Nothing Special   »   [go: up one dir, main page]

US20010040061A1 - Temperature controller of vehicular battery - Google Patents

Temperature controller of vehicular battery Download PDF

Info

Publication number
US20010040061A1
US20010040061A1 US09/326,601 US32660199A US2001040061A1 US 20010040061 A1 US20010040061 A1 US 20010040061A1 US 32660199 A US32660199 A US 32660199A US 2001040061 A1 US2001040061 A1 US 2001040061A1
Authority
US
United States
Prior art keywords
battery
coolant
high temperature
engine
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/326,601
Other versions
US6394210B2 (en
Inventor
Kenji Matuda
Toyotaka Hirao
Hiroshi Mizutani
Gregory A. Major
June Bian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
GM Global Technology Operations LLC
Original Assignee
Mitsubishi Heavy Industries Ltd
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Motors Liquidation Co filed Critical Mitsubishi Heavy Industries Ltd
Priority to US09/326,601 priority Critical patent/US6394210B2/en
Priority to EP20000401585 priority patent/EP1065354B1/en
Priority to DE2000630630 priority patent/DE60030630T2/en
Priority to CNB001202049A priority patent/CN1249333C/en
Priority to KR1020000031176A priority patent/KR100365674B1/en
Priority to JP2000171273A priority patent/JP2001037009A/en
Assigned to GENERAL MOTORS CORPORATION, MITSUBISHI HEAVY INDUSTRIES, LTD reassignment GENERAL MOTORS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BIAN, JUNE, HIRAO, TOYOTAKA, MAJOR, GREGORY A., MATSUDA, KENJI, MIZUTANI, HIROSHI
Publication of US20010040061A1 publication Critical patent/US20010040061A1/en
Application granted granted Critical
Publication of US6394210B2 publication Critical patent/US6394210B2/en
Assigned to GM GLOBAL TECHNOLOGY OPERATIONS, INC. reassignment GM GLOBAL TECHNOLOGY OPERATIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GENERAL MOTORS CORPORAITON
Assigned to UNITED STATES DEPARTMENT OF THE TREASURY reassignment UNITED STATES DEPARTMENT OF THE TREASURY SECURITY AGREEMENT Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SECURED PARTIES, CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECURED PARTIES reassignment CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SECURED PARTIES SECURITY AGREEMENT Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to GM GLOBAL TECHNOLOGY OPERATIONS, INC. reassignment GM GLOBAL TECHNOLOGY OPERATIONS, INC. RELEASE BY SECURED PARTY Assignors: UNITED STATES DEPARTMENT OF THE TREASURY
Assigned to GM GLOBAL TECHNOLOGY OPERATIONS, INC. reassignment GM GLOBAL TECHNOLOGY OPERATIONS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECURED PARTIES, CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SECURED PARTIES
Assigned to UNITED STATES DEPARTMENT OF THE TREASURY reassignment UNITED STATES DEPARTMENT OF THE TREASURY SECURITY AGREEMENT Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to UAW RETIREE MEDICAL BENEFITS TRUST reassignment UAW RETIREE MEDICAL BENEFITS TRUST SECURITY AGREEMENT Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to GM GLOBAL TECHNOLOGY OPERATIONS, INC. reassignment GM GLOBAL TECHNOLOGY OPERATIONS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: UAW RETIREE MEDICAL BENEFITS TRUST
Assigned to GM GLOBAL TECHNOLOGY OPERATIONS, INC. reassignment GM GLOBAL TECHNOLOGY OPERATIONS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: UNITED STATES DEPARTMENT OF THE TREASURY
Assigned to WILMINGTON TRUST COMPANY reassignment WILMINGTON TRUST COMPANY SECURITY AGREEMENT Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to GM Global Technology Operations LLC reassignment GM Global Technology Operations LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to GM Global Technology Operations LLC reassignment GM Global Technology Operations LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WILMINGTON TRUST COMPANY
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/004Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for vehicles having a combustion engine and electric drive means, e.g. hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/003Component temperature regulation using an air flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • F01P2031/30Cooling after the engine is stopped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/24Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/14Condenser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/907Electricity storage, e.g. battery, capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/916Specific drive or transmission adapted for hev with plurality of drive axles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/951Assembly or relative location of components

Definitions

  • the low temperature and low pressure liquid refrigerant is evaporated and gasified in the heat exchanger 33 (which operates as a condenser at the time of cooling) by absorbing heat from outside air, to become a low temperature and low pressure gas refrigerant, and is then sent to the compressor 41 and is compressed into a high temperature and high pressure gas refrigerant.
  • a three way valve (see broken lines 60 a in FIG. 6) may be provided at the junction portion p 3 of the heating loop K and the cooling loop R so that the abovementioned temperature control can be effected by operating a single three way valve 60 a. Hence valve operation is simplified.
  • the coolant is circulated. That is to say, in the case of storing electricity using the drive power of the engine 3 , and in the case of operating the air conditioner when the engine 3 is stopped, the coolant is circulated to the motor-generator unit 6 using the traction coolant pump 54 , to thereby provide cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

The invention provides a temperature controller for a vehicular battery which uses the waste heat of the engine to control the temperature of a high temperature battery, to thereby enable miniaturization of the vehicle and energy savings, and which can accurately control the high temperature battery to an optimum efficiency temperature.
The battery temperature controller comprises: a heat exchanger 11 for removing waste heat from a vehicle engine 3; a heating loop K being a coolant circulation path for conveying heat from the heat exchanger 11 to a vehicle high temperature battery 5; a radiator 9 for cooling the high temperature battery 5; a cooling loop R being a coolant circulation path for carrying heat from the high temperature battery 5 to the radiator 9, and connected in parallel with the heating loop K so as to have a common path C, and a first flow control valve 60 and a second flow control valve 61 respectively provided in the heating loop K and the cooling loop R.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a battery temperature controller for controlling the temperature of a vehicular battery. [0002]
  • 2. Description of the Related Art [0003]
  • Recently, there has been an increasing demand for introducing a low-pollution vehicle and alternative energy vehicle, accompanied with demands for improving the air environment and environmental problems. As a strong candidate for the alternative energy vehicle, there is the hybrid vehicle which uses an electric motor together with an engine. A hybrid vehicle is driven by an engine at the time of high speed driving, and is driven by a drive motor with a battery as a power source at the time of low speed driving. The battery is charged by driving an electric power generation motor at the time of engine driving. [0004]
  • As the battery for the hybrid vehicle, there is for example the lead acid battery, the alkaline storage battery, the metal air storage battery, and the high temperature battery. Of these, the high temperature battery operates stably within a high temperature range (for example 80˜90° C.), operating with high efficiency to thereby improve vehicle fuel consumption. That is to say, the high temperature battery of a hybrid vehicle has an optimum efficiency temperature (the influence of temperature on the efficiency is greater than for the conventional lead acid battery) greater than atmospheric temperature, and hence it is desirable to maintain the temperature at around 80° C. in consideration of electric generating and storage efficiency and vehicle fuel consumption. As an example of a high temperature battery, there is one which uses a halide of for example copper, nickel, or silver, for the positive electrode, and metallic lithium (alternatively an activated metal such as calcium, magnesium is also possible) for the negative electrode, and employs an organic substance such as propylene carbonate for the electrolyte. [0005]
  • Since it is necessary to mount a heat source for maintaining the temperature of the high temperature battery, on the vehicle, then there is the problem of an increase in vehicle cost and battery cost, and an increase in vehicle size due to the space for mounting the heat source for the battery. [0006]
  • Moreover, since a cooling device is not provided solely for the heat source, then the temperature of the high temperature battery cannot be accurately controlled to an optimum efficiency temperature. Hence there is room for improvement in the efficiency for electricity generation and for electricity storage and in fuel consumption of the vehicle. [0007]
  • SUMMARY OF THE INVENTION
  • The present invention addresses the above problems with the conventional technology with the object of providing a temperature controller for a vehicular battery which uses the waste heat of the engine to heat the high temperature battery, to thereby enable miniaturization of the vehicle and energy savings. [0008]
  • Moreover, another object of the invention is to provide a temperature controller for a vehicular battery which can accurately control the temperature of the high temperature battery to an optimum efficiency temperature. [0009]
  • The temperature controller for a vehicular battery of the present invention, to achieve the above object, comprises a heat exchanger for removing waste heat from a vehicle engine, and a heating loop, being a coolant circulation path, for carrying heat from the heat exchanger to a high temperature battery of a vehicle. [0010]
  • With this invention, the waste heat of the engine is used to maintain the temperature of the high temperature battery, and hence it is not necessary to mount a new heat source in the vehicle. Consequently, miniaturization of the vehicle and energy saving can be achieved. [0011]
  • Furthermore, according to a second aspect of the invention, there is provided; a radiator for cooling the high temperature battery, a cooling loop being a coolant circulation path, for carrying heat from the high temperature battery to the radiator, and connected in parallel with the heating loop so as to have a common path with the heating loop, and a flow control device for the heating loop and the cooling loop. [0012]
  • With this invention, at first at the time of vehicle heating, the heating loop and the cooling loop are respectively in the open condition and the closed condition so that high temperature coolant which has been heated by the engine waste heat in the heat exchanger is circulated in the heating loop to heat the high temperature battery so as to quickly attain the warm-up condition in the high temperature region. After this, in the case where the temperature of the high temperature battery goes above the optimum efficiency temperature, the cooling loop is adjusted so as to open gradually so that low temperature coolant which has given up heat in the radiator is circulated in the cooling loop and mixed with coolant in the heating loop to give a high temperature coolant mixture. Coolant at a fixed temperature is then supplied to the high temperature battery. In this way, the high temperature battery can be operated at an optimum efficiency point. [0013]
  • Here, with a third aspect, for the flow control device, flow control valves may be respectively provided in the heating loop and the cooling loop. [0014]
  • Moreover, instead of respectively providing flow control valves in the heating loop and the cooling loop, a three way valve may be provided at the junction portion of the heating loop and the cooling loop so that the abovementioned temperature control can be effected by operating a single three way valve.[0015]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram showing an arrangement of a hybrid vehicle according to the present invention. [0016]
  • FIG. 2 is a perspective view of an HPVM mounted in the hybrid vehicle. [0017]
  • FIG. 3 is a block diagram of the hybrid vehicle. [0018]
  • FIG. 4 is a diagram showing a refrigerant path of an air conditioner mounted in the hybrid vehicle. [0019]
  • FIG. 5 is a diagram showing the flow of coolant in the hybrid vehicle. [0020]
  • FIG. 6 is a schematic diagram of an embodiment of a temperature controller for a vehicular battery, of the present invention. [0021]
  • FIG. 7 is a graph showing a relationship between temperature of a high temperature battery and efficiency.[0022]
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Next is a description of an embodiment of a temperature controller for a vehicular battery, with a hybrid vehicle given as an example. [0023]
  • At first, as shown in FIG. 1, numeral [0024] 1 denotes a hybrid vehicle, equipped with a drive unit 2 (apparatus to be cooled) in the front part of the vehicle having a motor 2 a housed therein for driving front wheels, and an engine 3 (a turbocharged engine in this example, but not limited to this) in the rear part of the vehicle for driving rear wheels. The hybrid vehicle 1 runs at the time of low speed driving, using the driving motor 2 a as a drive source, while above a fixed speed the drive source is changed to the engine 3 for running. Since the motor 2 a is provided in the front part of the vehicle, the engine 3 is arranged in the rear part of the vehicle, for the reason of mounting space and in consideration of air resistance. There is also the case where the engine 3 and the motor 2 a are activated as the drive source at the same time.
  • Numeral [0025] 5 denotes a battery (apparatus to be cooled) which is a power source for the motor 2 a, and numeral 6 denotes a motor-generator unit (apparatus to be cooled) for converting the driving force of the engine 3 into electrical power and storing the electrical power in the battery 5. An electrical power generation motor (not shown) is mounted in the motor-generator unit 6, and electrical power is generated by transmitting the driving force of the engine 3 to the electrical power generation motor. Moreover, the motor-generator unit 6 has the function of converting electrical power stored in the battery 5 into the driving force, by driving the electrical power generation motor with the electrical power. Here the battery 5 of this example is a high temperature battery of the liquid heated type which is stable in a high temperature range (for example 80° C.˜90° C.) with a high operating efficiency. As an example of a high temperature battery, there is one which uses a halide of for example copper, nickel, or silver, for the positive electrode, and metallic lithium (alternatively an activated metal such as calcium, magnesium is also possible) for the negative electrode, and employs an organic substance such as propylene carbonate for the electrolyte.
  • Numeral [0026] 50 denotes an I/C (intercooler) EGR system (apparatus to be cooled). This system 50 is provided with an EGR (Exhaust Gas Recirculation) unit 50 a, and an intercooler 50 b. That is to say, the engine 3 is provided with an EGR (Exhaust Gas Recirculation) unit 50 a for reintroducing a part of the exhaust gas back into the engine 3 to thereby reduce the NOx in the exhaust gas. In addition an intercooler 50 b is provided between a turbo charger (not shown in the figure) and an intake manifold (not shown in the figure) for reducing the intake temperature. The EGR 50 a and the intercooler 50 b are both liquid cooled types.
  • As shown in FIG. 1, [0027] numeral 8 denotes a first radiator for cooling the engine 3, and 9 denotes a second radiator provided together with the first radiator 8. The second radiator 9 is for cooling the high temperature battery 5, the driving motor 2 a, the motor-generator unit 6 and the I/C EGR system 50. The first radiator 8 and second radiator 9 are so constructed that heat is discharged to the surrounding air by a fan 10 for the cooling radiators. Moreover, there is provided a battery heat exchanger 11 (coolant heating device) for transferring heat from the engine 3 to the high temperature battery 5.
  • Next is a description of a vehicle air conditioning apparatus (referred to hereunder as an air conditioner) mounted in the hybrid vehicle [0028] 1.
  • In FIG. 1, [0029] numeral 12 denotes a compressor unit for compressing a refrigerant, 13 denotes a heat exchanger, 14 denotes a fan for blowing air to the heat exchanger 13, and 15 denotes a module referred to as an HPVM (Heat Pump Ventilating Module). The heat exchanger 13 is provided on the right side of the vehicle body for facilitating heat exchange with outside air, and heat is forcibly exchanged with outside air by the fan 14. The HPVM 15 is arranged in the middle of the rear part of the vehicle body, and is connected to a duct 16 extending to the front of the vehicle body along a center of the lower part of the vehicle body. As shown in FIG. 3, the duct 16 is formed in a tubular shape, and is provided with air outlet sections 17 and 18 in the central portion and in the front end of the duct 16, respectively.
  • The HPVM [0030] 15 will now be described in detail.
  • FIG. 2 shows a perspective view of the [0031] HPVM 15, and FIG. 3 shows a block diagram of the air conditioner.
  • In FIG. 2, the [0032] HPVM 15 is constructed with a casing, 15 a, an inside air intake 21, an outside air intake 22, a discharge port 23 and a connecting portion 24 for connecting the HPVM to the duct 16. The inside air intake 21 is communicated with the vehicle cabin, and the outside air intake 22 and the discharge port 23 are communicated with outside of the vehicle cabin.
  • Moreover, as shown in FIG. 3, the [0033] HPVM 15 is equipped with an inside air/outside air changeover damper 30 for determining which of either air inside of the vehicle cabin (inside air) or air outside of the vehicle cabin (outside air) is to be drawn in, a fan 31 for introducing air via the inside air/outside air changeover damper 30, a heat exchanger 33 for exchanging heat between the introduced air and the refrigerant, an air mix damper 34 for branching a part of the heat exchanged air, and a heater core 35 for heating the branched air.
  • By opening or closing the inside air/outside [0034] air changeover damper 30, it is possible to select either one of an inside air circulating operation for drawing in inside air from the inside air intake 21 (see FIG. 2) and sending the air to the duct 16, or an outside air introducing operation for introducing outside air from the outside air intake 22 (see FIG. 2) and sending the air to the duct 16, as well as discharging inside air from the discharge port 23 (see FIG. 2).
  • The [0035] heater core 35 is a heat exchanger for receiving a supply of high temperature coolant from the engine 3, as described below, and heating a flow of introduced air. This is used supplementarily at the time of the heating operation (heat pump operation) of the air conditioner. The air mix damper 34 is for adjusting the quantity of introduced air branched off to the heater core 35, according to the opening thereof. The introduced air is then blown to the vehicle cabin from the air outlet sections 17 and 18 of the duct 16.
  • The cooling operation or heating operation is effected by supplying refrigerant to the [0036] heat exchanger 33 and the heat exchanger 13 by the compressor unit 12. FIG. 4 shows the compressor unit 12.
  • As shown in FIG. 4, the [0037] compressor unit 12 includes, as main components, a compressor 41, a throttling resistance 42, a four way valve 43 and an accumulator 44. The above described heat exchangers 13 and 33 are connected between these respective devices by a refrigerant path 45 to form a refrigerant circuit.
  • A driving force is transmitted to the compressor [0038] 41 by the engine 3 or the motor-generator unit 6. The compressor 41 has the function of compressing the refrigerant which has absorbed heat and been gasified in an evaporator, and discharging and sending the refrigerant as a high temperature and high pressure gas refrigerant to the four way valve 43. By switching the four way valve 43, the flow direction of the high temperature and high pressure gas refrigerant discharged from the compressor 41 is changed, resulting in changeover of the cooling or heating operation. Moreover, the throttling resistance 42 has the function of decompressing and expanding the high temperature and high pressure liquid refrigerant to give a low temperature and low pressure liquid refrigerant. This uses a capillary tube or an expansion valve. The accumulator 44 is provided for removing the liquid component contained in the gas refrigerant, so as to prevent a part of the liquid refrigerant which has not been evaporated completely by the evaporator from being drawn in directly to the compressor 41.
  • With the above described refrigerant circuit, at the time of the heating operation, the low temperature and low pressure liquid refrigerant is evaporated and gasified in the heat exchanger [0039] 33 (which operates as a condenser at the time of cooling) by absorbing heat from outside air, to become a low temperature and low pressure gas refrigerant, and is then sent to the compressor 41 and is compressed into a high temperature and high pressure gas refrigerant. Thereafter, in the heat exchanger 13 (which operates as an evaporator at the time of cooling) the gas refrigerant releases heat to heat the air and is condensed and liquefied, after which it is expanded by passing through the throttling resistance 42 to become a low temperature and low pressure liquid refrigerant, and is circulated again to the heat exchanger 33. In this case, the heat exchanger 33 operates as an evaporator and cools the heating medium. Moreover, the heat exchanger 13 functions as a condenser and heats the refrigerant.
  • At the time of the cooling operation, the high temperature and high pressure gas refrigerant supplied to the [0040] heat exchanger 33 is condensed and liquefied by discharging heat to the outside air. This is then expanded by the throttling resistance 42, and sent to the heat exchanger 13 to be evaporated and gasified, and is then sent to the compressor 41 and is again circulated to the heat exchanger 33. In this case, the heat exchanger 33 functions as a condenser and the heat exchanger 13 functions as an evaporator. That is to say, one of the heat exchangers of the cooling apparatus arranged in the air conditioner, by switching the four way valve, operates as an evaporator to demonstrate a cooling ability, and may also operate as a condenser to function as a heater. When operated as an evaporator, cooling, dehumidifying and temperature adjustment is possible, while when operated as a heater, this can act in place of the heater core. Therefore, even when the engine cooling water temperature is low so that there is no heating effect, heating ability can be demonstrated. Moreover, this supplementary heating operation immediately after starting the engine operation naturally has a sufficient heating ability for when driving under electrical power, without using the engine.
  • With the above construction, for safe operation it is required that the temperature of the above described [0041] drive unit 2 and the motor-generator unit 6 is not higher than 65° C. Moreover, the temperature of the high temperature battery 5 is ideally 85±5° C. from the view point of storage efficiency. To satisfy this requirement, in the hybrid vehicle 1, the temperature of the coolant is controlled as described below.
  • As shown in FIG. 5, there are formed predetermined flow paths for flowing a coolant between the [0042] engine 3, the high temperature battery 5, the I/C EGR system 50, the drive unit 2, the motor-generator unit 6, the first radiator 8, the second radiator 9 and the battery heat exchanger 11.
  • The [0043] engine 3 is cooled by the first radiator 8, and the high temperature battery 5, the I/C EGR system 50, the drive unit 2 and the motor-generator unit 6 are cooled by the second radiator 9.
  • Next is a detailed description of the flow path. [0044]
  • The I/[0045] C EGR system 50, the drive unit 2 and the motor-generator unit 6 are cooled by a coolant supplied from the second radiator 9.
  • First, the coolant is supplied from the outlet side of the [0046] second radiator 9 to the flow path 51. The coolant is branched, at a branch point p1, to the I/C EGR system 50 side and the drive unit 2 and motor-generator unit 6 side.
  • The coolant branched to the I/[0047] C EGR system 50 side is supplied into the I/C EGR system 50 via an inter-cooler coolant pump 53 (circulation quantity control device) interposed in a flow path b1. After cooling the apparatus system in the I/C EGR system 50, the coolant is again circulated to the second radiator 9 via a flow path 52. At this time, a flow velocity is given to the coolant by the inter-cooler coolant pump 53 to make the coolant flow in the flow path b1.
  • On the other hand, the coolant branched to the [0048] drive unit 2 and the motor-generator unit 6 side is further branched at a branch point p2, after which a part of the coolant is further branched via a traction coolant pump 54 (circulation quantity control device). One part is branched to a flow path b2 on the drive unit 2 side, and the other is branched to a flow path b3 on the motor-generator unit 6 side. The coolant after branching is supplied to the drive unit 2 and the motor-generator unit 6, respectively, similar to the coolant supplied to the I/C EGR system 50, for cooling the apparatus system, and is then again circulated to the second generator 9 via the flow path 52. At this time, a flow velocity is given to the coolant by the traction coolant pump 54 to make the coolant flow in the flow paths b2 and b3.
  • Here, the [0049] drive unit 2 is disposed in the front part of the vehicle body, as shown in FIG. 1. On the other hand, the motor-generator unit 6 and the second radiator 9 are disposed in the rear part of the vehicle body. That is, the flow path b2 is longer than the flow path b3, and has a larger coolant flow resistance. Therefore, when it is necessary to make the coolant flow to both the drive unit 2 and the motor-generator unit 6, the flow rate on the motor-generator unit 6 side becomes higher than that on the drive unit 2 side, resulting in uneven balance. To solve this problem, a flow regulating valve 55 is interposed in the flow path b3 to maintain the flow rate balance with the flow path b2.
  • The other coolant branched at the branch point p[0050] 2 flows to the high temperature battery 5 side in a flow path b4 in which a battery coolant pump 57 (circulation quantity control device) is interposed.
  • At a junction p[0051] 4 before the battery coolant pump 57, this merges with a high temperature coolant heated by the heat of the engine 3. The high temperature coolant will be described later. The flow rate is adjusted beforehand so that after merging, the coolant attains a predetermined temperature (85±5° C.).
  • Thereafter, the coolant is supplied to the [0052] high temperature battery 5, and discharged to the outlet flow path b5, while maintaining the high temperature battery 5 within the above described predetermined temperature. The coolant is branched at a branch point p3 to flow paths b6 and b7. The construction is such that the flow path b6 passes through the battery heat exchanger 11 and joins the flow path b4 at the junction p4, and the flow path b7 joins the flow path 52 and is then circulated again to the second radiator 9. A first flow regulating valve 60 is interposed in the flow path b6, and a second flow regulating valve 61 is interposed in the flow path b7. The flow regulating valves 60 and 61 will be described later.
  • The coolant flowing in the flow path b[0053] 6 is heated by the heat of the engine 3 in the battery heat exchanger 11. In more detail, in the battery heat exchanger 11, heat is exchanged between the flow path b6 and the flow path b10 which circulates the coolant between the engine 3 and the battery heat exchanger 11. Since the temperature of the coolant in the flow path b10 heated by the engine 3 is higher than that of the coolant in the flow path b6 (85±5° C.), the coolant in the flow path b6 is heated to become a high temperature coolant, and merges with the low temperature coolant in the flow path b4 at the junction p4.
  • In this way, the high temperature coolant and the low temperature coolant merge at the junction p[0054] 4, to thereby supply the above described coolant having a predetermined temperature to the high temperature battery 5. By adjusting the quantity of the high temperature coolant by the above described flow regulating valves 60 and 61, the temperature of the coolant supplied to the high temperature battery 5 is controlled to the optimum efficiency temperature K (85° C.) as shown in FIG. 7.
  • A description of the characteristic parts of the embodiment will now be given. [0055]
  • As shown in FIG. 5 and FIG. 6, the [0056] high temperature battery 5, the heat exchanger 11 and the circulation pump 57 are provided in a heating loop K (coolant circulation path) comprising the flow paths b5 and b6. The first flow control valve 60 is provided in the heating loop K. Opposite ends of a cooling loop R (coolant circulation path) comprising flow paths 51, 52, b4 and b7 are connected in parallel with the heating loop K so as to have a common path C. The second flow control valve 61 is provided in the cooling loop R. The flow control device comprises the first flow control valve 60 and the second flow control valve 61.
  • At the time of vehicle heating, the first [0057] flow control valve 60 and the second flow control valve 61 are respectively in the open condition and the closed condition, so that high temperature coolant which has been heated by the waste head from the engine 3 in the heat exchanger 11 is circulated in the heating loop K to heat the high temperature battery 5 so as to quickly attain the warm-up condition in the high temperature region. After this, in the case where the temperature of the high temperature battery 5 goes above the optimum efficiency temperature K (85° C. in this embodiment as shown in FIG. 7), the second flow control valve 61 is adjusted so as to open gradually so that the low temperature coolant which has given up heat in the second radiator 9 is circulated in the cooling loop R and mixed with coolant in the heating loop K to give a high temperature coolant mixture. Coolant at a fixed temperature is then supplied to the high temperature battery. In this way, the high temperature battery can be operated at an optimum efficiency point.
  • The [0058] heat exchanger 11 is a plate type liquid heat exchanger which employs a liquid with a high specific heat capacity. This can be smaller than the conventional commonly used heating and cooling units using air.
  • Instead of respectively providing the [0059] flow control valves 60 and 61 in the heating loop K and cooling loop R, a three way valve (see broken lines 60 a in FIG. 6) may be provided at the junction portion p3 of the heating loop K and the cooling loop R so that the abovementioned temperature control can be effected by operating a single three way valve 60 a. Hence valve operation is simplified.
  • Another flow path b[0060] 11 to the engine 3 is provided independent of the above described flow path b10, to circulate the coolant between the first radiator 8 and the engine 3. Moreover, a flow path b12 is provided to circulate the coolant between the heater core 35 and the engine 3.
  • The coolant discharged from the [0061] engine 3 is branched at a branch point p5 to flow paths b10, b11 and b12, and passes through the battery heat exchanger 11, the first radiator 8 and the heater core 35, respectively, after which it merges at the junction p6, and is then circulated again to the engine 3.
  • An [0062] engine coolant pump 69 is provided in the flow path on the inlet side of the engine 3, to make the coolant flow in flow paths b10˜b12. Moreover, in the flow paths b10 and b12 there are provided flow regulating valves 71 and 73, respectively, and in the flow path b11 there is provided a thermostat 72.
  • The [0063] first radiator 8 and the above described second radiator 9 are provided in parallel, and since the coolant flowing through the first radiator 8 has a higher temperature, a pull (suction) type radiator cooling fan 10 is arranged on the downstream side of the first radiator 8, so that air passing through the second radiator 9 passes through the first radiator 8.
  • Next is a description of the operation of the above described air conditioner. [0064]
  • As described above, the hybrid vehicle [0065] 1 travels at the time of low speed driving, using the driving motor 2 a as a drive source and travels at the time of high speed driving exceeding a certain speed, by switching the drive source to the engine 3. Hence, the drive source of the air conditioner is also different from that of the conventional vehicular air conditioner.
  • First, when the hybrid vehicle [0066] 1 travels using the engine 3, the compressor unit 12 is driven by the driving force from the engine 3 at the time of air conditioning, to circulate the refrigerant between the heat exchangers 13 and 33. The engine 3 also transmits a driving force to the motor-generator unit 6, and the motor-generator unit 6 generates electrical power by a motor (not shown), and stores the electrical power in the high temperature battery 5.
  • With the [0067] HPVM 15, the fan 31 introduces inside air or outside air via the inside air/outside air changeover damper 30 to blow air to the heat exchanger 33. The heat of the introduced air is exchanged with the refrigerant in the heat exchanger 33, to thereby be heated (at the time of the heating operation), or cooled (at the time of the cooling operation).
  • The air, after being heated is directed to the [0068] duct 16 or the heater core 35 by means of the air mix damper 34, and the introduced air sent to the heater core 35 is further heated by the waste heat of the engine 3 and then sent to the duct 16.
  • On the other hand, when the [0069] motor 2 a is driving and the engine 3 is stopped, operation is as follows. That is, the motor-generator unit 6 drives the electrical power generating motor housed therein, using the electrical power stored in the high temperature battery 5. The driving force is transmitted to the compressor unit 12 to thereby circulate the refrigerant between the heat exchangers 13 and 33. Other operation is similar to that when the engine 3 is driving.
  • Next is a description of the coolant circulation. As shown in FIG. 6, the coolant discharged from the [0070] second radiator 9 is distributed via the flow path 51 to the various apparatus, branching at branch points p1 and p2. That is to say, the quantity of coolant circulated to the battery 5 is determined by the battery coolant pump 57, and the quantity of coolant circulated to the I/C EGR system 50 is determined by the intercooler coolant pump 53, and the quantity of coolant circulated to the drive unit 2 and the motor-generator unit 6 is determined by the traction coolant pump 54.
  • Next is a separate description of the coolant circulation for when the [0071] engine 3 is driving, and for when the motor 2 a is driving.
  • When travelling using the [0072] engine 3, then as with the conventional engine vehicle, the coolant is circulated using the engine coolant pump 69, between the engine 3 and the first radiator 8, to thereby cool the engine 3. Moreover, the coolant is also circulated in the I/C EGR system 50 using the intercooler coolant pump 53.
  • With the motor-[0073] generator unit 6, when the electric power generating motor housed therein is driven, the coolant is circulated. That is to say, in the case of storing electricity using the drive power of the engine 3, and in the case of operating the air conditioner when the engine 3 is stopped, the coolant is circulated to the motor-generator unit 6 using the traction coolant pump 54, to thereby provide cooling.
  • On the other hand, when travelling by means of the [0074] motor 2 a, the coolant is circulated to the drive unit 2 using the traction coolant pump 54 to thereby cool the drive unit 2.
  • Here, it is not necessary to cool the I/[0075] C EGR system 50 when the engine 3 is stopped. Consequently, it is not necessary to operate the inter-cooler coolant pump 53. Hence there is the case where when this pump is fully stopped, the coolant is made to flow back by the drive of another pump. For example, in the case where the inter-cooler coolant pump 53 is stopped and the traction coolant pump 54 is operating, the inter-cooler coolant pump 53 allows a reverse flow so that the coolant discharged from the drive unit 2 or the motor-generator unit 6 does not flow to the second radiator 9 but flows to the I/C EGR system 50. There is thus the case where a route is traced circulating again to the traction coolant pump 54 via the branch point p1.
  • In order to prevent this, the [0076] inter-cooler coolant pump 53 is operated even though cooling is not required for the I/C EGR system 50, to the extent that the abovementioned reverse flow does not occur.
  • That is to say, even though the engine is stopped, the electric pump does not stop but continues to run for a fixed period. As a result, immediately after stopping, the intercooler and the EGR which are conventionally at a high temperature are rapidly cooled due to this operation so that the high temperature does not occur, thereby improving the life. [0077]
  • Similarly, the [0078] traction coolant pump 54 is operated even in the case where cooling is not required for the drive unit 2 and the motor-generator unit 6, to the extent that reverse flow of coolant does not occur.
  • Moreover, the [0079] high temperature battery 5 is always maintained at a predetermined temperature irrespective of whether the engine 3 is driving or the motor 2 a is driving. The battery coolant pump 57 is operated corresponding to a temperature change of the high temperature battery 5 so that high temperature coolant which has been adjusted in flow quantity by the flow control valves 60 and 61, and low temperature coolant are mixed at the junction point p4 to thereby maintain the temperature of the coolant circulated to the battery 5 continuously at a predetermined temperature.
  • Here with the abovementioned embodiment, the example is given for a hybrid vehicle. However the vehicle is not limited to this and may be a standard vehicle. [0080]
  • With the present invention, since this is constructed as described above, then by using the high temperature coolant which has been heated by the engine waste heat as the heat source for warming up to the temperature range (80˜90° C.) for the high temperature battery of the vehicle, temperature control of the high temperature battery can be performed without providing a special heater or a power source. [0081]
  • Moreover, by controlling the temperature of the coolant using the heating loop and the cooling loop, then the high temperature battery can be accurately controlled to the optimum temperature. Consequently miniaturization of the vehicle and energy savings can be achieved. [0082]
  • Furthermore, by using a plate type liquid heat exchanger which employs a liquid with a high specific heat capacity, then this can be smaller than the conventional commonly used heating and cooling units using air. [0083]

Claims (5)

1. A temperature controller for a vehicular battery comprising; a heat exchanger for removing waste heat from a vehicle engine, and a heating loop, being a coolant circulation path, for carrying heat from said heat exchanger to a high temperature battery of a vehicle.
2. A temperature controller for a vehicular battery according to
claim 1
, wherein there is provided; a radiator for cooling said high temperature battery, a cooling loop being a coolant circulation path, for carrying heat from said high temperature battery to said radiator, and connected in parallel with said heating loop so as to have a common path with said heating loop, and flow control means for said heating loop and said cooling loop.
3. A temperature controller for a vehicular battery according to
claim 2
, wherein said flow control means are flow control valves respectively provided in said heating loop and said cooling loop.
4. A temperature controller for a vehicular battery according to
claim 2
, wherein said flow control means is a three way valve provided at a junction portion of said heating loop and said cooling loop.
5. A temperature controller for a vehicular battery according to any one of
claim 1
through
claim 4
, wherein said heat exchanger is a plate type liquid heat exchanger.
US09/326,601 1999-06-07 1999-06-07 Temperature controller for vehicular battery Expired - Fee Related US6394210B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/326,601 US6394210B2 (en) 1999-06-07 1999-06-07 Temperature controller for vehicular battery
DE2000630630 DE60030630T2 (en) 1999-06-07 2000-06-06 Temperature controller for a vehicle battery
EP20000401585 EP1065354B1 (en) 1999-06-07 2000-06-06 Temperature controller for vehicular battery
KR1020000031176A KR100365674B1 (en) 1999-06-07 2000-06-07 Temperature controller for vehicular battery
CNB001202049A CN1249333C (en) 1999-06-07 2000-06-07 Temp. control device for vehicle battery
JP2000171273A JP2001037009A (en) 1999-06-07 2000-06-07 Temperature controller for battery of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/326,601 US6394210B2 (en) 1999-06-07 1999-06-07 Temperature controller for vehicular battery

Publications (2)

Publication Number Publication Date
US20010040061A1 true US20010040061A1 (en) 2001-11-15
US6394210B2 US6394210B2 (en) 2002-05-28

Family

ID=23272914

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/326,601 Expired - Fee Related US6394210B2 (en) 1999-06-07 1999-06-07 Temperature controller for vehicular battery

Country Status (6)

Country Link
US (1) US6394210B2 (en)
EP (1) EP1065354B1 (en)
JP (1) JP2001037009A (en)
KR (1) KR100365674B1 (en)
CN (1) CN1249333C (en)
DE (1) DE60030630T2 (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459166B2 (en) * 2000-02-16 2002-10-01 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Warm-up control device of hybrid electric vehicle
US20040025525A1 (en) * 2001-03-28 2004-02-12 Mamoru Kubo Car air-conditioning system
WO2004015253A1 (en) * 2002-08-09 2004-02-19 Honda Giken Kogyo Kabushiki Kaisha Working medium supply controller in heat exchanger
US20040135550A1 (en) * 2001-06-25 2004-07-15 Hideo Nishihata Temperature regulator of storage battery and vehicle including the same
EP1783007A1 (en) 2005-11-02 2007-05-09 Robert Bosch Gmbh Method and device for activating occupant protection systems
US20080265045A1 (en) * 2004-03-31 2008-10-30 Tomohiro Yabu Humidity Control System
US20090071178A1 (en) * 2007-09-14 2009-03-19 Gm Global Technology Operations, Inc. Vehicle HVAC and Battery Thermal Management
CN101574923A (en) * 2008-05-09 2009-11-11 通用汽车环球科技运作公司 Battery thermal system for vehicle
US20100012295A1 (en) * 2008-07-21 2010-01-21 Gm Global Technology Operations, Inc. Vehicle HVAC and RESS Thermal Management
US20100084112A1 (en) * 2008-10-02 2010-04-08 Ford Global Technologies, Llc Hybrid electric vehicle and method for managing heat therein
US20100147488A1 (en) * 2008-12-15 2010-06-17 Pierre Eric D Heat exchanger for temperature control of vehicle batteries
US20110073291A1 (en) * 2009-09-30 2011-03-31 Zaiqian Hu Cooling module for a vehicle
US20110165830A1 (en) * 2010-06-24 2011-07-07 Ford Global Technologies, Llc Electric compartment cooling apparatus and method
US20110162901A1 (en) * 2010-03-24 2011-07-07 Ford Global Technologies, Llc Cooling air duct for electric vehicle
US20110165832A1 (en) * 2010-08-25 2011-07-07 Ford Global Technologies, Llc Electric compartment exhaust duct with enhanced air cooling features
US20110174561A1 (en) * 2010-01-21 2011-07-21 ePower Engine Systems, L.L.C. Hydrocarbon Fueled-Electric Series Hybrid Propulsion Systems
US20110206951A1 (en) * 2010-02-25 2011-08-25 Peter Ford Hybrid vehicle battery heater by exhaust gas recirculation
US20110220729A1 (en) * 2010-03-09 2011-09-15 Gm Global Technology Operations, Inc. Vehicle waste heat recovery system and method of operation
US20120102995A1 (en) * 2010-10-28 2012-05-03 Mitsubishi Electeric Corporation Cooling system
US20120247716A1 (en) * 2009-12-21 2012-10-04 Webasto Ag Motor Vehicle Cooling System
US20120249076A1 (en) * 2009-10-21 2012-10-04 Continental Automotive Gmbh Electric energy store having an integrated deep discharge device
US20130269911A1 (en) * 2012-04-12 2013-10-17 Neil Carpenter Thermal management system and related methods for vehicle having electric traction motor and range extending device
US20130299256A1 (en) * 2011-01-26 2013-11-14 Kobelco Construction Machinery Co., Ltd. Hybrid construction machine
US20140033761A1 (en) * 2011-04-18 2014-02-06 Toyota Jidosha Kabushiki Kaisha Cooling apparatus
US20140053584A1 (en) * 2010-12-10 2014-02-27 Oliver Tschismar Climate-control device and method for its operation
US20140070013A1 (en) * 2012-09-12 2014-03-13 Ford Global Technologies, Llc Thermal system and method for a vehicle having traction battery
US20150034272A1 (en) * 2012-02-24 2015-02-05 Valeo Systemes Thermiques Device For The Thermal Management Of A Cabin And Of A Drivetrain Of A Vehicle
US20150083701A1 (en) * 2013-09-20 2015-03-26 Lincoln Global, Inc. Thermal control system for a hybrid welder
US20150094893A1 (en) * 2013-09-30 2015-04-02 Mclaren Automotive Limited Hybrid temperature regulation circuit
US9016080B2 (en) 2011-03-18 2015-04-28 Denso International America, Inc. Battery heating and cooling system
US20150158375A1 (en) * 2013-12-05 2015-06-11 Hyundai Motor Company Cooling unit in electric four wheel drive system
WO2015103548A1 (en) * 2014-01-03 2015-07-09 Quantumscape Corporation Thermal management system for vehicles with an electric powertrain
US20160229282A1 (en) * 2013-02-09 2016-08-11 Quantumscape Corporation Thermal management system for vehicles with an electric powertrain
GB2547784A (en) * 2016-02-05 2017-08-30 Ford Global Tech Llc System and method for cooling vehicle computing device
US20170320375A1 (en) * 2014-11-07 2017-11-09 Gentherm Gmbh Energy recovery system for tapping thermal energy from a medium containing heat energy
US9938913B2 (en) * 2015-11-23 2018-04-10 Ford Global Technologies, Llc Methods and systems for purging condensate from a charge air cooler
US10046617B2 (en) 2013-02-01 2018-08-14 Ford Global Technologies, Llc Electric vehicle multi-loop thermal management system
US10103397B2 (en) * 2015-07-28 2018-10-16 Samsung Electronics Co., Ltd. Metal-air battery, vehicle system comprising the metal-air battery, and method of operating the metal-air battery
US10263304B2 (en) * 2016-03-02 2019-04-16 Contemporary Amperex Technology Co., Limited Thermal management system of battery pack
US10369899B2 (en) 2014-08-27 2019-08-06 Quantumscape Corporation Battery thermal management system and methods of use
US20190277184A1 (en) * 2018-03-12 2019-09-12 Toyota Jidosha Kabushiki Kaisha Temperature control apparatus of vehicle
US10439259B2 (en) 2014-12-16 2019-10-08 Renault S.A.S. Method for managing a hybrid power train of a motor vehicle
US10476117B2 (en) 2014-12-04 2019-11-12 Honda Motor Co., Ltd. Vehicle power supply system
US10486526B2 (en) * 2016-07-29 2019-11-26 Toyota Jidosha Kabushiki Kaisha Vehicle configuration
US20200055372A1 (en) * 2016-07-27 2020-02-20 Mitsubishi Electric Corporation Air-conditioning apparatus
US20200114729A1 (en) * 2018-10-11 2020-04-16 Hyundai Motor Company Heating, ventilation and air conditioning system of vehicle
CN111106414A (en) * 2018-10-26 2020-05-05 普拉特 - 惠特尼加拿大公司 Battery heating in a hybrid power plant
US10899212B2 (en) 2015-02-19 2021-01-26 Honda Motor Co., Ltd. Vehicle power supply system and cooling circuit
US11011783B2 (en) 2013-10-25 2021-05-18 Quantumscape Battery, Inc. Thermal and electrical management of battery packs
CN113091497A (en) * 2021-04-16 2021-07-09 北京仓告科技有限公司 Waste heat recycling system of working robot
EP3686352A4 (en) * 2017-09-21 2021-08-25 Hitachi Construction Machinery Co., Ltd. Hybrid-type work machine
CN113348117A (en) * 2019-01-21 2021-09-03 本田技研工业株式会社 Cooling device for hybrid vehicle
US11142036B2 (en) 2014-11-10 2021-10-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Air-conditioning circuit for a hybrid motor vehicle, and method for preheating a motor vehicle battery of a hybrid motor vehicle
CN114030390A (en) * 2021-11-18 2022-02-11 三一重机有限公司 Thermal management system of hybrid vehicle, control method of thermal management system and vehicle
US20220052390A1 (en) * 2020-08-13 2022-02-17 Hyundai Motor Company Thermal management system for vehicle
US11318860B2 (en) * 2018-07-25 2022-05-03 Nio (Anhui) Holding Co., Ltd. Vehicle thermal management system, vehicle thermal management method and vehicle
US11456495B2 (en) * 2017-07-12 2022-09-27 Ford Global Technologies, Llc Systems and methods for controlling the temperature of a battery and of other electric components of a vehicle
US11524672B2 (en) 2018-09-26 2022-12-13 Elephant Racing, LLC Control techniques for controlling electric hybrid retrofitted vehicles
US11626632B2 (en) * 2020-10-30 2023-04-11 Deere & Company Reversible thermal management system and method for a work machine
US11648822B2 (en) 2020-03-27 2023-05-16 Toyota Jidosha Kabushiki Kaisha Heat management device
US12083862B2 (en) 2020-03-10 2024-09-10 Toyota Jidosha Kabushiki Kaisha Vehicle-mounted temperature control system

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60132123T2 (en) * 2000-03-01 2008-04-30 Hitachi, Ltd. Electric generator system for vehicles and its control method
JP2001255083A (en) * 2000-03-14 2001-09-21 Seibu Giken Co Ltd Heat exchanger
JP3777981B2 (en) * 2000-04-13 2006-05-24 トヨタ自動車株式会社 Vehicle power supply
FR2808742B1 (en) * 2000-05-15 2003-03-21 Peugeot Citroen Automobiles Sa OPTIMIZED HEAT PUMP THERMAL CONTROL DEVICE FOR MOTOR VEHICLE
US6860349B2 (en) * 2000-05-26 2005-03-01 Honda Giken Kogyo Kabushiki Kaisha Cooling system for fuel cell powered vehicle and fuel cell powered vehicle employing the same
JP3910384B2 (en) * 2000-10-13 2007-04-25 本田技研工業株式会社 Battery cooling device for vehicle
DE10317580B4 (en) * 2002-04-18 2010-09-16 Hitachi, Ltd. Electric inverter device with a liquid channel and electric vehicle with such an inverter device
US6902020B2 (en) 2002-07-29 2005-06-07 Daimlerchrysler Corporation Interior vehicle battery system and method
JP4104406B2 (en) * 2002-09-20 2008-06-18 本田技研工業株式会社 Hybrid vehicle
US7048321B2 (en) * 2003-05-21 2006-05-23 Honda Motor Co., Ltd. High-voltage electrical equipment case arranging structure
US7096683B2 (en) * 2003-09-12 2006-08-29 Ford Global Technologies, Llc Vehicle cooling system
US7025159B2 (en) * 2003-09-12 2006-04-11 Ford Global Technologies, Llc Cooling system for a vehicle battery
JP3956945B2 (en) * 2004-02-13 2007-08-08 トヨタ自動車株式会社 Cooling system
DE102004035879A1 (en) 2004-07-23 2006-02-16 Daimlerchrysler Ag Cooling system, in particular for a motor vehicle, and method for cooling a heat source
US7455136B2 (en) * 2004-09-09 2008-11-25 Gm Global Technology Operations, Inc. Cooling system for a rearward portion of a vehicle and method of cooling
JP2006141077A (en) * 2004-11-10 2006-06-01 Hitachi Ltd Drive device for vehicle
JP2006216303A (en) * 2005-02-02 2006-08-17 Denso Corp Cooling structure of heat radiating unit
US7517296B2 (en) * 2005-04-26 2009-04-14 General Motors Corporation Variable motor/generator cooling control system for electrically variable hybrid vehicular transmissions
US7254947B2 (en) * 2005-06-10 2007-08-14 Deere & Company Vehicle cooling system
US7658083B2 (en) * 2005-07-26 2010-02-09 Ford Global Technologies, Llc Cooling system and method for cooling a battery in a vehicle
DE102005047653B4 (en) * 2005-10-05 2021-08-19 Volkswagen Ag Hybrid drive unit with low temperature circuit
WO2007067114A1 (en) * 2005-12-09 2007-06-14 Volvo Lastvagnar Ab A vehicle component heating device
US20090065276A1 (en) * 2006-03-20 2009-03-12 Peter Birke Hybrid Vehicle
US7329960B1 (en) * 2006-07-26 2008-02-12 General Electric Company System and method for propelling a large land-based vehicle using a dual function brushless dynamoelectric machine
CN101000972B (en) * 2006-12-28 2011-05-11 奇瑞汽车有限公司 Thermal control device for battery of mixed power vehicle
FR2911220B1 (en) 2007-01-08 2009-05-15 Peugeot Citroen Automobiles Sa DEVICE AND METHOD FOR HEATING A HYBRID VEHICLE BATTERY
DE102007005391A1 (en) * 2007-02-03 2008-08-07 Behr Gmbh & Co. Kg Radiator arrangement for a drive train of a motor vehicle
US7890218B2 (en) * 2007-07-18 2011-02-15 Tesla Motors, Inc. Centralized multi-zone cooling for increased battery efficiency
JP4483920B2 (en) * 2007-09-24 2010-06-16 株式会社デンソー In-vehicle assembled battery temperature control device
JP2009227121A (en) * 2008-03-24 2009-10-08 Sanyo Electric Co Ltd Battery unit
JP2009250139A (en) * 2008-04-08 2009-10-29 Toyota Motor Corp Engine waste heat collection system
KR100925926B1 (en) * 2008-05-29 2009-11-09 현대자동차주식회사 Dual air duct of front end part in a car
US20100025125A1 (en) * 2008-08-01 2010-02-04 Daimler Ag Method and Apparatus for the Operation of a Vehicle
US8960346B2 (en) * 2008-08-19 2015-02-24 Mitsubishi Heavy Industries, Ltd. Battery cooling structure of hybrid industrial vehicle
US7918296B2 (en) * 2008-09-15 2011-04-05 Caterpillar Inc. Cooling system for an electric drive machine and method
DE102008054949A1 (en) * 2008-12-19 2010-06-24 Robert Bosch Gmbh Method for adjusting the temperature of at least one battery element of a rechargeable battery
FR2940634B1 (en) * 2008-12-30 2011-08-19 Renault Sas DEVICE FOR COOLING THE BATTERIES OF A PARTICULARLY ELECTRIC VEHICLE AND VEHICLE EQUIPPED WITH SUCH A DEVICE
CN101537787B (en) * 2009-04-17 2011-11-30 北京工业大学 Battery heating and comprehensive utilization device of hybrid power electric automobile
JP5531626B2 (en) * 2009-05-26 2014-06-25 日産自動車株式会社 Vehicle battery assembly cooling structure and battery assembly with water jacket
JP5640382B2 (en) * 2009-05-26 2014-12-17 日産自動車株式会社 Vehicle battery assembly cooling structure and battery assembly with water jacket
DE102009048719B4 (en) * 2009-10-09 2013-12-12 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Auxiliary unit for electric motor vehicles
US8679659B2 (en) * 2009-10-21 2014-03-25 GM Global Technology Operations LLC Temperature control of a vehicle battery
DE102009054873A1 (en) * 2009-12-17 2011-06-22 ZF Friedrichshafen AG, 88046 motor vehicle
JP2011225134A (en) * 2010-04-21 2011-11-10 Toyota Motor Corp Cooling system for vehicle
FR2961445B1 (en) * 2010-06-17 2012-08-10 Valeo Systemes Thermiques THERMAL CONDITIONING SYSTEM OF AN ELECTRIC VEHICLE
KR101764611B1 (en) 2010-06-21 2017-08-03 한온시스템 주식회사 Battery cooling system
CN102918737A (en) * 2010-09-06 2013-02-06 沃尔沃建造设备有限公司 Energy repository discharge system for construction machinery
US8781658B2 (en) * 2010-10-28 2014-07-15 GM Global Technology Operations LLC Systems and methods for determining the target thermal conditioning value to control a rechargeable energy storage system
US8459389B2 (en) * 2010-12-30 2013-06-11 Hyundai Motor Company Integrated pump, coolant flow control and heat exchange device
US20120168138A1 (en) * 2010-12-30 2012-07-05 Hyundai Motor Company Integrated pump, coolant flow control and heat exchange device
CN102110796B (en) * 2011-01-27 2012-12-26 中信国安盟固利动力科技有限公司 Fully closed liquid-cooled battery pack
KR101231539B1 (en) * 2011-03-10 2013-02-07 기아자동차주식회사 Wind Flux Concentration Guiding Device and Engine Room Layout Thereof
US20120235640A1 (en) * 2011-03-17 2012-09-20 Fisker Automotive, Inc. Energy management systems and methods
JP5392298B2 (en) * 2011-05-27 2014-01-22 株式会社デンソー Battery cooling system
WO2013003843A2 (en) * 2011-06-30 2013-01-03 Parker-Hannifin Corporation Multiple circuit cooling system
JP2013107420A (en) * 2011-11-17 2013-06-06 Toyota Motor Corp Cooling system for vehicular battery
CN102610838B (en) * 2012-03-22 2014-10-15 中国东方电气集团有限公司 Thermal management system of fuel cell, fuel cell system, and vehicle with the fuel cell system
DE102012103099B4 (en) * 2012-04-11 2015-01-22 Denso International America, Inc. Battery heating and cooling system
CN103515672B (en) * 2012-06-27 2016-08-31 观致汽车有限公司 Battery temperature regulation system and the integrated temperature with this system regulate system
DE102013105747B4 (en) * 2012-07-18 2022-06-09 Hanon Systems Devices for distributing heat in a motor vehicle
US9415700B2 (en) * 2012-09-04 2016-08-16 GM Global Technology Operations LLC Battery thermal system and diagnostic method
US20140150485A1 (en) * 2012-11-30 2014-06-05 Basf Se Storage Unit for a Drive System in a Vehicle
DE102013002198A1 (en) * 2013-02-07 2014-08-07 Man Truck & Bus Ag Method and arrangement for optimizing the motor availability of a refrigerated cycle cooled electromobility component
US9630474B2 (en) * 2013-10-29 2017-04-25 Denso International America, Inc. Thermostatic controlled heat pump water circuit
US9751381B2 (en) 2014-01-24 2017-09-05 Ford Global Technologies, Llc Method and system for vehicle climate control
CN104842763A (en) * 2014-02-13 2015-08-19 杭州斯巴克电子有限公司 Oil and electricity hybrid power transmission system of vehicle
JP6024684B2 (en) * 2014-02-21 2016-11-16 トヨタ自動車株式会社 Power storage system
JP6052206B2 (en) * 2014-03-04 2016-12-27 マツダ株式会社 Rear structure of the vehicle
US10211493B2 (en) * 2014-05-16 2019-02-19 Ford Global Technologies, Llc Thermal management system for an electrified vehicle
JP6322725B2 (en) * 2014-12-04 2018-05-09 本田技研工業株式会社 Vehicle power supply device and cooling circuit
CN107004925B (en) * 2014-12-04 2020-03-13 本田技研工业株式会社 Power supply device for vehicle and cooling circuit
JP6174555B2 (en) * 2014-12-19 2017-08-02 ダイムラー・アクチェンゲゼルシャフトDaimler AG Warm-up device for molten salt battery for vehicle
DE102015101186B4 (en) * 2015-01-28 2024-04-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Air conditioning circuit for an electrically driven motor vehicle, and method for preheating a traction battery of an electrically driven motor vehicle
US9840143B1 (en) 2015-05-20 2017-12-12 Hydro-Gear Limited Partnership Cooling pump assembly and cooling system for utility vehicle
US10358040B1 (en) 2015-06-01 2019-07-23 Hydro-Gear Limited Partnership Drive assembly and system for utility vehicle
US10106027B1 (en) 2015-06-01 2018-10-23 Hydro-Gear Limited Partnership Generator/cooling assembly and system for utility vehicle
CN106240340B (en) * 2015-06-04 2018-09-25 本田技研工业株式会社 Vehicle power source device
US10391854B1 (en) 2015-06-15 2019-08-27 Hydro-Gear Limited Partnership Drive and cooling system for utility vehicle
US10093169B1 (en) 2015-07-09 2018-10-09 Hydro-Gear Limited Partnership Power and cooling system for utility vehicle
KR102361190B1 (en) * 2015-07-14 2022-02-11 한온시스템 주식회사 device for control temperature of battery for a vehicle
JP6678302B2 (en) * 2015-07-24 2020-04-08 パナソニックIpマネジメント株式会社 Temperature control unit, temperature control system, vehicle
FR3051148B1 (en) * 2016-05-10 2018-06-15 Renault S.A.S. "COOLING SYSTEM FOR A HYBRID VEHICLE HAVING A COOLANT TRANSFER CIRCUIT"
DE102016219485A1 (en) * 2016-10-07 2018-04-12 Audi Ag Motor vehicle and energy storage device
JP6436146B2 (en) * 2016-10-31 2018-12-12 トヨタ自動車株式会社 Electric vehicle
FR3061109B1 (en) * 2016-12-26 2019-05-17 Renault S.A.S. METHOD FOR CONTROLLING A COOLING SYSTEM FOR A HYBRID VEHICLE COMPRISING A COOLANT TRANSFER CIRCUIT
JP6414194B2 (en) * 2016-12-26 2018-10-31 トヨタ自動車株式会社 Control device for internal combustion engine
DE102017205081B4 (en) * 2017-03-27 2024-02-08 Ford Global Technologies, Llc Cooling device and method for cooling a battery in a vehicle using a coolant and vehicle with such a cooling device
DE102017108400A1 (en) * 2017-04-20 2018-10-25 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Temperieranordnung for an electrical energy storage
KR102399618B1 (en) * 2017-05-30 2022-05-18 현대자동차주식회사 Hvac system of vehicle
FR3067860B1 (en) * 2017-06-15 2021-04-16 Airbus Group Sas SYSTEM FOR CHARGING AT LEAST ONE BATTERY OF ACCUMULATORS OF A VEHICLE AND PROCESS FOR MANAGING THE RECHARGE OF SUCH AT LEAST ONE BATTERY
CN107453008B (en) * 2017-09-14 2023-08-04 一汽-大众汽车有限公司 Battery pack heating system for pure electric vehicle and control method thereof
US10792972B2 (en) * 2017-10-02 2020-10-06 Magna International Inc. Heating and cooling system for a vehicle including a thermophysical battery
CN109728376B (en) * 2017-10-30 2021-12-14 杭州三花研究院有限公司 Board assembly and battery pack
JP6885308B2 (en) * 2017-11-20 2021-06-09 トヨタ自動車株式会社 Vehicle temperature control system
KR102463192B1 (en) * 2017-11-30 2022-11-03 현대자동차 주식회사 Thermal management system for battery
CN108248398B (en) * 2018-01-16 2020-10-27 浙江吉利新能源商用车有限公司 Control method and control system for power battery of extended range vehicle
KR102600059B1 (en) * 2018-12-03 2023-11-07 현대자동차 주식회사 Thermal management system for vehicle
KR102704104B1 (en) * 2018-12-06 2024-09-06 현대자동차주식회사 Cooling system for eco-friendly vehicle
JP7094908B2 (en) * 2019-02-25 2022-07-04 本田技研工業株式会社 Battery heating device for hybrid vehicles
KR102568852B1 (en) * 2019-03-08 2023-08-21 한온시스템 주식회사 Heat management system of vehicle
CN111717074A (en) * 2019-03-18 2020-09-29 天津大学 Extended range type electric vehicle battery heat insulation system and temperature control method thereof
JP2020179805A (en) * 2019-04-26 2020-11-05 株式会社デンソー Vehicular heat management device, vehicular heat management system, vehicular heat management method, and control program
JP7096212B2 (en) * 2019-07-03 2022-07-05 本田技研工業株式会社 Thermal cycle system
CN112787001A (en) * 2019-11-06 2021-05-11 上海龙杰汽车设计有限公司 Battery heat-insulation system and method for electric automobile
CN112026588B (en) * 2019-11-28 2022-05-06 长城汽车股份有限公司 Battery pack control method and system and vehicle
KR102439104B1 (en) * 2019-12-12 2022-09-01 현대자동차주식회사 Integrated Vehicle Cooling Water Heating Module
KR102545648B1 (en) * 2021-01-07 2023-06-20 송과모터스 주식회사 Thermal management system for electric vehicle
CN113103849B (en) * 2021-05-31 2022-06-07 北创(山东)专用汽车制造有限公司 Temperature control system and control method for new energy automobile electric system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127221A (en) * 1979-03-20 1980-10-01 Daihatsu Motor Co Ltd Driving system of vehicle
JP3119281B2 (en) * 1991-10-14 2000-12-18 株式会社デンソー Vehicle air conditioner
KR940010453A (en) * 1992-10-01 1994-05-26 가나이 쯔도무 Electric motor cooling system and electric motor used for this
US5291960A (en) * 1992-11-30 1994-03-08 Ford Motor Company Hybrid electric vehicle regenerative braking energy recovery system
JPH06189413A (en) * 1992-12-15 1994-07-08 Suzuki Motor Corp Hybrid vehicle
DE4309621C2 (en) * 1993-03-24 1995-11-16 Daimler Benz Ag High temperature battery
DE4327261C1 (en) * 1993-08-13 1994-10-13 Daimler Benz Ag Coolant circuit
DE4327866C1 (en) * 1993-08-19 1994-09-22 Daimler Benz Ag Device for air-conditioning the passenger compartment and for cooling the drive system of electric vehicles
DE4419281C1 (en) * 1994-06-01 1995-12-14 Daimler Benz Ag High temperature battery
DE4433836C1 (en) * 1994-09-22 1995-11-09 Daimler Benz Ag Device for heating an interior of an electric vehicle
JP3451141B2 (en) * 1994-11-14 2003-09-29 本田技研工業株式会社 Battery temperature controller
JPH1012286A (en) * 1996-06-21 1998-01-16 Matsushita Electric Ind Co Ltd Fluid heating circulating device of automobile
CA2182630C (en) * 1996-08-02 2003-02-11 Piotr Drozdz A control system for a hybrid vehicle
JP3240973B2 (en) * 1997-03-05 2001-12-25 トヨタ自動車株式会社 Battery cooling system for vehicles
DE19730678A1 (en) * 1997-07-17 1999-01-21 Volkswagen Ag Hybrid vehicle drive component cooling and interior heating arrangement
JPH11313406A (en) * 1998-04-28 1999-11-09 Hitachi Ltd Cooler for hybrid vehicle

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459166B2 (en) * 2000-02-16 2002-10-01 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Warm-up control device of hybrid electric vehicle
US20040025525A1 (en) * 2001-03-28 2004-02-12 Mamoru Kubo Car air-conditioning system
US6886356B2 (en) * 2001-03-28 2005-05-03 Sanyo Electric Co., Ltd. Car air-conditioning system
US20040135550A1 (en) * 2001-06-25 2004-07-15 Hideo Nishihata Temperature regulator of storage battery and vehicle including the same
US7061208B2 (en) 2001-06-25 2006-06-13 Matsushita Refrigeration Company Storage battery temperature regulator having thermoelectric transducer, and vehicle including the storage battery temperature regulator
WO2004015253A1 (en) * 2002-08-09 2004-02-19 Honda Giken Kogyo Kabushiki Kaisha Working medium supply controller in heat exchanger
US20060112682A1 (en) * 2002-08-09 2006-06-01 Honda Giken Kogyo Kabushiki Kaisha Working medium supply control system in heat exchanger
US20080265045A1 (en) * 2004-03-31 2008-10-30 Tomohiro Yabu Humidity Control System
EP1783007A1 (en) 2005-11-02 2007-05-09 Robert Bosch Gmbh Method and device for activating occupant protection systems
US20090071178A1 (en) * 2007-09-14 2009-03-19 Gm Global Technology Operations, Inc. Vehicle HVAC and Battery Thermal Management
CN101574923A (en) * 2008-05-09 2009-11-11 通用汽车环球科技运作公司 Battery thermal system for vehicle
CN101574923B (en) * 2008-05-09 2014-07-09 通用汽车环球科技运作公司 Battery thermal system for vehicle
US20100012295A1 (en) * 2008-07-21 2010-01-21 Gm Global Technology Operations, Inc. Vehicle HVAC and RESS Thermal Management
US7975757B2 (en) 2008-07-21 2011-07-12 GM Global Technology Operations LLC Vehicle HVAC and RESS thermal management
US8887843B2 (en) * 2008-10-02 2014-11-18 Ford Global Technologies, Llc Hybrid electric vehicle and method for managing heat therein
US20100084112A1 (en) * 2008-10-02 2010-04-08 Ford Global Technologies, Llc Hybrid electric vehicle and method for managing heat therein
US20100147488A1 (en) * 2008-12-15 2010-06-17 Pierre Eric D Heat exchanger for temperature control of vehicle batteries
US9530994B2 (en) 2008-12-15 2016-12-27 Hanon Systems Heat exchanger for temperature control of vehicle batteries
US20110073291A1 (en) * 2009-09-30 2011-03-31 Zaiqian Hu Cooling module for a vehicle
US20120249076A1 (en) * 2009-10-21 2012-10-04 Continental Automotive Gmbh Electric energy store having an integrated deep discharge device
US9825340B2 (en) * 2009-10-21 2017-11-21 Continental Automotive Gmbh Electric energy storage device having a radio-controlled switch for discharging energy using an integrated deep discharge device
US20120247716A1 (en) * 2009-12-21 2012-10-04 Webasto Ag Motor Vehicle Cooling System
US20110174561A1 (en) * 2010-01-21 2011-07-21 ePower Engine Systems, L.L.C. Hydrocarbon Fueled-Electric Series Hybrid Propulsion Systems
US8783396B2 (en) * 2010-01-21 2014-07-22 Epower Engine Systems, Llc Hydrocarbon fueled-electric series hybrid propulsion systems
US20110206951A1 (en) * 2010-02-25 2011-08-25 Peter Ford Hybrid vehicle battery heater by exhaust gas recirculation
US8628025B2 (en) * 2010-03-09 2014-01-14 GM Global Technology Operations LLC Vehicle waste heat recovery system and method of operation
US20110220729A1 (en) * 2010-03-09 2011-09-15 Gm Global Technology Operations, Inc. Vehicle waste heat recovery system and method of operation
US20110162901A1 (en) * 2010-03-24 2011-07-07 Ford Global Technologies, Llc Cooling air duct for electric vehicle
US9914336B2 (en) 2010-06-24 2018-03-13 Ford Global Technologies, Llc Electric compartment cooling apparatus and method
US20110165830A1 (en) * 2010-06-24 2011-07-07 Ford Global Technologies, Llc Electric compartment cooling apparatus and method
US20110165832A1 (en) * 2010-08-25 2011-07-07 Ford Global Technologies, Llc Electric compartment exhaust duct with enhanced air cooling features
US20120102995A1 (en) * 2010-10-28 2012-05-03 Mitsubishi Electeric Corporation Cooling system
US10315519B2 (en) * 2010-10-28 2019-06-11 Mitsubishi Electric Corporation Cooling system for an electric device
US20140053584A1 (en) * 2010-12-10 2014-02-27 Oliver Tschismar Climate-control device and method for its operation
US9555691B2 (en) * 2010-12-10 2017-01-31 Robert Bosch Gmbh Climate-control device and method for its operation
US20130299256A1 (en) * 2011-01-26 2013-11-14 Kobelco Construction Machinery Co., Ltd. Hybrid construction machine
US8875820B2 (en) * 2011-01-26 2014-11-04 Kobelco Construction Machinery Co., Ltd. Hybrid construction machine
US9016080B2 (en) 2011-03-18 2015-04-28 Denso International America, Inc. Battery heating and cooling system
US20140033761A1 (en) * 2011-04-18 2014-02-06 Toyota Jidosha Kabushiki Kaisha Cooling apparatus
US9612041B2 (en) * 2011-04-18 2017-04-04 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle battery charging cooling apparatus
US20150034272A1 (en) * 2012-02-24 2015-02-05 Valeo Systemes Thermiques Device For The Thermal Management Of A Cabin And Of A Drivetrain Of A Vehicle
US9855815B2 (en) * 2012-02-24 2018-01-02 Valeo Systemes Thermiques Device for the thermal management of a cabin and of a drivetrain of a vehicle
US20130269911A1 (en) * 2012-04-12 2013-10-17 Neil Carpenter Thermal management system and related methods for vehicle having electric traction motor and range extending device
US20140070013A1 (en) * 2012-09-12 2014-03-13 Ford Global Technologies, Llc Thermal system and method for a vehicle having traction battery
US11214114B2 (en) 2013-02-01 2022-01-04 Ford Global Technologies, Llc Electric vehicle thermal management system
US10046617B2 (en) 2013-02-01 2018-08-14 Ford Global Technologies, Llc Electric vehicle multi-loop thermal management system
US20160229282A1 (en) * 2013-02-09 2016-08-11 Quantumscape Corporation Thermal management system for vehicles with an electric powertrain
US9573217B2 (en) * 2013-09-20 2017-02-21 Lincoln Global, Inc. Thermal control system for a hybrid welder
US20150083701A1 (en) * 2013-09-20 2015-03-26 Lincoln Global, Inc. Thermal control system for a hybrid welder
US20150094893A1 (en) * 2013-09-30 2015-04-02 Mclaren Automotive Limited Hybrid temperature regulation circuit
US11011783B2 (en) 2013-10-25 2021-05-18 Quantumscape Battery, Inc. Thermal and electrical management of battery packs
US11777153B2 (en) 2013-10-25 2023-10-03 Quantumscape Battery, Inc. Thermal and electrical management of battery packs
US20150158375A1 (en) * 2013-12-05 2015-06-11 Hyundai Motor Company Cooling unit in electric four wheel drive system
WO2015103548A1 (en) * 2014-01-03 2015-07-09 Quantumscape Corporation Thermal management system for vehicles with an electric powertrain
US20210197692A1 (en) * 2014-01-03 2021-07-01 Quantumscape Corporation Thermal management system for vehicles with an electric powertrain
US11577626B2 (en) * 2014-01-03 2023-02-14 Quantumscape Battery, Inc. Thermal management system for vehicles with an electric powertrain
US10889205B2 (en) * 2014-01-03 2021-01-12 Quantumscape Corporation Thermal management system for vehicles with an electric powertrain
US20190263252A1 (en) * 2014-01-03 2019-08-29 Quantumscape Corporation Thermal management system for vehicles with an electric powertrain
US11884183B2 (en) * 2014-01-03 2024-01-30 Quantumscape Battery, Inc. Thermal management system for vehicles with an electric powertrain
US11040635B2 (en) 2014-08-27 2021-06-22 Quantumscape Battery, Inc. Battery thermal management system and methods of use
US11673486B2 (en) 2014-08-27 2023-06-13 Quantumscape Battery, Inc. Battery thermal management system and methods of use
US10369899B2 (en) 2014-08-27 2019-08-06 Quantumscape Corporation Battery thermal management system and methods of use
US20170320375A1 (en) * 2014-11-07 2017-11-09 Gentherm Gmbh Energy recovery system for tapping thermal energy from a medium containing heat energy
US11142036B2 (en) 2014-11-10 2021-10-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Air-conditioning circuit for a hybrid motor vehicle, and method for preheating a motor vehicle battery of a hybrid motor vehicle
US10476117B2 (en) 2014-12-04 2019-11-12 Honda Motor Co., Ltd. Vehicle power supply system
US10439259B2 (en) 2014-12-16 2019-10-08 Renault S.A.S. Method for managing a hybrid power train of a motor vehicle
US10899212B2 (en) 2015-02-19 2021-01-26 Honda Motor Co., Ltd. Vehicle power supply system and cooling circuit
US10103397B2 (en) * 2015-07-28 2018-10-16 Samsung Electronics Co., Ltd. Metal-air battery, vehicle system comprising the metal-air battery, and method of operating the metal-air battery
US9938913B2 (en) * 2015-11-23 2018-04-10 Ford Global Technologies, Llc Methods and systems for purging condensate from a charge air cooler
GB2547784A (en) * 2016-02-05 2017-08-30 Ford Global Tech Llc System and method for cooling vehicle computing device
US10263304B2 (en) * 2016-03-02 2019-04-16 Contemporary Amperex Technology Co., Limited Thermal management system of battery pack
US20200055372A1 (en) * 2016-07-27 2020-02-20 Mitsubishi Electric Corporation Air-conditioning apparatus
US10486526B2 (en) * 2016-07-29 2019-11-26 Toyota Jidosha Kabushiki Kaisha Vehicle configuration
US11456495B2 (en) * 2017-07-12 2022-09-27 Ford Global Technologies, Llc Systems and methods for controlling the temperature of a battery and of other electric components of a vehicle
EP3686352A4 (en) * 2017-09-21 2021-08-25 Hitachi Construction Machinery Co., Ltd. Hybrid-type work machine
US11142887B2 (en) 2017-09-21 2021-10-12 Hitachi Construction Machinery Co., Ltd. Hybrid working machine
US20190277184A1 (en) * 2018-03-12 2019-09-12 Toyota Jidosha Kabushiki Kaisha Temperature control apparatus of vehicle
US10808599B2 (en) * 2018-03-12 2020-10-20 Toyota Jidosha Kabushiki Kaisha Temperature control apparatus of vehicle
US11318860B2 (en) * 2018-07-25 2022-05-03 Nio (Anhui) Holding Co., Ltd. Vehicle thermal management system, vehicle thermal management method and vehicle
US11524672B2 (en) 2018-09-26 2022-12-13 Elephant Racing, LLC Control techniques for controlling electric hybrid retrofitted vehicles
US10836235B2 (en) * 2018-10-11 2020-11-17 Hyundai Motor Company Heating, ventilation and air conditioning system of vehicle
US20200114729A1 (en) * 2018-10-11 2020-04-16 Hyundai Motor Company Heating, ventilation and air conditioning system of vehicle
CN111106414A (en) * 2018-10-26 2020-05-05 普拉特 - 惠特尼加拿大公司 Battery heating in a hybrid power plant
CN113348117A (en) * 2019-01-21 2021-09-03 本田技研工业株式会社 Cooling device for hybrid vehicle
US20220063394A1 (en) * 2019-01-21 2022-03-03 Honda Motor Co., Ltd. Cooling apparatus for hybrid vehicle
US12083862B2 (en) 2020-03-10 2024-09-10 Toyota Jidosha Kabushiki Kaisha Vehicle-mounted temperature control system
US11648822B2 (en) 2020-03-27 2023-05-16 Toyota Jidosha Kabushiki Kaisha Heat management device
US20220052390A1 (en) * 2020-08-13 2022-02-17 Hyundai Motor Company Thermal management system for vehicle
US11870045B2 (en) * 2020-08-13 2024-01-09 Hyundai Motor Company Thermal management system for vehicle
US11626632B2 (en) * 2020-10-30 2023-04-11 Deere & Company Reversible thermal management system and method for a work machine
CN113091497A (en) * 2021-04-16 2021-07-09 北京仓告科技有限公司 Waste heat recycling system of working robot
CN114030390A (en) * 2021-11-18 2022-02-11 三一重机有限公司 Thermal management system of hybrid vehicle, control method of thermal management system and vehicle

Also Published As

Publication number Publication date
KR100365674B1 (en) 2002-12-26
EP1065354A2 (en) 2001-01-03
CN1278113A (en) 2000-12-27
CN1249333C (en) 2006-04-05
DE60030630D1 (en) 2006-10-26
DE60030630T2 (en) 2007-09-13
EP1065354B1 (en) 2006-09-13
US6394210B2 (en) 2002-05-28
JP2001037009A (en) 2001-02-09
KR20010049499A (en) 2001-06-15
EP1065354A3 (en) 2002-11-20

Similar Documents

Publication Publication Date Title
US6394210B2 (en) Temperature controller for vehicular battery
US6321697B1 (en) Cooling apparatus for vehicular engine
US6357541B1 (en) Circulation apparatus for coolant in vehicle
JP7520518B2 (en) Vehicle Heat Pump System
US6332497B1 (en) Vehicular air conditioner
CN111216515A (en) Electric automobile thermal management system
US20030182955A1 (en) Vehicular air conditioner
CN112455180B (en) Hybrid vehicle thermal management system
CN215971023U (en) Vehicle thermal management system and vehicle
CN114683804B (en) Multi-source heat pump system of electric vehicle
CN114851802B (en) Integrated heat management device and system
CN113954697B (en) Fuel cell auxiliary system and battery thermal management integrated system and control method thereof
CN113733848B (en) Integrated water-cooling hybrid electric vehicle thermal management system
CN112060865A (en) Thermal management system of electric automobile
CN115742670A (en) Thermal management system for vehicle and vehicle
CN115805786A (en) Thermal management system for vehicle and vehicle
CN219115185U (en) Automobile heat management system and automobile
CN220242921U (en) Thermal management system of oil-electricity hybrid electric vehicle
CN221969334U (en) Pure electric truck and thermal management system thereof
CN219029067U (en) Thermal management system for vehicle and vehicle
CN115674995A (en) Energy recovery module and automobile thermal management system
JP2024001400A (en) Heat management system for vehicle
CN117962556A (en) Thermal management system for hybrid vehicle and hybrid vehicle
CN118061730A (en) Integrated thermal management system and fuel cell commercial vehicle
JP2000343929A (en) Coolant circulation amount control valve for vehicle air conditioner

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI HEAVY INDUSTRIES, LTD, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATSUDA, KENJI;HIRAO, TOYOTAKA;MIZUTANI, HIROSHI;AND OTHERS;REEL/FRAME:011312/0437

Effective date: 20000825

Owner name: GENERAL MOTORS CORPORATION, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATSUDA, KENJI;HIRAO, TOYOTAKA;MIZUTANI, HIROSHI;AND OTHERS;REEL/FRAME:011312/0437

Effective date: 20000825

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL MOTORS CORPORAITON;REEL/FRAME:022162/0306

Effective date: 20050119

AS Assignment

Owner name: UNITED STATES DEPARTMENT OF THE TREASURY, DISTRICT

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022201/0448

Effective date: 20081231

Owner name: UNITED STATES DEPARTMENT OF THE TREASURY,DISTRICT

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022201/0448

Effective date: 20081231

AS Assignment

Owner name: CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SEC

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022556/0013

Effective date: 20090409

Owner name: CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECU

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022556/0013

Effective date: 20090409

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:023238/0015

Effective date: 20090709

XAS Not any more in us assignment database

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:023124/0383

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECURED PARTIES;CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SECURED PARTIES;REEL/FRAME:023127/0326

Effective date: 20090814

AS Assignment

Owner name: UNITED STATES DEPARTMENT OF THE TREASURY, DISTRICT

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023155/0922

Effective date: 20090710

AS Assignment

Owner name: UAW RETIREE MEDICAL BENEFITS TRUST, MICHIGAN

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023161/0864

Effective date: 20090710

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100528

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UAW RETIREE MEDICAL BENEFITS TRUST;REEL/FRAME:025311/0680

Effective date: 20101026

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:025245/0273

Effective date: 20100420

AS Assignment

Owner name: WILMINGTON TRUST COMPANY, DELAWARE

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:025327/0222

Effective date: 20101027

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:025780/0795

Effective date: 20101202

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:034192/0299

Effective date: 20141017