-03-28 | 2019-11-05 | E Ink Corporation | Porous backplane for electro-optic display |
US11016358B2 (en) | 2017-03-28 | 2021-05-25 | E Ink Corporation | Porous backplane for electro-optic display |
US10495941B2 (en) | 2017-05-19 | 2019-12-03 | E Ink Corporation | Foldable electro-optic display including digitization and touch sensing |
US11107425B2 (en) | 2017-05-30 | 2021-08-31 | E Ink Corporation | Electro-optic displays with resistors for discharging remnant charges |
US10825405B2 (en) | 2017-05-30 | 2020-11-03 | E Ink Corporatior | Electro-optic displays |
US10573257B2 (en) | 2017-05-30 | 2020-02-25 | E Ink Corporation | Electro-optic displays |
US11404013B2 (en) | 2017-05-30 | 2022-08-02 | E Ink Corporation | Electro-optic displays with resistors for discharging remnant charges |
US10882042B2 (en) | 2017-10-18 | 2021-01-05 | E Ink Corporation | Digital microfluidic devices including dual substrates with thin-film transistors and capacitive sensing |
US10824042B1 (en) | 2017-10-27 | 2020-11-03 | E Ink Corporation | Electro-optic display and composite materials having low thermal sensitivity for use therein |
WO2019089042A1 (en) | 2017-11-03 | 2019-05-09 | E Ink Corporation | Processes for producing electro-optic displays |
EP4137884A2 (en) | 2017-11-03 | 2023-02-22 | E Ink Corporation | Processes for producing electro-optic displays |
US11565489B2 (en) | 2018-01-29 | 2023-01-31 | Applied Materials, Inc. | Wetting layers for optical device enhancement |
US11081066B2 (en) | 2018-02-15 | 2021-08-03 | E Ink Corporation | Via placement for slim border electro-optic display backplanes with decreased capacitive coupling between t-wires and pixel electrodes |
US11175561B1 (en) | 2018-04-12 | 2021-11-16 | E Ink Corporation | Electrophoretic display media with network electrodes and methods of making and using the same |
US11656524B2 (en) | 2018-04-12 | 2023-05-23 | E Ink Corporation | Electrophoretic display media with network electrodes and methods of making and using the same |
US11353759B2 (en) | 2018-09-17 | 2022-06-07 | Nuclera Nucleics Ltd. | Backplanes with hexagonal and triangular electrodes |
WO2020060960A1 (en) | 2018-09-17 | 2020-03-26 | E Ink Corporation | Backplanes with hexagonal and triangular electrodes |
US11511096B2 (en) | 2018-10-15 | 2022-11-29 | E Ink Corporation | Digital microfluidic delivery device |
US11145262B2 (en) | 2018-11-09 | 2021-10-12 | E Ink Corporation | Electro-optic displays |
US11450287B2 (en) | 2018-11-09 | 2022-09-20 | E Ink Corporation | Electro-optic displays |
WO2020097462A1 (en) | 2018-11-09 | 2020-05-14 | E Ink Corporation | Electro-optic displays |
WO2020122917A1 (en) | 2018-12-13 | 2020-06-18 | E Ink Corporation | Illumination systems for reflective displays |
US11521565B2 (en) | 2018-12-28 | 2022-12-06 | E Ink Corporation | Crosstalk reduction for electro-optic displays |
US12032264B2 (en) | 2018-12-30 | 2024-07-09 | E Ink Corporation | Electro-optic displays |
US11537024B2 (en) | 2018-12-30 | 2022-12-27 | E Ink California, Llc | Electro-optic displays |
US11892739B2 (en) | 2020-02-07 | 2024-02-06 | E Ink Corporation | Electrophoretic display layer with thin film top electrode |
US11513415B2 (en) | 2020-06-03 | 2022-11-29 | E Ink Corporation | Foldable electrophoretic display module including non-conductive support plate |
US11874580B2 (en) | 2020-06-03 | 2024-01-16 | E Ink Corporation | Foldable electrophoretic display module including non-conductive support plate |
US11935495B2 (en) | 2021-08-18 | 2024-03-19 | E Ink Corporation | Methods for driving electro-optic displays |
WO2023164078A1 (en) | 2022-02-25 | 2023-08-31 | E Ink Corporation | Electro-optic displays with edge seal components and methods of making the same |
US11830449B2 (en) | 2022-03-01 | 2023-11-28 | E Ink Corporation | Electro-optic displays |
WO2023167901A1 (en) | 2022-03-01 | 2023-09-07 | E Ink California, Llc | Temperature compensation in electro-optic displays |
US20240161689A1 (en) * | 2022-04-11 | 2024-05-16 | Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Pixel driving circuit, driving method thereof, and display panel |
WO2023211699A1 (en) | 2022-04-27 | 2023-11-02 | E Ink Corporation | Electro-optic display stacks with segmented electrodes and methods of making the same |
Also Published As
Publication number | Publication date |
---|---|
WO2002007216A3 (en) | 2002-05-10 |
US20020106847A1 (en) | 2002-08-08 |
WO2002007216A2 (en) | 2002-01-24 |
US6683333B2 (en) | 2004-01-27 |
AU2002222969A1 (en) | 2002-01-30 |
WO2002007216B1 (en) | 2002-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6683333B2 (en) | Fabrication of electronic circuit elements using unpatterned semiconductor layers | |
US7030412B1 (en) | Minimally-patterned semiconductor devices for display applications | |
US6842657B1 (en) | Reactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication | |
US7365394B2 (en) | Process for fabricating thin film transistors | |
EP1145072B1 (en) | Method of addressing microencapsulated display media | |
US6498114B1 (en) | Method for forming a patterned semiconductor film | |
US7256766B2 (en) | Electrophoretic display comprising optical biasing element | |
EP1198851B1 (en) | Reactive formation of dielectric layers and protection of organic layers in organic semiconductor device | |
US6704133B2 (en) | Electro-optic display overlays and systems for addressing such displays | |
WO2000038000A1 (en) | Method of manufacturing of a discrete electronic device | |
EP1208612B1 (en) | Method for forming a patterned semiconductor film | |
US6312971B1 (en) | Solvent annealing process for forming a thin semiconductor film with advantageous properties | |
CA2372101A1 (en) | Minimally-patterned semiconductor devices for display applications | |
US6865010B2 (en) | Electrophoretic electronic displays with low-index films | |
US6657772B2 (en) | Electro-optic display and adhesive composition for use therein | |
US6750473B2 (en) | Transistor design for use in the construction of an electronically driven display | |
US6967640B2 (en) | Microencapsulated electrophoretic display with integrated driver | |
US20030025855A1 (en) | Electro-optic display and lamination adhesive | |
JP5677266B2 (en) | Method for forming patterned semiconductor film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: E INK CORPORATION, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAZIAS, PETER T.;CHEN, YU;DENIS, KEVIN;AND OTHERS;REEL/FRAME:012560/0604;SIGNING DATES FROM 20011024 TO 20011105 |
|
AS | Assignment |
Owner name: E INK CORPORATION, MASSACHUSETTS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE STATE OF INCORPORATION PREVIOUSLY RECORDED ON REEL 012560 FRAME 0604;ASSIGNORS:KAZLAS, PETER T.;CHEN, YU;DENIS, KEVIN;AND OTHERS;REEL/FRAME:013680/0047;SIGNING DATES FROM 20011024 TO 20011105 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |