US20010000513A1 - Biphenyl butyric acids and their derivatives as inhibitors of matrix metalloproteinases - Google Patents
Biphenyl butyric acids and their derivatives as inhibitors of matrix metalloproteinases Download PDFInfo
- Publication number
- US20010000513A1 US20010000513A1 US09/736,802 US73680200A US2001000513A1 US 20010000513 A1 US20010000513 A1 US 20010000513A1 US 73680200 A US73680200 A US 73680200A US 2001000513 A1 US2001000513 A1 US 2001000513A1
- Authority
- US
- United States
- Prior art keywords
- defined above
- biphenyl
- butyric acid
- compound according
- hydroxyimino
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 102000002274 Matrix Metalloproteinases Human genes 0.000 title claims abstract description 21
- 108010000684 Matrix Metalloproteinases Proteins 0.000 title claims abstract description 21
- 239000003112 inhibitor Substances 0.000 title abstract description 14
- DCMAPGFQLNDBGH-UHFFFAOYSA-N 1,1'-biphenyl;butanoic acid Chemical class CCCC(O)=O.C1=CC=CC=C1C1=CC=CC=C1 DCMAPGFQLNDBGH-UHFFFAOYSA-N 0.000 title abstract description 4
- 238000000034 method Methods 0.000 claims abstract description 78
- 238000011282 treatment Methods 0.000 claims abstract description 33
- 102000000424 Matrix Metalloproteinase 2 Human genes 0.000 claims abstract description 20
- 108010016165 Matrix Metalloproteinase 2 Proteins 0.000 claims abstract description 20
- 102000000422 Matrix Metalloproteinase 3 Human genes 0.000 claims abstract description 19
- 230000004054 inflammatory process Effects 0.000 claims abstract description 16
- 206010061218 Inflammation Diseases 0.000 claims abstract description 15
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 14
- 208000037260 Atherosclerotic Plaque Diseases 0.000 claims abstract description 12
- 206010019280 Heart failures Diseases 0.000 claims abstract description 12
- 108010016160 Matrix Metalloproteinase 3 Proteins 0.000 claims abstract description 12
- 206010003246 arthritis Diseases 0.000 claims abstract description 12
- 201000011510 cancer Diseases 0.000 claims abstract description 12
- 201000006417 multiple sclerosis Diseases 0.000 claims abstract description 11
- 208000023275 Autoimmune disease Diseases 0.000 claims abstract description 8
- 208000025865 Ulcer Diseases 0.000 claims abstract description 8
- 206010064996 Ulcerative keratitis Diseases 0.000 claims abstract description 8
- 230000001419 dependent effect Effects 0.000 claims abstract description 8
- 210000000265 leukocyte Anatomy 0.000 claims abstract description 8
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 8
- 208000037803 restenosis Diseases 0.000 claims abstract description 8
- 231100000397 ulcer Toxicity 0.000 claims abstract description 8
- 208000002193 Pain Diseases 0.000 claims abstract description 7
- 230000001363 autoimmune Effects 0.000 claims abstract description 7
- 208000027866 inflammatory disease Diseases 0.000 claims abstract description 7
- 230000009545 invasion Effects 0.000 claims abstract description 7
- 230000036407 pain Effects 0.000 claims abstract description 7
- 208000028169 periodontal disease Diseases 0.000 claims abstract description 7
- 150000001875 compounds Chemical class 0.000 claims description 236
- -1 2,2-dimethyl-propionyloxymethyl ester Chemical class 0.000 claims description 168
- 239000002552 dosage form Substances 0.000 claims description 41
- 125000000217 alkyl group Chemical group 0.000 claims description 35
- 239000011737 fluorine Substances 0.000 claims description 35
- 229910052731 fluorine Inorganic materials 0.000 claims description 35
- 150000003839 salts Chemical class 0.000 claims description 33
- RQJMLGGTENDEFM-UHFFFAOYSA-N 4-[4-(4-chlorophenyl)phenyl]-4-hydroxyiminobutanoic acid Chemical compound C1=CC(C(CCC(O)=O)=NO)=CC=C1C1=CC=C(Cl)C=C1 RQJMLGGTENDEFM-UHFFFAOYSA-N 0.000 claims description 30
- 229910052739 hydrogen Inorganic materials 0.000 claims description 29
- 239000001257 hydrogen Substances 0.000 claims description 29
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 27
- 208000024827 Alzheimer disease Diseases 0.000 claims description 22
- 150000002431 hydrogen Chemical class 0.000 claims description 21
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 17
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 11
- 230000001684 chronic effect Effects 0.000 claims description 11
- 125000001072 heteroaryl group Chemical group 0.000 claims description 11
- 208000015122 neurodegenerative disease Diseases 0.000 claims description 11
- 239000011734 sodium Chemical class 0.000 claims description 11
- 229910052708 sodium Inorganic materials 0.000 claims description 10
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 claims description 10
- JETIIFTUWCPZEG-UHFFFAOYSA-N 4-[4-(4-chlorophenyl)phenyl]-4-methoxyiminobutanoic acid Chemical compound C1=CC(C(CCC(O)=O)=NOC)=CC=C1C1=CC=C(Cl)C=C1 JETIIFTUWCPZEG-UHFFFAOYSA-N 0.000 claims description 9
- 230000001154 acute effect Effects 0.000 claims description 9
- 208000030507 AIDS Diseases 0.000 claims description 8
- 208000005145 Cerebral amyloid angiopathy Diseases 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 125000005042 acyloxymethyl group Chemical group 0.000 claims description 8
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims description 8
- 125000001153 fluoro group Chemical group F* 0.000 claims description 8
- 206010013801 Duchenne Muscular Dystrophy Diseases 0.000 claims description 7
- 206010019196 Head injury Diseases 0.000 claims description 7
- 208000023105 Huntington disease Diseases 0.000 claims description 7
- 208000018737 Parkinson disease Diseases 0.000 claims description 7
- 208000024777 Prion disease Diseases 0.000 claims description 7
- 208000006011 Stroke Diseases 0.000 claims description 7
- 208000027418 Wounds and injury Diseases 0.000 claims description 7
- 125000003118 aryl group Chemical group 0.000 claims description 7
- 229910052736 halogen Inorganic materials 0.000 claims description 7
- 150000002367 halogens Chemical class 0.000 claims description 7
- 206010028417 myasthenia gravis Diseases 0.000 claims description 6
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 6
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical class CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 claims description 6
- 208000020431 spinal cord injury Diseases 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 6
- IQQQHYWNSVFFEI-UHFFFAOYSA-N 4-[4-(2-fluorophenyl)phenyl]-4-hydroxyiminobutanoic acid Chemical compound C1=CC(C(CCC(O)=O)=NO)=CC=C1C1=CC=CC=C1F IQQQHYWNSVFFEI-UHFFFAOYSA-N 0.000 claims description 5
- QABVXTKJZPEANZ-UHFFFAOYSA-N 4-[4-(3,4-dichlorophenyl)phenyl]-4-hydroxyiminobutanoic acid Chemical compound C1=CC(C(CCC(O)=O)=NO)=CC=C1C1=CC=C(Cl)C(Cl)=C1 QABVXTKJZPEANZ-UHFFFAOYSA-N 0.000 claims description 5
- ZSEOOQLEJYZSGF-UHFFFAOYSA-N 4-[4-(3-fluorophenyl)phenyl]-4-hydroxyiminobutanoic acid Chemical compound C1=CC(C(CCC(O)=O)=NO)=CC=C1C1=CC=CC(F)=C1 ZSEOOQLEJYZSGF-UHFFFAOYSA-N 0.000 claims description 5
- ZKAXZKMSZPJJAV-UHFFFAOYSA-N 4-[4-(4-bromo-2-fluorophenyl)phenyl]-4-hydroxyiminobutanoic acid Chemical compound C1=CC(C(CCC(O)=O)=NO)=CC=C1C1=CC=C(Br)C=C1F ZKAXZKMSZPJJAV-UHFFFAOYSA-N 0.000 claims description 5
- GIMDYSWWMCJCFQ-UHFFFAOYSA-N 4-[4-(4-bromophenyl)phenyl]-4-hydroxyiminobutanoic acid Chemical compound C1=CC(C(CCC(O)=O)=NO)=CC=C1C1=CC=C(Br)C=C1 GIMDYSWWMCJCFQ-UHFFFAOYSA-N 0.000 claims description 5
- RNOFOKVCZYVPMA-UHFFFAOYSA-N 4-[4-(4-chloro-2-fluorophenyl)phenyl]-4-hydroxyiminobutanoic acid Chemical compound C1=CC(C(CCC(O)=O)=NO)=CC=C1C1=CC=C(Cl)C=C1F RNOFOKVCZYVPMA-UHFFFAOYSA-N 0.000 claims description 5
- RGOIQIUXYJQZDM-UHFFFAOYSA-N 4-[4-(4-cyanophenyl)phenyl]-4-hydroxyiminobutanoic acid Chemical compound C1=CC(C(CCC(O)=O)=NO)=CC=C1C1=CC=C(C#N)C=C1 RGOIQIUXYJQZDM-UHFFFAOYSA-N 0.000 claims description 5
- DXPWOIWQAFPUJZ-UHFFFAOYSA-N 4-[4-(4-fluorophenyl)phenyl]-4-hydroxyiminobutanoic acid Chemical compound C1=CC(C(CCC(O)=O)=NO)=CC=C1C1=CC=C(F)C=C1 DXPWOIWQAFPUJZ-UHFFFAOYSA-N 0.000 claims description 5
- LNLAFCRQQATZOY-UHFFFAOYSA-N 4-[4-(4-tert-butylphenyl)phenyl]-4-hydroxyiminobutanoic acid Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=CC=C(C(CCC(O)=O)=NO)C=C1 LNLAFCRQQATZOY-UHFFFAOYSA-N 0.000 claims description 5
- ZNPLPOFIVSAATJ-UHFFFAOYSA-N 4-hydroxyimino-4-[4-(4-methoxyphenyl)phenyl]butanoic acid Chemical compound C1=CC(OC)=CC=C1C1=CC=C(C(CCC(O)=O)=NO)C=C1 ZNPLPOFIVSAATJ-UHFFFAOYSA-N 0.000 claims description 5
- MFRQVOWWSKPLHD-UHFFFAOYSA-N 4-hydroxyimino-4-[4-(4-methylphenyl)phenyl]butanoic acid Chemical compound C1=CC(C)=CC=C1C1=CC=C(C(CCC(O)=O)=NO)C=C1 MFRQVOWWSKPLHD-UHFFFAOYSA-N 0.000 claims description 5
- WNZCZCAJWKJJFF-UHFFFAOYSA-N 4-hydroxyimino-4-[4-(4-methylsulfanylphenyl)phenyl]butanoic acid Chemical compound C1=CC(SC)=CC=C1C1=CC=C(C(CCC(O)=O)=NO)C=C1 WNZCZCAJWKJJFF-UHFFFAOYSA-N 0.000 claims description 5
- NTPKBGKSVCBASL-UHFFFAOYSA-N 4-hydroxyimino-4-[4-[4-(trifluoromethyl)phenyl]phenyl]butanoic acid Chemical compound C1=CC(C(CCC(O)=O)=NO)=CC=C1C1=CC=C(C(F)(F)F)C=C1 NTPKBGKSVCBASL-UHFFFAOYSA-N 0.000 claims description 5
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 5
- 239000003085 diluting agent Substances 0.000 claims description 5
- 125000004785 fluoromethoxy group Chemical group [H]C([H])(F)O* 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 claims description 5
- YAOAAQZCOAUNAE-UHFFFAOYSA-N 4-[4-(4-chlorophenyl)phenyl]-4-(dimethylhydrazinylidene)butanoic acid Chemical compound C1=CC(C(CCC(O)=O)=NN(C)C)=CC=C1C1=CC=C(Cl)C=C1 YAOAAQZCOAUNAE-UHFFFAOYSA-N 0.000 claims description 4
- IYWKVPQGIPOZMN-UHFFFAOYSA-N 4-[4-(4-chlorophenyl)phenyl]-4-hydroxybutanoic acid Chemical compound C1=CC(C(CCC(O)=O)O)=CC=C1C1=CC=C(Cl)C=C1 IYWKVPQGIPOZMN-UHFFFAOYSA-N 0.000 claims description 4
- 206010052428 Wound Diseases 0.000 claims description 4
- 159000000007 calcium salts Chemical class 0.000 claims description 4
- 150000004683 dihydrates Chemical class 0.000 claims description 4
- 159000000003 magnesium salts Chemical class 0.000 claims description 4
- NASFKTWZWDYFER-UHFFFAOYSA-N sodium;hydrate Chemical compound O.[Na] NASFKTWZWDYFER-UHFFFAOYSA-N 0.000 claims description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 3
- 230000035876 healing Effects 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- ONDHOCAWMCIXLR-UHFFFAOYSA-N 2-[2-[4-(4-chlorophenyl)phenyl]-2-hydroxyiminoethyl]-2-fluoro-5-phenylpentanoic acid Chemical compound C=1C=C(C=2C=CC(Cl)=CC=2)C=CC=1C(=NO)CC(F)(C(O)=O)CCCC1=CC=CC=C1 ONDHOCAWMCIXLR-UHFFFAOYSA-N 0.000 claims description 2
- ACTQLAONUVECDR-UHFFFAOYSA-N 2-[2-[4-(4-chlorophenyl)phenyl]-2-hydroxyiminoethyl]-2-fluoro-6-phenylhexanoic acid Chemical compound C=1C=C(C=2C=CC(Cl)=CC=2)C=CC=1C(=NO)CC(F)(C(O)=O)CCCCC1=CC=CC=C1 ACTQLAONUVECDR-UHFFFAOYSA-N 0.000 claims description 2
- LGJCTCXTISERQE-UHFFFAOYSA-N 2-[2-[4-(4-chlorophenyl)phenyl]-2-hydroxyiminoethyl]-5-(1,3-dioxoisoindol-2-yl)-2-fluoropentanoic acid Chemical compound O=C1C2=CC=CC=C2C(=O)N1CCCC(F)(C(O)=O)CC(=NO)C(C=C1)=CC=C1C1=CC=C(Cl)C=C1 LGJCTCXTISERQE-UHFFFAOYSA-N 0.000 claims description 2
- QIOYIGUCVWDDSG-UHFFFAOYSA-N 2-[2-[4-(4-chlorophenyl)phenyl]-2-hydroxyiminoethyl]-6-(1,3-dioxoisoindol-2-yl)-2-fluorohexanoic acid Chemical compound O=C1C2=CC=CC=C2C(=O)N1CCCCC(F)(C(O)=O)CC(=NO)C(C=C1)=CC=C1C1=CC=C(Cl)C=C1 QIOYIGUCVWDDSG-UHFFFAOYSA-N 0.000 claims description 2
- ZYTOBAWIRVFDJA-UHFFFAOYSA-N 4-[4-(2,4-dichlorophenyl)phenyl]-4-hydroxyiminobutanoic acid Chemical compound C1=CC(C(CCC(O)=O)=NO)=CC=C1C1=CC=C(Cl)C=C1Cl ZYTOBAWIRVFDJA-UHFFFAOYSA-N 0.000 claims description 2
- SIJLYWOEHFFLGG-UHFFFAOYSA-N 4-[4-(2,4-difluorophenyl)phenyl]-4-hydroxyiminobutanoic acid Chemical compound C1=CC(C(CCC(O)=O)=NO)=CC=C1C1=CC=C(F)C=C1F SIJLYWOEHFFLGG-UHFFFAOYSA-N 0.000 claims description 2
- IGXCIGJOOHSVAF-UHFFFAOYSA-N 4-[4-(4-chlorophenyl)phenyl]-2,2,3,3-tetrafluoro-4-hydroxyiminobutanoic acid Chemical class C1=CC(C(=NO)C(F)(F)C(F)(F)C(O)=O)=CC=C1C1=CC=C(Cl)C=C1 IGXCIGJOOHSVAF-UHFFFAOYSA-N 0.000 claims description 2
- ZVQAMRMZOISPNF-UHFFFAOYSA-N 4-[4-(4-chlorophenyl)phenyl]-2,2-difluoro-4-hydroxyiminobutanoic acid Chemical class C1=CC(C(CC(F)(F)C(O)=O)=NO)=CC=C1C1=CC=C(Cl)C=C1 ZVQAMRMZOISPNF-UHFFFAOYSA-N 0.000 claims description 2
- UTHIPJQXGSUBSL-UHFFFAOYSA-N 4-[4-(4-chlorophenyl)phenyl]-2-[2-(1,3-dioxobenzo[f]isoindol-2-yl)ethyl]-2-fluoro-4-hydroxyiminobutanoic acid Chemical compound O=C1C2=CC3=CC=CC=C3C=C2C(=O)N1CCC(F)(C(O)=O)CC(=NO)C(C=C1)=CC=C1C1=CC=C(Cl)C=C1 UTHIPJQXGSUBSL-UHFFFAOYSA-N 0.000 claims description 2
- PGMZAQDZZPRHLE-UHFFFAOYSA-N 4-[4-(4-chlorophenyl)phenyl]-2-[2-(1,3-dioxoisoindol-2-yl)ethyl]-2-fluoro-4-hydroxyiminobutanoic acid Chemical compound O=C1C2=CC=CC=C2C(=O)N1CCC(F)(C(O)=O)CC(=NO)C(C=C1)=CC=C1C1=CC=C(Cl)C=C1 PGMZAQDZZPRHLE-UHFFFAOYSA-N 0.000 claims description 2
- YFSXARLZCWCFQB-UHFFFAOYSA-N 4-[4-(4-chlorophenyl)phenyl]-2-fluoro-4-hydroxyimino-2-(1h-indol-3-ylmethyl)butanoic acid Chemical compound C=1NC2=CC=CC=C2C=1CC(F)(C(O)=O)CC(=NO)C(C=C1)=CC=C1C1=CC=C(Cl)C=C1 YFSXARLZCWCFQB-UHFFFAOYSA-N 0.000 claims description 2
- RIPBPXRFYMYPAE-UHFFFAOYSA-N 4-[4-(4-chlorophenyl)phenyl]-2-fluoro-4-hydroxyimino-2-(2-phenylethyl)butanoic acid Chemical compound C=1C=C(C=2C=CC(Cl)=CC=2)C=CC=1C(=NO)CC(F)(C(O)=O)CCC1=CC=CC=C1 RIPBPXRFYMYPAE-UHFFFAOYSA-N 0.000 claims description 2
- KTCNKNZOAIHBRD-UHFFFAOYSA-N 4-[4-(4-chlorophenyl)phenyl]-2-fluoro-4-hydroxyimino-2-(phenylsulfanylmethyl)butanoic acid Chemical compound C=1C=C(C=2C=CC(Cl)=CC=2)C=CC=1C(=NO)CC(F)(C(O)=O)CSC1=CC=CC=C1 KTCNKNZOAIHBRD-UHFFFAOYSA-N 0.000 claims description 2
- QLOVCQFIZUKWFR-UHFFFAOYSA-N 4-[4-(4-chlorophenyl)phenyl]-2-fluoro-4-hydroxyimino-2-methylbutanoic acid Chemical compound C1=CC(C(=NO)CC(F)(C)C(O)=O)=CC=C1C1=CC=C(Cl)C=C1 QLOVCQFIZUKWFR-UHFFFAOYSA-N 0.000 claims description 2
- MZZSBYJTHHTGEM-UHFFFAOYSA-N 4-[4-(4-chlorophenyl)phenyl]-2-fluoro-4-hydroxyimino-3,3-dimethylbutanoic acid Chemical class C1=CC(C(=NO)C(C)(C(F)C(O)=O)C)=CC=C1C1=CC=C(Cl)C=C1 MZZSBYJTHHTGEM-UHFFFAOYSA-N 0.000 claims description 2
- IRBKJJBJLGTLKN-UHFFFAOYSA-N 4-[4-(4-chlorophenyl)phenyl]-3,3-difluoro-4-hydroxyiminobutanoic acid Chemical class C1=CC(C(=NO)C(F)(F)CC(O)=O)=CC=C1C1=CC=C(Cl)C=C1 IRBKJJBJLGTLKN-UHFFFAOYSA-N 0.000 claims description 2
- JFUAQBDWRURWGZ-UHFFFAOYSA-N 4-[4-(4-chlorophenyl)phenyl]-3-fluoro-4-hydroxyimino-2,2-dimethylbutanoic acid Chemical class C1=CC(C(=NO)C(F)C(C)(C)C(O)=O)=CC=C1C1=CC=C(Cl)C=C1 JFUAQBDWRURWGZ-UHFFFAOYSA-N 0.000 claims description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 2
- 230000002401 inhibitory effect Effects 0.000 claims 10
- 239000000546 pharmaceutical excipient Substances 0.000 claims 4
- ULZDFSRZZUICKN-UHFFFAOYSA-N 4-[4-(4-chlorophenyl)phenyl]-3-fluoro-2-oxobutanoic acid Chemical compound C1=CC(CC(F)C(=O)C(=O)O)=CC=C1C1=CC=C(Cl)C=C1 ULZDFSRZZUICKN-UHFFFAOYSA-N 0.000 claims 1
- 230000005494 condensation Effects 0.000 claims 1
- 238000009833 condensation Methods 0.000 claims 1
- 238000010511 deprotection reaction Methods 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 55
- 239000002253 acid Substances 0.000 abstract description 28
- 210000004027 cell Anatomy 0.000 abstract description 9
- 102000013382 Gelatinases Human genes 0.000 abstract description 3
- 108010026132 Gelatinases Proteins 0.000 abstract description 3
- 230000029663 wound healing Effects 0.000 abstract description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 142
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 96
- VEXZGXHMUGYJMC-UHFFFAOYSA-N hydrochloric acid Substances Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 90
- 239000007787 solid Substances 0.000 description 76
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 69
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 69
- 239000000203 mixture Substances 0.000 description 60
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 56
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 51
- 239000002904 solvent Substances 0.000 description 49
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 48
- 239000000243 solution Substances 0.000 description 46
- NFHFRUOZVGFOOS-UHFFFAOYSA-N Pd(PPh3)4 Substances [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 45
- MZRVEZGGRBJDDB-UHFFFAOYSA-N n-Butyllithium Substances [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 45
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 44
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 42
- 238000010992 reflux Methods 0.000 description 41
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 39
- 229910001868 water Inorganic materials 0.000 description 34
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 32
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 32
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 30
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 29
- WTDHULULXKLSOZ-UHFFFAOYSA-N Hydroxylamine hydrochloride Chemical compound Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 description 28
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 28
- 229910000029 sodium carbonate Inorganic materials 0.000 description 28
- 239000000725 suspension Substances 0.000 description 28
- 239000000741 silica gel Substances 0.000 description 27
- 229910002027 silica gel Inorganic materials 0.000 description 27
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 26
- 238000006243 chemical reaction Methods 0.000 description 26
- 239000002585 base Substances 0.000 description 25
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 24
- 239000003795 chemical substances by application Substances 0.000 description 23
- 230000000875 corresponding effect Effects 0.000 description 23
- 201000002491 encephalomyelitis Diseases 0.000 description 23
- 0 *C.C/N=C(/C1=CC=C(C2=CC=CC=C2)C=C1)C(C)(C)C(C)(C)C(C)=O.CC Chemical compound *C.C/N=C(/C1=CC=C(C2=CC=CC=C2)C=C1)C(C)(C)C(C)(C)C(C)=O.CC 0.000 description 20
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 20
- ZCSHNCUQKCANBX-UHFFFAOYSA-N lithium diisopropylamide Chemical compound [Li+].CC(C)[N-]C(C)C ZCSHNCUQKCANBX-UHFFFAOYSA-N 0.000 description 20
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 19
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 18
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 18
- 238000003756 stirring Methods 0.000 description 17
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 16
- YNHIGQDRGKUECZ-UHFFFAOYSA-L PdCl2(PPh3)2 Substances [Cl-].[Cl-].[Pd+2].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-L 0.000 description 16
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 16
- 239000003054 catalyst Substances 0.000 description 16
- 150000004715 keto acids Chemical class 0.000 description 16
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 16
- 235000017557 sodium bicarbonate Nutrition 0.000 description 16
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 16
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 15
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 15
- 238000004587 chromatography analysis Methods 0.000 description 15
- 229910052757 nitrogen Inorganic materials 0.000 description 15
- FXHOOIRPVKKKFG-UHFFFAOYSA-N CC(=O)N(C)C Chemical compound CC(=O)N(C)C FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 14
- KXKVLQRXCPHEJC-UHFFFAOYSA-N COC(C)=O Chemical compound COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 14
- 239000012267 brine Substances 0.000 description 14
- QARVLSVVCXYDNA-UHFFFAOYSA-N bromobenzene Chemical compound BrC1=CC=CC=C1 QARVLSVVCXYDNA-UHFFFAOYSA-N 0.000 description 14
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 14
- GETQZCLCWQTVFV-UHFFFAOYSA-N CN(C)C Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 13
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 13
- 239000012442 inert solvent Substances 0.000 description 13
- 241001465754 Metazoa Species 0.000 description 12
- AQRLNPVMDITEJU-UHFFFAOYSA-N triethylsilane Chemical compound CC[SiH](CC)CC AQRLNPVMDITEJU-UHFFFAOYSA-N 0.000 description 12
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 11
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 11
- 239000007832 Na2SO4 Substances 0.000 description 11
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 230000005764 inhibitory process Effects 0.000 description 11
- 239000010410 layer Substances 0.000 description 11
- RLKHFSNWQCZBDC-UHFFFAOYSA-N n-(benzenesulfonyl)-n-fluorobenzenesulfonamide Chemical compound C=1C=CC=CC=1S(=O)(=O)N(F)S(=O)(=O)C1=CC=CC=C1 RLKHFSNWQCZBDC-UHFFFAOYSA-N 0.000 description 11
- IUBQJLUDMLPAGT-UHFFFAOYSA-N potassium bis(trimethylsilyl)amide Chemical compound C[Si](C)(C)N([K])[Si](C)(C)C IUBQJLUDMLPAGT-UHFFFAOYSA-N 0.000 description 11
- 229910052938 sodium sulfate Inorganic materials 0.000 description 11
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 10
- HHVIBTZHLRERCL-UHFFFAOYSA-N CS(C)(=O)=O Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 10
- OATSQCXMYKYFQO-UHFFFAOYSA-N CSC(C)=O Chemical compound CSC(C)=O OATSQCXMYKYFQO-UHFFFAOYSA-N 0.000 description 10
- 239000004305 biphenyl Substances 0.000 description 10
- 235000010290 biphenyl Nutrition 0.000 description 10
- WGLUMOCWFMKWIL-UHFFFAOYSA-N dichloromethane;methanol Chemical compound OC.ClCCl WGLUMOCWFMKWIL-UHFFFAOYSA-N 0.000 description 10
- CSJLBAMHHLJAAS-UHFFFAOYSA-N diethylaminosulfur trifluoride Chemical compound CCN(CC)S(F)(F)F CSJLBAMHHLJAAS-UHFFFAOYSA-N 0.000 description 10
- 238000011065 in-situ storage Methods 0.000 description 10
- NSIXBKXISVRTCO-UHFFFAOYSA-N methyl 4-(4-bromophenyl)-4-oxobutanoate Chemical compound COC(=O)CCC(=O)C1=CC=C(Br)C=C1 NSIXBKXISVRTCO-UHFFFAOYSA-N 0.000 description 10
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 10
- WJKHJLXJJJATHN-UHFFFAOYSA-N triflic anhydride Chemical compound FC(F)(F)S(=O)(=O)OS(=O)(=O)C(F)(F)F WJKHJLXJJJATHN-UHFFFAOYSA-N 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N CS(C)=O Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 9
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 9
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 9
- 241000699670 Mus sp. Species 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 239000003153 chemical reaction reagent Substances 0.000 description 9
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 9
- 239000003981 vehicle Substances 0.000 description 9
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 9
- GCTFWCDSFPMHHS-UHFFFAOYSA-M Tributyltin chloride Chemical compound CCCC[Sn](Cl)(CCCC)CCCC GCTFWCDSFPMHHS-UHFFFAOYSA-M 0.000 description 8
- 239000002168 alkylating agent Substances 0.000 description 8
- 229940100198 alkylating agent Drugs 0.000 description 8
- 239000007822 coupling agent Substances 0.000 description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 8
- 239000012044 organic layer Substances 0.000 description 8
- 125000001979 organolithium group Chemical group 0.000 description 8
- 229910000027 potassium carbonate Inorganic materials 0.000 description 8
- 108090000765 processed proteins & peptides Proteins 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 8
- 239000011592 zinc chloride Substances 0.000 description 8
- JWZSTJYFEBRUAE-UHFFFAOYSA-N 4-[4-(4-chlorophenyl)phenyl]-4-oxobutanoic acid Chemical compound C1=CC(C(=O)CCC(=O)O)=CC=C1C1=CC=C(Cl)C=C1 JWZSTJYFEBRUAE-UHFFFAOYSA-N 0.000 description 7
- RLHFOESWPVAVLW-UHFFFAOYSA-N 4-oxo-4-[4-[4-(trifluoromethyl)phenyl]phenyl]butanoic acid Chemical compound C1=CC(C(=O)CCC(=O)O)=CC=C1C1=CC=C(C(F)(F)F)C=C1 RLHFOESWPVAVLW-UHFFFAOYSA-N 0.000 description 7
- 102000029816 Collagenase Human genes 0.000 description 7
- 108060005980 Collagenase Proteins 0.000 description 7
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 7
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 7
- 210000003169 central nervous system Anatomy 0.000 description 7
- 229960002424 collagenase Drugs 0.000 description 7
- 239000012065 filter cake Substances 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- SRXOJMOGPYFZKC-UHFFFAOYSA-N methyl 4-chloro-4-oxobutanoate Chemical compound COC(=O)CCC(Cl)=O SRXOJMOGPYFZKC-UHFFFAOYSA-N 0.000 description 7
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 7
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 108091007196 stromelysin Proteins 0.000 description 7
- 239000003826 tablet Substances 0.000 description 7
- WRECIMRULFAWHA-UHFFFAOYSA-N trimethyl borate Chemical compound COB(OC)OC WRECIMRULFAWHA-UHFFFAOYSA-N 0.000 description 7
- 239000003039 volatile agent Substances 0.000 description 7
- TVWLQPMOQNRLSE-UHFFFAOYSA-N 4-[4-(3,4-dichlorophenyl)phenyl]-4-oxobutanoic acid Chemical compound C1=CC(C(=O)CCC(=O)O)=CC=C1C1=CC=C(Cl)C(Cl)=C1 TVWLQPMOQNRLSE-UHFFFAOYSA-N 0.000 description 6
- HNAUDZSTADDLBM-UHFFFAOYSA-N 4-[4-(4-bromo-2-fluorophenyl)phenyl]-4-oxobutanoic acid Chemical compound C1=CC(C(=O)CCC(=O)O)=CC=C1C1=CC=C(Br)C=C1F HNAUDZSTADDLBM-UHFFFAOYSA-N 0.000 description 6
- CIMBGGDXWYAUHN-UHFFFAOYSA-N 4-[4-(4-chloro-2-fluorophenyl)phenyl]-4-oxobutanoic acid Chemical compound C1=CC(C(=O)CCC(=O)O)=CC=C1C1=CC=C(Cl)C=C1F CIMBGGDXWYAUHN-UHFFFAOYSA-N 0.000 description 6
- OUHXHPUQHUKZSQ-UHFFFAOYSA-N 4-[4-(4-cyanophenyl)phenyl]-4-oxobutanoic acid Chemical compound C1=CC(C(=O)CCC(=O)O)=CC=C1C1=CC=C(C#N)C=C1 OUHXHPUQHUKZSQ-UHFFFAOYSA-N 0.000 description 6
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 6
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 6
- 150000001733 carboxylic acid esters Chemical class 0.000 description 6
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 6
- SYZWSSNHPZXGML-UHFFFAOYSA-N dichloromethane;oxolane Chemical compound ClCCl.C1CCOC1 SYZWSSNHPZXGML-UHFFFAOYSA-N 0.000 description 6
- 210000002744 extracellular matrix Anatomy 0.000 description 6
- 239000000706 filtrate Substances 0.000 description 6
- 239000012458 free base Substances 0.000 description 6
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 6
- 230000004770 neurodegeneration Effects 0.000 description 6
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 6
- 239000002516 radical scavenger Substances 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 6
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 6
- SYUVAXDZVWPKSI-UHFFFAOYSA-N tributyl(phenyl)stannane Chemical compound CCCC[Sn](CCCC)(CCCC)C1=CC=CC=C1 SYUVAXDZVWPKSI-UHFFFAOYSA-N 0.000 description 6
- 210000004509 vascular smooth muscle cell Anatomy 0.000 description 6
- VOOJZRZTOKPOBB-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)phenyl]-4-oxobutanoic acid Chemical compound C1=CC(OC)=CC=C1C1=CC=C(C(=O)CCC(O)=O)C=C1 VOOJZRZTOKPOBB-UHFFFAOYSA-N 0.000 description 5
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 5
- DAZXVJBJRMWXJP-UHFFFAOYSA-N CCN(C)C Chemical compound CCN(C)C DAZXVJBJRMWXJP-UHFFFAOYSA-N 0.000 description 5
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N CNC(C)=O Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 206010030113 Oedema Diseases 0.000 description 5
- 150000001413 amino acids Chemical class 0.000 description 5
- 239000002775 capsule Substances 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 5
- 230000034994 death Effects 0.000 description 5
- 231100000517 death Toxicity 0.000 description 5
- 210000002683 foot Anatomy 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 5
- 230000020477 pH reduction Effects 0.000 description 5
- 230000008961 swelling Effects 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- MFLVKIPQVRTRJJ-UHFFFAOYSA-N tributyl-[4-[(2-methylpropan-2-yl)oxy]phenyl]stannane Chemical compound CCCC[Sn](CCCC)(CCCC)C1=CC=C(OC(C)(C)C)C=C1 MFLVKIPQVRTRJJ-UHFFFAOYSA-N 0.000 description 5
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- SXIPTKMQXHAHCS-UHFFFAOYSA-N 4-[4-(4-methylsulfanylphenyl)phenyl]-4-oxobutanoic acid Chemical compound C1=CC(SC)=CC=C1C1=CC=C(C(=O)CCC(O)=O)C=C1 SXIPTKMQXHAHCS-UHFFFAOYSA-N 0.000 description 4
- KZMGYPLQYOPHEL-UHFFFAOYSA-N Boron trifluoride etherate Chemical compound FB(F)F.CCOCC KZMGYPLQYOPHEL-UHFFFAOYSA-N 0.000 description 4
- MRZICYISFQWYFK-UHFFFAOYSA-N C.C.CC(C)(F)F.CC(C)C Chemical compound C.C.CC(C)(F)F.CC(C)C MRZICYISFQWYFK-UHFFFAOYSA-N 0.000 description 4
- CKJRQPWAXMFUCK-UHFFFAOYSA-N C.CC(C)=O Chemical compound C.CC(C)=O CKJRQPWAXMFUCK-UHFFFAOYSA-N 0.000 description 4
- DRNXOENRWVUNFA-UHFFFAOYSA-N CC(C)(F)F.CC(C)C Chemical compound CC(C)(F)F.CC(C)C DRNXOENRWVUNFA-UHFFFAOYSA-N 0.000 description 4
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 4
- 239000002841 Lewis acid Substances 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 4
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 4
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 4
- 206010033799 Paralysis Diseases 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- 239000003377 acid catalyst Substances 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 150000001735 carboxylic acids Chemical class 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- DOBRDRYODQBAMW-UHFFFAOYSA-N copper(i) cyanide Chemical compound [Cu+].N#[C-] DOBRDRYODQBAMW-UHFFFAOYSA-N 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 208000012997 experimental autoimmune encephalomyelitis Diseases 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 210000000548 hind-foot Anatomy 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 230000002757 inflammatory effect Effects 0.000 description 4
- AQBLLJNPHDIAPN-LNTINUHCSA-K iron(3+);(z)-4-oxopent-2-en-2-olate Chemical compound [Fe+3].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O AQBLLJNPHDIAPN-LNTINUHCSA-K 0.000 description 4
- 150000007517 lewis acids Chemical class 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 4
- 229910052808 lithium carbonate Inorganic materials 0.000 description 4
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 4
- 239000011565 manganese chloride Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000012279 sodium borohydride Substances 0.000 description 4
- 229910000033 sodium borohydride Inorganic materials 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- KISWVXRQTGLFGD-UHFFFAOYSA-N 2-[[2-[[6-amino-2-[[2-[[2-[[5-amino-2-[[2-[[1-[2-[[6-amino-2-[(2,5-diamino-5-oxopentanoyl)amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-(diaminomethylideneamino)p Chemical group C1CCN(C(=O)C(CCCN=C(N)N)NC(=O)C(CCCCN)NC(=O)C(N)CCC(N)=O)C1C(=O)NC(CO)C(=O)NC(CCC(N)=O)C(=O)NC(CCCN=C(N)N)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=C(O)C=C1 KISWVXRQTGLFGD-UHFFFAOYSA-N 0.000 description 3
- DGMOBVGABMBZSB-UHFFFAOYSA-N 2-methylpropanoyl chloride Chemical compound CC(C)C(Cl)=O DGMOBVGABMBZSB-UHFFFAOYSA-N 0.000 description 3
- YRTUFFFNUSJOBZ-UHFFFAOYSA-N 4-[4-(2-fluorophenyl)phenyl]-4-oxobutanoic acid Chemical compound C1=CC(C(=O)CCC(=O)O)=CC=C1C1=CC=CC=C1F YRTUFFFNUSJOBZ-UHFFFAOYSA-N 0.000 description 3
- GTQFWMZFORJMOK-UHFFFAOYSA-N 4-[4-(3-fluorophenyl)phenyl]-4-oxobutanoic acid Chemical compound C1=CC(C(=O)CCC(=O)O)=CC=C1C1=CC=CC(F)=C1 GTQFWMZFORJMOK-UHFFFAOYSA-N 0.000 description 3
- IZPKIMNWANWACA-UHFFFAOYSA-N 4-[4-(4-bromophenyl)phenyl]-4-oxobutanoic acid Chemical compound C1=CC(C(=O)CCC(=O)O)=CC=C1C1=CC=C(Br)C=C1 IZPKIMNWANWACA-UHFFFAOYSA-N 0.000 description 3
- UGTUJSZRMWTLES-UHFFFAOYSA-N 4-[4-(4-chlorophenyl)phenyl]-3-fluoro-4-oxobutanoic acid Chemical compound C1=CC(C(=O)C(F)CC(=O)O)=CC=C1C1=CC=C(Cl)C=C1 UGTUJSZRMWTLES-UHFFFAOYSA-N 0.000 description 3
- IYWPCNIEUKBHQZ-UHFFFAOYSA-N 4-[4-(4-fluorophenyl)phenyl]-4-oxobutanoic acid Chemical compound C1=CC(C(=O)CCC(=O)O)=CC=C1C1=CC=C(F)C=C1 IYWPCNIEUKBHQZ-UHFFFAOYSA-N 0.000 description 3
- NWPKLXRLHOOXRE-UHFFFAOYSA-N 4-[4-(4-methylphenyl)phenyl]-4-oxobutanoic acid Chemical compound C1=CC(C)=CC=C1C1=CC=C(C(=O)CCC(O)=O)C=C1 NWPKLXRLHOOXRE-UHFFFAOYSA-N 0.000 description 3
- CGLNGXPJLFFUCJ-UHFFFAOYSA-N 4-[4-(4-tert-butylphenyl)phenyl]-4-oxobutanoic acid Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=CC=C(C(=O)CCC(O)=O)C=C1 CGLNGXPJLFFUCJ-UHFFFAOYSA-N 0.000 description 3
- PSNGWQFGVRISIB-UHFFFAOYSA-N 4-chloro-2-fluoro-1-phenylbenzene Chemical group FC1=CC(Cl)=CC=C1C1=CC=CC=C1 PSNGWQFGVRISIB-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- 102000001776 Matrix metalloproteinase-9 Human genes 0.000 description 3
- 108010015302 Matrix metalloproteinase-9 Proteins 0.000 description 3
- 102000005741 Metalloproteases Human genes 0.000 description 3
- 108010006035 Metalloproteases Proteins 0.000 description 3
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 206010070834 Sensitisation Diseases 0.000 description 3
- 210000001744 T-lymphocyte Anatomy 0.000 description 3
- 102000005354 Tissue Inhibitor of Metalloproteinase-2 Human genes 0.000 description 3
- 108010031372 Tissue Inhibitor of Metalloproteinase-2 Proteins 0.000 description 3
- 229910021551 Vanadium(III) chloride Inorganic materials 0.000 description 3
- 108010000134 Vascular Cell Adhesion Molecule-1 Proteins 0.000 description 3
- 102100023543 Vascular cell adhesion protein 1 Human genes 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 239000002260 anti-inflammatory agent Substances 0.000 description 3
- 230000003110 anti-inflammatory effect Effects 0.000 description 3
- 210000002469 basement membrane Anatomy 0.000 description 3
- 230000008499 blood brain barrier function Effects 0.000 description 3
- 210000001218 blood-brain barrier Anatomy 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 230000010343 cardiac dilation Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 210000002421 cell wall Anatomy 0.000 description 3
- 238000004440 column chromatography Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- AQEFLFZSWDEAIP-UHFFFAOYSA-N di-tert-butyl ether Chemical compound CC(C)(C)OC(C)(C)C AQEFLFZSWDEAIP-UHFFFAOYSA-N 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 210000004195 gingiva Anatomy 0.000 description 3
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 210000002510 keratinocyte Anatomy 0.000 description 3
- 239000011968 lewis acid catalyst Substances 0.000 description 3
- 239000007937 lozenge Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- FKDCQYWVSUUTRP-UHFFFAOYSA-N methyl 4-[4-(2-fluorophenyl)phenyl]-4-oxobutanoate Chemical compound C1=CC(C(=O)CCC(=O)OC)=CC=C1C1=CC=CC=C1F FKDCQYWVSUUTRP-UHFFFAOYSA-N 0.000 description 3
- VSMAAWZPLZBZJU-UHFFFAOYSA-N methyl 4-[4-(3-fluorophenyl)phenyl]-4-oxobutanoate Chemical compound C1=CC(C(=O)CCC(=O)OC)=CC=C1C1=CC=CC(F)=C1 VSMAAWZPLZBZJU-UHFFFAOYSA-N 0.000 description 3
- ZDSZKMKSKIZVRJ-UHFFFAOYSA-N methyl 4-[4-(4-bromophenyl)phenyl]-4-oxobutanoate Chemical compound C1=CC(C(=O)CCC(=O)OC)=CC=C1C1=CC=C(Br)C=C1 ZDSZKMKSKIZVRJ-UHFFFAOYSA-N 0.000 description 3
- SMESMAQQPPMENO-UHFFFAOYSA-N methyl 4-[4-(4-fluorophenyl)phenyl]-4-oxobutanoate Chemical compound C1=CC(C(=O)CCC(=O)OC)=CC=C1C1=CC=C(F)C=C1 SMESMAQQPPMENO-UHFFFAOYSA-N 0.000 description 3
- JVBRGAYKNZJBFN-UHFFFAOYSA-N methyl 4-[4-(4-methylphenyl)phenyl]-4-oxobutanoate Chemical compound C1=CC(C(=O)CCC(=O)OC)=CC=C1C1=CC=C(C)C=C1 JVBRGAYKNZJBFN-UHFFFAOYSA-N 0.000 description 3
- MFFHKESKNQJIOT-UHFFFAOYSA-N methyl 4-[4-(4-tert-butylphenyl)phenyl]-4-oxobutanoate Chemical compound C1=CC(C(=O)CCC(=O)OC)=CC=C1C1=CC=C(C(C)(C)C)C=C1 MFFHKESKNQJIOT-UHFFFAOYSA-N 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 239000001923 methylcellulose Substances 0.000 description 3
- 235000010981 methylcellulose Nutrition 0.000 description 3
- 125000002734 organomagnesium group Chemical group 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 206010039073 rheumatoid arthritis Diseases 0.000 description 3
- 230000008313 sensitization Effects 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 239000012258 stirred mixture Substances 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 210000004881 tumor cell Anatomy 0.000 description 3
- HQYCOEXWFMFWLR-UHFFFAOYSA-K vanadium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[V+3] HQYCOEXWFMFWLR-UHFFFAOYSA-K 0.000 description 3
- 230000037314 wound repair Effects 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- FWCGWAAVEIMOKH-UHFFFAOYSA-N (3-bromophenyl) trifluoromethanesulfonate Chemical compound FC(F)(F)S(=O)(=O)OC1=CC=CC(Br)=C1 FWCGWAAVEIMOKH-UHFFFAOYSA-N 0.000 description 2
- CEBAHYWORUOILU-UHFFFAOYSA-N (4-cyanophenyl)boronic acid Chemical compound OB(O)C1=CC=C(C#N)C=C1 CEBAHYWORUOILU-UHFFFAOYSA-N 0.000 description 2
- MNJYZNVROSZZQC-UHFFFAOYSA-N (4-tert-butylphenyl)boronic acid Chemical compound CC(C)(C)C1=CC=C(B(O)O)C=C1 MNJYZNVROSZZQC-UHFFFAOYSA-N 0.000 description 2
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 2
- LBPRIVPGDNJMAT-UHFFFAOYSA-N 3-[4-(4-chlorophenyl)phenyl]-4,5-dihydrooxazin-6-one Chemical compound C1=CC(Cl)=CC=C1C1=CC=C(C=2CCC(=O)ON=2)C=C1 LBPRIVPGDNJMAT-UHFFFAOYSA-N 0.000 description 2
- GZFGOTFRPZRKDS-UHFFFAOYSA-N 4-bromophenol Chemical compound OC1=CC=C(Br)C=C1 GZFGOTFRPZRKDS-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 208000025494 Aortic disease Diseases 0.000 description 2
- 241000588832 Bordetella pertussis Species 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 208000009386 Experimental Arthritis Diseases 0.000 description 2
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 2
- 208000004454 Hyperalgesia Diseases 0.000 description 2
- 208000035154 Hyperesthesia Diseases 0.000 description 2
- 108010016113 Matrix Metalloproteinase 1 Proteins 0.000 description 2
- 108010076497 Matrix Metalloproteinase 10 Proteins 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 101001018320 Mus musculus Myelin basic protein Proteins 0.000 description 2
- 208000036110 Neuroinflammatory disease Diseases 0.000 description 2
- 102000056189 Neutrophil collagenases Human genes 0.000 description 2
- 239000005662 Paraffin oil Substances 0.000 description 2
- 108010081690 Pertussis Toxin Proteins 0.000 description 2
- 101001013135 Rattus norvegicus Interstitial collagenase Proteins 0.000 description 2
- 241000219061 Rheum Species 0.000 description 2
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical class [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 2
- 102100028848 Stromelysin-2 Human genes 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 210000003423 ankle Anatomy 0.000 description 2
- 229940121363 anti-inflammatory agent Drugs 0.000 description 2
- 229940124599 anti-inflammatory drug Drugs 0.000 description 2
- 238000011861 anti-inflammatory therapy Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 210000000544 articulatio talocruralis Anatomy 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000004709 cell invasion Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 229940110456 cocoa butter Drugs 0.000 description 2
- 235000019868 cocoa butter Nutrition 0.000 description 2
- 229960001338 colchicine Drugs 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 210000004087 cornea Anatomy 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003412 degenerative effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 210000002615 epidermis Anatomy 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 208000010726 hind limb paralysis Diseases 0.000 description 2
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 230000037456 inflammatory mechanism Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- OWFXIOWLTKNBAP-UHFFFAOYSA-N isoamyl nitrite Chemical compound CC(C)CCON=O OWFXIOWLTKNBAP-UHFFFAOYSA-N 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- UBJFKNSINUCEAL-UHFFFAOYSA-N lithium;2-methylpropane Chemical compound [Li+].C[C-](C)C UBJFKNSINUCEAL-UHFFFAOYSA-N 0.000 description 2
- 210000003141 lower extremity Anatomy 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000008384 membrane barrier Effects 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- HHQJWDKIRXRTLS-UHFFFAOYSA-N n'-bromobutanediamide Chemical compound NC(=O)CCC(=O)NBr HHQJWDKIRXRTLS-UHFFFAOYSA-N 0.000 description 2
- 230000003959 neuroinflammation Effects 0.000 description 2
- 230000002314 neuroinflammatory effect Effects 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 150000002923 oximes Chemical class 0.000 description 2
- BSCHIACBONPEOB-UHFFFAOYSA-N oxolane;hydrate Chemical compound O.C1CCOC1 BSCHIACBONPEOB-UHFFFAOYSA-N 0.000 description 2
- LXNAVEXFUKBNMK-UHFFFAOYSA-N palladium(II) acetate Substances [Pd].CC(O)=O.CC(O)=O LXNAVEXFUKBNMK-UHFFFAOYSA-N 0.000 description 2
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008506 pathogenesis Effects 0.000 description 2
- 230000003239 periodontal effect Effects 0.000 description 2
- GRJHONXDTNBDTC-UHFFFAOYSA-N phenyl trifluoromethanesulfonate Chemical compound FC(F)(F)S(=O)(=O)OC1=CC=CC=C1 GRJHONXDTNBDTC-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 229960004919 procaine Drugs 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000007634 remodeling Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 235000010288 sodium nitrite Nutrition 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229940014800 succinic anhydride Drugs 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 210000001179 synovial fluid Anatomy 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- FPGGTKZVZWFYPV-UHFFFAOYSA-M tetrabutylammonium fluoride Chemical compound [F-].CCCC[N+](CCCC)(CCCC)CCCC FPGGTKZVZWFYPV-UHFFFAOYSA-M 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 125000005309 thioalkoxy group Chemical group 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 2
- COIOYMYWGDAQPM-UHFFFAOYSA-N tris(2-methylphenyl)phosphane Chemical compound CC1=CC=CC=C1P(C=1C(=CC=CC=1)C)C1=CC=CC=C1C COIOYMYWGDAQPM-UHFFFAOYSA-N 0.000 description 2
- 230000002861 ventricular Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- JKIGHOARKAIPJI-UHFFFAOYSA-N (3,4-dichlorophenyl)boronic acid Chemical compound OB(O)C1=CC=C(Cl)C(Cl)=C1 JKIGHOARKAIPJI-UHFFFAOYSA-N 0.000 description 1
- KNXQDJCZSVHEIW-UHFFFAOYSA-N (3-fluorophenyl)boronic acid Chemical compound OB(O)C1=CC=CC(F)=C1 KNXQDJCZSVHEIW-UHFFFAOYSA-N 0.000 description 1
- NQMRYYAAICMHPE-UHFFFAOYSA-N (4-methoxyphenyl)boron Chemical compound [B]C1=CC=C(OC)C=C1 NQMRYYAAICMHPE-UHFFFAOYSA-N 0.000 description 1
- BIWQNIMLAISTBV-UHFFFAOYSA-N (4-methylphenyl)boronic acid Chemical compound CC1=CC=C(B(O)O)C=C1 BIWQNIMLAISTBV-UHFFFAOYSA-N 0.000 description 1
- OJOFMLDBXPDXLQ-VIFPVBQESA-N (4s)-4-benzyl-1,3-oxazolidin-2-one Chemical compound C1OC(=O)N[C@H]1CC1=CC=CC=C1 OJOFMLDBXPDXLQ-VIFPVBQESA-N 0.000 description 1
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical class ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- DIIIISSCIXVANO-UHFFFAOYSA-N 1,2-Dimethylhydrazine Chemical compound CNNC DIIIISSCIXVANO-UHFFFAOYSA-N 0.000 description 1
- PKJBWOWQJHHAHG-UHFFFAOYSA-N 1-bromo-4-phenylbenzene Chemical group C1=CC(Br)=CC=C1C1=CC=CC=C1 PKJBWOWQJHHAHG-UHFFFAOYSA-N 0.000 description 1
- XHCAGOVGSDHHNP-UHFFFAOYSA-N 1-bromo-4-tert-butylbenzene Chemical compound CC(C)(C)C1=CC=C(Br)C=C1 XHCAGOVGSDHHNP-UHFFFAOYSA-N 0.000 description 1
- MICMHFIQSAMEJG-UHFFFAOYSA-N 1-bromopyrrolidine-2,5-dione Chemical compound BrN1C(=O)CCC1=O.BrN1C(=O)CCC1=O MICMHFIQSAMEJG-UHFFFAOYSA-N 0.000 description 1
- KLECYOQFQXJYBC-UHFFFAOYSA-N 1-fluoro-2-phenylbenzene Chemical group FC1=CC=CC=C1C1=CC=CC=C1 KLECYOQFQXJYBC-UHFFFAOYSA-N 0.000 description 1
- RUYZJEIKQYLEGZ-UHFFFAOYSA-N 1-fluoro-4-phenylbenzene Chemical group C1=CC(F)=CC=C1C1=CC=CC=C1 RUYZJEIKQYLEGZ-UHFFFAOYSA-N 0.000 description 1
- HCSBTDBGTNZOAB-UHFFFAOYSA-N 2,3-dinitrobenzoic acid Chemical compound OC(=O)C1=CC=CC([N+]([O-])=O)=C1[N+]([O-])=O HCSBTDBGTNZOAB-UHFFFAOYSA-N 0.000 description 1
- SFJBLNTZMZBRQC-UHFFFAOYSA-N 2-[2-[4-(4-chlorophenyl)phenyl]-2-hydroxyiminoethyl]-5-(n-ethylanilino)-2-fluoro-5-oxopentanoic acid Chemical compound C=1C=CC=CC=1N(CC)C(=O)CCC(F)(C(O)=O)CC(=NO)C(C=C1)=CC=C1C1=CC=C(Cl)C=C1 SFJBLNTZMZBRQC-UHFFFAOYSA-N 0.000 description 1
- DJSCQBGTKAOMAU-UHFFFAOYSA-N 2-[4-(4-methoxyphenyl)phenyl]-4-oxobutanoic acid Chemical compound C1=CC(OC)=CC=C1C1=CC=C(C(CC=O)C(O)=O)C=C1 DJSCQBGTKAOMAU-UHFFFAOYSA-N 0.000 description 1
- ABFPKTQEQNICFT-UHFFFAOYSA-M 2-chloro-1-methylpyridin-1-ium;iodide Chemical compound [I-].C[N+]1=CC=CC=C1Cl ABFPKTQEQNICFT-UHFFFAOYSA-M 0.000 description 1
- 125000002941 2-furyl group Chemical group O1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-M 2-methylbenzenesulfonate Chemical compound CC1=CC=CC=C1S([O-])(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-M 0.000 description 1
- YOETUEMZNOLGDB-UHFFFAOYSA-N 2-methylpropyl carbonochloridate Chemical compound CC(C)COC(Cl)=O YOETUEMZNOLGDB-UHFFFAOYSA-N 0.000 description 1
- 125000000389 2-pyrrolyl group Chemical group [H]N1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- 125000003682 3-furyl group Chemical group O1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 125000006201 3-phenylpropyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001397 3-pyrrolyl group Chemical group [H]N1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 125000001541 3-thienyl group Chemical group S1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- WAUGGKDVKLYWET-UHFFFAOYSA-N 4,5-dihydrooxazin-6-one Chemical compound O=C1CCC=NO1 WAUGGKDVKLYWET-UHFFFAOYSA-N 0.000 description 1
- HTRNHWBOBYFTQF-UHFFFAOYSA-N 4-bromo-2-fluoro-1-phenylbenzene Chemical group FC1=CC(Br)=CC=C1C1=CC=CC=C1 HTRNHWBOBYFTQF-UHFFFAOYSA-N 0.000 description 1
- HQSCPPCMBMFJJN-UHFFFAOYSA-N 4-bromobenzonitrile Chemical compound BrC1=CC=C(C#N)C=C1 HQSCPPCMBMFJJN-UHFFFAOYSA-N 0.000 description 1
- CSFDTBRRIBJILD-UHFFFAOYSA-N 4-chloro-2-fluoroaniline Chemical compound NC1=CC=C(Cl)C=C1F CSFDTBRRIBJILD-UHFFFAOYSA-N 0.000 description 1
- FPWNLURCHDRMHC-UHFFFAOYSA-N 4-chlorobiphenyl Chemical group C1=CC(Cl)=CC=C1C1=CC=CC=C1 FPWNLURCHDRMHC-UHFFFAOYSA-N 0.000 description 1
- ZZJAVKOJVNLBJY-UHFFFAOYSA-N 4-hydroxyiminobutanoic acid Chemical class ON=CCCC(O)=O ZZJAVKOJVNLBJY-UHFFFAOYSA-N 0.000 description 1
- KDDQRKBRJSGMQE-UHFFFAOYSA-N 4-thiazolyl Chemical compound [C]1=CSC=N1 KDDQRKBRJSGMQE-UHFFFAOYSA-N 0.000 description 1
- CWDWFSXUQODZGW-UHFFFAOYSA-N 5-thiazolyl Chemical group [C]1=CN=CS1 CWDWFSXUQODZGW-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102000011767 Acute-Phase Proteins Human genes 0.000 description 1
- 108010062271 Acute-Phase Proteins Proteins 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- 102000013455 Amyloid beta-Peptides Human genes 0.000 description 1
- 108010090849 Amyloid beta-Peptides Proteins 0.000 description 1
- 206010003162 Arterial injury Diseases 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- OJXXINNQEIYACW-UHFFFAOYSA-N C.C=C(C)C.C=C(C)C.CC(C)(F)F.CC(C)C.CC(C)C Chemical compound C.C=C(C)C.C=C(C)C.CC(C)(F)F.CC(C)C.CC(C)C OJXXINNQEIYACW-UHFFFAOYSA-N 0.000 description 1
- SDIAUPCVCWCLDL-UHFFFAOYSA-N C=C(C)C.C=C(C)C.CC(C)(F)F.CC(C)C.CC(C)C Chemical compound C=C(C)C.C=C(C)C.CC(C)(F)F.CC(C)C.CC(C)C SDIAUPCVCWCLDL-UHFFFAOYSA-N 0.000 description 1
- IPTUTOJVQKKNKM-UHFFFAOYSA-N C=N(C)C(C)=O Chemical compound C=N(C)C(C)=O IPTUTOJVQKKNKM-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N C=O Chemical compound C=O WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- FZWUXSXOKYDBPA-UHFFFAOYSA-N CC(C)=O.CC(C)=O.NC=O Chemical compound CC(C)=O.CC(C)=O.NC=O FZWUXSXOKYDBPA-UHFFFAOYSA-N 0.000 description 1
- FJLHLDBEZKTSOK-UHFFFAOYSA-N CCN(C)C=O Chemical compound CCN(C)C=O FJLHLDBEZKTSOK-UHFFFAOYSA-N 0.000 description 1
- KERBAAIBDHEFDD-UHFFFAOYSA-N CCNC=O Chemical compound CCNC=O KERBAAIBDHEFDD-UHFFFAOYSA-N 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N CCOC=O Chemical compound CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000000989 Complement System Proteins Human genes 0.000 description 1
- 108010069112 Complement System Proteins Proteins 0.000 description 1
- 206010011091 Coronary artery thrombosis Diseases 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- 206010012289 Dementia Diseases 0.000 description 1
- 208000031124 Dementia Alzheimer type Diseases 0.000 description 1
- 208000016192 Demyelinating disease Diseases 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- 201000010046 Dilated cardiomyopathy Diseases 0.000 description 1
- 101100347633 Drosophila melanogaster Mhc gene Proteins 0.000 description 1
- 238000001061 Dunnett's test Methods 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 206010015866 Extravasation Diseases 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- 206010021639 Incontinence Diseases 0.000 description 1
- 206010060820 Joint injury Diseases 0.000 description 1
- 208000016593 Knee injury Diseases 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 206010062049 Lymphocytic infiltration Diseases 0.000 description 1
- 229940124761 MMP inhibitor Drugs 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical compound [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 description 1
- 102000004318 Matrilysin Human genes 0.000 description 1
- 108090000855 Matrilysin Proteins 0.000 description 1
- 102000000380 Matrix Metalloproteinase 1 Human genes 0.000 description 1
- 108010076502 Matrix Metalloproteinase 11 Proteins 0.000 description 1
- 102000011722 Matrix Metalloproteinase 13 Human genes 0.000 description 1
- 108010076503 Matrix Metalloproteinase 13 Proteins 0.000 description 1
- 108010088571 Membrane-Associated Matrix Metalloproteinases Proteins 0.000 description 1
- 102000008887 Membrane-Associated Matrix Metalloproteinases Human genes 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical group COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 241000186359 Mycobacterium Species 0.000 description 1
- 102000047918 Myelin Basic Human genes 0.000 description 1
- 101710107068 Myelin basic protein Proteins 0.000 description 1
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 208000034827 Neointima Diseases 0.000 description 1
- 108030001564 Neutrophil collagenases Proteins 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 208000007542 Paresis Diseases 0.000 description 1
- 208000037273 Pathologic Processes Diseases 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 206010036030 Polyarthritis Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 101000925883 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) Elastase Proteins 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 238000011803 SJL/J (JAX™ mice strain) Methods 0.000 description 1
- 229910006069 SO3H Inorganic materials 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 101000584292 Streptomyces cacaoi Mycolysin Proteins 0.000 description 1
- 102100028847 Stromelysin-3 Human genes 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 108010031374 Tissue Inhibitor of Metalloproteinase-1 Proteins 0.000 description 1
- 102000005353 Tissue Inhibitor of Metalloproteinase-1 Human genes 0.000 description 1
- 102000005876 Tissue Inhibitor of Metalloproteinases Human genes 0.000 description 1
- 108010005246 Tissue Inhibitor of Metalloproteinases Proteins 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- 229910021550 Vanadium Chloride Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- ALMFIOZYDASRRC-UHFFFAOYSA-N [4-(trifluoromethyl)phenyl]boronic acid Chemical compound OB(O)C1=CC=C(C(F)(F)F)C=C1 ALMFIOZYDASRRC-UHFFFAOYSA-N 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- IPBVNPXQWQGGJP-UHFFFAOYSA-N acetic acid phenyl ester Natural products CC(=O)OC1=CC=CC=C1 IPBVNPXQWQGGJP-UHFFFAOYSA-N 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 210000001642 activated microglia Anatomy 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 208000019269 advanced heart failure Diseases 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- AEMOLEFTQBMNLQ-BKBMJHBISA-N alpha-D-galacturonic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-BKBMJHBISA-N 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000001387 anti-histamine Effects 0.000 description 1
- 239000003430 antimalarial agent Substances 0.000 description 1
- 206010002906 aortic stenosis Diseases 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 159000000032 aromatic acids Chemical class 0.000 description 1
- 210000001188 articular cartilage Anatomy 0.000 description 1
- 235000021311 artificial sweeteners Nutrition 0.000 description 1
- 208000037979 autoimmune inflammatory disease Diseases 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical compound C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 230000031709 bromination Effects 0.000 description 1
- 238000005893 bromination reaction Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- XQKKWWCELHKGKB-UHFFFAOYSA-L calcium acetate monohydrate Chemical compound O.[Ca+2].CC([O-])=O.CC([O-])=O XQKKWWCELHKGKB-UHFFFAOYSA-L 0.000 description 1
- 229940067460 calcium acetate monohydrate Drugs 0.000 description 1
- 230000000963 caseinolytic effect Effects 0.000 description 1
- 108020001778 catalytic domains Proteins 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 208000010353 central nervous system vasculitis Diseases 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- KVSASDOGYIBWTA-UHFFFAOYSA-N chloro benzoate Chemical compound ClOC(=O)C1=CC=CC=C1 KVSASDOGYIBWTA-UHFFFAOYSA-N 0.000 description 1
- VDANGULDQQJODZ-UHFFFAOYSA-N chloroprocaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1Cl VDANGULDQQJODZ-UHFFFAOYSA-N 0.000 description 1
- 229960002023 chloroprocaine Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 230000003366 colagenolytic effect Effects 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000012230 colorless oil Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007887 coronary angioplasty Methods 0.000 description 1
- 208000002528 coronary thrombosis Diseases 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- DEZRYPDIMOWBDS-UHFFFAOYSA-N dcm dichloromethane Chemical compound ClCCl.ClCCl DEZRYPDIMOWBDS-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 238000006193 diazotization reaction Methods 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- NPOMSUOUAZCMBL-UHFFFAOYSA-N dichloromethane;ethoxyethane Chemical compound ClCCl.CCOCC NPOMSUOUAZCMBL-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- 201000011304 dilated cardiomyopathy 1A Diseases 0.000 description 1
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- SEACYXSIPDVVMV-UHFFFAOYSA-L eosin Y Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 SEACYXSIPDVVMV-UHFFFAOYSA-L 0.000 description 1
- OCLXJTCGWSSVOE-UHFFFAOYSA-N ethanol etoh Chemical compound CCO.CCO OCLXJTCGWSSVOE-UHFFFAOYSA-N 0.000 description 1
- ZKQFHRVKCYFVCN-UHFFFAOYSA-N ethoxyethane;hexane Chemical compound CCOCC.CCCCCC ZKQFHRVKCYFVCN-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000036251 extravasation Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012025 fluorinating agent Substances 0.000 description 1
- 210000000497 foam cell Anatomy 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 210000003194 forelimb Anatomy 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 230000000477 gelanolytic effect Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 208000024693 gingival disease Diseases 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 201000005033 granulomatous angiitis Diseases 0.000 description 1
- 230000004886 head movement Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000004217 heart function Effects 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- USZLCYNVCCDPLQ-UHFFFAOYSA-N hydron;n-methoxymethanamine;chloride Chemical compound Cl.CNOC USZLCYNVCCDPLQ-UHFFFAOYSA-N 0.000 description 1
- XNXVOSBNFZWHBV-UHFFFAOYSA-N hydron;o-methylhydroxylamine;chloride Chemical compound Cl.CON XNXVOSBNFZWHBV-UHFFFAOYSA-N 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 230000007233 immunological mechanism Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940124589 immunosuppressive drug Drugs 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 125000004531 indol-5-yl group Chemical group [H]N1C([H])=C([H])C2=C([H])C(*)=C([H])C([H])=C12 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- CFHGBZLNZZVTAY-UHFFFAOYSA-N lawesson's reagent Chemical compound C1=CC(OC)=CC=C1P1(=S)SP(=S)(C=2C=CC(OC)=CC=2)S1 CFHGBZLNZZVTAY-UHFFFAOYSA-N 0.000 description 1
- 238000011694 lewis rat Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 1
- AHCNXVCAVUYIOU-UHFFFAOYSA-M lithium hydroperoxide Chemical compound [Li+].[O-]O AHCNXVCAVUYIOU-UHFFFAOYSA-M 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229940097364 magnesium acetate tetrahydrate Drugs 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- XKPKPGCRSHFTKM-UHFFFAOYSA-L magnesium;diacetate;tetrahydrate Chemical compound O.O.O.O.[Mg+2].CC([O-])=O.CC([O-])=O XKPKPGCRSHFTKM-UHFFFAOYSA-L 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-M mandelate Chemical compound [O-]C(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-M 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000003771 matrix metalloproteinase inhibitor Substances 0.000 description 1
- 229940121386 matrix metalloproteinase inhibitor Drugs 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- COTNUBDHGSIOTA-UHFFFAOYSA-N meoh methanol Chemical compound OC.OC COTNUBDHGSIOTA-UHFFFAOYSA-N 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 1
- GRWIABMEEKERFV-UHFFFAOYSA-N methanol;oxolane Chemical compound OC.C1CCOC1 GRWIABMEEKERFV-UHFFFAOYSA-N 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- 210000000274 microglia Anatomy 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 208000005264 motor neuron disease Diseases 0.000 description 1
- 230000001538 myasthenic effect Effects 0.000 description 1
- 210000004457 myocytus nodalis Anatomy 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 235000021096 natural sweeteners Nutrition 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 230000001703 neuroimmune Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 230000003961 neuronal insult Effects 0.000 description 1
- 231100000189 neurotoxic Toxicity 0.000 description 1
- 230000002887 neurotoxic effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000003349 osteoarthritic effect Effects 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- KJIFKLIQANRMOU-UHFFFAOYSA-N oxidanium;4-methylbenzenesulfonate Chemical compound O.CC1=CC=C(S(O)(=O)=O)C=C1 KJIFKLIQANRMOU-UHFFFAOYSA-N 0.000 description 1
- 239000006201 parenteral dosage form Substances 0.000 description 1
- 230000003950 pathogenic mechanism Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000009054 pathological process Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- RPESBQCJGHJMTK-UHFFFAOYSA-I pentachlorovanadium Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[V+5] RPESBQCJGHJMTK-UHFFFAOYSA-I 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229940049953 phenylacetate Drugs 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 208000030428 polyarticular arthritis Diseases 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- ALDITMKAAPLVJK-UHFFFAOYSA-N prop-1-ene;hydrate Chemical group O.CC=C ALDITMKAAPLVJK-UHFFFAOYSA-N 0.000 description 1
- OVARTBFNCCXQKS-UHFFFAOYSA-N propan-2-one;hydrate Chemical compound O.CC(C)=O OVARTBFNCCXQKS-UHFFFAOYSA-N 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 125000004307 pyrazin-2-yl group Chemical group [H]C1=C([H])N=C(*)C([H])=N1 0.000 description 1
- 125000002206 pyridazin-3-yl group Chemical group [H]C1=C([H])C([H])=C(*)N=N1 0.000 description 1
- 125000004940 pyridazin-4-yl group Chemical group N1=NC=C(C=C1)* 0.000 description 1
- 125000000246 pyrimidin-2-yl group Chemical group [H]C1=NC(*)=NC([H])=C1[H] 0.000 description 1
- 125000004527 pyrimidin-4-yl group Chemical group N1=CN=C(C=C1)* 0.000 description 1
- 125000004528 pyrimidin-5-yl group Chemical group N1=CN=CC(=C1)* 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 230000015590 smooth muscle cell migration Effects 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- TYFQFVWCELRYAO-UHFFFAOYSA-L suberate(2-) Chemical compound [O-]C(=O)CCCCCCC([O-])=O TYFQFVWCELRYAO-UHFFFAOYSA-L 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- WHRNULOCNSKMGB-UHFFFAOYSA-N tetrahydrofuran thf Chemical compound C1CCOC1.C1CCOC1 WHRNULOCNSKMGB-UHFFFAOYSA-N 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- PHCBRBWANGJMHS-UHFFFAOYSA-J tetrasodium;disulfate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O PHCBRBWANGJMHS-UHFFFAOYSA-J 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- HNKJADCVZUBCPG-UHFFFAOYSA-N thioanisole Chemical compound CSC1=CC=CC=C1 HNKJADCVZUBCPG-UHFFFAOYSA-N 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 231100000563 toxic property Toxicity 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WTVXIBRMWGUIMI-UHFFFAOYSA-N trifluoro($l^{1}-oxidanylsulfonyl)methane Chemical class [O]S(=O)(=O)C(F)(F)F WTVXIBRMWGUIMI-UHFFFAOYSA-N 0.000 description 1
- 229960001005 tuberculin Drugs 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 230000005747 tumor angiogenesis Effects 0.000 description 1
- 210000004231 tunica media Anatomy 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 238000007805 zymography Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C323/00—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
- C07C323/50—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
- C07C323/62—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
- C07C323/63—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/02—Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/04—Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/08—Vasodilators for multiple indications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C251/00—Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
- C07C251/32—Oximes
- C07C251/34—Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
- C07C251/48—Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C251/00—Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
- C07C251/72—Hydrazones
- C07C251/86—Hydrazones having doubly-bound carbon atoms of hydrazone groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/63—Carboxylic acid nitriles containing cyano groups and nitrogen atoms further bound to other hetero atoms, other than oxygen atoms of nitro or nitroso groups, bound to the same carbon skeleton
- C07C255/64—Carboxylic acid nitriles containing cyano groups and nitrogen atoms further bound to other hetero atoms, other than oxygen atoms of nitro or nitroso groups, bound to the same carbon skeleton with the nitrogen atoms further bound to oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C59/00—Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C59/40—Unsaturated compounds
- C07C59/42—Unsaturated compounds containing hydroxy or O-metal groups
- C07C59/56—Unsaturated compounds containing hydroxy or O-metal groups containing halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C59/00—Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C59/40—Unsaturated compounds
- C07C59/76—Unsaturated compounds containing keto groups
- C07C59/84—Unsaturated compounds containing keto groups containing six membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C59/00—Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C59/40—Unsaturated compounds
- C07C59/76—Unsaturated compounds containing keto groups
- C07C59/88—Unsaturated compounds containing keto groups containing halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C59/00—Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C59/40—Unsaturated compounds
- C07C59/76—Unsaturated compounds containing keto groups
- C07C59/90—Unsaturated compounds containing keto groups containing singly bound oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/66—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
- C07C69/73—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
- C07C69/738—Esters of keto-carboxylic acids or aldehydo-carboxylic acids
Definitions
- the present invention relates to novel biphenyl butyric acid compounds and their derivatives useful as pharmaceutical agents, to methods for their production, to pharmaceutical compositions which include these compounds and a pharmaceutically acceptable carrier, and to pharmaceutical methods of treatment.
- novel compounds of the present invention are inhibitors of matrix metalloproteinases, e.g., gelatinase A (72 kDa gelatinase) and stromelysin-1.
- novel compounds of the present invention are useful in the treatment of atherosclerotic plaque rupture, aortic aneurism, heart failure, restenosis, periodontal disease, corneal ulceration, treatment of bums, decubital ulcers, wound repair, cancer, inflammation, pain, arthritis, multiple sclerosis, and other autoimmune or inflammatory disorders dependent on the tissue invasion of leukocytes or other activated migrating cells.
- the compounds of the present invention are useful in the treatment of acute and chronic neurodegenerative disorders including stroke, head trauma, spinal cord injury, Alzheimer's disease, amyotrophic lateral sclerosis, cerebral amyloid angiopathy, AIDS, Parkinson's disease, Huntington's disease, prion diseases, myasthenia gravis, and Duchenne's muscular dystrophy.
- Gelatinase A and stromelysin-1 are members of the matrix metalloproteinase (MMP) family (Woessner J. F., FASEB J., 1991 ;5 :2145-2154). Other members include fibroblast collagenase, neutrophil collagenase, gelatinase B (92 kDa gelatinase), stromelysin-2,stromelysin-3, matrilysin, collagenase 3 (Freije J. M., Diez-Itza I., Balbin M., Sanchez L. M., Blasco R., Tolivia J., and Lopez-Otin C., J. Biol.
- MMP matrix metalloproteinase
- the catalytic zinc in matrix metalloproteinases is a focal point for inhibitor design.
- the modification of substrates by introducing chelating groups has generated potent inhibitors such as peptide hydroxymates and thiol-containing peptides.
- Peptide hydroxamates and the natural endogenous inhibitors of MMPs (TIMPs) have been used successfully to treat animal models of cancer and inflammation.
- Inhibitors of matrix metalloproteinases will have utility in treating degenerative aortic disease associated with thinning of the medial aortic wall. Increased levels of the proteolytic activities of MMPs have been identified in patients with aortic aneurisms and aortic stenosis (Vine N. and Powell J. T., “Metalloproteinases in degenerative aortic diseases”, Clin. Sci., 1991;81:233-239).
- Heart failure arises from a number of diverse etiologies, but a common characteristic is cardiac dilation, which has been identified as an independent risk factor for mortality (Lee T. H., Hamilton M. A., Stevenson L. W., Moriguchi J. D., Fonarow G. C., Child J. S., Laks H., and Walden J. A., “Impact of left ventricular size on the survival in advanced heart failure”, Am. J. Cardiol., 1993;72:672-676). This remodeling of the failing heart appears to involve the breakdown of extracellular matrix. Matrix metalloproteinases are increased in patients with both idiopathic and ischemic heart failure (Reddy H. K., Tyagi S.
- vascular smooth muscle cells vascular smooth muscle cells
- antisera capable of selectively neutralizing gelatinase A activity also inhibited VSMC migration across basement membrane barrier.
- gelatinase A activity increased more than 20-fold as VSMCs underwent the transition from a quiescent state to a proliferating, motile phenotype (Pauly R. R., Passaniti A., Bilato C., Monticone R., Cheng L., Papadopoulos N., Gluzband Y. A., Smith L., Weinstein C., Lakatta E., and Crow M. T., “Migration of cultured vascular smooth muscle cells through a basement membrane barrier requires type IV collagenase activity and is inhibited by cellular differentiation”, Circulation Research, 1994;75:41-54).
- Stromelysin is produced by basal keratinocytes in a variety of chronic ulcers (Saarialho-Kere U. K., Ulpu K., Pentland A. P., Birkedal-Hansen H., Parks W. O., and Welgus H. G., “Distinct Populations of Basal Keratinocytes Express Stromelysin-l and Stromelysin-2 in Chronic Wounds”, J. Clin. Invest., 1994;94:79-88).
- Stromelysin-1 mRNA and protein were detected in basal keratinocytes adjacent to but distal from the wound edge in what probably represents the sites of the proliferating epidermis. Stromelysin-I may thus prevent the epidermis from healing.
- Inhibitors of MMPs have shown activity in models of tumor angiogenesis (Taraboletti G., Garofalo A., Belotti D., Drudis T., Borsotti P., Scanziani E., Brown P. D., and Giavazzi R., Journal of the National Cancer Institute, 1995;87:293 and Benelli R., Adatia R., Ensoli B., Stetler-Stevenson W. G., Santi L., and Albini A, Oncology Research, 1994;6:251-257).
- TIMP-1 and TIMP-2 prevented the formation of collagen fragments, but not proteoglycan fragments in both the bovine nasal and pig articular cartilage models for arthritis, while a synthetic peptide hydroxamate could prevent the formation of both fragments (Andrews H. J., Plumpton T. A., Harper G. P., and Cawston T. E., Agents Actions, 1992;37:147-154; Ellis A. J., Curry V. A., Powell E. K., and Cawston T. E., Biochem. Biophys. Res. Commun., 1994;201:94-101).
- leukocytic migration across the blood-brain barrier is known to be associated with the inflammatory response in EAE.
- Inhibition of the metalloproteinase gelatinase A would block the degradation of extracellular matrix by activated T-cells that is necessary for CNS penetration.
- Neuroinflammatory mechanisms are implicated in a broad range of acute and chronic neurodegenerative disorders, including stroke, head trauma, multiple sclerosis, and Alzheimer's disease, to name a few (McGeer E. G., and McGeer P. L., “Neurodegeneration and the immune system”, In: Calne D. B., ed. Neurodegenerative Diseases, W. B. Saunders, 1994:277-300).
- Other disorders that may involve Neuroinflammatory mechanisms include amyotrophic lateral sclerosis (Leigh P. N., “Pathogenic mechanisms in amyotrophic lateral sclerosis and other motor neuron disorders”, In: Calne D. B., ed., Neurodegenerative Diseases, W. B.
- Alzheimer's disease Several lines of evidence support the involvement of neuroinflammation in Alzheimer's disease: 1) There is a significant increase in inflammatory markers in the Alzheimer brain, including acute phase reactants, cytokines, complement proteins, and MHC molecules (McGeer, et al., supra., 1994; Rogers, et al., supra.); 2) There is evidence that ⁇ -amyloid induces neurodegenerative changes primarily through interactions with inflammatory molecules, and that inflammation alone is sufficient to induce neurodegeneration (Rogers et al., supra); and 3) Growing epidemiological data indicate that antiinflammatory therapy can delay the onset and slow the progression of Alzheimer's disease (McGeer P. L.
- NSAIDs nonsteroidal antiinflammatory drugs
- NSAIDs nonsteroidal antiinflammatory drugs
- Glucocorticoids which are in wide clinical use as antiinflammatory/immuno-suppressive drugs, can be directly neurotoxic and also are toxic to systemic organs at moderate to high doses.
- NSAIDs have gastrointestinal and renal side effects that obviate long-term use in most people, and few of them cross the blood-brain barrier in significant amounts.
- the toxic properties of chloroquine compounds and colchicine also are well known.
- An antiinflammatory drug that is well-tolerated by patients and that crosses the blood-brain barrier has significant advantages for the treatment of acute and chronic degenerative diseases of the central nervous system.
- biphenyl butyric acid compounds and derivatives that are inhibitors of matrix metalloproteinases, particularly stromelysin-1 and gelatinase A, and thus useful as agents for the treatment of multiple sclerosis, atherosclerotic plaque rupture, restenosis, aortic aneurism, heart failure, periodontal disease, corneal ulceration, treatment of burns, decubital ulcers, wound repair, cancer, inflammation, pain, arthritis, or other autoimmune or inflammatory diseases dependent upon tissue invasion by leukocytes or other activated migrating cells, acute and chronic neurodegenerative disorders including stroke, head trauma, spinal cord injury, Alzheimer's disease, amyotrophic lateral sclerosis, cerebral amyloid angiopathy, AIDS, Parkinson's disease, Huntington's diseases, prion diseases, myasthenic gravis, and Duchenne's muscular dystrophy.
- matrix metalloproteinases particularly stromelysin-1 and gelatinase A
- a first aspect of the present invention is a compound of Formula I
- R and R 1 are the same or different and are hydrogen, alkyl, halogen, nitro, cyano, trifluoromethyl, OCF 3 , OCF 2 H, OCH 2 F, —OR 6 wherein R 6 is hydrogen, alkyl, aryl, arylalkyl, heteroaryl, or cycloalkyl,
- R 6 and R 6a are the same or different and are as defined above for R 6 ,
- R 6 is as defined above, —CH 2 —OR 6 wherein R 6 is as defined above,
- R 6 and R 6a are the same or different and are as defined above for R 6 ,
- R 6 and R 6a are the same or different and are as defined above for R 6 ,
- R 6 is as defined above, cycloalkyl, or heteroaryl, with the proviso that R and R 1 are not both hydrogen;
- R 2 is OR 6 wherein R 6 is as defined above, or
- R 6 and R 6a are the same or different and are as defined above for R 6 ;
- R 3 , R 3a , R 4 , and R 4a are the same or different and are hydrogen, fluorine, alkyl, —(CH 2 ) n -aryl wherein n is an integer from 1 to 6, —(CH 2 ) n -heteroaryl wherein n is as defined above, —(CH 2 ) n -cycloalkyl wherein n is as defined above, —(CH 2 ) p —X—(CH 2 ) q -aryl wherein X is O, S, SO, SO 2 , or NH, and p and q are each zero or an integer of 1 to 6, and the sum of p+q is not greater than six, —(CH 2 ) p —X—(CH 2 ) q -heteroaryl wherein X, p, and q are as defined above, or —(CH 2 ) n -R 7 wherein R 7 is N-phthalimido, N-2,
- R 6 and R 6a are the same or different and are as defined above for R 6 , —SR 6 wherein R 6 is as defined above,
- R 6 and R 6a are the same or different and are as defined above for R 6 ,
- R 6 and R 6a are the same or different and are as defined above for R 6 , and n is as defined above;
- R 5 is OH, SH, or OR 5a wherein R 5a is alkyl, arylalkyl, cycloalkyl, or acyloxymethyl; with the proviso that R 3 , R 3a , R 4 , and R 4a are hydrogen or at least one of R 3 , R 3a , R 4 , or R 4a is fluorine; and corresponding isomers thereof; or a pharmaceutically acceptable salt thereof.
- a second aspect of the present invention is a compound of Formula II
- R and R 1 are the same or different and are hydrogen, alkyl, halogen, nitro, cyano, trifluoromethyl, OCF 3 , OCF 2 H, OCH 2 F, —OR 6 wherein R 6 is hydrogen, alkyl, aryl, arylalkyl, heteroaryl, or cycloalkyl,
- R 6 and R 6a are the same or different and are as defined above for R 6 ,
- R 6 is as defined above, —CH 2 —OR 6 wherein R 6 is as defined above,
- R 6 and R 6a are the same or different and are as defined above for R 6 ,
- R 6 and R 6a are the same or different and are as defined above for R 6 ,
- R 6 is as defined above. cycloalkyl, or heteroaryl; Z is
- R 3 , R 3a , R 4 , and R 4a are the same or different and are hydrogen, fluorine, alkyl, —(CH 2 ) n -aryl wherein n is an integer from 1 to 6, —(CH 2 ) n -heteroaryl wherein n is as defined above, —(CH 2 ) n -cycloalkyl wherein n is as defined above, —(CH 2 ) p —X—(CH 2 ) q -aryl wherein X is O, S, SO, SO 2 , or NH, and p and q are each zero or an integer of 1 to 6, and the sum of p+q is not greater than six, —(CH 2 ) p —X—(CH 2 ) q -heteroaryl wherein X, p, and q are as defined above, or —(CH 2 ) n —R 7 wherein R 7 is N-phthalimido, N-2,
- R 6 and R 6a are the same or different and are as defined above for R 6 , —SR 6 wherein R 6 is as defined above,
- R 6 and R 6a are the same or different and are as defined above for R 6 ,
- R 6 is as defined above, or
- R 6 and R 6a are the same or different and are as defined above for R 6 , and n is as defined above;
- R 5 is OH, SH, or OR 5a wherein R 5a is alkyl, arylalkyl, cycloalkyl, or acyloxymethyl; with the proviso that at least one of R 3 , R 3a , R 4 , or R 4a is fluorine; and corresponding isomers thereof; or a pharmaceutically acceptable salt thereof.
- the compounds of Formula I and Formula II are useful as agents for the treatment of multiple sclerosis. They are also useful as agents for the treatment of atherosclerotic plaque rupture, aortic aneurism, heart failure, restenosis, periodontal disease, corneal ulceration, treatment of bums, decubital ulcers, wound repair, cancer metastasis, tumor angiogenesis, inflammation, pain, arthritis, and other autoimmune or inflammatory disorders dependent upon tissue invasion by leukocytes or other activated migrating cells, acute and chronic neurodegenerative disorders including stroke, head trauma, spinal cord injury, Alzheimer's disease, amyotrophic lateral sclerosis, cerebral amyloid angiopathy, AIDS, Parkinson's disease, Huntington's disease, prion diseases, myasthenia gravis, and Duchenne's muscular dystrophy.
- a still further embodiment of the present invention is a pharmaceutical composition for administering an effective amount of a compound of Formula I or Formula II in unit dosage form in the treatment methods mentioned above.
- the present invention is directed to methods for production of compounds of Formula I.
- alkyl means a straight or branched hydrocarbon radical having from 1 to 8 carbon atoms and includes, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like.
- Alkoxy and thioalkoxy are O-alkyl or S-alkyl of from 1 to 6 carbon atoms as defined above for “alkyl”.
- cycloalkyl means a saturated hydrocarbon ring having 3 to 8 carbon atoms and includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and the like.
- aryl means an aromatic radical which is a phenyl group, a phenyl group substituted by 1 to 4 substituents selected from alkyl as defined above, alkoxy as defined above, thioalkoxy as defined above, hydroxy, halogen, trifluoromethyl, amino, alkylamino as defined above for alkyl, dialkylamino as defined above for alkyl, nitro, cyano, carboxy, SO 3 H, CHO,
- arylalkyl means an aromatic radical attached to an alkyl radical wherein aryl and alkyl are as defined above for example benzyl, phenylethyl, 3-phenylpropyl, (4-chlorophenyl)methyl, and the like.
- acyloxymethyl means a group of the formula
- alkyl is as defined above.
- heteroaryl means a heteroaromatic radical and includes, for example, a heteroaromatic radical which is 2- or 3-thienyl, 2- or 3-furanyl, 2- or 3-pyrrolyl, 2-, 3-, or 4-pyridinyl, 2-pyrazinyl, 2-, 4-, or 5-pyrimidinyl, 3- or 4-pyridazinyl, 1H-indol-6-yl, 1H-indol-5-yl, 1H-benzimidazol-6-yl, 1H-benzimidazol-5-yl, 2-, 4-, or 5-thiazolyl, 3-, 4-, or 5-isothiazolyl, 2-, 4-, or 5-imidazolyl, 3-, 4-, or 5-pyrazolyl, or 2- or 5-thiadiazolyl.
- Halogen is fluorine, chlorine, bromine, or iodine.
- Alkali metal is a metal in Group IA of the periodic table and includes, for example, lithium, sodium, potassium, and the like.
- carboxylic esters of compounds of Formula I and Formula II include alkyl, cycloalkyl, arylalkyl or acyloxymethyl esters.
- the alkyl, cycloalkyl, and arylalkyl carboxylic esters of compounds of Formula I and Formula II can be prepared by methods known to one skilled in the art.
- the corresponding carboxylic acids can be allowed to react directly with a suitable alcohol in the presence of a suitable acid catalyst to give the carboxylic esters.
- the carboxylic acids can be allowed to react with one of a number of suitable activating agents, which are known to one skilled in the art, followed by reaction with a suitable alcohol to give the carboxylic esters.
- the carboxylic acids can be allowed to cyclo-dehydrate using one of a number of methods known to one skilled in the art to give a cyclic 4,5-dihydro-6-oxo-6H-1,2-oxazine intermediate, which can be allowed to react with a suitable alcohol optionally in the presence of a suitable acid or base catalyst to give the carboxylic esters.
- the acyloxymethyl esters of compounds of Formula I and Formula II can be prepared by methods known to one skilled in the art.
- the corresponding carboxylic acids can be allowed to react first with a suitable base to give the carboxylate anion, followed by reaction with a carboxylic halomethyl ester, which can be obtained from commercial suppliers or prepared by methods known to one skilled in the art, optionally in the presence of a suitable agent to activate the carboxylic halomethyl ester, which are known to one skilled in the art, to give the acyloxymethyl esters.
- Pharmaceutically acceptable acid addition salts of the compounds of Formula I and Formula II include salts derived from nontoxic inorganic acids such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydriodic, hydrofluoric, phosphorous, and the like, as well as the salts derived from nontoxic organic acids, such as aliphatic mono- and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, alkanedioic acids, aromatic acids, aliphatic and aromatic sulfonic acids, etc.
- nontoxic inorganic acids such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydriodic, hydrofluoric, phosphorous, and the like
- nontoxic organic acids such as aliphatic mono- and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, alkanedioic acids
- Such salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, trifluoroacetate, propionate, caprylate, isobutyrate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, mandelate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, phthalate, benzenesulfonate, toluenesulfonate, phenylacetate, citrate, lactate, maleate, tartrate, methanesulfonate, and the like.
- salts of amino acids such as arginate and the like and gluconate, galacturonate (see, for example, Berge S. M., et al., “Pharmaceutical Salts,” J. of Pharma. Sci., 1977;66:1).
- the acid addition salts of said basic compounds are prepared by contacting the free base form with a sufficient amount of the desired acid to produce the salt in the conventional manner.
- the free base form may be regenerated by contacting the salt form with a base and isolating the free base in the conventional manner.
- the free base forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free base for purposes of the present invention.
- Pharmaceutically acceptable base addition salts are formed with metals or amines, such as alkali and alkaline earth metals or organic amines.
- metals used as cations are sodium, potassium, magnesium, calcium, and the like.
- suitable amines are N,N′-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, dicyclohexylamine, ethylenediamine, N-methylglucamine, and procaine (see, for example, Berge S. M., et al., “Pharmaceutical Salts,” J. of Pharma Sci., 1977;66:1).
- the base addition salts of said acidic compounds are prepared by contacting the free acid form with a sufficient amount of the desired base to produce the salt in the conventional manner.
- the free acid form may be regenerated by contacting the salt form with an acid and isolating the free acid in the conventional manner.
- the free acid forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free acid for purposes of the present invention.
- Certain of the compounds of the present invention possess one or more chiral centers and each center may exist in the R or S configuration.
- the present invention includes all diastereomeric, enantiomeric, and epimeric forms as well as the appropriate mixtures thereof. Additionally, the compounds of the present invention may exist as geometric isomers.
- the present invention includes all cis, trans, syn, anti,
- E
- Z
- isomers as well as the appropriate mixtures thereof.
- a preferred compound of Formula I is one wherein R 2 is OR 6 .
- a more preferred compound of Formula I is one wherein R 2 is OCH 3 .
- a most preferred compound of Formula I is one wherein R 2 is OH, and R 3 , R 3a , R 4 , and R 4a are hydrogen.
- another more preferred compound of Formula I is one wherein R 2 is OH, and at least one of R 3 , R 3a , R 4 , and R 4a is fluorine.
- a preferred compound of Formula II is one wherein Z is
- R 3 and R 3a are fluorine.
- a preferred compound of Formula II is one wherein Z is
- R 4 and R 4a are fluorine.
- a more preferred compound of Formula II is one wherein Z is
- R 3 is fluorine
- R 4 is fluorine
- a preferred compound of Formula II is one wherein Z is
- R 3 and R 3a are fluorine.
- a preferred compound of Formula II is one wherein Z is
- R 4 and R 4a are fluorine.
- a preferred compound of Formula II is one wherein Z is
- R 3 is fluorine
- a preferred compound of Formula II is one wherein Z is
- R 4 is fluorine
- the compounds of Formula I and Formula II are valuable inhibitors of gelatinase A and/or stromelysin-1. It has been shown previously that inhibitors of matrix metalloproteinases have efficacy in models of disease states like arthritis and metastasis that depend on modification of the extracellular matrix.
- mice sensitized with a fragment of mouse myelin basic protein were administered by oral route to mice sensitized with a fragment of mouse myelin basic protein to induce EAE. Mice were dosed daily for 21 days beginning 4 hours before sensitization on day one. EAE responses of compound treated groups were compared to those of a control group of mice sensitized identically and a sham-sensitized group treated with vehicle. The values reported in Table 2 include responses during compound treatment only.
- mice Female mice [PL/J(FI) ⁇ SJL/J, Jackson Labs], 11 weeks old, were sensitized s.c. (0.05 cc ⁇ 2) at the base of the tail with an emulsion containing equal parts of mouse myelin basic protein (MBP) fragment (amino acids 1-9 of the N-terminus of MBP) in saline and Difco Complete Freund's Adjuvant (CFA) fortified with heat killed desiccated Mycobacteria tuberculosis (MT). Each mouse received 300 ⁇ g of MBP fragment (230 ⁇ g free base) and 200 ⁇ g MT followed by retrobulbar (IV) injection of 200 ng of B. pertussis toxin in 0.2 cc of saline. Two days later mice receive a second injection of B. pertussis toxin.
- MBP myelin basic protein
- CFA Difco Complete Freund's Adjuvant
- EAE severity the mean of the highest score for each mouse in a group, independent of duration of symptoms
- EAE incidence the mean number of mice showing symptoms of EAE, defined as having EAE scores on any 3 consecutive days that total “ ⁇ 3.0”.
- EAE deaths an animal that died must have presented previous evidence of an EAE score greater than 0.5
- EAE onset the first of a 3-day series scoring a total of ⁇ 3.0.
- a Cumulative EAE score is calculated for each animal. A mean of all animals' cumulative scores is then determined for each day.
- Example 1 dosed at 50 mg/kg, delayed the onset of EAE for 4 days.
- Example 1 also reduced the EAE cumulative score (Table 2). There were no EAE-induced deaths (to Day 43) in the Example 1 treated group.
- EAE Mouse Experimental Autoimmune Encephalomyelitis
- Control 4.2 ⁇ 0.1 10/10 12.2 ⁇ 0.9 2/10 31.6 ⁇ 1.7
- Example 1 50 mg/kg 3.8 ⁇ 0.3 9/10 16.2 ⁇ 1.0 0/10 17.9 ⁇ 2.8 p ⁇ 0.05* p ⁇ 0.05*
- Female Lewis rats (125-150 g) are sensitized to the 100 P preparation of streptococcal cell walls (obtained from Lee Labs, Greyson, Ga.) with an intra-articular injection of 10 ⁇ L SCW containing 6 ⁇ g of the cell wall particles into one of the ankle joints.
- the contralateral ankle joint is injected with an equal volume of saline.
- Twenty-one days later, animals are placed in treatment groups (7 per group) according to their immediate response to the intra-articular injection of SCW (to obtain groups with equivalent responses).
- a control group is injected with saline.
- Each animal is then lightly anesthetized with ether, the paw volumes of each hind paw are determined by mercury plethysmography, and the animals are injected IV via the tail vein with a 0.25-mL dose of SCW containing 100 ⁇ g of the 100 P cell wall particles.
- Each group of rats receives an oral dose of compound for 7 days in an appropriate dosing vehicle beginning on Day 21.
- Rats were sensitized 21 days prior to initiating the flare response by systemic SCW.
- Example 1 was given 1 hour before to SCW and again 2 hours later for 4 consecutive days.
- Paw volume was measured 24 hours after the first administration. Numbers represent the mean percent inhibition of swelling from 10 animals/treatment group.
- mice with the highest paw swelling as well as those that showed no swelling at all were culled.
- the hind paws volume and the weights of each animal in each group was recorded and served as the initial values for the study.
- Hind paw swelling was assessed using mercury plethysmography beginning on Day 12 and every other day till Day 22 (final assessment).
- Example 1 was tested at 6, 20, and 60 mg/kg divided into two equal doses per day and suspended in 1% methyl cellulose (2% viscosity, 1500 centipoises, Sigma). The dose volume was 10 mL/kg PO. Animals were dosed twice daily for 10 days starting on Day 12. Also, hind paw volumes were measured on Days 12, 14, 16, 18, 20, and 22 as stated above. The results are reported as % inhibition of delta edema on Day 22. Delta edema is the difference in footpad edema between the day in which animals are assessed and that on Day 12 of the study. The percent inhibition is based on a comparison of the treatment groups to the vehicle group. TABLE 4 Inhibition of Adjuvant Arthritis by Example 1 Dose (mg/kg bid) % Inhibition P-value 3.0 68.1 ⁇ 0.001 10.0 84.4 ⁇ 0.001 30.0 99.9 ⁇ 0.001
- R 5 is OH or SH
- R, R 1 , R 2 , R 3 , and R 4 are as defined above can be made by one of three general routes, as set forth in Scheme 1.
- Route A involves reaction of a compound of Formula (2) with a suitable metallating agent such as, for example, n-butyl lithium, magnesium metal, and the like to generate an organolithium or organomagnesium salt in situ, followed by reaction of the salt with a suitable metallating reagent such as, for example, tri-(n-butyl)tin chloride, trimethylborate, and the like to give a compound of Formula (3).
- a suitable metallating agent such as, for example, n-butyl lithium, magnesium metal, and the like to generate an organolithium or organomagnesium salt in situ
- a suitable metallating reagent such as, for example, tri-(n-butyl)tin chloride, trimethylborate, and the like to give a compound of Formula (3).
- a compound of Formula (3) can be coupled with bromobenzene or trifluoromethylsulfonyloxybenzene in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate to give a compound of Formula (4).
- a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate to give a compound of Formula (4).
- a compound of Formula (4) can be prepared by coupling a compound of Formula (5) with phenylboric acid or tributylphenyltin in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)-palladium(II)chloride, and the like with or without sodium bicarbonate.
- a compound of Formula (4) can be prepared by coupling a compound of Formula (5a) with benzene in the presence of a suitable diazotization reagent such as, for example, iso-amyl nitrite at temperatures between about 0° C. to about reflux.
- a compound of Formula (4) can be acylated using Friedel-Crafts conditions with a compound of Formula (6), prepared according to known methods such as, for example, as reported by Beckett, et al., Synlett., 1993:137, or the corresponding anhydride of Formula (6a) in the presence of a Lewis acid-such as, for example, FeCl 3 , AlCl 1 3 , ZnCl 2 , and the like either neat or in an inert solvent such as, for example, dichloromethane, nitrobenzene, and the like at about ⁇ 40° C. to about 120° C. to give a compound of Formula (7).
- a Lewis acid- such as, for example, FeCl 3 , AlCl 1 3 , ZnCl 2 , and the like
- an inert solvent such as, for example, dichloromethane, nitrobenzene, and the like at about ⁇ 40° C. to about 120° C. to give a compound of Formula
- a compound of Formula (7) can be deprotected using standard methodology known to one skilled in the art to give the corresponding carboxylic acid, which then can be condensed with a compound of Formula (8) to give a compound of Formula Ia.
- a compound of Formula (7) can be deprotected using standard methodology known to one skilled in the art, and the resulting carboxylic acid coupled with hydrogen sulfide after pretreatment with a suitable coupling agent such as, for example, 1,1′-carbonyldiimidazole (CDI), isobutyryl chloride, and the like, and then condensed with a compound of Formula (8) to give a compound of Formula Ib.
- a suitable coupling agent such as, for example, 1,1′-carbonyldiimidazole (CDI), isobutyryl chloride, and the like
- Route B involves reaction of a compound of Formula (3), prepared according to Route A, with 4-bromo-trifluoromethylsulfonyloxybenzene in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)-palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate to give a compound of Formula (9).
- a compound of Formula (4) prepared as described for Route A can be reacted with bromine to give a compound of Formula (9).
- a compound of Formula (9) can be reacted with a suitable metallating agent such as, for example, n-butyl lithium and the like to generate an organolithium in situ, which in turn can be reacted with a suitable metallating agent such as, for example, MnCl 2 , CuCN, ZnCl 2 , VCl 3 , and the like to generate a modified organometallic agent in situ, followed by reaction with a compound of Formula (6) to give a compound of Formula (7).
- a suitable metallating agent such as, for example, n-butyl lithium and the like to generate an organolithium in situ
- a suitable metallating agent such as, for example, MnCl 2 , CuCN, ZnCl 2 , VCl 3 , and the like to generate a modified organometallic agent in situ
- a compound of Formula (9) can be reacted with a suitable metallating agent such as, for example, n-butyl lithium, magnesium metal, and the like to generate an organolithium or organomagnesium salt in situ, followed by reaction of the salt with a suitable metallating reagent such as, for example, tri-(n-butyl)tin chloride, trimethylborate, and the like to give a compound of Formula (10).
- a suitable metallating agent such as, for example, n-butyl lithium, magnesium metal, and the like to generate an organolithium or organomagnesium salt in situ
- a suitable metallating reagent such as, for example, tri-(n-butyl)tin chloride, trimethylborate, and the like to give a compound of Formula (10).
- a compound of Formula (10) can be coupled with a compound of Formula (6) in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)-palladium(II)chloride and the like with or without sodium bicarbonate to give a compound of Formula (7).
- a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)-palladium(II)chloride and the like with or without sodium bicarbonate to give a compound of Formula (7).
- a compound of Formula (7) can be converted to compounds of Formulas Ia and Ib according to the methods outlined for Route A.
- Route C involves reaction of a compound of Formula (11) with a suitable metallating agent such as, for example, n-butyl lithium, magnesium metal, and the like to generate an organolithium or organomagnesium salt in situ, followed by reaction of the salt with a suitable tin metallating reagent such as, for example, tri-(n-butyl)tin chloride and the like to give a compound of Formula (12).
- a suitable metallating agent such as, for example, n-butyl lithium, magnesium metal, and the like to generate an organolithium or organomagnesium salt in situ
- a suitable tin metallating reagent such as, for example, tri-(n-butyl)tin chloride and the like to give a compound of Formula (12).
- a compound of Formula (12) can be coupled with a compound of Formula (6) in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)-palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate to give a compound of Formula (13).
- a suitable catalyst such as, for example, tetrakis(triphenylphosphine)-palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate to give a compound of Formula (13).
- a compound of Formula (13) can be deprotected using standard methodology known to one skilled in the art to give the corresponding free phenol, which can be reacted with trifluoromethanesulfonic anhydride to give the corresponding trifluoro-methylsulfonyloxy derivative, which can be coupled with a compound of Formula (3) in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)-palladium(II)chloride, and the like with or without sodium bicarbonate to give a compound of Formula (7).
- a compound of Formula (7) can be converted to compounds of Formulas Ia and Ib according to the methods outlined for Route A.
- R 5 is OH or SH
- R, R 1 , and R 2 are as defined in Formula I can be synthesized according to the sequence described in Scheme 2.
- a biphenyl (4) which can be purchased from commercial sources or synthesized as described in Scheme 1 or hereinafter in Scheme 5 and wherein R and R 1 are as defined in Formula I, is reacted with a suitable acid chloride such as, for example, 3-carbomethoxypropionyl chloride and the like in the presence of a Lewis acid catalyst such as, for example, aluminum chloride and the like in a suitable solvent such as, for example, dichloromethane, nitrobenzene, and the like at temperatures between about ⁇ 40° C. and about 120° C. to give the keto-ester (14).
- a suitable acid chloride such as, for example, 3-carbomethoxypropionyl chloride and the like
- a Lewis acid catalyst such as, for example, aluminum chloride and the like
- a suitable solvent such as, for example, dichloromethane, nitrobenzene, and the like
- the keto-ester (14) can be hydrolyzed to the corresponding keto-acid (15) by stirring in aqueous hydrochloric acid of a concentration between about 2 M and about 6 M and at temperatures between about 25° C. and about reflux or by reacting with an alkali metal hydroxide such as, for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, and the like in a suitable solvent such as, for example, methanol, ethanol, aqueous tetrahydrofuran, and the like at temperatures between about 0° C. and about reflux followed by acidification.
- aqueous hydrochloric acid of a concentration between about 2 M and about 6 M and at temperatures between about 25° C. and about reflux
- an alkali metal hydroxide such as, for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, and the like
- a suitable solvent such as, for example, methanol, ethanol, aqueous tetrahydrofuran, and the like at temperatures between
- the biphenyl (4) can be reacted with succinic anhydride in the presence of a Lewis acid catalyst such as, for example, aluminum chloride and the like, in a suitable solvent such as, for example, dichloromethane, nitrobenzene, and the like at temperatures between about ⁇ 40° C. and about 120° C. to give the keto-acid (15) in one step.
- the keto-acid (15) can be reacted with a compound of Formula (8) with or without a suitable base such as, for example, lithium carbonate, sodium carbonate, potassium carbonate, and the like in a suitable solvent such as, for example, ethanol, methanol, isopropanol, and the like at temperatures between about 25° C.
- the keto-acid (15) can be reacted with a suitable coupling agent such as, for example, CDI, N,N′-dicyclohexylcarbodiimide (DCC), isobutyryl chloride (i-C 4 H 9 OCOCl), and the like followed by hydrogen sulfide to give the keto-thioacid (17).
- a suitable coupling agent such as, for example, CDI, N,N′-dicyclohexylcarbodiimide (DCC), isobutyryl chloride (i-C 4 H 9 OCOCl), and the like followed by hydrogen sulfide to give the keto-thioacid (17).
- the keto-thioacid (17) can be reacted with a compound of Formula (8) with or without a suitable base such as, for example, lithium carbonate, sodium carbonate, potassium carbonate, and the like in a suitable solvent such is, for example, ethanol, methanol, isopropanol, and the like at temperatures between about 25
- R 5 is OH or SH
- R, R 1 , R 2 , R 3 , and R 4 are as defined in Formula I and Formula II can be synthesized according to the sequence outlined in Scheme 3.
- the N-acyl-oxazolidinone (20) can be reacted with a suitable base such as, for example, potassium hexamethyldisilazide (KHDMS), lithium diisopropylamide (LDA), and the like followed by a bromoester (21), prepared in racemic form by bromination of the corresponding ester (22) with a suitable brominating reagent such as, for example, N-bromosuccinamide (NBS) and the like in a suitable solvent such as, for example, carbon tetrachloride and the like in the presence of ultraviolet light and a peroxide such as, for example, benzoyl peroxide and the like or in chiral form by reaction of an amino acid (23) with sodium nitrite and potassium bromide in aqueous hydrobromic acid followed by reacting the resulting bromoacid with a suitable coupling agent such as, for example.
- a suitable base such as, for example, potassium hexamethyldisilazide (
- a compound of Formula (24) which may exist as a mixture of diastereoisomers, can be purified by a suitable technique such as, for example, chromatography on silica gel, and the like to give pure stereoisomers, which can be reacted with lithium hydroperoxide in THF-water followed by reaction of the′resulting carboxylic acid with oxalyl chloride to give the corresponding acid chloride (25).
- the (4-(1,1-dimethylethyl)oxyphenyl)tributyltin (27) is synthesized as set forth in Scheme 3.
- the commercially available 4-bromophenol is reacted with isobutylene in the presence of an acid catalyst such as, for example, trifluoroacetic acid (TFA)/triethylamine (TEA), boron trifluoride-etherate (BF 3 •OEt 2 ), and the like in a suitable solvent such as, for example, dichloromethane and the like to give the t-butyl ether (26).
- an acid catalyst such as, for example, trifluoroacetic acid (TFA)/triethylamine (TEA), boron trifluoride-etherate (BF 3 •OEt 2 ), and the like
- a suitable solvent such as, for example, dichloromethane and the like to give the t-butyl ether (26).
- t-butyl ether (26) is reacted with a suitable organolithium such as, for example, n-butyl lithium and the like in tetrahydrofuran (THF) at low temperature followed by tri-n-butyltin chloride to give the (4-(1,1-dimethylethyl)oxyphenyl)tributyltin (27).
- a suitable organolithium such as, for example, n-butyl lithium and the like in tetrahydrofuran (THF) at low temperature followed by tri-n-butyltin chloride to give the (4-(1,1-dimethylethyl)oxyphenyl)tributyltin (27).
- the (4-(1,1-dimethylethyl)-oxyphenyl)tributyltin (27) is reacted with the acid chloride (25) in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate in a solvent such as, for example, THF, dioxane, and the like at temperatures between about ⁇ 20° C. and about reflux to give the keto-ester (28).
- a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate in a solvent such as, for example, THF, dioxane, and the like at temperatures between about ⁇ 20° C. and about reflux to give
- the keto-ester (28) is deprotected by reacting with TFA in the presence of a suitable carbonium ion scavenger such as, for example, anisole, thioanisole, triethylsilane, and the like in a solvent such as, for example, dichloromethane, chloroform, and the like, and the resulting phenol is reacted with trifluoromethanesulfonic anhydride to give the triflate (29).
- a suitable carbonium ion scavenger such as, for example, anisole, thioanisole, triethylsilane, and the like
- a solvent such as, for example, dichloromethane, chloroform, and the like
- the triflate (29) is reacted with the phenylboric acid (30), prepared by reacting the bromobenzene (31) first with n-butyl lithium or t-butyl lithium in tetrahydrofuran at low temperatures followed by trimethylborate and acid hydrolysis, in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)-palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate in a solvent such as, for example, THF, dioxane, and the like at temperatures between about ⁇ 20° C. and about reflux to give the keto-ester (32).
- a suitable catalyst such as, for example, tetrakis(triphenylphosphine)-palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate in
- the triflate (29) can be reacted with the phenyltributyltin (33), prepared by reacting the bromobenzene (31) first with n-butyl lithium or t-butyl lithium in tetrahydrofuran at low temperatures followed by tri-n-butyltin chloride, in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)-palladium(II)chloride with or without sodium bicarbonate in a solvent such as, for example, THF, dioxane, and the like at temperatures between about ⁇ 20° C.
- a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)-palladium(II)chloride with or without sodium bicarbonate in a solvent such as, for example, THF, di
- the keto-ester (32) can be hydrolyzed to the corresponding keto-acid by stirring in aqueous hydrochloric acid at a concentration between about 2 M and about 6 M and at temperatures between about 25° C. and about reflux or by reacting with an alkali metal hydroxide such as, for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, and the like in a suitable solvent such as, for example, methanol, ethanol, aqueous tetrahydrofuran, and the like at temperatures between about 0° C.
- an alkali metal hydroxide such as, for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, and the like
- a suitable solvent such as, for example, methanol, ethanol, aqueous tetrahydrofuran, and the like at temperatures between about 0° C.
- keto-acid can be reacted with a compound of Formula (8) with or without a suitable base such as, for example, lithium carbonate, sodium carbonate, potassium carbonate, and the like in a suitable solvent such as, for example, ethanol, methanol, isopropanol, and the like at temperatures between about 25° C. and about reflux to give the carboxylic acid (34).
- a suitable base such as, for example, lithium carbonate, sodium carbonate, potassium carbonate, and the like
- a suitable solvent such as, for example, ethanol, methanol, isopropanol, and the like at temperatures between about 25° C. and about reflux
- the keto-ester (32) can be hydrolyzed to the corresponding keto-acid by stirring in aqueous hydrochloric acid at a concentration between about 2 M and about 6 M and at temperatures between about 25° C.
- alkali metal hydroxide such as, for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, and the like in a suitable solvent such as, for example, methanol, ethanol, aqueous tetrahydrofuran, and the like at temperatures between about 0° C.
- keto-acid can be reacted with a suitable coupling agent such as, for example, CDI, DCC, i-C 4 H 9 OCOCl, and the like followed by hydrogen sulfide to give the keto-thioacid, which in turn can be reacted with a compound of Formula (8) with or without a suitable base such as, for example, lithium carbonate, sodium carbonate, potassium carbonate and the like in a suitable solvent such as, for example, ethanol, methanol, isopropanol and the like at temperatures between about 25° C. and about reflux to give the thioacid (35).
- a suitable coupling agent such as, for example, CDI, DCC, i-C 4 H 9 OCOCl, and the like followed by hydrogen sulfide
- a compound of Formula (8) with or without a suitable base such as, for example, lithium carbonate, sodium carbonate, potassium carbonate and the like in a suitable solvent such as, for example, ethanol, methanol, isopropan
- R 5 is OH or SH
- R, R 1 , R 3 , and R 4 are as defined in Formula I and Formula II can be synthesized according to the sequence outlined in Scheme 4.
- the biphenyl (9) can be reacted with a suitable metallating agent such as, for example, n-butyl lithium and the like in a suitable solvent such as, for example, THF and the like at low temperatures to generate an organolithium in situ, which in turn can be reacted with a suitable metallating agent such as, for example, MnCl 2 , CuCN, ZnCl 2 , VCl 3 , and the like to generate a modified organometallic agent in situ, which in turn can be reacted with an acid chloride (25) in the presence of lithium bromide with or without an additional Lewis acid such as, for example, iron(III)acetylacetonate (Fe(acac) 3 ) to give the keto-ester (32).
- a suitable metallating agent such as, for example, n-butyl lithium and the like in a suitable solvent such as, for example, THF and the like at low temperatures to generate an organolithium in situ, which in turn can be re
- the biphenyl (9) can be reacted with a suitable metallating agent such as, for example, n-butyl lithium and the like in a suitable solvent such as, for example, THF and the like at low temperatures to generate an organolithium in situ, which in turn can be reacted with a Weinreb amide (38), prepared by reacting the acid chloride (25) with N,O-dimethylhydroxylamine hydrochloride in the presence of a base such as, for example, triethylamine, diisopropylethylamine, and the like in a suitable solvent such as, for example, dichloromethane, THF, and the like at temperatures between about ⁇ 78° C.
- a suitable metallating agent such as, for example, n-butyl lithium and the like in a suitable solvent such as, for example, THF and the like at low temperatures to generate an organolithium in situ, which in turn can be reacted with a Weinreb amide (38), prepared by reacting the
- the biphenyl (9) can be reacted with a suitable metallating agent such as, for example, n-butyl lithium and the like in a suitable solvent such as, for example, THF and the like at low temperatures to generate an organolithium in situ, which in turn can be reacted with tri-n-butyltin chloride to give the biphenyltin (10).
- a suitable metallating agent such as, for example, n-butyl lithium and the like in a suitable solvent such as, for example, THF and the like at low temperatures to generate an organolithium in situ, which in turn can be reacted with tri-n-butyltin chloride to give the biphenyltin (10).
- the biphenyltin (10) can be reacted with the acid chloride (25) in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)-palladium(II)chloride, and the like with or without sodium bicarbonate in a solvent such as, for example, THF, dioxane, and the like at temperatures between about ⁇ 20° C. and about reflux to give the keto-ester (32).
- the keto-ester (32) so made can be converted to the carboxylic acid (34) or thioacid (35) according to the procedures described in Scheme 3.
- R 5 is OH or SH, and R, R 1 , R 3 , and R 4 are as defined in Formula I and Formula II can be synthesized according to the sequence outlined in Scheme 5.
- the triflate (40) is reacted with phenylboric acid or tri-n-butylphenyltin in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)-palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate in a solvent such as, for example, THF, dioxane, and the like at temperatures between about ⁇ 20° C. and about reflux to give the biphenyl (4).
- a suitable catalyst such as, for example, tetrakis(triphenylphosphine)-palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate in a solvent such as, for example, THF, dioxane, and the like at temperatures between about ⁇ 20° C. and about reflux to give the biphenyl
- the phenylboric acid (30) or phenyltributyltin (33) is reacted with bromobenzene or trifluoromethylsulfonyloxybenzene in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)-palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate in a solvent such as, for example, THF, dioxane and the like at temperatures between about ⁇ 20° C. and about reflux to give the biphenyl (4).
- a suitable catalyst such as, for example, tetrakis(triphenylphosphine)-palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate in a solvent such as, for example, THF, dioxane and the like at temperatures between about
- the biphenyl (4) is reacted with an acid chloride (25) in the presence of a Lewis acid catalyst such as, for example, aluminum chloride and the like in a suitable solvent such as, for example, dichloromethane, nitrobenzene, and the like at temperatures between about ⁇ 40° C. and about 120° C. to give the keto-ester (32).
- a Lewis acid catalyst such as, for example, aluminum chloride and the like
- a suitable solvent such as, for example, dichloromethane, nitrobenzene, and the like
- R 5 is OH or SH
- R, R 1 , R 2 , R 3 , R 3a , R 4 , and R 4a are as defined in Formula I and Formula II can be synthesized according to the sequence outlined in Scheme 6.
- a compound of Formula (41) is allowed to react with a suitable strong base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyl-disilazide, and the like in an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like at about ⁇ 78° C. to about 25° C. followed by a suitable alkylating agent of Formula (42), or N-fluorodibenzenesulfonamide (NFSI) for R 3a equals fluorine, at temperatures at about ⁇ 78° C. to about 50° C. to give a compound of Formula (43).
- a suitable strong base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyl-disilazide, and the like
- an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like
- a compound of Formula (43) is allowed to react with a suitable strong base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like in an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like at about ⁇ 78° C. to about 25° C. followed by a suitable alkylating agent of Formula (44) to give a compound of Formula (45).
- a suitable strong base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like
- an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like
- a suitable alkylating agent of Formula (44) to give a compound of Formula (45).
- a compound of Formula (45) is deprotected using appropriate conditions such as, for example trifluoroacetic acid or anhydrous hydrogen chloride in a suitable solvent such as, for example, dichloromethane or chloroform, with or without a carbonium ion scavenger such as, for example, triethylsilane, and the resulting carboxylic acid is resolved using methods known to one skilled in the art to give a compound of Formula (46).
- a compound of Formula (46) is condensed with a compound of Formula (8) to give a compound of Formula (Ic).
- a compound of Formula (46) is allowed to react with hydrogen sulfide after pretreatment with a suitable coupling agent such as, for example, 1,1′-carbonyldiimidazole (CDI), N,N′-dicyclohexylcarbodiimide, isobutyryl chloride, and the like, and then condensed with a compound of Formula (8) to give a compound of Formula (Id).
- a suitable coupling agent such as, for example, 1,1′-carbonyldiimidazole (CDI), N,N′-dicyclohexylcarbodiimide, isobutyryl chloride, and the like
- a compound of Formula (45) is allowed to react with a suitable base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like in an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like at about ⁇ 78° C. to about 25° C. followed by a suitable alkylating agent of Formula (47) or NFSI for R 4 equals fluorine, at temperatures at about ⁇ 78° C. to about 50° C. to give a compound of Formula (48).
- a suitable base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like
- an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like
- a suitable alkylating agent of Formula (47) or NFSI for R 4 equals
- a compound of Formula (48) is deprotected using appropriate conditions such as, for example, trifluoroacetic acid or anhydrous hydrogen chloride in a suitable solvent such as, for example, dichloromethane or chloroform, with or without a carbonium ion scavenger such as, for example, triethylsilane, and the resulting carboxylic acid is resolved using methods known to one skilled in the art to give a compound of Formula (49).
- a compound of Formula (49) is converted to compounds of Formulas (Ie) and (If) according to the procedure described for the conversion of a compound of Formula (46) to compounds of Formulas (Ic) and (Id), respectively.
- a compound of Formula (48) is allowed to react with a suitable base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like in an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like at about ⁇ 78° C. to about 25° C. followed by a suitable alkylating agent of Formula (50) or NFSI for R 4a equals fluorine, at temperatures at about ⁇ 78° C. to about 50° C. to give a compound of Formula (51).
- a suitable base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like
- an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like
- a compound of Formula (51) is deprotected using appropriate conditions such as, for example, trifluoroacetic acid or anhydrous hydrogen chloride in a suitable solvent such as, for example, dichloromethane or chloroform, with or without a carbonium ion scavenger such as, for example, triethylsilane, and the resulting carboxylic acid is resolved using methods known to one skilled in the art to give a compound of Formula (52).
- a compound of Formula (52) is converted to compounds of Formulas (Ig) and (Ih) according to the procedure described for the conversion of a compound of Formula (46) to compounds of Formulas (Ic) and (Id), respectively.
- R 5 is OH or SH
- R, R 1 , R 2 , R 3 , R 3a , R 4 , and R 4a are as defined in Formula I and Formula II are synthesized according to the sequence outlined in Scheme 7.
- a compound of Formula (53) is allowed to react with a suitable base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like in an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like at about ⁇ 78° C. to about 25° C. followed by a suitable alkylating agent of Formula (50) or NFSI for R 4a equals fluorine, at temperatures at about ⁇ 78° C. to about 50° C. to give a compound of Formula (54).
- a suitable base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like
- an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like
- a compound of Formula (54) is allowed to react with a suitable base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like in an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like at about ⁇ 78° C. to about 25° C.
- a suitable base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like
- an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like at about ⁇ 78° C. to about 25° C.
- a suitable alkylating agent of Formula (55) prepared by allowing a compound of Formula (4), prepared according to the method outlined in Scheme 5, with a suitable acylating agent such as BrCH 2 COCl in the presence of a suitable Lewis acid such as, for example, FeCl 3 , AlCl 3 , ZnCl 2 , and the like either neat or in an inert solvent such as, for example, dichloromethane, nitrobenzene, and the like at about ⁇ 40° C. to about 120° C., to give a compound of Formula (56).
- a suitable acylating agent such as BrCH 2 COCl
- a suitable Lewis acid such as, for example, FeCl 3 , AlCl 3 , ZnCl 2 , and the like either neat or in an inert solvent such as, for example, dichloromethane, nitrobenzene, and the like at about ⁇ 40° C. to about 120° C.
- a compound of Formula (56) is deprotected using appropriate conditions such as, for example, trifluoroacetic acid or anhydrous hydrogen chloride in a suitable solvent such as, for example, dichloromethane or chloroform, with or without a carbonium ion scavenger such as, for example, triethylsilane, and the resulting carboxylic acid can be resolved using methods known to one skilled in the art to give a compound of Formula (57).
- a compound of Formula (57) is converted to compounds of Formulas (Ii) and (Ij) according to the procedure described in Scheme 6 for the conversion of a compound of Formula (46) to compounds of Formulas (Ic) and (Id), respectively.
- a compound of Formula (56) is allowed to react with a suitable base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like in an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like at about ⁇ 78° C. to about 25° C. followed by a suitable alkylating agent of Formula (58), or NFSI for R 3 equals fluorine, at temperatures at about ⁇ 78° C. to about 50° C. to give a compound of Formula (59).
- a suitable base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like
- an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like
- a suitable alkylating agent of Formula (58), or NFSI for R 3 equal
- a compound of Formula (59) is deprotected using appropriate conditions such as, for example, trifluoroacetic acid or anhydrous hydrogen chloride in a suitable solvent such as, for example, dichloromethane or chloroform, with or without a carbonium ion scavenger such as, for example, triethylsilane, and the resulting carboxylic acid can be resolved using methods known to one skilled in the art to give a compound of Formula (60).
- a compound of Formula (60) is converted to compounds of Formulas (Ik) and (Il) according to the procedure described in Scheme 6 for the conversion of a compound of Formula (46) to compounds of Formulas (Ic) and (Id), respectively.
- a compound of Formula (59) is allowed to react with a suitable base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like in an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like at about ⁇ 78° C. to about 25° C. followed by a suitable alkylating agent of Formula (42), or NFSI for R 3a equals fluorine, at temperatures at about ⁇ 78° C. to about 50° C. to give a compound of Formula (51).
- a compound of Formula (51) is converted via a compound of Formula (52) to compounds of Formulas (Ig) and (Ih) according to the procedure described in Scheme 6.
- keto-esters of Formulas (7), (14), (32), (45), (48), (51), (56), or (59) can be hydrolyzed to the corresponding keto-acids, such as by stirring in aqueous hydrochloric acid at a concentration between about 2 M and about 6 M and at temperatures between about 25° C. and reflux or by stirring in the presence of a suitable alkali metal hydroxide such as, for example, lithium, sodium, potassium hydroxide and the like in a suitable solvent such as, for example, methanol, ethanol, aqueous THF and the like at temperatures between about 0° C.
- a suitable alkali metal hydroxide such as, for example, lithium, sodium, potassium hydroxide and the like
- a suitable solvent such as, for example, methanol, ethanol, aqueous THF and the like at temperatures between about 0° C.
- keto-acids can be reduced using an appropriate hydride donating reagent such as sodium borohydride in ethanol, L- or S-selectride and the like in a suitable solvent such as, for example, toluene, tetrahydrofuran and the like to give the alcohol-acid (61).
- an appropriate hydride donating reagent such as sodium borohydride in ethanol, L- or S-selectride and the like in a suitable solvent such as, for example, toluene, tetrahydrofuran and the like to give the alcohol-acid (61).
- the alcohol-acid (61) can be silylated such as, for example, by allowing it to react with chlorotrimethylsilane (TMS-Cl) in the presence of a catalyst such as, for example, imidazole and the like in a suitable solvent such as, for example, anhydrous dimethylformamide (DMF) and the like to give the corresponding O-silyl alcohol-silyl ester, which can be fluorinated by allowing it to react with a suitable reagent such as, for example, diethylaminosulfur trifluoride (DAST) and the like in a suitable solvent such as, for example, dichloromethane, chloroform and the like at temperatures between about ⁇ 20° C.
- a catalyst such as, for example, imidazole and the like
- a suitable solvent such as, for example, anhydrous dimethylformamide (DMF) and the like
- DAST diethylaminosulfur trifluoride
- fluoro-acid (62) can be reacted with a suitable coupling agent such as, for example, CDI, DCC, i-C 4 H 9 OCOCl, and the like followed by hydrogen sulfide to give the fluoro-thioacid (63).
- a suitable fluoride reagent such as, for example, tetra-n-butylammonium fluoride, aqueous hydrogen fluoride and the like in a suitable solvent such as, for example, tetrahydrofuran, acetonitrile and the like to give the fluoro-acid (62).
- the fluoro-acid (62) can be reacted with a suitable coupling agent such as, for example, CDI, DCC, i-C 4 H 9 OCOCl, and the like followed by hydrogen sulfide to give the fluoro-thioacid (63).
- keto-esters of Formulas (7), (14), (32), (45), (48), (51), (56), or (59) can be allowed to react with a suitable fluorinating agent such as, for example, DAST and the like in a suitable solvent such as, for example, dichloromethane, chloroform and the like, at temperatures between about ⁇ 20° C. and about reflux to give the corresponding fluoro-ester, which can be hydrolyzed such as by stirring in aqueous hydrochloric acid at a concentration between about 2 M and about 6 M and at temperatures between about 25° C.
- a suitable fluorinating agent such as, for example, DAST and the like
- a suitable solvent such as, for example, dichloromethane, chloroform and the like
- difluoro-acid 64
- a suitable alkali metal hydroxide such as, for example, lithium, sodium, potassium hydroxide and the like
- a suitable solvent such as, for example, methanol, ethanol, aqueous THF and the like at temperatures between about 0° C. and reflux followed by acidification to give the corresponding difluoro-acid (64).
- the difluoro-acid (64) can be allowed to react with a suitable coupling agent such as, for example, CDI, DCC, i-C 4 H 9 OCOCl, and the like followed by hydrogen sulfide to give the fluoro-thioacid (65).
- keto-esters of Formulas (7), (14), (32), (45), (48), (51), (56), or (59) can be hydrolyzed to the corresponding keto-acids, such as by stirring in aqueous hydrochloric acid at a concentration between about 2 M and about 6 M and at temperatures between about 25° C. and reflux or by stirring in the presence of a suitable alkali metal hydroxide such as, for example, lithium, sodium or potassium hydroxide and the like in a suitable solvent such as, for example, methanol, ethanol or aqueous THF and the like at temperatures between about 0° C.
- a suitable alkali metal hydroxide such as, for example, lithium, sodium or potassium hydroxide and the like
- a suitable solvent such as, for example, methanol, ethanol or aqueous THF and the like at temperatures between about 0° C.
- thioketo-acid (66) can be allowed to react with a suitable coupling agent such as, for example, CDI, DCC, i-C 4 H 9 OCOCl, and the like followed by hydrogen sulfide to give the thioketo-thioacid (67).
- a suitable sulfur reagent such as, for example, Lawesson's reagent and the like in a suitable solvent such as, for example, tetrahydrofuran and the like at temperatures between about 0° C. and reflux
- a suitable solvent such as, for example, tetrahydrofuran and the like at temperatures between about 0° C. and reflux
- the thioketo-acid (66) can be allowed to react with a suitable coupling agent such as, for example, CDI, DCC, i-C 4 H 9 OCOCl, and the like followed by hydrogen sulfide to give the thioketo-thioacid (67).
- R 5 is OH or SH
- R, R 1 , R 2 , R 3 , and R 4 are as defined in Formula I can be synthesized according to the sequence outlined in Scheme 9.
- bromobenzene can be acylated using Friedel-Crafts conditions with a compound of Formula (6), which may be purchased from commercial suppliers or prepared according to known methods such as, for example, as reported by Beckett, et al., Synlett, 1993:137, in the presence of a Lewis acid such as, for example, FeCl 3 , AlCl 3 , ZnCl 2 , and the like either neat or in an inert solvent such as, for example, dichloromethane, nitrobenzene, and the like at about ⁇ 40° C. to about 120° C. to give a compound of Formula (68).
- a Lewis acid such as, for example, FeCl 3 , AlCl 3 , ZnCl 2 , and the like
- an inert solvent such as, for example, dichloromethane, nitrobenzene, and the like at about ⁇ 40° C. to about 120° C. to give a compound of Formula (68).
- a compound of Formula (68) can be condensed with a compound of Formula (30), prepared as described in Scheme 3, in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)-palladium(II)chloride, and the like optionally in the presence of aqueous sodium bicarbonate or aqueous sodium carbonate in a solvent such as, for example, toluene, tetrahydrofuran, dioxane, and the like at temperatures between about ⁇ 20° C.
- a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)-palladium(II)chloride, and the like optionally in the presence of aqueous sodium bicarbonate or aqueous sodium carbonate in a solvent such as, for example, toluene, tetra
- keto-ester (7) can be converted to a compound of Formula Ia or a compound of Formula Ib according to the procedures outlined in Scheme 1, Route A.
- oxime-acids of Formulas (Ia), (16), (34), (Ic), (Ie), (Ig), (Ii), and (Ik), wherein R 2 is OH can be cyclized by stirring in a suitable solvent such as, for example, toluene, benzene, and the like at about reflux over a Dean-Stark trap to remove water, or by stirring in a suitable solvent such as, for example, tetrahydrofuran, dioxane, toluene, dichloromethane and the like which contains a dehydrating agent such as, for example, anhydrous magnesium sulfate, activated 3 angstrom molecular sieves, and the like at temperatures from about 0° C.
- a suitable solvent such as, for example, toluene, benzene, and the like at about reflux over a Dean-Stark trap to remove water
- a suitable solvent such as, for example, tetrahydrofuran, dioxane, to
- the oxime-acids of Formulas (Ia), (16), (34), (Ic), (Ie), (Ig), (Ii), and (Ik) wherein R 2 is OH can be cyclized by reaction with a suitable carboxylic acid activating agent such as, for example, N,N′-dicyclohexylcarbodiimide, 1,1′-carbonyldiimidazole, iso-butylchloroformate, 2-chloro-1-methyl-pyridinium iodide/triethylamine and the like in a suitable solvent such as, for example, tetrahydrofuran, dioxane, dichloromethane, and the like at about ⁇ 20° C.
- a suitable carboxylic acid activating agent such as, for example, N,N′-dicyclohexylcarbodiimide, 1,1′-carbonyldiimidazole, iso-butylchloroformate, 2-chloro-1-
- a compound of Formula (69) can be reacted with an alcohol of Formula R 5a OH (70), wherein R 5a is as defined in Formula I, in a suitable solvent such as, for example, chloroform, tetrahydrofuran, dioxane, toluene and the like optionally in the presence of a suitable acid catalyst such as hydrogen chloride, p-toluenesulfonic acid, sulfuric acid and the like at temperatures from about 25° C. to about reflux to give compounds of Formulas (71) and (72), wherein the conformations of the oximes are designated as E and Z, respectively.
- a suitable solvent such as, for example, chloroform, tetrahydrofuran, dioxane, toluene and the like
- a suitable acid catalyst such as hydrogen chloride, p-toluenesulfonic acid, sulfuric acid and the like at temperatures from about 25° C. to about reflux
- oxime-acids of Formulas (Ia), (16), (34), (Ic), (Ie), (Ig), (Ii), and (Ik), wherein R 2 is as defined in Formula I, and compounds of Formula II wherein Z is as defined in Formula II can be allowed to react with 1 mol equivalent of a suitable base such as, for example, potassium or sodium hydroxide and the like in a suitable solvent such as, for example, acetone, ethanol, water, and the like followed by reaction with an alkyl carboxylic acid, halomethyl ester of Formula (73) such as, for example, 2,2-dimethyl-propionic acid, bromomethyl ester or 2,2-dimethyl-propionic acid, chloromethyl ester, and the like optionally in the presence of a suitable activating agent such as, for example, 10% aqueous sodium iodide, aqueous silver nitrate and the like, in a suitable solvent such as, for example, acetone at temperatures between about 0
- the compounds of the present invention can be prepared and administered in a wide variety of oral and parenteral dosage forms.
- the compounds of the present invention can be administered by injection, that is, intravenously, intramuscularly, intracutaneously, subcutaneously, intraduodenally, or intraperitoneally.
- the compounds of the present invention can be administered by inhalation, for example, intranasally.
- the compounds of the present invention can be administered transdermally.
- the following dosage forms may comprise as the active component, either a compound of Formula I or Formula II or a corresponding pharmaceutically acceptable salt of a compound of Formula I or Formula II.
- pharmaceutically acceptable carriers can be either solid or liquid.
- Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules.
- a solid carrier can be one or more substances which may also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material.
- the carrier is a finely divided solid which is in a mixture with the finely divided active component.
- the active component is mixed with the carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired.
- the powders and tablets preferably contain from 5 or 10 to about 70% of the active compound.
- Suitable carriers are magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like.
- the term “preparation” is intended to include the formulation of the active compound with encapsulating material as a carrier providing a capsule in which the active component, with or without other carriers, is surrounded by a carrier, which is thus in association with it.
- cachets and lozenges are included. Tablets, powders, capsules, pills, cachets, and lozenges can be used as solid dosage forms suitable for oral administration.
- a low melting wax such as a mixture of fatty acid glycerides or cocoa butter
- the active component is dispersed homogeneously therein, as by stirring.
- the molten homogenous mixture is then poured into convenient sized molds, allowed to cool, and thereby to solidify.
- Liquid form preparations include solutions, suspensions, and emulsions, for example, water or water propylene glycol solutions.
- liquid preparations can be formulated in solution in aqueous polyethylene glycol solution.
- Aqueous solutions suitable for oral use can be prepared by dissolving the active component in water and adding suitable colorants, flavors, stabilizing, and thickening agents as desired.
- Aqueous suspensions suitable for oral use can be made by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, and other well-known suspending agents.
- viscous material such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, and other well-known suspending agents.
- solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for oral administration.
- liquid forms include solutions, suspensions, and emulsions.
- These preparations may contain, in addition to the active component, colorants, flavors, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.
- the pharmaceutical preparation is preferably in unit dosage form.
- the preparation is subdivided into unit doses containing appropriate quantities of the active component.
- the unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules.
- the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.
- the quantity of active component in a unit dose preparation may be varied or adjusted from 1 mg to 1000 mg, preferably 10 mg to 100 mg according to the particular application and the potency of the active component.
- the composition can, if desired, also contain other compatible therapeutic agents.
- the compounds utilized in the pharmaceutical methods of the invention are administered at the initial dosage of about 1 mg to about 100 mg per kilogram daily.
- a daily dose range of about 25 mg to about 75 mg per kilogram is preferred.
- the dosages may be varied depending upon the requirements of the patient, the severity of the condition being treated, and the compound being employed. Determination of the proper dosage for a particular situation is within the skill of the art. Generally, treatment is initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstance is reached. For convenience, the total daily dosage may be divided and administered in portions during the day if desired.
- the ethyl acetate layer was washed with 0.2 M HCl and extracted with saturated aqueous sodium bicarbonate solution.
- the bicarbonate layer was rotary evaporated briefly to remove residual ethyl acetate, then acidified by the dropwise addition of concentrated HCl solution.
- the resulting tan precipitate was filtered off, washed with 0.2 M HCl, and air dried.
- the solids were dissolved in hot toluene/acetone, and the solution was decolorized with activated carbon, and filtered hot through celite.
- the powder was purified by chromatography on silica gel, eluting with dichloromethane-methanol (20:1) to give 0.499 g of 4-(4′-bromo-biphenyl-4-yl)-4-hydroxyimino-butyric acid as a white solid; mp 175-176° C.
- N-fluorodibenzenesulfonamide N-fluorodibenzenesulfonamide
- THF 10 mL
- 1 M hydrochloric acid 1.1 mL, 0.0011 mol HCl
- the residue was passed through a column of silica gel, eluting with dichloromethane-methanol (10:1 then 9:1) to give a gum.
- the mixture was diluted with toluene and dichloromethane (10 mL/10 mL), and filtered through a pad of Celite.
- the Celite was washed with additional toluene and dichloromethane. Filtrate and washings were combined and washed with 2.0 M aqueous sodium carbonate, brine, 3% aqueous ammonium hydroxide, water, and brine.
- the organics were dried (Na 2 SO 4 ) and rotary evaporated.
- Step (b) (4-methoxyphenyl)boronic acid (0.913 g, 0.00601 mol) was allowed to react with 4-(4-bromo-phenyl)4-oxo-butyric acid, methyl ester (1.356 g, 0.00500 mol) in the presence of tetrakis(triphenylphosphine)palladium(0) (0.173 g, 0.000150 mol) and 2.0 M aqueous sodium carbonate (5.0 mL, 0.010 mol) in toluene (10 mL) to give, after chromatography on silica gel (270 g, 230-400 mesh), eluting with dichloromethane (15 ⁇ 250 mL); dichloromethane-methanol (100:1, 19 ⁇ 225 mL; 50:1, 5 ⁇ 225 mL), 1.386 g of 4-(4′-methoxy-biphenyl-4-yl)-4-oxo-butyric
- the mixture was diluted with diethyl ether, and the resulting suspension was filtered through Celite.
- the Celite and filtercake were washed with additional diethyl ether then dichloromethane.
- the filtrate and washings were combined and washed with 0.5 M aqueous hydrochloric acid, water, 3% aqueous ammonium hydroxide, water, and brine.
- the organics were dried (Na 2 SO 4 ) and rotary evaporated.
- the aqueous layer was acidified with 1.0 M aqueous hydrochloric acid (0.50 mL), and extracted with dichloromethane-tetrahydrofuran (50/50 v/v). The extract was washed with brine, dried (Na 2 SO 4 ) and rotary evaporated. The residue was dried in vacuo to give 0.130 g of 4-(4′-cyano-biphenyl-4-yl)-4-oxo-butyric acid as a pale yellow solid, mp 191-193° C.
- Step (b) (4-trifluoromethyl-phenyl)boronic acid (1.285 g, 0.00676 mol) was allowed to react with 4-(4-bromo-phenyl)-4-oxo-butyric acid, methyl ester (1.356 g, 0.00500 mol) in the presence of tetrakis(triphenylphosphine)palladium(0) (0.173 g, 0.000150 mol) and 2.0 M aqueous sodium carbonate (5.0 mL, 0.010 mol) in toluene (10 mL) to give, after chromatography on silica gel (270 g, 230-400 mesh), eluting with chloroform to give 1.42 g of 4-oxo-4-(4′-trifluoromethyl-biphenyl-4-yl)-butyric acid, methyl ester as a white solid; mp 140-142° C.
- the resulting powder was chromatographed on silica gel (48 g, 230-400 mesh), eluting with dichloromethane-diethyl ether (24:1, 13 ⁇ 50 mL); dichloromethane-methanol (24:1, 13 ⁇ 50 mL; 20:1, 10 ⁇ 50 mL) to give 0.0525 g of 4-hydroxyimino-4-(4′-methylsulfanyl-biphenyl-4-yl)-butyric acid as a white solid; mp 162-164° C.
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Immunology (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Rheumatology (AREA)
- Physical Education & Sports Medicine (AREA)
- Virology (AREA)
- Psychology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Hospice & Palliative Care (AREA)
- Ophthalmology & Optometry (AREA)
- Communicable Diseases (AREA)
- Vascular Medicine (AREA)
- Molecular Biology (AREA)
- Oncology (AREA)
- Pain & Pain Management (AREA)
- Psychiatry (AREA)
- AIDS & HIV (AREA)
- Urology & Nephrology (AREA)
- Dermatology (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Biphenyl butyric acid compounds and derivatives are described as well as acid methods for the preparation and pharmaceutical compositions of same, which are useful as inhibitors of matrix metalloproteinases, particularly gelatinase A (72 kD gelatinase) and stromelysin-1 and for the treatment of multiple sclerosis, atherosclerotic plaque rupture, aortic aneurism, heart failure, restenosis, periodontal disease, corneal ulceration, treatment of burns, decubital ulcers, wound healing, cancer, inflammation, pain, arthritis, or other autoimmune or inflammatory disorders dependent upon tissue invasion by leukocytes or other activated migrating cells.
Description
- 1. The present invention relates to novel biphenyl butyric acid compounds and their derivatives useful as pharmaceutical agents, to methods for their production, to pharmaceutical compositions which include these compounds and a pharmaceutically acceptable carrier, and to pharmaceutical methods of treatment. The novel compounds of the present invention are inhibitors of matrix metalloproteinases, e.g., gelatinase A (72 kDa gelatinase) and stromelysin-1. More particularly, the novel compounds of the present invention are useful in the treatment of atherosclerotic plaque rupture, aortic aneurism, heart failure, restenosis, periodontal disease, corneal ulceration, treatment of bums, decubital ulcers, wound repair, cancer, inflammation, pain, arthritis, multiple sclerosis, and other autoimmune or inflammatory disorders dependent on the tissue invasion of leukocytes or other activated migrating cells. Additionally, the compounds of the present invention are useful in the treatment of acute and chronic neurodegenerative disorders including stroke, head trauma, spinal cord injury, Alzheimer's disease, amyotrophic lateral sclerosis, cerebral amyloid angiopathy, AIDS, Parkinson's disease, Huntington's disease, prion diseases, myasthenia gravis, and Duchenne's muscular dystrophy.
- 2. Gelatinase A and stromelysin-1 are members of the matrix metalloproteinase (MMP) family (Woessner J. F., FASEB J., 1991 ;5 :2145-2154). Other members include fibroblast collagenase, neutrophil collagenase, gelatinase B (92 kDa gelatinase), stromelysin-2,stromelysin-3, matrilysin, collagenase 3 (Freije J. M., Diez-Itza I., Balbin M., Sanchez L. M., Blasco R., Tolivia J., and Lopez-Otin C., J. Biol. Chem., 1994;269:16766-16773), and the membrane-associated matrix metalloproteinases (Sato H., Takino T., Okada Y., Cao J., Shinagawa A., Yamamoto E., and Seiki M., Nature, 1994;370:61-65)
- 3. The catalytic zinc in matrix metalloproteinases is a focal point for inhibitor design. The modification of substrates by introducing chelating groups has generated potent inhibitors such as peptide hydroxymates and thiol-containing peptides. Peptide hydroxamates and the natural endogenous inhibitors of MMPs (TIMPs) have been used successfully to treat animal models of cancer and inflammation.
- 4. The ability of the matrix metalloproteinases to degrade various components of connective tissue makes them potential targets for controlling pathological processes. For example, the rupture of an atherosclerotic plaque is the most common event initiating coronary thrombosis. Destabilization and degradation of the extracellular matrix surrounding these plaques by MMPs has been proposed as a cause of plaque fissuring. The shoulders and regions of foam cell accumulation in human atherosclerotic plaques show locally increased expression of gelatinase B, stromelysin-1, and interstitial collagenase. In situ zymography of this tissue revealed increased gelatinolytic and caseinolytic activity (Galis Z. S., Sukhova G. K., Lark M. W., and Libby P., “Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques”, J. Clin. Invest., 1994;94:2494-2503). In addition, high levels of stromelysin RNA message have been found to be localized to individual cells in atherosclerotic plaques removed from heart transplant patients at the time of surgery (Henney A. M., Wakeley P. R., Davies M. J., Foster K., Hembry R., Murphy G., and Humphries S., “Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization”, Proc. Nat'l. Acad. Sci., 1991;88:8154-8158).
- 5. Inhibitors of matrix metalloproteinases will have utility in treating degenerative aortic disease associated with thinning of the medial aortic wall. Increased levels of the proteolytic activities of MMPs have been identified in patients with aortic aneurisms and aortic stenosis (Vine N. and Powell J. T., “Metalloproteinases in degenerative aortic diseases”, Clin. Sci., 1991;81:233-239).
- 6. Heart failure arises from a number of diverse etiologies, but a common characteristic is cardiac dilation, which has been identified as an independent risk factor for mortality (Lee T. H., Hamilton M. A., Stevenson L. W., Moriguchi J. D., Fonarow G. C., Child J. S., Laks H., and Walden J. A., “Impact of left ventricular size on the survival in advanced heart failure”, Am. J. Cardiol., 1993;72:672-676). This remodeling of the failing heart appears to involve the breakdown of extracellular matrix. Matrix metalloproteinases are increased in patients with both idiopathic and ischemic heart failure (Reddy H. K., Tyagi S. C., Tjaha I. E., Voelker D. J., Campbell S. E., and Weber K. T., “Activated myocardial collagenase in idiopathic dilated cardiomyopathy”, Clin. Res., 1993;41:660A; Tyagi S. C., Reddy H. K., Voelker D., Tjara I. E., and Weber K. T., “Myocardial collagenase in failing human heart”, Clin. Res., 1993;41:681A). Animal models of heart failure have shown that the induction of gelatinase is important in cardiac dilation (Armstrong P. W., Moe G. W., Howard R. J., Grima E. A., and Cruz T. F., “Structural remodeling in heart failure: gelatinase induction”, Can. J. Cardiol., 1994;10:214-220), and cardiac dilation precedes profound deficits in cardiac function (Sabbah H. N., Kono T., Stein P. D., Mancini G. B., and Goldstein S., “Left ventricular shape changes during the course of evolving heart failure”, Am. J. Physiol., 1992;263:H266-270).
- 7. Neointimal proliferation, leading to restenosis, frequently develops after coronary angioplasty. The migration of vascular smooth muscle cells (VSMCs) from the tunica media to the neointima is a key event in the development and progression of many vascular diseases and a highly predictable consequence of mechanical injury to the blood vessel (Bendeck M. P., Zempo N., Clowes A. W., Galardy R. E., and Reidy M., “Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat”, Circulation Research, 1994;75:539-545). Northern blotting and zymographic analyses indicated that gelatinase A was the principal MMP expressed and excreted by these cells. Further, antisera capable of selectively neutralizing gelatinase A activity also inhibited VSMC migration across basement membrane barrier. After injury to the vessel, gelatinase A activity increased more than 20-fold as VSMCs underwent the transition from a quiescent state to a proliferating, motile phenotype (Pauly R. R., Passaniti A., Bilato C., Monticone R., Cheng L., Papadopoulos N., Gluzband Y. A., Smith L., Weinstein C., Lakatta E., and Crow M. T., “Migration of cultured vascular smooth muscle cells through a basement membrane barrier requires type IV collagenase activity and is inhibited by cellular differentiation”, Circulation Research, 1994;75:41-54).
- 8. Collagenase and stromelysin activities have been demonstrated in fibroblasts isolated from inflamed gingiva (Uitto V. J., Applegren R., and Robinson P. J., “Collagenase and neutral metalloproteinase activity in extracts from inflamed human gingiva”, J. Periodontal Res., 1981;16:417-424), and enzyme levels have been correlated to the severity of gum disease (Overall C. M., Wiebkin O. W., and Thonard J. C., “Demonstrations of tissue collagenase activity in vivo and its relationship to inflammation severity in human gingiva”, J. Periodontal Res., 1987;22:81-88). Proteolytic degradation of extracellular matrix has been observed in corneal ulceration following alkali burns (Brown S. I., Weller C. A., and Wasserman H. E., “Collagenolytic activity of alkali burned corneas”, Arch. Ophthalmol., 1969;81:370-373). Thiol-containing peptides inhibit the collagenase isolated from alkali-burned rabbit corneas (Bums F. R., Stack M. S., Gray R. D., and Paterson C. A., Invest. Ophthalmol., 1989;30:1569-1575).
- 9. Stromelysin is produced by basal keratinocytes in a variety of chronic ulcers (Saarialho-Kere U. K., Ulpu K., Pentland A. P., Birkedal-Hansen H., Parks W. O., and Welgus H. G., “Distinct Populations of Basal Keratinocytes Express Stromelysin-l and Stromelysin-2 in Chronic Wounds”, J. Clin. Invest., 1994;94:79-88).
- 10. Stromelysin-1 mRNA and protein were detected in basal keratinocytes adjacent to but distal from the wound edge in what probably represents the sites of the proliferating epidermis. Stromelysin-I may thus prevent the epidermis from healing.
- 11. Davies, et al., (Cancer Res., 1993;53:2087-2091) reported that a peptide hydroxymate, BB-94, decreased the tumor burden and prolonged the survival of mice bearing human ovarian carcinoma xenografts. A peptide of the conserved MMP propeptide sequence was a weak inhibitor of gelatinase A and inhibited human tumor cell invasion through a layer of reconstituted basement membrane (Melchiori A., Albili A., Ray J. M., and Stetler-Stevenson W. G., Cancer Res., 1992;52:2353-2356). The natural tissue inhibitor of metalloproteinase-2 (TIMP-2) also showed blockage of tumor cell invasion in in vitro models (DeClerck Y. A., Perez N., Shimada H., Boone T. C., Langley K. E., and Taylor S. M., Cancer Res., 1992;52:701-708). Studies of human cancers have shown that gelatinase A is activated on the invasive tumor cell surface (Strongin A. Y., Marmer B. L., Grant G. A., and Goldberg G. I., J. Biol. Chem., 1993;268:14033-14039) and is retained there through interaction with a receptor-like molecule (Monsky W. L., Kelly T., Lin C.-Y., Yeh Y., Stetler-Stevenson W. G., Mueller S. C., and Chen W.-T., Cancer Res., 1993;53:3159-3164).
- 12. Inhibitors of MMPs have shown activity in models of tumor angiogenesis (Taraboletti G., Garofalo A., Belotti D., Drudis T., Borsotti P., Scanziani E., Brown P. D., and Giavazzi R., Journal of the National Cancer Institute, 1995;87:293 and Benelli R., Adatia R., Ensoli B., Stetler-Stevenson W. G., Santi L., and Albini A, Oncology Research, 1994;6:251-257).
- 13. Several investigators have demonstrated consistent elevation of stromelysin and collagenase in synovial fluids from osteo- and rheumatoid arthritis patients as compared to controls (Walakovits L. A., Moore V. L., Bhardwaj N., Gallick G. S., and Lark M. W., “Detection of stromelysin and collagenase in synovial fluid from patients with rheumatoid arthritis and post-traumatic knee injury”, Arthritis Rheum., 1992;35:35-42; Zafarullah M., Pelletier J. P., Cloutier J. M., and Marcel-Pelletier J., “Elevated metalloproteinases and tissue inhibitor of metalloproteinase mRNA in human osteoarthritic synovia”, J. Rheumatol., 1993;20:693-697). TIMP-1 and TIMP-2 prevented the formation of collagen fragments, but not proteoglycan fragments in both the bovine nasal and pig articular cartilage models for arthritis, while a synthetic peptide hydroxamate could prevent the formation of both fragments (Andrews H. J., Plumpton T. A., Harper G. P., and Cawston T. E., Agents Actions, 1992;37:147-154; Ellis A. J., Curry V. A., Powell E. K., and Cawston T. E., Biochem. Biophys. Res. Commun., 1994;201:94-101).
- 14. Gijbels, et al., (J. Clin. Invest., 1994;94:2177-2182) recently described a peptide hydroxamate, GM6001, that suppressed the development or reversed the clinical expression of experimental autoimmune encephalomyelitis (EAE) in a dose dependent manner, suggesting the use of MMP inhibitors in the treatment of autoimmune inflammatory disorders such as multiple sclerosis.
- 15. A recent study by Madri has elucidated the role of gelatinase A in the extravasation of T-cells from the blood stream during inflammation (Ramanic A. M., and Madri J. A., “The Induction of 72-kDa Gelatinase in T Cells upon Adhesion to Endothelial Cells is VCAM-1 Dependent”, J. Cell Biology, 1994;125:1165-1178). This transmigration past the endothelial cell layer is coordinated with the induction of gelatinase A and is mediated by binding to the vascular cell adhesion molecule-1 (VCAM-1). Once the barrier is compromised, edema and inflammation are produced in the CNS. Also, leukocytic migration across the blood-brain barrier is known to be associated with the inflammatory response in EAE. Inhibition of the metalloproteinase gelatinase A would block the degradation of extracellular matrix by activated T-cells that is necessary for CNS penetration.
- 16. These studies provide the basis for the expectation that an effective inhibitor of gelatinase A and/or stromelysin-1 would have value in the treatment of diseases involving disruption of extracellular matrix resulting in inflammation due to lymphocytic infiltration, inappropriate migration of metastatic or activated cells, or loss of structural integrity necessary for organ function.
- 17. Neuroinflammatory mechanisms are implicated in a broad range of acute and chronic neurodegenerative disorders, including stroke, head trauma, multiple sclerosis, and Alzheimer's disease, to name a few (McGeer E. G., and McGeer P. L., “Neurodegeneration and the immune system”, In: Calne D. B., ed. Neurodegenerative Diseases, W. B. Saunders, 1994:277-300). Other disorders that may involve Neuroinflammatory mechanisms include amyotrophic lateral sclerosis (Leigh P. N., “Pathogenic mechanisms in amyotrophic lateral sclerosis and other motor neuron disorders”, In: Calne D. B., ed., Neurodegenerative Diseases, W. B. Saunders, 1994:473-88), cerebral amyloid angiopathy (Mandybur T. I. and Balko G., “Cerebral amyloid angiopathy with granulomatous angiitis ameliorated by steroid-cytoxan treatment”, Clin. Neuropharm., 1992;15:241-7), AIDS (Gendelman H. E. and Tardieu M., “Macrophages/microglia and the pathophysiology of CNS injuries in AIDS”, J. Leukocyte Biol., 1994;56:387-8), Parkinson's disease, Huntington's disease, prion diseases, and certain disorders involving the peripheral nervous system, such as myasthenia gravis and Duchenne's muscular dystrophy. Neuroinflammation, which occurs in response to brain injury or autoimmune disorders, has been shown to cause destruction of healthy tissue (Martin R., MacFarland H. F., and McFarlin D. E., “Immunological aspects of demyelinating diseases”, Annul Rev. Immunol., 1992;10:153-87; Clark R. K., Lee E. V., Fish C. J., et al., “Development of tissue damage, inflammation and resolution following stroke: an immunohistochemical and quantitative planimetric study”, Brain Res. Bull., 1993;31:565-72; Giulian D. and Vaca K., “Inflammatory glia mediate delayed neuronal damage after ischemia in the central nervous system”, Stroke, 1993;24(Suppl 12):184-90; Patterson P. H., “Cytokines in Alzheimer's disease and multiple sclerosis”, Cur. Opinion Neurobiol. 1995;5:642-6; McGeer P. L., Rogers J., and McGeer E. G., “Neuroimmune mechanisms in Alzheimer disease pathogenesis”, Alzheimer Dis. Assoc. Disorders, 1994;8:149-58; Martin R. and McFarland H. F., “Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis”, Crit. Rev. Clin. Lab. Sci., 1995;32:121-82; Rogers J., Webster S., Lue L. F., et al., “Inflammation and Alzheimer's disease pathogenesis”, In: Neurobiology of Aging, 1996;17:681-686; Rothwell N. J. and Relton J. K., “Involvement of cytokines in acute neurodegeneration in the CNS”, Neurosci. Biobehav. Rev., 1993;17:217-27). The pathological profiles and clinical courses of these disorders differ widely, but they all have in common the participation of immune/inflammatory elements in the disease process. In particular, many neurodegenerative disorders are characterized by large numbers of reactive microglia in postmortem brain samples, indicative of an active inflammatory process (McGeer E. G. and McGeer P. L., supra., 1994).
- 18. Increasing attention is being directed toward inflammatory mechanisms in Alzheimer's disease. Several lines of evidence support the involvement of neuroinflammation in Alzheimer's disease: 1) There is a significant increase in inflammatory markers in the Alzheimer brain, including acute phase reactants, cytokines, complement proteins, and MHC molecules (McGeer, et al., supra., 1994; Rogers, et al., supra.); 2) There is evidence that β-amyloid induces neurodegenerative changes primarily through interactions with inflammatory molecules, and that inflammation alone is sufficient to induce neurodegeneration (Rogers et al., supra); and 3) Growing epidemiological data indicate that antiinflammatory therapy can delay the onset and slow the progression of Alzheimer's disease (McGeer P. L. and Rogers J., “Anti-inflammatory agents as a therapeutic approach to Alzheimer's disease”, Neurology, 1992;42:447-9; Canadian Study of Health and Aging, “Risk factors for Alzheimer's disease in Canada”, Neurology, 1994;44:2073-80; Lucca U., Tettamanti M., Forloni G., and Spagnoli A., “Nonsteroidal antiinflammatory drug use in Alzheimer's disease”, Biol. Psychiatry, 1994;36:854-66; Hampel H. and Müller N., “Inflammatory and immunological mechanisms in Alzheimer's disease”, DN&P, 1995;8:599-608; Breitner J. C. S., Gau B. A., Welsh K. A., et al., “Inverse association of anti-inflammatory treatments and Alzheimer's disease: Initial results of a co-twin control study”, Neurology, 1994;44:227-32; Breitner J. C. S., Welsh K. A., Helms M. J., et al., “Delayed onset of Alzheimer's disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs”, Neurobiol. Aging, 1995;16:523-30; Andersen K., Launer L. J., Ott A., Hoes A. W., Breteler M. M. B., and Hofman A., “Do nonsteroidal anti-inflammatory drugs decrease the risk for Alzheimer's disease? The Rotterdam Study”, Neurology, 1995 ;45:1441-5; Rich J. B., Rasmusson D. X., Folstein M. F., et al., “Nonsteroidal anti-inflammatory drugs in Alzheimer's disease”, Neurology, 1995;45:51-5; Aisen P. S., “Anti-inflammatory therapy for Alzheimer's disease”, Dementia, 1995;9:173-82; Rogers, et al., supra). Chronic use of nonsteroidal antiinflammatory drugs (NSAIDs), most commonly for the treatment of rheumatoid arthritis, decreases the probability of developing Alzheimer's disease, and there is reason to believe that other antiinflammatory agents may also be effective, although direct evidence for the efficacy of such treatments is lacking (Hamper and Müller, supra., 1995). Furthermore, virtually all of the currently available compounds, which include corticosteroids, NSAIDs, antimalarial drugs, and colchicine, have serious drawbacks that make them undesirable in the treatment of chronic disorders. Glucocorticoids, which are in wide clinical use as antiinflammatory/immuno-suppressive drugs, can be directly neurotoxic and also are toxic to systemic organs at moderate to high doses. NSAIDs have gastrointestinal and renal side effects that obviate long-term use in most people, and few of them cross the blood-brain barrier in significant amounts. The toxic properties of chloroquine compounds and colchicine also are well known. An antiinflammatory drug that is well-tolerated by patients and that crosses the blood-brain barrier has significant advantages for the treatment of acute and chronic degenerative diseases of the central nervous system.
- 19. We have identified a series of biphenyl butyric acid compounds and derivatives that are inhibitors of matrix metalloproteinases, particularly stromelysin-1 and gelatinase A, and thus useful as agents for the treatment of multiple sclerosis, atherosclerotic plaque rupture, restenosis, aortic aneurism, heart failure, periodontal disease, corneal ulceration, treatment of burns, decubital ulcers, wound repair, cancer, inflammation, pain, arthritis, or other autoimmune or inflammatory diseases dependent upon tissue invasion by leukocytes or other activated migrating cells, acute and chronic neurodegenerative disorders including stroke, head trauma, spinal cord injury, Alzheimer's disease, amyotrophic lateral sclerosis, cerebral amyloid angiopathy, AIDS, Parkinson's disease, Huntington's diseases, prion diseases, myasthenic gravis, and Duchenne's muscular dystrophy.
-
-
-
-
-
-
-
-
-
-
-
- 31. wherein R6 and R6a are the same or different and are as defined above for R6;
- 32. R3, R3a, R4, and R4a are the same or different and are hydrogen, fluorine, alkyl, —(CH2)n-aryl wherein n is an integer from 1 to 6, —(CH2)n-heteroaryl wherein n is as defined above, —(CH2)n-cycloalkyl wherein n is as defined above, —(CH2)p—X—(CH2)q-aryl wherein X is O, S, SO, SO2, or NH, and p and q are each zero or an integer of 1 to 6, and the sum of p+q is not greater than six, —(CH2)p—X—(CH2)q-heteroaryl wherein X, p, and q are as defined above, or —(CH2)n-R7 wherein R7 is N-phthalimido, N-2,3 -naphthylimido, —OR6 wherein R6 is as defined above,
-
-
-
-
-
-
-
-
- 41. wherein R6 and R6a are the same or different and are as defined above for R6, and n is as defined above;
- 42. R5 is OH, SH, or OR5a wherein R5a is alkyl, arylalkyl, cycloalkyl, or acyloxymethyl; with the proviso that R3, R3a, R4, and R4a are hydrogen or at least one of R3, R3a, R4, or R4a is fluorine; and corresponding isomers thereof; or a pharmaceutically acceptable salt thereof.
-
-
-
-
-
-
-
-
-
-
-
- 54. R3, R3a, R4, and R4a are the same or different and are hydrogen, fluorine, alkyl, —(CH2)n-aryl wherein n is an integer from 1 to 6, —(CH2)n-heteroaryl wherein n is as defined above, —(CH2)n-cycloalkyl wherein n is as defined above, —(CH2)p—X—(CH2)q-aryl wherein X is O, S, SO, SO2, or NH, and p and q are each zero or an integer of 1 to 6, and the sum of p+q is not greater than six, —(CH2)p—X—(CH2)q-heteroaryl wherein X, p, and q are as defined above, or —(CH2)n—R7 wherein R7 is N-phthalimido, N-2,3 -naphthylimido, —OR6 wherein R6 is as defined above,
-
-
-
-
-
-
-
-
- 63. wherein R6 and R6a are the same or different and are as defined above for R6, and n is as defined above;
- 64. R5 is OH, SH, or OR5a wherein R5a is alkyl, arylalkyl, cycloalkyl, or acyloxymethyl; with the proviso that at least one of R3, R3a, R4, or R4a is fluorine; and corresponding isomers thereof; or a pharmaceutically acceptable salt thereof.
- 65. As matrix metalloproteinase inhibitors, the compounds of Formula I and Formula II are useful as agents for the treatment of multiple sclerosis. They are also useful as agents for the treatment of atherosclerotic plaque rupture, aortic aneurism, heart failure, restenosis, periodontal disease, corneal ulceration, treatment of bums, decubital ulcers, wound repair, cancer metastasis, tumor angiogenesis, inflammation, pain, arthritis, and other autoimmune or inflammatory disorders dependent upon tissue invasion by leukocytes or other activated migrating cells, acute and chronic neurodegenerative disorders including stroke, head trauma, spinal cord injury, Alzheimer's disease, amyotrophic lateral sclerosis, cerebral amyloid angiopathy, AIDS, Parkinson's disease, Huntington's disease, prion diseases, myasthenia gravis, and Duchenne's muscular dystrophy.
- 66. A still further embodiment of the present invention is a pharmaceutical composition for administering an effective amount of a compound of Formula I or Formula II in unit dosage form in the treatment methods mentioned above. Finally, the present invention is directed to methods for production of compounds of Formula I.
- 67. In the compounds of Formula I and Formula II, the term “alkyl” means a straight or branched hydrocarbon radical having from 1 to 8 carbon atoms and includes, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like.
- 68. “Alkoxy” and “thioalkoxy” are O-alkyl or S-alkyl of from 1 to 6 carbon atoms as defined above for “alkyl”.
- 69. The term “cycloalkyl” means a saturated hydrocarbon ring having 3 to 8 carbon atoms and includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and the like.
- 70. The term “aryl” means an aromatic radical which is a phenyl group, a phenyl group substituted by 1 to 4 substituents selected from alkyl as defined above, alkoxy as defined above, thioalkoxy as defined above, hydroxy, halogen, trifluoromethyl, amino, alkylamino as defined above for alkyl, dialkylamino as defined above for alkyl, nitro, cyano, carboxy, SO3H, CHO,
-
-
-
-
- 75. as defined above for alkyl and n2.
- 76. The term “arylalkyl” means an aromatic radical attached to an alkyl radical wherein aryl and alkyl are as defined above for example benzyl, phenylethyl, 3-phenylpropyl, (4-chlorophenyl)methyl, and the like.
-
- 78. wherein alkyl is as defined above.
- 79. The term “heteroaryl” means a heteroaromatic radical and includes, for example, a heteroaromatic radical which is 2- or 3-thienyl, 2- or 3-furanyl, 2- or 3-pyrrolyl, 2-, 3-, or 4-pyridinyl, 2-pyrazinyl, 2-, 4-, or 5-pyrimidinyl, 3- or 4-pyridazinyl, 1H-indol-6-yl, 1H-indol-5-yl, 1H-benzimidazol-6-yl, 1H-benzimidazol-5-yl, 2-, 4-, or 5-thiazolyl, 3-, 4-, or 5-isothiazolyl, 2-, 4-, or 5-imidazolyl, 3-, 4-, or 5-pyrazolyl, or 2- or 5-thiadiazolyl.
- 80. “Halogen” is fluorine, chlorine, bromine, or iodine.
- 81. “Alkali metal” is a metal in Group IA of the periodic table and includes, for example, lithium, sodium, potassium, and the like.
- 82. Some of the compounds of Formula I and Formula II wherein R5 is OH are capable of further forming pharmaceutically acceptable carboxylic esters which are suitable as prodrugs. All of these carboxylic esters are within the scope of the present invention.
- 83. Pharmaceutically acceptable carboxylic esters of compounds of Formula I and Formula II include alkyl, cycloalkyl, arylalkyl or acyloxymethyl esters.
- 84. The alkyl, cycloalkyl, and arylalkyl carboxylic esters of compounds of Formula I and Formula II can be prepared by methods known to one skilled in the art. For example, the corresponding carboxylic acids can be allowed to react directly with a suitable alcohol in the presence of a suitable acid catalyst to give the carboxylic esters. Alternatively, the carboxylic acids can be allowed to react with one of a number of suitable activating agents, which are known to one skilled in the art, followed by reaction with a suitable alcohol to give the carboxylic esters. Additionally for the 4-hydroxyimino-butyric acids of the present invention, the carboxylic acids can be allowed to cyclo-dehydrate using one of a number of methods known to one skilled in the art to give a cyclic 4,5-dihydro-6-oxo-6H-1,2-oxazine intermediate, which can be allowed to react with a suitable alcohol optionally in the presence of a suitable acid or base catalyst to give the carboxylic esters.
- 85. The acyloxymethyl esters of compounds of Formula I and Formula II can be prepared by methods known to one skilled in the art. For example, the corresponding carboxylic acids can be allowed to react first with a suitable base to give the carboxylate anion, followed by reaction with a carboxylic halomethyl ester, which can be obtained from commercial suppliers or prepared by methods known to one skilled in the art, optionally in the presence of a suitable agent to activate the carboxylic halomethyl ester, which are known to one skilled in the art, to give the acyloxymethyl esters.
- 86. Some of the compounds of Formula I and Formula II are capable of further forming both pharmaceutically acceptable acid addition and/or base salts. All of these forms are within the scope of the present invention.
- 87. Pharmaceutically acceptable acid addition salts of the compounds of Formula I and Formula II include salts derived from nontoxic inorganic acids such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydriodic, hydrofluoric, phosphorous, and the like, as well as the salts derived from nontoxic organic acids, such as aliphatic mono- and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, alkanedioic acids, aromatic acids, aliphatic and aromatic sulfonic acids, etc. Such salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, trifluoroacetate, propionate, caprylate, isobutyrate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, mandelate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, phthalate, benzenesulfonate, toluenesulfonate, phenylacetate, citrate, lactate, maleate, tartrate, methanesulfonate, and the like. Also contemplated are salts of amino acids such as arginate and the like and gluconate, galacturonate (see, for example, Berge S. M., et al., “Pharmaceutical Salts,” J. of Pharma. Sci., 1977;66:1).
- 88. The acid addition salts of said basic compounds are prepared by contacting the free base form with a sufficient amount of the desired acid to produce the salt in the conventional manner. The free base form may be regenerated by contacting the salt form with a base and isolating the free base in the conventional manner. The free base forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free base for purposes of the present invention.
- 89. Pharmaceutically acceptable base addition salts are formed with metals or amines, such as alkali and alkaline earth metals or organic amines. Examples of metals used as cations are sodium, potassium, magnesium, calcium, and the like. Examples of suitable amines are N,N′-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, dicyclohexylamine, ethylenediamine, N-methylglucamine, and procaine (see, for example, Berge S. M., et al., “Pharmaceutical Salts,” J. of Pharma Sci., 1977;66:1).
- 90. The base addition salts of said acidic compounds are prepared by contacting the free acid form with a sufficient amount of the desired base to produce the salt in the conventional manner. The free acid form may be regenerated by contacting the salt form with an acid and isolating the free acid in the conventional manner. The free acid forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free acid for purposes of the present invention.
- 91. Certain of the compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms, including hydrated forms, are equivalent to unsolvated forms and are intended to be encompassed within the scope of the present invention.
- 92. Certain of the compounds of the present invention possess one or more chiral centers and each center may exist in the R or S configuration. The present invention includes all diastereomeric, enantiomeric, and epimeric forms as well as the appropriate mixtures thereof. Additionally, the compounds of the present invention may exist as geometric isomers. The present invention includes all cis, trans, syn, anti, entgegen (E), and zusammen (Z) isomers as well as the appropriate mixtures thereof.
- 93. In the first embodiment of the invention, a preferred compound of Formula I is one wherein R2 is OR6.
- 94. In the first embodiment of the invention, a more preferred compound of Formula I is one wherein R2 is OCH3.
- 95. In the first embodiment of the invention, a most preferred compound of Formula I is one wherein R2 is OH, and R3, R3a, R4, and R4a are hydrogen.
- 96. In the first embodiment of the invention, another more preferred compound of Formula I is one wherein R2 is OH, and at least one of R3, R3a, R4, and R4a is fluorine.
- 97. Particularly valuable in the first embodiment of the invention is a compound selected from the group consisting of:
- 98. 4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid;
- 99. 4-(4′-Bromo-biphenyl-4-yl)-4-hydroxyimino-butyric acid;
- 100. 4-(4′-Chloro-biphenyl-4-yl)-4-(dimethylhydrazono)- butyric acid;
- 101. 4-(4′-Fluoro-biphenyl-4-yl)-4-hydroxyimino-butyric acid;
- 102. 4-(4′-Bromo-2′-fluoro-biphenyl-4-yl)4-hydroxyimino-butyric acid;
- 103. 4-(2′,4′-Dichloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid;
- 104. 4-(2′,4′-Difluoro-biphenyl-4-yl)-4-hydroxyimino-butyric acid;
- 105. (±)-4-(4′-Chloro-biphenyl4-yl)-4-hydroxyimino-2-fluoro-2-(3-phenylpropyl)-butyric acid;
- 106. (±)-4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-2-fluoro-2-(2-phenylethyl)-butyric acid;
- 107. (±)-4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-2-fluoro-2-(3-phthalimidopropyl)-butyric acid;
- 108. (±)-4-(4′-Chloro-biphenyl-4-yl)4-hydroxyimino-2-fluoro-2-(phenylthiomethyl)-butyric acid;
- 109. 4-(4′-Chloro-2′-fluoro-biphenyl-4-yl)-4-hydroxyimino-butyric acid;
- 110. 4-Hydroxyimino-4-(4′-trifluoromethyl-biphenyl-4-yl)-butyric acid;
- 111. 4-(4′-Chloro-biphenyl-4-yl)-4-methoxyimino-butyric acid;
- 112. (±)4-(4′-Chloro-biphenyl-4-yl)-2-fluoro-2-[2-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-ethyl]-4-hydroxyimino-butyric acid;
- 113. (±)-4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-2-fluoro-2-(1H-indol-3-yl)methyl-butyric acid.
- 114. (±)-4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-2-fluoro-2 -methyl-butyric acid;
- 115. (±)-2-[2-(4′-Chloro-biphenyl-4-yl)-2-hydroxyiminoethyl]-2-fluoro-6-phenyl-hexanoic acid;
- 116. (±)-4-(4′-Chloro-biphenyl-4-yl)-2-fluoro-2-[2-(1,3-dioxo-1,3-dihydro-benzo[F]isoindol-2-yl)-ethyl]-4-hydroxyimino-butyric acid;
- 117. (±)-2 -[2-(4′-Chloro-biphenyl-4-yl)-2-hydroxyimino-ethyl]-6-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-2-fluoro-hexanoic acid;
- 118. (±)-4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-2-fluoro-2-[2-(phenyl-ethylcarbamoyl)-ethyl]-butyric acid;
- 119. 4-(4′-Chloro-biphenyl-4-yl)-3,3-difluoro-4-hydroxyimino-butyric acid;
- 120. (±)-4-(4′-Chloro-biphenyl-4-yl)-3,3-dimethyl-2-fluoro-4-hydroxyimino-butyric acid;
- 121. (±)-4-(4′-Chloro-biphenyl-4-yl)-2,2-dimethyl-3 -fluoro4-hydroxyimino-butyric acid;
- 122. 4-(4′-Chloro-biphenyl-4-yl)-2,2-difluoro-4-hydroxyimino-butyric acid;
- 123. 4-(4′-Chloro-biphenyl-4-yl)-2,2,3,3-tetrafluoro-4-hydroxyimino-butyric acid;
- 124. 4-(4′-Chloro-biphenyl-4-yl)-4-methoxyimino-butyric acid, sodium salt;
- 125. 4-(2′-Fluoro-biphenyl-4-yl)-4-hydroxyimino-butyric acid;
- 126. 4-Hydroxyimino-4-(4′-methyl-biphenyl-4-yl)-butyric acid;
- 127. 4-Hydroxyimino-4-(4′-methoxy-biphenyl-4-yl)-butyric acid;
- 128. 4-(4′-Cyano-biphenyl-4-yl)4-hydroxyimino-butyric acid;
- 129. 4-(3′-Fluoro-biphenyl-4-yl)4-hydroxyimino-butyric acid;
- 130. 4-Hydroxyimino-4-(4′-methylsulfanyl-biphenyl-4-yl)-butyric acid;
- 131. 4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid, sodium salt monohydrate;
- 132. 4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid, hemi calcium salt,
- 133. 4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid, procaine salt;
- 134. 4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid, hemi magnesium salt, dihydrate;
- 135. 4-(4′-tert-Butyl-biphenyl-4-yl)-4-hydroxyimino-butyric acid;
- 136. 4-(3′,4′-Dichloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid; and
- 137. 4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid, 2,2-dimethyl-propionyloxymethyl ester; and corresponding isomers thereof; or a pharmaceutically acceptable salt thereof.
- 138. Most particularly valuable in the first embodiment of the invention is 4-(4′-chloro-biphenyl4-yl)-4-hydroxyimino-butyric acid; and corresponding isomers thereof; or a pharmaceutically acceptable salt thereof.
-
- 140. and R3 and R3a are fluorine.
-
- 142. and R4 and R4a are fluorine.
-
- 144. and R3 is fluorine.
-
- 146. and R4 is fluorine.
-
- 148. R3 and R3a are fluorine.
-
- 150. R4 and R4a are fluorine.
-
- 152. R3 is fluorine.
-
- 154. R4 is fluorine.
- 155. Particularly valuable in the second embodiment of the invention is a compound selected from the group consisting of:
- 156. (±)-4-(4′-Chloro-biphenyl-4-yl)-4-hydroxy-butyric acid; and
- 157. (±)-4-(4′-Chloro-biphenyl-4-yl)-3-fluoro-4-oxo-butyric acid;
- 158. and corresponding isomers thereof, or a pharmaceutically acceptable salt thereof.
- 159. The compounds of Formula I and Formula II are valuable inhibitors of gelatinase A and/or stromelysin-1. It has been shown previously that inhibitors of matrix metalloproteinases have efficacy in models of disease states like arthritis and metastasis that depend on modification of the extracellular matrix.
- 160. In vitro experiments were carried out which demonstrate the efficacy of compounds of Formula I and Formula II as potent and specific inhibitors of gelatinase A and stromelysin-1. Experiments were carried out with the catalytic domains of the proteinases. Table 1 shows the activity of Examples 1-5 versus GCD (recombinant gelatinase A catalytic domain) and SCD (stromelysin-1 catalytic domain). IC50 values were determined using a thiopeptolide substrate, Ac-Pro-Leu-Gly-thioester-Leu-Leu-Gly-OEt (Ye Q.-Z., Johnson L. L., Hupe D. J., and Baragi V., “Purification and Characterization of the Human Stromelysin Catalytic Domain Expressed in Escherichia coli”, Biochemistry, 1992;31:11231-11235).
TABLE 1 IC50 (μM) Example GCD SCD 1 0.039 0.12 2 0.058 0.11 3 0.73 0.93 4 0.30 0.82 5 0.15 0.28 6 0.074 0.187 7 0.14 0.089 8 0.424 0.95 9 0.324 0.865 10 0.076 0.12 11 0.172 1.81 12 0.0709 0.281 13 0.0855 0.123 14 0.0336 0.0499 15 0.221 0.953 16 0.12 0.167 17 0.057 0.14 18 0.96 2.39 19 0.052 0.097 20 0.0889 0.0839 21 0.0411 0.0668 22 0.05 0.088 23 6.8 3.9 24 1.9 2 - 161. Experimental Autoimmune Encephalomyelitis (EAE)
- 162. Compounds were administered by oral route to mice sensitized with a fragment of mouse myelin basic protein to induce EAE. Mice were dosed daily for 21 days beginning 4 hours before sensitization on day one. EAE responses of compound treated groups were compared to those of a control group of mice sensitized identically and a sham-sensitized group treated with vehicle. The values reported in Table 2 include responses during compound treatment only.
- 163. METHODS
- 164. Sensitization Female mice [PL/J(FI)×SJL/J, Jackson Labs], 11 weeks old, were sensitized s.c. (0.05 cc×2) at the base of the tail with an emulsion containing equal parts of mouse myelin basic protein (MBP) fragment (amino acids 1-9 of the N-terminus of MBP) in saline and Difco Complete Freund's Adjuvant (CFA) fortified with heat killed desiccated Mycobacteria tuberculosis (MT). Each mouse received 300 μg of MBP fragment (230 μg free base) and 200 μg MT followed by retrobulbar (IV) injection of 200 ng of B. pertussis toxin in 0.2 cc of saline. Two days later mice receive a second injection of B. pertussis toxin.
- 165. Neurological Assessment Animals were weighed and evaluated for symptoms of EAE before and frequently after sensitization. EAE score: (0.5=slight limp tail, 1=limp tail or slow to right, 1.5=slight limp tail and slow to right, 2=paresis/mild paralysis or incontinence, 2.5=mild paralysis and slow to right or complete paralysis (one hind limb), 3=hind limb paralysis (both), 3.5=hind limb paralysis (both) and limp torso; 4=additional fore limb paralysis, 4.5=head movement only, 5=moribund, death after previous EAE symptoms). Evaluators were blinded as to compound treatments and previous behavioral scores.
- 166. Disease symptoms are compared among groups for EAE severity, incidence, time to onset, cumulative score, and deaths. Peak EAE score: the mean of the highest score for each mouse in a group, independent of duration of symptoms; EAE incidence: the mean number of mice showing symptoms of EAE, defined as having EAE scores on any 3 consecutive days that total “≧3.0”. EAE deaths: an animal that died must have presented previous evidence of an EAE score greater than 0.5; EAE onset: the first of a 3-day series scoring a total of ≧3.0.
- 167. A Cumulative EAE score is calculated for each animal. A mean of all animals' cumulative scores is then determined for each day.
- 168. Experimental groups were assumed to be similar and were compared for statistical significance by a 2-tailed T-Test (p≦0.05).
- 169. Compound was homogenized manually with an aliquot of warm vehicle (1.0% hydroxypropyl-methylcellulose [Sigma] in water) in glass mortar tubes and homogenizing pestle. The smooth compound paste was gradually suspended in vehicle. Mice were dosed with compound and/or vehicle, 10 mL/kg in groups of ten. A sham-sensitized group was similarly dosed with vehicle.
- 170. RESULTS
- 171. Example 1, dosed at 50 mg/kg, delayed the onset of EAE for 4 days. Example 1 also reduced the EAE cumulative score (Table 2). There were no EAE-induced deaths (to Day 43) in the Example 1 treated group.
TABLE 2 Mouse Experimental Autoimmune Encephalomyelitis (EAE) Peak EAE EAE EAE Onset EAE EAE Cumulative Treatment/Oral Dose Score Incidence (Day) Deaths Score Sham 0.2 ± 0.1 0/10 0/10 0.3 ± 0.2 p ≦0.05* p ≦0.05* Control 4.2 ± 0.1 10/10 12.2 ± 0.9 2/10 31.6 ± 1.7 Example 1, 50 mg/kg 3.8 ± 0.3 9/10 16.2 ± 1.0 0/10 17.9 ± 2.8 p ≦0.05* p ≦0.05* - 172. Streptococcal Cell Wall Model (SCW)
- 173. Female Lewis rats (125-150 g) are sensitized to the 100 P preparation of streptococcal cell walls (obtained from Lee Labs, Greyson, Ga.) with an intra-articular injection of 10 μL SCW containing 6 μg of the cell wall particles into one of the ankle joints. The contralateral ankle joint is injected with an equal volume of saline. Twenty-one days later, animals are placed in treatment groups (7 per group) according to their immediate response to the intra-articular injection of SCW (to obtain groups with equivalent responses). A control group is injected with saline. Each animal is then lightly anesthetized with ether, the paw volumes of each hind paw are determined by mercury plethysmography, and the animals are injected IV via the tail vein with a 0.25-mL dose of SCW containing 100 μg of the 100 P cell wall particles. Each group of rats receives an oral dose of compound for 7 days in an appropriate dosing vehicle beginning on Day 21.
- 174. Paw swelling is determined by subtracting the paw volume of the saline injected ankle from the SCW sensitized ankle. Percent inhibition is calculated by comparing the compound treatment group with the control group. A one-way analysis of variance with a Dunnett's test for multiple comparisons is used for determination of statistical power.
TABLE 3 Inhibition of SCW-Induced Hindpaw Edema by Example 1 Dose (mg/kg bid) % Inhibition at Day 4 3 71 10 86 30 86 - 175. Rats were sensitized 21 days prior to initiating the flare response by systemic SCW. Example 1 was given 1 hour before to SCW and again 2 hours later for 4 consecutive days. Paw volume was measured 24 hours after the first administration. Numbers represent the mean percent inhibition of swelling from 10 animals/treatment group.
- 176. Adjuvant Arthritis Model
- 177. Polyarthritis was induced by a modified method of the procedure developed by Chang, et al., Arthritis and Rheum., 1980;23:62. Briefly, male Wistar rats (100-115 g each) received subcutaneous injection of 0.1 mL of 10 mg/mL (or 1 mg) Mycobacterium butyricum suspended in paraffin oil in the distal third of the tail, using a glass tuberculin syringe and 25 gauge needle. M. Butyricum suspension was achieved by sonication in paraffin oil for 10 minutes with the vessel immersed in ice bath. Rates were randomized after injection and placed in cages. On Day 12 following immunization, rats with the highest paw swelling as well as those that showed no swelling at all were culled. The rest were randomized and separated into dosing (test) groups (N=10 per group) and control (vehicle) group (N=20). The hind paws volume and the weights of each animal in each group was recorded and served as the initial values for the study. Hind paw swelling was assessed using mercury plethysmography beginning on Day 12 and every other day till Day 22 (final assessment).
- 178. Example 1 was tested at 6, 20, and 60 mg/kg divided into two equal doses per day and suspended in 1% methyl cellulose (2% viscosity, 1500 centipoises, Sigma). The dose volume was 10 mL/kg PO. Animals were dosed twice daily for 10 days starting on Day 12. Also, hind paw volumes were measured on Days 12, 14, 16, 18, 20, and 22 as stated above. The results are reported as % inhibition of delta edema on Day 22. Delta edema is the difference in footpad edema between the day in which animals are assessed and that on Day 12 of the study. The percent inhibition is based on a comparison of the treatment groups to the vehicle group.
TABLE 4 Inhibition of Adjuvant Arthritis by Example 1 Dose (mg/kg bid) % Inhibition P-value 3.0 68.1 <0.001 10.0 84.4 <0.001 30.0 99.9 <0.001 - 179. Acetic Acid-Induced Hyperalgesia Model
- 180. Male Swiss-Webster mice (20-30 g) were pretreated orally with vehicle or Example 1 (0.03-10 mg/kg) 1 hour before the administration of 0.6% acetic acid (10 mL/kg i.p., in saline). Treatment groups (n=8) were divided so that 2 animals were placed into each of four 4″×4″×4″ adjacent plexiglass containers. Seven minutes after acid, writhing motions (abdominal contractions, concave arching of the back, and/or hindleg stretching) were tallied for 5 minutes. The ID40 value was calculated by linear regression analysis.
TABLE 5 Inhibition of Acetic Acid-Induced Hyperalgesia by Example 1 Dose (mg/kg) % Inhibition ID40 (mg/kg) 0.03 7 0.1 26 0.3 37 0.65 1 41 10 65 - 181. The following list contains abbreviations and acronyms used within the schemes and text:
CDI 1,1′-Carbonyl diimidazole CH2Cl2 Dichloromethane CNS Central nervous system EAE Experimental autoimmune encephalomyelitis MMP Matrix metalloproteinase VSMC Vascular smooth muscle cell EtOH Ethanol HCl Hydrogen chloride IC50 Concentration of compound required to inhibit 50% of enzme activity KHMDS Potassium hexamethyldisilazide KOH Potassium hydroxide LiOH Lithium hydroxide MeOH Methanol n-BuLi n-butyl lithium THF Tetrahydrofuran TIMPs Tissue inhibitors of metalloproteinases H2NOH Hydroxylamine H2S Hydrogen sulfide Bu3SnCl Tributyltin chloride AlCl3 Aluminum chloride FeCl3 Ferric chloride VCl3 Vanadium chloride ZnCl2 Zinc chloride MnCl2 Manganese chloride CuCN Copper(I)cyanide Na2CO3 Sodium carbonate KBr Potassium bromide K2CO3 Potassium carbonate NaNO2 Sodium nitrite NaHCO2 Sodium bicarbonate NBS N-Bromosuccinimide NFSI N-Fluorodibenzenesulfonamide TFA Trifluoroacetic acid TfOH Trifluoromethanesulfonic acid Tf2O Trifluoromethanesulfonic anhydride HBr Hydrogen bromide TEA Triethylamine Me Methyl Et Ethyl tBu +E,uns t-butyl Bn Benzyl PhNO2 Nitrobenzene H2O2 Hydrogen peroxide (COCl)2 Oxalyl chloride CCl4 Carbon tetrachloride B(OMe)3 Trimethylborate BF3.OEt2 Boron triflouride etherate Fe(acac)3 Iron(III)acetylacetonate PdCl2(PPh3)2 Bis(triphenylphosphine)palladium(II)chloride Pd(PPh3)4 Tetrakis(triphenylphosphine)palladium(0) Ph Phenyl DAST Diethylamino sulfur trifluoride DMF Dimethylformamide TMS-Cl Chlorotrimethylsilane CDCl3 Deuterated chloroform DMSO-d6 Deuterated dimethylsulfoxide MgSO4 Magnesium sulfate Na2SO4 Sodium sulfate -
- 183. R5 is OH or SH, and R, R1, R2, R3, and R4 are as defined above can be made by one of three general routes, as set forth in Scheme 1.
- 184. Route A involves reaction of a compound of Formula (2) with a suitable metallating agent such as, for example, n-butyl lithium, magnesium metal, and the like to generate an organolithium or organomagnesium salt in situ, followed by reaction of the salt with a suitable metallating reagent such as, for example, tri-(n-butyl)tin chloride, trimethylborate, and the like to give a compound of Formula (3). A compound of Formula (3) can be coupled with bromobenzene or trifluoromethylsulfonyloxybenzene in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate to give a compound of Formula (4). Alternatively, a compound of Formula (4) can be prepared by coupling a compound of Formula (5) with phenylboric acid or tributylphenyltin in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)-palladium(II)chloride, and the like with or without sodium bicarbonate. Alternatively, a compound of Formula (4) can be prepared by coupling a compound of Formula (5a) with benzene in the presence of a suitable diazotization reagent such as, for example, iso-amyl nitrite at temperatures between about 0° C. to about reflux. A compound of Formula (4) can be acylated using Friedel-Crafts conditions with a compound of Formula (6), prepared according to known methods such as, for example, as reported by Beckett, et al., Synlett., 1993:137, or the corresponding anhydride of Formula (6a) in the presence of a Lewis acid-such as, for example, FeCl3, AlCl1 3, ZnCl2, and the like either neat or in an inert solvent such as, for example, dichloromethane, nitrobenzene, and the like at about −40° C. to about 120° C. to give a compound of Formula (7). A compound of Formula (7) can be deprotected using standard methodology known to one skilled in the art to give the corresponding carboxylic acid, which then can be condensed with a compound of Formula (8) to give a compound of Formula Ia. Alternatively, a compound of Formula (7) can be deprotected using standard methodology known to one skilled in the art, and the resulting carboxylic acid coupled with hydrogen sulfide after pretreatment with a suitable coupling agent such as, for example, 1,1′-carbonyldiimidazole (CDI), isobutyryl chloride, and the like, and then condensed with a compound of Formula (8) to give a compound of Formula Ib.
- 185. Route B involves reaction of a compound of Formula (3), prepared according to Route A, with 4-bromo-trifluoromethylsulfonyloxybenzene in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)-palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate to give a compound of Formula (9). Alternatively, a compound of Formula (4) prepared as described for Route A can be reacted with bromine to give a compound of Formula (9). A compound of Formula (9) can be reacted with a suitable metallating agent such as, for example, n-butyl lithium and the like to generate an organolithium in situ, which in turn can be reacted with a suitable metallating agent such as, for example, MnCl2, CuCN, ZnCl2, VCl3, and the like to generate a modified organometallic agent in situ, followed by reaction with a compound of Formula (6) to give a compound of Formula (7). Alternatively, a compound of Formula (9) can be reacted with a suitable metallating agent such as, for example, n-butyl lithium, magnesium metal, and the like to generate an organolithium or organomagnesium salt in situ, followed by reaction of the salt with a suitable metallating reagent such as, for example, tri-(n-butyl)tin chloride, trimethylborate, and the like to give a compound of Formula (10). A compound of Formula (10) can be coupled with a compound of Formula (6) in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)-palladium(II)chloride and the like with or without sodium bicarbonate to give a compound of Formula (7). A compound of Formula (7) can be converted to compounds of Formulas Ia and Ib according to the methods outlined for Route A.
- 186. Route C involves reaction of a compound of Formula (11) with a suitable metallating agent such as, for example, n-butyl lithium, magnesium metal, and the like to generate an organolithium or organomagnesium salt in situ, followed by reaction of the salt with a suitable tin metallating reagent such as, for example, tri-(n-butyl)tin chloride and the like to give a compound of Formula (12). A compound of Formula (12) can be coupled with a compound of Formula (6) in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)-palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate to give a compound of Formula (13). A compound of Formula (13) can be deprotected using standard methodology known to one skilled in the art to give the corresponding free phenol, which can be reacted with trifluoromethanesulfonic anhydride to give the corresponding trifluoro-methylsulfonyloxy derivative, which can be coupled with a compound of Formula (3) in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)-palladium(II)chloride, and the like with or without sodium bicarbonate to give a compound of Formula (7). A compound of Formula (7) can be converted to compounds of Formulas Ia and Ib according to the methods outlined for Route A.
-
- 188. R5 is OH or SH, and R, R1, and R2 are as defined in Formula I can be synthesized according to the sequence described in Scheme 2.
- 189. In Scheme 2, a biphenyl (4), which can be purchased from commercial sources or synthesized as described in Scheme 1 or hereinafter in Scheme 5 and wherein R and R1 are as defined in Formula I, is reacted with a suitable acid chloride such as, for example, 3-carbomethoxypropionyl chloride and the like in the presence of a Lewis acid catalyst such as, for example, aluminum chloride and the like in a suitable solvent such as, for example, dichloromethane, nitrobenzene, and the like at temperatures between about −40° C. and about 120° C. to give the keto-ester (14). The keto-ester (14) can be hydrolyzed to the corresponding keto-acid (15) by stirring in aqueous hydrochloric acid of a concentration between about 2 M and about 6 M and at temperatures between about 25° C. and about reflux or by reacting with an alkali metal hydroxide such as, for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, and the like in a suitable solvent such as, for example, methanol, ethanol, aqueous tetrahydrofuran, and the like at temperatures between about 0° C. and about reflux followed by acidification. Alternatively, the biphenyl (4) can be reacted with succinic anhydride in the presence of a Lewis acid catalyst such as, for example, aluminum chloride and the like, in a suitable solvent such as, for example, dichloromethane, nitrobenzene, and the like at temperatures between about −40° C. and about 120° C. to give the keto-acid (15) in one step. The keto-acid (15) can be reacted with a compound of Formula (8) with or without a suitable base such as, for example, lithium carbonate, sodium carbonate, potassium carbonate, and the like in a suitable solvent such as, for example, ethanol, methanol, isopropanol, and the like at temperatures between about 25° C. and about reflux to give the carboxylic acid (16). Alternatively, the keto-acid (15) can be reacted with a suitable coupling agent such as, for example, CDI, N,N′-dicyclohexylcarbodiimide (DCC), isobutyryl chloride (i-C4H9OCOCl), and the like followed by hydrogen sulfide to give the keto-thioacid (17). The keto-thioacid (17) can be reacted with a compound of Formula (8) with or without a suitable base such as, for example, lithium carbonate, sodium carbonate, potassium carbonate, and the like in a suitable solvent such is, for example, ethanol, methanol, isopropanol, and the like at temperatures between about 25° C. and about reflux to give the thioacid (18).
-
- 191. R5 is OH or SH, and R, R1, R2, R3, and R4 are as defined in Formula I and Formula II can be synthesized according to the sequence outlined in Scheme 3.
- 192. In Scheme 3, (R)- or (S)-4-benzyl-2-oxazolidinone can be reacted with an acid chloride (19), prepared using standard methodology known to one skilled in the art, in the presence of a non-nucleophilic base such as, for example, sodium hydride and the like in an inert solvent such as, for example, tetrahydrofuran and the like at temperatures between about −40° C. and about reflux to give the N-acyl-oxazolidinone (20). The N-acyl-oxazolidinone (20) can be reacted with a suitable base such as, for example, potassium hexamethyldisilazide (KHDMS), lithium diisopropylamide (LDA), and the like followed by a bromoester (21), prepared in racemic form by bromination of the corresponding ester (22) with a suitable brominating reagent such as, for example, N-bromosuccinamide (NBS) and the like in a suitable solvent such as, for example, carbon tetrachloride and the like in the presence of ultraviolet light and a peroxide such as, for example, benzoyl peroxide and the like or in chiral form by reaction of an amino acid (23) with sodium nitrite and potassium bromide in aqueous hydrobromic acid followed by reacting the resulting bromoacid with a suitable coupling agent such as, for example. CDl, DCC, i-C4H9OCOCl, and the like and reacting the activated acid with a suitable alcohol such as, for example, methanol, ethanol, benzyl alcohol, and the like to give a compound of Formula (24). A compound of Formula (24), which may exist as a mixture of diastereoisomers, can be purified by a suitable technique such as, for example, chromatography on silica gel, and the like to give pure stereoisomers, which can be reacted with lithium hydroperoxide in THF-water followed by reaction of the′resulting carboxylic acid with oxalyl chloride to give the corresponding acid chloride (25).
- 193. The (4-(1,1-dimethylethyl)oxyphenyl)tributyltin (27) is synthesized as set forth in Scheme 3. The commercially available 4-bromophenol is reacted with isobutylene in the presence of an acid catalyst such as, for example, trifluoroacetic acid (TFA)/triethylamine (TEA), boron trifluoride-etherate (BF3•OEt2), and the like in a suitable solvent such as, for example, dichloromethane and the like to give the t-butyl ether (26). The t-butyl ether (26) is reacted with a suitable organolithium such as, for example, n-butyl lithium and the like in tetrahydrofuran (THF) at low temperature followed by tri-n-butyltin chloride to give the (4-(1,1-dimethylethyl)oxyphenyl)tributyltin (27). The (4-(1,1-dimethylethyl)-oxyphenyl)tributyltin (27) is reacted with the acid chloride (25) in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate in a solvent such as, for example, THF, dioxane, and the like at temperatures between about −20° C. and about reflux to give the keto-ester (28). The keto-ester (28) is deprotected by reacting with TFA in the presence of a suitable carbonium ion scavenger such as, for example, anisole, thioanisole, triethylsilane, and the like in a solvent such as, for example, dichloromethane, chloroform, and the like, and the resulting phenol is reacted with trifluoromethanesulfonic anhydride to give the triflate (29). The triflate (29) is reacted with the phenylboric acid (30), prepared by reacting the bromobenzene (31) first with n-butyl lithium or t-butyl lithium in tetrahydrofuran at low temperatures followed by trimethylborate and acid hydrolysis, in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)-palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate in a solvent such as, for example, THF, dioxane, and the like at temperatures between about −20° C. and about reflux to give the keto-ester (32). Alternatively, the triflate (29) can be reacted with the phenyltributyltin (33), prepared by reacting the bromobenzene (31) first with n-butyl lithium or t-butyl lithium in tetrahydrofuran at low temperatures followed by tri-n-butyltin chloride, in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)-palladium(II)chloride with or without sodium bicarbonate in a solvent such as, for example, THF, dioxane, and the like at temperatures between about −20° C. and about reflux to give the keto-ester (32). The keto-ester (32) can be hydrolyzed to the corresponding keto-acid by stirring in aqueous hydrochloric acid at a concentration between about 2 M and about 6 M and at temperatures between about 25° C. and about reflux or by reacting with an alkali metal hydroxide such as, for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, and the like in a suitable solvent such as, for example, methanol, ethanol, aqueous tetrahydrofuran, and the like at temperatures between about 0° C. and about reflux, and the keto-acid can be reacted with a compound of Formula (8) with or without a suitable base such as, for example, lithium carbonate, sodium carbonate, potassium carbonate, and the like in a suitable solvent such as, for example, ethanol, methanol, isopropanol, and the like at temperatures between about 25° C. and about reflux to give the carboxylic acid (34). Alternatively, the keto-ester (32) can be hydrolyzed to the corresponding keto-acid by stirring in aqueous hydrochloric acid at a concentration between about 2 M and about 6 M and at temperatures between about 25° C. and about reflux or by reacting with an alkali metal hydroxide such as, for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, and the like in a suitable solvent such as, for example, methanol, ethanol, aqueous tetrahydrofuran, and the like at temperatures between about 0° C. and about reflux, and the keto-acid can be reacted with a suitable coupling agent such as, for example, CDI, DCC, i-C4H9OCOCl, and the like followed by hydrogen sulfide to give the keto-thioacid, which in turn can be reacted with a compound of Formula (8) with or without a suitable base such as, for example, lithium carbonate, sodium carbonate, potassium carbonate and the like in a suitable solvent such as, for example, ethanol, methanol, isopropanol and the like at temperatures between about 25° C. and about reflux to give the thioacid (35).
-
- 195. R5 is OH or SH, and R, R1, R3, and R4 are as defined in Formula I and Formula II can be synthesized according to the sequence outlined in Scheme 4.
- 196. In Scheme 4, the phenylboric acid (36) or the phenyltributyltin (33), prepared as described in Scheme 3, is reacted with 4-bromo-trifluoromethyl-sulfonyloxybenzene (37), prepared by reacting 4-bromophenol with trifluoromethanesulfonic anhydride in dichloromethane, in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate in a solvent such as, for example, THF, dioxane, and the like at temperatures between about −20° C. and about reflux to give the biphenyl (9). The biphenyl (9) can be reacted with a suitable metallating agent such as, for example, n-butyl lithium and the like in a suitable solvent such as, for example, THF and the like at low temperatures to generate an organolithium in situ, which in turn can be reacted with a suitable metallating agent such as, for example, MnCl2, CuCN, ZnCl2, VCl3, and the like to generate a modified organometallic agent in situ, which in turn can be reacted with an acid chloride (25) in the presence of lithium bromide with or without an additional Lewis acid such as, for example, iron(III)acetylacetonate (Fe(acac)3) to give the keto-ester (32). Alternatively, the biphenyl (9) can be reacted with a suitable metallating agent such as, for example, n-butyl lithium and the like in a suitable solvent such as, for example, THF and the like at low temperatures to generate an organolithium in situ, which in turn can be reacted with a Weinreb amide (38), prepared by reacting the acid chloride (25) with N,O-dimethylhydroxylamine hydrochloride in the presence of a base such as, for example, triethylamine, diisopropylethylamine, and the like in a suitable solvent such as, for example, dichloromethane, THF, and the like at temperatures between about −78° C. and about 25° C., to give the keto-ester (32). In a second alternative approach, the biphenyl (9) can be reacted with a suitable metallating agent such as, for example, n-butyl lithium and the like in a suitable solvent such as, for example, THF and the like at low temperatures to generate an organolithium in situ, which in turn can be reacted with tri-n-butyltin chloride to give the biphenyltin (10). The biphenyltin (10) can be reacted with the acid chloride (25) in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)-palladium(II)chloride, and the like with or without sodium bicarbonate in a solvent such as, for example, THF, dioxane, and the like at temperatures between about −20° C. and about reflux to give the keto-ester (32). The keto-ester (32) so made can be converted to the carboxylic acid (34) or thioacid (35) according to the procedures described in Scheme 3.
-
- 198. R5 is OH or SH, and R, R1, R3, and R4 are as defined in Formula I and Formula II can be synthesized according to the sequence outlined in Scheme 5.
- 199. In Scheme 5, the phenol (39) is reacted with trifluoromethanesulfonic anhydride in a suitable solvent such as, for example, dichloromethane at temperatures between about −40° C. and about reflux to give the triflate (40). The triflate (40) is reacted with phenylboric acid or tri-n-butylphenyltin in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)-palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate in a solvent such as, for example, THF, dioxane, and the like at temperatures between about −20° C. and about reflux to give the biphenyl (4). Alternatively, the phenylboric acid (30) or phenyltributyltin (33) is reacted with bromobenzene or trifluoromethylsulfonyloxybenzene in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)-palladium(0), bis(triphenylphosphine)palladium(II)chloride, and the like with or without sodium bicarbonate in a solvent such as, for example, THF, dioxane and the like at temperatures between about −20° C. and about reflux to give the biphenyl (4). The biphenyl (4) is reacted with an acid chloride (25) in the presence of a Lewis acid catalyst such as, for example, aluminum chloride and the like in a suitable solvent such as, for example, dichloromethane, nitrobenzene, and the like at temperatures between about −40° C. and about 120° C. to give the keto-ester (32). The keto-ester (32) so made can be converted to the carboxylic acid (34) or thioacid (35) according to the procedures described in Scheme 3.
-
- 201. R5 is OH or SH, and R, R1, R2, R3, R3a, R4, and R4a are as defined in Formula I and Formula II can be synthesized according to the sequence outlined in Scheme 6.
- 202. In Scheme 6 the biphenyl (4), prepared according to the procedures outlined in Schemes 1 or 5, is allowed to react with a suitable acylating agent such as, for example, the acid chloride of Formula (19) and the like in the presence of a Lewis acid such as, for example, FeCl3, AICl3, ZnCl2, and the like either neat or in an inert solvent such as, for example, dichloromethane, nitrobenzene, and the like at about −40° C. to about 120° C. to give a compound of Formula (41). A compound of Formula (41) is allowed to react with a suitable strong base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyl-disilazide, and the like in an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like at about −78° C. to about 25° C. followed by a suitable alkylating agent of Formula (42), or N-fluorodibenzenesulfonamide (NFSI) for R3a equals fluorine, at temperatures at about −78° C. to about 50° C. to give a compound of Formula (43). A compound of Formula (43) is allowed to react with a suitable strong base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like in an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like at about −78° C. to about 25° C. followed by a suitable alkylating agent of Formula (44) to give a compound of Formula (45). A compound of Formula (45) is deprotected using appropriate conditions such as, for example trifluoroacetic acid or anhydrous hydrogen chloride in a suitable solvent such as, for example, dichloromethane or chloroform, with or without a carbonium ion scavenger such as, for example, triethylsilane, and the resulting carboxylic acid is resolved using methods known to one skilled in the art to give a compound of Formula (46). A compound of Formula (46) is condensed with a compound of Formula (8) to give a compound of Formula (Ic). Alternatively, a compound of Formula (46) is allowed to react with hydrogen sulfide after pretreatment with a suitable coupling agent such as, for example, 1,1′-carbonyldiimidazole (CDI), N,N′-dicyclohexylcarbodiimide, isobutyryl chloride, and the like, and then condensed with a compound of Formula (8) to give a compound of Formula (Id).
- 203. Alternatively, a compound of Formula (45) is allowed to react with a suitable base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like in an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like at about −78° C. to about 25° C. followed by a suitable alkylating agent of Formula (47) or NFSI for R4 equals fluorine, at temperatures at about −78° C. to about 50° C. to give a compound of Formula (48). A compound of Formula (48) is deprotected using appropriate conditions such as, for example, trifluoroacetic acid or anhydrous hydrogen chloride in a suitable solvent such as, for example, dichloromethane or chloroform, with or without a carbonium ion scavenger such as, for example, triethylsilane, and the resulting carboxylic acid is resolved using methods known to one skilled in the art to give a compound of Formula (49). A compound of Formula (49) is converted to compounds of Formulas (Ie) and (If) according to the procedure described for the conversion of a compound of Formula (46) to compounds of Formulas (Ic) and (Id), respectively. Alternatively, a compound of Formula (48) is allowed to react with a suitable base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like in an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like at about −78° C. to about 25° C. followed by a suitable alkylating agent of Formula (50) or NFSI for R4a equals fluorine, at temperatures at about −78° C. to about 50° C. to give a compound of Formula (51). A compound of Formula (51) is deprotected using appropriate conditions such as, for example, trifluoroacetic acid or anhydrous hydrogen chloride in a suitable solvent such as, for example, dichloromethane or chloroform, with or without a carbonium ion scavenger such as, for example, triethylsilane, and the resulting carboxylic acid is resolved using methods known to one skilled in the art to give a compound of Formula (52). A compound of Formula (52) is converted to compounds of Formulas (Ig) and (Ih) according to the procedure described for the conversion of a compound of Formula (46) to compounds of Formulas (Ic) and (Id), respectively.
-
- 205. R5 is OH or SH, and R, R1, R2, R3, R3a, R4, and R4a are as defined in Formula I and Formula II are synthesized according to the sequence outlined in Scheme 7.
- 206. In Scheme 7, a compound of Formula (53) is allowed to react with a suitable base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like in an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like at about −78° C. to about 25° C. followed by a suitable alkylating agent of Formula (50) or NFSI for R4a equals fluorine, at temperatures at about −78° C. to about 50° C. to give a compound of Formula (54). A compound of Formula (54) is allowed to react with a suitable base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like in an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like at about −78° C. to about 25° C. followed by a suitable alkylating agent of Formula (55), prepared by allowing a compound of Formula (4), prepared according to the method outlined in Scheme 5, with a suitable acylating agent such as BrCH2COCl in the presence of a suitable Lewis acid such as, for example, FeCl3, AlCl3, ZnCl2, and the like either neat or in an inert solvent such as, for example, dichloromethane, nitrobenzene, and the like at about −40° C. to about 120° C., to give a compound of Formula (56). A compound of Formula (56) is deprotected using appropriate conditions such as, for example, trifluoroacetic acid or anhydrous hydrogen chloride in a suitable solvent such as, for example, dichloromethane or chloroform, with or without a carbonium ion scavenger such as, for example, triethylsilane, and the resulting carboxylic acid can be resolved using methods known to one skilled in the art to give a compound of Formula (57). A compound of Formula (57) is converted to compounds of Formulas (Ii) and (Ij) according to the procedure described in Scheme 6 for the conversion of a compound of Formula (46) to compounds of Formulas (Ic) and (Id), respectively. Alternatively, a compound of Formula (56) is allowed to react with a suitable base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like in an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like at about −78° C. to about 25° C. followed by a suitable alkylating agent of Formula (58), or NFSI for R3 equals fluorine, at temperatures at about −78° C. to about 50° C. to give a compound of Formula (59). A compound of Formula (59) is deprotected using appropriate conditions such as, for example, trifluoroacetic acid or anhydrous hydrogen chloride in a suitable solvent such as, for example, dichloromethane or chloroform, with or without a carbonium ion scavenger such as, for example, triethylsilane, and the resulting carboxylic acid can be resolved using methods known to one skilled in the art to give a compound of Formula (60). A compound of Formula (60) is converted to compounds of Formulas (Ik) and (Il) according to the procedure described in Scheme 6 for the conversion of a compound of Formula (46) to compounds of Formulas (Ic) and (Id), respectively. Alternatively, a compound of Formula (59) is allowed to react with a suitable base such as, for example, n-butyl lithium, lithium diisopropylamide, potassium hexamethyldisilazide, and the like in an inert solvent such as, for example, tetrahydrofuran, diethyl ether, and the like at about −78° C. to about 25° C. followed by a suitable alkylating agent of Formula (42), or NFSI for R3a equals fluorine, at temperatures at about −78° C. to about 50° C. to give a compound of Formula (51). A compound of Formula (51) is converted via a compound of Formula (52) to compounds of Formulas (Ig) and (Ih) according to the procedure described in Scheme 6.
- 207. Compounds of Formula II wherein Z is CH(OH), C=S, CF2, or CHF and R5 is OH or SH, and R, R1, R3, R3a, R4, and R4a are as defined in Formula II are synthesized according to the sequence outlined in Scheme 8.
- 208. In Scheme 8, keto-esters of Formulas (7), (14), (32), (45), (48), (51), (56), or (59) can be hydrolyzed to the corresponding keto-acids, such as by stirring in aqueous hydrochloric acid at a concentration between about 2 M and about 6 M and at temperatures between about 25° C. and reflux or by stirring in the presence of a suitable alkali metal hydroxide such as, for example, lithium, sodium, potassium hydroxide and the like in a suitable solvent such as, for example, methanol, ethanol, aqueous THF and the like at temperatures between about 0° C. and reflux followed by acidification, and the keto-acids can be reduced using an appropriate hydride donating reagent such as sodium borohydride in ethanol, L- or S-selectride and the like in a suitable solvent such as, for example, toluene, tetrahydrofuran and the like to give the alcohol-acid (61). The alcohol-acid (61) can be silylated such as, for example, by allowing it to react with chlorotrimethylsilane (TMS-Cl) in the presence of a catalyst such as, for example, imidazole and the like in a suitable solvent such as, for example, anhydrous dimethylformamide (DMF) and the like to give the corresponding O-silyl alcohol-silyl ester, which can be fluorinated by allowing it to react with a suitable reagent such as, for example, diethylaminosulfur trifluoride (DAST) and the like in a suitable solvent such as, for example, dichloromethane, chloroform and the like at temperatures between about −20° C. and about reflux to give the corresponding fluoro-silyl ester, which can be hydrolyzed by stirring in aqueous hydrochloric acid at a concentration between about 2 M and about 6 M and at temperatures between about 25° C. and reflux or by stirring in the presence of a suitable alkali metal hydroxide such as, for example, lithium, sodium, potassium hydroxide and the like in a suitable solvent such as, for example, methanol, ethanol, aqueous THF and the like at temperatures between about 0° C. and reflux followed by acidification or by stirring in the presence of a suitable fluoride reagent such as, for example, tetra-n-butylammonium fluoride, aqueous hydrogen fluoride and the like in a suitable solvent such as, for example, tetrahydrofuran, acetonitrile and the like to give the fluoro-acid (62). The fluoro-acid (62) can be reacted with a suitable coupling agent such as, for example, CDI, DCC, i-C4H9OCOCl, and the like followed by hydrogen sulfide to give the fluoro-thioacid (63).
- 209. Alternatively, the keto-esters of Formulas (7), (14), (32), (45), (48), (51), (56), or (59) can be allowed to react with a suitable fluorinating agent such as, for example, DAST and the like in a suitable solvent such as, for example, dichloromethane, chloroform and the like, at temperatures between about −20° C. and about reflux to give the corresponding fluoro-ester, which can be hydrolyzed such as by stirring in aqueous hydrochloric acid at a concentration between about 2 M and about 6 M and at temperatures between about 25° C. and reflux or by stirring in the presence of a suitable alkali metal hydroxide such as, for example, lithium, sodium, potassium hydroxide and the like in a suitable solvent such as, for example, methanol, ethanol, aqueous THF and the like at temperatures between about 0° C. and reflux followed by acidification to give the corresponding difluoro-acid (64). The difluoro-acid (64) can be allowed to react with a suitable coupling agent such as, for example, CDI, DCC, i-C4H9OCOCl, and the like followed by hydrogen sulfide to give the fluoro-thioacid (65).
- 210. Alternatively, keto-esters of Formulas (7), (14), (32), (45), (48), (51), (56), or (59) can be hydrolyzed to the corresponding keto-acids, such as by stirring in aqueous hydrochloric acid at a concentration between about 2 M and about 6 M and at temperatures between about 25° C. and reflux or by stirring in the presence of a suitable alkali metal hydroxide such as, for example, lithium, sodium or potassium hydroxide and the like in a suitable solvent such as, for example, methanol, ethanol or aqueous THF and the like at temperatures between about 0° C. and reflux followed by acidification, and the keto-acids allowed to react with a suitable sulfur reagent such as, for example, Lawesson's reagent and the like in a suitable solvent such as, for example, tetrahydrofuran and the like at temperatures between about 0° C. and reflux to give the thioketo-acid (66). The thioketo-acid (66) can be allowed to react with a suitable coupling agent such as, for example, CDI, DCC, i-C4H9OCOCl, and the like followed by hydrogen sulfide to give the thioketo-thioacid (67).
-
- 212. R5 is OH or SH, and R, R1, R2, R3, and R4 are as defined in Formula I can be synthesized according to the sequence outlined in Scheme 9.
- 213. In Scheme 9, bromobenzene can be acylated using Friedel-Crafts conditions with a compound of Formula (6), which may be purchased from commercial suppliers or prepared according to known methods such as, for example, as reported by Beckett, et al., Synlett, 1993:137, in the presence of a Lewis acid such as, for example, FeCl3, AlCl3, ZnCl2, and the like either neat or in an inert solvent such as, for example, dichloromethane, nitrobenzene, and the like at about −40° C. to about 120° C. to give a compound of Formula (68). A compound of Formula (68) can be condensed with a compound of Formula (30), prepared as described in Scheme 3, in the presence of a suitable catalyst such as, for example, tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine)-palladium(II)chloride, and the like optionally in the presence of aqueous sodium bicarbonate or aqueous sodium carbonate in a solvent such as, for example, toluene, tetrahydrofuran, dioxane, and the like at temperatures between about −20° C. and about reflux, or in the presence of palladium(II)acetate, tri(O-toluyl)phosphine and excess of a suitable amine base such as, for example, triethylamine, diisopropylethylamine, and the like, to give the keto-ester (7). The keto-ester (7) can be converted to a compound of Formula Ia or a compound of Formula Ib according to the procedures outlined in Scheme 1, Route A.
- 214. Compounds of Formula I wherein R5 is R5a, R2 is OH, and R, R1, R3, R3a, R4, and R4a are as defined in Formula I can be synthesized according to the sequence outlined in Scheme 10.
- 215. In Scheme 10, oxime-acids of Formulas (Ia), (16), (34), (Ic), (Ie), (Ig), (Ii), and (Ik), wherein R2 is OH, can be cyclized by stirring in a suitable solvent such as, for example, toluene, benzene, and the like at about reflux over a Dean-Stark trap to remove water, or by stirring in a suitable solvent such as, for example, tetrahydrofuran, dioxane, toluene, dichloromethane and the like which contains a dehydrating agent such as, for example, anhydrous magnesium sulfate, activated 3 angstrom molecular sieves, and the like at temperatures from about 0° C. to about reflux, in the presence of a suitable acid catalyst such as, for example, p-toluenesulfonic acid or methanesulfonic acid and the like to give a compound of the Formula (69). Alternatively, the oxime-acids of Formulas (Ia), (16), (34), (Ic), (Ie), (Ig), (Ii), and (Ik) wherein R2 is OH can be cyclized by reaction with a suitable carboxylic acid activating agent such as, for example, N,N′-dicyclohexylcarbodiimide, 1,1′-carbonyldiimidazole, iso-butylchloroformate, 2-chloro-1-methyl-pyridinium iodide/triethylamine and the like in a suitable solvent such as, for example, tetrahydrofuran, dioxane, dichloromethane, and the like at about −20° C. to about reflux to give a compound of Formula (69). A compound of Formula (69) can be reacted with an alcohol of Formula R5aOH (70), wherein R5a is as defined in Formula I, in a suitable solvent such as, for example, chloroform, tetrahydrofuran, dioxane, toluene and the like optionally in the presence of a suitable acid catalyst such as hydrogen chloride, p-toluenesulfonic acid, sulfuric acid and the like at temperatures from about 25° C. to about reflux to give compounds of Formulas (71) and (72), wherein the conformations of the oximes are designated as E and Z, respectively.
- 216. Alternatively, oxime-acids of Formulas (Ia), (16), (34), (Ic), (Ie), (Ig), (Ii), and (Ik), wherein R2 is as defined in Formula I, and compounds of Formula II wherein Z is as defined in Formula II, can be allowed to react with 1 mol equivalent of a suitable base such as, for example, potassium or sodium hydroxide and the like in a suitable solvent such as, for example, acetone, ethanol, water, and the like followed by reaction with an alkyl carboxylic acid, halomethyl ester of Formula (73) such as, for example, 2,2-dimethyl-propionic acid, bromomethyl ester or 2,2-dimethyl-propionic acid, chloromethyl ester, and the like optionally in the presence of a suitable activating agent such as, for example, 10% aqueous sodium iodide, aqueous silver nitrate and the like, in a suitable solvent such as, for example, acetone at temperatures between about 0° C. and about reflux to give compounds of Formulas (74) and (75), wherein the conformations of the oximes are designated as E and Z, respectively, and (76).
-
- 218. The compounds of the present invention can be prepared and administered in a wide variety of oral and parenteral dosage forms. Thus, the compounds of the present invention can be administered by injection, that is, intravenously, intramuscularly, intracutaneously, subcutaneously, intraduodenally, or intraperitoneally. Also, the compounds of the present invention can be administered by inhalation, for example, intranasally. Additionally, the compounds of the present invention can be administered transdermally. It will be obvious to those skilled in the art that the following dosage forms may comprise as the active component, either a compound of Formula I or Formula II or a corresponding pharmaceutically acceptable salt of a compound of Formula I or Formula II.
- 219. For preparing pharmaceutical compositions from the compounds of the present invention, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules. A solid carrier can be one or more substances which may also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material.
- 220. In powders, the carrier is a finely divided solid which is in a mixture with the finely divided active component.
- 221. In tablets, the active component is mixed with the carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired.
- 222. The powders and tablets preferably contain from 5 or 10 to about 70% of the active compound. Suitable carriers are magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like. The term “preparation” is intended to include the formulation of the active compound with encapsulating material as a carrier providing a capsule in which the active component, with or without other carriers, is surrounded by a carrier, which is thus in association with it. Similarly, cachets and lozenges are included. Tablets, powders, capsules, pills, cachets, and lozenges can be used as solid dosage forms suitable for oral administration.
- 223. For preparing suppositories, a low melting wax, such as a mixture of fatty acid glycerides or cocoa butter, is first melted and the active component is dispersed homogeneously therein, as by stirring. The molten homogenous mixture is then poured into convenient sized molds, allowed to cool, and thereby to solidify.
- 224. Liquid form preparations include solutions, suspensions, and emulsions, for example, water or water propylene glycol solutions. For parenteral injection, liquid preparations can be formulated in solution in aqueous polyethylene glycol solution.
- 225. Aqueous solutions suitable for oral use can be prepared by dissolving the active component in water and adding suitable colorants, flavors, stabilizing, and thickening agents as desired.
- 226. Aqueous suspensions suitable for oral use can be made by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, and other well-known suspending agents.
- 227. Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for oral administration. Such liquid forms include solutions, suspensions, and emulsions. These preparations may contain, in addition to the active component, colorants, flavors, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.
- 228. The pharmaceutical preparation is preferably in unit dosage form. In such form, the preparation is subdivided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules. Also, the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.
- 229. The quantity of active component in a unit dose preparation may be varied or adjusted from 1 mg to 1000 mg, preferably 10 mg to 100 mg according to the particular application and the potency of the active component. The composition can, if desired, also contain other compatible therapeutic agents.
- 230. In therapeutic use as agents for the treatment of multiple sclerosis, atherosclerotic plaque rupture, aortic aneurism, heart failure, restenosis, periodontal disease, corneal ulceration, treatment of bums, decubital ulcers, wound healing, cancer, inflammation, pain, arthritis, or other autoimmune or inflammatory disorders dependent upon tissue invasion by leukocytes, or other activated migrating cells, acute and chronic neurodegenerative disorders including stroke, head trauma, spinal cord injury, Alzheimer's disease, amyotrophic lateral sclerosis, cerebral amyloid angiopathy, AIDS, Parkinson's disease, Huntington's disease, prion diseases, myasthenia gravis, and Duchenne's muscular dystrophy. The compounds utilized in the pharmaceutical methods of the invention are administered at the initial dosage of about 1 mg to about 100 mg per kilogram daily. A daily dose range of about 25 mg to about 75 mg per kilogram is preferred. The dosages, however, may be varied depending upon the requirements of the patient, the severity of the condition being treated, and the compound being employed. Determination of the proper dosage for a particular situation is within the skill of the art. Generally, treatment is initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstance is reached. For convenience, the total daily dosage may be divided and administered in portions during the day if desired.
- 231. The following nonlimiting examples illustrate the inventors' preferred methods for preparing the compounds of the invention.
- 232. Step (a) Preparation of 4-(4′-Chloro-biphenyl-4-yl)-4-oxo-butyric acid
- 233. A suspension of 4-chlorobiphenyl (9.43 g, 0.0500 mol), succinic anhydride (5.50 g, 0.0550 mol), and anhydrous aluminum chloride (14.8 g, 0.111 mol) in nitrobenzene (25 mL) at 5° C. under nitrogen was stirred 4 hours, then allowed to warm to room temperature. After 3 days, the mixture was heated at 95° C. to 120° C. for 1 hour, cooled to 5° C., and quenched with a mixture of ice (15 g), water (8 mL), and concentrated hydrochloric acid (HCl) solution (8 mL). Additional water (150 mL) was added, followed by ethyl acetate. The ethyl acetate layer was washed with 0.2 M HCl and extracted with saturated aqueous sodium bicarbonate solution. The bicarbonate layer was rotary evaporated briefly to remove residual ethyl acetate, then acidified by the dropwise addition of concentrated HCl solution. The resulting tan precipitate was filtered off, washed with 0.2 M HCl, and air dried. The solids were dissolved in hot toluene/acetone, and the solution was decolorized with activated carbon, and filtered hot through celite. The filtrate was concentrated, and the resulting crystals were filtered, washed, and dried in vacuo to give 1.96 g of 4-(4′-chloro-biphenyl-4-yl)-4-oxo-butyric acid as pale yellow plates; mp 184-185° C.
- 234. Step (b) Preparation of 4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid
- 235. A mixture of 4-(4′-chloro-biphenyl-4-yl)-4-oxo-butyric acid (9.13 g, 0.0316 mol), hydroxylamine hydrochloride (2.64 g, 0.0380 mol), and sodium carbonate (4.04 g, 0.0381 mol) in absolute ethanol was refluxed under nitrogen for 13.5 hours and allowed to cool. The resulting suspension was filtered, and the filter cake was washed with ethanol followed by diethyl ether. The filter cake was dried under house vacuum to give a white solid. The solid was dissolved in methanol (450 mL), and the cloudy solution was filtered to remove fines. The filtrate was stirred while one equivalent of 1 M HCl was added dropwise followed by dropwise addition of deionized water (200 mL). The mixture was gently rotary evaporated (bath temperature=40° C.) to a volume of 150 mL. The solids that precipitated were chilled at 5° C. for 10 minutes and filtered. The filter cake was washed with water and dried in vacuo to give 6.82 g of 4-(4′-chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid as an off-white solid; mp 155-157° C.
- 236. Step (a) Preparation of 4-(4′-Bromo-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester
- 237. To a stirred suspension of anhydrous aluminum chloride (3.45 g, 0.026 mol) in dichloromethane (20 mL) at 5° C. was added dropwise a solution of 4-bromobiphenyl (2.3 g, 0.010 mol) in dichloromethane (11 mL) followed by the dropwise addition of 3-carbomethoxypropionyl chloride (1.35 mL, 0.011 mol) in dichloromethane (15 mL), and the mixture stirred. After 2 hours at 5° C., the mixture was allowed to warm to room temperature. After 1 day, the reaction was cooled to 5° C. and quenched by the dropwise addition of water (50 mL). The layers were separated, and the organic layer washed with water and brine, dried (MgSO4), and rotary evaporated. The residue was dissolved (CH2Cl2) and purified by column chromatography on silica gel, eluting with dichloromethane to give 2.68 g of 4-(4′-bromo-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester as a white solid; mp 115.0-116.5° C.
- 238. Step (b) Preparation of 4-(4′-Bromo-biphenyl-4-yl)-4-oxo-butyric acid
- 239. A suspension of 4-(4′-bromo-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester (2.636 g, 0.00759 mol) in 6 M HCl was refluxed for 24 hours and cooled to room temperature. The solids were filtered and washed with 1 M HCl. The filter cake was partitioned between ethyl acetate and 1 M sodium hydroxide. The aqueous layer was washed twice with ethyl acetate and filtered to remove particulates. The filtrate was rotary evaporated to remove residual ethyl acetate. The solution was stirred and acidified to pH 2 with concentrated HCl solution. The resulting precipitate was filtered, washed with water, and dried with house vacuum (air bleed) to give 1.97 g of 4-(4′-bromo-biphenyl-4-yl)-4-oxo-butyric acid as a white solid; mp 198-200° C.
- 240. Step (c) Preparation of 4-(4′-Bromo-biphenyl-4-yl)-4-hydroxyimino-butyric acid
- 241. To a stirred suspension of 4-(4′-bromo-biphenyl-4-yl)-4-oxo-butyric acid (0.718 g, 0.00215 mol) and potassium carbonate (0.167 g, 0.00121 mol) in absolute ethanol (15 mL) was added a solution of hydroxylamine hydrochloride (0.180 g, 0.00259 mol) in water (3 mL), and the mixture stirred at room temperature for 6 days. The mixture was rotary evaporated. The residue was dissolved in methanol, silica gel (10 g) was added, and the mixture rotary evaporated to dryness. The powder was purified by chromatography on silica gel, eluting with dichloromethane-methanol (20:1) to give 0.499 g of 4-(4′-bromo-biphenyl-4-yl)-4-hydroxyimino-butyric acid as a white solid; mp 175-176° C.
- 242. A stirred suspension of 4-(4′-chloro-biphenyl-4-yl)-4-oxo-butyric acid (0.578 g, 0.00200 mol) in a solution of dimethylhydrazine (0.46 mL, 0.0061 mol) in absolute ethanol (6 mL) was refluxed under nitrogen for 2.4 hours and allowed to cool. The volatiles were rotary evaporated, and the residue dissolved (CH2Cl2) and purified by column chromatography on silica gel, eluting with dichloromethane-methanol (24:1) to give 0.33 g of 4-(4′-chloro-biphenyl-4-yl)-4-(dimethylhydrazono)-butyric acid as a yellow solid; mp 158-160° C.
- 243. Step (a) Preparation of 4-(4′-Fluoro-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester
- 244. To a stirred suspension of anhydrous aluminum chloride (9.64 g, 0.0723 mol) in dichloromethane (90 mL) at 5° C. was added dropwise a solution of 4-fluorobiphenyl (4.97 g, 0.0289 mol) in dichloromethane (40 mL) followed by the dropwise addition of a solution of 3-carbomethoxypropionyl chloride (3.94 mL, 0.032 mol) in dichloromethane (30 mL), and the mixture stirred. After 2 hours at 5° C., the mixture was allowed to warm to room temperature. After 1 day, the reaction was cooled to 5° C. and quenched by the dropwise addition of water (160 mL). The layers were separated, and the organic layer washed with brine, dried (Na2SO4), and rotary evaporated. The residue was recrystallized from methanol (300 mL) to give 6.17 g of 4-(4′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester as a pale yellow solid; mp 131.5-133.0° C.
- 245. Step (b) Preparation of 4-(4′-Fluoro-biphenyl-4-yl)-4-oxo-butyric acid
- 246. A suspension of 4-(4′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester (6.08 g, 0.0212 mol) in 6 M hydrochloric acid was refluxed for 22 hours and cooled to room temperature. The solids were filtered and washed with 0.1 M hydrochloric acid. The filter cake was dried under house vacuum (air bleed) to give 5.72 g of 4-(4′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid as a peach colored solid; mp 173.5-175.5° C.
- 247. Step (c) Preparation of 4-(4′-Fluoro-biphenyl-4-yl)-4-hydroxyimino-butyric acid
- 248. A stirred mixture of 4-(4′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid (2.72 g, 0.0100 mol), hydroxylamine hydrochloride (0.848 g, 0.0122 mol) and sodium carbonate (1.304 g, 0.0123 mol) in absolute ethanol (60 mL) was refluxed for 22 hours and allowed to cool. The solids were filtered, washed with additional ethanol, and allowed to air dry overnight. The solids were dissolved in methanol-water, and the solution acidified with 1.0 M hydrochloric acid (10 mL, 0.010 mol HCl). The mixture was concentrated to approximately 30 mL on a rotary evaporator, and the resulting precipitate filtered and dried in vacuo to give 2.66 g of 4-(4′-fluoro-biphenyl-4-yl)4-hydroxyimino-butyric acid as a pale yellow solid; mp 152-153° C.
- 249. To a stirred suspension of sodium borohydride (0.0376 g, 0.00099 mol) in absolute ethanol under nitrogen at room temperature was added in one portion 4-(4′-chloro-biphenyl-4-yl)-4-oxo-butyric acid (0.576 g, 0.00199 mol), and the mixture stirred for 4 hours. Additional sodium borohydride (0.013 g, 0.00034 mol) was added, and the mixture stirred for 18 hours. Additional sodium borohydride (0.0144 g, 0.000381 mol) was added and the mixture stirred for 5 hours. Total reaction time was 27 hours. The reaction was quenched with acetone-water and partitioned between 1 M hydrochloric acid and dichloromethane. The organic layer was washed with brine, dried (Na2SO4), and rotary evaporated. The residue was purified by chromatography on silica gel using dichloromethane-methanol (19:1, 1.3 L; 15:1, 1.3 L) to give 0.101 g of (±)4-(4′-chloro-biphenyl-4-yl)-4-hydroxy-butyric acid as a white solid; mp 133.5-135.0° C.
- 250. Step (a) Preparation of 4-(4′-Bromo-2′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester
- 251. To a stirred suspension of anhydrous aluminum chloride (3.35 g, 0.0251 mol) in dichloromethane (30 mL) at 5° C. under nitrogen was added dropwise a solution of 4-bromo-2-fluoro-biphenyl (2.512 g, 0.0100 mol) in dichloromethane (17 mL) followed by a solution of 3-carbomethoxypropionyl chloride (1.34 mL, 0.0109 mol) in dichloromethane (16 mL), and the mixture stirred. After 2 hours at 5° C., the mixture was allowed to warm to room temperature and stirred for 20 hours. The reaction was recooled to 5° C. and quenched by the dropwise addition of water (60 mL). The organic layer was washed with water, saturated sodium bicarbonate, brine, and dried (Na2SO4). The organics were rotary evaporated, and the residue was purified by chromatography on silica gel, eluting with chloroform to give 3.15 g of 4-(4′-bromo-2′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester as a pale yellow solid; mp 94-95° C.
- 252. Step (b) Preparation of 4-(4′-Bromo-2′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid
- 253. A suspension of 4-(4′-bromo-2′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester (2.94 g, 0.00805 mol) in 6 M hydrochloric acid was refluxed for 23 hours and allowed to cool. The solids were filtered, washed with 0.1 M hydrochloric acid, and dried under house vacuum to give 2.76 g of 4-(4′-bromo-2′-fluoro-biphenyl4-yl)-4-oxo-butyric acid as a pale yellow solid; mp 145-147° C.
- 254. Step (c) Preparation of 4-(4′-Bromo-2′-fluoro-biphenyl-4-yl)-4-hydroxyimino-butyric acid
- 255. In a manner similar to that described for Example 4, Step (c), 4-(4′-bromo-2′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid (1.05 g, 0.00300 mol) was allowed to react with hydroxylamine hydrochloride (0.256 g, 0.00368 mol) to give 1.00 g of 4-(4′-bromo-2′-fluoro-biphenyl4-yl)-4-hydroxyimino-butyric acid as a white solid; mp 163-164° C.
- 256. To a stirred solution of diisopropylamine (0.295 mL, 0.0021 mol) in anhydrous tetrahydrofuran (10 mL) at room temperature under nitrogen was added in portions a 2.1 M solution of n-butyl lithium in hexanes (1.0 mL, 0.0021 mol), and the mixture cooled to −78° C. To the solution was added a solution of 4-(4′-chloro-biphenyl-4-yl)-4-oxo-butyric acid (0.288 g, 0.000997 mol) in THF (10 mL), and the mixture stirred for 1 hour. To the yellow solution was added dropwise a solution of N-fluorodibenzenesulfonamide (NFSI, 0.346 g, 0.00110 mol) in THF (10 mL), and the mixture stirred for 2 hours at −78° C. The mixture was allowed to warm to room temperature and stirred for 16 hours. The reaction was quenched with 1 M hydrochloric acid (1.1 mL, 0.0011 mol HCl), and the mixture was rotary evaporated to dryness. The residue was passed through a column of silica gel, eluting with dichloromethane-methanol (10:1 then 9:1) to give a gum. The gum was dissolved in methanol and acidified with additional 1 M hydrochloric acid (3.4 mL, 0.0034 mol HCl). The volatiles were rotary evaporated, and the resulting suspension was filtered. The filter cake was purified by chromatography on silica gel, eluting with dichloromethane-methanol (14:1) to give 0.030 g of (±)-4-(4′-chloro-biphenyl-4-yl)-3-fluoro4-oxo-butyric acid as a white solid; mp 170-173° C.
- 257. A stirred suspension of 4-(4′-chloro-biphenyl-4-yl)4-oxo-butyric acid (0.290 g, 0.00100 mol), O-methyl-hydroxylamine hydrochloride (0.106 g, 0.00127 mol) and sodium carbonate (0.1307 g, 0.00123 mol) in absolute ethanol (5 mL) was refluxed for 24 hours under nitrogen and allowed to cool. Volatiles were rotary evaporated, and the residue stirred in deionized water (10 mL). The solids were filtered, washed with additional water and dried in vacuo to give 4-(4′-chloro-biphenyl-4-yl)-4-methoxyimino-butyric acid, sodium salt as an off-white solid; mp 234-238° C.
- 258. A portion of 4-(4′-chloro-biphenyl-4-yl)-4-methoxyimino-butyric acid, sodium salt (0.23 g, 0.00068 mol) was partitioned between 0.1 M aqueous hydrochloric acid (10 mL) and tetrahydrofuran-dichloromethane (50/50 v/v). The organic layer was dried (Na2SO4) and rotary evaporated to give a pale yellow solid. The solid was crystallized from 2-propanol to give 0.143 g of 4-(4′-chloro-biphenyl-4-yl)-4-methoxyimino-butyric acid as a pale yellow solid; mp 183-186° C.
- 259. Step (a) Preparation of 4-Chloro-2-fluoro-biphenyl
- 260. To a stirred solution of 4-chloro-2-fluoro-aniline (1.0 mL, 0.0090 mol) in benzene (50 mL) at room temperature under nitrogen was added in one portion neat iso-amyl nitrite (1.7 mL, 0.014 mol), and the mixture was slowly heated until gas evolution was observed (˜70° C.). The heat source was removed and the solution allowed to cool. After 10 minutes at room temperature, the mixture was heated to reflux, refluxed 2 hours and cooled. The solution was rotary evaporated to ˜3 mL and filtered through silica gel (100 g), eluting with hexanes. Fractions containing product were rotary evaporated, and the residue was rechromatographed on silica gel (50 g) eluting with n-hexane (20×50 mL) followed by n-hexane-diethyl ether (9:1, 10×50 mL) to give 0.875 g of 4-chloro-2-fluoro-biphenyl as a clear colorless oil; proton nuclear magnetic resonance spectroscopy (1H-NMR) (CDCl3): δ 7.36-7.53 (m, 6H), 7.18-7.22 (m, 2H).
- 261. Step (b) Preparation of 4-(4′-Chloro-2′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester
- 262. To a stirred suspension of anhydrous aluminum chloride (1.451 g, 0.0109 mol) in dichloromethane (20 mL) under nitrogen at 5° C. was added dropwise a solution of 4-chloro-2-fluorobiphenyl (0.858 g, 0.00415 mol) in dichloromethane (13 mL) over 10 minutes followed by the dropwise addition of 3-carbomethoxypropionyl chloride (0.57 mL, 0.0046 mol) in dichloromethane (13 mL) over 25 minutes. The resulting mixture was stirred for 2.5 hours then allowed to warm slowly to room temperature. Stirred for 3 days, for convenience. Then the mixture was recooled and quenched with the dropwise addition of water (145 mL). The organic layer was washed with water, aqueous sodium bicarbonate, brine, and dried (MgSO4). The mixture was rotary evaporated to give 1.25 g of 4-(4′-chloro-2′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester as a pale yellow solid; mp 90.5-92.5° C.
- 263. Step (c) Preparation of 4-(4′-Chloro-2′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid
- 264. In a manner similar to Example 4, Step (b), 4-(4′-chloro-2′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester (1.39 g, 0.00433 mol) was refluxed in 6 M hydrochloric acid to give 1.22 g of 4-(4′-chloro-2′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid as a light purple solid; mp 127-129° C.
- 265. Step (d) Preparation of 4-(4′-Chloro-2′-fluoro-biphenyl-4-yl)-4-hydroxyimino-butyric acid
- 266. In a manner similar to Example 4, Step (c), 4-(4′-chloro-2′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid (1.100 g, 0.00359 mol) was allowed to react with hydroxylamine hydrochloride (0.300 g, 0.00432 mol) in the presence of sodium carbonate (0.458 g, 0.00432 mol) in absolute ethanol (20 mL) to give 0.989 g of 4-(4′-chloro-2′-fluoro-biphenyl-4-yl)-4-hydroxyimino-butyric acid as an off-white solid; mp 147.5-149.5° C.
- 267. Step (a) Preparation of 4-(2′-Fluoro-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester
- 268. In a manner similar to Example 2, Step (a), 2-fluoro-biphenyl (6.284 g, 0.0365 mol) was allowed to react with 3-carbomethoxypropionyl chloride (4.95 mL, 0.0402 mol) in the presence of anhydrous aluminum chloride (10.7 g, 0.0802 mol) in dichloromethane to give, after chromatography on silica gel (456 g, 230-400 mesh), eluting with chloroform (15×450 mL), 7.36 g of 4-(2′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester as a pale yellow solid; mp 75.5-77.5° C.
- 269. Step (b) Preparation of 4-(2′-Fluoro-biphenyl-4-yl)-4-oxo-butyric acid
- 270. To a stirred solution of 4-(2′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester (7.17 g, 0.0250 mol) in tetrahydrofuran (60 mL) at room temperature was added a solution of sodium hydroxide (1.04 g, 0.026 mol) in methanol (60 mL), and the mixture was stirred for 23 hours. To the reaction was added 1.0 M aqueous sodium hydroxide (10 mL), and the mixture was stirred for an additional 24 hours. The mixture was rotary evaporated, and the residue was partitioned between water and chloroform. The aqueous layer was washed with chloroform (3×) and acidified with concentrated hydrochloric acid to pH=3. The resulting solids were filtered, washed with dilute aqueous hydrochloric acid (p=3), and dried under house vacuum (air bleed) to give 6.51 g of 4-(2′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid as a pale yellow solid; mp 148-153° C.
- 271. Step (c) Preparation of 4-(2′-Fluoro-biphenyl-4-yl)-4-hydroxyimino-butyric acid
- 272. In a manner similar to Example 4, Step (c), 4-(2′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid (1.634 g, 0.006001 mol) was allowed to react with hydroxylamine hydrochloride (0.500 g, 0.00720 mol) in the presence of sodium carbonate (0.763 g, 0.00720 mol) in absolute ethanol to give 1.434 g of 4-(2′-fluoro-biphenyl-4-yl)-4-hydroxyimino-butyric acid as a pale yellow solid; mp 150.0-151.5° C.
- 273. Step (a) Preparation of 4-(4-Bromo-phenyl)-4-oxo-butyric acid, methyl ester
- 274. In a manner similar to Example 2, Step (a), bromobenzene (10.0 mL, 0.0950 mol) was allowed to react with 3-carbomethoxypropionyl chloride (12.9 mL, 0.105 mol) in the presence of aluminum chloride (26.9 g, 0.202 mol) in dichloromethane to give, after chromatography on silica gel (435 g, 230-400 mesh), eluting with hexanes-acetone (9:1, 10×400 mL; 8:1, 7×400 mL), 21.2 g of 4-(4-bromo-phenyl)-4-oxo-butyric acid, methyl ester as an off-white solid; mp 49-51° C.
- 275. Step (b) Preparation of 4-(4′-Methyl-biphenyl-4-yl)-4-oxo-butyric acid methyl ester
- 276. To a stirred mixture of (4-methylphenyl)boronic acid (0.818 g, 0.00602 mol) and 4-(4-bromo-phenyl)-4-oxo-butyric acid, methyl ester (1.3556 g, 0.00500 mol) in toluene (10 mL) was added tetrakis(triphenylphosphine)-palladium(0) (0.173 g, 0.000150 mol) and 2.0 M aqueous sodium carbonate (5.0 mL, 0.010 mol), and the mixture was heated at reflux under nitrogen for 12 hours and allowed to cool. The mixture was diluted with toluene and dichloromethane (10 mL/10 mL), and filtered through a pad of Celite. The Celite was washed with additional toluene and dichloromethane. Filtrate and washings were combined and washed with 2.0 M aqueous sodium carbonate, brine, 3% aqueous ammonium hydroxide, water, and brine. The organics were dried (Na2SO4) and rotary evaporated. The residue was dissolved in chloroform and purified by column chromatography on silica gel (144 g, 230-400 mesh), eluting with hexanes-acetone (6:1, 17×125 mL) to give 0.98 g of 4-(4′-methyl-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester as a white solid; mp 121-122° C.
- 277. Step (c) Preparation of 4-(4′-Methyl-biphenyl-4-yl)-4-oxo-butyric acid
- 278. In a manner similar to Example 4, Step (b), 4-(4′-methyl-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester (1.21 g, 0.0043 mol) was refluxed in 6 M aqueous hydrochloric acid to give 1.12 g of 4-(4′-methyl-biphenyl-4-yl)-4-oxo-butyric acid as an off-white solid; mp 183-186° C.
- 279. Step (d) Preparation of 4-Hydroxyimino-4-(4′-methyl-biphenyl-4-yl)-butyric acid
- 280. In a manner similar to Example 4, Step (c), 4-(4′-methyl-biphenyl-4-yl)-4-oxo-butyric acid (1.052 g, 0.003922 mol) was allowed to react with hydroxylamine hydrochloride (0.3245 g, 0.00467 mol) in the presence of sodium carbonate (0.498 g, 0.00470 mol) in absolute ethanol to give 1.006 g of 4-hydroxyimino-4-(4′-methyl-biphenyl-4-yl)-butyric acid as a white solid; mp 176.5-177.5° C.
- 281. Step (a) Preparation of 4-(4′-Methoxy-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester
- 282. In a manner similar to Example 12, Step (b), (4-methoxyphenyl)boronic acid (0.913 g, 0.00601 mol) was allowed to react with 4-(4-bromo-phenyl)4-oxo-butyric acid, methyl ester (1.356 g, 0.00500 mol) in the presence of tetrakis(triphenylphosphine)palladium(0) (0.173 g, 0.000150 mol) and 2.0 M aqueous sodium carbonate (5.0 mL, 0.010 mol) in toluene (10 mL) to give, after chromatography on silica gel (270 g, 230-400 mesh), eluting with dichloromethane (15×250 mL); dichloromethane-methanol (100:1, 19×225 mL; 50:1, 5×225 mL), 1.386 g of 4-(4′-methoxy-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester as a white solid; mp 96.0-100.5° C.
- 283. Step (b) Preparation of 4-(4′-Methoxy-biphenyl-4-yl)-4-oxo-butyric acid
- 284. To a stirred suspension of 4-(4′-methoxy-biphenyl-4-yl)4-oxo-butyric acid, methyl ester (1.342 g, 0.00450 mol) in methanol (15 mL) at room temperature was added 50/50 wt/wt aqueous sodium hydroxide (0.41 g, 0.0051 mol), and the mixture was stirred for 3 days, for convenience. To the mixture was added 1.0 M aqueous sodium hydroxide (0.45 mL, 0.00045 mol) and stirring was continued for 1 day. The mixture was rotary evaporated, and the residue was partitioned between dichloromethane-tetrahydrofuran (50/50 v/v) and 0.2 M aqueous hydrochloric acid. The organic layer was washed with brine and dried (Na2SO4). The mixture was rotary evaporated, and the residue was purified by chromatography on silica gel (154 g, 230-400 mesh), eluting with dichloromethane (7×225 mL); dichloromethane-methanol (19:1, 7×225 mL) to give 0.929 g of 4-(4′-methoxy-biphenyl-4-yl)-4-oxo-butyric acid as an off-white solid; mp 197-199° C.
- 285. Step (c) Preparation of 4-Hydroxyimino-4-(4′-methoxy-biphenyl-4-yl)-butyric acid
- 286. In a manner similar to Example 4, Step (c), (4′-methoxy-biphenyl-4-yl)-4-oxo-butyric acid (1.08 g, 0.00380 mol) was allowed to react with hydroxylamine hydrochloride (0.316 g, 0.00455 mol) in the presence of sodium carbonate (0.485 g, 0.00458 mol) in absolute ethanol (20 mL) to give 0.983 g of 4-hydroxyimino-4-(4′-methoxy-biphenyl-4-yl)-butyric acid as a pale yellow solid; mp 157-160° C.
- 287. Step (a) Preparation of 4-(4′-Cyano-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester
- 288. To a stirred solution of 4-bromobenzonitrile (1.807 g, 0.009929 mol) in anhydrous tetrahydrofuran (30 mL) at −85° C. under nitrogen was added dropwise over 15 minutes a 2.1 M solution of n-butyl lithium in hexanes (4.7 mL, 0.0099 mol), and the mixture was stirred. After 20 minutes, trimethylborate (1.0 mL, 0.0088 mol) was added in one portion, and the mixture was allowed to slowly warm. After 40 minutes, the reaction was quenched with 1 M aqueous hydrochloric acid (2.2 mL, 0.0022 mol) and stirred. Solids began crystallizing after 1 hour. The solids were filtered, washed with diethyl ether, and dried under house vacuum (air bleed, T=40° C.) to give 0.918 g of crude (4-cyano-phenyl)boronic acid. This material was used in the next reaction without further purification.
- 289. A stirred mixture of (4-cyano-phenyl)boronic acid (0.220 g, 0.00150 mol), 4-(4-bromo-phenyl)-4-oxo-butyric acid, methyl ester (0.2715 g, 0.00100 mol), triethylamine (0.418 mL, 0.0030 mol), tri(O-toluyl)phosphine (0.0191 g, 0.0000628 mol) and palladium(II)acetate (0.0067 g, 0.000030 mol) in dry dimethylformamide (4.0 mL) was heated at 105° C. under nitrogen for 2 hours and allowed to cool. For convenience, allowed to stand overnight. The mixture was diluted with diethyl ether, and the resulting suspension was filtered through Celite. The Celite and filtercake were washed with additional diethyl ether then dichloromethane. The filtrate and washings were combined and washed with 0.5 M aqueous hydrochloric acid, water, 3% aqueous ammonium hydroxide, water, and brine. The organics were dried (Na2SO4) and rotary evaporated. The residue was dissolved (chloroform) and chromatographed on silica gel (35 g, 230-400 mesh), eluting with hexanes-acetone (4:1, 30×30 mL) to give 0.172 g of 4-(4′-cyano-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester as a pale yellow solid; mp 149-151° C.
- 290. Step (b) Preparation of 4-(4′-Cyano-biphenyl-4-yl)-4-oxo-butyric acid
- 291. To a stirred solution of 4-(4′-cyano-biphenyl-4-yl)4-oxo-butyric acid, methyl ester (0.143 g, 0.000488 mol) in tetrahydrofuran at 15° C. was added in one portion a 1.0 M aqueous solution of sodium hydroxide (0.50 mL, 0.00050 mol), and the mixture was allowed to stir at room temperature for 18 hours. The THF was rotary evaporated, and the residue was partitioned between water and chloroform. The aqueous layer was washed with additional chloroform. The aqueous layer was acidified with 1.0 M aqueous hydrochloric acid (0.50 mL), and extracted with dichloromethane-tetrahydrofuran (50/50 v/v). The extract was washed with brine, dried (Na2SO4) and rotary evaporated. The residue was dried in vacuo to give 0.130 g of 4-(4′-cyano-biphenyl-4-yl)-4-oxo-butyric acid as a pale yellow solid, mp 191-193° C.
- 292. Step (c) Preparation of 4-(4′-Cyano-biphenyl-4-yl)4-hydroxyimino-butyric acid
- 293. A stirred suspension of 4-(4′-cyano-biphenyl-4-yl)-4-oxo-butyric acid (0.7908 g, 0.002831 mol), hydroxylamine hydrochloride (0.2038 g, 0.00293 mol), sodium carbonate (0.3158 g, 0.00298 mol) in absolute ethanol (17 mL) was refluxed under nitrogen for 12 hours and allowed to cool. The mixture was allowed to stand for 2.5 days for convenience. Volatiles were rotary evaporated, and the residue was partitioned between dichloromethane-tetrahydrofuran (50/50 v/v) and 0.05 M aqueous hydrochloric acid (60 mL). The aqueous layer was extracted with additional organics. The extracts were combined, dried (Na2SO 4) and rotary evaporated. The residue was dissolved/suspended in dichloromethane and chromatographed on silica gel (165 g, 230-400 mesh), eluting with dichloromethane-methanol (25:1, 30×125 mL; 15:1, 5×125 mL) to give 0.413 g of 4-(4′-cyano-biphenyl-4-yl)-4-hydroxyimino-butyric acid as an off-white solid, mp 157-159° C.
- 294. Step (a) Preparation of 4-(3′-Fluoro-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester
- 295. In a manner similar to Example 12, Step (b), (3-fluoro-phenyl)boronic acid (0.7698 g, 0.005502 mol) was allowed to react with 4-(4-bromo-phenyl)-4-oxo-butyric acid, methyl ester (1.356 g, 0.00500 mol) in the presence of tetrakis(triphenylphosphine)palladium(0) (0.173 g, 0.000150 mol) and 2.0 M aqueous sodium carbonate (5.0 mL, 0.010 mol) in toluene (10 mL) to give, after chromatography on silica gel (270 g, 230-400 mesh), eluting with chloroform (18×125 mL), 1.221 g of 4-(3′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester as a white solid; mp 99-101° C.
- 296. Step (b) Preparation of 4-(3′-Fluoro-biphenyl-4-yl)-4-oxo-butyric acid
- 297. In a manner similar to Example 4, Step (b), 4-(3′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester (1.0968 g, 0.00383 mol) was refluxed in 6 M aqueous hydrochloric acid (20 mL) to give 1.007 g of 4-(3′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid as a pale orange solid; mp 153-155° C.
- 298. Step (c) Preparation of 4-(3 ′-Fluoro-biphenyl-4-yl)-4-hydroxyimino-butyric acid
- 299. In a manner similar to Example 4, Step (c), 4-(3′-fluoro-biphenyl-4-yl)-4-oxo-butyric acid (0.9258 g, 0.00340 mol) was allowed to react with hydroxylamine hydrochloride (0.284 g, 0.00409 mol) in the presence of sodium carbonate (0.434 g, 0.00409 mol) in absolute ethanol (19 mL) to give 4-(3′-fluoro-biphenyl-4-yl)-4-hydroxyimino-butyric acid as a pale gray solid: mp 155-157° C.
- 300. Step (a) Preparation of 4-Oxo-4-(4′-trifluoromethyl-biphenyl-4-yl)-butyric acid, methyl ester
- 301. In a manner similar to Example 12, Step (b), (4-trifluoromethyl-phenyl)boronic acid (1.285 g, 0.00676 mol) was allowed to react with 4-(4-bromo-phenyl)-4-oxo-butyric acid, methyl ester (1.356 g, 0.00500 mol) in the presence of tetrakis(triphenylphosphine)palladium(0) (0.173 g, 0.000150 mol) and 2.0 M aqueous sodium carbonate (5.0 mL, 0.010 mol) in toluene (10 mL) to give, after chromatography on silica gel (270 g, 230-400 mesh), eluting with chloroform to give 1.42 g of 4-oxo-4-(4′-trifluoromethyl-biphenyl-4-yl)-butyric acid, methyl ester as a white solid; mp 140-142° C.
- 302. Step (b) Preparation of 4-Oxo-4-(4′-trifluoromethyl-biphenyl-4-yl)-butyric acid
- 303. In a manner similar to Example 4, Step (b), 4-oxo-4-(4′-trifluoromethyl-biphenyl-4-yl)-butyric acid, methyl ester (1.34 g, 0.00398 mol) was refluxed in 6 M aqueous hydrochloric acid (24 mL) to give 1.27 g of 4-oxo-4-(4′-trifluoromethyl-biphenyl-4-yl)-butyric acid as an 80% pure solid. A portion (0.059 g) of the material was purified by chromatography on silica gel (7 g, 230-400 mesh), eluting with dichloromethane (15×10 mL); dichloromethane-methanol (15:1; 16×10 mL) to give 0.0476 g of pure 4-oxo-4-(4′-trifluoromethyl-biphenyl-4-yl)-butyric acid as an off-white solid; mp 172-174° C.
- 304. Step (c) Preparation of 4-Hydroxyimino-4-(4′-trifluoromethyl-biphenyl-4-yl)-butyric acid
- 305. In a manner similar to Example 4, Step (c), 4-oxo-4-(4′-trifluoromethyl-biphenyl-4-yl)-butyric acid (1.20 g, 0.00372 mol) was allowed to react with hydroxylamine hydrochloride (0.3115 g, 0.00448 mol) in the presence of sodium carbonate (0.4768 g, 0.00450 mol) in absolute ethanol (20 mL) to give 0.764 g of 4-hydroxyimino-4-(4′-trifluoromethyl-biphenyl-4-yl)-butyric acid as a white solid: mp 134-136° C.
- 306. Step (a) Preparation of 4-(4′-Methylsulfanyl-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester
- 307. In a manner similar to Example 12, Step (b), 4-(methylsulfanyl-phenyl)boronic acid (0.930 g, 0.00553 mol) was allowed to react with 4-(4-bromo-phenyl)-4-oxo-butyric acid, methyl ester (1.356 g, 0.00500 mol) in the presence of tetrakis(triphenylphosphine)palladium(0) (0.162 g, 0.000140 mol) and 2.0 M aqueous sodium carbonate (5.0 mL, 0.010 mol) in toluene (10 mL) to give, after chromatography on silica gel (168 g, 230-400 mesh), eluting with hexanes-acetone (11:1, 20×125 mL; 9:1, 10×125 mL; 6:1, 30×125 mL), 0.405 g of 4-(4′-methylsulfanyl-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester as a white solid; mp 137-140° C.
- 308. Step (b) Preparation of 4-Hydroxyimino-4-(4′-methylsulfanyl-biphenyl-4-yl)-butyric acid
- 309. A mixture of 4-(4′-methylsulfanyl-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester (0.3742 g, 0.001190 mol) and 1.0 M aqueous sodium hydroxide (1.3 mL, 0.0013 mol) in tetrahydrofuran-methanol (5 mL/5 mL) was stirred at room temperature for 3 days. The volatiles were rotary evaporated, and the residue was suspended in water. The suspension was acidified with 1.0 M aqueous hydrochloric acid (1.4 mL, 0.0014 mol), and the mixture was extracted with tetrahydrofuran-dichloromethane (50/50 v/v). The organics were washed with brine, dried (Na2SO4) and rotary evaporated to give 0.34 g of crude 4-(4′-methylsulfanyl-biphenyl-4-yl)-4-oxo-butyric acid as an off-white solid. A portion of this material (0.3383 g, 0.0011 mol) was stirred with hydroxylamine hydrochloride (0.0931 g, 0.00134 mol) in the presence of sodium carbonate (0.1438 g, 0.001357 mol) in absolute ethanol (7 mL) at reflux for 20 hours and allowed to cool. The volatiles were rotary evaporated, and the residue was partitioned between dichloromethane-tetrahydrofuran (50/50, v/v) and 0.10 M aqueous hydrochloric acid (25 mL). The organics were washed with brine, dried (Na2SO4) and rotary evaporated. The residue was dissolved in tetrahydrofuran, silica gel (4.0 g) was added, and the mixture was rotary evaporated to dryness. The resulting powder was chromatographed on silica gel (48 g, 230-400 mesh), eluting with dichloromethane-diethyl ether (24:1, 13×50 mL); dichloromethane-methanol (24:1, 13×50 mL; 20:1, 10×50 mL) to give 0.0525 g of 4-hydroxyimino-4-(4′-methylsulfanyl-biphenyl-4-yl)-butyric acid as a white solid; mp 162-164° C.
- 310. A stirred suspension of 4-(4′-chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid (2.126 g, 0.00700 mol) and (4-methylphenyl)sulfonic acid monohydrate (0.067 g, 0.00035 mol) in toluene (22 mL) was heated under nitrogen at reflux over a Dean-Stark trap for 7 hours, and allowed to cool. The volatiles were rotary evaporated. The residue was dissolved/suspended in dichloromethane and chromatographed on silica gel (221 g, 230-400 mesh), eluting with dichloromethane (20×200 mL) to give 0.63 g of 3-(4′-chloro-biphenyl-4-yl)-4,5-dihydro-6-oxo-6H-1,2-oxazine as a light purple solid; mp 190-192° C.
- 311. To a stirred solution/suspension of 4-(4′-chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid (3.22 g, 0.0101 mol) in methanol (35 mL) at room temperature was added a solution of sodium hydroxide (0.4062 g, 0.0102 mol) in water (6 mL), and the resulting suspension was stirred at 30° C. for 1 hour. The resulting suspension was rotary evaporated to give a white solid. The solid was dried in vacuo. A portion of the solid (1.059 g, 0.003105 mol) was crystallized from water (8.4 mL) after hot gravity filtration, and the crystals were dried in vacuo to give 0.856 g of 4-(4′-chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid, sodium salt monohydrate; mp 222-224° C.
- 312. To a stirred suspension of 4-(4′-chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid (0.4556 g, 0.00150 mol) in methanol (10 mL) at room temperature was added water (3.5 mL), and the mixture was heated to boiling. To the mixture was added dropwise a solution of calcium acetate monohydrate (0.1136 g, 0.000645 mol) in water (2.0 mL). This produced an immediate precipitate. After addition was complete, the mixture was heated for 5 minutes and allowed to cool. After 1 hour at room temperature, the solids were filtered off, washed with methanol, and dried in vacuo. The solids were suspended in boiling tetrahydrofuran (11 mL), water (5.5 mL) was added until a solution was obtained. The solution was gravity filtered hot, and the filtrate was allowed to cool. The solids that crystallized were filtered, washed with THF-H2O, and dried in vacuo to give 0.1976 g of 4-(4′-chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid, hemi calcium salt; 1H-NMR (DMSO-d6): δ 11.45 (br s, 0.95 H), 10.65 (br s, 0.05 H), 7.66-7.74 (m, 6 H), 7.49 (d, 2 H), 2.92 (t, 2 H), 2.17 (t, 2 H).
- 313. A suspension of 4-(4′-chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid (1.0404 g, 0.003425 mol) and procaine (0.8022 g, 0.003395 mol) in deionized water (20 mL) was heated on a steam bath. After 30 minutes, methanol (15 mL) was added in portions until a cloudy solution was obtained. The mixture was allowed to cool. The solids that crystallized were filtered, washed with water, and dried in vacuo to give 1.693 g of 4-(4′-chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid, procaine salt; mp 148-150° C.
- 314. To a gently boiling solution of 4-(4′-chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid (0.4557 g, 0.001500 mol) in methanol (13.5 mL) was added dropwise water (1.6 mL) followed by the dropwise addition of a solution of magnesium acetate tetrahydrate (0.1600 g, 0.000746 mol) in water (3.2 mL). The resulting solution was allowed to cool. Crystallization began immediately. The mixture was allowed to slowly concentrate by evaporation over 2 days. The suspension was chilled for 4 hours, and the crystals were filtered and dried under house vacuum (air bleed, 40° C.) to give 0.4479 g of 4-(4′-chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid, hemi magnesium salt, dihydrate as a pale yellow solid; 1H-NMR (DMSO-d6): δ 11.37 (br s, 0.95 H), 10.8 (br s, 0.05 H), 7.50-7.75 (m, 6 H), 7.47 (d, 2 H), 2.94 (m, 2 H), 2.26 (m, 2 H).
- 315. Step (a) Preparation of 4-(4′-tert-Butyl-biphenyl-4-yl)-4-oxo-butyric acid methyl ester
- 316. To a stirred solution of 4-tert-butyl-bromobenzene (21.3 g, 0.0999 mol) in THF (30 mL) at −78° C. under nitrogen was added dropwise a 2.1 M solution of n-butyl lithium in hexanes (45 mL, 0.095 mol), and the mixture was stirred for 1.5 hours. To the mixture was added dropwise neat trimethylborate (10.2 mL, 0.090 mol), and the mixture was allowed to slowly warm to room temperature. The mixture was stirred overnight, then quenched by dropwise addition of 1.0 M aqueous hydrochloric acid. Brine was added, and the organic layer was dried (Na2SO4) and rotary evaporated. The residue was crystallized from n-heptane to give 4.65 g of crude 4-tert-butyl-phenyl-boronic acid as white needles. This material was used directly in the next reaction without further characterization. Thus, in a manner similar to Example 12, Step (b), 4-tert-butyl-phenyl-boronic acid (0.4287 g, 0.00241 mol) was allowed to react with 4-(4-bromo-phenyl)-4-oxo-butyric acid, methyl ester (0.5443 g, 0.00200 mol) in the presence of tetrakis(triphenylphosphine)palladium(0) (0.0472 g, 0.0000408 mol) and 2.0 M aqueous sodium carbonate (2.4 mL, 0.0048 mol) in toluene (5 mL) to give, after chromatography on silica gel (270 g, 230-400 mesh), eluting with toluene then chloroform, 0.50 g. The material was dissolved in diethyl ether, washed with 0.10 M aqueous sodium hydroxide, water and brine. The organics were dried (K2CO3), and rotary evaporated to give 0.45 g of 4-(4′-tert-butyl-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester as a white solid; mp 58-62° C.
- 317. Step (b) Preparation of 4-(4′-tert-Butyl-biphenyl-4-yl)-4-oxo-butyric acid
- 318. In a manner similar to Example 17, Step (b), 4-(4′-tert-butyl-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester (0.43 g, 0.0013 mol) was allowed to react with 1.0 M aqueous sodium hydroxide (2.0 mL, 0.002 mol) in THF-methanol (5 mL each) to give 0.308 g of 4-(4′-tert-butyl-biphenyl-4-yl)-4-oxo-butyric acid as a white solid: mp 172.0-173.5° C.
- 319. Step (c) Preparation of 4-(4′-tert-Butyl-biphenyl-4-yl)-4-hydroxyimino-butyric acid
- 320. In a manner similar to Example 4, Step (c), 4-(4′-tert-butyl-biphenyl-4-yl)-4-oxo-butyric acid (0.277 g, 0.000892 mol) was allowed to react with hydroxylamine hydrochloride (0.0704 g, 0.00101 mol) in the presence of sodium carbonate (0.1074 g, 0.00101 mol) in absolute ethanol (7 mL) to give 0.272 g of 4-(4′-tert-butyl-biphenyl-4-yl)-4-hydroxyimino-butyric acid as a white solid; mp 170.5-171.5° C.
- 321. Step (a) Preparation of 4-(3′,4′-Dichloro-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester
- 322. In a manner similar to Example 12, Step (b), (3,4-dichloro-phenyl)boronic acid (1.0569 g, 0.005539 mol) was allowed to react with 4-(4-bromo-phenyl)-4-oxo-butyric acid, methyl ester (1.3636 g, 0.005019 mol) in the presence of tetrakis(triphenylphosphine)palladium(0) (0.1054 g, 0.0000912 mol) and 2.0 M aqueous sodium carbonate (5.5 mL, 0.011 mol) in toluene (11 mL) to give, after chromatography on silica gel (270 g, 230-400 mesh), eluting with hexanes-acetone (7:1) 1.432 g of 4-(3′,4′-dichloro-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester as a white solid; mp 120-121° C.
- 323. Step (b) Preparation of 4-(3′,4′-Dichloro-biphenyl-4-yl)-4-oxo-butyric acid
- 324. In a manner similar to Example 4, Step (b), 4-(3′,4′-dichloro-biphenyl-4-yl)-4-oxo-butyric acid, methyl ester (1.360 g, 0.004033 mol) was refluxed in 6 M aqueous hydrochloric acid (25 mL) to give 1.280 g of 4-(3′,4′-dichloro-biphenyl-4-yl)-4-oxo-butyric acid as a white solid; mp 154-156° C.
- 325. Step (c) Preparation of 4-(3′,4′-Dichloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid
- 326. In a manner similar to Example 4, Step (c), 4-(3′,4′-dichloro-biphenyl-4-yl)-4-oxo-butyric acid (1.23 g, 0.00381 mol) was allowed to react with hydroxylamine hydrochloride (0.2994 g, 0.00431 mol) in the presence of sodium carbonate (0.4567 g, 0.00431 mol) in absolute ethanol (20 mL) to give 1.257 g of 4-(3′,4′-dichloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid as a white solid; mp 165.5-166.5° C.
Claims (58)
wherein R and R1 are the same or different and are hydrogen, alkyl, halogen, nitro, cyano, trifluoromethyl, OCF3, OCF2H, OCH2F,
wherein R6 is as defined above,
wherein R6 is as defined above,
wherein R6 is as defined above, cycloalkyl, or heteroaryl, with the proviso that R and R1 are not both hydrogen;
wherein R6 and R6a are the same or different and are as defined above for R6;
R3, R3a, R4, and R4a are the same or different and are hydrogen, fluorine, alkyl,
—(CH2)n-aryl wherein n is an integer from 1 to 6,
—(CH2)n-heteroaryl wherein n is as defined above,
—(CH2)n-cycloalkyl wherein n is as defined above,
—(CH2)p—X—(CH2)q-aryl wherein X is O, S, SO, SO2, or NH, and p and q are each zero or an integer of 1 to 6, and the sum of p+q is not greater than six,
—(CH2)p—X—(CH2)q-heteroaryl wherein X, p, and q are as defined above, or
wherein R6 and R6a are the same or different and are as defined above for R6,
wherein R6 and R6a are the same or different and are as defined above for R6, and n is as defined above;
R5 is OH, SH; or OR5a wherein R5a is alkyl, arylalkyl, cycloalkyl, or acyloxymethyl;
with the proviso that R3, R3a, R4, and R4a are hydrogen or at least one of R3, R3a, R4, or R4a is fluorine;
or corresponding isomers thereof; or a pharmaceutically acceptable salt thereof.
2. A compound according to wherein R2 is OR6.
claim 1
3. A compound according to wherein R2 is OCH3.
claim 2
4. A compound according to wherein R2 is OH; and R3, R3a, R4, and R4a are hydrogen.
claim 3
5. A compound according to wherein R2 is OH, and at least one of R3, R3a, R4, and R4a is fluorine.
claim 1
6. A compound selected from the group consisting of:
4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid;
4-(4′-Bromo-biphenyl-4-yl)-4-hydroxyimino-butyric acid;
4-(4′-Chloro-biphenyl-4-yl)-4-(dimethylhydrazono)- butyric acid;
4-(4′-Fluoro-biphenyl-4-yl)-4-hydroxyimino-butyric acid;
4-(4′-Bromo-2′-fluoro-biphenyl-4-yl)-4-hydroxyimino-butyric acid;
4-(2′,4′-Dichloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid;
4-(2′,4′-Difluoro-biphenyl-4-yl)-4-hydroxyimino-butyric acid;
(±)-4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-2-fluoro-2-(3-phenylpropyl)-butyric acid;
(±)-4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-2-fluoro-2-(2-phenylethyl)-butyric acid;
(±)-4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-2-fluoro-2-(3-phthalimidopropyl)-butyric acid;
(±)-4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-2-fluoro-2-(phenylthiomethyl)-butyric acid;
4-(4′-Chloro-2′-fluoro-biphenyl-4-yl)-4-hydroxyimino-butyric acid;
4-Hydroxyimino-4-(4′-trifluoromethyl-biphenyl-4-yl)-butyric acid;
4-(4′-Chloro-biphenyl-4-yl)-4-methoxyimino-butyric acid;
(±)-4-(4′-Chloro-biphenyl-4-yl)-2-fluoro-2-[2-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-ethyl]-4-hydroxyimino-butyric acid;
(±)-4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-2-fluoro-2-(1H-indol-3-yl)methyl-butyric acid;
(±)-4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-2-fluoro-2-methyl-butyric acid;
(±)-2-[2-(4′-Chloro-biphenyl-4-yl)-2-hydroxyiminoethyl]-2-fluoro-6-phenyl-hexanoic acid;
(±)-4-(4′-Chloro-biphenyl-4-yl)-2-fluoro-2-[2-(1,3-dioxo-1,3-dihydro-benzo[F]isoindol-2-yl)-ethyl]-4-hydroxyimino-butyric acid;
(±)-2-[2-(4′-Chloro-biphenyl-4-yl)-2-hydroxyiminoethyl]-6-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-2-fluoro-hexanoic acid;
(±)-4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-2-fluoro-2-[2-(phenyl-ethylcarbamoyl)-ethyl-butyric acid;
4-(4′-Chloro-biphenyl-4-yl)-3,3-difluoro-4-hydroxyimino-butyric acid;
(±)-4-(4′-Chloro-biphenyl-4-yl)-3,3-dimethyl-2-fluoro-4-hydroxyimino-butyric acid;
(±)-4-(4′-Chloro-biphenyl-4-yl)-2,2-dimethyl-3-fluoro-4-hydroxyimino-butyric acid;
4-(4′-Chloro-biphenyl-4-yl)-2,2-difluoro-4-hydroxyimino-butyric acid;
4-(4′-Chloro-biphenyl-4-yl)-2,2,3,3-tetrafluoro-4-hydroxyimino-butyric acid;
4-(4′-Chloro-biphenyl-4-yl)-4-methoxyimino-butyric acid, sodium salt:
4-(2′-Fluoro-biphenyl-4-yl)-4-hydroxyimino-butyric acid;
4-Hydroxyimino-4-(4′-methyl-biphenyl-4-yl)-butyric acid;
4-Hydroxyimino-4-(4′-methoxy-biphenyl-4-yl)-butyric acid;
4-(4′-Cyano-biphenyl-4-yl)-4-hydroxyimino-butyric acid;
4-(3′-Fluoro-biphenyl-4-yl)-4-hydroxyimino-butyric acid;
4-Hydroxyimino-4-(4′-methylsulfanyl-biphenyl-4-yl)-butyric acid;
4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid, sodium salt monohydrate;
4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid, hemi calcium salt;
4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid, procaine salt;
4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid, hemi magnesium salt, dihydrate;
4-(4′-tert-Butyl-biphenyl-4-yl)-4-hydroxyimino-butyric acid;
4-(3′,4′-Dichloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid; and
4-(4′-Chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid, 2,2-dimethyl-propionyloxymethyl ester.
7. A compound which is 4-(4′-chloro-biphenyl-4-yl)-4-hydroxyimino-butyric acid.
wherein R and R1 are the same or different and are hydrogen, alkyl, halogen, nitro, cyano, trifluoromethyl, OCF3, OCF2H, OCH2F,
wherein R6 is as defined above,
wherein R6 is as defined above,
R3, R3a, R4, and R4a are the same or different and are hydrogen, fluorine, alkyl,
—(CH2)n-aryl wherein n is an integer from 1 to 6,
—(CH2)n-heteroaryl wherein n is as defined above,
—(CH2)n-cycloalkyl wherein n is as defined above,
—(CH2)p—X—(CH2)q-aryl wherein X is O, S, SO, SO2, or NH, and p and q are each zero or an integer of 1 to 6, and the sum of p+q is not greater than six,
—(CH2)p—X—(CH2)q-heteroaryl wherein X, p, and q are as defined above, or
—(CH2)n-R7 wherein R7 is N-phthalimido, N-2,3-naphthylimido,
wherein R6 and R6a are the same or different and are as defined above for R6,
wherein R6 and R6a are the same or different and are as defined above for R6, and n is as defined above;
R5 is OH, SH, or OR5a wherein R5a is alkyl, arylalkyl. cycloalkyl, or acyloxymethyl;
with the proviso that at least one of R3, R3a, R4, or R4a is fluorine; and corresponding isomers thereof; or a pharmaceutically acceptable salt thereof.
17. A compound selected from the group consisting of:
(±)-4-(4′-Chloro-biphenyl-4-yl)-4-hydroxy-butyric acid; and
(±)-4-(4′-Chloro-biphenyl-4-yl)-3-fluoro-oxo-butyric acid.
18. A method of inhibiting a matrix metalloproteinase comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 1
19. A method of inhibiting gelatinase A comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 1
20. A method of inhibiting stromelysin-1 comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 1
21. A method of preventing atherosclerotic plaque rupture comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 1
22. A method of inhibiting aortic aneurism comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 1
23. A method of inhibiting heart failure comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 1
24. A method of preventing restenosis comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 1
25. A method of controlling periodontal disease comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 1
26. A method of treating corneal ulceration comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 1
27. A method of treating burns comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 1
28. A method of treating decubital ulcers comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 1
29. A method of treatment for healing wounds comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 1
30. A method of treating cancer comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 1
31. A method of treating arthritis comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 1
32. A method of treating autoimmune or inflammatory disorders dependent upon tissue invasion by leukocytes comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 1
33. A method of treating multiple sclerosis comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 1
34. A method of treating inflammation and pain comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 1
35. A method of treating acute and chronic neurodegenerative disorders selected from the group consisting of: stroke, head trauma, spinal cord injury, Alzheimer's disease, amyotrophic lateral sclerosis, cerebral amyloid angiopathy, AIDS, Parkinson's disease, Huntington's diseases, prion diseases, myasthenia gravis, and Duchenne's muscular dystrophy comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 1
36. A pharmaceutical composition comprising a compound according to in admixture with a pharmaceutically acceptable excipient, diluent, or carrier.
claim 1
37. A pharmaceutical composition comprising a therapeutically effective amount of a compound according to in admixture with a pharmaceutically acceptable excipient, diluent, or carrier.
claim 1
38. A method of inhibiting a matrix metalloproteinase comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 8
39. A method of inhibiting gelatinase A comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 8
40. A method of inhibiting stromelysin-1 comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 8
41. A method of preventing atherosclerotic plaque rupture comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 8
42. A method of inhibiting aortic aneurism comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 8
43. A method of inhibiting heart failure comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 8
44. A method of preventing restenosis comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 8
45. A method of controlling periodontal disease comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 8
46. A method of treating corneal ulceration comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 8
47. A method of treating burns comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 8
48. A method of treating decubital ulcers comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 8
49. A method of treatment for healing wounds comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 8
50. A method of treating cancer comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 8
51. A method of treating arthritis comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 8
52. A method of treating autoimmune or inflammatory disorders dependent upon tissue invasion by leukocytes comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 8
53. A method of treating multiple sclerosis comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 8
54. A method of treating inflammation and pain comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 8
55. A method of treating acute and chronic neurodegenerative disorders selected from the group consisting of: stroke, head trauma, spinal cord injury, Alzheimer's disease, amyotrophic lateral sclerosis, cerebral amyloid angiopathy, AIDS, Parkinson's disease, Huntington's disease, prion diseases, myasthenia gravis, and Duchenne's muscular dystrophy comprising administering to a host suffering therefrom a therapeutically effective amount of a compound according to in unit dosage form.
claim 8
56. A pharmaceutical composition comprising a compound according to in admixture with a pharmaceutically acceptable excipient, diluent, or carrier.
claim 8
57. A pharmaceutical composition comprising a therapeutically effective amount of a compound according to in admixture with a pharmaceutically acceptable excipient, diluent, or carrier.
claim 8
wherein R and R1 are the same or different and are hydrogen, alkyl, halogen, nitro, cyano, trifluoromethyl, OCF3, OCF2H, OCH2F,
wherein R6 is as defined above, cycloalkyl, or heteroaryl, with the proviso that R and R1 are not both hydrogen;
wherein R6 and R6a are the same or different and are as defined above for R6;
R3, R3a, R4, and R4a are the same or different and are hydrogen, fluorine, alkyl,
—(CH2)n-aryl wherein n is an integer from 1 to 6,
—(CH2)n-heteroaryl wherein n is as defined above,
—(CH2)n-cycloalkyl wherein n is as defined above,
—(CH2)p—X—(CH2)q-aryl wherein X is O, S, SO, SO2, or NH, and p and q are each zero or an integer of 1 to 6, and the sum of p+q is not greater than six,
—(CH2)p—X—(CH2)q-heteroaryl wherein X, p, and q are as defined above, or
—(CH2)n-R7 wherein R7 is N-phthalimido, N-2,3-naphthylimido,
wherein R6 and R6a are the same or different and are as defined above for R6,
wherein R6 and R6a are the same or different and are as defined above for R6, and n is as defined above;
with the proviso that R3, R3a, R4, and R4a are hydrogen or at least one of R3, R3a, R4, or R4a is fluorine;
and corresponding isomers thereof; or a pharmaceutically acceptable salt thereof which comprises deprotection of a compound of Formula (7a)
wherein PG1 is selected from the group consisting of methyl, ethyl, tert-butyl, and benzyl, and R, R1, R3, R3a, R4, and R4a are as defined above using standard methodology followed by condensation with a compound of Formula (8)
H2NR2 (8)
to give a compound of Formula Ia and if desired, converting a compound of Formula Ia to a corresponding pharmaceutically acceptable salt by conventional means and, if so desired, converting the corresponding pharmaceutically acceptable salt to a compound of Formula Ia by conventional means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/736,802 US6307089B2 (en) | 1996-09-04 | 2000-12-14 | Biphenyl butyric acids and their derivatives as inhibitors of matrix metalloproteinases |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2581496P | 1996-09-04 | 1996-09-04 | |
US2713896P | 1996-10-02 | 1996-10-02 | |
US5490597P | 1997-08-06 | 1997-08-06 | |
US09/254,231 US6239288B1 (en) | 1996-09-04 | 1999-03-02 | Biphenyl hydroxy imino butyric acids and their derivatives for treating arthritis |
US09/736,802 US6307089B2 (en) | 1996-09-04 | 2000-12-14 | Biphenyl butyric acids and their derivatives as inhibitors of matrix metalloproteinases |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1997/014852 Division WO1998009940A1 (en) | 1996-09-04 | 1997-08-22 | Biphenyl butyric acids and their derivatives as inhibitors of matrix metalloproteinases |
US09/254,231 Division US6239288B1 (en) | 1996-09-04 | 1999-03-02 | Biphenyl hydroxy imino butyric acids and their derivatives for treating arthritis |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010000513A1 true US20010000513A1 (en) | 2001-04-26 |
US6307089B2 US6307089B2 (en) | 2001-10-23 |
Family
ID=27362627
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/254,231 Expired - Fee Related US6239288B1 (en) | 1996-09-04 | 1999-03-02 | Biphenyl hydroxy imino butyric acids and their derivatives for treating arthritis |
US09/736,802 Expired - Fee Related US6307089B2 (en) | 1996-09-04 | 2000-12-14 | Biphenyl butyric acids and their derivatives as inhibitors of matrix metalloproteinases |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/254,231 Expired - Fee Related US6239288B1 (en) | 1996-09-04 | 1999-03-02 | Biphenyl hydroxy imino butyric acids and their derivatives for treating arthritis |
Country Status (9)
Country | Link |
---|---|
US (2) | US6239288B1 (en) |
EP (1) | EP0927156A1 (en) |
JP (1) | JP2002514179A (en) |
AR (1) | AR009723A1 (en) |
AU (1) | AU4159197A (en) |
CO (1) | CO4950616A1 (en) |
HR (1) | HRP970475A2 (en) |
PE (1) | PE109498A1 (en) |
WO (1) | WO1998009940A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030139453A1 (en) * | 2000-03-21 | 2003-07-24 | The Procter & Gamble Company | Difluorobutyric acid metalloprotease inhibitors |
US20030162778A1 (en) * | 2000-03-21 | 2003-08-28 | The Procter And Gamble Company | Carbocyclic side chain containing metalloprotease inhibitors |
US20040127498A1 (en) * | 2000-03-21 | 2004-07-01 | The Procter & Gamble Company | Heterocyclic side chain containing, n-substituted metalloprotease inhibitors |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002514179A (en) * | 1996-09-04 | 2002-05-14 | ワーナー―ランバート・コンパニー | Biphenylbutyric acid and its derivatives as inhibitors of matrix metalloproteinases |
IL128545A0 (en) * | 1996-12-09 | 2000-01-31 | Warner Lambert Co | Method for treating and preventing heart failure and ventricular dilatation |
AU9663798A (en) * | 1997-10-06 | 1999-04-27 | Warner-Lambert Company | Heteroaryl butyric acids and their derivatives as inhibitors of matrix metalloproteinases |
US6169103B1 (en) | 1998-03-03 | 2001-01-02 | Warner-Lambert | Fluorine-substituted biphenyl butyric acids and their derivatives as inhibitors of matrix metalloproteinases |
AU1982500A (en) | 1998-12-30 | 2000-07-24 | Bayer Aktiengesellschaft | Use of substituted 4-biarylbutyric and 5-biarylpentanoic acid derivatives as matrix metalloprotease inhibitors for the treatment of respiratory diseases |
EP1031349A1 (en) * | 1999-02-25 | 2000-08-30 | Bayer Aktiengesellschaft | Use of substituted 4-biarylbutyric and 5-biarylpentanoic acid derivatives for the treatment of cerebral diseases |
US7141607B1 (en) | 2000-03-10 | 2006-11-28 | Insite Vision Incorporated | Methods and compositions for treating and inhibiting retinal neovascularization |
KR100405914B1 (en) * | 2000-04-25 | 2003-11-15 | 삼성전자주식회사 | Biphenyl Butyric Acid Derivative as a Matrix Metalloproteinase Inhibitor |
KR100405913B1 (en) * | 2000-04-25 | 2003-11-14 | 삼성전자주식회사 | Biphenyl Butyric Acid Derivative as a Matrix Metalloproteinase Inhibitor |
AU5275901A (en) * | 2000-04-25 | 2001-11-12 | Samsung Electronics Co., Ltd. | Biphenyl butyric acid derivative as a matrix metalloproteinase inhibitor |
DE10047118A1 (en) * | 2000-09-22 | 2002-04-11 | Bayer Ag | Process for the preparation of ketocarboxylic acid derivatives |
DE10113604A1 (en) * | 2001-03-20 | 2002-10-24 | Ibfb Gmbh Privates Inst Fuer B | Process for the cleavage of the human growth hormone GH |
WO2003006006A1 (en) * | 2001-07-09 | 2003-01-23 | The Regents Of The University Of California | Use of matrix metalloproteinase inhibitors to mitigate nerve damage |
DK1465861T3 (en) * | 2001-12-20 | 2009-08-31 | Bristol Myers Squibb Co | Alpha (N-sulfonamide) acetamide derivatives as beta-amyloid inhibitors |
WO2004002417A2 (en) | 2002-06-28 | 2004-01-08 | Centocor, Inc. | Mammalian ch1 deleted mimetibodies, compositions, methods and uses |
US6734579B1 (en) * | 2002-07-24 | 2004-05-11 | Apple Computer, Inc. | System and method for activating a first device from a second device |
DE60331367D1 (en) | 2002-12-30 | 2010-04-01 | Angiotech Int Ag | ACTIVE COMPOSITION OF FAST GELING POLYMERIC COMPOSITION |
GB0312654D0 (en) | 2003-06-03 | 2003-07-09 | Glaxo Group Ltd | Therapeutically useful compounds |
GB0314488D0 (en) * | 2003-06-20 | 2003-07-23 | Glaxo Group Ltd | Therapeutically useful compounds |
WO2006073726A2 (en) * | 2004-12-31 | 2006-07-13 | Aventis Pharmaceuticals Inc. | Use of certain biphenyl compounds for protection of neurons and oligodendrocytes in the treatment of multiple sclerosis (ms) |
EP1856063B1 (en) | 2005-02-22 | 2012-01-25 | Ranbaxy Laboratories Limited | 5-phenyl-pentanoic acid derivatives as matrix metalloproteinase inhibitors for the treatment of asthma and other diseases |
US7319152B2 (en) | 2005-09-19 | 2008-01-15 | Wyeth | 5-Aryl-indan-1-one and analogs useful as progesterone receptor modulators |
US7414142B2 (en) | 2005-09-19 | 2008-08-19 | Wyeth | 5-aryl-indan-1-one oximes and analogs useful as progesterone receptor modulators |
JP4936512B2 (en) * | 2006-02-24 | 2012-05-23 | 公立大学法人大阪府立大学 | Photocleavable cyclic compound |
AP2690A (en) | 2006-08-22 | 2013-07-15 | Ranbaxy Laboratoiries Ltd | Matrix metalloproteinase inhibitors |
US20110230428A1 (en) * | 2008-07-22 | 2011-09-22 | John Wityak | Certain kynurenine-3-monooxygenase inhibitors, pharmaceutical compositions, and methods of use thereof |
WO2010075287A2 (en) * | 2008-12-23 | 2010-07-01 | Aquilus Pharmaceuticals, Inc | Compounds and methods for the treatment of pain and other diseases |
EP3048100A1 (en) | 2009-05-28 | 2016-07-27 | Novartis AG | Substituted aminobutyric derivatives as neprilysin inhibitors |
RS53664B1 (en) | 2009-05-28 | 2015-04-30 | Novartis Ag | Substituted aminopropionic derivatives as neprilysin inhibitors |
JO2967B1 (en) | 2009-11-20 | 2016-03-15 | نوفارتس ايه جي | Substituted carbamoylmethylamino acetic acid derivatives as novel NEP inhibitors |
PL2750677T3 (en) | 2011-08-30 | 2017-12-29 | Chdi Foundation, Inc. | Kynurenine-3-monooxygenase inhibitors, pharmaceutical compositions, and methods of use thereof |
CN103827095A (en) | 2011-08-30 | 2014-05-28 | Chdi基金会股份有限公司 | Kynurenine-3-monooxygenase inhibitors, pharmaceutical compositions, and methods of use thereof |
EP2926808A1 (en) | 2012-11-28 | 2015-10-07 | Administración General De La Communidad Autónoma De Euskadi | Use of metalloprotease inhibitors for the treatment of polycystic liver diseases |
BR112015019307A8 (en) | 2013-02-14 | 2018-01-30 | Novartis Ag | bisphenyl substituted butanoic acid derivatives, their uses, and pharmaceutical composition |
PT2956464T (en) | 2013-02-14 | 2018-07-04 | Novartis Ag | Substituted bisphenyl butanoic phosphonic acid derivatives as nep (neutral endopeptidase) inhibitors |
US20170114049A1 (en) | 2014-04-03 | 2017-04-27 | Bayer Pharma Aktiengesellschaft | 2,5-disubstituted cyclopentane carboxylic acids for the treatment of respiratory tract diseases |
CA2944617A1 (en) | 2014-04-03 | 2015-10-08 | Bayer Pharma Aktiengesellschaft | Chiral 2,5-disubstituted cyclopentanecarboxylic acid derivatives and use thereof |
WO2015150363A1 (en) | 2014-04-03 | 2015-10-08 | Bayer Pharma Aktiengesellschaft | 2,5-disubstituted cyclopentane carboxylic acids and use thereof |
BR112017000922A2 (en) | 2014-07-17 | 2018-01-16 | Chdi Foundation, Inc. | methods and compositions for treating hiv-related disorders |
FR3035105A1 (en) * | 2015-04-16 | 2016-10-21 | Metabrain Res | DERIVATIVES USEFUL IN THE TREATMENT OF MUSCLE ATROPHY |
CN109422644A (en) * | 2017-09-04 | 2019-03-05 | 任洁 | The purposes of fenbufen interior metabolism product and derivative |
CN109422645A (en) * | 2017-09-04 | 2019-03-05 | 任洁 | The purposes of fenbufen interior metabolism product and derivative as diabetes related target regulator |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3182061A (en) * | 1961-03-20 | 1965-05-04 | Warner Lambert Pharmaceutical | 5-[4-(p-hydroxyphenoxy)phenyl]-5-oxo-3-methylvaleric acid |
US3997589A (en) * | 1971-03-17 | 1976-12-14 | Boehringer Ingelheim Gmbh | 4-(2'-Fluoro-4-biphenylylr-4-oxo-butyric acid and esters and salts thereof |
NL7203400A (en) * | 1971-03-17 | 1972-09-19 | ||
BE790085A (en) * | 1971-10-15 | 1973-04-13 | Thomae Gmbh Dr K | NEW 4- (4-BIPHENYLYL) -BUTANOLS |
FR2524463A1 (en) * | 1982-04-05 | 1983-10-07 | Fabre Sa Pierre | 4-Para-bi:phenylyl 4-oxo 2-methyl butyric acid prepn. - by condensn. of 4-bromo:acetyl-bi:phenyl with di:ethyl methyl-malonate carbanion, saponification and decarboxylation |
US5192753A (en) * | 1991-04-23 | 1993-03-09 | Mcgeer Patrick L | Anti-rheumatoid arthritic drugs in the treatment of dementia |
US5789434A (en) * | 1994-11-15 | 1998-08-04 | Bayer Corporation | Derivatives of substituted 4-biarylbutyric acid as matrix metalloprotease inhibitors |
US5886022A (en) * | 1995-06-05 | 1999-03-23 | Bayer Corporation | Substituted cycloalkanecarboxylic acid derivatives as matrix metalloprotease inhibitors |
JP2002514179A (en) * | 1996-09-04 | 2002-05-14 | ワーナー―ランバート・コンパニー | Biphenylbutyric acid and its derivatives as inhibitors of matrix metalloproteinases |
-
1997
- 1997-08-22 JP JP51270698A patent/JP2002514179A/en not_active Abandoned
- 1997-08-22 WO PCT/US1997/014852 patent/WO1998009940A1/en not_active Application Discontinuation
- 1997-08-22 EP EP97939523A patent/EP0927156A1/en not_active Withdrawn
- 1997-08-22 AU AU41591/97A patent/AU4159197A/en not_active Abandoned
- 1997-09-03 AR ARP970104004A patent/AR009723A1/en unknown
- 1997-09-03 CO CO97051086A patent/CO4950616A1/en unknown
- 1997-09-03 PE PE1997000780A patent/PE109498A1/en not_active Application Discontinuation
- 1997-09-04 HR HR60/054,905A patent/HRP970475A2/en not_active Application Discontinuation
-
1999
- 1999-03-02 US US09/254,231 patent/US6239288B1/en not_active Expired - Fee Related
-
2000
- 2000-12-14 US US09/736,802 patent/US6307089B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030139453A1 (en) * | 2000-03-21 | 2003-07-24 | The Procter & Gamble Company | Difluorobutyric acid metalloprotease inhibitors |
US20030162778A1 (en) * | 2000-03-21 | 2003-08-28 | The Procter And Gamble Company | Carbocyclic side chain containing metalloprotease inhibitors |
US20040127498A1 (en) * | 2000-03-21 | 2004-07-01 | The Procter & Gamble Company | Heterocyclic side chain containing, n-substituted metalloprotease inhibitors |
US6852751B2 (en) | 2000-03-21 | 2005-02-08 | The Procter & Gamble Company | Difluorobutyric acid metalloprotease inhibitors |
US6949545B2 (en) | 2000-03-21 | 2005-09-27 | The Procter & Gamble Company | Heterocyclic side chain containing, n-substituted metalloprotease inhibitors |
Also Published As
Publication number | Publication date |
---|---|
US6239288B1 (en) | 2001-05-29 |
EP0927156A1 (en) | 1999-07-07 |
AU4159197A (en) | 1998-03-26 |
CO4950616A1 (en) | 2000-09-01 |
HRP970475A2 (en) | 1998-08-31 |
AR009723A1 (en) | 2000-05-03 |
PE109498A1 (en) | 1999-01-15 |
JP2002514179A (en) | 2002-05-14 |
WO1998009940A1 (en) | 1998-03-12 |
US6307089B2 (en) | 2001-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6239288B1 (en) | Biphenyl hydroxy imino butyric acids and their derivatives for treating arthritis | |
US6399612B1 (en) | Heteroaryl butyric acids and their derivatives as inhibitors of matrix metalloproteinases | |
US6169103B1 (en) | Fluorine-substituted biphenyl butyric acids and their derivatives as inhibitors of matrix metalloproteinases | |
US6350885B1 (en) | Tricyclic heteroaromatics and their derivatives as inhibitors of matrix metalloproteinases | |
US6037361A (en) | Fluorinated butyric acids and their derivatives as inhibitors of matrix metalloproteinases | |
US6420408B1 (en) | Tricyclic sulfonamides and their derivatives as inhibitors of matrix metalloproteinases | |
US6541521B1 (en) | Benzene butyric acids and their derivatives as inhibitors of matrix metalloproteinases | |
US6008220A (en) | Aromatic keto-acids and their derivatives as inhibitors of matrix metalloproteinases | |
US6624177B1 (en) | Matrix metalloproteinase inhibitors and their therapeutic uses | |
CZ2001302A3 (en) | Tricyclic sulfonamides and their derivatives functioning as inhibitors of matrix metalloproteinases | |
MXPA98003315A (en) | Queto aromatic acids and their derivatives as inhibitors of metaloproteinases mat | |
MXPA98009871A (en) | Matrix metalloproteinase inhibitors and their therapeutic uses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: WARNER-LAMBERT COMPANY, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PURCHASE, CLAUDE FORSEY JR.;ROTH, BRUCE DAVID;SCHIELKE, GERALD PAUL;AND OTHERS;REEL/FRAME:011639/0642;SIGNING DATES FROM 20010212 TO 20010226 |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20091023 |