US20020022860A1 - Expandable implant devices for filtering blood flow from atrial appendages - Google Patents
Expandable implant devices for filtering blood flow from atrial appendages Download PDFInfo
- Publication number
- US20020022860A1 US20020022860A1 US09/932,512 US93251201A US2002022860A1 US 20020022860 A1 US20020022860 A1 US 20020022860A1 US 93251201 A US93251201 A US 93251201A US 2002022860 A1 US2002022860 A1 US 2002022860A1
- Authority
- US
- United States
- Prior art keywords
- ostium
- expandable
- atrial appendage
- expandable structure
- blood
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000001008 atrial appendage Anatomy 0.000 title claims abstract description 100
- 239000007943 implant Substances 0.000 title claims abstract description 38
- 230000017531 blood circulation Effects 0.000 title claims abstract description 27
- 238000001914 filtration Methods 0.000 title claims abstract description 27
- 239000008280 blood Substances 0.000 claims abstract description 33
- 210000004369 blood Anatomy 0.000 claims abstract description 33
- 230000004323 axial length Effects 0.000 claims abstract description 19
- 239000012528 membrane Substances 0.000 claims description 51
- 239000000463 material Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 29
- 238000004873 anchoring Methods 0.000 claims description 6
- 238000007789 sealing Methods 0.000 claims description 6
- 230000005489 elastic deformation Effects 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 2
- 230000000977 initiatory effect Effects 0.000 claims 2
- 239000013536 elastomeric material Substances 0.000 claims 1
- 238000009826 distribution Methods 0.000 abstract description 13
- 238000011065 in-situ storage Methods 0.000 abstract description 9
- 239000013013 elastic material Substances 0.000 abstract 1
- 210000001519 tissue Anatomy 0.000 description 17
- 208000007536 Thrombosis Diseases 0.000 description 14
- 210000002837 heart atrium Anatomy 0.000 description 10
- 230000000747 cardiac effect Effects 0.000 description 8
- 210000005248 left atrial appendage Anatomy 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 239000004744 fabric Substances 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229920004934 Dacron® Polymers 0.000 description 6
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 6
- 229920000544 Gore-Tex Polymers 0.000 description 6
- 229920006362 Teflon® Polymers 0.000 description 6
- 229920000249 biocompatible polymer Polymers 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 229920001296 polysiloxane Polymers 0.000 description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 description 6
- 210000000056 organ Anatomy 0.000 description 5
- 230000000717 retained effect Effects 0.000 description 5
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 5
- 206010003658 Atrial Fibrillation Diseases 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 3
- 239000003146 anticoagulant agent Substances 0.000 description 3
- 229940127219 anticoagulant drug Drugs 0.000 description 3
- 230000001746 atrial effect Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 208000028867 ischemia Diseases 0.000 description 3
- 210000004165 myocardium Anatomy 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 230000008467 tissue growth Effects 0.000 description 3
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 2
- 208000011682 Mitral valve disease Diseases 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000560 biocompatible material Substances 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 208000019622 heart disease Diseases 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000000302 ischemic effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 238000011176 pooling Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 208000005189 Embolism Diseases 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000002965 anti-thrombogenic effect Effects 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 210000003157 atrial septum Anatomy 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 206010061592 cardiac fibrillation Diseases 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 230000002600 fibrillogenic effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 210000005246 left atrium Anatomy 0.000 description 1
- 210000005240 left ventricle Anatomy 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 210000005247 right atrial appendage Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009424 thromboembolic effect Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/01—Filters implantable into blood vessels
- A61F2/013—Distal protection devices, i.e. devices placed distally in combination with another endovascular procedure, e.g. angioplasty or stenting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12099—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
- A61B17/12122—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder within the heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12131—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
- A61B17/12136—Balloons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12131—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
- A61B17/12159—Solid plugs; being solid before insertion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12131—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
- A61B17/12168—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
- A61B17/12172—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure having a pre-set deployed three-dimensional shape
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00575—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/01—Filters implantable into blood vessels
- A61F2/013—Distal protection devices, i.e. devices placed distally in combination with another endovascular procedure, e.g. angioplasty or stenting
- A61F2002/015—Stop means therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/01—Filters implantable into blood vessels
- A61F2002/016—Filters implantable into blood vessels made from wire-like elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/01—Filters implantable into blood vessels
- A61F2002/018—Filters implantable into blood vessels made from tubes or sheets of material, e.g. by etching or laser-cutting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/0006—Rounded shapes, e.g. with rounded corners circular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0069—Three-dimensional shapes cylindrical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0073—Quadric-shaped
- A61F2230/008—Quadric-shaped paraboloidal
Definitions
- the invention relates to implant devices that may be implanted in an atrial appendage for filtering blood flowing between the atrial appendage and an associated atrium of the heart to prevent thrombi from escaping from the atrial appendage into the body's blood circulation system.
- Heart diseases e.g., coronary artery disease, mitral valve disease
- An adverse effect of certain cardiac diseases, such as mitral valve disease is atrial (or auricular) fibrillation. Atrial fibrillation leads to depressed cardiac output.
- a high incidence of thromboembolic (i.e., blood clot particulate) phenomena are associated with atrial fibrillation, and the left atrial appendage (LAA) is frequently the source of the emboli (particulates).
- LAA left atrial appendage
- Thrombi i.e., blood clots
- Blood pooling in the atrial appendage is conducive to the formation blood clots.
- Blood clots may accumulate, build upon themselves. Small or large fragments of the blood clots may break off and propagate out from the atrial appendage into the atrium. The blood clot fragments can then enter the body's blood circulation and embolize distally into the blood stream.
- U.S. Pat. No. 5,865,791 (hereinafter, “the '791patent”) relates to the reduction of regions of blood stasis in the heart and ultimately reduction of thrombi formation in such regions, particularly in the atrial appendages of patients with atrial fibrillation. More specifically, the '791 patent relates to procedures and devices for affixing the atrial appendages in an orientation that prevents subsequent formation of thrombi. In the '791 patent, the appendage is removed from the atrium by pulling the appendage, placing a loop around the appendage to form a sack, and then cutting it off from the rest of the heart.
- U.S. Pat. No. 5,306,234 describes a method for surgically closing the passage way between the atrium and the atrial appendage, or alternatively severing the atrial appendage.
- Some recently proposed methods of treatment are directed toward implanting a plug-type device in an atrial appendage to occlude the flow of blood therefrom.
- a preventive treatment method for avoiding thromboembolic events involves filtering out harmful emboli from the blood flowing out of atrial appendages.
- thromboembolic events e.g., heart attacks, strokes, and other ischemic events
- filtering devices which may be implanted in an atrial appendage to filter the blood flow therefrom.
- the devices may be delivered to the atrial appendage using common cardiac catheterization methods. These methods may include trans septal catheterization which involves puncturing an atrial septum.
- Catheters and implant devices that are large may require large punctures in the septum.
- Large catheters and devices may damage body tissue during delivery or implantation. Damage to body tissue may cause trauma, increase recovery time, increase the risk of complications, and increase the cost of patient care. Further the atrial appendages may vary in shape and size from patient to patient.
- implant devices which are small and which can be delivered by small-sized catheters to the atrial appendages. It would therefore also be desirable to provide implant devices whose size can be adjusted in situ to conform to the size of the atrial appendages.
- the invention provides implant devices and methods, which may be used to filter blood flowing between atrial appendages and atrial chambers.
- the devices are designed to prevent the release of blood clots formed in the atrial appendages into the body's blood circulation system.
- All implant devices disclosed herein have adjustable sizes.
- a compact or narrow size may be used for intra-cutaneous device delivery to an atrial appendage, for example, by cardiac catheterization.
- the devices include size-adjusting mechanisms that allow the device size to be enlarged in situ to an expanded size conforming to the dimensions of the atrial appendage.
- an expanding inner structure is disposed inside a membrane tube.
- the inner structure has rigid components, which when the inner structure is expanded press or push sides of the membrane tube outward.
- the inner structure may be self-expanding or may, for example, be expanded by an inflatable balloon.
- the device When the inner structure is in a collapsed configuration, the device has a compact size suitable for delivery to and insertion in an atrial appendage, for example, by cardiac catheterization.
- a closed end of the membrane tube covers the ostium of the atrial appendage. Filter elements or components built into the closed end of the membrane tube filter out harmful-size emboli from the blood flowing out of the atrial appendage.
- the device may be held in position by expanding the inner structure to press sides of the membrane tube against the interior walls of the atrial appendage.
- implant devices may have other kinds of inflatable or expandable structures which allow the devices to have compact sizes for device delivery and which can later be enlarged in situ to make the device size conform to the dimensions of the atrial appendages.
- the devices may have short axial lengths that are comparable to or are a fraction of the length of an ostium.
- a short-axial length device may have a thin expandable or inflatable structure.
- the cross-sectional shape of a thin expandable structure may, for example, resemble that of a mushroom cap, a pill box, or a doughnut-shaped tube, etc.
- the structure may include suitable blood-permeable filter elements for filtering harmful-size emboli from the blood flow.
- the filter elements may be located centrally or may be located off-center in the thin structure. When deployed the thin structure covers the ostium of an atrial appendage and directs all blood flow through the ostium to pass through the filter elements.
- the structure may be suitably designed to prevent unwanted flow channels (e.g., around the edges of the device) through which unfiltered blood may flow between the appendage and the atrium.
- the structure may have anchors attached to its outside periphery. These anchors may be pins, hooks, barbs, atraumatic bulb tips or other suitable structures for engaging wall tissue. The anchors engage the interior walls of the ostium and thereby secure the position of the deployed device.
- Some devices may have axial lengths that may be slightly larger than the length of an ostium. Such devices may have anchors disposed on posterior portions of the expandable structure for engaging interior wall tissue of the neck region of the atrial appendage leading to the ostium
- a longer-axial length device may have a first structure designed to cover the ostium of an atrial appendage and filter blood flow therethrough.
- This first structure may optionally be expandable or non-expandable.
- an expandable second structure in the device may be used to help secure the device in its deployed position.
- the expandable second structure is generally disposed in the lumen or interior cavity of the atrial appendages.
- the expandable second structure may be self-expanding or may, for example, be expandable by balloon inflation.
- the expandable second structures may have components such as attached anchors for engaging the interior walls of the atrial appendages.
- the expandable second structure may additionally or alternatively include inflatable anchors. These inflatable anchors directly engage the interior walls of the atrial appendage when inflated and provide resistance to changes in the position of the deployed device.
- Filter elements with predetermined hole size distributions for filtering harmful-sized emboli from the blood flow may be incorporated in the expandable implant devices.
- the filter elements may be configured so that their hole size distributions do not change significantly during the expansion of the device.
- the filter elements are embedded in elastic membranes. These membranes are designed such that when the devices are expanded concomitant stretching of the filter element configurations due to the increase in device size is largely accommodated by the elastic membranes.
- the sizes of filter elements themselves and their predetermined hole size distributions remain substantially unchanged.
- FIG. 1 a is a cross sectional view showing an adjustable-size implant device at its narrow compact size suitable for delivery by cardiac catheterization in accordance with the principles of the invention.
- FIG. 1 b is a cross sectional view showing the implant device of FIG. 1 a deployed in an atrial appendage.
- the implant device shown has membrane tube having filter elements for filtering blood.
- the device is retained in position by an expanded inner structure in accordance with the principles of the invention.
- FIG. 1 c is a schematic perspective view showing an exemplary expanded inner structure in its expanded configuration in accordance with the principles of the invention.
- FIG. 2 is a partial sectional view showing another implant device deployed in an atrial appendage.
- the implant device shown has filter elements for filtering blood and is retained in position by a self-expanding inner structure in accordance with the principles of the invention.
- FIG. 3 a is a schematic illustration of an as-delivered implant device positioned within an ostium.
- the device has a thin expandable structure which may be used to cover the ostium of an atrial appendage so that blood flow between the appendage and the atrium is constrained to pass through filter elements in the device in accordance with the principles of the invention.
- FIGS. 3 b and 3 c are cross-sectional views illustrating exemplary shapes of the expandable structure of the implant device of FIG. 3 a.
- FIG. 4 schematically illustrates the increase in size of the implant device of FIG. 3 a as its expandable structure is being inflated in accordance with the principles of the invention.
- FIG. 5 a is a partial cross sectional view showing an implant device with an expandable distal structure disposed in an atrial appendage.
- the implant device shown has a proximal structure, which may be used to cover the ostium of the atrial appendage to direct blood flow to pass through filter elements.
- the device is retained in position by the distal structure which has inflatable anchors in accordance with the principles of the invention.
- FIG. 5 b is a side elevational view showing another implant device with expandable structures in which a single expanding structure provides the functions of both the proximal and distal structures shown in FIG. 5 b, in covering the ostium and in securing the position of the device, in accordance with the principles of the invention.
- FIG. 5 c is a plan view of the implant device shown in FIG. 5 b.
- FIG. 6 is a schematic illustration of a predetermined-size filter element having holes impervious to harmful-size emboli, and an elastic membrane attached the filter element in accordance with the principles of the invention.
- the invention may also be used for the right atrial appendage and in general for placement across any aperture in the body in which blood is permitted to flow therethrough or therefrom but in which blood clots are substantially prevented from escaping from the atrial appendage and entering into the bloodstream.
- the implant devices disclosed herein have adjustable sizes.
- a compact or narrow size is used for intra-cutaneous device delivery to the atrial appendages, for example, by cardiac catheterization.
- the devices include size-adjusting expansion mechanisms that allow the device size to be enlarged in situ to an expanded size. Controlled expansion may be desirable for the proper functioning of an implant device.
- the filter elements of a device must be correctly centered or positioned across an atrial appendage ostium for the device to properly intercept and filter blood flowing out of the atrial appendage.
- the expansion mechanisms allow for controlled expansion of the implanted device size in situ to conform to the dimensions of the atrial appendage.
- the expansion mechanisms may allow for the expansion to be at least partially reversed and thereby enable a physician to optimize or adjust the deployment of the device in situ.
- the types of implant devices disclosed herein add to variety of device types disclosed in U.S. patent application Ser. No. 09/428,008, U.S. patent application SER. No. 09/614,091, U.S. patent application SER. No. 09/642,291, and U.S. patent application SER. No. 09/697,628, all incorporated in by reference herein.
- FIG. 1 a shows device 101 at its compact size suitable for delivery to atrial appendage 100 (FIG. 1 b ) by cardiac catheterization.
- Device 101 has a membrane tube 120 in which an expanding structure 130 is disposed.
- Membrane tube 120 may be made of thin flexible materials.
- Expanding structure 130 in contrast, may have components which are made of more rigid material such as hard plastics or corrosion-resistant metal alloys including shape memory alloys. Expanding structure 130 has a collapsed configuration (FIG. 1 a ) and a larger expanded configuration (FIGS. 1 b and 1 c ).
- structure 130 may have a generally cylindrical shape. Structure 130 may have a design that allows it to expand radially without any significant concomitant change in its axial length. The design of also may allow for permanent deformation, or partially or completely reversible deformation of structure 130 during its expansion.
- FIG. 1 c schematically illustrates portions of an exemplary inner structure 130 in its expanded configuration. Structure 130 shown in FIG. 1 c is similar to structures shown and described in greater detail, for example, in U.S. application Ser. No. 09/642,291.Structure 130 includes interconnected serpentine segments 131 . Adjacent serpentine segments 131 are interconnected by a plurality of longitudinal struts 132 . End serpentine segment 131 is connected by radial members 133 to a central hollow cylindrical ring 134 . Some or all of components 130 - 134 may, for example, be fabricated from shape memory alloys.
- Externally-initiated means may be used to change the configuration of structure 130 when it is placed in atrial appendage 100 .
- balloon 140 e.g., placed within structure 130 through central hollow cylindrical ring 134
- Balloon 140 may be inflated or deflated conventionally, for example, by injecting or withdrawing suitable fluids from the body of balloon 140 , respectively, through suitable elastic sealed openings, for example, valve structures 142 .
- the elastic sealed openings such as valve structures 142 prevent uncontrolled release of fluids injected in to balloon 140 .
- FIG. 1 b shows, for example, device 101 expanded to a suitable expanded size for permanent deployment in atrial appendage 100 .
- Device 101 may be used to filter blood flowing out from atrial appendage 100 .
- Device 101 has a membrane tube 120 in which an expanding structure 130 is placed.
- Membrane tube 120 has a generally cylindrical shape and may have one or both of its distal and proximal ends closed.
- FIG. 1 b shows membrane 120 having both distal and proximal closed ends 124 .
- the membrane tube 120 can be made of bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers.
- ePFTE e.g., Gortex®
- polyester e.g., Dacron®
- PTFE e.g., Teflon®
- silicone e.g., silicone, urethane, metal fibers, or other biocompatible polymers.
- At least portions of closed ends 124 serve as filter elements 125 for filtering harmful-size emboli from blood flow.
- Filter elements 125 are made of blood-permeable material.
- the remaining portions of membrane tube 125 e.g., sides 126 ) may be made of blood-impervious material.
- the materials used to fabricate membrane tube 125 components can be any suitable bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers.
- the structure of the blood-permeable material used to fabricate filter elements 125 is preferably a two-dimensional screen, a cellular matrix, a woven or non-woven mesh, or the like.
- the structure of the blood-permeable material may also be that of a permeable metal or a mesh of fine metal fibers.
- the blood-permeable material in filter elements 125 may be coated or covered with an anticoagulant, such as heparin, or another compound, or treated to provide antithrombogenic properties to the filter elements 125 to inhibit clogging of filter elements 125 by an accumulation of blood clots.
- Filter elements 125 have holes through them for blood flow.
- hole refers to an opening in the structure of a filter element which provides a continuous open channel or passageway from one side of the filter element to the other.
- pore refers to a small cavity in the material of a filter element. Cavities or pores do not provide a continuous open channel or passageway through the filter element. Partially opened surface pores, however, are an important component of surface texture which is advantageous for cellular tissue ingrowth.
- the hole sizes in the blood-permeable material included in filter elements 125 may be chosen to be sufficiently small so that harmful-size emboli are filtered out from the blood flow between appendage 100 and atrium 105 (shown partially in FIGS. 1 b and 1 c ). Yet the hole sizes may be chosen to be sufficiently large to provide an adequate flow conductivity for emboli-free blood to pass through device 101 .
- Filter elements 125 may have hole sizes ranging, for example, from about 50to about 400 microns in diameter. The distribution the hole sizes may be suitably chosen, for example, with regard to individual circumstances, to be larger or smaller than indicated, provided such holes substantially inhibit harmful-size emboli from passing therethrough.
- the open area of filter elements 125 is preferably at least 20% of the overall surface area of the closed ends 124 , although a range of about 25-60% may be preferred.
- the hole size distribution of the material used to make filter elements 125 allows blood to flow therethrough while blocking or inhibiting the passage of thrombus, clots, or emboli formed within the atrial appendage from entering the atrium of the heart and, eventually, the patient's bloodstream.
- substantially all of membrane tube 120 may be made of blood-permeable material suitable for filtering harmful-size emboli.
- Use of a single material (or a fewer number of different types of materials) in membrane tube 120 may simplify its fabrication. In this case it may be sufficient to coat or cover closed end 124 portions with an anticoagulant to prevent clogging of blood flow between atrial appendage 100 and atrium 105 .
- Sides 126 for example, need not be coated with an anticoagulant as they are likely to be sealed in any event by atrial appendage wall tissue when device 101 is deployed in an atrial appendage, as described below.
- membrane tube 120 when fully deployed, membrane tube 120 is held or retained in position in atrial appendage 100 so that proximal closed end 124 extends across or covers ostium 110 .
- expanding structure 130 is expanded, for example, by inflating balloon 140 , from its initial compact size to an expanded size. Expanding structure 130 is expanded to a suitable size to press membrane tube sides 126 directly against interior walls 100 a of atrial appendage 100 .
- the direct engagement of sides 126 with interior wall tissue 100 a caused by the outward pressing by structure 130 holds device 101 provides a degree of resistance to movement of device 101 within atrial appendage 100 and holds device 101 in a substantially fixed position.
- this resistance to movement at least initially during the implant procedure may be reversed to allow repositioning of device 101 if necessary or desirable.
- the reversal may be complete or partial corresponding to the elastic deformation characteristics of structure 130 .
- the reversal may be accomplished, for example, by deflation of balloon 140 .
- regenerative tissue growth, for example, of endothelial or endocardial tissue, conforming to the outer surface textures of sides 126 may bind sides 126 and provide additional securement of fully deployed device 101 .
- This tissue growth binding may, for example, involve tissue ingrowth into partially-open surface pores of the material of sides 126 , or, for example, tissue ingrowth into holes in blood-permeable material in the case where sides 126 are made of blood-permeable material having holes.
- This tissue growth in conjunction with the outward pressure provided by inner structure 130 , may provide additional means of reducing flow leakage about the periphery of device 101 .
- balloon 140 may be removed from the patient's body using conventional catheterization techniques. Balloon 140 may be withdrawn from tube 120 through suitable self-sealing openings in closed ends 124 .
- a suitable self-sealing opening may be of the type formed by overlapping membrane flaps (e.g., flaps 124 FIG. 1 b ).
- Other types of conventional self-sealing openings such as those formed by elastic 0 -ring structures (not shown) also may be used.
- expanding inner structure 130 may be a self-expanding structure.
- Structure 130 may have suitable biasing means, for example, springs or other elastic components, which change the configuration of structure 130 from its as-implanted collapsed configuration to its expanded configuration after device 101 has been implanted.
- Self-expanding structure 130 also may, for example, have components made from shape memory alloys (e.g., Nitinol®). The shape memory alloy components may be preformed to have a shape corresponding to the expanded configuration of structure 130 . The performed components may be bent or compressed to form structure 130 in its collapsed configuration.
- shape memory alloys e.g., Nitinol®
- FIG. 2 shows, for example, device 101 expanded by self-expanding structure 200 to a suitable expanded size for permanent deployment in an atrial appendage 100 .
- implant devices may have other kinds of inflatable or expandable structures, which allow the devices to have compact sizes for device delivery, and which can later be enlarged in situ to make the device sizes conform to the dimensions of the atrial appendages.
- An implant device of these embodiments may have one or more component structures or substructures.
- One or more of the component structures or substructures in a device may be expandable or inflatable.
- a first type of these component structures or substructures may include blood-permeable filter elements, and, for example, serve to filter harmful size emboli from the blood flow.
- a second type of the component structures or substructures may include anchoring elements, and, for example, serve to retain the deployed device in position. It will be understood that neither component types are contemplated within the invention as necessarily having mutually exclusive functions. Neither type is restricted to having only filter elements or only anchoring elements.
- a single component structure may serve both to filter blood flow and to hold the deployed device in position.
- devices having one or more of these types of component structures or substructures may have correspondingly different axial lengths spanning a wide range of values.
- devices may have axial lengths that are comparable to or are a significant fraction of the length of an atrial appendage.
- devices may have axial lengths that are comparable to or are a fraction of the length of the ostium and the neck region of the atrial appendage leading to the ostium.
- FIGS. 3 a, 3 b, 3 c, and 4 A device embodiment having a short axial length suitable for deployment fully within an ostium is illustrated in FIGS. 3 a, 3 b, 3 c, and 4 .
- Device 300 has a thin expandable or inflatable structure 310 .
- FIG. 3 a schematically shows device 300 as delivered for deployment positioned within ostium 305 .
- Structure 310 when expanded may have a shape, for example, resembling a mushroom cap (FIG. 3 b ), a pill box (FIG. 3 c ), a doughnut-shaped tube, or any other shape suitable for engaging ostium 305 .
- Expandable structure 310 may be fabricated from membranes or fabrics made of bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers.
- Expandable structure 310 includes filter elements for filtering harmful-size emboli (not shown).
- Structure 310 may include non-expanding portions made of blood-permeable membrane or fabric suitable for filtering harmful-size emboli (not shown). The non-expanding portions may, for example, in the case where structure 310 has an expandable doughnut shape extend across the central region of the doughnut shape.
- Structure 310 may also include access openings or fixtures for attaching catheters or other delivery devices (not shown).
- Anchors 330 are attached to the outer periphery of expandable structure 330 .
- Anchors 330 may, for example, be attached to an outer rim toward the posterior of expandable structure 330 .
- Anchors 330 may be pins, hooks, barbs, wires with atraumatic bulb tips or other suitable structures for engaging tissue.
- Device 300 is secured in position relative to ostium 305 when anchors 330 engage surrounding ostium wall tissue.
- Device 300 may be suitably deployed to filter blood flowing through ostium 305 by extending expandable structure 310 across ostium 305 .
- Expandable structure 320 may be self-expanding (e.g., like structure 130 FIG. 2).
- expandable structure 310 may include externally-initiated mechanical means for expansion (e.g., like balloon 140 FIG. 1 b ).
- FIG. 4 schematically illustrates the increase in size of device 300 as expandable structure 310 is being inflated.
- FIG. 4 shows device 300 increasing from an initial size a to an intermediate size b, and then to a size c.
- anchors 330 move radially outward toward the interior walls of ostium 305 .
- anchors 330 engage surrounding interior wall tissue and secure device 300 in position.
- FIG. 5 a shows an implant device 500 having an axial length which is comparable or a significant fraction of the length of atrial appendage 100 .
- Device 500 has two component substructures, i.e., proximal structure 510 , and distal structure 520 .
- Proximal structure 510 may be used to cover ostium 110 of atrial appendage 100 .
- Proximal structure 510 includes blood-permeable filter elements which filter the blood flow through ostium 110 .
- Proximal structure 510 may be made of a suitable fabric made from bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers.
- Proximal structure 510 may be an expandable structure, which may, for example, be similar to expandable structure 310 described above with reference to FIG. 3 a, 3 b and 3 c.
- proximal structure 510 may be a structure which is not expandable or inflatable.
- Non-inflatable structure 510 may, for example, be any one of the structures for covering ostium 110 described in U.S. patent application Ser. No. 09/428,008, U.S. patent application Ser. No. 09/614,091, U.S. patent application Ser. No. 09/642,291, and U.S. patent application Ser. No. 09/697,628, all incorporated by
- Distal structure 520 is inflatable and has one or more anchor sets 530 attached to an axial portion or shank 521 .
- Each of the anchor sets 530 has a suitable number of inflatable anchors 531 designed to engage the interior walls of atrial appendage 100 .
- Inflatable anchors 531 in a set 530 may be attached to axial portion 521 along a radial circumference at a suitable distance away from proximal cover 510 (not shown).
- inflatable anchors 531 in a set 530 may be attached to axial portion 521 along an axial length thereof, for example, as illustrated in FIG. 5 a.
- Anchors 531 may be attached to axial portion 521 in a spiral pattern.
- Distal structure 520 including anchor sets 530 may be made of a suitable fabric made of bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers.
- ePFTE e.g., Gortex®
- polyester e.g., Dacron®
- PTFE e.g., Teflon®
- silicone urethane
- metal fibers or other biocompatible polymers.
- Device 500 is at its compact size suitable for intra-cutaneous delivery when distal structure 520 is deflated, and when proximal structure 510 deflated or suitably folded according to whether proximal structure 510 is an expanding or a non-expanding structure.
- device 500 in its compact size may be delivered to atrial appendage 100 , for example, by cardiac catheterization.
- device 500 When fully deployed, device 500 is positioned so that proximal structure 510 appropriately extends across ostium 110 .
- Distal structure 520 is disposed to the interior of atrial appendage 100 .
- Distal structure 520 is inflated by suitable means so that inflated anchors 531 engage and press against the interior walls of atrial appendage 100 .
- the suitable means for inflating structure 520 may, for example, involve injection of fluids into structure 520 through suitable openings (not shown).
- the openings may have suitable valved seals preventing uncontrolled release or leakage of the inflating fluids.
- a single inflatable structure may provide the functions of both the distal and proximal structures described above.
- Such a device may have a sufficiently short axial length so that all or almost all of the device may fit within the ostium or ostium region of an atrial appendage Anterior portions of the device may be used cover the ostium in order to direct blood flow between the atrial appendage and the atrial chamber through filter elements.
- Attached anchors may be distributed on at least part of the exterior surface area of posterior portions of the device.
- the anchors may be pins, hooks, barbs, wires with atraumatic bulb tips or other suitable structures for engaging tissue.
- the single inflatable structure may be self-expanding or may expand in response to externally-initiated means.
- the anchors attached to its posterior portions engage the rear walls of the ostium and/or possibly the interior walls of the neck region of the atrial appendage close to the ostium.
- the device may be fabricated using suitable membranes or fabrics made of biocompatible materials, for example, such as those mentioned earlier. Further, the biocompatible materials may have, for example, any of the structures mentioned earlier (e.g., cellular matrix, wire mesh, etc.).
- FIG. 5 b and FIG. 5 c An exemplary implant device 550 most or almost all of which may fit within the ostium of an atrial appendage is illustrated in FIG. 5 b and FIG. 5 c. These two FIGS. show side elevational and top plan views of device 550 , respectively.
- Device 550 like device 300 (FIG. 3 a ) has a single component structure, i.e., expandable structure 551 .
- Expandable structure 551 includes anterior portion 560 and posterior portion 570 .
- the axial length of device 550 may be comparable to or slightly larger than the length of the ostium.
- Device 550 with an axial length slightly larger than the length of the ostium, when deployed, may extend into the neck region of the atrial appendage close to the ostium.
- FIG. 5 b shows device 550 at an expanded size at which it may be deployed in the ostium.
- Anterior portion 560 may be fabricated from an elastic membrane and include suitable filter element 565 for filtering harmful-size emboli from the blood flow.
- Anterior portion 560 may include suitable openings or fixtures for attaching catheters or other delivery devices (not shown).
- Anterior portion 560 is used to cover the ostium to ensure that all blood flow through the ostium passes through filter element 565 .
- Posterior portion 570 may, for example, be formed of a wire mesh (as shown), a braided or woven fabric, or a short segment of sheet material tube. Posterior portion 570 may have suitable radial dimensions conforming to the ostium dimensions.
- FIG. 5 c shows, for example, a cylindrical posterior portion 570 having a substantially constant diameter cross-section along its axial length.
- cylindrical posterior portion 570 may be flared with its diameter increasing along its axial length to match changes in the ostium diameter, for example, as the ostium merges into the neck region of the atrial appendage (not shown).
- posterior portion 570 has barbs 575 distributed over a part of its exterior surface area close to anterior portion 560 .
- barbs 575 may be distributed over all of the exterior surface area.
- Posterior portion 570 may optionally have suitable elastic deformation properties that cause portion 570 to recoil slightly in size from its largest expanded size. Such suitable deformation properties may be obtained by design, for example, by choice of fabrication materials with suitable elastic properties.
- the size recoil of device 550 causes barbs 575 which have engaged the ostium and/or neck region walls during the expansion of device 550 to pull back and draw the walls closer to device 550 .
- the expandable structures in other device embodiments including those described earlier e.g., FIGS. 1 - 4 , FIG. 5 a
- the various expandable implant devices may have filter elements for filtering harmful-size emboli out of the blood flowing out from the atrial appendages into the atria.
- the filter elements should have appropriate hole size distributions which filter out harmful-size emboli. Since the implant devices are likely to be expanded to different sizes in use, for example, to conform to the varying dimensions of individual atrial appendages, the filter elements are configured so that their hole size distributions do not change significantly during the expansion of the device.
- FIG. 6 shows one configuration of filter element 600 in which the size distribution of holes 610 does not change significantly during device deployment.
- filter element 600 is attached to elastic membrane 620 .
- Filter element 600 and elastic membrane 620 may, for example, be made of a suitable membrane or fabric composed of bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers.
- Filter 600 may have hole sizes ranging, for example, from about 50 to about 400 microns in diameter, suitable for filtering harmful-sized emboli.
- This range of hole size distribution may be adequate to make filter element 600 impervious to harmful-sized emboli, and yet provide enough permeability for blood to flow through element 600 .
- the hole size distribution may be selected, for example, by selecting the open weave density of the fabric used to make filter 600 .
- other techniques such as laser drilling may be used for making small diameter holes.
- Filter element 600 and elastic membrane 620 are constructed so that the former component is substantially less elastic than the latter component. This difference in elasticity may be obtained, for example, by using the same kind of material to make both components, but by making filter element 600 substantially thicker than elastic membrane 620 .
- elastic membrane 620 and filter 600 may be made of two different kinds of materials that have different elastic properties. The two different material components may be bonded or glued together.
- Filter element 600 and elastic membrane 620 may be incorporated in various types of implant device structures, for example, membrane tube 120 FIG. 1 a, expandable structure 310 FIG. 3 a, proximal structure 510 FIG. 5 a, and anterior portion 560 FIG. 5 b.
- implant device structures for example, membrane tube 120 FIG. 1 a, expandable structure 310 FIG. 3 a, proximal structure 510 FIG. 5 a, and anterior portion 560 FIG. 5 b.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Reproductive Health (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Prostheses (AREA)
- Surgical Instruments (AREA)
Abstract
Implant devices for filtering blood flowing through the ostium of an atrial appendage have component structures one or more of which are expandable. Devices with component structures in their unexpanded state have a compact size suitable for intra-cutaneous delivery to an atrial appendage situs. The expandable component structures are expanded in situ to deploy the devices. A device may have sufficiently short axial length so that most or almost all of the device length may fit within the ostium region. An expandable component structure in the device may include a blood-permeable filter element. The device may be deployed so that this component structure covers the ostium so as to direct the blood flow to pass through the filter element. The filter elements used in the devices may have hole size distributions selected to filter out harmful-size emboli. The filter elements may be embedded in elastic material so that hole-size distributions remain substantially unaffected by expansion of the device structures. Anchors attached to a component structure engage tissue surrounding the device and maintain the devices in position. The anchors may include inflatable anchors which engage interior walls of the atrial appendage.
Description
- This application claims the benefit of U.S. provisional application No. 60/226,461, filed Aug. 18, 2000, U.S. provisional application No. 60/234,112, filed Sep. 21, 2000, and U.S. provisional application No. 60/234,113, filed Sep. 21, 2000, all of which are hereby incorporated by reference in their entireties herein.
- 1. Field of the Invention
- The invention relates to implant devices that may be implanted in an atrial appendage for filtering blood flowing between the atrial appendage and an associated atrium of the heart to prevent thrombi from escaping from the atrial appendage into the body's blood circulation system.
- 2. Description of the Related Art
- There are a number of heart diseases (e.g., coronary artery disease, mitral valve disease) that have various adverse effects on a patient's heart. An adverse effect of certain cardiac diseases, such as mitral valve disease, is atrial (or auricular) fibrillation. Atrial fibrillation leads to depressed cardiac output. A high incidence of thromboembolic (i.e., blood clot particulate) phenomena are associated with atrial fibrillation, and the left atrial appendage (LAA) is frequently the source of the emboli (particulates).
- Thrombi (i.e., blood clots) formation in the LAA may be due to stasis within the fibrillating and inadequately emptying LAA. Blood pooling in the atrial appendage is conducive to the formation blood clots. Blood clots may accumulate, build upon themselves. Small or large fragments of the blood clots may break off and propagate out from the atrial appendage into the atrium. The blood clot fragments can then enter the body's blood circulation and embolize distally into the blood stream.
- Serious medical problems result from the migration of blood clot fragments from the atrial appendage into the body's blood stream. Blood from the left atrium and ventricle circulates to the heart muscle, the brain, and other body organs, supplying them with necessary oxygen and other nutrients. Emboli generated by blood clots formed in the left atrial appendage may block the arteries through which blood flows to a body organ. The blockage deprives the organ tissues of their normal blood flow and oxygen supply (ischemia), and depending on the body organ involved leads to ischemic events such as heart attacks (heart muscle ischemia) and strokes (brain tissue ischemia).
- It is therefore important to find a means of preventing blood clots from forming in the left atrial appendage. It is also important to find a means to prevent fragments or emboli generated by any blood clots that may have formed in the atrial appendages, from propagating through the blood stream to the heart muscle, brain or other body organs.
- U.S. Pat. No. 5,865,791 (hereinafter, “the '791patent”) relates to the reduction of regions of blood stasis in the heart and ultimately reduction of thrombi formation in such regions, particularly in the atrial appendages of patients with atrial fibrillation. More specifically, the '791 patent relates to procedures and devices for affixing the atrial appendages in an orientation that prevents subsequent formation of thrombi. In the '791 patent, the appendage is removed from the atrium by pulling the appendage, placing a loop around the appendage to form a sack, and then cutting it off from the rest of the heart.
- U.S. Pat. No. 5,306,234 describes a method for surgically closing the passage way between the atrium and the atrial appendage, or alternatively severing the atrial appendage.
- Some recently proposed methods of treatment are directed toward implanting a plug-type device in an atrial appendage to occlude the flow of blood therefrom.
- A preventive treatment method for avoiding thromboembolic events (e.g., heart attacks, strokes, and other ischemic events) involves filtering out harmful emboli from the blood flowing out of atrial appendages. Co-pending and co-owned U.S. patent application Ser. No. 09/428,008, U.S. patent application Ser. No. 09/614,091, U.S. patent application Ser. No. 09/642,291, and U.S. patent application Ser. No. 09/697,628, all of which are hereby incorporated by reference in their entireties herein, describe filtering devices which may be implanted in an atrial appendage to filter the blood flow therefrom. The devices may be delivered to the atrial appendage using common cardiac catheterization methods. These methods may include trans septal catheterization which involves puncturing an atrial septum.
- Catheters and implant devices that are large may require large punctures in the septum. Large catheters and devices may damage body tissue during delivery or implantation. Damage to body tissue may cause trauma, increase recovery time, increase the risk of complications, and increase the cost of patient care. Further the atrial appendages may vary in shape and size from patient to patient.
- It would therefore be desirable to provide implant devices which are small and which can be delivered by small-sized catheters to the atrial appendages. It would therefore also be desirable to provide implant devices whose size can be adjusted in situ to conform to the size of the atrial appendages.
- The invention provides implant devices and methods, which may be used to filter blood flowing between atrial appendages and atrial chambers. The devices are designed to prevent the release of blood clots formed in the atrial appendages into the body's blood circulation system.
- All implant devices disclosed herein have adjustable sizes. A compact or narrow size may be used for intra-cutaneous device delivery to an atrial appendage, for example, by cardiac catheterization. The devices include size-adjusting mechanisms that allow the device size to be enlarged in situ to an expanded size conforming to the dimensions of the atrial appendage.
- In an embodiment of the implant device, an expanding inner structure is disposed inside a membrane tube. The inner structure has rigid components, which when the inner structure is expanded press or push sides of the membrane tube outward. The inner structure may be self-expanding or may, for example, be expanded by an inflatable balloon. When the inner structure is in a collapsed configuration, the device has a compact size suitable for delivery to and insertion in an atrial appendage, for example, by cardiac catheterization. When fully deployed for use, a closed end of the membrane tube covers the ostium of the atrial appendage. Filter elements or components built into the closed end of the membrane tube filter out harmful-size emboli from the blood flowing out of the atrial appendage. The device may be held in position by expanding the inner structure to press sides of the membrane tube against the interior walls of the atrial appendage.
- Other embodiments of the implant devices may have other kinds of inflatable or expandable structures which allow the devices to have compact sizes for device delivery and which can later be enlarged in situ to make the device size conform to the dimensions of the atrial appendages.
- The devices may have short axial lengths that are comparable to or are a fraction of the length of an ostium. A short-axial length device may have a thin expandable or inflatable structure. The cross-sectional shape of a thin expandable structure may, for example, resemble that of a mushroom cap, a pill box, or a doughnut-shaped tube, etc. The structure may include suitable blood-permeable filter elements for filtering harmful-size emboli from the blood flow. The filter elements may be located centrally or may be located off-center in the thin structure. When deployed the thin structure covers the ostium of an atrial appendage and directs all blood flow through the ostium to pass through the filter elements. The structure may be suitably designed to prevent unwanted flow channels (e.g., around the edges of the device) through which unfiltered blood may flow between the appendage and the atrium. The structure may have anchors attached to its outside periphery. These anchors may be pins, hooks, barbs, atraumatic bulb tips or other suitable structures for engaging wall tissue. The anchors engage the interior walls of the ostium and thereby secure the position of the deployed device. Some devices may have axial lengths that may be slightly larger than the length of an ostium. Such devices may have anchors disposed on posterior portions of the expandable structure for engaging interior wall tissue of the neck region of the atrial appendage leading to the ostium
- Other devices with expandable or inflatable structures may have longer axial lengths that are comparable to or are a substantial fraction of the length of an atrial appendage. A longer-axial length device may have a first structure designed to cover the ostium of an atrial appendage and filter blood flow therethrough. This first structure may optionally be expandable or non-expandable. In either case, an expandable second structure in the device may be used to help secure the device in its deployed position. The expandable second structure is generally disposed in the lumen or interior cavity of the atrial appendages. The expandable second structure may be self-expanding or may, for example, be expandable by balloon inflation. The expandable second structures may have components such as attached anchors for engaging the interior walls of the atrial appendages. These anchors may be pins, hooks, barbs, atraumatic bulb tips or other suitable structures for engaging wall tissue. The expandable second structure may additionally or alternatively include inflatable anchors. These inflatable anchors directly engage the interior walls of the atrial appendage when inflated and provide resistance to changes in the position of the deployed device.
- Filter elements with predetermined hole size distributions for filtering harmful-sized emboli from the blood flow may be incorporated in the expandable implant devices. The filter elements may be configured so that their hole size distributions do not change significantly during the expansion of the device. In one configuration the filter elements are embedded in elastic membranes. These membranes are designed such that when the devices are expanded concomitant stretching of the filter element configurations due to the increase in device size is largely accommodated by the elastic membranes. The sizes of filter elements themselves and their predetermined hole size distributions remain substantially unchanged.
- Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawing and the following detailed description.
- FIG. 1a is a cross sectional view showing an adjustable-size implant device at its narrow compact size suitable for delivery by cardiac catheterization in accordance with the principles of the invention.
- FIG. 1b is a cross sectional view showing the implant device of FIG. 1a deployed in an atrial appendage. The implant device shown has membrane tube having filter elements for filtering blood. The device is retained in position by an expanded inner structure in accordance with the principles of the invention.
- FIG. 1c is a schematic perspective view showing an exemplary expanded inner structure in its expanded configuration in accordance with the principles of the invention.
- FIG. 2 is a partial sectional view showing another implant device deployed in an atrial appendage. The implant device shown has filter elements for filtering blood and is retained in position by a self-expanding inner structure in accordance with the principles of the invention.
- FIG. 3a is a schematic illustration of an as-delivered implant device positioned within an ostium. The device has a thin expandable structure which may be used to cover the ostium of an atrial appendage so that blood flow between the appendage and the atrium is constrained to pass through filter elements in the device in accordance with the principles of the invention.
- FIGS. 3b and 3 c are cross-sectional views illustrating exemplary shapes of the expandable structure of the implant device of FIG. 3a.
- FIG. 4 schematically illustrates the increase in size of the implant device of FIG. 3a as its expandable structure is being inflated in accordance with the principles of the invention.
- FIG. 5a is a partial cross sectional view showing an implant device with an expandable distal structure disposed in an atrial appendage. The implant device shown has a proximal structure, which may be used to cover the ostium of the atrial appendage to direct blood flow to pass through filter elements. The device is retained in position by the distal structure which has inflatable anchors in accordance with the principles of the invention.
- FIG. 5b is a side elevational view showing another implant device with expandable structures in which a single expanding structure provides the functions of both the proximal and distal structures shown in FIG. 5b, in covering the ostium and in securing the position of the device, in accordance with the principles of the invention.
- FIG. 5c is a plan view of the implant device shown in FIG. 5b.
- FIG. 6 is a schematic illustration of a predetermined-size filter element having holes impervious to harmful-size emboli, and an elastic membrane attached the filter element in accordance with the principles of the invention.
- Although atrial fibrillation may result in the pooling of blood in the left atrial appendage and the majority of use of the invention is anticipated to be for the left atrial appendage, the invention may also be used for the right atrial appendage and in general for placement across any aperture in the body in which blood is permitted to flow therethrough or therefrom but in which blood clots are substantially prevented from escaping from the atrial appendage and entering into the bloodstream.
- The implant devices disclosed herein have adjustable sizes. A compact or narrow size is used for intra-cutaneous device delivery to the atrial appendages, for example, by cardiac catheterization. The devices include size-adjusting expansion mechanisms that allow the device size to be enlarged in situ to an expanded size. Controlled expansion may be desirable for the proper functioning of an implant device. For example, the filter elements of a device must be correctly centered or positioned across an atrial appendage ostium for the device to properly intercept and filter blood flowing out of the atrial appendage. The expansion mechanisms allow for controlled expansion of the implanted device size in situ to conform to the dimensions of the atrial appendage. Further, the expansion mechanisms may allow for the expansion to be at least partially reversed and thereby enable a physician to optimize or adjust the deployment of the device in situ. The types of implant devices disclosed herein add to variety of device types disclosed in U.S. patent application Ser. No. 09/428,008, U.S. patent application SER. No. 09/614,091, U.S. patent application SER. No. 09/642,291, and U.S. patent application SER. No. 09/697,628, all incorporated in by reference herein.
- FIG. 1a shows
device 101 at its compact size suitable for delivery to atrial appendage 100 (FIG. 1b) by cardiac catheterization.Device 101 has amembrane tube 120 in which an expandingstructure 130 is disposed.Membrane tube 120 may be made of thin flexible materials. Expandingstructure 130, in contrast, may have components which are made of more rigid material such as hard plastics or corrosion-resistant metal alloys including shape memory alloys. Expandingstructure 130 has a collapsed configuration (FIG. 1a) and a larger expanded configuration (FIGS. 1b and 1 c). - In both the collapsed and expanded configurations,
structure 130 may have a generally cylindrical shape.Structure 130 may have a design that allows it to expand radially without any significant concomitant change in its axial length. The design of also may allow for permanent deformation, or partially or completely reversible deformation ofstructure 130 during its expansion. FIG. 1c schematically illustrates portions of an exemplaryinner structure 130 in its expanded configuration.Structure 130 shown in FIG. 1c is similar to structures shown and described in greater detail, for example, in U.S. application Ser. No. 09/642,291.Structure 130 includes interconnectedserpentine segments 131. Adjacentserpentine segments 131 are interconnected by a plurality oflongitudinal struts 132. Endserpentine segment 131 is connected byradial members 133 to a central hollowcylindrical ring 134. Some or all of components 130-134 may, for example, be fabricated from shape memory alloys. - Externally-initiated means may be used to change the configuration of
structure 130 when it is placed inatrial appendage 100. For example, balloon 140 (e.g., placed withinstructure 130 through central hollow cylindrical ring 134) may be inflated to change the configuration ofstructure 130 from its collapsed configuration to its expanded configuration.Balloon 140 may be inflated or deflated conventionally, for example, by injecting or withdrawing suitable fluids from the body ofballoon 140, respectively, through suitable elastic sealed openings, for example,valve structures 142. The elastic sealed openings such asvalve structures 142 prevent uncontrolled release of fluids injected in to balloon 140. - FIG. 1b shows, for example,
device 101 expanded to a suitable expanded size for permanent deployment inatrial appendage 100.Device 101 may be used to filter blood flowing out fromatrial appendage 100.Device 101 has amembrane tube 120 in which an expandingstructure 130 is placed.Membrane tube 120 has a generally cylindrical shape and may have one or both of its distal and proximal ends closed. FIG. 1b showsmembrane 120 having both distal and proximal closed ends 124. Themembrane tube 120 can be made of bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers. - In one embodiment of
device 101 at least portions of closed ends 124 serve asfilter elements 125 for filtering harmful-size emboli from blood flow.Filter elements 125 are made of blood-permeable material. The remaining portions of membrane tube 125 (e.g., sides 126) may be made of blood-impervious material. The materials used to fabricatemembrane tube 125 components can be any suitable bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers. The structure of the blood-permeable material used to fabricatefilter elements 125 is preferably a two-dimensional screen, a cellular matrix, a woven or non-woven mesh, or the like. The structure of the blood-permeable material may also be that of a permeable metal or a mesh of fine metal fibers. Further, the blood-permeable material infilter elements 125 may be coated or covered with an anticoagulant, such as heparin, or another compound, or treated to provide antithrombogenic properties to thefilter elements 125 to inhibit clogging offilter elements 125 by an accumulation of blood clots. -
Filter elements 125 have holes through them for blood flow. As used herein, it will be understood that the term hole refers to an opening in the structure of a filter element which provides a continuous open channel or passageway from one side of the filter element to the other. The term pore refers to a small cavity in the material of a filter element. Cavities or pores do not provide a continuous open channel or passageway through the filter element. Partially opened surface pores, however, are an important component of surface texture which is advantageous for cellular tissue ingrowth. - The hole sizes in the blood-permeable material included in
filter elements 125 may be chosen to be sufficiently small so that harmful-size emboli are filtered out from the blood flow betweenappendage 100 and atrium 105 (shown partially in FIGS. 1b and 1 c). Yet the hole sizes may be chosen to be sufficiently large to provide an adequate flow conductivity for emboli-free blood to pass throughdevice 101.Filter elements 125 may have hole sizes ranging, for example, from about 50to about 400 microns in diameter. The distribution the hole sizes may be suitably chosen, for example, with regard to individual circumstances, to be larger or smaller than indicated, provided such holes substantially inhibit harmful-size emboli from passing therethrough. The open area offilter elements 125 is preferably at least 20% of the overall surface area of the closed ends 124, although a range of about 25-60% may be preferred. - The hole size distribution of the material used to make
filter elements 125, described above, allows blood to flow therethrough while blocking or inhibiting the passage of thrombus, clots, or emboli formed within the atrial appendage from entering the atrium of the heart and, eventually, the patient's bloodstream. - In an alternative embodiment, substantially all of
membrane tube 120 may be made of blood-permeable material suitable for filtering harmful-size emboli. Use of a single material (or a fewer number of different types of materials) inmembrane tube 120 may simplify its fabrication. In this case it may be sufficient to coat or coverclosed end 124 portions with an anticoagulant to prevent clogging of blood flow betweenatrial appendage 100 andatrium 105.Sides 126, for example, need not be coated with an anticoagulant as they are likely to be sealed in any event by atrial appendage wall tissue whendevice 101 is deployed in an atrial appendage, as described below. - For all embodiments of
device 101, for example, as described above, when fully deployed,membrane tube 120 is held or retained in position inatrial appendage 100 so that proximalclosed end 124 extends across or coversostium 110. After initial insertion ofdevice 101 inatrial appendage 100, expandingstructure 130 is expanded, for example, by inflatingballoon 140, from its initial compact size to an expanded size. Expandingstructure 130 is expanded to a suitable size to pressmembrane tube sides 126 directly against interior walls 100 a ofatrial appendage 100. The direct engagement ofsides 126 with interior wall tissue 100 a caused by the outward pressing bystructure 130 holdsdevice 101 provides a degree of resistance to movement ofdevice 101 withinatrial appendage 100 and holdsdevice 101 in a substantially fixed position. However, this resistance to movement at least initially during the implant procedure may be reversed to allow repositioning ofdevice 101 if necessary or desirable. The reversal may be complete or partial corresponding to the elastic deformation characteristics ofstructure 130. The reversal may be accomplished, for example, by deflation ofballoon 140. Later, regenerative tissue growth, for example, of endothelial or endocardial tissue, conforming to the outer surface textures ofsides 126 may bindsides 126 and provide additional securement of fully deployeddevice 101. This tissue growth binding may, for example, involve tissue ingrowth into partially-open surface pores of the material ofsides 126, or, for example, tissue ingrowth into holes in blood-permeable material in the case wheresides 126 are made of blood-permeable material having holes. This tissue growth, in conjunction with the outward pressure provided byinner structure 130, may provide additional means of reducing flow leakage about the periphery ofdevice 101. - In some implant procedures it may be desirable to leave
balloon 140 in situs, for example, in a deflated state. In other implant procedures it may be desirable to physically removeballoon 140 afterdevice 101 has been secured inappendage 100. As necessary or desired,balloon 140 may be removed from the patient's body using conventional catheterization techniques.Balloon 140 may be withdrawn fromtube 120 through suitable self-sealing openings in closed ends 124. A suitable self-sealing opening may be of the type formed by overlapping membrane flaps (e.g., flaps 124 FIG. 1b ). Other types of conventional self-sealing openings such as those formed by elastic 0-ring structures (not shown) also may be used. - In further embodiments of
device 101, expandinginner structure 130 may be a self-expanding structure.Structure 130 may have suitable biasing means, for example, springs or other elastic components, which change the configuration ofstructure 130 from its as-implanted collapsed configuration to its expanded configuration afterdevice 101 has been implanted. Self-expandingstructure 130 also may, for example, have components made from shape memory alloys (e.g., Nitinol®). The shape memory alloy components may be preformed to have a shape corresponding to the expanded configuration ofstructure 130. The performed components may be bent or compressed to formstructure 130 in its collapsed configuration. After device implantation, heating or changing temperature induces the bent or compressed the shape memory alloy components to automatically revert to their performed shapes corresponding to the expanded configuration ofstructure 130. FIG. 2 shows, for example,device 101 expanded by self-expanding structure 200 to a suitable expanded size for permanent deployment in anatrial appendage 100. - Other embodiments of the implant devices may have other kinds of inflatable or expandable structures, which allow the devices to have compact sizes for device delivery, and which can later be enlarged in situ to make the device sizes conform to the dimensions of the atrial appendages. An implant device of these embodiments may have one or more component structures or substructures. One or more of the component structures or substructures in a device may be expandable or inflatable. A first type of these component structures or substructures may include blood-permeable filter elements, and, for example, serve to filter harmful size emboli from the blood flow. A second type of the component structures or substructures may include anchoring elements, and, for example, serve to retain the deployed device in position. It will be understood that neither component types are contemplated within the invention as necessarily having mutually exclusive functions. Neither type is restricted to having only filter elements or only anchoring elements. A single component structure may serve both to filter blood flow and to hold the deployed device in position.
- Different embodiments of devices having one or more of these types of component structures or substructures may have correspondingly different axial lengths spanning a wide range of values. At the upper end of the range, devices may have axial lengths that are comparable to or are a significant fraction of the length of an atrial appendage. Toward the lower end of the range, devices may have axial lengths that are comparable to or are a fraction of the length of the ostium and the neck region of the atrial appendage leading to the ostium.
- A device embodiment having a short axial length suitable for deployment fully within an ostium is illustrated in FIGS. 3a, 3 b, 3 c, and 4.
Device 300 has a thin expandable orinflatable structure 310. FIG. 3aschematically showsdevice 300 as delivered for deployment positioned withinostium 305.Structure 310 when expanded may have a shape, for example, resembling a mushroom cap (FIG. 3b), a pill box (FIG. 3c), a doughnut-shaped tube, or any other shape suitable for engagingostium 305. - Expandable
structure 310 may be fabricated from membranes or fabrics made of bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers.Expandable structure 310 includes filter elements for filtering harmful-size emboli (not shown).Structure 310 may include non-expanding portions made of blood-permeable membrane or fabric suitable for filtering harmful-size emboli (not shown). The non-expanding portions may, for example, in the case wherestructure 310 has an expandable doughnut shape extend across the central region of the doughnut shape.Structure 310 may also include access openings or fixtures for attaching catheters or other delivery devices (not shown).Anchors 330 are attached to the outer periphery ofexpandable structure 330.Anchors 330 may, for example, be attached to an outer rim toward the posterior ofexpandable structure 330.Anchors 330 may be pins, hooks, barbs, wires with atraumatic bulb tips or other suitable structures for engaging tissue.Device 300 is secured in position relative toostium 305 whenanchors 330 engage surrounding ostium wall tissue. -
Device 300 may be suitably deployed to filter blood flowing throughostium 305 by extendingexpandable structure 310 acrossostium 305. Expandable structure 320 may be self-expanding (e.g., likestructure 130 FIG. 2). Alternatively,expandable structure 310 may include externally-initiated mechanical means for expansion (e.g., likeballoon 140 FIG. 1b). FIG. 4 schematically illustrates the increase in size ofdevice 300 asexpandable structure 310 is being inflated. FIG. 4 showsdevice 300 increasing from an initial size a to an intermediate size b, and then to a size c. Asdevice 300 size increases attachedanchors 330 move radially outward toward the interior walls ofostium 305. Whenstructure 310 is sufficiently expanded, anchors 330 engage surrounding interior wall tissue andsecure device 300 in position. - FIG. 5a shows an implant device 500 having an axial length which is comparable or a significant fraction of the length of
atrial appendage 100. Device 500 has two component substructures, i.e.,proximal structure 510, anddistal structure 520.Proximal structure 510 may be used to coverostium 110 ofatrial appendage 100.Proximal structure 510 includes blood-permeable filter elements which filter the blood flow throughostium 110.Proximal structure 510 may be made of a suitable fabric made from bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers.Proximal structure 510 may be an expandable structure, which may, for example, be similar toexpandable structure 310 described above with reference to FIG. 3a, 3 b and 3 c. Alternatively,proximal structure 510 may be a structure which is not expandable or inflatable.Non-inflatable structure 510 may, for example, be any one of the structures for coveringostium 110 described in U.S. patent application Ser. No. 09/428,008, U.S. patent application Ser. No. 09/614,091, U.S. patent application Ser. No. 09/642,291, and U.S. patent application Ser. No. 09/697,628, all incorporated by reference herein. - In either case,
structure 510 is retained in position extending acrossostium 110 by use of attacheddistal structure 520.Distal structure 520 is inflatable and has one or more anchor sets 530 attached to an axial portion orshank 521. Each of the anchor sets 530 has a suitable number ofinflatable anchors 531 designed to engage the interior walls ofatrial appendage 100. Inflatable anchors 531 in aset 530 may be attached toaxial portion 521 along a radial circumference at a suitable distance away from proximal cover 510 (not shown). Alternatively,inflatable anchors 531 in aset 530 may be attached toaxial portion 521 along an axial length thereof, for example, as illustrated in FIG. 5a.Other distributions ofanchors 531 also may be used. For example, anchors 531 may be attached toaxial portion 521 in a spiral pattern.Distal structure 520 including anchor sets 530 may be made of a suitable fabric made of bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers. - Device500 is at its compact size suitable for intra-cutaneous delivery when
distal structure 520 is deflated, and whenproximal structure 510 deflated or suitably folded according to whetherproximal structure 510 is an expanding or a non-expanding structure. In an implant procedure, device 500 in its compact size may be delivered toatrial appendage 100, for example, by cardiac catheterization. When fully deployed, device 500 is positioned so thatproximal structure 510 appropriately extends acrossostium 110.Distal structure 520 is disposed to the interior ofatrial appendage 100.Distal structure 520 is inflated by suitable means so thatinflated anchors 531 engage and press against the interior walls ofatrial appendage 100. The friction between outwardlypressing anchors 531 and the atrial appendage walls retains device 500 in its desired fully deployed position. The suitable means for inflatingstructure 520 may, for example, involve injection of fluids intostructure 520 through suitable openings (not shown). The openings may have suitable valved seals preventing uncontrolled release or leakage of the inflating fluids. - In another device embodiment, a single inflatable structure may provide the functions of both the distal and proximal structures described above. Such a device may have a sufficiently short axial length so that all or almost all of the device may fit within the ostium or ostium region of an atrial appendage Anterior portions of the device may be used cover the ostium in order to direct blood flow between the atrial appendage and the atrial chamber through filter elements. Attached anchors may be distributed on at least part of the exterior surface area of posterior portions of the device. The anchors may be pins, hooks, barbs, wires with atraumatic bulb tips or other suitable structures for engaging tissue. The single inflatable structure may be self-expanding or may expand in response to externally-initiated means. When the device is expanded the anchors attached to its posterior portions engage the rear walls of the ostium and/or possibly the interior walls of the neck region of the atrial appendage close to the ostium. The device may be fabricated using suitable membranes or fabrics made of biocompatible materials, for example, such as those mentioned earlier. Further, the biocompatible materials may have, for example, any of the structures mentioned earlier (e.g., cellular matrix, wire mesh, etc.).
- An
exemplary implant device 550 most or almost all of which may fit within the ostium of an atrial appendage is illustrated in FIG. 5b and FIG. 5c. These two FIGS. show side elevational and top plan views ofdevice 550, respectively.Device 550 like device 300 (FIG. 3a) has a single component structure, i.e.,expandable structure 551.Expandable structure 551 includesanterior portion 560 and posterior portion 570. The axial length ofdevice 550 may be comparable to or slightly larger than the length of the ostium.Device 550 with an axial length slightly larger than the length of the ostium, when deployed, may extend into the neck region of the atrial appendage close to the ostium. - FIG. 5b shows
device 550 at an expanded size at which it may be deployed in the ostium.Anterior portion 560 may be fabricated from an elastic membrane and includesuitable filter element 565 for filtering harmful-size emboli from the blood flow.Anterior portion 560 may include suitable openings or fixtures for attaching catheters or other delivery devices (not shown).Anterior portion 560 is used to cover the ostium to ensure that all blood flow through the ostium passes throughfilter element 565. Posterior portion 570 may, for example, be formed of a wire mesh (as shown), a braided or woven fabric, or a short segment of sheet material tube. Posterior portion 570 may have suitable radial dimensions conforming to the ostium dimensions. FIG. 5c shows, for example, a cylindrical posterior portion 570 having a substantially constant diameter cross-section along its axial length. Alternatively, cylindrical posterior portion 570 may be flared with its diameter increasing along its axial length to match changes in the ostium diameter, for example, as the ostium merges into the neck region of the atrial appendage (not shown). - As shown in FIG. 5b, posterior portion 570 has
barbs 575 distributed over a part of its exterior surface area close toanterior portion 560. Alternatively,barbs 575 may be distributed over all of the exterior surface area. Whendevice 550 is positioned and expanded in an ostium,barbs 575 engage the surrounding ostium walls (and possibly neck region walls) to securedevice 550 in position. - Posterior portion570 may optionally have suitable elastic deformation properties that cause portion 570 to recoil slightly in size from its largest expanded size. Such suitable deformation properties may be obtained by design, for example, by choice of fabrication materials with suitable elastic properties. The size recoil of
device 550 causesbarbs 575 which have engaged the ostium and/or neck region walls during the expansion ofdevice 550 to pull back and draw the walls closer todevice 550. The expandable structures in other device embodiments including those described earlier (e.g., FIGS. 1-4, FIG. 5a) also may have similar size recoil characteristics which cause attached anchors to engage and draw surrounding wall tissue closer to the devices. - The various expandable implant devices (e.g., those described above with reference to FIGS.1-5) may have filter elements for filtering harmful-size emboli out of the blood flowing out from the atrial appendages into the atria. For effective filtering, the filter elements should have appropriate hole size distributions which filter out harmful-size emboli. Since the implant devices are likely to be expanded to different sizes in use, for example, to conform to the varying dimensions of individual atrial appendages, the filter elements are configured so that their hole size distributions do not change significantly during the expansion of the device.
- For example, FIG. 6 shows one configuration of
filter element 600 in which the size distribution of holes 610 does not change significantly during device deployment. In the configuration shown,filter element 600 is attached toelastic membrane 620.Filter element 600 andelastic membrane 620 may, for example, be made of a suitable membrane or fabric composed of bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers.Filter 600 may have hole sizes ranging, for example, from about 50 to about 400 microns in diameter, suitable for filtering harmful-sized emboli. This range of hole size distribution may be adequate to makefilter element 600 impervious to harmful-sized emboli, and yet provide enough permeability for blood to flow throughelement 600. The hole size distribution may be selected, for example, by selecting the open weave density of the fabric used to makefilter 600. Alternatively, for example, for filter elements made of solid sheet material, other techniques such as laser drilling may be used for making small diameter holes. -
Filter element 600 andelastic membrane 620 are constructed so that the former component is substantially less elastic than the latter component. This difference in elasticity may be obtained, for example, by using the same kind of material to make both components, but by makingfilter element 600 substantially thicker thanelastic membrane 620. Alternatively,elastic membrane 620 and filter 600 may be made of two different kinds of materials that have different elastic properties. The two different material components may be bonded or glued together. -
Filter element 600 andelastic membrane 620 may be incorporated in various types of implant device structures, for example,membrane tube 120 FIG. 1a,expandable structure 310 FIG. 3a,proximal structure 510 FIG. 5a, andanterior portion 560 FIG. 5b. When the device incorporating these two components is expanded, most of the concomitant stretching of the filter configuration due to the increase in device size is accommodated by the stretching ofelastic membrane 620 leaving the size offilter element 600 substantially unchanged from its predetermined value. - It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. It will be understood that terms like “distal” and “proximal”, anterior” and “posterior”, and other directional or orientational terms are used herein only for convenience, and that no fixed or absolute orientations are intended by the use of these terms.
Claims (49)
1. A device for filtering blood flowing through the ostium of an atrial appendage, comprising:
a membrane tube having at least a first closed end wherein said first closed end comprises a blood-permeable filter; and
an expandable structure disposed in said tube, said structure having a collapsed configuration and an expanded configuration,
wherein said device is insertable in said appendage while said expandable structure is in said collapsed configuration, and wherein when said expandable structure is in said expanded configuration said closed end covers the ostium of said atrial appendage and portions of said membrane tube are pressed outwards against the interior walls of said atrial appendage anchoring said device therein.
2. The device of claim 1 wherein said membrane tube has a substantially cylindrical shape.
3. The device of claim 1 wherein said membrane tube has a second closed end.
4. The device of claim 3 wherein said second closed end comprises a blood-permeable filter.
5. The device of claim 1 wherein said expandable structure is self-expanding.
6. The device of claim 1 wherein said expandable structure expands from said collapsed configuration to said expanded configuration by means of an inflatable balloon.
7. The device of claim 6 wherein said first closed end further comprises a self-sealing opening for withdrawing said inflatable balloon.
8. The device of claim 7 wherein said self-sealing opening comprises an elastic ring.
9. The device of claim 7 wherein said self-sealing opening comprises overlapping membrane flaps.
10. The device of claim 1 wherein said membrane tube comprises elastomeric material.
11. The device of claim 1 wherein said membrane tube comprises braided material.
12. The device of claim 1 wherein said membrane tube comprises woven material.
13. A method for filtering blood flowing through the ostium of an atrial appendage, comprising:
providing a device comprising a membrane tube having at least a first closed end wherein said first closed end comprises a blood-permeable filter;
inserting said device in said appendage;
positioning said closed end to cover said ostium; and
anchoring said device in said atrial appendage.
14. The method of claim 13 wherein said anchoring comprises pressing sides of said tube outward against the interior walls of said atrial appendage.
15. The method of claim 13 wherein said providing a device further comprises disposing an expandable structure in said membrane tube, wherein said inserting further comprises placing said device in said atrial appendage while said expandable structure is in a collapsed configuration, and wherein said positioning and said anchoring comprise expanding said expandable structure to an expanded configuration.
16. The method of claim 15 wherein said expanding comprises using an inflatable balloon.
17. The method of claim 16 further comprising deflating and withdrawing said balloon from said atrial appendage after said device is anchored in said atrial appendage.
18. A device for filtering blood flowing through the ostium of an atrial appendage, comprising:
a cover comprising:
a filter element having a predetermined size; and
an expandable membrane attached to said filter element; and
an expandable structure for deploying said cover,
wherein said expandable membrane stretches as said cover is deployed and allows said predetermined size to remain substantially unchanged.
19. The device of claim 18 wherein said filter element comprises holes substantially impervious to harmful-size emboli.
20. The filter of claim 18 wherein said filter element is made of material which is less elastic than said expandable membrane
21. A method for filtering blood flowing through the ostium of an atrial appendage, comprising:
providing a cover comprising an expandable membrane attached to a filter element having a predetermined size;
providing an expandable structure to deploy said cover across said ostium; and
positioning said cover across said ostium using said expandable structure,
wherein said positioning comprises stretching said expandable membrane such that said predetermined size is substantially unchanged.
22. A device for filtering blood flowing through the ostium of an atrial appendage, comprising:
an expandable structure for covering said ostium; and
anchors disposed on the outer periphery of said expandable, wherein expandable structure has an axial length less than about the combined lengths of said ostium and a neck region of said atrial appendage leading to said ostium, wherein said expandable structure comprises a blood-permeable filter, and wherein said anchors engage surrounding ostium wall tissue.
23. The device of claim 22 wherein said expandable structure is self-expanding.
24. The device of claim 22 wherein said expandable structure expands in response to externally-initiated means.
25. The device of claim 24 wherein said externally-initiated means comprises an inflatable balloon.
26. The device of claim 22 wherein said blood-permeable filter comprises holes that are substantially impervious to harmful-size emboli.
27. A method for filtering blood flowing through the ostium of an atrial appendage, comprising:
providing an expandable structure comprising a blood-permeable filter, said expandable structure having an axial length less than about the length of an ostium;
providing anchors attached to said expandable structure;
disposing said expandable structure within said ostium;
positioning said expandable structure to cover said ostium; and
expanding said expandable structure so that said anchors engage surrounding ostium wall tissue.
28. The method of claim 27 wherein said providing an expandable structure comprises providing a self-expanding structure.
29. The method of claim 27 wherein said providing an expandable structure further comprises providing externally-initiated means to expand said expandable structure, and wherein said expanding comprises initiating said means.
30. The method of claim 29 wherein said providing externally-initiated means comprises providing an inflatable balloon, and wherein said initiating comprises inflating said inflatable balloon.
31. The method of claim 30 further comprising deflating and withdrawing said inflatable balloon after said anchors engage surrounding ostium wall tissue.
32. The method of claim 27 wherein said positioning said expandable structure to cover said ostium comprises positioning said expandable structure to direct substantially all blood flow through said ostium to pass through said filter.
33. A device for filtering blood flowing through the ostium of an atrial appendage, comprising:
a first structure comprising a blood-permeable filter element; and
a second structure attached to said first structure, said rear structure comprising at least one inflatable anchor set,
wherein said first structure is deployed across said ostium, and wherein said inflatable anchor set when inflated engages interior wall tissue of said atrial appendage to secure said device in its deployed position.
34. The device of claim 33 wherein said second structure comprises an axial portion, wherein said at least one inflatable anchor set comprises anchors attached to said axial portion along a radial circumference thereof.
35. The device of claim 33 wherein said second structure comprises an axial portion, wherein said at least one inflatable anchor set comprises anchors attached to said axial portion along an axial length thereof.
36. The device of claim 33 wherein said first structure comprises an inflatable structure.
37. The device of claim 33 wherein said filter element comprises holes substantially impervious to harmful-size emboli.
38. A method for filtering blood flowing through the ostium of an atrial appendage, comprising:
providing a device comprising:
a first structure comprising a blood-permeable filter element; and
a second structure attached to said first structure, said second structure
comprising at least one inflatable anchor set;
positioning said first structure to cover said ostium;
disposing said second structure interior to said atrial appendage; and
inflating said anchor set expanding so that said anchors engage surrounding atrial appendage wall tissue.
39. The method of claim 38 wherein providing an implant device further comprises providing said first structure comprising an inflatable structure.
40. A device for filtering blood flowing through the ostium of an atrial appendage, comprising:
an expandable structure comprising:
a first portion having a blood-permeable filter element; and
a second portion having a cylindrical shape; and
anchors disposed on at least part of the exterior surface of said second portion,
wherein when said device is deployed in about the vicinity of said ostium by expanding said expandable structure said first portion covers said ostium to direct said blood flow through said filter element and said anchors engage surrounding wall tissue.
41. The device of claim 40 wherein said filter element comprises holes substantially impervious to filter harmful-size emboli.
42. The device of claim 40 wherein said second portion further comprises a substantially constant diameter cylindrical structure.
43. The device of claim 40 wherein said second portion further comprises a flared-diameter cylindrical structure.
44. The device of claim 40 wherein said expandable structure is self-expanding.
45. The device of claim 40 wherein said expandable structure is balloon-expandable.
46. The device of claim 40 wherein said expandable structure has elastic deformation properties causing said expandable structure to recoil in size from its expanded size.
47. The device of claim 46 wherein said recoil in size causes said anchors that have engaged surrounding wall tissue to pull back and draw said walls closer to said device.
48. A method for filtering blood flow through the ostium of an atrial appendage, comprising:
providing a device comprising:
an expandable structure, said expandable structure comprising:
a first portion having a blood-permeable filter element; and
a second portion having a cylindrical shape; and
anchors disposed on at least part of the exterior surface of said second portion; and
deploying said device in about the vicinity of said ostium wherein said deploying comprises:
positioning said first portion to cover said ostium; and
expanding said expandable structure so that said anchors engage surrounding wall tissue.
49. The method of claim 48 wherein said providing a device further comprises providing said expandable structure which recoils in size from its expanded size, and wherein said expanding further comprises expanding and recoiling said expandable structure so that said anchors engage surrounding wall tissue and pull back drawing said walls toward said device.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/932,512 US20020022860A1 (en) | 2000-08-18 | 2001-08-17 | Expandable implant devices for filtering blood flow from atrial appendages |
US11/185,425 US8197527B2 (en) | 2000-08-18 | 2005-07-19 | Expandable implant devices for filtering blood flow from atrial appendages |
US13/493,730 US8647361B2 (en) | 2000-08-18 | 2012-06-11 | Expandable implant devices for filtering blood flow from atrial appendages |
US14/147,149 US9161830B2 (en) | 2000-08-18 | 2014-01-03 | Expandable implant devices for filtering blood flow from atrial appendages |
US14/866,017 US10278805B2 (en) | 2000-08-18 | 2015-09-25 | Expandable implant devices for filtering blood flow from atrial appendages |
US16/377,604 US20190231507A1 (en) | 2000-08-18 | 2019-04-08 | Expandable implant devices for filtering blood flow from atrial appendages |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22646100P | 2000-08-18 | 2000-08-18 | |
US23411300P | 2000-09-21 | 2000-09-21 | |
US23411200P | 2000-09-21 | 2000-09-21 | |
US09/932,512 US20020022860A1 (en) | 2000-08-18 | 2001-08-17 | Expandable implant devices for filtering blood flow from atrial appendages |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/185,425 Continuation US8197527B2 (en) | 2000-08-18 | 2005-07-19 | Expandable implant devices for filtering blood flow from atrial appendages |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020022860A1 true US20020022860A1 (en) | 2002-02-21 |
Family
ID=27397622
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/932,512 Abandoned US20020022860A1 (en) | 2000-08-18 | 2001-08-17 | Expandable implant devices for filtering blood flow from atrial appendages |
US11/185,425 Active 2026-01-04 US8197527B2 (en) | 2000-08-18 | 2005-07-19 | Expandable implant devices for filtering blood flow from atrial appendages |
US13/493,730 Expired - Lifetime US8647361B2 (en) | 2000-08-18 | 2012-06-11 | Expandable implant devices for filtering blood flow from atrial appendages |
US14/147,149 Expired - Fee Related US9161830B2 (en) | 2000-08-18 | 2014-01-03 | Expandable implant devices for filtering blood flow from atrial appendages |
US14/866,017 Expired - Lifetime US10278805B2 (en) | 2000-08-18 | 2015-09-25 | Expandable implant devices for filtering blood flow from atrial appendages |
US16/377,604 Abandoned US20190231507A1 (en) | 2000-08-18 | 2019-04-08 | Expandable implant devices for filtering blood flow from atrial appendages |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/185,425 Active 2026-01-04 US8197527B2 (en) | 2000-08-18 | 2005-07-19 | Expandable implant devices for filtering blood flow from atrial appendages |
US13/493,730 Expired - Lifetime US8647361B2 (en) | 2000-08-18 | 2012-06-11 | Expandable implant devices for filtering blood flow from atrial appendages |
US14/147,149 Expired - Fee Related US9161830B2 (en) | 2000-08-18 | 2014-01-03 | Expandable implant devices for filtering blood flow from atrial appendages |
US14/866,017 Expired - Lifetime US10278805B2 (en) | 2000-08-18 | 2015-09-25 | Expandable implant devices for filtering blood flow from atrial appendages |
US16/377,604 Abandoned US20190231507A1 (en) | 2000-08-18 | 2019-04-08 | Expandable implant devices for filtering blood flow from atrial appendages |
Country Status (8)
Country | Link |
---|---|
US (6) | US20020022860A1 (en) |
EP (1) | EP1309289A2 (en) |
JP (1) | JP2004506469A (en) |
CN (1) | CN1447669A (en) |
AU (1) | AU2001285078A1 (en) |
CA (1) | CA2419811A1 (en) |
IL (1) | IL154433A0 (en) |
WO (1) | WO2002015793A2 (en) |
Cited By (149)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020049467A1 (en) * | 1997-11-07 | 2002-04-25 | Paul Gilson | Embolic protection system |
US20020107541A1 (en) * | 1999-05-07 | 2002-08-08 | Salviac Limited. | Filter element for embolic protection device |
US6432122B1 (en) | 1997-11-07 | 2002-08-13 | Salviac Limited | Embolic protection device |
US6506194B1 (en) * | 2000-06-08 | 2003-01-14 | Mohammed Ali Hajianpour | Medullary plug including an external shield and an internal valve |
WO2003007825A1 (en) | 2001-07-19 | 2003-01-30 | Atritech, Inc. | Individually customized device for covering the ostium of left atrial appendage |
US6565591B2 (en) | 2000-06-23 | 2003-05-20 | Salviac Limited | Medical device |
US20030130684A1 (en) * | 2001-12-21 | 2003-07-10 | Eamon Brady | Support frame for an embolic protection device |
US20030144688A1 (en) * | 1999-05-07 | 2003-07-31 | Salviac Limited | Support frame for an embolic protection device |
US20030144687A1 (en) * | 1999-05-07 | 2003-07-31 | Salviac Limited | Support frame for an embolic protection device |
US20030199923A1 (en) * | 1998-11-06 | 2003-10-23 | Ev3 Sunnyvale, Inc., A California Corporation | Adjustable left atrial appendage implant deployment system |
US20030208232A1 (en) * | 2002-05-06 | 2003-11-06 | Velocimed, L.L.C. | PFO closure devices and related methods of use |
US20030212429A1 (en) * | 2002-03-05 | 2003-11-13 | Martin Keegan | Embolic protection system |
US20030225421A1 (en) * | 2002-03-25 | 2003-12-04 | Nmt Medical, Inc. | Patent foramen ovale (PFO) closure clips |
US20040030335A1 (en) * | 2002-05-14 | 2004-02-12 | University Of Pittsburgh | Device and method of use for functional isolation of animal or human tissues |
US20040034366A1 (en) * | 1999-11-08 | 2004-02-19 | Ev3 Sunnyvale, Inc., A California Corporation | Device for containing embolic material in the LAA having a plurality of tissue retention structures |
US20040044361A1 (en) * | 1998-11-06 | 2004-03-04 | Frazier Andrew G.C. | Detachable atrial appendage occlusion balloon |
US6726701B2 (en) | 1999-05-07 | 2004-04-27 | Salviac Limited | Embolic protection device |
US20040093017A1 (en) * | 2002-11-06 | 2004-05-13 | Nmt Medical, Inc. | Medical devices utilizing modified shape memory alloy |
US20040098031A1 (en) * | 1998-11-06 | 2004-05-20 | Van Der Burg Erik J. | Method and device for left atrial appendage occlusion |
US6752819B1 (en) | 1998-04-02 | 2004-06-22 | Salviac Limited | Delivery catheter |
US20040176799A1 (en) * | 2002-12-09 | 2004-09-09 | Nmt Medical, Inc. | Septal closure devices |
US20040215230A1 (en) * | 2003-04-28 | 2004-10-28 | Frazier Andrew G. C. | Left atrial appendage occlusion device with active expansion |
US20040220610A1 (en) * | 1999-11-08 | 2004-11-04 | Kreidler Marc S. | Thin film composite lamination |
US20040220560A1 (en) * | 2003-04-29 | 2004-11-04 | Briscoe Roderick E. | Endocardial dispersive electrode for use with a monopolar RF ablation pen |
US20040267306A1 (en) * | 2003-04-11 | 2004-12-30 | Velocimed, L.L.C. | Closure devices, related delivery methods, and related methods of use |
US20050004641A1 (en) * | 2001-06-04 | 2005-01-06 | Ramesh Pappu | Cardiac stimulating apparatus having a blood clot filter and atrial pacer |
US20050027247A1 (en) * | 2003-07-29 | 2005-02-03 | Scimed Life Systems, Inc. | Apparatus and method for treating intravascular disease |
US20050027314A1 (en) * | 2003-07-30 | 2005-02-03 | Scimed Life Systems, Inc. | Self-centering blood clot filter |
US20050043759A1 (en) * | 2003-07-14 | 2005-02-24 | Nmt Medical, Inc. | Tubular patent foramen ovale (PFO) closure device with catch system |
US20050049681A1 (en) * | 2003-05-19 | 2005-03-03 | Secant Medical, Llc | Tissue distention device and related methods for therapeutic intervention |
US20050070952A1 (en) * | 2003-09-12 | 2005-03-31 | Nmt Medical, Inc. | Device and methods for preventing formation of thrombi in the left atrial appendage |
US20050080430A1 (en) * | 2003-08-19 | 2005-04-14 | Nmt Medical, Inc. | Expandable sheath tubing |
US20050222533A1 (en) * | 2004-03-30 | 2005-10-06 | Nmt Medical, Inc. | Restoration of flow in LAA via tubular conduit |
US20050234543A1 (en) * | 2004-03-30 | 2005-10-20 | Nmt Medical, Inc. | Plug for use in left atrial appendage |
US20050234540A1 (en) * | 2004-03-12 | 2005-10-20 | Nmt Medical, Inc. | Dilatation systems and methods for left atrial appendage |
US20050251154A1 (en) * | 2004-05-06 | 2005-11-10 | Nmt Medical, Inc. | Double coil occluder |
US20050267525A1 (en) * | 2004-04-26 | 2005-12-01 | Nmt Medical, Inc. | Heart-shaped PFO closure device |
US20050267524A1 (en) * | 2004-04-09 | 2005-12-01 | Nmt Medical, Inc. | Split ends closure device |
US20050267526A1 (en) * | 2001-06-01 | 2005-12-01 | Velocimed Pfo, Inc. | Closure devices, related delivery methods and tools, and related methods of use |
US20050267523A1 (en) * | 2004-03-03 | 2005-12-01 | Nmt Medical Inc. | Delivery/recovery system for septal occluder |
US20050273124A1 (en) * | 2004-05-06 | 2005-12-08 | Nmt Medical, Inc. | Delivery systems and methods for PFO closure device with two anchors |
US20050273119A1 (en) * | 2003-12-09 | 2005-12-08 | Nmt Medical, Inc. | Double spiral patent foramen ovale closure clamp |
US20050277959A1 (en) * | 2004-05-26 | 2005-12-15 | Idx Medical, Ltd. | Apparatus and methods for occluding a hollow anatomical structure |
US20060009800A1 (en) * | 2003-04-11 | 2006-01-12 | Velocimed Pfo, Inc. | Closure devices, related delivery methods, and related methods of use |
US20060122647A1 (en) * | 2004-09-24 | 2006-06-08 | Callaghan David J | Occluder device double securement system for delivery/recovery of such occluder device |
US20060199995A1 (en) * | 2005-03-02 | 2006-09-07 | Venkataramana Vijay | Percutaneous cardiac ventricular geometry restoration device and treatment for heart failure |
US20060293739A1 (en) * | 2005-03-02 | 2006-12-28 | Venkataramana Vijay | Cardiac Ventricular Geometry Restoration Device and Treatment for Heart Failure |
US20070010851A1 (en) * | 2003-07-14 | 2007-01-11 | Chanduszko Andrzej J | Tubular patent foramen ovale (PFO) closure device with catch system |
US20070027456A1 (en) * | 2005-08-01 | 2007-02-01 | Ension, Inc. | Integrated medical apparatus for non-traumatic grasping, manipulating and closure of tissue |
US20070066993A1 (en) * | 2005-09-16 | 2007-03-22 | Kreidler Marc S | Intracardiac cage and method of delivering same |
US20070135826A1 (en) * | 2005-12-01 | 2007-06-14 | Steve Zaver | Method and apparatus for delivering an implant without bias to a left atrial appendage |
US20070231203A1 (en) * | 2006-03-28 | 2007-10-04 | Terumo Kabushiki Kaisha | Filter member and oxygenator using same |
US20070265642A1 (en) * | 2002-01-14 | 2007-11-15 | Nmt Medical, Inc. | Patent foramen ovale (PFO) closure method and device |
US20070276468A1 (en) * | 2005-05-24 | 2007-11-29 | Inspiremd Ltd. | Bifurcated stent assemblies |
US20080125795A1 (en) * | 1999-05-20 | 2008-05-29 | Aaron V. Kaplan | Methods and apparatus for transpericardial left atrial appendage closure |
US20080147097A1 (en) * | 2003-10-09 | 2008-06-19 | Sentreheart, Inc. | Apparatus and method for the ligation of tissue |
US20080161825A1 (en) * | 2006-11-20 | 2008-07-03 | Stout Medical Group, L.P. | Anatomical measurement tool |
US20080243183A1 (en) * | 2007-03-30 | 2008-10-02 | Miller Gary H | Devices, systems, and methods for closing the left atrial appendage |
US20080249562A1 (en) * | 2007-04-05 | 2008-10-09 | Nmt Medical, Inc. | Septal closure device with centering mechanism |
US20080286278A1 (en) * | 2001-03-07 | 2008-11-20 | Biomed Solutions, Llc | Process for in vivo treatment of specific biological targets in bodily fluids |
US20090005777A1 (en) * | 2001-04-24 | 2009-01-01 | Vascular Closure Systems, Inc. | Arteriotomy closure devices and techniques |
US20090054924A1 (en) * | 2000-06-23 | 2009-02-26 | Salviac Limited | Medical device |
US20090143789A1 (en) * | 2007-12-03 | 2009-06-04 | Houser Russell A | Vascular closure devices, systems, and methods of use |
US20090143808A1 (en) * | 2001-04-24 | 2009-06-04 | Houser Russell A | Guided Tissue Cutting Device, Method of Use and Kits Therefor |
US7735493B2 (en) | 2003-08-15 | 2010-06-15 | Atritech, Inc. | System and method for delivering a left atrial appendage containment device |
US20100179570A1 (en) * | 2009-01-13 | 2010-07-15 | Salvatore Privitera | Apparatus and methods for deploying a clip to occlude an anatomical structure |
US20100204772A1 (en) * | 2006-10-18 | 2010-08-12 | Asher Holzer | Filter Assemblies |
US20100241214A1 (en) * | 2006-11-22 | 2010-09-23 | Inspiremd Ltd. | Optimized stent jacket |
US20100324651A1 (en) * | 2006-10-18 | 2010-12-23 | Asher Holzer | Knitted Stent Jackets |
US20100324664A1 (en) * | 2006-10-18 | 2010-12-23 | Asher Holzer | Bifurcated Stent Assemblies |
US20100324585A1 (en) * | 2009-06-17 | 2010-12-23 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US7901427B2 (en) | 1997-11-07 | 2011-03-08 | Salviac Limited | Filter element with retractable guidewire tip |
US20110087247A1 (en) * | 2009-04-01 | 2011-04-14 | Fung Gregory W | Tissue ligation devices and controls therefor |
US20110144660A1 (en) * | 2005-04-07 | 2011-06-16 | Liddicoat John R | Apparatus and method for the ligation of tissue |
US8257389B2 (en) | 2004-05-07 | 2012-09-04 | W.L. Gore & Associates, Inc. | Catching mechanisms for tubular septal occluder |
US8277480B2 (en) | 2005-03-18 | 2012-10-02 | W.L. Gore & Associates, Inc. | Catch member for PFO occluder |
US20120271337A1 (en) * | 2007-04-16 | 2012-10-25 | Hans-Reiner Figulla | Occluder For Occluding an Atrial Appendage and Production Process Therefor |
US8551135B2 (en) | 2006-03-31 | 2013-10-08 | W.L. Gore & Associates, Inc. | Screw catch mechanism for PFO occluder and method of use |
US8636754B2 (en) | 2010-11-11 | 2014-01-28 | Atricure, Inc. | Clip applicator |
US20140100596A1 (en) * | 2012-10-09 | 2014-04-10 | Boston Scientific Scimed, Inc. | Centered balloon for the left atrial appendage |
US8784448B2 (en) | 2002-06-05 | 2014-07-22 | W.L. Gore & Associates, Inc. | Patent foramen ovale (PFO) closure device with radial and circumferential support |
US8801746B1 (en) | 2004-05-04 | 2014-08-12 | Covidien Lp | System and method for delivering a left atrial appendage containment device |
US8870913B2 (en) | 2006-03-31 | 2014-10-28 | W.L. Gore & Associates, Inc. | Catch system with locking cap for patent foramen ovale (PFO) occluder |
US8992567B1 (en) | 2001-04-24 | 2015-03-31 | Cardiovascular Technologies Inc. | Compressible, deformable, or deflectable tissue closure devices and method of manufacture |
US9017349B2 (en) | 2010-10-27 | 2015-04-28 | Atricure, Inc. | Appendage clamp deployment assist device |
US9066741B2 (en) | 2010-11-01 | 2015-06-30 | Atricure, Inc. | Robotic toolkit |
US9132261B2 (en) | 2006-10-18 | 2015-09-15 | Inspiremd, Ltd. | In vivo filter assembly |
US9138562B2 (en) | 2007-04-18 | 2015-09-22 | W.L. Gore & Associates, Inc. | Flexible catheter system |
US9161830B2 (en) | 2000-08-18 | 2015-10-20 | Atritech, Inc. | Expandable implant devices for filtering blood flow from atrial appendages |
US9265486B2 (en) | 2011-08-15 | 2016-02-23 | Atricure, Inc. | Surgical device |
US9282973B2 (en) | 2012-01-20 | 2016-03-15 | Atricure, Inc. | Clip deployment tool and associated methods |
US9345460B2 (en) | 2001-04-24 | 2016-05-24 | Cardiovascular Technologies, Inc. | Tissue closure devices, device and systems for delivery, kits and methods therefor |
US20160199169A1 (en) * | 2014-06-19 | 2016-07-14 | The Regents Of The University Of California | Bidirectional Vascular Filter and Method of Use |
US9408659B2 (en) | 2007-04-02 | 2016-08-09 | Atricure, Inc. | Surgical instrument with separate tool head and method of use |
US9408608B2 (en) | 2013-03-12 | 2016-08-09 | Sentreheart, Inc. | Tissue ligation devices and methods therefor |
US9474517B2 (en) | 2008-03-07 | 2016-10-25 | W. L. Gore & Associates, Inc. | Heart occlusion devices |
US9486281B2 (en) | 2010-04-13 | 2016-11-08 | Sentreheart, Inc. | Methods and devices for accessing and delivering devices to a heart |
US9498206B2 (en) | 2011-06-08 | 2016-11-22 | Sentreheart, Inc. | Tissue ligation devices and tensioning devices therefor |
US9649115B2 (en) | 2009-06-17 | 2017-05-16 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US9656063B2 (en) | 2004-06-18 | 2017-05-23 | Medtronic, Inc. | Method and system for placement of electrical lead inside heart |
US20170156840A1 (en) * | 2009-06-17 | 2017-06-08 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US9693781B2 (en) | 2009-06-17 | 2017-07-04 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US9750505B2 (en) | 2009-01-08 | 2017-09-05 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US9770232B2 (en) | 2011-08-12 | 2017-09-26 | W. L. Gore & Associates, Inc. | Heart occlusion devices |
US9795387B2 (en) | 1997-05-19 | 2017-10-24 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US9808230B2 (en) | 2014-06-06 | 2017-11-07 | W. L. Gore & Associates, Inc. | Sealing device and delivery system |
US9861346B2 (en) | 2003-07-14 | 2018-01-09 | W. L. Gore & Associates, Inc. | Patent foramen ovale (PFO) closure device with linearly elongating petals |
US9936956B2 (en) | 2015-03-24 | 2018-04-10 | Sentreheart, Inc. | Devices and methods for left atrial appendage closure |
US10004512B2 (en) | 2014-01-29 | 2018-06-26 | Cook Biotech Incorporated | Occlusion device and method of use thereof |
US10058440B2 (en) | 2005-05-24 | 2018-08-28 | Inspiremd, Ltd. | Carotid stent apparatus and methods for treatment via body lumens |
US10064628B2 (en) | 2009-06-17 | 2018-09-04 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US10098640B2 (en) | 2001-12-04 | 2018-10-16 | Atricure, Inc. | Left atrial appendage devices and methods |
US10130369B2 (en) | 2015-03-24 | 2018-11-20 | Sentreheart, Inc. | Tissue ligation devices and methods therefor |
US10166024B2 (en) | 2005-07-14 | 2019-01-01 | Idx Medical, Ltd. | Apparatus and methods for occluding a hollow anatomical structure |
US10258408B2 (en) | 2013-10-31 | 2019-04-16 | Sentreheart, Inc. | Devices and methods for left atrial appendage closure |
US10292710B2 (en) | 2016-02-26 | 2019-05-21 | Sentreheart, Inc. | Devices and methods for left atrial appendage closure |
WO2019217069A1 (en) * | 2018-05-08 | 2019-11-14 | W. L. Gore & Associates, Inc. | Occluder devices |
WO2019237022A1 (en) * | 2018-06-08 | 2019-12-12 | Boston Scientific Scimed, Inc. | Occlusive device with actuatable fixation members |
US10617425B2 (en) | 2014-03-10 | 2020-04-14 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
EP3487419A4 (en) * | 2016-07-22 | 2020-07-22 | Cornell University | Left atrial appendage occluder device |
US10722240B1 (en) | 2019-02-08 | 2020-07-28 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US10772637B2 (en) | 2009-06-17 | 2020-09-15 | Coherex Medical, Inc. | Medical device and delivery system for modification of left atrial appendage and methods thereof |
US10792025B2 (en) | 2009-06-22 | 2020-10-06 | W. L. Gore & Associates, Inc. | Sealing device and delivery system |
US10806437B2 (en) | 2009-06-22 | 2020-10-20 | W. L. Gore & Associates, Inc. | Sealing device and delivery system |
US10828019B2 (en) | 2013-01-18 | 2020-11-10 | W.L. Gore & Associates, Inc. | Sealing device and delivery system |
EP3689270A4 (en) * | 2017-09-25 | 2020-11-25 | Fuwai Hospital, Chinese Academy Of Medical Sciences And Peking Union Medical College | Left atrial appendage occluder assembly capable of being repeatedly withdrawn and released and intervention method therefor |
US10952741B2 (en) | 2017-12-18 | 2021-03-23 | Boston Scientific Scimed, Inc. | Occlusive device with expandable member |
US11026695B2 (en) | 2016-10-27 | 2021-06-08 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11241239B2 (en) | 2018-05-15 | 2022-02-08 | Boston Scientific Scimed, Inc. | Occlusive medical device with charged polymer coating |
US11331104B2 (en) | 2018-05-02 | 2022-05-17 | Boston Scientific Scimed, Inc. | Occlusive sealing sensor system |
US11369355B2 (en) | 2019-06-17 | 2022-06-28 | Coherex Medical, Inc. | Medical device and system for occluding a tissue opening and method thereof |
US11369374B2 (en) | 2006-05-03 | 2022-06-28 | Datascope Corp. | Systems and methods of tissue closure |
US11382635B2 (en) | 2018-07-06 | 2022-07-12 | Boston Scientific Scimed, Inc. | Occlusive medical device |
US11399842B2 (en) | 2013-03-13 | 2022-08-02 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11413048B2 (en) | 2018-01-19 | 2022-08-16 | Boston Scientific Scimed, Inc. | Occlusive medical device with delivery system |
US11426172B2 (en) | 2016-10-27 | 2022-08-30 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11432809B2 (en) | 2017-04-27 | 2022-09-06 | Boston Scientific Scimed, Inc. | Occlusive medical device with fabric retention barb |
US11540838B2 (en) | 2019-08-30 | 2023-01-03 | Boston Scientific Scimed, Inc. | Left atrial appendage implant with sealing disk |
US11564689B2 (en) | 2013-11-19 | 2023-01-31 | Datascope Corp. | Fastener applicator with interlock |
US11596533B2 (en) | 2018-08-21 | 2023-03-07 | Boston Scientific Scimed, Inc. | Projecting member with barb for cardiovascular devices |
US11653928B2 (en) | 2018-03-28 | 2023-05-23 | Datascope Corp. | Device for atrial appendage exclusion |
US11672541B2 (en) | 2018-06-08 | 2023-06-13 | Boston Scientific Scimed, Inc. | Medical device with occlusive member |
US11717303B2 (en) * | 2013-03-13 | 2023-08-08 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11812969B2 (en) | 2020-12-03 | 2023-11-14 | Coherex Medical, Inc. | Medical device and system for occluding a tissue opening and method thereof |
US11903589B2 (en) | 2020-03-24 | 2024-02-20 | Boston Scientific Scimed, Inc. | Medical system for treating a left atrial appendage |
US11944314B2 (en) | 2019-07-17 | 2024-04-02 | Boston Scientific Scimed, Inc. | Left atrial appendage implant with continuous covering |
US11998211B2 (en) | 2013-11-21 | 2024-06-04 | Atricure, Inc. | Occlusion clip |
US12004752B2 (en) | 2012-11-21 | 2024-06-11 | Atricure, Inc. | Occlusion clip |
US12023036B2 (en) | 2020-12-18 | 2024-07-02 | Boston Scientific Scimed, Inc. | Occlusive medical device having sensing capabilities |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6402771B1 (en) | 1999-12-23 | 2002-06-11 | Guidant Endovascular Solutions | Snare |
US6660021B1 (en) | 1999-12-23 | 2003-12-09 | Advanced Cardiovascular Systems, Inc. | Intravascular device and system |
US6575997B1 (en) | 1999-12-23 | 2003-06-10 | Endovascular Technologies, Inc. | Embolic basket |
US7918820B2 (en) | 1999-12-30 | 2011-04-05 | Advanced Cardiovascular Systems, Inc. | Device for, and method of, blocking emboli in vessels such as blood arteries |
US6695813B1 (en) | 1999-12-30 | 2004-02-24 | Advanced Cardiovascular Systems, Inc. | Embolic protection devices |
US6964670B1 (en) | 2000-07-13 | 2005-11-15 | Advanced Cardiovascular Systems, Inc. | Embolic protection guide wire |
US8690910B2 (en) | 2000-12-07 | 2014-04-08 | Integrated Vascular Systems, Inc. | Closure device and methods for making and using them |
US6695867B2 (en) | 2002-02-21 | 2004-02-24 | Integrated Vascular Systems, Inc. | Plunger apparatus and methods for delivering a closure device |
US6506203B1 (en) | 2000-12-19 | 2003-01-14 | Advanced Cardiovascular Systems, Inc. | Low profile sheathless embolic protection system |
US7338510B2 (en) | 2001-06-29 | 2008-03-04 | Advanced Cardiovascular Systems, Inc. | Variable thickness embolic filtering devices and method of manufacturing the same |
US6599307B1 (en) | 2001-06-29 | 2003-07-29 | Advanced Cardiovascular Systems, Inc. | Filter device for embolic protection systems |
US6638294B1 (en) | 2001-08-30 | 2003-10-28 | Advanced Cardiovascular Systems, Inc. | Self furling umbrella frame for carotid filter |
US6592606B2 (en) | 2001-08-31 | 2003-07-15 | Advanced Cardiovascular Systems, Inc. | Hinged short cage for an embolic protection device |
US8262689B2 (en) | 2001-09-28 | 2012-09-11 | Advanced Cardiovascular Systems, Inc. | Embolic filtering devices |
US7241304B2 (en) | 2001-12-21 | 2007-07-10 | Advanced Cardiovascular Systems, Inc. | Flexible and conformable embolic filtering devices |
US7331973B2 (en) | 2002-09-30 | 2008-02-19 | Avdanced Cardiovascular Systems, Inc. | Guide wire with embolic filtering attachment |
US7252675B2 (en) | 2002-09-30 | 2007-08-07 | Advanced Cardiovascular, Inc. | Embolic filtering devices |
US20040088000A1 (en) | 2002-10-31 | 2004-05-06 | Muller Paul F. | Single-wire expandable cages for embolic filtering devices |
US8591540B2 (en) | 2003-02-27 | 2013-11-26 | Abbott Cardiovascular Systems Inc. | Embolic filtering devices |
US7892251B1 (en) | 2003-11-12 | 2011-02-22 | Advanced Cardiovascular Systems, Inc. | Component for delivering and locking a medical device to a guide wire |
US7678129B1 (en) | 2004-03-19 | 2010-03-16 | Advanced Cardiovascular Systems, Inc. | Locking component for an embolic filter assembly |
US9259305B2 (en) | 2005-03-31 | 2016-02-16 | Abbott Cardiovascular Systems Inc. | Guide wire locking mechanism for rapid exchange and other catheter systems |
US8597341B2 (en) * | 2006-03-06 | 2013-12-03 | David Elmaleh | Intravascular device with netting system |
US8216209B2 (en) | 2007-05-31 | 2012-07-10 | Abbott Cardiovascular Systems Inc. | Method and apparatus for delivering an agent to a kidney |
US7867273B2 (en) | 2007-06-27 | 2011-01-11 | Abbott Laboratories | Endoprostheses for peripheral arteries and other body vessels |
US10695126B2 (en) | 2008-10-06 | 2020-06-30 | Santa Anna Tech Llc | Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue |
EP2241284B1 (en) | 2009-04-15 | 2012-09-19 | National University of Ireland, Galway | Intravasculature devices and balloons for use therewith |
WO2012109297A2 (en) * | 2011-02-10 | 2012-08-16 | Atrial Innovations, Inc. | Atrial appendage occlusion and arrhythmia treatment |
CN102805654B (en) * | 2011-06-01 | 2014-04-02 | 先健科技(深圳)有限公司 | Occluder for left auricle |
US9011551B2 (en) | 2011-07-11 | 2015-04-21 | The Regents Of The University Of Michigan | Multimodality left atrial appendage occlusion device |
EP2775932A1 (en) * | 2011-11-09 | 2014-09-17 | Boston Scientific Scimed, Inc. | Occlusion device |
US9289536B2 (en) * | 2013-03-14 | 2016-03-22 | Endologix, Inc. | Method for forming materials in situ within a medical device |
US10258343B2 (en) | 2014-01-27 | 2019-04-16 | Lifetech Scientific (Shenzhen) Co. Ltd. | Left atrial appendage occluder |
AU2015249283B2 (en) * | 2014-04-25 | 2019-07-18 | Flow Medtech, Llc | Left atrial appendage occlusion device |
CN104107072A (en) * | 2014-07-29 | 2014-10-22 | 孙伟 | Double umbrella type left auricle sealing device |
CA2999169A1 (en) | 2014-09-19 | 2016-03-24 | Flow Medtech, Inc. | Left atrial appendage occlusion device delivery system |
WO2017083660A1 (en) | 2015-11-13 | 2017-05-18 | Cardiac Pacemakers, Inc. | Bioabsorbable left atrial appendage closure with endothelialization promoting surface |
US11331140B2 (en) | 2016-05-19 | 2022-05-17 | Aqua Heart, Inc. | Heated vapor ablation systems and methods for treating cardiac conditions |
CN106110482A (en) * | 2016-07-28 | 2016-11-16 | 复旦大学附属肿瘤医院 | Cervical canal dilator |
EP3459469A1 (en) | 2017-09-23 | 2019-03-27 | Universität Zürich | Medical occluder device |
US11191547B2 (en) | 2018-01-26 | 2021-12-07 | Syntheon 2.0, LLC | Left atrial appendage clipping device and methods for clipping the LAA |
US11234706B2 (en) | 2018-02-14 | 2022-02-01 | Boston Scientific Scimed, Inc. | Occlusive medical device |
US11684465B2 (en) * | 2018-03-27 | 2023-06-27 | Maduro Discovery, Llc | Accessory device to provide neuroprotection during interventional procedures |
US10925615B2 (en) | 2019-05-03 | 2021-02-23 | Syntheon 2.0, LLC | Recapturable left atrial appendage clipping device and methods for recapturing a left atrial appendage clip |
US11707351B2 (en) | 2019-08-19 | 2023-07-25 | Encompass Technologies, Inc. | Embolic protection and access system |
WO2021058555A1 (en) | 2019-09-23 | 2021-04-01 | Biotronik Se & Co. Kg | A system for holding an active implant in an atrial appendage of a heart and methods for implanting an active implant |
EP4033999A2 (en) | 2019-09-26 | 2022-08-03 | Universität Zürich | Left atrial appendage occlusion devices |
Citations (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US178283A (en) * | 1876-06-06 | Improvement in vaginal syringes | ||
US876367A (en) * | 1906-06-29 | 1908-01-14 | Edward Lindow | Folding seat. |
US1967318A (en) * | 1931-10-02 | 1934-07-24 | Monahan William | Apparatus for the treatment of the urethra |
US3874388A (en) * | 1973-02-12 | 1975-04-01 | Ochsner Med Found Alton | Shunt defect closure system |
US4007743A (en) * | 1975-10-20 | 1977-02-15 | American Hospital Supply Corporation | Opening mechanism for umbrella-like intravascular shunt defect closure device |
US4341218A (en) * | 1978-05-30 | 1982-07-27 | University Of California | Detachable balloon catheter |
US4585000A (en) * | 1983-09-28 | 1986-04-29 | Cordis Corporation | Expandable device for treating intravascular stenosis |
US4603693A (en) * | 1977-05-26 | 1986-08-05 | United States Surgical Corporation | Instrument for circular surgical stapling of hollow body organs and disposable cartridge therefor |
US4665906A (en) * | 1983-10-14 | 1987-05-19 | Raychem Corporation | Medical devices incorporating sim alloy elements |
US4917089A (en) * | 1988-08-29 | 1990-04-17 | Sideris Eleftherios B | Buttoned device for the transvenous occlusion of intracardiac defects |
US4921484A (en) * | 1988-07-25 | 1990-05-01 | Cordis Corporation | Mesh balloon catheter device |
US5041093A (en) * | 1990-01-31 | 1991-08-20 | Boston Scientific Corp. | Catheter with foraminous anchor |
US5042707A (en) * | 1990-10-16 | 1991-08-27 | Taheri Syde A | Intravascular stapler, and method of operating same |
US5078736A (en) * | 1990-05-04 | 1992-01-07 | Interventional Thermodynamics, Inc. | Method and apparatus for maintaining patency in the body passages |
US5108420A (en) * | 1991-02-01 | 1992-04-28 | Temple University | Aperture occlusion device |
US5176692A (en) * | 1991-12-09 | 1993-01-05 | Wilk Peter J | Method and surgical instrument for repairing hernia |
US5192301A (en) * | 1989-01-17 | 1993-03-09 | Nippon Zeon Co., Ltd. | Closing plug of a defect for medical use and a closing plug device utilizing it |
US5284488A (en) * | 1992-12-23 | 1994-02-08 | Sideris Eleftherios B | Adjustable devices for the occlusion of cardiac defects |
US5306234A (en) * | 1993-03-23 | 1994-04-26 | Johnson W Dudley | Method for closing an atrial appendage |
US5334217A (en) * | 1992-01-21 | 1994-08-02 | Regents Of The University Of Minnesota | Septal defect closure device |
US5350399A (en) * | 1991-09-23 | 1994-09-27 | Jay Erlebacher | Percutaneous arterial puncture seal device and insertion tool therefore |
US5417699A (en) * | 1992-12-10 | 1995-05-23 | Perclose Incorporated | Device and method for the percutaneous suturing of a vascular puncture site |
US5421832A (en) * | 1989-12-13 | 1995-06-06 | Lefebvre; Jean-Marie | Filter-catheter and method of manufacturing same |
US5425744A (en) * | 1991-11-05 | 1995-06-20 | C. R. Bard, Inc. | Occluder for repair of cardiac and vascular defects |
US5433727A (en) * | 1994-08-16 | 1995-07-18 | Sideris; Eleftherios B. | Centering buttoned device for the occlusion of large defects for occluding |
US5443454A (en) * | 1992-12-09 | 1995-08-22 | Terumo Kabushiki Kaisha | Catheter for embolectomy |
US5451235A (en) * | 1991-11-05 | 1995-09-19 | C.R. Bard, Inc. | Occluder and method for repair of cardiac and vascular defects |
US5490856A (en) * | 1993-12-14 | 1996-02-13 | Untied States Surgical Corporation | Purse string stapler |
US5522836A (en) * | 1994-06-27 | 1996-06-04 | Target Therapeutics, Inc. | Electrolytically severable coil assembly with movable detachment point |
US5522822A (en) * | 1992-10-26 | 1996-06-04 | Target Therapeutics, Inc. | Vasoocclusion coil with attached tubular woven or braided fibrous covering |
US5527338A (en) * | 1992-09-02 | 1996-06-18 | Board Of Regents, The University Of Texas System | Intravascular device |
US5527322A (en) * | 1993-11-08 | 1996-06-18 | Perclose, Inc. | Device and method for suturing of internal puncture sites |
US5591196A (en) * | 1994-02-10 | 1997-01-07 | Endovascular Systems, Inc. | Method for deployment of radially expandable stents |
US5614204A (en) * | 1995-01-23 | 1997-03-25 | The Regents Of The University Of California | Angiographic vascular occlusion agents and a method for hemostatic occlusion |
US5634942A (en) * | 1994-04-21 | 1997-06-03 | B. Braun Celsa | Assembly comprising a blood filter for temporary or definitive use and a device for implanting it |
US5634936A (en) * | 1995-02-06 | 1997-06-03 | Scimed Life Systems, Inc. | Device for closing a septal defect |
US5637097A (en) * | 1992-04-15 | 1997-06-10 | Yoon; Inbae | Penetrating instrument having an expandable anchoring portion |
US5643292A (en) * | 1995-01-10 | 1997-07-01 | Applied Medical Resources Corporation | Percutaneous suturing device |
US5649953A (en) * | 1992-09-28 | 1997-07-22 | Bentex Trading S.A. | Kit for medical use composed of a filter and a device for placing it in the vessel |
US5662671A (en) * | 1996-07-17 | 1997-09-02 | Embol-X, Inc. | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
US5669933A (en) * | 1996-07-17 | 1997-09-23 | Nitinol Medical Technologies, Inc. | Removable embolus blood clot filter |
US5709707A (en) * | 1995-10-30 | 1998-01-20 | Children's Medical Center Corporation | Self-centering umbrella-type septal closure device |
US5709224A (en) * | 1995-06-07 | 1998-01-20 | Radiotherapeutics Corporation | Method and device for permanent vessel occlusion |
US5725568A (en) * | 1995-06-27 | 1998-03-10 | Scimed Life Systems, Inc. | Method and device for recanalizing and grafting arteries |
US5725552A (en) * | 1994-07-08 | 1998-03-10 | Aga Medical Corporation | Percutaneous catheter directed intravascular occlusion devices |
US5733294A (en) * | 1996-02-28 | 1998-03-31 | B. Braun Medical, Inc. | Self expanding cardiovascular occlusion device, method of using and method of making the same |
US5735290A (en) * | 1993-02-22 | 1998-04-07 | Heartport, Inc. | Methods and systems for performing thoracoscopic coronary bypass and other procedures |
US5749894A (en) * | 1996-01-18 | 1998-05-12 | Target Therapeutics, Inc. | Aneurysm closure method |
US5749883A (en) * | 1995-08-30 | 1998-05-12 | Halpern; David Marcos | Medical instrument |
US5766219A (en) * | 1995-04-20 | 1998-06-16 | Musc Foundation For Research Development | Anatomically shaped vasoocclusive device and method for deploying same |
US5769816A (en) * | 1995-11-07 | 1998-06-23 | Embol-X, Inc. | Cannula with associated filter |
US5776097A (en) * | 1996-12-19 | 1998-07-07 | University Of California At Los Angeles | Method and device for treating intracranial vascular aneurysms |
US5782860A (en) * | 1997-02-11 | 1998-07-21 | Biointerventional Corporation | Closure device for percutaneous occlusion of puncture sites and tracts in the human body and method |
US5810874A (en) * | 1996-02-22 | 1998-09-22 | Cordis Corporation | Temporary filter catheter |
US5855597A (en) * | 1997-05-07 | 1999-01-05 | Iowa-India Investments Co. Limited | Stent valve and stent graft for percutaneous surgery |
US5865791A (en) * | 1995-06-07 | 1999-02-02 | E.P. Technologies Inc. | Atrial appendage stasis reduction procedure and devices |
US5865802A (en) * | 1988-07-22 | 1999-02-02 | Yoon; Inbae | Expandable multifunctional instruments for creating spaces at obstructed sites endoscopically |
US5868708A (en) * | 1997-05-07 | 1999-02-09 | Applied Medical Resources Corporation | Balloon catheter apparatus and method |
US5885258A (en) * | 1996-02-23 | 1999-03-23 | Memory Medical Systems, Inc. | Medical instrument with slotted memory metal tube |
US5904703A (en) * | 1996-05-08 | 1999-05-18 | Bard Connaught | Occluder device formed from an open cell foam material |
US5906207A (en) * | 1996-04-04 | 1999-05-25 | Merck & Co., Inc. | Method for simulating heart failure |
US5910154A (en) * | 1997-05-08 | 1999-06-08 | Embol-X, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment |
US5916236A (en) * | 1989-05-29 | 1999-06-29 | Kensey Nash Corporation | Occlusion assembly for sealing openings in blood vessels and a method for sealing openings in blood vessels |
US5928260A (en) * | 1997-07-10 | 1999-07-27 | Scimed Life Systems, Inc. | Removable occlusion system for aneurysm neck |
US5928192A (en) * | 1997-07-24 | 1999-07-27 | Embol-X, Inc. | Arterial aspiration |
US5935147A (en) * | 1991-11-08 | 1999-08-10 | Kensey Nash Corporation | Hemostatic puncture closure system and method of use |
US5935148A (en) * | 1998-06-24 | 1999-08-10 | Target Therapeutics, Inc. | Detachable, varying flexibility, aneurysm neck bridge |
US5941249A (en) * | 1996-09-05 | 1999-08-24 | Maynard; Ronald S. | Distributed activator for a two-dimensional shape memory alloy |
US5944738A (en) * | 1998-02-06 | 1999-08-31 | Aga Medical Corporation | Percutaneous catheter directed constricting occlusion device |
US5947997A (en) * | 1992-11-25 | 1999-09-07 | William Cook Europe A/S | Closure prothesis for transcatheter placement |
US5951589A (en) * | 1997-02-11 | 1999-09-14 | Biointerventional Corporation | Expansile device for use in blood vessels and tracts in the body and tension application device for use therewith and method |
US5954694A (en) * | 1998-08-07 | 1999-09-21 | Embol-X, Inc. | Nested tubing sections and methods for making same |
US6010517A (en) * | 1996-04-10 | 2000-01-04 | Baccaro; Jorge Alberto | Device for occluding abnormal vessel communications |
US6024756A (en) * | 1996-03-22 | 2000-02-15 | Scimed Life Systems, Inc. | Method of reversibly closing a septal defect |
US6024755A (en) * | 1998-12-11 | 2000-02-15 | Embol-X, Inc. | Suture-free clamp and sealing port and methods of use |
US6033420A (en) * | 1998-09-02 | 2000-03-07 | Embol-X, Inc. | Trocar introducer system and methods of use |
US6037810A (en) * | 1997-08-26 | 2000-03-14 | Advanced Mirco Devices, Inc. | Electronic system having a multistage low noise output buffer system |
US6048331A (en) * | 1996-05-14 | 2000-04-11 | Embol-X, Inc. | Cardioplegia occluder |
US6051014A (en) * | 1998-10-13 | 2000-04-18 | Embol-X, Inc. | Percutaneous filtration catheter for valve repair surgery and methods of use |
US6051015A (en) * | 1997-05-08 | 2000-04-18 | Embol-X, Inc. | Modular filter with delivery system |
US6056720A (en) * | 1998-11-24 | 2000-05-02 | Embol-X, Inc. | Occlusion cannula and methods of use |
US6068621A (en) * | 1998-11-20 | 2000-05-30 | Embol X, Inc. | Articulating cannula |
US6074357A (en) * | 1996-12-05 | 2000-06-13 | Embol-X, Inc. | Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries |
US6079414A (en) * | 1993-02-22 | 2000-06-27 | Heartport, Inc. | Method for thoracoscopic intracardiac procedures including septal defect |
US6080182A (en) * | 1996-12-20 | 2000-06-27 | Gore Enterprise Holdings, Inc. | Self-expanding defect closure device and method of making and using |
US6080183A (en) * | 1998-11-24 | 2000-06-27 | Embol-X, Inc. | Sutureless vessel plug and methods of use |
US6083239A (en) * | 1998-11-24 | 2000-07-04 | Embol-X, Inc. | Compliant framework and methods of use |
US6231561B1 (en) * | 1999-09-20 | 2001-05-15 | Appriva Medical, Inc. | Method and apparatus for closing a body lumen |
US6231589B1 (en) * | 1999-03-22 | 2001-05-15 | Microvena Corporation | Body vessel filter |
US6270490B1 (en) * | 1998-09-08 | 2001-08-07 | Embol-X, Inc. | Venous drainage catheter and method of use |
US6547760B1 (en) * | 1998-08-06 | 2003-04-15 | Cardeon Corporation | Aortic catheter with porous aortic arch balloon and methods for selective aortic perfusion |
US6551303B1 (en) * | 1999-10-27 | 2003-04-22 | Atritech, Inc. | Barrier device for ostium of left atrial appendage |
US6689150B1 (en) * | 1999-10-27 | 2004-02-10 | Atritech, Inc. | Filter apparatus for ostium of left atrial appendage |
Family Cites Families (765)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US614091A (en) | 1898-11-15 | Tilting crate and stand for demijohns or carboys | ||
US428008A (en) | 1890-05-13 | Philip lange | ||
US15192A (en) | 1856-06-24 | Tubular | ||
US642291A (en) | 1899-05-09 | 1900-01-30 | Benjamin F Bowman | Hatch-fastener for vessels. |
US697628A (en) | 1901-09-11 | 1902-04-15 | Chauncey C Johnston | Insulator and attachment for electric wires. |
US2682057A (en) | 1951-07-24 | 1954-06-29 | Harry A Lord | Heart valve |
US2701559A (en) | 1951-08-02 | 1955-02-08 | William A Cooper | Apparatus for exfoliating and collecting diagnostic material from inner walls of hollow viscera |
US2832078A (en) | 1956-10-17 | 1958-04-29 | Battelle Memorial Institute | Heart valve |
US3029819A (en) | 1959-07-30 | 1962-04-17 | J L Mcatee | Artery graft and method of producing artery grafts |
US3099016A (en) | 1960-08-11 | 1963-07-30 | Edwards Miles Lowell | Heart valve |
US3130418A (en) | 1960-11-25 | 1964-04-28 | Louis R Head | Artificial heart valve and method for making same |
US3113586A (en) | 1962-09-17 | 1963-12-10 | Physio Control Company Inc | Artificial heart valve |
US3221006A (en) | 1962-11-13 | 1965-11-30 | Eastman Kodak Co | 5-amino-3-substituted-1,2,4-thiadiazole azo compounds |
US3143742A (en) | 1963-03-19 | 1964-08-11 | Surgitool Inc | Prosthetic sutureless heart valve |
US3367364A (en) | 1964-10-19 | 1968-02-06 | Univ Minnesota | Prosthetic heart valve |
US3334629A (en) | 1964-11-09 | 1967-08-08 | Bertram D Cohn | Occlusive device for inferior vena cava |
US3365728A (en) | 1964-12-18 | 1968-01-30 | Edwards Lab Inc | Upholstered heart valve having a sealing ring adapted for dispensing medicaments |
GB1127325A (en) | 1965-08-23 | 1968-09-18 | Henry Berry | Improved instrument for inserting artificial heart valves |
US3587115A (en) | 1966-05-04 | 1971-06-28 | Donald P Shiley | Prosthetic sutureless heart valves and implant tools therefor |
US3445916A (en) | 1967-04-19 | 1969-05-27 | Rudolf R Schulte | Method for making an anatomical check valve |
US3548417A (en) | 1967-09-05 | 1970-12-22 | Ronnie G Kischer | Heart valve having a flexible wall which rotates between open and closed positions |
US3540431A (en) | 1968-04-04 | 1970-11-17 | Kazi Mobin Uddin | Collapsible filter for fluid flowing in closed passageway |
US3570014A (en) | 1968-09-16 | 1971-03-16 | Warren D Hancock | Stent for heart valve |
US3671979A (en) | 1969-09-23 | 1972-06-27 | Univ Utah | Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve |
US3628535A (en) | 1969-11-12 | 1971-12-21 | Nibot Corp | Surgical instrument for implanting a prosthetic heart valve or the like |
US3592184A (en) | 1969-12-16 | 1971-07-13 | David H Watkins | Heart assist method and catheter |
US3642004A (en) | 1970-01-05 | 1972-02-15 | Life Support Equipment Corp | Urethral valve |
US3657744A (en) | 1970-05-08 | 1972-04-25 | Univ Minnesota | Method for fixing prosthetic implants in a living body |
US3714671A (en) | 1970-11-30 | 1973-02-06 | Cutter Lab | Tissue-type heart valve with a graft support ring or stent |
US3725961A (en) | 1970-12-29 | 1973-04-10 | Baxter Laboratories Inc | Prosthetic heart valve having fabric suturing element |
US3755823A (en) | 1971-04-23 | 1973-09-04 | Hancock Laboratories Inc | Flexible stent for heart valve |
US3868956A (en) | 1972-06-05 | 1975-03-04 | Ralph J Alfidi | Vessel implantable appliance and method of implanting it |
US3839741A (en) | 1972-11-17 | 1974-10-08 | J Haller | Heart valve and retaining means therefor |
US3795246A (en) | 1973-01-26 | 1974-03-05 | Bard Inc C R | Venocclusion device |
US4291420A (en) | 1973-11-09 | 1981-09-29 | Medac Gesellschaft Fur Klinische Spezialpraparate Mbh | Artificial heart valve |
US3983581A (en) | 1975-01-20 | 1976-10-05 | William W. Angell | Heart valve stent |
US3997923A (en) | 1975-04-28 | 1976-12-21 | St. Jude Medical, Inc. | Heart valve prosthesis and suturing assembly and method of implanting a heart valve prosthesis in a heart |
US4035849A (en) | 1975-11-17 | 1977-07-19 | William W. Angell | Heart valve stent and process for preparing a stented heart valve prosthesis |
CA1069652A (en) | 1976-01-09 | 1980-01-15 | Alain F. Carpentier | Supported bioprosthetic heart valve with compliant orifice ring |
US4084268A (en) | 1976-04-22 | 1978-04-18 | Shiley Laboratories, Incorporated | Prosthetic tissue heart valve |
US4056854A (en) | 1976-09-28 | 1977-11-08 | The United States Of America As Represented By The Department Of Health, Education And Welfare | Aortic heart valve catheter |
US5876419A (en) | 1976-10-02 | 1999-03-02 | Navius Corporation | Stent and method for making a stent |
US4297749A (en) | 1977-04-25 | 1981-11-03 | Albany International Corp. | Heart valve prosthesis |
US4233690A (en) | 1978-05-19 | 1980-11-18 | Carbomedics, Inc. | Prosthetic device couplings |
US4265694A (en) | 1978-12-14 | 1981-05-05 | The United States Of America As Represented By The Department Of Health, Education And Welfare | Method of making unitized three leaflet heart valve |
US4222126A (en) * | 1978-12-14 | 1980-09-16 | The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare | Unitized three leaflet heart valve |
US4574803A (en) | 1979-01-19 | 1986-03-11 | Karl Storz | Tissue cutter |
GB2056023B (en) | 1979-08-06 | 1983-08-10 | Ross D N Bodnar E | Stent for a cardiac valve |
US4373216A (en) | 1980-10-27 | 1983-02-15 | Hemex, Inc. | Heart valves having edge-guided occluders |
US4326306A (en) | 1980-12-16 | 1982-04-27 | Lynell Medical Technology, Inc. | Intraocular lens and manipulating tool therefor |
US4339831A (en) | 1981-03-27 | 1982-07-20 | Medtronic, Inc. | Dynamic annulus heart valve and reconstruction ring |
US4470157A (en) | 1981-04-27 | 1984-09-11 | Love Jack W | Tricuspid prosthetic tissue heart valve |
US4323358A (en) | 1981-04-30 | 1982-04-06 | Vascor, Inc. | Method for inhibiting mineralization of natural tissue during implantation |
US4345340A (en) | 1981-05-07 | 1982-08-24 | Vascor, Inc. | Stent for mitral/tricuspid heart valve |
US4501030A (en) | 1981-08-17 | 1985-02-26 | American Hospital Supply Corporation | Method of leaflet attachment for prosthetic heart valves |
US4865600A (en) | 1981-08-25 | 1989-09-12 | Baxter International Inc. | Mitral valve holder |
US4425908A (en) | 1981-10-22 | 1984-01-17 | Beth Israel Hospital | Blood clot filter |
US4406022A (en) | 1981-11-16 | 1983-09-27 | Kathryn Roy | Prosthetic valve means for cardiovascular surgery |
US4423809A (en) | 1982-02-05 | 1984-01-03 | Staar Surgical Company, Inc. | Packaging system for intraocular lens structures |
FR2523810B1 (en) | 1982-03-23 | 1988-11-25 | Carpentier Alain | ORGANIC GRAFT FABRIC AND PROCESS FOR ITS PREPARATION |
SE445884B (en) | 1982-04-30 | 1986-07-28 | Medinvent Sa | DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION |
US4484579A (en) | 1982-07-19 | 1984-11-27 | University Of Pittsburgh | Commissurotomy catheter apparatus and method |
IT1212547B (en) | 1982-08-09 | 1989-11-30 | Iorio Domenico | INSTRUMENT FOR SURGICAL USE INTENDED TO MAKE INTERVENTIONS FOR THE IMPLANTATION OF BIOPROTESIS IN HUMAN ORGANS EASIER AND SAFER |
DE3230858C2 (en) | 1982-08-19 | 1985-01-24 | Ahmadi, Ali, Dr. med., 7809 Denzlingen | Ring prosthesis |
US4885005A (en) | 1982-11-12 | 1989-12-05 | Baxter International Inc. | Surfactant treatment of implantable biological tissue to inhibit calcification |
US5215541A (en) | 1982-11-12 | 1993-06-01 | Baxter International Inc. | Surfactant treatment of implantable biological tissue to inhibit calcification |
US4680031A (en) | 1982-11-29 | 1987-07-14 | Tascon Medical Technology Corporation | Heart valve prosthesis |
GB8300636D0 (en) | 1983-01-11 | 1983-02-09 | Black M M | Heart valve replacements |
US4535483A (en) | 1983-01-17 | 1985-08-20 | Hemex, Inc. | Suture rings for heart valves |
US4610688A (en) | 1983-04-04 | 1986-09-09 | Pfizer Hospital Products Group, Inc. | Triaxially-braided fabric prosthesis |
US4834755A (en) | 1983-04-04 | 1989-05-30 | Pfizer Hospital Products Group, Inc. | Triaxially-braided fabric prosthesis |
AR229309A1 (en) | 1983-04-20 | 1983-07-15 | Barone Hector Daniel | MOUNT FOR CARDIAC VALVES |
US4612011A (en) | 1983-07-22 | 1986-09-16 | Hans Kautzky | Central occluder semi-biological heart valve |
US4531943A (en) | 1983-08-08 | 1985-07-30 | Angiomedics Corporation | Catheter with soft deformable tip |
US4585705A (en) | 1983-11-09 | 1986-04-29 | Dow Corning Corporation | Hard organopolysiloxane release coating |
US4787899A (en) | 1983-12-09 | 1988-11-29 | Lazarus Harrison M | Intraluminal graft device, system and method |
US5693083A (en) | 1983-12-09 | 1997-12-02 | Endovascular Technologies, Inc. | Thoracic graft and delivery catheter |
US4627436A (en) | 1984-03-01 | 1986-12-09 | Innoventions Biomedical Inc. | Angioplasty catheter and method for use thereof |
US4617932A (en) | 1984-04-25 | 1986-10-21 | Elliot Kornberg | Device and method for performing an intraluminal abdominal aortic aneurysm repair |
US4592340A (en) | 1984-05-02 | 1986-06-03 | Boyles Paul W | Artificial catheter means |
US5007896A (en) | 1988-12-19 | 1991-04-16 | Surgical Systems & Instruments, Inc. | Rotary-catheter for atherectomy |
US4979939A (en) | 1984-05-14 | 1990-12-25 | Surgical Systems & Instruments, Inc. | Atherectomy system with a guide wire |
US4883458A (en) | 1987-02-24 | 1989-11-28 | Surgical Systems & Instruments, Inc. | Atherectomy system and method of using the same |
DE3426300A1 (en) | 1984-07-17 | 1986-01-30 | Doguhan Dr.med. 6000 Frankfurt Baykut | TWO-WAY VALVE AND ITS USE AS A HEART VALVE PROSTHESIS |
US4580568A (en) | 1984-10-01 | 1986-04-08 | Cook, Incorporated | Percutaneous endovascular stent and method for insertion thereof |
DE3442088A1 (en) | 1984-11-17 | 1986-05-28 | Beiersdorf Ag, 2000 Hamburg | HEART VALVE PROSTHESIS |
SU1271508A1 (en) | 1984-11-29 | 1986-11-23 | Горьковский государственный медицинский институт им.С.М.Кирова | Artificial heart valve |
US4759758A (en) | 1984-12-07 | 1988-07-26 | Shlomo Gabbay | Prosthetic heart valve |
US4662885A (en) | 1985-09-03 | 1987-05-05 | Becton, Dickinson And Company | Percutaneously deliverable intravascular filter prosthesis |
GB2181057B (en) | 1985-10-23 | 1989-09-27 | Blagoveshchensk G Med Inst | Prosthetic valve holder |
US4733665C2 (en) | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
DE3640745A1 (en) | 1985-11-30 | 1987-06-04 | Ernst Peter Prof Dr M Strecker | Catheter for producing or extending connections to or between body cavities |
US4710192A (en) | 1985-12-30 | 1987-12-01 | Liotta Domingo S | Diaphragm and method for occlusion of the descending thoracic aorta |
SU1371700A1 (en) | 1986-02-21 | 1988-02-07 | МВТУ им.Н.Э.Баумана | Prosthesis of heart valve |
CH672247A5 (en) | 1986-03-06 | 1989-11-15 | Mo Vysshee Tekhnicheskoe Uchil | |
US4878906A (en) | 1986-03-25 | 1989-11-07 | Servetus Partnership | Endoprosthesis for repairing a damaged vessel |
US4777951A (en) | 1986-09-19 | 1988-10-18 | Mansfield Scientific, Inc. | Procedure and catheter instrument for treating patients for aortic stenosis |
IL83966A (en) | 1986-09-26 | 1992-03-29 | Schering Ag | Amides of aminopolycarboxylic acids and pharmaceutical compositions containing them |
WO1988003817A1 (en) | 1986-11-29 | 1988-06-02 | Terumo Kabushiki Kaisha | Catheter equipped with balloon |
US4878495A (en) | 1987-05-15 | 1989-11-07 | Joseph Grayzel | Valvuloplasty device with satellite expansion means |
US4872874A (en) | 1987-05-29 | 1989-10-10 | Taheri Syde A | Method and apparatus for transarterial aortic graft insertion and implantation |
US4796629A (en) | 1987-06-03 | 1989-01-10 | Joseph Grayzel | Stiffened dilation balloon catheter device |
US4829990A (en) | 1987-06-25 | 1989-05-16 | Thueroff Joachim | Implantable hydraulic penile erector |
JPH088933B2 (en) | 1987-07-10 | 1996-01-31 | 日本ゼオン株式会社 | Catheter |
US4851001A (en) | 1987-09-17 | 1989-07-25 | Taheri Syde A | Prosthetic valve for a blood vein and an associated method of implantation of the valve |
US5159937A (en) | 1987-09-30 | 1992-11-03 | Advanced Cardiovascular Systems, Inc. | Steerable dilatation catheter |
US4755181A (en) | 1987-10-08 | 1988-07-05 | Matrix Medica, Inc. | Anti-suture looping device for prosthetic heart valves |
US4819751A (en) | 1987-10-16 | 1989-04-11 | Baxter Travenol Laboratories, Inc. | Valvuloplasty catheter and method |
US4873978A (en) | 1987-12-04 | 1989-10-17 | Robert Ginsburg | Device and method for emboli retrieval |
JPH01290639A (en) | 1988-05-17 | 1989-11-22 | Daikin Ind Ltd | Production of 1,1,1-trifluoro-2,2-dichloroethane |
US4909252A (en) | 1988-05-26 | 1990-03-20 | The Regents Of The Univ. Of California | Perfusion balloon catheter |
US5032128A (en) | 1988-07-07 | 1991-07-16 | Medtronic, Inc. | Heart valve prosthesis |
US4917102A (en) | 1988-09-14 | 1990-04-17 | Advanced Cardiovascular Systems, Inc. | Guidewire assembly with steerable adjustable tip |
US4950227A (en) | 1988-11-07 | 1990-08-21 | Boston Scientific Corporation | Stent delivery system |
DE8815082U1 (en) | 1988-11-29 | 1989-05-18 | Biotronik Meß- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin, 1000 Berlin | Heart valve prosthesis |
US4927426A (en) | 1989-01-03 | 1990-05-22 | Dretler Stephen P | Catheter device |
US4856516A (en) | 1989-01-09 | 1989-08-15 | Cordis Corporation | Endovascular stent apparatus and method |
US4966604A (en) | 1989-01-23 | 1990-10-30 | Interventional Technologies Inc. | Expandable atherectomy cutter with flexibly bowed blades |
US5425739A (en) | 1989-03-09 | 1995-06-20 | Avatar Design And Development, Inc. | Anastomosis stent and stent selection system |
US4994077A (en) | 1989-04-21 | 1991-02-19 | Dobben Richard L | Artificial heart valve for implantation in a blood vessel |
JP3127378B2 (en) | 1989-05-31 | 2001-01-22 | バクスター インターナショナル インコーポレーテッド | Biological valve prosthesis |
US5609626A (en) | 1989-05-31 | 1997-03-11 | Baxter International Inc. | Stent devices and support/restrictor assemblies for use in conjunction with prosthetic vascular grafts |
US5047041A (en) | 1989-08-22 | 1991-09-10 | Samuels Peter B | Surgical apparatus for the excision of vein valves in situ |
US4986830A (en) | 1989-09-22 | 1991-01-22 | Schneider (U.S.A.) Inc. | Valvuloplasty catheter with balloon which remains stable during inflation |
US5089015A (en) | 1989-11-28 | 1992-02-18 | Promedica International | Method for implanting unstented xenografts and allografts |
US5002559A (en) | 1989-11-30 | 1991-03-26 | Numed | PTCA catheter |
US5591185A (en) | 1989-12-14 | 1997-01-07 | Corneal Contouring Development L.L.C. | Method and apparatus for reprofiling or smoothing the anterior or stromal cornea by scraping |
US5141494A (en) | 1990-02-15 | 1992-08-25 | Danforth Biomedical, Inc. | Variable wire diameter angioplasty dilatation balloon catheter |
US5238004A (en) | 1990-04-10 | 1993-08-24 | Boston Scientific Corporation | High elongation linear elastic guidewire |
US5037434A (en) | 1990-04-11 | 1991-08-06 | Carbomedics, Inc. | Bioprosthetic heart valve with elastic commissures |
DK124690D0 (en) | 1990-05-18 | 1990-05-18 | Henning Rud Andersen | FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION |
US5085635A (en) | 1990-05-18 | 1992-02-04 | Cragg Andrew H | Valved-tip angiographic catheter |
US5411552A (en) | 1990-05-18 | 1995-05-02 | Andersen; Henning R. | Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis |
US5064435A (en) | 1990-06-28 | 1991-11-12 | Schneider (Usa) Inc. | Self-expanding prosthesis having stable axial length |
US5122154A (en) | 1990-08-15 | 1992-06-16 | Rhodes Valentine J | Endovascular bypass graft |
US5197979A (en) | 1990-09-07 | 1993-03-30 | Baxter International Inc. | Stentless heart valve and holder |
ES1015196Y (en) | 1990-09-21 | 1992-01-01 | Rosello Barbara Mariano | SURGICAL INSTRUMENT. |
US5217483A (en) | 1990-11-28 | 1993-06-08 | Numed, Inc. | Intravascular radially expandable stent |
US5161547A (en) | 1990-11-28 | 1992-11-10 | Numed, Inc. | Method of forming an intravascular radially expandable stent |
US6165292A (en) | 1990-12-18 | 2000-12-26 | Advanced Cardiovascular Systems, Inc. | Superelastic guiding member |
US5152771A (en) | 1990-12-31 | 1992-10-06 | The Board Of Supervisors Of Louisiana State University | Valve cutter for arterial by-pass surgery |
US5282847A (en) | 1991-02-28 | 1994-02-01 | Medtronic, Inc. | Prosthetic vascular grafts with a pleated structure |
EP0573591B1 (en) | 1991-03-01 | 1997-10-29 | Applied Medical Resources, Inc. | Cholangiography catheter |
JPH05184611A (en) | 1991-03-19 | 1993-07-27 | Kenji Kusuhara | Valvular annulation retaining member and its attaching method |
US5295958A (en) | 1991-04-04 | 1994-03-22 | Shturman Cardiology Systems, Inc. | Method and apparatus for in vivo heart valve decalcification |
US5167628A (en) | 1991-05-02 | 1992-12-01 | Boyles Paul W | Aortic balloon catheter assembly for indirect infusion of the coronary arteries |
US5397351A (en) | 1991-05-13 | 1995-03-14 | Pavcnik; Dusan | Prosthetic valve for percutaneous insertion |
US5350398A (en) | 1991-05-13 | 1994-09-27 | Dusan Pavcnik | Self-expanding filter for percutaneous insertion |
IT1245750B (en) | 1991-05-24 | 1994-10-14 | Sorin Biomedica Emodialisi S R | CARDIAC VALVE PROSTHESIS, PARTICULARLY FOR REPLACING THE AORTIC VALVE |
US5209741A (en) | 1991-07-08 | 1993-05-11 | Endomedix Corporation | Surgical access device having variable post-insertion cross-sectional geometry |
US6866650B2 (en) | 1991-07-16 | 2005-03-15 | Heartport, Inc. | System for cardiac procedures |
US5370685A (en) | 1991-07-16 | 1994-12-06 | Stanford Surgical Technologies, Inc. | Endovascular aortic valve replacement |
US5769812A (en) | 1991-07-16 | 1998-06-23 | Heartport, Inc. | System for cardiac procedures |
US5571215A (en) | 1993-02-22 | 1996-11-05 | Heartport, Inc. | Devices and methods for intracardiac procedures |
CA2117088A1 (en) | 1991-09-05 | 1993-03-18 | David R. Holmes | Flexible tubular device for use in medical applications |
US5258042A (en) | 1991-12-16 | 1993-11-02 | Henry Ford Health System | Intravascular hydrogel implant |
US5756476A (en) | 1992-01-14 | 1998-05-26 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibition of cell proliferation using antisense oligonucleotides |
US5507767A (en) | 1992-01-15 | 1996-04-16 | Cook Incorporated | Spiral stent |
EP0552579B1 (en) | 1992-01-22 | 1996-01-03 | Guy-Henri Muller | Prosthetic implants for plastic surgery |
US5489297A (en) | 1992-01-27 | 1996-02-06 | Duran; Carlos M. G. | Bioprosthetic heart valve with absorbable stent |
US5163953A (en) | 1992-02-10 | 1992-11-17 | Vince Dennis J | Toroidal artificial heart valve stent |
US5258023A (en) | 1992-02-12 | 1993-11-02 | Reger Medical Development, Inc. | Prosthetic heart valve |
US5683448A (en) | 1992-02-21 | 1997-11-04 | Boston Scientific Technology, Inc. | Intraluminal stent and graft |
JP2660101B2 (en) | 1992-05-08 | 1997-10-08 | シュナイダー・(ユーエスエイ)・インコーポレーテッド | Esophageal stent and delivery device |
US5332402A (en) | 1992-05-12 | 1994-07-26 | Teitelbaum George P | Percutaneously-inserted cardiac valve |
FR2693366B1 (en) | 1992-07-09 | 1994-09-02 | Celsa Lg | Device forming a vascular prosthesis usable for the treatment of aneurysms. |
US5409019A (en) | 1992-10-30 | 1995-04-25 | Wilk; Peter J. | Coronary artery by-pass method |
CA2132011C (en) | 1993-01-14 | 1999-08-10 | Peter J. Schmitt | Radially expandable tubular prosthesis |
US5682906A (en) | 1993-02-22 | 1997-11-04 | Heartport, Inc. | Methods of performing intracardiac procedures on an arrested heart |
US5431676A (en) | 1993-03-05 | 1995-07-11 | Innerdyne Medical, Inc. | Trocar system having expandable port |
US5772609A (en) | 1993-05-11 | 1998-06-30 | Target Therapeutics, Inc. | Guidewire with variable flexibility due to polymeric coatings |
US5480423A (en) | 1993-05-20 | 1996-01-02 | Boston Scientific Corporation | Prosthesis delivery |
GB9312666D0 (en) | 1993-06-18 | 1993-08-04 | Vesely Ivan | Bioprostetic heart valve |
US5415633A (en) | 1993-07-28 | 1995-05-16 | Active Control Experts, Inc. | Remotely steered catheterization device |
US5443495A (en) | 1993-09-17 | 1995-08-22 | Scimed Lifesystems Inc. | Polymerization angioplasty balloon implant device |
KR970004845Y1 (en) | 1993-09-27 | 1997-05-21 | 주식회사 수호메디테크 | Stent for expanding a lumen |
US5545209A (en) | 1993-09-30 | 1996-08-13 | Texas Petrodet, Inc. | Controlled deployment of a medical device |
WO1995008966A1 (en) | 1993-09-30 | 1995-04-06 | White Geoffrey H | Intraluminal graft |
US5389106A (en) | 1993-10-29 | 1995-02-14 | Numed, Inc. | Impermeable expandable intravascular stent |
US5480424A (en) | 1993-11-01 | 1996-01-02 | Cox; James L. | Heart valve replacement using flexible tubes |
US5713950A (en) | 1993-11-01 | 1998-02-03 | Cox; James L. | Method of replacing heart valves using flexible tubes |
DE69419877T2 (en) | 1993-11-04 | 1999-12-16 | C.R. Bard, Inc. | Fixed vascular prosthesis |
AU1091095A (en) | 1993-11-08 | 1995-05-29 | Harrison M. Lazarus | Intraluminal vascular graft and method |
RU2089131C1 (en) | 1993-12-28 | 1997-09-10 | Сергей Апполонович Пульнев | Stent-expander |
DE4401227C2 (en) | 1994-01-18 | 1999-03-18 | Ernst Peter Prof Dr M Strecker | Endoprosthesis implantable percutaneously in a patient's body |
US5476506A (en) | 1994-02-08 | 1995-12-19 | Ethicon, Inc. | Bi-directional crimped graft |
US5609627A (en) | 1994-02-09 | 1997-03-11 | Boston Scientific Technology, Inc. | Method for delivering a bifurcated endoluminal prosthesis |
US5443477A (en) | 1994-02-10 | 1995-08-22 | Stentco, Inc. | Apparatus and method for deployment of radially expandable stents by a mechanical linkage |
US5549663A (en) | 1994-03-09 | 1996-08-27 | Cordis Corporation | Endoprosthesis having graft member and exposed welded end junctions, method and procedure |
US5556413A (en) | 1994-03-11 | 1996-09-17 | Advanced Cardiovascular Systems, Inc. | Coiled stent with locking ends |
US5480410A (en) * | 1994-03-14 | 1996-01-02 | Advanced Surgical, Inc. | Extracorporeal pneumoperitoneum access bubble |
US5476510A (en) | 1994-04-21 | 1995-12-19 | Medtronic, Inc. | Holder for heart valve |
DE4415359C2 (en) | 1994-05-02 | 1997-10-23 | Aesculap Ag | Surgical tubular shaft instrument |
US6139510A (en) | 1994-05-11 | 2000-10-31 | Target Therapeutics Inc. | Super elastic alloy guidewire |
US5765418A (en) | 1994-05-16 | 1998-06-16 | Medtronic, Inc. | Method for making an implantable medical device from a refractory metal |
CA2149290C (en) | 1994-05-26 | 2006-07-18 | Carl T. Urban | Optical trocar |
US5824041A (en) | 1994-06-08 | 1998-10-20 | Medtronic, Inc. | Apparatus and methods for placement and repositioning of intraluminal prostheses |
US5728068A (en) | 1994-06-14 | 1998-03-17 | Cordis Corporation | Multi-purpose balloon catheter |
US5522881A (en) | 1994-06-28 | 1996-06-04 | Meadox Medicals, Inc. | Implantable tubular prosthesis having integral cuffs |
WO1996001591A1 (en) | 1994-07-08 | 1996-01-25 | Microvena Corporation | Method of forming medical devices; intravascular occlusion devices |
DE4424242A1 (en) | 1994-07-09 | 1996-01-11 | Ernst Peter Prof Dr M Strecker | Endoprosthesis implantable percutaneously in a patient's body |
US5554185A (en) | 1994-07-18 | 1996-09-10 | Block; Peter C. | Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same |
US5545133A (en) | 1994-09-16 | 1996-08-13 | Scimed Life Systems, Inc. | Balloon catheter with improved pressure source |
BR9510216A (en) | 1994-12-21 | 1997-11-04 | Novo Nordisk As | Process of enzymatic treatment of wool and wool material or aminal fur |
US5674277A (en) | 1994-12-23 | 1997-10-07 | Willy Rusch Ag | Stent for placement in a body tube |
BE1009085A3 (en) | 1995-02-10 | 1996-11-05 | De Fays Robert Dr | Intra-aortic prosthesis and surgical instruments for the introduction, implementation and fixing in the aortic prosthesis. |
US5575818A (en) | 1995-02-14 | 1996-11-19 | Corvita Corporation | Endovascular stent with locking ring |
WO1996025897A2 (en) | 1995-02-22 | 1996-08-29 | Menlo Care, Inc. | Covered expanding mesh stent |
US5681345A (en) | 1995-03-01 | 1997-10-28 | Scimed Life Systems, Inc. | Sleeve carrying stent |
DE69626105T2 (en) | 1995-03-30 | 2003-10-23 | Heartport, Inc. | ENDOVASCULAR CATHETER FOR LEADING FROM THE HEART |
CA2215970A1 (en) | 1995-03-30 | 1996-10-03 | Heartport, Inc. | System and methods for performing endovascular procedures |
US5709713A (en) | 1995-03-31 | 1998-01-20 | Cardiovascular Concepts, Inc. | Radially expansible vascular prosthesis having reversible and other locking structures |
US5667523A (en) | 1995-04-28 | 1997-09-16 | Impra, Inc. | Dual supported intraluminal graft |
US5824064A (en) | 1995-05-05 | 1998-10-20 | Taheri; Syde A. | Technique for aortic valve replacement with simultaneous aortic arch graft insertion and apparatus therefor |
US5534007A (en) | 1995-05-18 | 1996-07-09 | Scimed Life Systems, Inc. | Stent deployment catheter with collapsible sheath |
US5571175A (en) | 1995-06-07 | 1996-11-05 | St. Jude Medical, Inc. | Suture guard for prosthetic heart valve |
US5728152A (en) | 1995-06-07 | 1998-03-17 | St. Jude Medical, Inc. | Bioresorbable heart valve support |
US5716417A (en) | 1995-06-07 | 1998-02-10 | St. Jude Medical, Inc. | Integral supporting structure for bioprosthetic heart valve |
AU6271196A (en) | 1995-06-07 | 1996-12-30 | St. Jude Medical Inc. | Direct suture orifice for mechanical heart valve |
DE19532846A1 (en) | 1995-09-06 | 1997-03-13 | Georg Dr Berg | Valve for use in heart |
US5769882A (en) | 1995-09-08 | 1998-06-23 | Medtronic, Inc. | Methods and apparatus for conformably sealing prostheses within body lumens |
US5807405A (en) | 1995-09-11 | 1998-09-15 | St. Jude Medical, Inc. | Apparatus for attachment of heart valve holder to heart valve prosthesis |
US5735842A (en) | 1995-09-11 | 1998-04-07 | St. Jude Medical, Inc. | Low profile manipulators for heart valve prostheses |
US6193745B1 (en) | 1995-10-03 | 2001-02-27 | Medtronic, Inc. | Modular intraluminal prosteheses construction and methods |
US5824037A (en) | 1995-10-03 | 1998-10-20 | Medtronic, Inc. | Modular intraluminal prostheses construction and methods |
US6287336B1 (en) | 1995-10-16 | 2001-09-11 | Medtronic, Inc. | Variable flexibility stent |
US5591195A (en) | 1995-10-30 | 1997-01-07 | Taheri; Syde | Apparatus and method for engrafting a blood vessel |
DE19546692C2 (en) | 1995-12-14 | 2002-11-07 | Hans-Reiner Figulla | Self-expanding heart valve prosthesis for implantation in the human body via a catheter system |
US5855602A (en) | 1996-09-09 | 1999-01-05 | Shelhigh, Inc. | Heart valve prosthesis |
US5861028A (en) | 1996-09-09 | 1999-01-19 | Shelhigh Inc | Natural tissue heart valve and stent prosthesis and method for making the same |
EP0955954B1 (en) | 1996-01-05 | 2005-03-16 | Medtronic, Inc. | Expansible endoluminal prostheses |
US5843158A (en) | 1996-01-05 | 1998-12-01 | Medtronic, Inc. | Limited expansion endoluminal prostheses and methods for their use |
EP1011889B1 (en) | 1996-01-30 | 2002-10-30 | Medtronic, Inc. | Articles for and methods of making stents |
JPH09215753A (en) | 1996-02-08 | 1997-08-19 | Schneider Usa Inc | Self-expanding stent made of titanium alloy |
US6402736B1 (en) | 1996-02-16 | 2002-06-11 | Joe E. Brown | Apparatus and method for filtering intravascular fluids and for delivering diagnostic and therapeutic agents |
US5716370A (en) | 1996-02-23 | 1998-02-10 | Williamson, Iv; Warren | Means for replacing a heart valve in a minimally invasive manner |
US6402780B2 (en) | 1996-02-23 | 2002-06-11 | Cardiovascular Technologies, L.L.C. | Means and method of replacing a heart valve in a minimally invasive manner |
US5695498A (en) | 1996-02-28 | 1997-12-09 | Numed, Inc. | Stent implantation system |
US5720391A (en) | 1996-03-29 | 1998-02-24 | St. Jude Medical, Inc. | Packaging and holder for heart valve prosthesis |
US5891191A (en) | 1996-04-30 | 1999-04-06 | Schneider (Usa) Inc | Cobalt-chromium-molybdenum alloy stent and stent-graft |
US5885228A (en) | 1996-05-08 | 1999-03-23 | Heartport, Inc. | Valve sizer and method of use |
WO1997042879A1 (en) | 1996-05-14 | 1997-11-20 | Embol-X, Inc. | Aortic occluder with associated filter and methods of use during cardiac surgery |
DE69719237T2 (en) | 1996-05-23 | 2003-11-27 | Samsung Electronics Co., Ltd. | Flexible, self-expandable stent and method for its manufacture |
US7238197B2 (en) | 2000-05-30 | 2007-07-03 | Devax, Inc. | Endoprosthesis deployment system for treating vascular bifurcations |
CA2258732C (en) | 1996-06-20 | 2006-04-04 | Sulzer Vascutek Ltd. | Prosthetic repair of body passages |
US5855601A (en) | 1996-06-21 | 1999-01-05 | The Trustees Of Columbia University In The City Of New York | Artificial heart valve and method and device for implanting the same |
US5843161A (en) | 1996-06-26 | 1998-12-01 | Cordis Corporation | Endoprosthesis assembly for percutaneous deployment and method of deploying same |
US5755783A (en) | 1996-07-29 | 1998-05-26 | Stobie; Robert | Suture rings for rotatable artificial heart valves |
US6764509B2 (en) | 1996-09-06 | 2004-07-20 | Carbomedics Inc. | Prosthetic heart valve with surface modification |
US6702851B1 (en) | 1996-09-06 | 2004-03-09 | Joseph A. Chinn | Prosthetic heart valve with surface modification |
US5800531A (en) | 1996-09-30 | 1998-09-01 | Baxter International Inc. | Bioprosthetic heart valve implantation device |
DE69732349D1 (en) | 1996-10-01 | 2005-03-03 | Numed Inc | EXPANDABLE STENT |
US5749890A (en) | 1996-12-03 | 1998-05-12 | Shaknovich; Alexander | Method and system for stent placement in ostial lesions |
NL1004827C2 (en) | 1996-12-18 | 1998-06-19 | Surgical Innovations Vof | Device for regulating blood circulation. |
US6206911B1 (en) | 1996-12-19 | 2001-03-27 | Simcha Milo | Stent combination |
US6015431A (en) | 1996-12-23 | 2000-01-18 | Prograft Medical, Inc. | Endolumenal stent-graft with leak-resistant seal |
EP0850607A1 (en) | 1996-12-31 | 1998-07-01 | Cordis Corporation | Valve prosthesis for implantation in body channels |
GB9701479D0 (en) | 1997-01-24 | 1997-03-12 | Aortech Europ Ltd | Heart valve |
US6241757B1 (en) | 1997-02-04 | 2001-06-05 | Solco Surgical Instrument Co., Ltd. | Stent for expanding body's lumen |
US7384411B1 (en) | 1997-02-19 | 2008-06-10 | Condado Medical Devices Corporation | Multi-purpose catheters, catheter systems, and radiation treatment |
US6152946A (en) | 1998-03-05 | 2000-11-28 | Scimed Life Systems, Inc. | Distal protection device and method |
US5830229A (en) | 1997-03-07 | 1998-11-03 | Micro Therapeutics Inc. | Hoop stent |
US6416510B1 (en) | 1997-03-13 | 2002-07-09 | Biocardia, Inc. | Drug delivery catheters that attach to tissue and methods for their use |
US5817126A (en) | 1997-03-17 | 1998-10-06 | Surface Genesis, Inc. | Compound stent |
US5824053A (en) | 1997-03-18 | 1998-10-20 | Endotex Interventional Systems, Inc. | Helical mesh endoprosthesis and methods of use |
US5824055A (en) | 1997-03-25 | 1998-10-20 | Endotex Interventional Systems, Inc. | Stent graft delivery system and methods of use |
US5928281A (en) | 1997-03-27 | 1999-07-27 | Baxter International Inc. | Tissue heart valves |
US5860966A (en) | 1997-04-16 | 1999-01-19 | Numed, Inc. | Method of securing a stent on a balloon catheter |
US5868783A (en) | 1997-04-16 | 1999-02-09 | Numed, Inc. | Intravascular stent with limited axial shrinkage |
US6258115B1 (en) | 1997-04-23 | 2001-07-10 | Artemis Medical, Inc. | Bifurcated stent and distal protection system |
US5957949A (en) | 1997-05-01 | 1999-09-28 | World Medical Manufacturing Corp. | Percutaneous placement valve stent |
US6206917B1 (en) | 1997-05-02 | 2001-03-27 | St. Jude Medical, Inc. | Differential treatment of prosthetic devices |
US6245102B1 (en) | 1997-05-07 | 2001-06-12 | Iowa-India Investments Company Ltd. | Stent, stent graft and stent valve |
US6162245A (en) | 1997-05-07 | 2000-12-19 | Iowa-India Investments Company Limited | Stent valve and stent graft |
US6676682B1 (en) | 1997-05-08 | 2004-01-13 | Scimed Life Systems, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
US6258120B1 (en) | 1997-12-23 | 2001-07-10 | Embol-X, Inc. | Implantable cerebral protection device and methods of use |
US6007575A (en) | 1997-06-06 | 1999-12-28 | Samuels; Shaun Laurence Wilkie | Inflatable intraluminal stent and method for affixing same within the human body |
JP3645399B2 (en) | 1997-06-09 | 2005-05-11 | 住友金属工業株式会社 | Endovascular stent |
WO1998057599A2 (en) | 1997-06-17 | 1998-12-23 | Sante Camilli | Implantable valve for blood vessels |
US6635080B1 (en) | 1997-06-19 | 2003-10-21 | Vascutek Limited | Prosthesis for repair of body passages |
US5861024A (en) | 1997-06-20 | 1999-01-19 | Cardiac Assist Devices, Inc | Electrophysiology catheter and remote actuator therefor |
US5906619A (en) | 1997-07-24 | 1999-05-25 | Medtronic, Inc. | Disposable delivery device for endoluminal prostheses |
US6340367B1 (en) | 1997-08-01 | 2002-01-22 | Boston Scientific Scimed, Inc. | Radiopaque markers and methods of using the same |
US5984957A (en) | 1997-08-12 | 1999-11-16 | Schneider (Usa) Inc | Radially expanded prostheses with axial diameter control |
US6306164B1 (en) | 1997-09-05 | 2001-10-23 | C. R. Bard, Inc. | Short body endoprosthesis |
US5954766A (en) | 1997-09-16 | 1999-09-21 | Zadno-Azizi; Gholam-Reza | Body fluid flow control device |
US6056722A (en) | 1997-09-18 | 2000-05-02 | Iowa-India Investments Company Limited Of Douglas | Delivery mechanism for balloons, drugs, stents and other physical/mechanical agents and methods of use |
US5984959A (en) | 1997-09-19 | 1999-11-16 | United States Surgical | Heart valve replacement tools and procedures |
US5925063A (en) | 1997-09-26 | 1999-07-20 | Khosravi; Farhad | Coiled sheet valve, filter or occlusive device and methods of use |
US6361545B1 (en) | 1997-09-26 | 2002-03-26 | Cardeon Corporation | Perfusion filter catheter |
US6071308A (en) | 1997-10-01 | 2000-06-06 | Boston Scientific Corporation | Flexible metal wire stent |
IE980920A1 (en) | 1997-11-07 | 1999-05-19 | Salviac Ltd | An embolic protection device |
US6635068B1 (en) | 1998-02-10 | 2003-10-21 | Artemis Medical, Inc. | Occlusion, anchoring, tensioning and flow direction apparatus and methods for use |
WO1999030800A1 (en) | 1997-12-15 | 1999-06-24 | Domnick Hunter Limited | Filter assembly |
EP1039847A1 (en) | 1997-12-15 | 2000-10-04 | Prolifix Medical, Inc. | Vascular stent for reduction of restenosis |
US6695864B2 (en) | 1997-12-15 | 2004-02-24 | Cardeon Corporation | Method and apparatus for cerebral embolic protection |
CA2315211A1 (en) | 1997-12-29 | 1999-07-08 | The Cleveland Clinic Foundation | System for minimally invasive insertion of a bioprosthetic heart valve |
US6530952B2 (en) | 1997-12-29 | 2003-03-11 | The Cleveland Clinic Foundation | Bioprosthetic cardiovascular valve system |
US6096074A (en) | 1998-01-27 | 2000-08-01 | United States Surgical | Stapling apparatus and method for heart valve replacement |
WO1999039648A1 (en) | 1998-02-10 | 1999-08-12 | Dubrul William R | Entrapping apparatus and method for use |
EP0935978A1 (en) | 1998-02-16 | 1999-08-18 | Medicorp S.A. | Angioplasty and stent delivery catheter |
US6623521B2 (en) | 1998-02-17 | 2003-09-23 | Md3, Inc. | Expandable stent with sliding and locking radial elements |
US6280467B1 (en) | 1998-02-26 | 2001-08-28 | World Medical Manufacturing Corporation | Delivery system for deployment and endovascular assembly of a multi-stage stented graft |
US5938697A (en) | 1998-03-04 | 1999-08-17 | Scimed Life Systems, Inc. | Stent having variable properties |
US7491232B2 (en) | 1998-09-18 | 2009-02-17 | Aptus Endosystems, Inc. | Catheter-based fastener implantation apparatus and methods with implantation force resolution |
EP0943300A1 (en) | 1998-03-17 | 1999-09-22 | Medicorp S.A. | Reversible action endoprosthesis delivery device. |
US6656215B1 (en) | 2000-11-16 | 2003-12-02 | Cordis Corporation | Stent graft having an improved means for attaching a stent to a graft |
US6776791B1 (en) | 1998-04-01 | 2004-08-17 | Endovascular Technologies, Inc. | Stent and method and device for packing of same |
EP1067883A1 (en) | 1998-04-02 | 2001-01-17 | Salviac Limited | An implant comprising a support structure and a transition material made of porous plastics material |
US6074418A (en) | 1998-04-20 | 2000-06-13 | St. Jude Medical, Inc. | Driver tool for heart valve prosthesis fasteners |
US6450989B2 (en) | 1998-04-27 | 2002-09-17 | Artemis Medical, Inc. | Dilating and support apparatus with disease inhibitors and methods for use |
US6319241B1 (en) | 1998-04-30 | 2001-11-20 | Medtronic, Inc. | Techniques for positioning therapy delivery elements within a spinal cord or a brain |
US6059827A (en) | 1998-05-04 | 2000-05-09 | Axya Medical, Inc. | Sutureless cardiac valve prosthesis, and devices and methods for implanting them |
WO1999056663A2 (en) | 1998-05-05 | 1999-11-11 | Scimed Life Systems, Inc. | Stent with smooth ends |
US6352554B2 (en) | 1998-05-08 | 2002-03-05 | Sulzer Vascutek Limited | Prosthetic tubular aortic conduit and method for manufacturing the same |
US6093203A (en) | 1998-05-13 | 2000-07-25 | Uflacker; Renan | Stent or graft support structure for treating bifurcated vessels having different diameter portions and methods of use and implantation |
US7452371B2 (en) | 1999-06-02 | 2008-11-18 | Cook Incorporated | Implantable vascular device |
CA2333591C (en) | 1998-06-02 | 2009-12-15 | Cook Incorporated | Multiple-sided intraluminal medical device |
US6630001B2 (en) | 1998-06-24 | 2003-10-07 | International Heart Institute Of Montana Foundation | Compliant dehyrated tissue for implantation and process of making the same |
AU749930B2 (en) | 1998-07-10 | 2002-07-04 | Shin Ishimaru | Stent (or stent graft) indwelling device |
US6159239A (en) | 1998-08-14 | 2000-12-12 | Prodesco, Inc. | Woven stent/graft structure |
US6179860B1 (en) | 1998-08-19 | 2001-01-30 | Artemis Medical, Inc. | Target tissue localization device and method |
US6312461B1 (en) | 1998-08-21 | 2001-11-06 | John D. Unsworth | Shape memory tubular stent |
US6358276B1 (en) | 1998-09-30 | 2002-03-19 | Impra, Inc. | Fluid containing endoluminal stent |
US6475239B1 (en) | 1998-10-13 | 2002-11-05 | Sulzer Carbomedics Inc. | Method for making polymer heart valves with leaflets having uncut free edges |
US6254612B1 (en) | 1998-10-22 | 2001-07-03 | Cordis Neurovascular, Inc. | Hydraulic stent deployment system |
US6146366A (en) | 1998-11-03 | 2000-11-14 | Ras Holding Corp | Device for the treatment of macular degeneration and other eye disorders |
US6152144A (en) * | 1998-11-06 | 2000-11-28 | Appriva Medical, Inc. | Method and device for left atrial appendage occlusion |
DE19982467T1 (en) | 1998-11-06 | 2001-02-22 | Furukawa Electric Co Ltd | Medical guidewire based on NiTi and method of manufacturing the same |
US6214036B1 (en) | 1998-11-09 | 2001-04-10 | Cordis Corporation | Stent which is easily recaptured and repositioned within the body |
US6336937B1 (en) | 1998-12-09 | 2002-01-08 | Gore Enterprise Holdings, Inc. | Multi-stage expandable stent-graft |
DE19857887B4 (en) | 1998-12-15 | 2005-05-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Anchoring support for a heart valve prosthesis |
US6363938B2 (en) | 1998-12-22 | 2002-04-02 | Angiotrax, Inc. | Methods and apparatus for perfusing tissue and/or stimulating revascularization and tissue growth |
FR2788217A1 (en) | 1999-01-12 | 2000-07-13 | Brice Letac | PROSTHETIC VALVE IMPLANTABLE BY CATHETERISM, OR SURGICAL |
US6736845B2 (en) | 1999-01-26 | 2004-05-18 | Edwards Lifesciences Corporation | Holder for flexible heart valve |
CN1212810C (en) | 1999-01-27 | 2005-08-03 | 维亚科公司 | Cardiac valve procedure methods and devices |
US6896690B1 (en) | 2000-01-27 | 2005-05-24 | Viacor, Inc. | Cardiac valve procedure methods and devices |
EP3228263A1 (en) | 1999-02-01 | 2017-10-11 | Board of Regents, The University of Texas System | Woven intravascular devices |
US7018401B1 (en) | 1999-02-01 | 2006-03-28 | Board Of Regents, The University Of Texas System | Woven intravascular devices and methods for making the same and apparatus for delivery of the same |
BR0007932A (en) | 1999-02-01 | 2002-07-02 | Univ Texas | Bifurcated and trifurcated braided stents and methods for their manufacture |
EP1574169B1 (en) | 1999-02-01 | 2017-01-18 | Board Of Regents, The University Of Texas System | Woven intravascular devices |
DE19904975A1 (en) | 1999-02-06 | 2000-09-14 | Impella Cardiotech Ag | Device for intravascular heart valve surgery |
US6425916B1 (en) | 1999-02-10 | 2002-07-30 | Michi E. Garrison | Methods and devices for implanting cardiac valves |
US20020138094A1 (en) | 1999-02-12 | 2002-09-26 | Thomas Borillo | Vascular filter system |
DE19907646A1 (en) | 1999-02-23 | 2000-08-24 | Georg Berg | Valve for blood vessels uses flap holders and counterpart holders on stent to latch together in place and all channeled for guide wire. |
US6171327B1 (en) | 1999-02-24 | 2001-01-09 | Scimed Life Systems, Inc. | Intravascular filter and method |
US6905743B1 (en) | 1999-02-25 | 2005-06-14 | Boston Scientific Scimed, Inc. | Dimensionally stable balloons |
US6231551B1 (en) | 1999-03-01 | 2001-05-15 | Coaxia, Inc. | Partial aortic occlusion devices and methods for cerebral perfusion augmentation |
US6743196B2 (en) | 1999-03-01 | 2004-06-01 | Coaxia, Inc. | Partial aortic occlusion devices and methods for cerebral perfusion augmentation |
IL128938A0 (en) | 1999-03-11 | 2000-02-17 | Mind Guard Ltd | Implantable stroke treating device |
US6673089B1 (en) | 1999-03-11 | 2004-01-06 | Mindguard Ltd. | Implantable stroke treating device |
US6319281B1 (en) | 1999-03-22 | 2001-11-20 | Kumar R. Patel | Artificial venous valve and sizing catheter |
US7666204B2 (en) | 1999-04-09 | 2010-02-23 | Evalve, Inc. | Multi-catheter steerable guiding system and methods of use |
US7147663B1 (en) | 1999-04-23 | 2006-12-12 | St. Jude Medical Atg, Inc. | Artificial heart valve attachment apparatus and methods |
US6309417B1 (en) | 1999-05-12 | 2001-10-30 | Paul A. Spence | Heart valve and apparatus for replacement thereof |
AU4713200A (en) | 1999-05-12 | 2000-11-21 | Mark Ortiz | Heart valve and apparatus for replacement thereof, blood vessel leak detector and temporary pacemaker lead |
US6858034B1 (en) | 1999-05-20 | 2005-02-22 | Scimed Life Systems, Inc. | Stent delivery system for prevention of kinking, and method of loading and using same |
US6790229B1 (en) | 1999-05-25 | 2004-09-14 | Eric Berreklouw | Fixing device, in particular for fixing to vascular wall tissue |
JP3755862B2 (en) | 1999-05-26 | 2006-03-15 | キヤノン株式会社 | Synchronized position control apparatus and method |
EP1057459A1 (en) | 1999-06-01 | 2000-12-06 | Numed, Inc. | Radially expandable stent |
EP1057460A1 (en) | 1999-06-01 | 2000-12-06 | Numed, Inc. | Replacement valve assembly and method of implanting same |
US7628803B2 (en) | 2001-02-05 | 2009-12-08 | Cook Incorporated | Implantable vascular device |
US6179859B1 (en) | 1999-07-16 | 2001-01-30 | Baff Llc | Emboli filtration system and methods of use |
AU6000200A (en) | 1999-07-16 | 2001-02-05 | Biocompatibles Limited | Braided stent |
US6312465B1 (en) | 1999-07-23 | 2001-11-06 | Sulzer Carbomedics Inc. | Heart valve prosthesis with a resiliently deformable retaining member |
US6544279B1 (en) | 2000-08-09 | 2003-04-08 | Incept, Llc | Vascular device for emboli, thrombus and foreign body removal and methods of use |
US6371970B1 (en) | 1999-07-30 | 2002-04-16 | Incept Llc | Vascular filter having articulation region and methods of use in the ascending aorta |
US6142987A (en) | 1999-08-03 | 2000-11-07 | Scimed Life Systems, Inc. | Guided filter with support wire and methods of use |
US6346116B1 (en) | 1999-08-03 | 2002-02-12 | Medtronic Ave, Inc. | Distal protection device |
US6235044B1 (en) | 1999-08-04 | 2001-05-22 | Scimed Life Systems, Inc. | Percutaneous catheter and guidewire for filtering during ablation of mycardial or vascular tissue |
US6168579B1 (en) | 1999-08-04 | 2001-01-02 | Scimed Life Systems, Inc. | Filter flush system and methods of use |
US6299637B1 (en) | 1999-08-20 | 2001-10-09 | Samuel M. Shaolian | Transluminally implantable venous valve |
US6187016B1 (en) | 1999-09-14 | 2001-02-13 | Daniel G. Hedges | Stent retrieval device |
US6829497B2 (en) | 1999-09-21 | 2004-12-07 | Jamil Mogul | Steerable diagnostic catheters |
IT1307268B1 (en) | 1999-09-30 | 2001-10-30 | Sorin Biomedica Cardio Spa | DEVICE FOR HEART VALVE REPAIR OR REPLACEMENT. |
US6371983B1 (en) | 1999-10-04 | 2002-04-16 | Ernest Lane | Bioprosthetic heart valve |
US6364895B1 (en) | 1999-10-07 | 2002-04-02 | Prodesco, Inc. | Intraluminal filter |
US6383171B1 (en) | 1999-10-12 | 2002-05-07 | Allan Will | Methods and devices for protecting a passageway in a body when advancing devices through the passageway |
FR2799364B1 (en) | 1999-10-12 | 2001-11-23 | Jacques Seguin | MINIMALLY INVASIVE CANCELING DEVICE |
AU1084101A (en) | 1999-10-14 | 2001-04-23 | United Stenting, Inc. | Stents with multilayered struts |
US6352708B1 (en) | 1999-10-14 | 2002-03-05 | The International Heart Institute Of Montana Foundation | Solution and method for treating autologous tissue for implant operation |
US6440164B1 (en) | 1999-10-21 | 2002-08-27 | Scimed Life Systems, Inc. | Implantable prosthetic valve |
US6652555B1 (en) * | 1999-10-27 | 2003-11-25 | Atritech, Inc. | Barrier device for covering the ostium of left atrial appendage |
US6585758B1 (en) | 1999-11-16 | 2003-07-01 | Scimed Life Systems, Inc. | Multi-section filamentary endoluminal stent |
US8579966B2 (en) | 1999-11-17 | 2013-11-12 | Medtronic Corevalve Llc | Prosthetic valve for transluminal delivery |
US7018406B2 (en) | 1999-11-17 | 2006-03-28 | Corevalve Sa | Prosthetic valve for transluminal delivery |
FR2815844B1 (en) | 2000-10-31 | 2003-01-17 | Jacques Seguin | TUBULAR SUPPORT FOR THE PERCUTANEOUS POSITIONING OF A REPLACEMENT HEART VALVE |
FR2800984B1 (en) | 1999-11-17 | 2001-12-14 | Jacques Seguin | DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY |
US7195641B2 (en) | 1999-11-19 | 2007-03-27 | Advanced Bio Prosthetic Surfaces, Ltd. | Valvular prostheses having metal or pseudometallic construction and methods of manufacture |
US6379383B1 (en) | 1999-11-19 | 2002-04-30 | Advanced Bio Prosthetic Surfaces, Ltd. | Endoluminal device exhibiting improved endothelialization and method of manufacture thereof |
US6849085B2 (en) | 1999-11-19 | 2005-02-01 | Advanced Bio Prosthetic Surfaces, Ltd. | Self-supporting laminated films, structural materials and medical devices manufactured therefrom and method of making same |
US6458153B1 (en) | 1999-12-31 | 2002-10-01 | Abps Venture One, Ltd. | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof |
US6663667B2 (en) | 1999-12-29 | 2003-12-16 | Edwards Lifesciences Corporation | Towel graft means for enhancing tissue ingrowth in vascular grafts |
KR20020082217A (en) | 2000-01-27 | 2002-10-30 | 쓰리에프 쎄러퓨틱스, 인코포레이티드 | Prosthetic Heart Valve |
US6872226B2 (en) | 2001-01-29 | 2005-03-29 | 3F Therapeutics, Inc. | Method of cutting material for use in implantable medical device |
US6622604B1 (en) | 2000-01-31 | 2003-09-23 | Scimed Life Systems, Inc. | Process for manufacturing a braided bifurcated stent |
US6398807B1 (en) | 2000-01-31 | 2002-06-04 | Scimed Life Systems, Inc. | Braided branching stent, method for treating a lumen therewith, and process for manufacture therefor |
US6652571B1 (en) | 2000-01-31 | 2003-11-25 | Scimed Life Systems, Inc. | Braided, branched, implantable device and processes for manufacture thereof |
PL201632B1 (en) | 2000-01-31 | 2009-04-30 | Cook Biotech | Stent valves and uses of same |
WO2001056512A1 (en) | 2000-02-02 | 2001-08-09 | Snyders Robert V | Artificial heart valve |
US6797002B2 (en) | 2000-02-02 | 2004-09-28 | Paul A. Spence | Heart valve repair apparatus and methods |
US6821297B2 (en) | 2000-02-02 | 2004-11-23 | Robert V. Snyders | Artificial heart valve, implantation instrument and method therefor |
US20050267560A1 (en) | 2000-02-03 | 2005-12-01 | Cook Incorporated | Implantable bioabsorbable valve support frame |
US6540768B1 (en) | 2000-02-09 | 2003-04-01 | Cordis Corporation | Vascular filter system |
US6344044B1 (en) | 2000-02-11 | 2002-02-05 | Edwards Lifesciences Corp. | Apparatus and methods for delivery of intraluminal prosthesis |
DE10010073B4 (en) | 2000-02-28 | 2005-12-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Anchoring for implantable heart valve prostheses |
DE10010074B4 (en) | 2000-02-28 | 2005-04-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Device for fastening and anchoring heart valve prostheses |
JP4914957B2 (en) | 2000-03-03 | 2012-04-11 | クック メディカル テクノロジーズ エルエルシー | Medical tools |
US6485502B2 (en) | 2000-03-10 | 2002-11-26 | T. Anthony Don Michael | Vascular embolism prevention device employing filters |
US6695865B2 (en) | 2000-03-20 | 2004-02-24 | Advanced Bio Prosthetic Surfaces, Ltd. | Embolic protection device |
US6468303B1 (en) | 2000-03-27 | 2002-10-22 | Aga Medical Corporation | Retrievable self expanding shunt |
US6454799B1 (en) | 2000-04-06 | 2002-09-24 | Edwards Lifesciences Corporation | Minimally-invasive heart valves and methods of use |
GB2369575A (en) | 2000-04-20 | 2002-06-05 | Salviac Ltd | An embolic protection system |
US6729356B1 (en) | 2000-04-27 | 2004-05-04 | Endovascular Technologies, Inc. | Endovascular graft for providing a seal with vasculature |
JP4726382B2 (en) | 2000-05-04 | 2011-07-20 | オレゴン ヘルス サイエンシーズ ユニバーシティー | Stent graft |
IL136213A0 (en) | 2000-05-17 | 2001-05-20 | Xtent Medical Inc | Selectively expandable and releasable stent |
US20050043757A1 (en) | 2000-06-12 | 2005-02-24 | Michael Arad | Medical devices formed from shape memory alloys displaying a stress-retained martensitic state and method for use thereof |
SE522805C2 (en) | 2000-06-22 | 2004-03-09 | Jan Otto Solem | Stent Application System |
US6527800B1 (en) | 2000-06-26 | 2003-03-04 | Rex Medical, L.P. | Vascular device and method for valve leaflet apposition |
US6676698B2 (en) | 2000-06-26 | 2004-01-13 | Rex Medicol, L.P. | Vascular device with valve for approximating vessel wall |
AU2001271667A1 (en) | 2000-06-30 | 2002-01-14 | Viacor Incorporated | Method and apparatus for performing a procedure on a cardiac valve |
US6419696B1 (en) | 2000-07-06 | 2002-07-16 | Paul A. Spence | Annuloplasty devices and related heart valve repair methods |
US6572643B1 (en) | 2000-07-19 | 2003-06-03 | Vascular Architects, Inc. | Endoprosthesis delivery catheter assembly and method |
ES2365208T3 (en) | 2000-07-24 | 2011-09-26 | Jeffrey Grayzel | CATHETER WITH RIGIDIZED BALLOON FOR DILATATION AND IMPLEMENTATION OF ENDOVASCULAR PROSTHESIS. |
US6773454B2 (en) | 2000-08-02 | 2004-08-10 | Michael H. Wholey | Tapered endovascular stent graft and method of treating abdominal aortic aneurysms and distal iliac aneurysms |
US6485501B1 (en) | 2000-08-11 | 2002-11-26 | Cordis Corporation | Vascular filter system with guidewire and capture mechanism |
US20020022860A1 (en) | 2000-08-18 | 2002-02-21 | Borillo Thomas E. | Expandable implant devices for filtering blood flow from atrial appendages |
US6572652B2 (en) | 2000-08-29 | 2003-06-03 | Venpro Corporation | Method and devices for decreasing elevated pulmonary venous pressure |
US6846325B2 (en) | 2000-09-07 | 2005-01-25 | Viacor, Inc. | Fixation band for affixing a prosthetic heart valve to tissue |
US6543610B1 (en) | 2000-09-12 | 2003-04-08 | Alok Nigam | System for packaging and handling an implant and method of use |
US7510572B2 (en) | 2000-09-12 | 2009-03-31 | Shlomo Gabbay | Implantation system for delivery of a heart valve prosthesis |
WO2004030568A2 (en) | 2002-10-01 | 2004-04-15 | Ample Medical, Inc. | Device and method for repairing a native heart valve leaflet |
US6893459B1 (en) | 2000-09-20 | 2005-05-17 | Ample Medical, Inc. | Heart valve annulus device and method of using same |
US6461382B1 (en) | 2000-09-22 | 2002-10-08 | Edwards Lifesciences Corporation | Flexible heart valve having moveable commissures |
US6602288B1 (en) | 2000-10-05 | 2003-08-05 | Edwards Lifesciences Corporation | Minimally-invasive annuloplasty repair segment delivery template, system and method of use |
DE10049813C1 (en) | 2000-10-09 | 2002-04-18 | Universitaetsklinikum Freiburg | Instrument for the local removal of built-up matter at an aortic valve, in a human or animal heart, is a hollow catheter with a cutting unit at the far end within a closure cap for minimum invasion |
DE10049812B4 (en) | 2000-10-09 | 2004-06-03 | Universitätsklinikum Freiburg | Device for filtering out macroscopic particles from the bloodstream during local removal of an aortic valve on the human or animal heart |
DE10049815B4 (en) | 2000-10-09 | 2005-10-13 | Universitätsklinikum Freiburg | Device for local ablation of an aortic valve on the human or animal heart |
DE10049814B4 (en) | 2000-10-09 | 2006-10-19 | Universitätsklinikum Freiburg | Device for supporting surgical procedures within a vessel, in particular for minimally invasive explantation and implantation of heart valves |
JP2004517652A (en) | 2000-10-18 | 2004-06-17 | エヌエムティー メディカル インコーポレイテッド | Interlock installation / separation mechanism over wire |
US6814754B2 (en) | 2000-10-30 | 2004-11-09 | Secant Medical, Llc | Woven tubular graft with regions of varying flexibility |
WO2002076281A2 (en) | 2000-11-07 | 2002-10-03 | Artemis Medical Inc. | Tissue separator assembly and method |
US6482228B1 (en) | 2000-11-14 | 2002-11-19 | Troy R. Norred | Percutaneous aortic valve replacement |
US7267685B2 (en) | 2000-11-16 | 2007-09-11 | Cordis Corporation | Bilateral extension prosthesis and method of delivery |
US6843802B1 (en) | 2000-11-16 | 2005-01-18 | Cordis Corporation | Delivery apparatus for a self expanding retractable stent |
DE60112603T2 (en) | 2000-11-21 | 2006-06-14 | Rex Medical Lp | PERKUTANE AORTENKLAPPE |
US6974476B2 (en) | 2003-05-05 | 2005-12-13 | Rex Medical, L.P. | Percutaneous aortic valve |
EP1347794A2 (en) | 2000-11-27 | 2003-10-01 | Medtronic, Inc. | Stents and methods for preparing stents from wires having hydrogel coating layers thereon |
US6953332B1 (en) | 2000-11-28 | 2005-10-11 | St. Jude Medical, Inc. | Mandrel for use in forming valved prostheses having polymer leaflets by dip coating |
US6663588B2 (en) | 2000-11-29 | 2003-12-16 | C.R. Bard, Inc. | Active counterforce handle for use in bidirectional deflectable tip instruments |
US6494909B2 (en) | 2000-12-01 | 2002-12-17 | Prodesco, Inc. | Endovascular valve |
WO2002047575A2 (en) | 2000-12-15 | 2002-06-20 | Angiomed Gmbh & Co. Medizintechnik Kg | Stent with valve |
US20020120328A1 (en) | 2000-12-21 | 2002-08-29 | Pathak Chandrashekhar Prabhakar | Mechanical heart valve packaged in a liquid |
US6471708B2 (en) | 2000-12-21 | 2002-10-29 | Bausch & Lomb Incorporated | Intraocular lens and additive packaging system |
US6468660B2 (en) | 2000-12-29 | 2002-10-22 | St. Jude Medical, Inc. | Biocompatible adhesives |
WO2002056955A1 (en) | 2001-01-18 | 2002-07-25 | Edwards Lifesciences Corporation | Arterial cannula with perforated filter lumen |
AU2002255486A1 (en) | 2001-01-19 | 2002-09-19 | Walid Najib Aboul-Hosn | Apparatus and method for maintaining flow through a vessel or duct |
US6610077B1 (en) | 2001-01-23 | 2003-08-26 | Endovascular Technologies, Inc. | Expandable emboli filter and thrombectomy device |
US6863688B2 (en) | 2001-02-15 | 2005-03-08 | Spinecore, Inc. | Intervertebral spacer device utilizing a spirally slotted belleville washer having radially spaced concentric grooves |
US6623518B2 (en) | 2001-02-26 | 2003-09-23 | Ev3 Peripheral, Inc. | Implant delivery system with interlock |
US20020123755A1 (en) | 2001-03-01 | 2002-09-05 | Scimed Life Systems, Inc. | Embolic protection filter delivery sheath |
US6562058B2 (en) | 2001-03-02 | 2003-05-13 | Jacques Seguin | Intravascular filter system |
US6488704B1 (en) | 2001-05-07 | 2002-12-03 | Biomed Solutions, Llc | Implantable particle measuring apparatus |
CA2441119A1 (en) | 2001-03-08 | 2002-09-19 | Atritech, Inc. | Atrial filter implants |
US6503272B2 (en) | 2001-03-21 | 2003-01-07 | Cordis Corporation | Stent-based venous valves |
US7374571B2 (en) | 2001-03-23 | 2008-05-20 | Edwards Lifesciences Corporation | Rolled minimally-invasive heart valves and methods of manufacture |
US6773456B1 (en) | 2001-03-23 | 2004-08-10 | Endovascular Technologies, Inc. | Adjustable customized endovascular graft |
US7556646B2 (en) | 2001-09-13 | 2009-07-07 | Edwards Lifesciences Corporation | Methods and apparatuses for deploying minimally-invasive heart valves |
US6733525B2 (en) | 2001-03-23 | 2004-05-11 | Edwards Lifesciences Corporation | Rolled minimally-invasive heart valves and methods of use |
ES2223759T3 (en) | 2001-03-27 | 2005-03-01 | William Cook Europe Aps | AORTIC GRAFT DEVICE. |
JP2002293678A (en) | 2001-03-28 | 2002-10-09 | Fuji Photo Film Co Ltd | Method for forming image |
US6911036B2 (en) | 2001-04-03 | 2005-06-28 | Medtronic Vascular, Inc. | Guidewire apparatus for temporary distal embolic protection |
WO2002083224A2 (en) | 2001-04-17 | 2002-10-24 | Salviac Limited | A catheter |
US6676692B2 (en) | 2001-04-27 | 2004-01-13 | Intek Technology L.L.C. | Apparatus for delivering, repositioning and/or retrieving self-expanding stents |
DE60222545T2 (en) | 2001-04-27 | 2008-06-12 | C.R. Bard, Inc. | HANDLEBAR DESIGN FOR A MEDICAL CATHETER |
US6746469B2 (en) | 2001-04-30 | 2004-06-08 | Advanced Cardiovascular Systems, Inc. | Balloon actuated apparatus having multiple embolic filters, and method of use |
DE10121210B4 (en) | 2001-04-30 | 2005-11-17 | Universitätsklinikum Freiburg | Anchoring element for the intraluminal anchoring of a heart valve replacement and method for its production |
US20050021123A1 (en) | 2001-04-30 | 2005-01-27 | Jurgen Dorn | Variable speed self-expanding stent delivery system and luer locking connector |
US7374560B2 (en) | 2001-05-01 | 2008-05-20 | St. Jude Medical, Cardiology Division, Inc. | Emboli protection devices and related methods of use |
US6716238B2 (en) | 2001-05-10 | 2004-04-06 | Scimed Life Systems, Inc. | Stent with detachable tethers and method of using same |
US6682558B2 (en) | 2001-05-10 | 2004-01-27 | 3F Therapeutics, Inc. | Delivery system for a stentless valve bioprosthesis |
US6663663B2 (en) | 2001-05-14 | 2003-12-16 | M.I. Tech Co., Ltd. | Stent |
US6936067B2 (en) | 2001-05-17 | 2005-08-30 | St. Jude Medical Inc. | Prosthetic heart valve with slit stent |
US6821291B2 (en) | 2001-06-01 | 2004-11-23 | Ams Research Corporation | Retrievable stent and method of use thereof |
KR100393548B1 (en) | 2001-06-05 | 2003-08-02 | 주식회사 엠아이텍 | Stent |
EP1392197B1 (en) | 2001-06-08 | 2005-11-16 | Rex Medical, LP | Vascular device with valve for approximating vessel wall |
US7510571B2 (en) | 2001-06-11 | 2009-03-31 | Boston Scientific, Scimed, Inc. | Pleated composite ePTFE/textile hybrid covering |
US6818013B2 (en) | 2001-06-14 | 2004-11-16 | Cordis Corporation | Intravascular stent device |
GB0114918D0 (en) | 2001-06-19 | 2001-08-08 | Vortex Innovation Ltd | Devices for repairing aneurysms |
US7544206B2 (en) | 2001-06-29 | 2009-06-09 | Medtronic, Inc. | Method and apparatus for resecting and replacing an aortic valve |
FR2826863B1 (en) | 2001-07-04 | 2003-09-26 | Jacques Seguin | ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT |
US7377938B2 (en) | 2001-07-19 | 2008-05-27 | The Cleveland Clinic Foundation | Prosthetic cardiac value and method for making same |
FR2828091B1 (en) | 2001-07-31 | 2003-11-21 | Seguin Jacques | ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT |
US6755854B2 (en) | 2001-07-31 | 2004-06-29 | Advanced Cardiovascular Systems, Inc. | Control device and mechanism for deploying a self-expanding medical device |
FR2828263B1 (en) | 2001-08-03 | 2007-05-11 | Philipp Bonhoeffer | DEVICE FOR IMPLANTATION OF AN IMPLANT AND METHOD FOR IMPLANTATION OF THE DEVICE |
US6896002B2 (en) | 2001-08-21 | 2005-05-24 | Scimed Life Systems, Inc | Pressure transducer protection valve |
WO2003018100A1 (en) | 2001-08-22 | 2003-03-06 | Hasan Semih Oktay | Flexible mems actuated controlled expansion stent |
US7097665B2 (en) | 2003-01-16 | 2006-08-29 | Synecor, Llc | Positioning tools and methods for implanting medical devices |
US20030229390A1 (en) | 2001-09-17 | 2003-12-11 | Control Delivery Systems, Inc. | On-stent delivery of pyrimidines and purine analogs |
US6616682B2 (en) | 2001-09-19 | 2003-09-09 | Jomed Gmbh | Methods and apparatus for distal protection during a medical procedure |
US20030065386A1 (en) | 2001-09-28 | 2003-04-03 | Weadock Kevin Shaun | Radially expandable endoprosthesis device with two-stage deployment |
US7172572B2 (en) | 2001-10-04 | 2007-02-06 | Boston Scientific Scimed, Inc. | Manifold system for a medical device |
US6976974B2 (en) | 2002-10-23 | 2005-12-20 | Scimed Life Systems, Inc. | Rotary manifold syringe |
US6860668B2 (en) | 2001-10-09 | 2005-03-01 | Endoscopic Technologies, Inc. | Method and apparatus for improved stiffness in the linkage assembly of a flexible arm |
US6790237B2 (en) | 2001-10-09 | 2004-09-14 | Scimed Life Systems, Inc. | Medical stent with a valve and related methods of manufacturing |
US6893460B2 (en) | 2001-10-11 | 2005-05-17 | Percutaneous Valve Technologies Inc. | Implantable prosthetic valve |
US6866669B2 (en) | 2001-10-12 | 2005-03-15 | Cordis Corporation | Locking handle deployment mechanism for medical device and method |
US6939352B2 (en) | 2001-10-12 | 2005-09-06 | Cordis Corporation | Handle deployment mechanism for medical device and method |
US7144363B2 (en) | 2001-10-16 | 2006-12-05 | Extensia Medical, Inc. | Systems for heart treatment |
US7192441B2 (en) | 2001-10-16 | 2007-03-20 | Scimed Life Systems, Inc. | Aortic artery aneurysm endovascular prosthesis |
AUPR847201A0 (en) | 2001-10-26 | 2001-11-15 | Cook Incorporated | Endoluminal graft |
GB0125925D0 (en) | 2001-10-29 | 2001-12-19 | Univ Glasgow | Mitral valve prosthesis |
US6712843B2 (en) | 2001-11-20 | 2004-03-30 | Scimed Life Systems, Inc | Stent with differential lengthening/shortening members |
US6890340B2 (en) | 2001-11-29 | 2005-05-10 | Medtronic Vascular, Inc. | Apparatus for temporary intraluminal protection |
US7294146B2 (en) | 2001-12-03 | 2007-11-13 | Xtent, Inc. | Apparatus and methods for delivery of variable length stents |
US7232453B2 (en) | 2001-12-05 | 2007-06-19 | Sagax, Inc. | Endovascular device for entrapment of particulate matter and method for use |
US7041139B2 (en) | 2001-12-11 | 2006-05-09 | Boston Scientific Scimed, Inc. | Ureteral stents and related methods |
US6676668B2 (en) | 2001-12-12 | 2004-01-13 | C.R. Baed | Articulating stone basket |
US7189258B2 (en) | 2002-01-02 | 2007-03-13 | Medtronic, Inc. | Heart valve system |
US20030130729A1 (en) | 2002-01-04 | 2003-07-10 | David Paniagua | Percutaneously implantable replacement heart valve device and method of making same |
US8308797B2 (en) | 2002-01-04 | 2012-11-13 | Colibri Heart Valve, LLC | Percutaneously implantable replacement heart valve device and method of making same |
US6723116B2 (en) | 2002-01-14 | 2004-04-20 | Syde A. Taheri | Exclusion of ascending/descending aorta and/or aortic arch aneurysm |
US20030135162A1 (en) | 2002-01-17 | 2003-07-17 | Scimed Life Systems, Inc. | Delivery and retrieval manifold for a distal protection filter |
US6730377B2 (en) | 2002-01-23 | 2004-05-04 | Scimed Life Systems, Inc. | Balloons made from liquid crystal polymer blends |
US6911040B2 (en) | 2002-01-24 | 2005-06-28 | Cordis Corporation | Covered segmented stent |
US6689144B2 (en) | 2002-02-08 | 2004-02-10 | Scimed Life Systems, Inc. | Rapid exchange catheter and methods for delivery of vaso-occlusive devices |
US6974464B2 (en) | 2002-02-28 | 2005-12-13 | 3F Therapeutics, Inc. | Supportless atrioventricular heart valve and minimally invasive delivery systems thereof |
ES2295608T3 (en) | 2002-03-05 | 2008-04-16 | Salviac Limited | SYSTEM WITH EMBOLIC FILTER AND RETRACTABLE HANDLE. |
US20030176884A1 (en) | 2002-03-12 | 2003-09-18 | Marwane Berrada | Everted filter device |
US7163556B2 (en) | 2002-03-21 | 2007-01-16 | Providence Health System - Oregon | Bioprosthesis and method for suturelessly making same |
US20030187495A1 (en) | 2002-04-01 | 2003-10-02 | Cully Edward H. | Endoluminal devices, embolic filters, methods of manufacture and use |
US6752828B2 (en) | 2002-04-03 | 2004-06-22 | Scimed Life Systems, Inc. | Artificial valve |
US7052511B2 (en) | 2002-04-04 | 2006-05-30 | Scimed Life Systems, Inc. | Delivery system and method for deployment of foreshortening endoluminal devices |
US20030195609A1 (en) | 2002-04-10 | 2003-10-16 | Scimed Life Systems, Inc. | Hybrid stent |
US7125418B2 (en) | 2002-04-16 | 2006-10-24 | The International Heart Institute Of Montana Foundation | Sigmoid valve and method for its percutaneous implantation |
WO2003088873A1 (en) | 2002-04-16 | 2003-10-30 | Viacor, Inc. | Fixation band for affixing a prosthetic heart valve to tissue |
US20030199759A1 (en) | 2002-04-18 | 2003-10-23 | Richard Merwin F. | Coronary catheter with radiopaque length markers |
US20030199971A1 (en) | 2002-04-23 | 2003-10-23 | Numed, Inc. | Biological replacement valve assembly |
US8721713B2 (en) | 2002-04-23 | 2014-05-13 | Medtronic, Inc. | System for implanting a replacement valve |
US20030204249A1 (en) | 2002-04-25 | 2003-10-30 | Michel Letort | Endovascular stent graft and fixation cuff |
US7331993B2 (en) | 2002-05-03 | 2008-02-19 | The General Hospital Corporation | Involuted endovascular valve and method of construction |
US8070769B2 (en) | 2002-05-06 | 2011-12-06 | Boston Scientific Scimed, Inc. | Inverted embolic protection filter |
US6830575B2 (en) | 2002-05-08 | 2004-12-14 | Scimed Life Systems, Inc. | Method and device for providing full protection to a stent |
US7141064B2 (en) | 2002-05-08 | 2006-11-28 | Edwards Lifesciences Corporation | Compressed tissue for heart valve leaflets |
CA2485285A1 (en) | 2002-05-10 | 2003-11-20 | Cordis Corporation | Method of making a medical device having a thin wall tubular membrane over a structural frame |
US7351256B2 (en) | 2002-05-10 | 2008-04-01 | Cordis Corporation | Frame based unidirectional flow prosthetic implant |
DE10221076A1 (en) | 2002-05-11 | 2003-11-27 | Ruesch Willy Gmbh | stent |
US20030225445A1 (en) | 2002-05-14 | 2003-12-04 | Derus Patricia M. | Surgical stent delivery devices and methods |
US7585309B2 (en) | 2002-05-16 | 2009-09-08 | Boston Scientific Scimed, Inc. | Aortic filter |
US20040117004A1 (en) | 2002-05-16 | 2004-06-17 | Osborne Thomas A. | Stent and method of forming a stent with integral barbs |
AU2002367970A1 (en) | 2002-05-17 | 2003-12-02 | Bionethos Holding Gmbh | Medical device for the treatment of a body vessel or another tubular structure in the body |
AU2003240831A1 (en) | 2002-05-30 | 2003-12-19 | The Board Of Trustees Of The Leland Stanford Junior University | Apparatus and method for coronary sinus access |
US7264632B2 (en) | 2002-06-07 | 2007-09-04 | Medtronic Vascular, Inc. | Controlled deployment delivery system |
US7717934B2 (en) | 2002-06-14 | 2010-05-18 | Ev3 Inc. | Rapid exchange catheters usable with embolic protection devices |
US7044962B2 (en) | 2002-06-25 | 2006-05-16 | Scimed Life Systems, Inc. | Implantable prosthesis with displaceable skirt |
US7166120B2 (en) | 2002-07-12 | 2007-01-23 | Ev3 Inc. | Catheter with occluding cuff |
US7232452B2 (en) | 2002-07-12 | 2007-06-19 | Ev3 Inc. | Device to create proximal stasis |
US7141063B2 (en) | 2002-08-06 | 2006-11-28 | Icon Medical Corp. | Stent with micro-latching hinge joints |
US6969395B2 (en) | 2002-08-07 | 2005-11-29 | Boston Scientific Scimed, Inc. | Electroactive polymer actuated medical devices |
EP1388328A1 (en) | 2002-08-07 | 2004-02-11 | Abbott Laboratories Vascular Enterprises Limited | Apparatus for delivering and deployment of an expandable stent within a blood vessel |
DE10362367B3 (en) | 2002-08-13 | 2022-02-24 | Jenavalve Technology Inc. | Device for anchoring and aligning prosthetic heart valves |
US7041132B2 (en) | 2002-08-16 | 2006-05-09 | 3F Therapeutics, Inc, | Percutaneously delivered heart valve and delivery means thereof |
US6863668B2 (en) | 2002-08-16 | 2005-03-08 | Edwards Lifesciences Corporation | Articulation mechanism for medical devices |
US7175652B2 (en) | 2002-08-20 | 2007-02-13 | Cook Incorporated | Stent graft with improved proximal end |
US8114114B2 (en) | 2002-08-27 | 2012-02-14 | Emboline, Inc. | Embolic protection device |
US20040092858A1 (en) | 2002-08-28 | 2004-05-13 | Heart Leaflet Technologies, Inc. | Leaflet valve |
ATE464028T1 (en) | 2002-08-29 | 2010-04-15 | St Jude Medical Cardiology Div | IMPLANTABLE DEVICES FOR CONTROLLING THE INNER DIAMETER OF AN OPENING IN THE BODY |
US7083633B2 (en) | 2002-09-03 | 2006-08-01 | Advanced Vascular Technologies Llc | Arterial embolic filter deployed from catheter |
KR100442330B1 (en) | 2002-09-03 | 2004-07-30 | 주식회사 엠아이텍 | Stent and manufacturing method the same |
US6875231B2 (en) | 2002-09-11 | 2005-04-05 | 3F Therapeutics, Inc. | Percutaneously deliverable heart valve |
CO5500017A1 (en) | 2002-09-23 | 2005-03-31 | 3F Therapeutics Inc | MITRAL PROTESTIC VALVE |
US20040059409A1 (en) | 2002-09-24 | 2004-03-25 | Stenzel Eric B. | Method of applying coatings to a medical device |
US7998163B2 (en) | 2002-10-03 | 2011-08-16 | Boston Scientific Scimed, Inc. | Expandable retrieval device |
US6824041B2 (en) | 2002-10-21 | 2004-11-30 | Agilent Technologies, Inc. | High temperature eutectic solder ball attach |
US7416557B2 (en) | 2002-10-24 | 2008-08-26 | Boston Scientific Scimed, Inc. | Venous valve apparatus and method |
US7481823B2 (en) | 2002-10-25 | 2009-01-27 | Boston Scientific Scimed, Inc. | Multiple membrane embolic protection filter |
US6814746B2 (en) | 2002-11-01 | 2004-11-09 | Ev3 Peripheral, Inc. | Implant delivery system with marker interlock |
DE60231843D1 (en) | 2002-11-08 | 2009-05-14 | Jacques Seguin | ENDOPROTHESIS FOR VESSEL FORKING |
WO2004043273A2 (en) | 2002-11-13 | 2004-05-27 | Rosengart Todd K | Apparatus and method for cutting a heart valve |
WO2004043293A2 (en) | 2002-11-13 | 2004-05-27 | Viacor, Inc. | Cardiac valve procedure methods and devices |
US20040098022A1 (en) | 2002-11-14 | 2004-05-20 | Barone David D. | Intraluminal catheter with hydraulically collapsible self-expanding protection device |
US7527636B2 (en) | 2002-11-14 | 2009-05-05 | Medtronic Vascular, Inc | Intraluminal guidewire with hydraulically collapsible self-expanding protection device |
US7141061B2 (en) | 2002-11-14 | 2006-11-28 | Synecor, Llc | Photocurable endoprosthesis system |
US7001425B2 (en) | 2002-11-15 | 2006-02-21 | Scimed Life Systems, Inc. | Braided stent method for its manufacture |
US7485143B2 (en) | 2002-11-15 | 2009-02-03 | Abbott Cardiovascular Systems Inc. | Apparatuses and methods for heart valve repair |
FR2847155B1 (en) | 2002-11-20 | 2005-08-05 | Younes Boudjemline | METHOD FOR MANUFACTURING A MEDICAL IMPLANT WITH ADJUSTED STRUCTURE AND IMPLANT OBTAINED THEREBY |
WO2004050137A2 (en) | 2002-11-29 | 2004-06-17 | Mindguard Ltd. | Braided intraluminal device for stroke prevention |
US7678068B2 (en) | 2002-12-02 | 2010-03-16 | Gi Dynamics, Inc. | Atraumatic delivery devices |
US7025791B2 (en) | 2002-12-02 | 2006-04-11 | Gi Dynamics, Inc. | Bariatric sleeve |
US8551162B2 (en) | 2002-12-20 | 2013-10-08 | Medtronic, Inc. | Biologically implantable prosthesis |
US6984242B2 (en) | 2002-12-20 | 2006-01-10 | Gore Enterprise Holdings, Inc. | Implantable medical device assembly |
US6945957B2 (en) | 2002-12-30 | 2005-09-20 | Scimed Life Systems, Inc. | Valve treatment catheter and methods |
US6830585B1 (en) | 2003-01-14 | 2004-12-14 | 3F Therapeutics, Inc. | Percutaneously deliverable heart valve and methods of implantation |
US20040138694A1 (en) | 2003-01-15 | 2004-07-15 | Scimed Life Systems, Inc. | Intravascular filtering membrane and method of making an embolic protection filter device |
US7753945B2 (en) | 2003-01-17 | 2010-07-13 | Gore Enterprise Holdings, Inc. | Deployment system for an endoluminal device |
EP1589902A1 (en) | 2003-01-27 | 2005-11-02 | Medtronic Vascular Connaught | Improved packaging for stent delivery systems |
GB2398245B (en) | 2003-02-06 | 2007-03-28 | Great Ormond Street Hospital F | Valve prosthesis |
US7740644B2 (en) | 2003-02-24 | 2010-06-22 | Boston Scientific Scimed, Inc. | Embolic protection filtering device that can be adapted to be advanced over a guidewire |
WO2004078065A2 (en) | 2003-03-03 | 2004-09-16 | Sinus Rhythm Technologies, Inc. | Electrical conduction block implant device |
US7399315B2 (en) | 2003-03-18 | 2008-07-15 | Edwards Lifescience Corporation | Minimally-invasive heart valve with cusp positioners |
ATE401843T1 (en) | 2003-03-20 | 2008-08-15 | Aortech Internat Plc | VALVE |
WO2004089250A1 (en) | 2003-03-30 | 2004-10-21 | Fidel Realyvasquez | Apparatus and methods for valve repair |
US7871434B2 (en) | 2003-04-01 | 2011-01-18 | Cook Incorporated | Percutaneously deployed vascular valves |
US7530995B2 (en) | 2003-04-17 | 2009-05-12 | 3F Therapeutics, Inc. | Device for reduction of pressure effects of cardiac tricuspid valve regurgitation |
US7175656B2 (en) | 2003-04-18 | 2007-02-13 | Alexander Khairkhahan | Percutaneous transcatheter heart valve replacement |
US7591832B2 (en) | 2003-04-24 | 2009-09-22 | Medtronic, Inc. | Expandable guide sheath and apparatus with distal protection and methods for use |
US8388628B2 (en) | 2003-04-24 | 2013-03-05 | Medtronic, Inc. | Expandable sheath for delivering instruments and agents into a body lumen and methods for use |
DE602004023350D1 (en) | 2003-04-30 | 2009-11-12 | Medtronic Vascular Inc | Percutaneous inserted provisional valve |
US6969396B2 (en) | 2003-05-07 | 2005-11-29 | Scimed Life Systems, Inc. | Filter membrane with increased surface area |
US7235093B2 (en) | 2003-05-20 | 2007-06-26 | Boston Scientific Scimed, Inc. | Mechanism to improve stent securement |
US20040243221A1 (en) | 2003-05-27 | 2004-12-02 | Fawzi Natalie V. | Endovascular graft including substructure for positioning and sealing within vasculature |
US7625364B2 (en) | 2003-05-27 | 2009-12-01 | Cardia, Inc. | Flexible center connection for occlusion device |
ATE481057T1 (en) | 2003-05-28 | 2010-10-15 | Cook Inc | VALVE PROSTHESIS WITH VESSEL FIXING DEVICE |
US7041127B2 (en) | 2003-05-28 | 2006-05-09 | Ledergerber Walter J | Textured and drug eluting coronary artery stent |
WO2005004753A1 (en) | 2003-06-09 | 2005-01-20 | 3F Therapeutics, Inc. | Atrioventricular heart valve and minimally invasive delivery systems thereof |
US7201772B2 (en) | 2003-07-08 | 2007-04-10 | Ventor Technologies, Ltd. | Fluid flow prosthetic device |
RU2006103367A (en) | 2003-07-08 | 2006-06-27 | Вентор Текнолоджиз Лтд. (Il) | IMPLANTED PROSTHETIC DEVICES, IN PARTICULAR, FOR TRANSARTHERIAL DELIVERY IN TREATMENT OF AORTAL STENOSIS AND METHODS OF IMPLANTING SUCH DEVICES |
US7744620B2 (en) | 2003-07-18 | 2010-06-29 | Intervalve, Inc. | Valvuloplasty catheter |
DE602004023095D1 (en) | 2003-07-21 | 2009-10-22 | Univ Pennsylvania | PERCUTANEOUS HEADLAP |
DE10334868B4 (en) | 2003-07-29 | 2013-10-17 | Pfm Medical Ag | Implantable device as a replacement organ valve, its manufacturing process and basic body and membrane element for it |
EP1659992B1 (en) | 2003-07-31 | 2013-03-27 | Cook Medical Technologies LLC | Prosthetic valve devices and methods of making such devices |
WO2005011535A2 (en) | 2003-07-31 | 2005-02-10 | Cook Incorporated | Prosthetic valve for implantation in a body vessel |
DE10340265A1 (en) | 2003-08-29 | 2005-04-07 | Sievers, Hans-Hinrich, Prof. Dr.med. | Prosthesis for the replacement of the aortic and / or mitral valve of the heart |
US20050049692A1 (en) | 2003-09-02 | 2005-03-03 | Numamoto Michael J. | Medical device for reduction of pressure effects of cardiac tricuspid valve regurgitation |
US7758625B2 (en) | 2003-09-12 | 2010-07-20 | Abbott Vascular Solutions Inc. | Delivery system for medical devices |
US7993384B2 (en) | 2003-09-12 | 2011-08-09 | Abbott Cardiovascular Systems Inc. | Delivery system for medical devices |
US8535344B2 (en) | 2003-09-12 | 2013-09-17 | Rubicon Medical, Inc. | Methods, systems, and devices for providing embolic protection and removing embolic material |
EG24012A (en) | 2003-09-24 | 2008-03-23 | Wael Mohamed Nabil Lotfy | Valved balloon stent |
US10219899B2 (en) | 2004-04-23 | 2019-03-05 | Medtronic 3F Therapeutics, Inc. | Cardiac valve replacement systems |
US20050075729A1 (en) | 2003-10-06 | 2005-04-07 | Nguyen Tuoc Tan | Minimally invasive valve replacement system |
WO2005046528A1 (en) | 2003-10-06 | 2005-05-26 | 3F Therapeutics, Inc. | Minimally invasive valve replacement system |
WO2005035769A2 (en) | 2003-10-09 | 2005-04-21 | E. I. Du Pont De Nemours And Company | Gene silencing by using micro-rna molecules |
WO2005037338A1 (en) | 2003-10-14 | 2005-04-28 | Cook Incorporated | Hydrophilic coated medical device |
DE602004026756D1 (en) | 2003-10-15 | 2010-06-02 | Cook Inc | HOLDING DEVICE FOR A PROSTHESIS SYSTEM |
US7175654B2 (en) | 2003-10-16 | 2007-02-13 | Cordis Corporation | Stent design having stent segments which uncouple upon deployment |
US7004176B2 (en) | 2003-10-17 | 2006-02-28 | Edwards Lifesciences Ag | Heart valve leaflet locator |
US7419498B2 (en) | 2003-10-21 | 2008-09-02 | Nmt Medical, Inc. | Quick release knot attachment system |
US7347869B2 (en) | 2003-10-31 | 2008-03-25 | Cordis Corporation | Implantable valvular prosthesis |
US7070616B2 (en) | 2003-10-31 | 2006-07-04 | Cordis Corporation | Implantable valvular prosthesis |
WO2005048883A1 (en) | 2003-11-13 | 2005-06-02 | Fidel Realyvasquez | Methods and apparatus for valve repair |
US6972025B2 (en) | 2003-11-18 | 2005-12-06 | Scimed Life Systems, Inc. | Intravascular filter with bioabsorbable centering element |
US7186265B2 (en) | 2003-12-10 | 2007-03-06 | Medtronic, Inc. | Prosthetic cardiac valves and systems and methods for implanting thereof |
US20050137683A1 (en) | 2003-12-19 | 2005-06-23 | Medtronic Vascular, Inc. | Medical devices to treat or inhibit restenosis |
US7261732B2 (en) | 2003-12-22 | 2007-08-28 | Henri Justino | Stent mounted valve |
US20050137691A1 (en) | 2003-12-23 | 2005-06-23 | Sadra Medical | Two piece heart valve and anchor |
US8052749B2 (en) | 2003-12-23 | 2011-11-08 | Sadra Medical, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
US8343213B2 (en) | 2003-12-23 | 2013-01-01 | Sadra Medical, Inc. | Leaflet engagement elements and methods for use thereof |
US9526609B2 (en) | 2003-12-23 | 2016-12-27 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US8603160B2 (en) | 2003-12-23 | 2013-12-10 | Sadra Medical, Inc. | Method of using a retrievable heart valve anchor with a sheath |
US20050137694A1 (en) | 2003-12-23 | 2005-06-23 | Haug Ulrich R. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US8182528B2 (en) | 2003-12-23 | 2012-05-22 | Sadra Medical, Inc. | Locking heart valve anchor |
EP2526899B1 (en) | 2003-12-23 | 2014-01-29 | Sadra Medical, Inc. | Repositionable heart valve |
US8840663B2 (en) | 2003-12-23 | 2014-09-23 | Sadra Medical, Inc. | Repositionable heart valve method |
US8579962B2 (en) | 2003-12-23 | 2013-11-12 | Sadra Medical, Inc. | Methods and apparatus for performing valvuloplasty |
US7748389B2 (en) | 2003-12-23 | 2010-07-06 | Sadra Medical, Inc. | Leaflet engagement elements and methods for use thereof |
US7381219B2 (en) | 2003-12-23 | 2008-06-03 | Sadra Medical, Inc. | Low profile heart valve and delivery system |
US7445631B2 (en) | 2003-12-23 | 2008-11-04 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US7824442B2 (en) | 2003-12-23 | 2010-11-02 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US7824443B2 (en) | 2003-12-23 | 2010-11-02 | Sadra Medical, Inc. | Medical implant delivery and deployment tool |
ES2586132T3 (en) | 2003-12-23 | 2016-10-11 | Boston Scientific Scimed, Inc. | Replaceable heart valve |
US9005273B2 (en) | 2003-12-23 | 2015-04-14 | Sadra Medical, Inc. | Assessing the location and performance of replacement heart valves |
US7329279B2 (en) | 2003-12-23 | 2008-02-12 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a patient's heart valve |
US7959666B2 (en) | 2003-12-23 | 2011-06-14 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US20050137687A1 (en) | 2003-12-23 | 2005-06-23 | Sadra Medical | Heart valve anchor and method |
US20050137686A1 (en) | 2003-12-23 | 2005-06-23 | Sadra Medical, A Delaware Corporation | Externally expandable heart valve anchor and method |
US7326236B2 (en) | 2003-12-23 | 2008-02-05 | Xtent, Inc. | Devices and methods for controlling and indicating the length of an interventional element |
US20120041550A1 (en) | 2003-12-23 | 2012-02-16 | Sadra Medical, Inc. | Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements |
US20050137696A1 (en) | 2003-12-23 | 2005-06-23 | Sadra Medical | Apparatus and methods for protecting against embolization during endovascular heart valve replacement |
US7780725B2 (en) | 2004-06-16 | 2010-08-24 | Sadra Medical, Inc. | Everting heart valve |
US8287584B2 (en) | 2005-11-14 | 2012-10-16 | Sadra Medical, Inc. | Medical implant deployment tool |
US20050228495A1 (en) | 2004-01-15 | 2005-10-13 | Macoviak John A | Suspended heart valve devices, systems, and methods for supplementing, repairing, or replacing a native heart valve |
US7468070B2 (en) | 2004-01-23 | 2008-12-23 | Boston Scientific Scimed, Inc. | Stent delivery catheter |
US7597711B2 (en) | 2004-01-26 | 2009-10-06 | Arbor Surgical Technologies, Inc. | Heart valve assembly with slidable coupling connections |
US20050203818A9 (en) | 2004-01-26 | 2005-09-15 | Cibc World Markets | System and method for creating tradeable financial units |
WO2005076973A2 (en) | 2004-02-05 | 2005-08-25 | Children's Medical Center Corporation | Transcatheter delivery of a replacement heart valve |
US7311730B2 (en) | 2004-02-13 | 2007-12-25 | Shlomo Gabbay | Support apparatus and heart valve prosthesis for sutureless implantation |
CN101010047B (en) | 2004-02-27 | 2010-12-15 | 奥尔特克斯公司 | prosthetic heart valve delivery system |
ITTO20040135A1 (en) | 2004-03-03 | 2004-06-03 | Sorin Biomedica Cardio Spa | CARDIAC VALVE PROSTHESIS |
US20050203549A1 (en) | 2004-03-09 | 2005-09-15 | Fidel Realyvasquez | Methods and apparatus for off pump aortic valve replacement with a valve prosthesis |
EP1734903B2 (en) | 2004-03-11 | 2022-01-19 | Percutaneous Cardiovascular Solutions Pty Limited | Percutaneous heart valve prosthesis |
US20050222674A1 (en) | 2004-03-31 | 2005-10-06 | Med Institute, Inc. | Endoluminal graft with a prosthetic valve |
EP1737390A1 (en) | 2004-04-08 | 2007-01-03 | Cook Incorporated | Implantable medical device with optimized shape |
US20060025857A1 (en) | 2004-04-23 | 2006-02-02 | Bjarne Bergheim | Implantable prosthetic valve |
DE602004007630T2 (en) | 2004-05-25 | 2008-06-05 | William Cook Europe Aps | Stent and stent removal device |
US7122020B2 (en) | 2004-06-25 | 2006-10-17 | Mogul Enterprises, Inc. | Linkage steering mechanism for deflectable catheters |
US7462191B2 (en) | 2004-06-30 | 2008-12-09 | Edwards Lifesciences Pvt, Inc. | Device and method for assisting in the implantation of a prosthetic valve |
US7276078B2 (en) | 2004-06-30 | 2007-10-02 | Edwards Lifesciences Pvt | Paravalvular leak detection, sealing, and prevention |
US8500785B2 (en) | 2004-07-13 | 2013-08-06 | Boston Scientific Scimed, Inc. | Catheter |
FR2874813B1 (en) | 2004-09-07 | 2007-06-22 | Perouse Soc Par Actions Simpli | VALVULAR PROSTHESIS |
US6951571B1 (en) | 2004-09-30 | 2005-10-04 | Rohit Srivastava | Valve implanting device |
US7641687B2 (en) | 2004-11-02 | 2010-01-05 | Carbomedics Inc. | Attachment of a sewing cuff to a heart valve |
WO2006055982A2 (en) | 2004-11-22 | 2006-05-26 | Avvrx | Ring-shaped valve prosthesis attachment device |
US7989157B2 (en) | 2005-01-11 | 2011-08-02 | Medtronic, Inc. | Solution for storing bioprosthetic tissue used in a biological prosthesis |
ITTO20050074A1 (en) | 2005-02-10 | 2006-08-11 | Sorin Biomedica Cardio Srl | CARDIAC VALVE PROSTHESIS |
US7918880B2 (en) | 2005-02-16 | 2011-04-05 | Boston Scientific Scimed, Inc. | Self-expanding stent and delivery system |
ES2558534T3 (en) | 2005-02-18 | 2016-02-05 | The Cleveland Clinic Foundation | Device to replace a heart valve |
US7722666B2 (en) | 2005-04-15 | 2010-05-25 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US7914569B2 (en) | 2005-05-13 | 2011-03-29 | Medtronics Corevalve Llc | Heart valve prosthesis and methods of manufacture and use |
CA2607744C (en) | 2005-05-24 | 2015-11-24 | Edwards Lifesciences Corporation | Rapid deployment prosthetic heart valve |
EP3482717B1 (en) | 2005-05-27 | 2023-09-06 | Edwards Lifesciences Corporation | Stentless support structure |
US7938851B2 (en) | 2005-06-08 | 2011-05-10 | Xtent, Inc. | Devices and methods for operating and controlling interventional apparatus |
US20060287668A1 (en) | 2005-06-16 | 2006-12-21 | Fawzi Natalie V | Apparatus and methods for intravascular embolic protection |
WO2007005799A1 (en) | 2005-06-30 | 2007-01-11 | Abbott Laboratories | Delivery system for a medical device |
US8968379B2 (en) | 2005-09-02 | 2015-03-03 | Medtronic Vascular, Inc. | Stent delivery system with multiple evenly spaced pullwires |
US7712606B2 (en) | 2005-09-13 | 2010-05-11 | Sadra Medical, Inc. | Two-part package for medical implant |
US20080188928A1 (en) | 2005-09-16 | 2008-08-07 | Amr Salahieh | Medical device delivery sheath |
WO2007038774A2 (en) | 2005-09-30 | 2007-04-05 | Incept, Llc | Apparatus for locating an ostium of a vessel |
DE102005052628B4 (en) | 2005-11-04 | 2014-06-05 | Jenavalve Technology Inc. | Self-expanding, flexible wire mesh with integrated valvular prosthesis for the transvascular heart valve replacement and a system with such a device and a delivery catheter |
WO2007097983A2 (en) | 2006-02-14 | 2007-08-30 | Sadra Medical, Inc. | Systems and methods for delivering a medical implant |
EP2583640B1 (en) | 2006-02-16 | 2022-06-22 | Venus MedTech (HangZhou), Inc. | Minimally invasive replacement heart valve |
JP2009535128A (en) | 2006-04-29 | 2009-10-01 | アーバー・サージカル・テクノロジーズ・インコーポレイテッド | Multi-part prosthetic heart valve assembly and apparatus and method for delivering the same |
JP2009540952A (en) | 2006-06-20 | 2009-11-26 | エーオーテックス, インコーポレイテッド | Torque shaft and torque drive |
US20080033541A1 (en) | 2006-08-02 | 2008-02-07 | Daniel Gelbart | Artificial mitral valve |
US8348996B2 (en) | 2006-09-19 | 2013-01-08 | Medtronic Ventor Technologies Ltd. | Valve prosthesis implantation techniques |
CN101662999B (en) | 2006-09-28 | 2016-01-20 | 心叶科技公司 | For the means of delivery of percutaneous conveying prosthese |
WO2008055301A1 (en) | 2006-11-07 | 2008-05-15 | Univ Sydney | Devices and methods for the treatment of heart failure |
US8236045B2 (en) | 2006-12-22 | 2012-08-07 | Edwards Lifesciences Corporation | Implantable prosthetic valve assembly and method of making the same |
WO2008103295A2 (en) | 2007-02-16 | 2008-08-28 | Medtronic, Inc. | Replacement prosthetic heart valves and methods of implantation |
US8070802B2 (en) | 2007-02-23 | 2011-12-06 | The Trustees Of The University Of Pennsylvania | Mitral valve system |
US7753949B2 (en) | 2007-02-23 | 2010-07-13 | The Trustees Of The University Of Pennsylvania | Valve prosthesis systems and methods |
US9138315B2 (en) | 2007-04-13 | 2015-09-22 | Jenavalve Technology Gmbh | Medical device for treating a heart valve insufficiency or stenosis |
JP5248606B2 (en) | 2007-06-26 | 2013-07-31 | セント ジュード メディカル インコーポレイテッド | Device for implanting a collapsible / expandable prosthetic heart valve |
US8828079B2 (en) | 2007-07-26 | 2014-09-09 | Boston Scientific Scimed, Inc. | Circulatory valve, system and method |
US8192351B2 (en) | 2007-08-13 | 2012-06-05 | Paracor Medical, Inc. | Medical device delivery system having integrated introducer |
US8377117B2 (en) | 2007-09-07 | 2013-02-19 | Edwards Lifesciences Corporation | Active holder for annuloplasty ring delivery |
US8313526B2 (en) | 2007-11-19 | 2012-11-20 | Cook Medical Technologies Llc | Valve frame |
US20090171456A1 (en) | 2007-12-28 | 2009-07-02 | Kveen Graig L | Percutaneous heart valve, system, and method |
US8157853B2 (en) | 2008-01-24 | 2012-04-17 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US8398704B2 (en) | 2008-02-26 | 2013-03-19 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US8317858B2 (en) | 2008-02-26 | 2012-11-27 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
US8052607B2 (en) | 2008-04-22 | 2011-11-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ultrasound imaging catheter with pivoting head |
US8696743B2 (en) | 2008-04-23 | 2014-04-15 | Medtronic, Inc. | Tissue attachment devices and methods for prosthetic heart valves |
MX2010011389A (en) | 2008-04-23 | 2011-01-14 | Medtronic Inc | Stented heart valve devices. |
US8323335B2 (en) | 2008-06-20 | 2012-12-04 | Edwards Lifesciences Corporation | Retaining mechanisms for prosthetic valves and methods for using |
US8652202B2 (en) | 2008-08-22 | 2014-02-18 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
US8403983B2 (en) | 2008-09-29 | 2013-03-26 | Cardiaq Valve Technologies, Inc. | Heart valve |
CA2739275C (en) | 2008-10-01 | 2017-01-17 | Impala, Inc. | Delivery system for vascular implant |
ES2409693T3 (en) | 2008-10-10 | 2013-06-27 | Sadra Medical, Inc. | Medical devices and supply systems to supply medical devices |
US8308798B2 (en) | 2008-12-19 | 2012-11-13 | Edwards Lifesciences Corporation | Quick-connect prosthetic heart valve and methods |
EP2201911B1 (en) | 2008-12-23 | 2015-09-30 | Sorin Group Italia S.r.l. | Expandable prosthetic valve having anchoring appendages |
US9402720B2 (en) | 2009-01-12 | 2016-08-02 | Valve Medical Ltd. | Modular percutaneous valve structure and delivery method |
US20100217382A1 (en) | 2009-02-25 | 2010-08-26 | Edwards Lifesciences | Mitral valve replacement with atrial anchoring |
US8808366B2 (en) | 2009-02-27 | 2014-08-19 | St. Jude Medical, Inc. | Stent features for collapsible prosthetic heart valves |
US9980818B2 (en) | 2009-03-31 | 2018-05-29 | Edwards Lifesciences Corporation | Prosthetic heart valve system with positioning markers |
AU2010236288A1 (en) | 2009-04-15 | 2011-10-20 | Cardiaq Valve Technologies, Inc. | Vascular implant and delivery system |
CA2779393C (en) | 2009-11-05 | 2020-06-09 | The Trustees Of The University Of Pennsylvania | Valve prosthesis |
EP3300695B1 (en) | 2009-12-08 | 2023-05-24 | Avalon Medical Ltd. | Device and system for transcatheter mitral valve replacement |
DE102010008360A1 (en) | 2010-02-17 | 2011-09-29 | Transcatheter Technologies Gmbh | Medical implant in which gaps remain during crimping or folding, method and device for moving |
ES2922283T3 (en) | 2010-03-05 | 2022-09-12 | Edwards Lifesciences Corp | Retention mechanisms for prosthetic valves |
US8623079B2 (en) | 2010-04-23 | 2014-01-07 | Medtronic, Inc. | Stents for prosthetic heart valves |
WO2011147849A1 (en) | 2010-05-25 | 2011-12-01 | Jenavalve Technology Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
US9155619B2 (en) | 2011-02-25 | 2015-10-13 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
US8945209B2 (en) | 2011-05-20 | 2015-02-03 | Edwards Lifesciences Corporation | Encapsulated heart valve |
US8998976B2 (en) | 2011-07-12 | 2015-04-07 | Boston Scientific Scimed, Inc. | Coupling system for medical devices |
US9119716B2 (en) | 2011-07-27 | 2015-09-01 | Edwards Lifesciences Corporation | Delivery systems for prosthetic heart valve |
US9480559B2 (en) | 2011-08-11 | 2016-11-01 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
CN104039272A (en) | 2011-11-15 | 2014-09-10 | 波士顿科学国际有限公司 | Medical device with keyed locking structures |
PL2787926T3 (en) | 2011-12-09 | 2022-11-14 | Edwards Lifesciences Corporation | Prosthetic heart valve improved commissure supports |
EP2793748B1 (en) | 2011-12-20 | 2017-02-22 | Boston Scientific Scimed, Inc. | Apparatus for endovascularly replacing a heart valve |
US9277993B2 (en) | 2011-12-20 | 2016-03-08 | Boston Scientific Scimed, Inc. | Medical device delivery systems |
US10172708B2 (en) | 2012-01-25 | 2019-01-08 | Boston Scientific Scimed, Inc. | Valve assembly with a bioabsorbable gasket and a replaceable valve implant |
EP2846736B1 (en) | 2012-05-09 | 2018-02-28 | Boston Scientific Scimed, Inc. | Reduced profile valve with locking elements |
US9259315B2 (en) | 2012-07-12 | 2016-02-16 | Boston Scientific Scimed, Inc. | Low profile heart valve delivery system and method |
US9757232B2 (en) | 2014-05-22 | 2017-09-12 | Edwards Lifesciences Corporation | Crimping apparatus for crimping prosthetic valve with protruding anchors |
US9788942B2 (en) | 2015-02-03 | 2017-10-17 | Boston Scientific Scimed Inc. | Prosthetic heart valve having tubular seal |
-
2001
- 2001-08-17 US US09/932,512 patent/US20020022860A1/en not_active Abandoned
- 2001-08-17 IL IL15443301A patent/IL154433A0/en unknown
- 2001-08-17 AU AU2001285078A patent/AU2001285078A1/en not_active Abandoned
- 2001-08-17 CA CA002419811A patent/CA2419811A1/en not_active Abandoned
- 2001-08-17 EP EP01964196A patent/EP1309289A2/en not_active Withdrawn
- 2001-08-17 WO PCT/US2001/025920 patent/WO2002015793A2/en not_active Application Discontinuation
- 2001-08-17 CN CN01814305A patent/CN1447669A/en active Pending
- 2001-08-17 JP JP2002520708A patent/JP2004506469A/en not_active Withdrawn
-
2005
- 2005-07-19 US US11/185,425 patent/US8197527B2/en active Active
-
2012
- 2012-06-11 US US13/493,730 patent/US8647361B2/en not_active Expired - Lifetime
-
2014
- 2014-01-03 US US14/147,149 patent/US9161830B2/en not_active Expired - Fee Related
-
2015
- 2015-09-25 US US14/866,017 patent/US10278805B2/en not_active Expired - Lifetime
-
2019
- 2019-04-08 US US16/377,604 patent/US20190231507A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US178283A (en) * | 1876-06-06 | Improvement in vaginal syringes | ||
US876367A (en) * | 1906-06-29 | 1908-01-14 | Edward Lindow | Folding seat. |
US1967318A (en) * | 1931-10-02 | 1934-07-24 | Monahan William | Apparatus for the treatment of the urethra |
US3874388A (en) * | 1973-02-12 | 1975-04-01 | Ochsner Med Found Alton | Shunt defect closure system |
US4007743A (en) * | 1975-10-20 | 1977-02-15 | American Hospital Supply Corporation | Opening mechanism for umbrella-like intravascular shunt defect closure device |
US4603693A (en) * | 1977-05-26 | 1986-08-05 | United States Surgical Corporation | Instrument for circular surgical stapling of hollow body organs and disposable cartridge therefor |
US4341218A (en) * | 1978-05-30 | 1982-07-27 | University Of California | Detachable balloon catheter |
US4585000A (en) * | 1983-09-28 | 1986-04-29 | Cordis Corporation | Expandable device for treating intravascular stenosis |
US4665906A (en) * | 1983-10-14 | 1987-05-19 | Raychem Corporation | Medical devices incorporating sim alloy elements |
US5865802A (en) * | 1988-07-22 | 1999-02-02 | Yoon; Inbae | Expandable multifunctional instruments for creating spaces at obstructed sites endoscopically |
US4921484A (en) * | 1988-07-25 | 1990-05-01 | Cordis Corporation | Mesh balloon catheter device |
US4917089A (en) * | 1988-08-29 | 1990-04-17 | Sideris Eleftherios B | Buttoned device for the transvenous occlusion of intracardiac defects |
US5192301A (en) * | 1989-01-17 | 1993-03-09 | Nippon Zeon Co., Ltd. | Closing plug of a defect for medical use and a closing plug device utilizing it |
US5916236A (en) * | 1989-05-29 | 1999-06-29 | Kensey Nash Corporation | Occlusion assembly for sealing openings in blood vessels and a method for sealing openings in blood vessels |
US5421832A (en) * | 1989-12-13 | 1995-06-06 | Lefebvre; Jean-Marie | Filter-catheter and method of manufacturing same |
US5041093A (en) * | 1990-01-31 | 1991-08-20 | Boston Scientific Corp. | Catheter with foraminous anchor |
US5078736A (en) * | 1990-05-04 | 1992-01-07 | Interventional Thermodynamics, Inc. | Method and apparatus for maintaining patency in the body passages |
US5042707A (en) * | 1990-10-16 | 1991-08-27 | Taheri Syde A | Intravascular stapler, and method of operating same |
US5108420A (en) * | 1991-02-01 | 1992-04-28 | Temple University | Aperture occlusion device |
US5350399A (en) * | 1991-09-23 | 1994-09-27 | Jay Erlebacher | Percutaneous arterial puncture seal device and insertion tool therefore |
US5425744A (en) * | 1991-11-05 | 1995-06-20 | C. R. Bard, Inc. | Occluder for repair of cardiac and vascular defects |
US5451235A (en) * | 1991-11-05 | 1995-09-19 | C.R. Bard, Inc. | Occluder and method for repair of cardiac and vascular defects |
US5935147A (en) * | 1991-11-08 | 1999-08-10 | Kensey Nash Corporation | Hemostatic puncture closure system and method of use |
US5176692A (en) * | 1991-12-09 | 1993-01-05 | Wilk Peter J | Method and surgical instrument for repairing hernia |
US5334217A (en) * | 1992-01-21 | 1994-08-02 | Regents Of The University Of Minnesota | Septal defect closure device |
US5637097A (en) * | 1992-04-15 | 1997-06-10 | Yoon; Inbae | Penetrating instrument having an expandable anchoring portion |
US5527338A (en) * | 1992-09-02 | 1996-06-18 | Board Of Regents, The University Of Texas System | Intravascular device |
US5649953A (en) * | 1992-09-28 | 1997-07-22 | Bentex Trading S.A. | Kit for medical use composed of a filter and a device for placing it in the vessel |
US5522822A (en) * | 1992-10-26 | 1996-06-04 | Target Therapeutics, Inc. | Vasoocclusion coil with attached tubular woven or braided fibrous covering |
US5947997A (en) * | 1992-11-25 | 1999-09-07 | William Cook Europe A/S | Closure prothesis for transcatheter placement |
US5443454A (en) * | 1992-12-09 | 1995-08-22 | Terumo Kabushiki Kaisha | Catheter for embolectomy |
US5417699A (en) * | 1992-12-10 | 1995-05-23 | Perclose Incorporated | Device and method for the percutaneous suturing of a vascular puncture site |
US5284488A (en) * | 1992-12-23 | 1994-02-08 | Sideris Eleftherios B | Adjustable devices for the occlusion of cardiac defects |
US6079414A (en) * | 1993-02-22 | 2000-06-27 | Heartport, Inc. | Method for thoracoscopic intracardiac procedures including septal defect |
US5735290A (en) * | 1993-02-22 | 1998-04-07 | Heartport, Inc. | Methods and systems for performing thoracoscopic coronary bypass and other procedures |
US5306234A (en) * | 1993-03-23 | 1994-04-26 | Johnson W Dudley | Method for closing an atrial appendage |
US5527322A (en) * | 1993-11-08 | 1996-06-18 | Perclose, Inc. | Device and method for suturing of internal puncture sites |
US5490856A (en) * | 1993-12-14 | 1996-02-13 | Untied States Surgical Corporation | Purse string stapler |
US5591196A (en) * | 1994-02-10 | 1997-01-07 | Endovascular Systems, Inc. | Method for deployment of radially expandable stents |
US5634942A (en) * | 1994-04-21 | 1997-06-03 | B. Braun Celsa | Assembly comprising a blood filter for temporary or definitive use and a device for implanting it |
US5522836A (en) * | 1994-06-27 | 1996-06-04 | Target Therapeutics, Inc. | Electrolytically severable coil assembly with movable detachment point |
US5725552A (en) * | 1994-07-08 | 1998-03-10 | Aga Medical Corporation | Percutaneous catheter directed intravascular occlusion devices |
US5433727A (en) * | 1994-08-16 | 1995-07-18 | Sideris; Eleftherios B. | Centering buttoned device for the occlusion of large defects for occluding |
US5643292A (en) * | 1995-01-10 | 1997-07-01 | Applied Medical Resources Corporation | Percutaneous suturing device |
US5614204A (en) * | 1995-01-23 | 1997-03-25 | The Regents Of The University Of California | Angiographic vascular occlusion agents and a method for hemostatic occlusion |
US5634936A (en) * | 1995-02-06 | 1997-06-03 | Scimed Life Systems, Inc. | Device for closing a septal defect |
US5766219A (en) * | 1995-04-20 | 1998-06-16 | Musc Foundation For Research Development | Anatomically shaped vasoocclusive device and method for deploying same |
US5709224A (en) * | 1995-06-07 | 1998-01-20 | Radiotherapeutics Corporation | Method and device for permanent vessel occlusion |
US5865791A (en) * | 1995-06-07 | 1999-02-02 | E.P. Technologies Inc. | Atrial appendage stasis reduction procedure and devices |
US5725568A (en) * | 1995-06-27 | 1998-03-10 | Scimed Life Systems, Inc. | Method and device for recanalizing and grafting arteries |
US5749883A (en) * | 1995-08-30 | 1998-05-12 | Halpern; David Marcos | Medical instrument |
US5709707A (en) * | 1995-10-30 | 1998-01-20 | Children's Medical Center Corporation | Self-centering umbrella-type septal closure device |
US5769816A (en) * | 1995-11-07 | 1998-06-23 | Embol-X, Inc. | Cannula with associated filter |
US5749894A (en) * | 1996-01-18 | 1998-05-12 | Target Therapeutics, Inc. | Aneurysm closure method |
US6024754A (en) * | 1996-01-18 | 2000-02-15 | Target Therapeutics Inc. | Aneurysm closure method |
US5810874A (en) * | 1996-02-22 | 1998-09-22 | Cordis Corporation | Temporary filter catheter |
US5885258A (en) * | 1996-02-23 | 1999-03-23 | Memory Medical Systems, Inc. | Medical instrument with slotted memory metal tube |
US5733294A (en) * | 1996-02-28 | 1998-03-31 | B. Braun Medical, Inc. | Self expanding cardiovascular occlusion device, method of using and method of making the same |
US6024756A (en) * | 1996-03-22 | 2000-02-15 | Scimed Life Systems, Inc. | Method of reversibly closing a septal defect |
US5906207A (en) * | 1996-04-04 | 1999-05-25 | Merck & Co., Inc. | Method for simulating heart failure |
US6010517A (en) * | 1996-04-10 | 2000-01-04 | Baccaro; Jorge Alberto | Device for occluding abnormal vessel communications |
US5904703A (en) * | 1996-05-08 | 1999-05-18 | Bard Connaught | Occluder device formed from an open cell foam material |
US6048331A (en) * | 1996-05-14 | 2000-04-11 | Embol-X, Inc. | Cardioplegia occluder |
US5895399A (en) * | 1996-07-17 | 1999-04-20 | Embol-X Inc. | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
US5669933A (en) * | 1996-07-17 | 1997-09-23 | Nitinol Medical Technologies, Inc. | Removable embolus blood clot filter |
US5662671A (en) * | 1996-07-17 | 1997-09-02 | Embol-X, Inc. | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
US6010522A (en) * | 1996-07-17 | 2000-01-04 | Embol-X, Inc. | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
US5941249A (en) * | 1996-09-05 | 1999-08-24 | Maynard; Ronald S. | Distributed activator for a two-dimensional shape memory alloy |
US6074357A (en) * | 1996-12-05 | 2000-06-13 | Embol-X, Inc. | Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries |
US5776097A (en) * | 1996-12-19 | 1998-07-07 | University Of California At Los Angeles | Method and device for treating intracranial vascular aneurysms |
US6080182A (en) * | 1996-12-20 | 2000-06-27 | Gore Enterprise Holdings, Inc. | Self-expanding defect closure device and method of making and using |
US5951589A (en) * | 1997-02-11 | 1999-09-14 | Biointerventional Corporation | Expansile device for use in blood vessels and tracts in the body and tension application device for use therewith and method |
US5782860A (en) * | 1997-02-11 | 1998-07-21 | Biointerventional Corporation | Closure device for percutaneous occlusion of puncture sites and tracts in the human body and method |
US5868708A (en) * | 1997-05-07 | 1999-02-09 | Applied Medical Resources Corporation | Balloon catheter apparatus and method |
US5855597A (en) * | 1997-05-07 | 1999-01-05 | Iowa-India Investments Co. Limited | Stent valve and stent graft for percutaneous surgery |
US5911734A (en) * | 1997-05-08 | 1999-06-15 | Embol-X, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
US6042598A (en) * | 1997-05-08 | 2000-03-28 | Embol-X Inc. | Method of protecting a patient from embolization during cardiac surgery |
US5910154A (en) * | 1997-05-08 | 1999-06-08 | Embol-X, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment |
US6051015A (en) * | 1997-05-08 | 2000-04-18 | Embol-X, Inc. | Modular filter with delivery system |
US6027520A (en) * | 1997-05-08 | 2000-02-22 | Embol-X, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
US5928260A (en) * | 1997-07-10 | 1999-07-27 | Scimed Life Systems, Inc. | Removable occlusion system for aneurysm neck |
US5928192A (en) * | 1997-07-24 | 1999-07-27 | Embol-X, Inc. | Arterial aspiration |
US6037810A (en) * | 1997-08-26 | 2000-03-14 | Advanced Mirco Devices, Inc. | Electronic system having a multistage low noise output buffer system |
US5944738A (en) * | 1998-02-06 | 1999-08-31 | Aga Medical Corporation | Percutaneous catheter directed constricting occlusion device |
US5935148A (en) * | 1998-06-24 | 1999-08-10 | Target Therapeutics, Inc. | Detachable, varying flexibility, aneurysm neck bridge |
US6547760B1 (en) * | 1998-08-06 | 2003-04-15 | Cardeon Corporation | Aortic catheter with porous aortic arch balloon and methods for selective aortic perfusion |
US5954694A (en) * | 1998-08-07 | 1999-09-21 | Embol-X, Inc. | Nested tubing sections and methods for making same |
US6033420A (en) * | 1998-09-02 | 2000-03-07 | Embol-X, Inc. | Trocar introducer system and methods of use |
US6270490B1 (en) * | 1998-09-08 | 2001-08-07 | Embol-X, Inc. | Venous drainage catheter and method of use |
US6051014A (en) * | 1998-10-13 | 2000-04-18 | Embol-X, Inc. | Percutaneous filtration catheter for valve repair surgery and methods of use |
US6068621A (en) * | 1998-11-20 | 2000-05-30 | Embol X, Inc. | Articulating cannula |
US6056720A (en) * | 1998-11-24 | 2000-05-02 | Embol-X, Inc. | Occlusion cannula and methods of use |
US6083239A (en) * | 1998-11-24 | 2000-07-04 | Embol-X, Inc. | Compliant framework and methods of use |
US6080183A (en) * | 1998-11-24 | 2000-06-27 | Embol-X, Inc. | Sutureless vessel plug and methods of use |
US6024755A (en) * | 1998-12-11 | 2000-02-15 | Embol-X, Inc. | Suture-free clamp and sealing port and methods of use |
US6231589B1 (en) * | 1999-03-22 | 2001-05-15 | Microvena Corporation | Body vessel filter |
US6231561B1 (en) * | 1999-09-20 | 2001-05-15 | Appriva Medical, Inc. | Method and apparatus for closing a body lumen |
US6551303B1 (en) * | 1999-10-27 | 2003-04-22 | Atritech, Inc. | Barrier device for ostium of left atrial appendage |
US6689150B1 (en) * | 1999-10-27 | 2004-02-10 | Atritech, Inc. | Filter apparatus for ostium of left atrial appendage |
Cited By (385)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9795387B2 (en) | 1997-05-19 | 2017-10-24 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US20020049467A1 (en) * | 1997-11-07 | 2002-04-25 | Paul Gilson | Embolic protection system |
US8052716B2 (en) | 1997-11-07 | 2011-11-08 | Salviac Limited | Embolic protection system |
US7785342B2 (en) | 1997-11-07 | 2010-08-31 | Salviac Limited | Embolic protection device |
US7837701B2 (en) | 1997-11-07 | 2010-11-23 | Salviac Limited | Embolic protection device |
US7662165B2 (en) | 1997-11-07 | 2010-02-16 | Salviac Limited | Embolic protection device |
US7842066B2 (en) | 1997-11-07 | 2010-11-30 | Salviac Limited | Embolic protection system |
US7842063B2 (en) | 1997-11-07 | 2010-11-30 | Salviac Limited | Embolic protection device |
US7846176B2 (en) | 1997-11-07 | 2010-12-07 | Salviac Limited | Embolic protection system |
US7901427B2 (en) | 1997-11-07 | 2011-03-08 | Salviac Limited | Filter element with retractable guidewire tip |
US7901426B2 (en) | 1997-11-07 | 2011-03-08 | Salviac Limited | Embolic protection device |
US6645224B2 (en) | 1997-11-07 | 2003-11-11 | Salviac Limited | Embolic protection device |
US20110125182A1 (en) * | 1997-11-07 | 2011-05-26 | Salviac Limited | Filter element with retractable guidewire tip |
US7972352B2 (en) | 1997-11-07 | 2011-07-05 | Salviac Limited | Embolic protection system |
US20080188884A1 (en) * | 1997-11-07 | 2008-08-07 | Salviac Limited | Embolic protection device |
US7780697B2 (en) | 1997-11-07 | 2010-08-24 | Salviac Limited | Embolic protection system |
US6432122B1 (en) | 1997-11-07 | 2002-08-13 | Salviac Limited | Embolic protection device |
US20040039411A1 (en) * | 1997-11-07 | 2004-02-26 | Paul Gilson | Embolic protection device |
US20070282369A1 (en) * | 1997-11-07 | 2007-12-06 | Salviac Limited | Embolic protection device |
US20040073198A1 (en) * | 1997-11-07 | 2004-04-15 | Salviac Limited | Embolic protection device |
US8057504B2 (en) | 1997-11-07 | 2011-11-15 | Salviac Limited | Embolic protection device |
US20070250107A1 (en) * | 1997-11-07 | 2007-10-25 | Salviac Limited | Embolic protection system |
US20070244505A1 (en) * | 1997-11-07 | 2007-10-18 | Abbott Laboratories | Embolic protection device |
US20070239200A1 (en) * | 1997-11-07 | 2007-10-11 | Abbott Laboratories | Embolic protection device |
US20070233181A1 (en) * | 1997-11-07 | 2007-10-04 | Abbott Laboratories | Embolic protection device |
US20040127934A1 (en) * | 1997-11-07 | 2004-07-01 | Salviac Limited | Embolic protection system |
US20060129182A1 (en) * | 1997-11-07 | 2006-06-15 | Salviac Limited | Embolic protection device |
US20070162069A1 (en) * | 1997-11-07 | 2007-07-12 | Salviac Limited | Embolic protection device |
US20070123931A1 (en) * | 1997-11-07 | 2007-05-31 | Salviac Limited | Embolic protection system |
US20070106322A1 (en) * | 1997-11-07 | 2007-05-10 | Salviac Limited | Embolic protection device |
US8123776B2 (en) | 1997-11-07 | 2012-02-28 | Salviac Limited | Embolic protection system |
US8216270B2 (en) | 1997-11-07 | 2012-07-10 | Salviac Limited | Embolic protection device |
US8221448B2 (en) | 1997-11-07 | 2012-07-17 | Salviac Limited | Embolic protection device |
US8226678B2 (en) | 1997-11-07 | 2012-07-24 | Salviac Limited | Embolic protection device |
US20070005096A1 (en) * | 1997-11-07 | 2007-01-04 | Salviac Limited | Embolic protection system |
US20060293704A1 (en) * | 1997-11-07 | 2006-12-28 | Salviac Limited | Embolic protection device |
US8241319B2 (en) | 1997-11-07 | 2012-08-14 | Salviac Limited | Embolic protection system |
US8328842B2 (en) | 1997-11-07 | 2012-12-11 | Salviac Limited | Filter element with retractable guidewire tip |
US20070173884A1 (en) * | 1997-11-07 | 2007-07-26 | Salviac Limited | Embolic protection device |
US20060004403A1 (en) * | 1997-11-07 | 2006-01-05 | Salviac Limited | Embolic protection system |
US6887256B2 (en) | 1997-11-07 | 2005-05-03 | Salviac Limited | Embolic protection system |
US20050209635A1 (en) * | 1997-11-07 | 2005-09-22 | Salviac Limited | Embolic protection device |
US7833242B2 (en) | 1997-11-07 | 2010-11-16 | Salviac Limited | Embolic protection device |
US20050228437A1 (en) * | 1997-11-07 | 2005-10-13 | Salviac Limited | Embolic protection system |
US20050234502A1 (en) * | 1997-11-07 | 2005-10-20 | Paul Gilson | Embolic protection system |
US20060095070A1 (en) * | 1997-11-07 | 2006-05-04 | Paul Gilson | Embolic portection device |
US8852226B2 (en) | 1997-11-07 | 2014-10-07 | Salviac Limited | Vascular device for use during an interventional procedure |
US20060089663A1 (en) * | 1997-11-07 | 2006-04-27 | Salviac Limited | Embolic protection device |
US20060074446A1 (en) * | 1997-11-07 | 2006-04-06 | Paul Gilson | Embolic protection system |
US8430901B2 (en) | 1997-11-07 | 2013-04-30 | Salviac Limited | Embolic protection device |
US20050283184A1 (en) * | 1997-11-07 | 2005-12-22 | Salviac Limited | Embolic protection device |
US8603131B2 (en) | 1997-11-07 | 2013-12-10 | Salviac Limited | Embolic protection device |
US6752819B1 (en) | 1998-04-02 | 2004-06-22 | Salviac Limited | Delivery catheter |
US20040260308A1 (en) * | 1998-04-02 | 2004-12-23 | Salviac Limited | Delivery catheter |
US9168043B2 (en) | 1998-11-06 | 2015-10-27 | Atritech, Inc. | Method for left atrial appendage occlusion |
US20040044361A1 (en) * | 1998-11-06 | 2004-03-04 | Frazier Andrew G.C. | Detachable atrial appendage occlusion balloon |
US8523897B2 (en) | 1998-11-06 | 2013-09-03 | Atritech, Inc. | Device for left atrial appendage occlusion |
US20040098031A1 (en) * | 1998-11-06 | 2004-05-20 | Van Der Burg Erik J. | Method and device for left atrial appendage occlusion |
US8080032B2 (en) * | 1998-11-06 | 2011-12-20 | Atritech, Inc. | Method and device for left atrial appendage occlusion |
US20030199923A1 (en) * | 1998-11-06 | 2003-10-23 | Ev3 Sunnyvale, Inc., A California Corporation | Adjustable left atrial appendage implant deployment system |
US7713282B2 (en) * | 1998-11-06 | 2010-05-11 | Atritech, Inc. | Detachable atrial appendage occlusion balloon |
US8834519B2 (en) | 1998-11-06 | 2014-09-16 | Artritech, Inc. | Method and device for left atrial appendage occlusion |
US20020107541A1 (en) * | 1999-05-07 | 2002-08-08 | Salviac Limited. | Filter element for embolic protection device |
US8002790B2 (en) | 1999-05-07 | 2011-08-23 | Salviac Limited | Support frame for an embolic protection device |
US7799051B2 (en) | 1999-05-07 | 2010-09-21 | Salviac Limited | Support frame for an embolic protection device |
US20080167677A1 (en) * | 1999-05-07 | 2008-07-10 | Salviac Limited | Filter element for embolic protection device |
US20060122644A1 (en) * | 1999-05-07 | 2006-06-08 | Salviac Limited | Support frame for an embolic protection device |
US20030144687A1 (en) * | 1999-05-07 | 2003-07-31 | Salviac Limited | Support frame for an embolic protection device |
US6726701B2 (en) | 1999-05-07 | 2004-04-27 | Salviac Limited | Embolic protection device |
US20090149881A1 (en) * | 1999-05-07 | 2009-06-11 | Salviac Limited | Filter element for embolic protection device |
US20030144688A1 (en) * | 1999-05-07 | 2003-07-31 | Salviac Limited | Support frame for an embolic protection device |
US20060122645A1 (en) * | 1999-05-07 | 2006-06-08 | Salviac Limited | Support frame for an embolic protection device |
US9724105B2 (en) | 1999-05-20 | 2017-08-08 | Sentreheart, Inc. | Methods and apparatus for transpericardial left atrial appendage closure |
US8721663B2 (en) | 1999-05-20 | 2014-05-13 | Sentreheart, Inc. | Methods and apparatus for transpericardial left atrial appendage closure |
US20080125795A1 (en) * | 1999-05-20 | 2008-05-29 | Aaron V. Kaplan | Methods and apparatus for transpericardial left atrial appendage closure |
US8974473B2 (en) | 1999-05-20 | 2015-03-10 | Sentreheart, Inc. | Methods and apparatus for transpericardial left atrial appendage closure |
US8663273B2 (en) | 1999-11-08 | 2014-03-04 | Atritech, Inc. | Method of implanting an adjustable occlusion device |
US8287563B2 (en) | 1999-11-08 | 2012-10-16 | Atritech, Inc. | Implant retrieval system |
US20040034366A1 (en) * | 1999-11-08 | 2004-02-19 | Ev3 Sunnyvale, Inc., A California Corporation | Device for containing embolic material in the LAA having a plurality of tissue retention structures |
US9943299B2 (en) | 1999-11-08 | 2018-04-17 | Atritech, Inc. | Method of implanting an adjustable occlusion device |
US8323309B2 (en) | 1999-11-08 | 2012-12-04 | Atritech, Inc. | Adjustable left atrial appendage implant |
US20060206148A1 (en) * | 1999-11-08 | 2006-09-14 | Khairkhahan Alexander K | Method of implanting an adjustable occlusion device |
US20040230222A1 (en) * | 1999-11-08 | 2004-11-18 | Van Der Burg Erik J. | System for left atrial appendage occlusion |
US20030212432A1 (en) * | 1999-11-08 | 2003-11-13 | Ev3 Sunnyvale, Inc., A California Corporation | Method of removing an implanted device |
US20040220610A1 (en) * | 1999-11-08 | 2004-11-04 | Kreidler Marc S. | Thin film composite lamination |
US8043329B2 (en) | 1999-11-08 | 2011-10-25 | Atritech, Inc. | Method of implanting an adjustable occlusion device |
US6506194B1 (en) * | 2000-06-08 | 2003-01-14 | Mohammed Ali Hajianpour | Medullary plug including an external shield and an internal valve |
US7819893B2 (en) | 2000-06-23 | 2010-10-26 | Salviac Limited | Medical device |
US20040093013A1 (en) * | 2000-06-23 | 2004-05-13 | Salviac Limited | Medical device |
US7452496B2 (en) | 2000-06-23 | 2008-11-18 | Salviac Limited | Medical device |
US7837704B2 (en) | 2000-06-23 | 2010-11-23 | Salviac Limited | Medical device |
US20090054924A1 (en) * | 2000-06-23 | 2009-02-26 | Salviac Limited | Medical device |
US6565591B2 (en) | 2000-06-23 | 2003-05-20 | Salviac Limited | Medical device |
US10278805B2 (en) | 2000-08-18 | 2019-05-07 | Atritech, Inc. | Expandable implant devices for filtering blood flow from atrial appendages |
US9161830B2 (en) | 2000-08-18 | 2015-10-20 | Atritech, Inc. | Expandable implant devices for filtering blood flow from atrial appendages |
US20080286278A1 (en) * | 2001-03-07 | 2008-11-20 | Biomed Solutions, Llc | Process for in vivo treatment of specific biological targets in bodily fluids |
US8105793B2 (en) | 2001-03-07 | 2012-01-31 | Biomed Solutions, Llc | Process for in vivo treatment of specific biological targets in bodily fluids |
US8507212B2 (en) | 2001-03-07 | 2013-08-13 | Biomed Solutions Llc | Process for in vivo treatment of specific biological targets in bodily fluids |
US9345460B2 (en) | 2001-04-24 | 2016-05-24 | Cardiovascular Technologies, Inc. | Tissue closure devices, device and systems for delivery, kits and methods therefor |
US20090005777A1 (en) * | 2001-04-24 | 2009-01-01 | Vascular Closure Systems, Inc. | Arteriotomy closure devices and techniques |
US8518063B2 (en) | 2001-04-24 | 2013-08-27 | Russell A. Houser | Arteriotomy closure devices and techniques |
US8992567B1 (en) | 2001-04-24 | 2015-03-31 | Cardiovascular Technologies Inc. | Compressible, deformable, or deflectable tissue closure devices and method of manufacture |
US20090143808A1 (en) * | 2001-04-24 | 2009-06-04 | Houser Russell A | Guided Tissue Cutting Device, Method of Use and Kits Therefor |
US9078630B2 (en) | 2001-06-01 | 2015-07-14 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods and tools, and related methods of use |
US20050267526A1 (en) * | 2001-06-01 | 2005-12-01 | Velocimed Pfo, Inc. | Closure devices, related delivery methods and tools, and related methods of use |
US8777985B2 (en) | 2001-06-01 | 2014-07-15 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods and tools, and related methods of use |
US7717937B2 (en) | 2001-06-01 | 2010-05-18 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods and tools, and related methods of use |
US20050004641A1 (en) * | 2001-06-04 | 2005-01-06 | Ramesh Pappu | Cardiac stimulating apparatus having a blood clot filter and atrial pacer |
WO2003007825A1 (en) | 2001-07-19 | 2003-01-30 | Atritech, Inc. | Individually customized device for covering the ostium of left atrial appendage |
US10098640B2 (en) | 2001-12-04 | 2018-10-16 | Atricure, Inc. | Left atrial appendage devices and methods |
US10524791B2 (en) | 2001-12-04 | 2020-01-07 | Atricure, Inc. | Left atrial appendage devices and methods |
US20070233179A1 (en) * | 2001-12-21 | 2007-10-04 | Abbott Laboratories | Support frame for an embolic protection device |
US7927349B2 (en) | 2001-12-21 | 2011-04-19 | Salviac Limited | Support frame for an embolic protection device |
US20070233180A1 (en) * | 2001-12-21 | 2007-10-04 | Abbott Laboratories | Support frame for an embolic protection device |
US8114115B2 (en) | 2001-12-21 | 2012-02-14 | Salviac Limited | Support frame for an embolic protection device |
US20030130684A1 (en) * | 2001-12-21 | 2003-07-10 | Eamon Brady | Support frame for an embolic protection device |
US20070265642A1 (en) * | 2002-01-14 | 2007-11-15 | Nmt Medical, Inc. | Patent foramen ovale (PFO) closure method and device |
US20070244504A1 (en) * | 2002-03-05 | 2007-10-18 | Salviac Limited | Embolic protection system |
US20070060946A1 (en) * | 2002-03-05 | 2007-03-15 | Salviac Limited | Embolic protection system |
US20030212429A1 (en) * | 2002-03-05 | 2003-11-13 | Martin Keegan | Embolic protection system |
US9241695B2 (en) | 2002-03-25 | 2016-01-26 | W.L. Gore & Associates, Inc. | Patent foramen ovale (PFO) closure clips |
US20030225421A1 (en) * | 2002-03-25 | 2003-12-04 | Nmt Medical, Inc. | Patent foramen ovale (PFO) closure clips |
US20030208232A1 (en) * | 2002-05-06 | 2003-11-06 | Velocimed, L.L.C. | PFO closure devices and related methods of use |
US7691128B2 (en) | 2002-05-06 | 2010-04-06 | St. Jude Medical, Cardiology Division, Inc. | PFO closure devices and related methods of use |
US7976564B2 (en) | 2002-05-06 | 2011-07-12 | St. Jude Medical, Cardiology Division, Inc. | PFO closure devices and related methods of use |
US8007504B2 (en) | 2002-05-14 | 2011-08-30 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Device and method of use for functional isolation of animal or human tissues |
US7527634B2 (en) | 2002-05-14 | 2009-05-05 | University Of Pittsburgh | Device and method of use for functional isolation of animal or human tissues |
US20040030335A1 (en) * | 2002-05-14 | 2004-02-12 | University Of Pittsburgh | Device and method of use for functional isolation of animal or human tissues |
US8784448B2 (en) | 2002-06-05 | 2014-07-22 | W.L. Gore & Associates, Inc. | Patent foramen ovale (PFO) closure device with radial and circumferential support |
US20080058859A1 (en) * | 2002-11-06 | 2008-03-06 | Chanduszko Andrzej J | Medical Devices Utilizing Modified Shape Memory Alloy |
US20040093017A1 (en) * | 2002-11-06 | 2004-05-13 | Nmt Medical, Inc. | Medical devices utilizing modified shape memory alloy |
US9017373B2 (en) | 2002-12-09 | 2015-04-28 | W.L. Gore & Associates, Inc. | Septal closure devices |
US20040176799A1 (en) * | 2002-12-09 | 2004-09-09 | Nmt Medical, Inc. | Septal closure devices |
US8382796B2 (en) | 2003-04-11 | 2013-02-26 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods and related methods of use |
US8372112B2 (en) | 2003-04-11 | 2013-02-12 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods, and related methods of use |
US20060009800A1 (en) * | 2003-04-11 | 2006-01-12 | Velocimed Pfo, Inc. | Closure devices, related delivery methods, and related methods of use |
US8574264B2 (en) | 2003-04-11 | 2013-11-05 | St. Jude Medical, Cardiology Division, Inc. | Method for retrieving a closure device |
US20070066994A1 (en) * | 2003-04-11 | 2007-03-22 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods, and related methods of use |
US20070010852A1 (en) * | 2003-04-11 | 2007-01-11 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods, and related methods of use |
US20040267306A1 (en) * | 2003-04-11 | 2004-12-30 | Velocimed, L.L.C. | Closure devices, related delivery methods, and related methods of use |
US20040215230A1 (en) * | 2003-04-28 | 2004-10-28 | Frazier Andrew G. C. | Left atrial appendage occlusion device with active expansion |
US20090138008A1 (en) * | 2003-04-29 | 2009-05-28 | Medtronic, Inc. | Endocardial Dispersive Electrode for Use with a Monopolar RF Ablation Pen |
US20040220560A1 (en) * | 2003-04-29 | 2004-11-04 | Briscoe Roderick E. | Endocardial dispersive electrode for use with a monopolar RF ablation pen |
US7871409B2 (en) | 2003-04-29 | 2011-01-18 | Medtronic, Inc. | Endocardial dispersive electrode for use with a monopolar RF ablation pen |
US7648532B2 (en) | 2003-05-19 | 2010-01-19 | Septrx, Inc. | Tissue distention device and related methods for therapeutic intervention |
US20060009799A1 (en) * | 2003-05-19 | 2006-01-12 | Kleshinski Stephen J | Embolic filtering method and apparatus |
US7122043B2 (en) | 2003-05-19 | 2006-10-17 | Stout Medical Group, L.P. | Tissue distention device and related methods for therapeutic intervention |
US8758395B2 (en) | 2003-05-19 | 2014-06-24 | Septrx, Inc. | Embolic filtering method and apparatus |
US20060178694A1 (en) * | 2003-05-19 | 2006-08-10 | Secant Medical, Llc | Tissue distention device and related methods for therapeutic intervention |
US20090275976A1 (en) * | 2003-05-19 | 2009-11-05 | Stout Medical Group, L.P. | Embolic filtering method and apparatus |
US20050049681A1 (en) * | 2003-05-19 | 2005-03-03 | Secant Medical, Llc | Tissue distention device and related methods for therapeutic intervention |
US8480706B2 (en) | 2003-07-14 | 2013-07-09 | W.L. Gore & Associates, Inc. | Tubular patent foramen ovale (PFO) closure device with catch system |
US20050043759A1 (en) * | 2003-07-14 | 2005-02-24 | Nmt Medical, Inc. | Tubular patent foramen ovale (PFO) closure device with catch system |
US7678123B2 (en) | 2003-07-14 | 2010-03-16 | Nmt Medical, Inc. | Tubular patent foramen ovale (PFO) closure device with catch system |
US20070010851A1 (en) * | 2003-07-14 | 2007-01-11 | Chanduszko Andrzej J | Tubular patent foramen ovale (PFO) closure device with catch system |
US9149263B2 (en) | 2003-07-14 | 2015-10-06 | W. L. Gore & Associates, Inc. | Tubular patent foramen ovale (PFO) closure device with catch system |
US11375988B2 (en) | 2003-07-14 | 2022-07-05 | W. L. Gore & Associates, Inc. | Patent foramen ovale (PFO) closure device with linearly elongating petals |
US9861346B2 (en) | 2003-07-14 | 2018-01-09 | W. L. Gore & Associates, Inc. | Patent foramen ovale (PFO) closure device with linearly elongating petals |
US9326759B2 (en) | 2003-07-14 | 2016-05-03 | W.L. Gore & Associates, Inc. | Tubular patent foramen ovale (PFO) closure device with catch system |
US7662143B2 (en) | 2003-07-29 | 2010-02-16 | Boston Scientific Scimed, Inc. | Apparatus and method for treating intravascular disease |
US20050027247A1 (en) * | 2003-07-29 | 2005-02-03 | Scimed Life Systems, Inc. | Apparatus and method for treating intravascular disease |
US7896898B2 (en) | 2003-07-30 | 2011-03-01 | Boston Scientific Scimed, Inc. | Self-centering blood clot filter |
US20050027314A1 (en) * | 2003-07-30 | 2005-02-03 | Scimed Life Systems, Inc. | Self-centering blood clot filter |
US7735493B2 (en) | 2003-08-15 | 2010-06-15 | Atritech, Inc. | System and method for delivering a left atrial appendage containment device |
US7963952B2 (en) | 2003-08-19 | 2011-06-21 | Wright Jr John A | Expandable sheath tubing |
US20050080430A1 (en) * | 2003-08-19 | 2005-04-14 | Nmt Medical, Inc. | Expandable sheath tubing |
US20050070952A1 (en) * | 2003-09-12 | 2005-03-31 | Nmt Medical, Inc. | Device and methods for preventing formation of thrombi in the left atrial appendage |
US8097015B2 (en) * | 2003-09-12 | 2012-01-17 | W.L. Gore & Associates, Inc. | Device and methods for preventing formation of thrombi in the left atrial appendage |
US10806460B2 (en) | 2003-10-09 | 2020-10-20 | Sentreheart Llc | Apparatus and method for the ligation of tissue |
US20080147097A1 (en) * | 2003-10-09 | 2008-06-19 | Sentreheart, Inc. | Apparatus and method for the ligation of tissue |
US20080221593A1 (en) * | 2003-10-09 | 2008-09-11 | Sentreheart, Inc. | Apparatus and method for the ligation of tissue |
US9271819B2 (en) * | 2003-10-09 | 2016-03-01 | Sentreheart, Inc. | Apparatus and method for the ligation of tissue |
US11350944B2 (en) | 2003-10-09 | 2022-06-07 | Sentreheart Llc | Apparatus and method for the ligation of tissue |
US10327780B2 (en) | 2003-10-09 | 2019-06-25 | Sentreheart, Inc. | Apparatus and method for the ligation of tissue |
US8795297B2 (en) | 2003-10-09 | 2014-08-05 | Sentreheart, Inc. | Apparatus and method for the ligation of tissue |
US20050273119A1 (en) * | 2003-12-09 | 2005-12-08 | Nmt Medical, Inc. | Double spiral patent foramen ovale closure clamp |
US8753362B2 (en) | 2003-12-09 | 2014-06-17 | W.L. Gore & Associates, Inc. | Double spiral patent foramen ovale closure clamp |
US20110112633A1 (en) * | 2004-03-03 | 2011-05-12 | Nmt Medical, Inc. | Delivery/recovery system for septal occluder |
US8945158B2 (en) | 2004-03-03 | 2015-02-03 | W.L. Gore & Associates, Inc. | Delivery/recovery system for septal occluder |
US20050267523A1 (en) * | 2004-03-03 | 2005-12-01 | Nmt Medical Inc. | Delivery/recovery system for septal occluder |
US7871419B2 (en) | 2004-03-03 | 2011-01-18 | Nmt Medical, Inc. | Delivery/recovery system for septal occluder |
US8568431B2 (en) | 2004-03-03 | 2013-10-29 | W.L. Gore & Associates, Inc. | Delivery/recovery system for septal occluder |
US20050234540A1 (en) * | 2004-03-12 | 2005-10-20 | Nmt Medical, Inc. | Dilatation systems and methods for left atrial appendage |
US20050234543A1 (en) * | 2004-03-30 | 2005-10-20 | Nmt Medical, Inc. | Plug for use in left atrial appendage |
US7806846B2 (en) | 2004-03-30 | 2010-10-05 | Nmt Medical, Inc. | Restoration of flow in LAA via tubular conduit |
US20050222533A1 (en) * | 2004-03-30 | 2005-10-06 | Nmt Medical, Inc. | Restoration of flow in LAA via tubular conduit |
US20050267524A1 (en) * | 2004-04-09 | 2005-12-01 | Nmt Medical, Inc. | Split ends closure device |
US8828049B2 (en) | 2004-04-09 | 2014-09-09 | W.L. Gore & Associates, Inc. | Split ends closure device and methods of use |
US20100131006A1 (en) * | 2004-04-09 | 2010-05-27 | Nmt Medical, Inc. | Split ends closure device |
US8361110B2 (en) | 2004-04-26 | 2013-01-29 | W.L. Gore & Associates, Inc. | Heart-shaped PFO closure device |
US20050267525A1 (en) * | 2004-04-26 | 2005-12-01 | Nmt Medical, Inc. | Heart-shaped PFO closure device |
US9314249B2 (en) | 2004-05-04 | 2016-04-19 | Covidien Lp | System and method for delivering a left atrial appendage containment device |
US8801746B1 (en) | 2004-05-04 | 2014-08-12 | Covidien Lp | System and method for delivering a left atrial appendage containment device |
US8308760B2 (en) | 2004-05-06 | 2012-11-13 | W.L. Gore & Associates, Inc. | Delivery systems and methods for PFO closure device with two anchors |
US20050251154A1 (en) * | 2004-05-06 | 2005-11-10 | Nmt Medical, Inc. | Double coil occluder |
US7842053B2 (en) | 2004-05-06 | 2010-11-30 | Nmt Medical, Inc. | Double coil occluder |
US8568447B2 (en) | 2004-05-06 | 2013-10-29 | W.L. Gore & Associates, Inc. | Delivery systems and methods for PFO closure device with two anchors |
US20050273124A1 (en) * | 2004-05-06 | 2005-12-08 | Nmt Medical, Inc. | Delivery systems and methods for PFO closure device with two anchors |
US8480709B2 (en) | 2004-05-07 | 2013-07-09 | W.L. Gore & Associates, Inc. | Catching mechanisms for tubular septal occluder |
US9545247B2 (en) | 2004-05-07 | 2017-01-17 | W.L. Gore & Associates, Inc. | Catching mechanisms for tubular septal occluder |
US8257389B2 (en) | 2004-05-07 | 2012-09-04 | W.L. Gore & Associates, Inc. | Catching mechanisms for tubular septal occluder |
US7645285B2 (en) | 2004-05-26 | 2010-01-12 | Idx Medical, Ltd | Apparatus and methods for occluding a hollow anatomical structure |
US20050277959A1 (en) * | 2004-05-26 | 2005-12-15 | Idx Medical, Ltd. | Apparatus and methods for occluding a hollow anatomical structure |
US9656063B2 (en) | 2004-06-18 | 2017-05-23 | Medtronic, Inc. | Method and system for placement of electrical lead inside heart |
US20060122647A1 (en) * | 2004-09-24 | 2006-06-08 | Callaghan David J | Occluder device double securement system for delivery/recovery of such occluder device |
US8764848B2 (en) | 2004-09-24 | 2014-07-01 | W.L. Gore & Associates, Inc. | Occluder device double securement system for delivery/recovery of such occluder device |
US20060199995A1 (en) * | 2005-03-02 | 2006-09-07 | Venkataramana Vijay | Percutaneous cardiac ventricular geometry restoration device and treatment for heart failure |
US20060293739A1 (en) * | 2005-03-02 | 2006-12-28 | Venkataramana Vijay | Cardiac Ventricular Geometry Restoration Device and Treatment for Heart Failure |
US7320665B2 (en) * | 2005-03-02 | 2008-01-22 | Venkataramana Vijay | Cardiac Ventricular Geometry Restoration Device and Treatment for Heart Failure |
US20080177130A1 (en) * | 2005-03-02 | 2008-07-24 | Venkataramana Vijay | Cardiac Ventricular Geometry Restoration Device and Treatment for Heart Failure |
US8007428B2 (en) | 2005-03-02 | 2011-08-30 | Venkataramana Vijay | Cardiac ventricular geometry restoration device and treatment for heart failure |
US8636765B2 (en) | 2005-03-18 | 2014-01-28 | W.L. Gore & Associates, Inc. | Catch member for PFO occluder |
US8277480B2 (en) | 2005-03-18 | 2012-10-02 | W.L. Gore & Associates, Inc. | Catch member for PFO occluder |
US8430907B2 (en) | 2005-03-18 | 2013-04-30 | W.L. Gore & Associates, Inc. | Catch member for PFO occluder |
US20110144660A1 (en) * | 2005-04-07 | 2011-06-16 | Liddicoat John R | Apparatus and method for the ligation of tissue |
US9522006B2 (en) | 2005-04-07 | 2016-12-20 | Sentreheart, Inc. | Apparatus and method for the ligation of tissue |
US10932926B2 (en) | 2005-05-24 | 2021-03-02 | Inspiremd Ltd. | Stent assembly and methods for treatment via body lumens |
US10058440B2 (en) | 2005-05-24 | 2018-08-28 | Inspiremd, Ltd. | Carotid stent apparatus and methods for treatment via body lumens |
US10070977B2 (en) | 2005-05-24 | 2018-09-11 | Inspire M.D. Ltd | Stent apparatuses for treatment via body lumens and methods of use |
US8961586B2 (en) | 2005-05-24 | 2015-02-24 | Inspiremd Ltd. | Bifurcated stent assemblies |
US20070276468A1 (en) * | 2005-05-24 | 2007-11-29 | Inspiremd Ltd. | Bifurcated stent assemblies |
US10166024B2 (en) | 2005-07-14 | 2019-01-01 | Idx Medical, Ltd. | Apparatus and methods for occluding a hollow anatomical structure |
US8157818B2 (en) | 2005-08-01 | 2012-04-17 | Ension, Inc. | Integrated medical apparatus for non-traumatic grasping, manipulating and closure of tissue |
US20070027456A1 (en) * | 2005-08-01 | 2007-02-01 | Ension, Inc. | Integrated medical apparatus for non-traumatic grasping, manipulating and closure of tissue |
US9445895B2 (en) | 2005-09-16 | 2016-09-20 | Atritech, Inc. | Intracardiac cage and method of delivering same |
US7972359B2 (en) | 2005-09-16 | 2011-07-05 | Atritech, Inc. | Intracardiac cage and method of delivering same |
US10143458B2 (en) | 2005-09-16 | 2018-12-04 | Atritech, Inc. | Intracardiac cage and method of delivering same |
US20070066993A1 (en) * | 2005-09-16 | 2007-03-22 | Kreidler Marc S | Intracardiac cage and method of delivering same |
US10076335B2 (en) | 2005-12-01 | 2018-09-18 | Atritech, Inc. | Apparatus for delivering an implant without bias to a left atrial appendage |
US20070135826A1 (en) * | 2005-12-01 | 2007-06-14 | Steve Zaver | Method and apparatus for delivering an implant without bias to a left atrial appendage |
US10898198B2 (en) | 2005-12-01 | 2021-01-26 | Atritech, Inc. | Apparatus for delivering an implant without bias to a left atrial appendage |
US9522362B2 (en) | 2006-03-28 | 2016-12-20 | Terumo Kabushiki Kaisha | Filter member and oxygenator using same |
US8911666B2 (en) | 2006-03-28 | 2014-12-16 | Terumo Kabushiki Kaisha | Filter member and oxygenator using same |
US8425838B2 (en) * | 2006-03-28 | 2013-04-23 | Terumo Kabushiki Kaisha | Filter member and oxygenator using same |
US9199025B2 (en) | 2006-03-28 | 2015-12-01 | Terumo Kabushiki Kaisha | Filter member and oxygenator using same |
US20070231203A1 (en) * | 2006-03-28 | 2007-10-04 | Terumo Kabushiki Kaisha | Filter member and oxygenator using same |
US8870913B2 (en) | 2006-03-31 | 2014-10-28 | W.L. Gore & Associates, Inc. | Catch system with locking cap for patent foramen ovale (PFO) occluder |
US8551135B2 (en) | 2006-03-31 | 2013-10-08 | W.L. Gore & Associates, Inc. | Screw catch mechanism for PFO occluder and method of use |
US11369374B2 (en) | 2006-05-03 | 2022-06-28 | Datascope Corp. | Systems and methods of tissue closure |
US11992211B2 (en) | 2006-05-03 | 2024-05-28 | Datascope Corp. | Systems and methods of tissue closure |
US9132261B2 (en) | 2006-10-18 | 2015-09-15 | Inspiremd, Ltd. | In vivo filter assembly |
US20100204772A1 (en) * | 2006-10-18 | 2010-08-12 | Asher Holzer | Filter Assemblies |
US20100324651A1 (en) * | 2006-10-18 | 2010-12-23 | Asher Holzer | Knitted Stent Jackets |
US10137015B2 (en) | 2006-10-18 | 2018-11-27 | Inspiremd Ltd. | Knitted stent jackets |
US20100324664A1 (en) * | 2006-10-18 | 2010-12-23 | Asher Holzer | Bifurcated Stent Assemblies |
US20080161825A1 (en) * | 2006-11-20 | 2008-07-03 | Stout Medical Group, L.P. | Anatomical measurement tool |
US9782281B2 (en) | 2006-11-22 | 2017-10-10 | Inspiremd, Ltd. | Stent-mesh assembly and methods |
US9132003B2 (en) | 2006-11-22 | 2015-09-15 | Inspiremd, Ltd. | Optimized drug-eluting stent assembly |
US10406006B2 (en) | 2006-11-22 | 2019-09-10 | Inspiremd, Ltd. | Methods of providing optimized drug-eluting stent assemblies |
US10070976B2 (en) | 2006-11-22 | 2018-09-11 | Inspiremd Ltd. | Optimized stent jacket |
US10406008B2 (en) | 2006-11-22 | 2019-09-10 | Inspiremd, Ltd. | Optimized stent jacket having single fiber mesh |
US20100241214A1 (en) * | 2006-11-22 | 2010-09-23 | Inspiremd Ltd. | Optimized stent jacket |
US11051959B2 (en) | 2006-11-22 | 2021-07-06 | Inspiremd, Ltd. | Intravascular aneurysm treatment device and methods |
US9526644B2 (en) | 2006-11-22 | 2016-12-27 | Inspiremd, Ltd. | Optimized drug-eluting stent assembly methods |
US8986325B2 (en) | 2007-03-30 | 2015-03-24 | Sentreheart, Inc. | Devices, systems, and methods for closing the left atrial appendage |
US20090143791A1 (en) * | 2007-03-30 | 2009-06-04 | Sentreheart, Inc. | Devices, systems, and methods for closing the left atrial appendage |
US11826050B2 (en) | 2007-03-30 | 2023-11-28 | Atricure, Inc. | Devices, systems, and methods for closing the left atrial appendage |
US9498223B2 (en) | 2007-03-30 | 2016-11-22 | Sentreheart, Inc. | Devices for closing the left atrial appendage |
US11020122B2 (en) | 2007-03-30 | 2021-06-01 | Sentreheart Llc | Methods for closing the left atrial appendage |
US8771297B2 (en) | 2007-03-30 | 2014-07-08 | Sentreheart, Inc. | Devices, systems, and methods for closing the left atrial appendage |
US10966725B2 (en) | 2007-03-30 | 2021-04-06 | Sentreheart Llc | Devices and systems for closing the left atrial appendage |
US20090157118A1 (en) * | 2007-03-30 | 2009-06-18 | Sentreheart, Inc. | Devices, systems, and methods for closing the left atrial appendage |
US20080243183A1 (en) * | 2007-03-30 | 2008-10-02 | Miller Gary H | Devices, systems, and methods for closing the left atrial appendage |
US9408659B2 (en) | 2007-04-02 | 2016-08-09 | Atricure, Inc. | Surgical instrument with separate tool head and method of use |
US10485525B2 (en) | 2007-04-05 | 2019-11-26 | W.L. Gore & Associates, Inc. | Septal closure device with centering mechanism |
US9949728B2 (en) | 2007-04-05 | 2018-04-24 | W.L. Gore & Associates, Inc. | Septal closure device with centering mechanism |
US9005242B2 (en) | 2007-04-05 | 2015-04-14 | W.L. Gore & Associates, Inc. | Septal closure device with centering mechanism |
US12059140B2 (en) | 2007-04-05 | 2024-08-13 | W. L. Gore & Associates, Inc. | Septal closure device with centering mechanism |
US20080249562A1 (en) * | 2007-04-05 | 2008-10-09 | Nmt Medical, Inc. | Septal closure device with centering mechanism |
US9161758B2 (en) * | 2007-04-16 | 2015-10-20 | Occlutech Holding Ag | Occluder for occluding an atrial appendage and production process therefor |
US9826980B2 (en) | 2007-04-16 | 2017-11-28 | Occlutech Holding Ag | Occluder for occluding an atrial appendage and production process therefor |
US20120271337A1 (en) * | 2007-04-16 | 2012-10-25 | Hans-Reiner Figulla | Occluder For Occluding an Atrial Appendage and Production Process Therefor |
US9138562B2 (en) | 2007-04-18 | 2015-09-22 | W.L. Gore & Associates, Inc. | Flexible catheter system |
US11154303B2 (en) | 2007-10-19 | 2021-10-26 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US20090143789A1 (en) * | 2007-12-03 | 2009-06-04 | Houser Russell A | Vascular closure devices, systems, and methods of use |
US8961541B2 (en) | 2007-12-03 | 2015-02-24 | Cardio Vascular Technologies Inc. | Vascular closure devices, systems, and methods of use |
US9474517B2 (en) | 2008-03-07 | 2016-10-25 | W. L. Gore & Associates, Inc. | Heart occlusion devices |
US10278705B2 (en) | 2008-03-07 | 2019-05-07 | W. L. Gore & Associates, Inc. | Heart occlusion devices |
US10420564B2 (en) | 2009-01-08 | 2019-09-24 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US10695070B2 (en) | 2009-01-08 | 2020-06-30 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US9750505B2 (en) | 2009-01-08 | 2017-09-05 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US9393023B2 (en) | 2009-01-13 | 2016-07-19 | Atricure, Inc. | Apparatus and methods for deploying a clip to occlude an anatomical structure |
US20100179570A1 (en) * | 2009-01-13 | 2010-07-15 | Salvatore Privitera | Apparatus and methods for deploying a clip to occlude an anatomical structure |
US9198664B2 (en) | 2009-04-01 | 2015-12-01 | Sentreheart, Inc. | Tissue ligation devices and controls therefor |
US11950784B2 (en) | 2009-04-01 | 2024-04-09 | Atricure, Inc. | Tissue ligation devices and controls therefor |
US10799241B2 (en) | 2009-04-01 | 2020-10-13 | Sentreheart Llc | Tissue ligation devices and controls therefor |
US20110087247A1 (en) * | 2009-04-01 | 2011-04-14 | Fung Gregory W | Tissue ligation devices and controls therefor |
US10631969B2 (en) * | 2009-06-17 | 2020-04-28 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US10758240B2 (en) | 2009-06-17 | 2020-09-01 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US11540837B2 (en) | 2009-06-17 | 2023-01-03 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US11253262B2 (en) | 2009-06-17 | 2022-02-22 | Coherex Medical, Inc. | Delivery device, system, and method thereof |
US11000289B2 (en) | 2009-06-17 | 2021-05-11 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US10076337B2 (en) * | 2009-06-17 | 2018-09-18 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US20170156840A1 (en) * | 2009-06-17 | 2017-06-08 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US10064628B2 (en) | 2009-06-17 | 2018-09-04 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US10772637B2 (en) | 2009-06-17 | 2020-09-15 | Coherex Medical, Inc. | Medical device and delivery system for modification of left atrial appendage and methods thereof |
US9693780B2 (en) | 2009-06-17 | 2017-07-04 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US11918227B2 (en) | 2009-06-17 | 2024-03-05 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US9649115B2 (en) | 2009-06-17 | 2017-05-16 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US9883864B2 (en) * | 2009-06-17 | 2018-02-06 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US20140207169A1 (en) * | 2009-06-17 | 2014-07-24 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US20100324585A1 (en) * | 2009-06-17 | 2010-12-23 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US10537332B2 (en) | 2009-06-17 | 2020-01-21 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US10582929B2 (en) | 2009-06-17 | 2020-03-10 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US10582930B2 (en) | 2009-06-17 | 2020-03-10 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US9693781B2 (en) | 2009-06-17 | 2017-07-04 | Coherex Medical, Inc. | Medical device for modification of left atrial appendage and related systems and methods |
US11589853B2 (en) | 2009-06-22 | 2023-02-28 | W. L. Gore & Associates, Inc. | Sealing device and delivery system |
US11596391B2 (en) | 2009-06-22 | 2023-03-07 | W. L. Gore & Associates, Inc. | Sealing device and delivery system |
US10806437B2 (en) | 2009-06-22 | 2020-10-20 | W. L. Gore & Associates, Inc. | Sealing device and delivery system |
US11564672B2 (en) | 2009-06-22 | 2023-01-31 | W. L. Gore & Associates, Inc. | Sealing device and delivery system |
US10792025B2 (en) | 2009-06-22 | 2020-10-06 | W. L. Gore & Associates, Inc. | Sealing device and delivery system |
US12082795B2 (en) | 2009-06-22 | 2024-09-10 | W. L. Gore & Associates, Inc. | Sealing device and delivery system |
US10405919B2 (en) | 2010-04-13 | 2019-09-10 | Sentreheart, Inc. | Methods and devices for treating atrial fibrillation |
US9486281B2 (en) | 2010-04-13 | 2016-11-08 | Sentreheart, Inc. | Methods and devices for accessing and delivering devices to a heart |
US11883035B2 (en) | 2010-10-27 | 2024-01-30 | Atricure, Inc. | Appendage clamp deployment assist device |
US9017349B2 (en) | 2010-10-27 | 2015-04-28 | Atricure, Inc. | Appendage clamp deployment assist device |
US9066741B2 (en) | 2010-11-01 | 2015-06-30 | Atricure, Inc. | Robotic toolkit |
US8636754B2 (en) | 2010-11-11 | 2014-01-28 | Atricure, Inc. | Clip applicator |
US9498206B2 (en) | 2011-06-08 | 2016-11-22 | Sentreheart, Inc. | Tissue ligation devices and tensioning devices therefor |
US11026690B2 (en) | 2011-06-08 | 2021-06-08 | Sentreheart Llc | Tissue ligation devices and tensioning devices therefor |
US9770232B2 (en) | 2011-08-12 | 2017-09-26 | W. L. Gore & Associates, Inc. | Heart occlusion devices |
US9265486B2 (en) | 2011-08-15 | 2016-02-23 | Atricure, Inc. | Surgical device |
US9282973B2 (en) | 2012-01-20 | 2016-03-15 | Atricure, Inc. | Clip deployment tool and associated methods |
US20140100596A1 (en) * | 2012-10-09 | 2014-04-10 | Boston Scientific Scimed, Inc. | Centered balloon for the left atrial appendage |
US10603020B2 (en) | 2012-10-09 | 2020-03-31 | Boston Scientific Sciemed, Inc. | Centered balloon for the left atrial appendage |
US12004752B2 (en) | 2012-11-21 | 2024-06-11 | Atricure, Inc. | Occlusion clip |
US10828019B2 (en) | 2013-01-18 | 2020-11-10 | W.L. Gore & Associates, Inc. | Sealing device and delivery system |
US11771408B2 (en) | 2013-01-18 | 2023-10-03 | W. L. Gore & Associates, Inc. | Sealing device and delivery system |
US11207073B2 (en) | 2013-03-12 | 2021-12-28 | Sentreheart Llc | Tissue ligation devices and methods therefor |
US9408608B2 (en) | 2013-03-12 | 2016-08-09 | Sentreheart, Inc. | Tissue ligation devices and methods therefor |
US10251650B2 (en) | 2013-03-12 | 2019-04-09 | Sentreheart, Inc. | Tissue litigation devices and methods therefor |
US11717303B2 (en) * | 2013-03-13 | 2023-08-08 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11399842B2 (en) | 2013-03-13 | 2022-08-02 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US12082820B2 (en) | 2013-03-13 | 2024-09-10 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11844566B2 (en) | 2013-10-31 | 2023-12-19 | Atricure, Inc. | Devices and methods for left atrial appendage closure |
US10258408B2 (en) | 2013-10-31 | 2019-04-16 | Sentreheart, Inc. | Devices and methods for left atrial appendage closure |
US10799288B2 (en) | 2013-10-31 | 2020-10-13 | Sentreheart Llc | Devices and methods for left atrial appendage closure |
US11564689B2 (en) | 2013-11-19 | 2023-01-31 | Datascope Corp. | Fastener applicator with interlock |
US11998212B2 (en) | 2013-11-21 | 2024-06-04 | Atricure, Inc. | Occlusion clip |
US11998211B2 (en) | 2013-11-21 | 2024-06-04 | Atricure, Inc. | Occlusion clip |
US12076019B2 (en) | 2013-11-21 | 2024-09-03 | Atricure, Inc. | Occlusion clip |
US10004512B2 (en) | 2014-01-29 | 2018-06-26 | Cook Biotech Incorporated | Occlusion device and method of use thereof |
US10617425B2 (en) | 2014-03-10 | 2020-04-14 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US9808230B2 (en) | 2014-06-06 | 2017-11-07 | W. L. Gore & Associates, Inc. | Sealing device and delivery system |
US11298116B2 (en) | 2014-06-06 | 2022-04-12 | W. L. Gore & Associates, Inc. | Sealing device and delivery system |
US10368853B2 (en) | 2014-06-06 | 2019-08-06 | W. L. Gore & Associates, Inc. | Sealing device and delivery system |
US20160199169A1 (en) * | 2014-06-19 | 2016-07-14 | The Regents Of The University Of California | Bidirectional Vascular Filter and Method of Use |
US10130369B2 (en) | 2015-03-24 | 2018-11-20 | Sentreheart, Inc. | Tissue ligation devices and methods therefor |
US10959734B2 (en) | 2015-03-24 | 2021-03-30 | Sentreheart Llc | Tissue ligation devices and methods therefor |
US9936956B2 (en) | 2015-03-24 | 2018-04-10 | Sentreheart, Inc. | Devices and methods for left atrial appendage closure |
US11389167B2 (en) | 2016-02-26 | 2022-07-19 | Atricure, Inc. | Devices and methods for left atrial appendage closure |
US10292710B2 (en) | 2016-02-26 | 2019-05-21 | Sentreheart, Inc. | Devices and methods for left atrial appendage closure |
EP3487419A4 (en) * | 2016-07-22 | 2020-07-22 | Cornell University | Left atrial appendage occluder device |
US11690633B2 (en) | 2016-07-22 | 2023-07-04 | Cornell University | Left atrial appendage occluder device |
US11426172B2 (en) | 2016-10-27 | 2022-08-30 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11786256B2 (en) | 2016-10-27 | 2023-10-17 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11026695B2 (en) | 2016-10-27 | 2021-06-08 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11432809B2 (en) | 2017-04-27 | 2022-09-06 | Boston Scientific Scimed, Inc. | Occlusive medical device with fabric retention barb |
US12082797B2 (en) | 2017-04-27 | 2024-09-10 | Boston Scientific Scimed, Inc. | Occlusive medical device with fabric retention barb |
EP3689270A4 (en) * | 2017-09-25 | 2020-11-25 | Fuwai Hospital, Chinese Academy Of Medical Sciences And Peking Union Medical College | Left atrial appendage occluder assembly capable of being repeatedly withdrawn and released and intervention method therefor |
US11925356B2 (en) | 2017-12-18 | 2024-03-12 | Boston Scientific Scimed, Inc. | Occlusive device with expandable member |
US10952741B2 (en) | 2017-12-18 | 2021-03-23 | Boston Scientific Scimed, Inc. | Occlusive device with expandable member |
US11413048B2 (en) | 2018-01-19 | 2022-08-16 | Boston Scientific Scimed, Inc. | Occlusive medical device with delivery system |
US11653928B2 (en) | 2018-03-28 | 2023-05-23 | Datascope Corp. | Device for atrial appendage exclusion |
US11331104B2 (en) | 2018-05-02 | 2022-05-17 | Boston Scientific Scimed, Inc. | Occlusive sealing sensor system |
WO2019217069A1 (en) * | 2018-05-08 | 2019-11-14 | W. L. Gore & Associates, Inc. | Occluder devices |
CN112087972A (en) * | 2018-05-08 | 2020-12-15 | W.L.戈尔及同仁股份有限公司 | Blocking device |
US11564693B2 (en) | 2018-05-08 | 2023-01-31 | W. L. Gore & Associates, Inc. | Occluder devices |
EP3790474A1 (en) * | 2018-05-08 | 2021-03-17 | W.L. Gore & Associates, Inc. | Occluder devices |
US11241239B2 (en) | 2018-05-15 | 2022-02-08 | Boston Scientific Scimed, Inc. | Occlusive medical device with charged polymer coating |
US11672541B2 (en) | 2018-06-08 | 2023-06-13 | Boston Scientific Scimed, Inc. | Medical device with occlusive member |
US11890018B2 (en) | 2018-06-08 | 2024-02-06 | Boston Scientific Scimed, Inc. | Occlusive device with actuatable fixation members |
US11123079B2 (en) * | 2018-06-08 | 2021-09-21 | Boston Scientific Scimed, Inc. | Occlusive device with actuatable fixation members |
WO2019237022A1 (en) * | 2018-06-08 | 2019-12-12 | Boston Scientific Scimed, Inc. | Occlusive device with actuatable fixation members |
US11382635B2 (en) | 2018-07-06 | 2022-07-12 | Boston Scientific Scimed, Inc. | Occlusive medical device |
US11596533B2 (en) | 2018-08-21 | 2023-03-07 | Boston Scientific Scimed, Inc. | Projecting member with barb for cardiovascular devices |
US10722240B1 (en) | 2019-02-08 | 2020-07-28 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11116510B2 (en) | 2019-02-08 | 2021-09-14 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US11369355B2 (en) | 2019-06-17 | 2022-06-28 | Coherex Medical, Inc. | Medical device and system for occluding a tissue opening and method thereof |
US12102309B2 (en) | 2019-06-17 | 2024-10-01 | Coherex Medical, Inc. | Medical device and system for occluding a tissue opening and method thereof |
US11944314B2 (en) | 2019-07-17 | 2024-04-02 | Boston Scientific Scimed, Inc. | Left atrial appendage implant with continuous covering |
US11540838B2 (en) | 2019-08-30 | 2023-01-03 | Boston Scientific Scimed, Inc. | Left atrial appendage implant with sealing disk |
US11903589B2 (en) | 2020-03-24 | 2024-02-20 | Boston Scientific Scimed, Inc. | Medical system for treating a left atrial appendage |
US11812969B2 (en) | 2020-12-03 | 2023-11-14 | Coherex Medical, Inc. | Medical device and system for occluding a tissue opening and method thereof |
US12023036B2 (en) | 2020-12-18 | 2024-07-02 | Boston Scientific Scimed, Inc. | Occlusive medical device having sensing capabilities |
Also Published As
Publication number | Publication date |
---|---|
EP1309289A2 (en) | 2003-05-14 |
US8647361B2 (en) | 2014-02-11 |
US20140107696A1 (en) | 2014-04-17 |
US10278805B2 (en) | 2019-05-07 |
WO2002015793A2 (en) | 2002-02-28 |
US8197527B2 (en) | 2012-06-12 |
US20160008122A1 (en) | 2016-01-14 |
WO2002015793A3 (en) | 2002-08-29 |
CA2419811A1 (en) | 2002-02-28 |
CN1447669A (en) | 2003-10-08 |
US9161830B2 (en) | 2015-10-20 |
JP2004506469A (en) | 2004-03-04 |
US20060149314A1 (en) | 2006-07-06 |
IL154433A0 (en) | 2003-09-17 |
US20190231507A1 (en) | 2019-08-01 |
AU2001285078A1 (en) | 2002-03-04 |
US20120271343A1 (en) | 2012-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190231507A1 (en) | Expandable implant devices for filtering blood flow from atrial appendages | |
AU779674B2 (en) | Barrier device for covering the ostium of left atrial appendage | |
US11154303B2 (en) | Medical device for modification of left atrial appendage and related systems and methods | |
EP1227770B1 (en) | Filter apparatus for ostium of left atrial appendage | |
AU745809B2 (en) | Implantable cerebral protection device and methods of use | |
US20030057156A1 (en) | Atrial filter implants | |
JP2003529384A (en) | Method and device for occluding left atrial appendage | |
AU2002245626A1 (en) | Atrial filter implants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ATRITECH, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BORILLO, THOMAS E.;PETERSON, DEAN;SUTTON, GREGG S.;AND OTHERS;REEL/FRAME:013788/0865 Effective date: 20030211 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |