Nothing Special   »   [go: up one dir, main page]

US11557784B2 - Method of making a fuel cell and treating a component thereof - Google Patents

Method of making a fuel cell and treating a component thereof Download PDF

Info

Publication number
US11557784B2
US11557784B2 US16/674,629 US201916674629A US11557784B2 US 11557784 B2 US11557784 B2 US 11557784B2 US 201916674629 A US201916674629 A US 201916674629A US 11557784 B2 US11557784 B2 US 11557784B2
Authority
US
United States
Prior art keywords
fuel cell
emr
electrolyte
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/674,629
Other versions
US20200144646A1 (en
Inventor
David R. Hall
Matthew Dawson
Jin Dawson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Utility Global Inc
Original Assignee
Utility Global Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utility Global Inc filed Critical Utility Global Inc
Priority to PCT/US2019/059923 priority Critical patent/WO2020097118A1/en
Priority to PCT/US2019/059925 priority patent/WO2020097120A1/en
Priority to US16/674,629 priority patent/US11557784B2/en
Priority to PCT/US2019/059924 priority patent/WO2020097119A1/en
Priority to JP2021525032A priority patent/JP2022512964A/en
Priority to PCT/US2019/059926 priority patent/WO2020112316A1/en
Priority to US16/680,770 priority patent/US20200156104A1/en
Priority to PCT/US2019/060838 priority patent/WO2020102140A1/en
Priority to EP19886007.4A priority patent/EP3881384A4/en
Priority to CN201980083279.5A priority patent/CN113302771A/en
Priority to PCT/US2019/061637 priority patent/WO2020102634A1/en
Priority to US16/684,838 priority patent/US20200144654A1/en
Priority to US16/684,864 priority patent/US11611097B2/en
Priority to EP19884059.7A priority patent/EP3881377A4/en
Priority to US16/693,271 priority patent/US20200144627A1/en
Priority to PCT/US2019/062882 priority patent/WO2020107029A1/en
Priority to PCT/US2019/062878 priority patent/WO2020107026A1/en
Priority to US16/693,270 priority patent/US11603324B2/en
Priority to PCT/US2019/062881 priority patent/WO2020107028A1/en
Priority to US16/693,268 priority patent/US20200144653A1/en
Priority to PCT/US2019/062879 priority patent/WO2020107027A1/en
Priority to US16/693,269 priority patent/US20200144628A1/en
Priority to PCT/US2019/063863 priority patent/WO2020113170A1/en
Priority to US16/699,461 priority patent/US20200144635A1/en
Priority to PCT/US2019/063865 priority patent/WO2020113172A1/en
Priority to US16/699,453 priority patent/US20200144633A1/en
Priority to US16/707,084 priority patent/US20200235410A1/en
Priority to PCT/US2019/065255 priority patent/WO2020123393A1/en
Priority to US16/707,066 priority patent/US20200182549A1/en
Priority to PCT/US2019/065247 priority patent/WO2020123389A1/en
Priority to PCT/US2019/065261 priority patent/WO2020123396A1/en
Priority to US16/707,046 priority patent/US20200235409A1/en
Priority to US16/739,748 priority patent/US11767600B2/en
Priority to PCT/US2020/013121 priority patent/WO2020146754A1/en
Priority to EP20738885.1A priority patent/EP3909089A4/en
Priority to EP20738706.9A priority patent/EP3908549A4/en
Priority to CA3126466A priority patent/CA3126466C/en
Priority to PCT/US2020/013133 priority patent/WO2020146762A1/en
Priority to US16/739,671 priority patent/US20200259186A1/en
Priority to EP20738984.2A priority patent/EP3908551A4/en
Priority to PCT/US2020/013129 priority patent/WO2020146759A1/en
Priority to JP2021539923A priority patent/JP2022522603A/en
Priority to CN202080008648.7A priority patent/CN113631502B/en
Priority to PCT/US2020/013126 priority patent/WO2020146757A1/en
Priority to US16/739,727 priority patent/US11761096B2/en
Priority to US16/739,612 priority patent/US11761100B2/en
Priority to PCT/US2020/015492 priority patent/WO2020160052A1/en
Priority to US16/775,176 priority patent/US20200227763A1/en
Assigned to Utility Global, Inc. reassignment Utility Global, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAWSON, MATTHEW, HALL, DAVID R, DAWSON, JIN
Publication of US20200144646A1 publication Critical patent/US20200144646A1/en
Priority to US15/931,585 priority patent/US11539053B2/en
Priority to PCT/US2020/052277 priority patent/WO2021061817A1/en
Priority to EP20867019.0A priority patent/EP4034512A1/en
Priority to US17/030,000 priority patent/US11453618B2/en
Application granted granted Critical
Publication of US11557784B2 publication Critical patent/US11557784B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/171Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects
    • B29C64/182Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects in parallel batches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • B29C64/273Arrangements for irradiation using laser beams; using electron beams [EB] pulsed; frequency modulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • B29C64/336Feeding of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/05Use of magnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/11Use of irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2505/00Use of metals, their alloys or their compounds, as filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • B29K2509/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • H01M4/8832Ink jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • H01M4/8889Cosintering or cofiring of a catalytic active layer with another type of layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This invention relates to fuel cell manufacturing. More particularly, this invention relates to methods of making solid oxide fuel cells or electrochemical reactors.
  • a fuel cell is an electrochemical apparatus that converts the chemical energy from a fuel into electricity through an electrochemical reaction. Sometimes, the heat generated by a fuel cell is also usable.
  • fuel cells There are many types of fuel cells.
  • PEMFCs proton-exchange membrane fuel cells
  • MEA membrane electrode assemblies
  • An ink of catalyst, carbon, and electrode are sprayed or painted onto the solid electrolyte and carbon paper is hot pressed on either side to protect the inside of the cell and also act as electrodes.
  • the most important part of the cell is the triple phase boundary where the electrolyte, catalyst, and reactants mix and thus where the cell reactions actually occur.
  • the membrane must not be electrically conductive so that the half reactions do not mix.
  • PEMFC is a good candidate for vehicle and other mobile applications of all sizes (e.g., mobile phones) because it is compact.
  • water management is crucial to performance: too much water will flood the membrane, too little will dry it; in both cases, power output will drop.
  • Water management is a difficult problem in PEM fuel cell systems, mainly because water in the membrane is attracted toward the cathode of the cell through polarization.
  • the platinum catalyst on the membrane is easily poisoned by carbon monoxide (CO level needs to be no more than one part per million).
  • CO level carbon monoxide
  • the membrane is also sensitive to things like metal ions, which can be introduced by corrosion of metallic bipolar plates, or metallic components in the fuel cell system, or from contaminants in the fuel and/or oxidant.
  • Solid oxide fuel cells are a different class of fuel cells that use a solid oxide material as the electrolyte.
  • SOFCs use a solid oxide electrolyte to conduct negative oxygen ions from the cathode to the anode.
  • the electrochemical oxidation of the oxygen ions with fuel e.g., hydrogen, carbon monoxide
  • Some SOFCs use proton-conducting electrolytes (PC-SOFCs), which transport protons instead of oxygen ions through the electrolyte.
  • PC-SOFCs proton-conducting electrolytes
  • SOFCs using oxygen ion conducting electrolytes have higher operating temperatures than PC-SOFCs.
  • SOFCs do not typically require expensive platinum catalyst material, which is typically necessary for lower temperature fuel cells such as proton-exchange membrane fuel cells (PEMFCs), and are not vulnerable to carbon monoxide catalyst poisoning.
  • Solid oxide fuel cells have a wide variety of applications, such as auxiliary power units for homes and vehicles as well as stationary power generation units for data centers.
  • SOFCs comprise interconnects, which are placed between each individual cell so that the cells are connected in series and that the electricity generated by each cell is combined.
  • One category of SOFC is segmented-in-series (SIS) type SOFC, in which electrical current flow is parallel to the electrolyte in the lateral direction. Contrary to the SIS type SOFC, a different category of SOFC has electrical current flow perpendicular to the electrolyte in the lateral direction.
  • BOP balance of plant
  • the mechanical balance of plant includes air preheater, reformer and/or pre-reformer, afterburner, water heat exchanger, anode tail gas oxidizer.
  • Other components are also needed, such as, electrical balance of plant including power electronics, hydrogen sulfide sensors, and fans.
  • BOP components are often complex and expensive. Fuel cells and fuel cell systems are simply examples of the necessity and interest to develop advanced manufacturing system and method such that these efficient systems may be economically produced and widely deployed.
  • a method of treating a component of a fuel cell comprising: exposing said component to a source of electromagnetic radiation (EMR), wherein the component comprises a first material; wherein the EMR has a wavelength ranging from 10 to 1500 nm and the EMR has a minimum energy density of 0.1 Joule/cm 2 .
  • the source of EMR comprises a xenon lamp.
  • the source of EMR is a xenon lamp.
  • peak wavelength is based on relative irradiance with respect to wavelength.
  • the first material comprises Yttria-stabilized zirconia (YSZ), 8YSZ (8 mol % YSZ powder), Yttirum, Zirconium, gadolinia-doped ceria (GDC or CGO), Samaria-doped ceria (SDC), Scandia-stabilized zirconia (SSZ), Lanthanum strontium manganite (LSM), Lanthanum Strontium Cobalt Ferrite (LSCF), Lanthanum Strontium Cobaltite (LSC), Lanthanum Strontium Gallium Magnesium Oxide (LSGM), nickel, nickel oxide (NiO), NiO—YSZ, copper (Cu), Cu-CGO, Cu 2 O, CuO, Cerium, silver, crofer, steel, lanthanum chromite, doped lanthanum chromite, ferritic steel, stainless steel, or combinations thereof.
  • the treated component has no or minimal cracking.
  • the method comprises adding a second material to the component. In an embodiment, the method comprises exposing the second material to EMR. In an embodiment, the second material comprises graphite, graphene, nano diamonds, or combinations thereof. In an embodiment, the volume fraction of the second material in the component in the fuel cell is no greater than 50%, or no greater than 30%, or no greater than 20%, or no greater than 10%, or no greater than 3%, or no greater than 1%.
  • the method comprises controlling at least one of the following: distance from the EMR to the component; energy density of the EMR; spectrum of the EMR; voltage of the EMR; exposure volume of the component; exposure location of the component; duration of exposure; burst frequency; and number of exposures.
  • the EMR comprises UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser, electron beam, microwave.
  • the EMR is provided by a xenon lamp.
  • the method is combined with manufacturing techniques of a fuel cell.
  • said manufacturing techniques comprise screen printing, tape casting, spraying, sputtering, physical vapor deposition, additive manufacturing.
  • additive manufacturing comprises material jetting, binder jetting, inkjet printing, aerosol jetting, or aerosol jet printing, vat photopolymerization, powder bed fusion, material extrusion, directed energy deposition, sheet lamination, ultrasonic inkjet printing, or combinations thereof.
  • Also discussed herein is a method of making a fuel cell comprising depositing a material on a substrate; heating the material using electromagnetic radiation (EMR), wherein the deposited and heated material is a part of the fuel cell.
  • said depositing comprises material jetting, binder jetting, inkjet printing, aerosol jetting, or aerosol jet printing, vat photopolymerization, powder bed fusion, material extrusion, directed energy deposition, sheet lamination, ultrasonic inkjet printing, or combinations thereof.
  • heating is performed in situ.
  • the EMR is performed in one exposure, or no greater than 10 exposures, or no greater than 100 exposures, or no greater than 1000 exposures, or no greater than 10,000 exposures.
  • the EMR has a burst frequency of 10 ⁇ 4 -1000 Hz or 1-1000 Hz or 10-1000 Hz. In an embodiment, the EMR has an exposure distance of no greater than 50 mm. In an embodiment, the EMR has an exposure duration no less than 0.1 ms or 1 ms. In an embodiment, the EMR is applied with a capacitor voltage of no less than 100V. In an embodiment, the EMR is provided by a xenon lamp.
  • a method of making a fuel cell comprising depositing a material on a substrate; heating the material in situ to cause at least a portion of the material to sinter, wherein the deposited and heated material is a part of the fuel cell.
  • heating is performed using electromagnetic radiation (EMR), or plasma, or hot fluid, or a heating element, or combinations thereof.
  • EMR electromagnetic radiation
  • the EMR is provided by a xenon lamp.
  • the EMR comprises UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser, electron beam, microwave.
  • depositing comprises material jetting, binder jetting, inkjet printing, aerosol jetting, or aerosol jet printing, vat photopolymerization, powder bed fusion, material extrusion, directed energy deposition, sheet lamination, ultrasonic inkjet printing, or combinations thereof.
  • depositing utilizes a multi-nozzle additive manufacturing method.
  • a first fuel cell is stacked with a second fuel cell such that the interconnect is in contact with surface A of an electrode of the first fuel cell, wherein surface A has an area larger than the average surface area of the electrode of the first fuel cell; and the interconnect is in contact with surface B of an electrode of the second fuel cell, wherein surface B has an area larger than the average surface area of the electrode of the second fuel cell, wherein the average surface area of the electrode is the total surface area of the electrode divided by the number of surfaces of the electrode.
  • the fuel cell is a non-SIS type SOFC.
  • FIG. 1 illustrates a fuel cell comprising an anode, an electrolyte, and a cathode, according to an embodiment of this disclosure.
  • FIG. 2 illustrates a fuel cell comprising an anode, an electrolyte, at least one barrier layer, and a cathode, according to an embodiment of this disclosure.
  • FIG. 3 illustrates a fuel cell comprising an anode, a catalyst, an electrolyte, at least one barrier layer, and a cathode, according to an embodiment of this disclosure.
  • FIG. 4 illustrates a fuel cell comprising an anode, a catalyst, an electrolyte, at least one barrier layer, a cathode, and an interconnect, according to an embodiment of this disclosure.
  • FIG. 5 illustrates a fuel cell stack, according to an embodiment of this disclosure.
  • FIG. 6 illustrates a method and system of integrated deposition and heating using electromagnetic radiation (EMR), according to an embodiment of this disclosure.
  • EMR electromagnetic radiation
  • FIG. 7 illustrates SRTs of a first composition and a second composition as a function of temperature, according to an embodiment of this disclosure.
  • FIG. 8 illustrates a process flow for forming and heating at least a portion of a fuel cell, according to an embodiment of this disclosure.
  • FIG. 9 illustrates maximum height profile roughness, according to an embodiment of this disclosure.
  • FIG. 10 is a scanning electron microscopy image (side view) illustrating an electrolyte (YSZ) printed and sintered on an electrode (NiO-YSZ), according to an embodiment of this disclosure.
  • FIG. 11 A illustrates a perspective view of a fuel cell cartridge (FCC), according to an embodiment of this disclosure.
  • FIG. 11 B illustrates cross-sectional views of a fuel cell cartridge (FCC), according to an embodiment of this disclosure.
  • FIG. 11 C illustrates the top view and the bottom view of a fuel cell cartridge (FCC), according to an embodiment of this disclosure.
  • compositions and materials are used interchangeably unless otherwise specified. Each composition/material may have multiple elements, phases, and components.
  • Heating refers to actively adding energy to the compositions or materials.
  • In situ in this disclosure refers to the treatment (e.g., heating) process being performed either at the same location or in the same device of the forming process of the compositions or materials.
  • the deposition process and the heating process are performed in the same device and at the same location, in other words, without changing the device and without changing the location within the device.
  • the deposition process and the heating process are performed in the same device at different locations, which is also considered in situ.
  • AM additive manufacturing
  • additive manufacturing refers to a group of techniques that join materials to make objects, usually slice by slice or layer upon layer. AM is contrasted to subtractive manufacturing methodologies, which involve removing sections of a material by machining or cutting away. AM is also referred as additive fabrication, additive processes, additive techniques, additive layer manufacturing, layer manufacturing, and freeform fabrication. Some examples of AM are extrusion, photopolymerization, powder bed fusion, material jetting, binder jetting, directed energy deposition, lamination, direct metal laser sintering (DMLS), selective laser sintering (SLS), selective laser melting (SLM), directed energy deposition (DED), laser metal deposition (LMD), electron beam (EBAM), and metal binder jetting.
  • a 3D printer is a type of AM machine (AMM). An inkjet printer or ultrasonic inkjet printer are also AMM's.
  • strain rate tensor or “SRT” is meant to refer to the rate of change of the strain of a material in the vicinity of a certain point and at a certain time. It can be defined as the derivative of the strain tensor with respect to time. When SRTs or difference of SRTs are compared in this disclosure, it is the magnitude that is being used.
  • lateral refers to the direction that is perpendicular to the stacking direction of the layers in a non-SIS type fuel cell.
  • lateral direction refers to the direction that is perpendicular to the stacking direction of the layers in a fuel cell or the stacking direction of the slices to form an object during deposition.
  • Lateral also refers to the direction that is the spread of deposition process.
  • Syngas i.e., synthesis gas in this disclosure refers to a mixture consisting primarily of hydrogen, carbon monoxide, and carbon dioxide.
  • absorbance is a measure of the capacity of a substance to absorb electromagnetic radiation (EMR) of a wavelength.
  • Absorption of radiation refers to the energy absorbed by a substance when exposed to the radiation.
  • a method of making a fuel cell comprises using only one additive manufacturing machine (AMM) to manufacture a fuel cell, wherein the fuel cell comprises an anode, electrolyte, and a cathode.
  • the fuel cell comprises at least one barrier layer, for example, between the electrolyte and the cathode, or between the electrolyte and the cathode, or both.
  • the at least one barrier layer is also preferably made by the same single AMM.
  • the AMM also produces an interconnect and assembles the interconnect with the anode, the cathode, the barrier layer(s), and the electrolyte.
  • the interconnect, the anode, the electrolyte, and the cathode are formed layer on layer, for example, printed layer on layer. It is important to note that, within the scope of the invention, the order of forming these layers can be varied. In other words, either the anode or the cathode can be formed before the other. Naturally, the electrolyte is formed so that it is between the anode and the cathode.
  • the barrier layer(s), catalyst layer(s) and interconnect(s) are formed so as to lie in the appropriate position within the fuel cell to perform their functions.
  • each of the interconnect, the anode, the electrolyte, and the cathode has six faces.
  • the anode is printed on the interconnect and is in contact with the interconnect;
  • the electrolyte is printed on the anode and is in contact with the anode;
  • the cathode is printed on the electrolyte and is in contact with the electrolyte.
  • Each print is sintered, for example, using EMR.
  • the single AMM makes a first fuel cell, wherein the fuel cell comprises the anode, the electrolyte, the cathode, the at least one barrier layer, and the interconnect.
  • the single AMM makes a second fuel cell.
  • the single AMM assembles the first fuel cell with the second fuel cell to form a fuel cell stack.
  • the production using AMM is repeated as many times as desired; and a fuel cell stack is assembled using the AMM.
  • the various layers of the fuel cell are produced by the AMM above ambient temperature, for example, above 100° C., from 100° C. to 500° C., from 100° C. to 300° C.
  • the fuel cell or fuel cell stack is heated after it is formed/assembled. In an embodiment, the fuel cell or fuel cell stack is heated at a temperature above 500° C. In an embodiment, the fuel cell or fuel cell stack is heated at a temperature from 500° C. to 1500° C.
  • the AMM comprises a chamber where the manufacturing of fuel cells takes place.
  • This chamber is able to withstand high temperature to enable the production of the fuel cells.
  • this high temperature is at least 300° C.
  • this high temperature is at least 500° C.
  • this high temperature is at least 800° C.
  • this high temperature is at least 1000° C.
  • this high temperature is at least 1500° C.
  • this chamber also enables heating of the fuel cells to take place in the chamber.
  • Various heating methods are applied, such as laser heating/curing, electromagnetic wave heating, hot fluid heating, or heating element associated with the chamber.
  • the heating element may be a heating surface or a heating coil or a heating rod and is associated with the chamber such that the content in the chamber is heated to the desired temperature range.
  • the chamber of the AMM is able to apply pressure to the fuel cell(s) inside, for example, via a moving element (e.g., a moving stamp or plunger).
  • the chamber of the AMM is able to withstand pressure.
  • the chamber can be pressurized by a fluid and de-pressurized as desired.
  • the fluid in the chamber can also be changed/replaced as needed.
  • the fuel cell or fuel cell stack is heated using EMR. In an embodiment, the fuel cell or fuel cell stack is heated using oven curing. In an embodiment, the laser beam is expanded (for example, by the use of one or more mirrors) to create a heating zone with uniform power density.
  • each layer of the fuel cell is EMR cured separately.
  • a combination of fuel cell layers is EMR cured separately, for example, a combination of the anode, the electrolyte, and the cathode layers.
  • a first fuel cell is EMR cured, assembled with a second fuel cell, and then the second fuel cell is EMR cured.
  • a first fuel cell is assembled with a second fuel cell, and then the first fuel cell and the second fuel cell are EMR cured separately.
  • a first fuel cell is assembled with a second fuel cell to form a fuel cell stack, and then the fuel cell stack is EMR cured.
  • the sequence of laser heating/curing and assembling is applicable to all other heating methods.
  • the AMM produces each layer of a multiplicity of fuel cells simultaneously. In an embodiment, the AMM assembles each layer of a multiplicity of fuel cells simultaneously. In an embodiment, heating of each layer or heating of a combination of layers of a multiplicity of fuel cells takes place simultaneously. All the discussion and all the features herein for a fuel cell or a fuel cell stack are applicable to the production, assembling, and heating of the multiplicity of fuel cells.
  • a multiplicity of fuel cells is 20 or more.
  • a multiplicity of fuel cells is 50 or more. In an embodiment, a multiplicity of fuel cells is 80 or more.
  • a multiplicity of fuel cells is 100 or more. In an embodiment, a multiplicity of fuel cells is 500 or more.
  • a multiplicity of fuel cells is 800 or more. In an embodiment, a multiplicity of fuel cells is 1000 or more. In an embodiment, a multiplicity of fuel cells is 5000 or more. In an embodiment, a multiplicity of fuel cells is 10,000 or more.
  • the treatment process comprises exposing a substrate to a source of electromagnetic radiation (EMR).
  • EMR electromagnetic radiation
  • the EMR treats a substrate having a first material.
  • the EMR has a wavelength ranging from 10 to 1500 nm.
  • the EMR has a minimum energy density of 0.1 Joule/cm 2 .
  • the EMR has a burst frequency of 1-1000 Hz or 10-1000 Hz.
  • the EMR has an exposure distance of no greater than 50 mm.
  • the EMR has an exposure duration no less than 0.1 ms or 1 ms. In an embodiment, the EMR is applied with a capacitor voltage of no less than 100V. For example, a single pulse of EMR is applied with an exposure distance of about 10 mm and an exposure duration of 5-20 ms.
  • SOFCs solid oxide fuel cells
  • the invention is a method of making a fuel cell comprising (a) producing an anode using an additive manufacturing machine (AMM); (b) creating an electrolyte using the AMM; and (c) making a cathode using the AMM.
  • AMM additive manufacturing machine
  • the anode, the electrolyte, and the cathode are assembled into a fuel cell utilizing the AMM.
  • the fuel cell is formed using only the AMM.
  • steps (a), (b), and (c) exclude tape casting and exclude screen printing.
  • the method excludes compression in assembling.
  • the layers are deposited one on top of another and as such assembling is accomplished at the same time as deposition.
  • the method of this disclosure is useful in making planar fuel cells.
  • the method of this disclosure is useful in making fuel cells, wherein electrical current flow is perpendicular to the electrolyte in the lateral direction when the fuel cell is in use.
  • the method comprises making at least one barrier layer using the AMM.
  • the at least one barrier layer is used between the electrolyte and the cathode or between the electrolyte and the anode or both.
  • the at least one barrier layer is assembled with the anode, the electrolyte, and the cathode using the AMM.
  • no barrier layer is utilized in the fuel cell.
  • the method comprises making an interconnect using the AMM.
  • the interconnect is assembled with the anode, the electrolyte, and the cathode using the AMM.
  • the AMM forms a catalyst and incorporates said catalyst into the fuel cell.
  • the anode, the electrolyte, the cathode, and the interconnect are made at a temperature above 100° C.
  • the method comprises heating the fuel cell, wherein said fuel cell comprises the anode, the electrolyte, the cathode, the interconnect, and optionally at least one barrier layer.
  • the fuel cell comprises a catalyst.
  • the method comprises heating the fuel cell to a temperature above 500° C.
  • the fuel cell is heated using EMR or oven curing.
  • the AMM utilizes a multi-nozzle additive manufacturing method.
  • the multi-nozzle additive manufacturing method comprises nanoparticle jetting.
  • a first nozzle delivers a first material.
  • a second nozzle delivers a second material.
  • a third nozzle delivers a third material.
  • particles of a fourth material are placed in contact with a partially constructed fuel cell and bonded to the partially constructed fuel cell using a laser, photoelectric effect, light, heat, polymerization, or binding.
  • the anode, or the cathode, or the electrolyte comprises a first, second, third, or fourth material.
  • the AMM performs multiple additive manufacturing techniques.
  • the additive manufacturing techniques comprise extrusion, photopolymerization, powder bed fusion, material jetting, binder jetting, directed energy deposition, lamination.
  • additive manufacturing is a deposition technique comprising material jetting, binder jetting, inkjet printing, aerosol jetting, or aerosol jet printing, vat photopolymerization, powder bed fusion, material extrusion, directed energy deposition, sheet lamination, ultrasonic inkjet printing, or combinations thereof.
  • a method of making a fuel cell stack comprising (a) producing an anode using an additive manufacturing machine (AMM); (b) creating an electrolyte using the AMM; (c) making a cathode using the AMM; (d) making an interconnect using the AMM; wherein the anode, the electrolyte, the cathode, and the interconnect form a first fuel cell; (e) repeating steps (a)-(d) to make a second fuel cell; and (f) assembling the first fuel cell and the second fuel cell into a fuel cell stack.
  • AMM additive manufacturing machine
  • the first fuel cell and the second fuel cell are formed from the anode, the electrolyte, the cathode, and the interconnect utilizing the AMM.
  • the fuel cell stack is formed using only the AMM.
  • steps (a)-(f) exclude tape casting and exclude screen printing.
  • the method comprises making at least one barrier layer using the AMM.
  • the at least one barrier layer is used between the electrolyte and the cathode or between the electrolyte and the anode or both for the first fuel cell and the second fuel cell.
  • steps (a)-(d) are performed at a temperature above 100° C. In an embodiment, steps (a)-(d) are performed at a temperature from 100° C. to 500° C. In an embodiment, the AMM makes a catalyst and incorporates said catalyst into the fuel cell stack.
  • the method comprises heating the fuel cell stack. In an embodiment, the method comprises heating the fuel cell stack to a temperature above 500° C. In an embodiment, the fuel cell stack is heated using EMR or oven curing. In an embodiment, the laser has a laser beam, wherein said laser beam is expanded to create a heating zone with uniform power density. In an embodiment, the laser beam is expanded by the use of one or more mirrors. In an embodiment, each layer of the fuel cell is EMR cured separately. In an embodiment, a combination of fuel cell layers is EMR cured separately. In an embodiment, the first fuel cell is EMR cured, assembled with the second fuel cell, and then the second fuel cell is EMR cured.
  • the first fuel cell is assembled with the second fuel cell, and then the first fuel cell and the second fuel cell are EMR cured separately. In an embodiment, the first fuel cell and the second fuel cell are EMR cured separately, and then the first fuel cell is assembled with the second fuel cell to form a fuel cell stack. In an embodiment, the first fuel cell is assembled with the second fuel cell to form a fuel cell stack, and then the fuel cell stack is EMR cured.
  • Also discussed herein is a method of making a multiplicity of fuel cells comprising (a) producing a multiplicity of anodes simultaneously using an additive manufacturing machine (AMM); (b) creating a multiplicity of electrolytes using the AMM simultaneously; and (c) making a multiplicity of cathodes using the AMM simultaneously.
  • AMM additive manufacturing machine
  • the anodes, the electrolytes, and the cathodes are assembled into fuel cells utilizing the AMM simultaneously.
  • the fuel cells are formed using only the AMM.
  • the method comprises making at least one barrier layer using the AMM for each of the multiplicity of fuel cells simultaneously.
  • said at least one barrier layer is used between the electrolyte and the cathode or between the electrolyte and the anode or both.
  • said at least one barrier layer is assembled with the anode, the electrolyte, and the cathode using the AMM for each fuel cell.
  • the method comprises making an interconnect using the AMM for each of the multiplicity of fuel cells simultaneously.
  • said interconnect is assembled with the anode, the electrolyte, and the cathode using the AMM for each fuel cell.
  • the AMM forms a catalyst for each of the multiplicity of fuel cells simultaneously and incorporates said catalyst into each of the fuel cells.
  • heating of each layer or heating of a combination of layers of the multiplicity of fuel cells takes place simultaneously.
  • the multiplicity of fuel cells is 20 fuel cells or more.
  • the AMM uses different nozzles to jet/print different materials at the same time.
  • a first nozzle makes an anode for fuel cell 1
  • a second nozzle makes a cathode for fuel cell 2
  • a third nozzle makes an electrolyte for fuel cell 3 , at the same time.
  • a first nozzle makes an anode for fuel cell 1
  • a second nozzle makes a cathode for fuel cell 2
  • a third nozzle makes an electrolyte for fuel cell 3
  • a fourth nozzle makes an interconnect for fuel cell 4 , at the same time.
  • an additive manufacturing machine comprising a chamber, wherein manufacturing of fuel cells takes place, wherein said chamber is able to withstand a temperature of at least 300° C.
  • said chamber enables production of the fuel cells.
  • said chamber enables heating of the fuel cells in situ.
  • said chamber is heated by laser, or electromagnetic waves/electromagnetic radiation (EMR), or hot fluid, or heating element associated with the chamber, or combinations thereof.
  • said heating element comprises a heating surface or a heating coil or a heating rod.
  • said chamber is configured to apply pressure to the fuel cells inside. In an embodiment, the pressure is applied via a moving element associated with the chamber.
  • said moving element is a moving stamp or plunger.
  • said chamber is configured to withstand pressure.
  • said chamber is configured to be pressurized by a fluid or de-pressurized.
  • said fluid in the chamber is changed or replaced.
  • the chamber is enclosed. In some cases, the chamber is sealed. In some cases, the chamber is open. In some cases, the chamber is a platform without top and side walls.
  • 601 schematically represents deposition nozzles or material jetting nozzles; 602 represents the EMR source, e.g., xenon lamp; 603 represents the object being formed; and 604 represents the chamber as a part of an AMM.
  • the chamber or receiver 604 is configured to receive both deposition from nozzles and radiation from an EMR source.
  • deposition nozzles 601 are movable.
  • the chamber or receiver 604 is movable.
  • the EMR source 602 is movable.
  • the object comprises a catalyst, a catalyst support, a catalyst composite, an anode, a cathode, an electrolyte, an electrode, an interconnect, a seal, a fuel cell, an electrochemical gas producer, an electrolyser, an electrochemical compressor, a reactor, a heat exchanger, a vessel, or combinations thereof.
  • Additive Manufacturing techniques suitable for this disclosure comprise extrusion, photopolymerization, powder bed fusion, material jetting, binder jetting, directed energy deposition, and lamination.
  • Additive Manufacturing is extrusion additive manufacturing.
  • Extrusion additive manufacturing involves the spatially controlled deposition of material (e.g., thermoplastics). It is also referred to as fused filament fabrication (FFF) or fused deposition modeling (FDM) in this disclosure.
  • FFF fused filament fabrication
  • FDM fused deposition modeling
  • Additive Manufacturing is photopolymerization, i.e., stereolithography (SLA) for the process of this disclosure.
  • SLA involves spatially-defined curing of a photoactive liquid (a “photoresin”), using a scanning laser or a high-resolution projected image, transforming it into a crosslinked solid.
  • Photopolymerization produces parts with details and dimensions ranging from the micrometer- to meter-scales.
  • Additive Manufacturing is Powder bed fusion (PBF).
  • PBF AM processes build objects by melting powdered feedstock, such as a polymer or metal. PBF processes begin by spreading a thin layer of powder across the build area. Cross sections are then melted a layer at a time, most often using a laser, electron beam, or intense infrared lamps.
  • PBF of metals is selective laser melting (SLM) or electron beam melting (EBM).
  • PBF of polymers is selective laser sintering (SLS).
  • SLS systems print thermoplastic polymer materials, polymer composites, or ceramics.
  • SLM systems are suitable for a variety of pure metals and alloys, wherein the alloys are compatible with the rapid solidification that occurs in SLM.
  • Additive Manufacturing is material jetting. Additive manufacturing by material jetting is accomplished by depositing small drops (or droplets) of material, with spatial control. In various embodiments, material jetting is performed three dimensionally (3D) or two dimensionally (2D) or both. In an embodiment, 3D jetting is accomplished layer by layer. In an embodiment, print preparation converts the computer-aided design (CAD), along with specifications of material composition, color, and other variables to the printing instructions for each layer.
  • Binder jetting AM involves inkjet deposition of a liquid binder onto a powder bed. In some cases, binder jetting combines physics of other AM processes: spreading of powder to make the powder bed (analogous to SLS/SLM), and inkjet printing.
  • Additive Manufacturing is directed energy deposition (DED).
  • DED directed energy deposition
  • the DED process uses a directed flow of powder or a wire feed, along with an energy intensive source such as laser, electric arc, or electron beam.
  • DED is a direct-write process, wherein the location of material deposition is determined by movement of the deposition head, which allows large metal structures to be built without the constraints of a powder bed.
  • Additive Manufacturing is Lamination AM, or Laminated Object Manufacturing (LOM).
  • LOM Laminated Object Manufacturing
  • consecutive layers of sheet material are consecutively bonded and cut in order to form a 3D structure.
  • the method of this disclosure manufactures a fuel cell or a fuel cell stack using one AMM.
  • the AMM of this disclosure preferably performs both extrusion and ink jetting to manufacture a fuel cell or fuel cell stack.
  • Extrusion is used to manufacture thicker layers of a fuel cell, such as, the anode and/or the cathode.
  • Ink jetting is used to manufacture thin layers of a fuel cell.
  • Ink jetting is used to manufacture the electrolyte.
  • the AMM operates at temperature ranges sufficient to enable curing in the AMM itself. Such temperature ranges are 100° C. or above, such as 100° C.-300° C. or 100° C.-500° C.
  • all of the layers of a fuel cell are formed and assembled via printing.
  • the material for making the anode, the cathode, the electrolyte, and the interconnect, respectively, is made into an ink form comprising a solvent and particles (e.g., nanoparticles).
  • aqueous inks There are two categories of ink formulations—aqueous inks and non-aqueous inks.
  • the aqueous ink comprises an aqueous solvent (e.g., water, deionized water), particles, a dispersant, and a surfactant.
  • the aqueous ink comprises an aqueous solvent (e.g., water, deionized water), particles, a dispersant, a surfactant, but no polymeric binder.
  • the aqueous ink optionally comprises a co-solvent, such as an organic miscible solvent (methanol, ethanol, isopropyl alcohol). Such co-solvents preferably have a lower boiling point than water.
  • the dispersant is an electrostatic dispersant, a steric dispersant, an ionic dispersant, a non-ionic dispersant, or a combination thereof.
  • the surfactant is preferably non-ionic, such as an alcohol alkoxylate, an alcohol ethoxylate.
  • the non-aqueous ink comprises an organic solvent (e.g., methanol, ethanol, isopropyl alcohol, butanol) and particles.
  • CGO powder is mixed with water to form an aqueous ink with a dispersant added and a surfactant added but with no polymeric binder added.
  • the CGO fraction based on mass is in the range of from 10 wt % to 25 wt %.
  • CGO powder is mixed with ethanol to form a non-aqueous ink with polyvinyl butaryl added.
  • the CGO fraction based on mass is in the range of from 3 wt % to 30 wt %.
  • LSCF is mixed with n-butanol or ethanol to form a non-aqueous ink with polyvinyl butaryl added.
  • the LSCF fraction based on mass is in the range of from 10 wt % to 40 wt %.
  • YSZ particles are mixed with water to form an aqueous ink with a dispersant added and a surfactant added but with no polymeric binder added.
  • the YSZ fraction based on mass is in the range of from 3 wt % to 40 wt %.
  • NiO particles are mixed with water to form an aqueous ink with a dispersant added and a surfactant added but with no polymeric binder added.
  • the NiO fraction based on mass is in the range of from 5 wt % to 25 wt %.
  • LSCF or LSM particles are dissolved in a solvent, wherein the solvent is water or an alcohol (e.g., butanol) or a mixture of alcohols. Organic solvents other than alcohols may also be used.
  • LSCF is deposited (e.g., printed) into a layer.
  • a xenon lamp irradiates the LSCF layer with EMR to sinter the LSCF.
  • the flash lamp is a 10 kW unit applied at a voltage of 400V and a frequency of 10 Hz for a total exposure duration of 1000 ms.
  • YSZ particles are mixed with a solvent, wherein the solvent is water (e.g., de-ionized water) (e.g., de-ionized water) or an alcohol (e.g., butanol) or a mixture of alcohols.
  • the solvent is water (e.g., de-ionized water) (e.g., de-ionized water) or an alcohol (e.g., butanol) or a mixture of alcohols.
  • Organic solvents other than alcohols may also be used.
  • metallic particles such as, silver nanoparticles
  • the solvent may include water (e.g., de-ionized water), organic solvents (e.g.
  • CGO particles are dissolved in a solvent, wherein the solvent is water (e.g., de-ionized water) or an alcohol (e.g., butanol) or a mixture of alcohols. Organic solvents other than alcohols may also be used.
  • CGO is used as barrier layer for LSCF.
  • YSZ may also be used as a barrier layer for LSM.
  • no polymeric binder is added to the aqueous inks.
  • the treatment process comprises exposing a substrate to a source of electromagnetic radiation (EMR).
  • EMR electromagnetic radiation
  • the EMR treats a substrate having a first material.
  • the EMR has a peak wavelength ranging from 10 to 1500 nm. The wavelengths of the EMR utilized depend on the material being sintered. The exposure distance and the slice thickness are also adjusted to achieve desired printing and sintering results for different materials.
  • the EMR has a minimum energy density of 0.1 Joule/cm′. In an embodiment, the EMR has a burst frequency of 10 ⁇ 4 -1000 Hz or 1-1000 Hz or 10-1000 Hz. In an embodiment, the EMR has an exposure distance of no greater than 50 mm. In an embodiment, the EMR has an exposure duration no less than 0.1 ms or 1 ms. In an embodiment, the EMR is applied with a capacitor voltage of no less than 100V. For example, a single pulse of EMR is applied with an exposure distance of about 10 mm and an exposure duration of 5-20 ms.
  • multiple pulses of EMR are applied at a burst frequency of 100 Hz with an exposure distance of about 10 mm and an exposure duration of 5-20 ms.
  • the EMR is performed in one exposure.
  • the EMR is performed in no greater than 10 exposures, or no greater than 100 exposures, or no greater than 1000 exposures, or no greater than 10,000 exposures.
  • metals and ceramics are sintered almost instantly (milliseconds for ⁇ 10 microns) using pulsed light.
  • the sintering temperature is controlled to be in the range of from 100° C. to 2000° C.
  • the sintering temperature is tailored as a function of depth.
  • the surface temperature is 1000° C. and the sub-surface is kept at 100° C., wherein the sub-surface is 100 microns below the surface.
  • the material suitable for this treatment process includes Yttria-stabilized zirconia (YSZ), 8YSZ (8 mol % YSZ powder), Yttirum, Zirconium, gadolinia-doped ceria (GDC or CGO), Samaria-doped ceria (SDC), Scandia-stabilized zirconia (SSZ), Lanthanum strontium manganite (LSM), Lanthanum Strontium Cobalt Ferrite (LSCF), Lanthanum Strontium Cobaltite (LSC), Lanthanum Strontium Gallium Magnesium Oxide (LSGM), Nickel, NiO, NiO-YSZ, Cu-CGO, Cu 2 O, CuO, Cerium, copper, silver, crofer, steel, lanthanum chromite, doped lanthanum chromite, ferritic steel, stainless steel, or combinations thereof.
  • YSZ Yttria-stabilized zirconia
  • 8YSZ 8
  • This treatment process is applicable in the manufacturing process of a fuel cell.
  • a layer of a fuel cell (anode, cathode, electrolyte, seal, catalyst) is treated using the process of this disclosure to be heated, cured, sintered, sealed, alloyed, foamed, evaporated, restructured, dried, or annealed.
  • a portion of a layer of a fuel cell (anode, cathode, electrolyte, seal, catalyst) is treated using the process of this disclosure to be heated, cured, sintered, sealed, alloyed, foamed, evaporated, restructured, dried, or annealed.
  • a combination of layers of a fuel cell is treated using the process of this disclosure to be heated, cured, sintered, sealed, alloyed, foamed, evaporated, restructured, dried, or annealed, wherein the layers may be a complete layer or a partial layer.
  • the treatment process is sintering and is accomplished by EMR.
  • the treatment process of this disclosure is preferably rapid with the treatment duration varied from microseconds to milliseconds.
  • the treatment duration is accurately controlled.
  • the treatment process of this disclosure produces fuel cell layers that have no crack or have minimal cracking. By minimal cracking is meant that any cracks present do not degrade the performance of the fuel cell.
  • the treatment process of this disclosure controls the power density or energy density in the treatment volume of the material being treated.
  • the treatment volume is accurately controlled.
  • the treatment process of this disclosure provides the same energy density or different energy densities in a treatment volume.
  • the treatment process of this disclosure provides the same treatment duration or different treatment durations in a treatment volume.
  • the treatment process of this disclosure provides simultaneous treatment for one or more treatment volumes.
  • the treatment process of this disclosure provides simultaneous treatment for one or more fuel cell layers or partial layers or combination of layers.
  • the treatment volume is varied by changing the treatment depth.
  • a first portion of a treatment volume is treated by electromagnetic radiation of a first wavelength; a second portion of the treatment volume is treated by electromagnetic radiation of a second wavelength.
  • the first wavelength is the same as the second wavelength.
  • the first wavelength is different from the second wavelength.
  • the first portion of a treatment volume has a different energy density from the second portion of the treatment volume.
  • the first portion of a treatment volume has a different treatment duration from the second portion of the treatment volume.
  • the EMR has a broad emission spectrum so that the desired effects are achieved for a wide range of materials having different absorption characteristics.
  • absorption of electromagnetic radiation refers to the process, wherein the energy of a photon is taken up by matter, such as the electrons of an atom.
  • the electromagnetic energy is transformed into internal energy of the absorber, for example, thermal energy.
  • the EMR spectrum extends from the deep ultraviolet (UV) range to the near infrared (IR) range, with peak pulse powers at 220 nm wavelength.
  • the power of such EMR is on the order of Megawatts.
  • Such EMR sources perform tasks such as breaking chemical bonds, sintering, ablating or sterilizing.
  • the EMR has an energy density of no less than 0.1, 1, or 10 Joule/cm 2 .
  • the EMR has a power output of no less than 1 watt (W), 10 W, 100 W, 1000 W.
  • the EMR delivers power to the substrate of no less than 1 W, 10 W, 100 W, 1000 W.
  • such EMR exposure heats the material in the substrate.
  • the EMR has a range or a spectrum of different wavelengths.
  • the treated substrate is at least a portion of an anode, cathode, electrolyte, catalyst, barrier layer, or interconnect of a fuel cell.
  • the peak wavelength of the EMR is between 50 and 550 nm or between 100 and 300 nm. In an embodiment, the wavelength of the EMR is between 50 and 550 nm or between 100 and 300 nm. In an embodiment, the absorption of at least a portion of the substrate for at least one frequency of the EMR between 10 and 1500 nm is no less than 30% or no less than 50%. In an embodiment, the absorption of at least a portion of the substrate for at least one frequency between 50 and 550 nm is no less than 30% or no less than 50%. In an embodiment, the absorption of at least a portion of the substrate for at least one frequency between 100 and 300 nm is no less than 30% or no less than 50%.
  • Sintering is the process of compacting and forming a solid mass of material by heat or pressure without melting it to the point of liquefaction.
  • the substrate under EMR exposure is sintered but not melted.
  • the EMR is UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser, electron beam, microwave.
  • the substrate is exposed to the EMR for no less than 1 microsecond, no less than 1 millisecond. In an embodiment, the substrate is exposed to the EMR for less than 1 second at a time or less than 10 seconds at a time. In an embodiment, the substrate is exposed to the EMR for less than 1 second or less than 10 seconds.
  • the substrate is exposed to the EMR repeatedly, for example, more than 1 time, more than 3 times, more than 10 times.
  • the substrate is distanced from the source of the EMR for less than 50 cm, less than 10 cm, less than 1 cm, or less than 1 mm.
  • a second material is added to or placed on to the first material.
  • the second material is the same as the first material.
  • the second material is exposed to the EMR.
  • a third material is added.
  • the third material is exposed to the EMR.
  • the first material comprises YSZ, 8YSZ, Yttirum, Zirconium, GDC, SDC, LSM, LSCF, LSC, Nickel, NiO, Cerium.
  • the second material comprises graphite.
  • the electrolyte, anode, or cathode comprises a second material. In some cases, the volume fraction of the second material in the electrolyte, anode, or cathode is less than 20%, 10%, 3%, or 1%.
  • the absorption rate of the second material for at least one frequency is greater than 30% or greater than 50%.
  • one or a combination of parameters are controlled, wherein such parameters include distance between the EMR source and the substrate, the energy density of the EMR, the spectrum of the EMR, the voltage of the EMR, the duration of exposure, the burst frequency, and the number of EMR exposures.
  • these parameters are controlled to minimize the formation of cracks in the substrate.
  • the EMR energy is delivered to a surface area of no less than 1 mm 2 , or no less than 1 cm 2 , or no less than 10 cm 2 , or no less than 100 cm 2 .
  • at least a portion of an adjacent material is heated at least in part by conduction of heat from the first material.
  • the layers of the fuel cell e.g., anode, cathode, electrolyte
  • they are no greater than 30 microns, no greater than 10 microns, or no greater than 1 micron.
  • the first material of the substrate is in the form of a powder, sol gel, colloidal suspension, hybrid solution, or sintered material.
  • the second material may be added by vapor deposition.
  • the second material coats the first material.
  • the second material reacts with light, e.g. focused light, as by a laser, and sinters or anneals with the first material.
  • the preferred treatment process of this disclosure enables rapid manufacturing of fuel cells by eliminating traditional, costly, time consuming, expensive sintering processes and replacing them with rapid, in-situ methods that allow continuous manufacturing of the layers of a fuel cell in a single machine if desired. This process also shortens sintering time from hours and days to seconds or milliseconds or even microseconds.
  • this treatment method is used in combination with manufacturing techniques like screen printing, tape casting, spraying, sputtering, physical vapor deposition, and additive manufacturing.
  • This preferred treatment method enables tailored and controlled heating by tuning EMR characteristics (such as, wavelengths, energy density, burst frequency, and exposure duration) combined with controlling thicknesses of the layers of the substrate and heat conduction into adjacent layers to allow each layer to sinter, anneal, or cure at each desired target temperature.
  • EMR characteristics such as, wavelengths, energy density, burst frequency, and exposure duration
  • This preferred process enables more uniform energy application, decreases or eliminates cracking, which improves electrolyte performance.
  • the substrate treated with this preferred process also has less thermal stress due to more uniform heating.
  • a method comprises depositing a composition on a substrate slice by slice to form an object; heating in situ the object using electromagnetic radiation (EMR); wherein said composition comprises a first material and a second material, wherein the second material has a higher absorbance of the radiation than the first material.
  • heating causes an effect comprising drying, curing, sintering, annealing, sealing, alloying, evaporating, restructuring, foaming, or combinations thereof.
  • the preferred effect is sintering.
  • the EMR has a wavelength ranging from 10 to 1500 nm and the EMR has a minimum energy density of 0.1 Joule/cm′.
  • peak wavelength is on the basis of relative irradiance with respect to wavelength.
  • the EMR comprises UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser, electron beam.
  • FIG. 6 illustrates an object on a substrate formed by deposition nozzles and EMR for heating in situ, according to the preferred embodiment of this disclosure.
  • the first material comprises YSZ, SSZ, CGO, SDC, NiO-YSZ, LSM-YSZ, CGO-LSCF, doped lanthanum chromite, stainless steel, or combinations thereof.
  • the second material comprises carbon, nickel oxide, nickel, silver, copper, CGO, SDC, NiO-YSZ, NiO—SSZ, LSCF, LSM, doped lanthanum chromite ferritic steels, or combinations thereof.
  • said object comprises a catalyst, a catalyst support, a catalyst composite, an anode, a cathode, an electrolyte, an electrode, an interconnect, a seal, a fuel cell, an electrochemical gas producer, an electrolyser, an electrochemical compressor, a reactor, a heat exchanger, a vessel, or combinations thereof.
  • the second material is a deposited in the same slice as the first material.
  • the second material is a deposited in a slice adjacent another slice that contains the first material.
  • said heating removes at least a portion of the second material.
  • said removing leaves minimal residue of the portion of the second material.
  • this step leaves minimal residue of the portion of the second material, which is to say that there is no significant residue that would interfere with the subsequent steps in the process or the operation of the device being constructed. More preferably, this leaves no measurable reside of the portion of the second material.
  • the second material adds thermal energy to the first material during heating.
  • the second material has a radiation absorbance that is at least 5 times that of the first material; preferably the second material has a radiation absorbance that is at least 10 times that of the first material; more preferably the second material has a radiation absorbance that is at least 50 times that of the first material; most preferably the second material has a radiation absorbance that is at least 100 times that of the first material.
  • the second material has a peak absorbance wavelength no less than 200 nm, or no less than 250 nm, or no less than 300 nm, or no less than 400 nm, or no less than 500 nm.
  • the first material has a peak absorbance wavelength no greater than 700 nm, or no greater than 600 nm, or no greater than 500 nm, or no greater than 400 nm, or no greater than 300 nm.
  • the EMR has a wavelength no less than 200 nm, or no less than 250 nm, or no less than 300 nm, or no less than 400 nm, or no less than 500 nm.
  • the second material comprises carbon, nickel oxide, nickel, silver, copper, CGO, NiO-YSZ, LSCF, LSM, ferritic steels, or combinations thereof.
  • the ferritic steel is Crofer 22 APU.
  • the second material is carbon and is in the form of graphite, graphene, carbon nanoparticles, nano diamonds, or combinations thereof. Most preferably, the carbon is in the form of graphite particles.
  • the depositing is accomplished by material jetting, binder jetting, inkjet printing, aerosol jetting, or aerosol jet printing, vat photopolymerization, powder bed fusion, material extrusion, directed energy deposition, sheet lamination, ultrasonic inkjet printing, or combinations thereof.
  • the depositing is manipulated by controlling the distance from the EMR to the substrate, the EMR energy density, the EMR spectrum, the EMR voltage, the EMR exposure duration, the EMR exposure area, the EMR exposure volume, the EMR burst frequency, the EMR exposure repetition number, or combinations thereof.
  • the object does not change location between depositing and heating.
  • the EMR has a power output of no less than 1 W, or 10 W, or 100 W, or 1000 W.
  • a system comprising at least one deposition nozzle, an electromagnetic radiation (EMR) source, and a deposition receiver, wherein the deposition receiver is configured to receive EMR exposure and deposition at the same location.
  • EMR electromagnetic radiation
  • SOFCs solid oxide fuel cells
  • a fuel cell is an electrochemical apparatus that converts the chemical energy from a fuel into electricity through an electrochemical reaction.
  • fuel cells e.g., proton-exchange membrane fuel cells (PEMFCs), solid oxide fuel cells (SOFCs).
  • PEMFCs proton-exchange membrane fuel cells
  • SOFCs solid oxide fuel cells
  • a fuel cell typically comprises an anode, a cathode, an electrolyte, an interconnect, optionally a barrier layer and/or optionally a catalyst. Both the anode and the cathode are electrodes.
  • FIGS. 1 - 5 illustrate various embodiments of the components in a fuel cell or a fuel cell stack.
  • the anode, cathode, electrolyte, and interconnect are cuboids or rectangular prisms.
  • 201 schematically represents the anode; 202 represents the cathode; 203 represents the electrolyte; and 204 represents the barrier layers.
  • FIG. 5 depicts a two fuel cell stack.
  • Item 501 schematically represents anode; 502 represents the cathode; 503 represents the electrolyte; 504 represents the barrier layers; 505 represents the catalyst; and 506 represents the interconnect.
  • Two fuel cell repeat units or two fuel cells form a stack as illustrated. As is seen, on one side the interconnect is in contact with the largest surface of the cathode of the top fuel cell (or fuel cell repeat unit) and on the opposite side the interconnect is in contact with the largest surface of the catalyst (optional) or the anode of the bottom fuel cell (or fuel cell repeat unit). These repeat units or fuel cells are connected in parallel by being stacked atop one another and sharing an interconnect in between via direct contact with the interconnect rather than via electrical wiring. This kind of configuration is in contrast to segmented-in-series (SIS) type fuel cells.
  • SIS segmented-in-series
  • the listings of material for the electrodes, the electrolyte, and the interconnect in a fuel cell are only exemplary and not limiting.
  • the designations of anode material and cathode material are also not limiting because the function of the material during operation (e.g., whether it is oxidizing or reducing) determines whether the material is used as an anode or a cathode.
  • the cathode comprises perovskites, such as LSC, LSCF, LSM.
  • the cathode comprises lanthanum, cobalt, strontium, manganite.
  • the cathode is porous.
  • the cathode comprises YSZ, Nitrogen, Nitrogen Boron doped Graphene, La0.6Sr0.4Co0.2Fe0.8O3, SrCo0.5Sc0.5O3, BaFe0.75Ta0.25O3, BaFe0.875Re0.125O3, Ba0.5La0.125Zn0.375NiO3, Ba0.75Sr0.25Fe0.875Ga0.125O3, BaFe0.125Co0.125, Zr0.75O3.
  • the cathode comprises LSCo, LCo, LSF, LSCoF. In an embodiment, the cathode comprises perovskites LaCoO3, LaFeO3, LaMnO3, (La,Sr)MnO3, LSM-GDC, LSCF-GDC, LSC-GDC. Cathodes containing LSCF are suitable for intermediate-temperature fuel cell operation.
  • the cathode comprises a material selected from the group consisting of lanthanum strontium manganite, lanthanum strontium ferrite, and lanthanum strontium cobalt ferrite. In an embodiment, the cathode comprises lanthanum strontium manganite.
  • the anode comprises Copper, Nickle-Oxide, Nickle-Oxide-YSZ, NiO-GDC, NiO-SDC, Aluminum doped Zinc Oxide, Molybdenum Oxide, Lanthanum, strontium, chromite, ceria, perovskites (such as, LSCF [La ⁇ 1 ⁇ x ⁇ Sr ⁇ x ⁇ Co ⁇ 1 ⁇ y ⁇ Fe ⁇ y ⁇ O3] or LSM [La ⁇ 1 ⁇ x ⁇ Sr ⁇ x ⁇ MnO3], where x is usually 0.15-0.2 and y is 0.7 to 0.8).
  • the anode comprises SDC or BZCYYb coating or barrier layer to reduce coking and sulfur poisoning.
  • the anode is porous.
  • the anode comprises combination of electrolyte material and electrochemically active material, combination of electrolyte material and electrically conductive material.
  • the anode comprises nickel and yttria stabilized zirconia. In an embodiment, the anode is formed by reduction of a material comprising nickel oxide and yttria stabilized zirconia. In an embodiment, the anode comprises nickel and gadolinium stabilized ceria. In an embodiment, the anode is formed by reduction of a material comprising nickel oxide and gadolinium stabilized ceria.
  • the electrolyte in a fuel cell comprises stabilized zirconia e.g., YSZ, YSZ-8, Y0.16Zr0.84O2.
  • the electrolyte comprises doped LaGaO3, e.g., LSGM, La0.9Sr0.1Ga0.8Mg0.2O3.
  • the electrolyte comprises doped ceria, e.g., GDC, Gd0.2Ce0.8O2.
  • the electrolyte comprises stabilized bismuth oxide e.g., BVCO, Bi2V0.9Cu0.1O5.35.
  • the electrolyte comprises zirconium oxide, yttria stabilized zirconium oxide (also known as YSZ, YSZ8 (8 mole % YSZ)), ceria, gadolinia, scandia, magnesia, calcia.
  • the electrolyte is sufficiently impermeable to prevent significant gas transport and prevent significant electrical conduction; and allow ion conductivity.
  • the electrolyte comprises doped oxide such as cerium oxide, yttrium oxide, bismuth oxide, lead oxide, lanthanum oxide.
  • the electrolyte comprises perovskite, such as, LaCoFeO3 or LaCoO3 or Ce0.9Gd0.1O2 (GDC) or Ce0.9Sm0.1O2 (SDC, samaria doped ceria) or scandia stabilized zirconia.
  • perovskite such as, LaCoFeO3 or LaCoO3 or Ce0.9Gd0.1O2 (GDC) or Ce0.9Sm0.1O2 (SDC, samaria doped ceria) or scandia stabilized zirconia.
  • the electrolyte comprises a material selected from the group consisting of zirconia, ceria, and gallia.
  • the material is stabilized with a stabilizing material selected from the group consisting of scandium, samarium, gadolinium, and yttrium.
  • the material comprises yttria stabilized zirconia.
  • the interconnect comprises silver, gold, platinum, AISI441, ferritic stainless steel, stainless steel, Lanthanum, Chromium, Chromium Oxide, Chromite, Cobalt, Cesium, Cr2O3.
  • the anode comprises LaCrO3 coating on Cr2O3 or NiCo2O4 or MnCo2O4 coatings.
  • the interconnect surface is coated with Cobalt and/or Cesium.
  • the interconnect comprises ceramics.
  • the interconnect comprises Lanthanum Chromite or doped Lanthanum Chromite.
  • the interconnect is made of a material comprising metal, stainless steel, ferritic steel, crofer, lanthanum chromite, silver, metal alloys, nickel, nickel oxide, ceramics, or graphene.
  • the fuel cell comprises a catalyst, such as, platinum, palladium, scandia, chromium, cobalt, cesium, CeO2, nickle, nickle oxide, zine, copper, titantia, ruthenium, rhodiu, MoS2, molybdenum, rhenium, vandia, manganese, magnesium, iron.
  • the catalyst promotes methane reforming reactions to generate hydrogen and carbon monoxide for them to be oxidized in the fuel cell.
  • the catalyst is part of the anode, especially nickel anode has inherent methane reforming properties.
  • the catalyst is between 1%-5%, or 0.1% to 10% by mass.
  • the catalyst is used on the anode surface or in the anode. In various embodiments, such anode catalysts reduce harmful coking reactions and carbon deposits. In various embodiments, simple oxide version of catalysts is used or perovskite. For example, 2% mass CeO2 catalyst is used for methane-powered fuel cells. In various embodiments, the catalyst is dipped or coated on the anode. In various embodiments, the catalyst is made by an additive manufacturing machine (AMM) and incorporated into the fuel cell using the AMM.
  • AMM additive manufacturing machine
  • the unique manufacturing methods as discussed herein have allowed the making of ultra-thin fuel cells and fuel cell stacks.
  • the fuel cell has at least one thick layer per repeat unit, like the anode (an anode-supported fuel cell) or the interconnect (an interconnect-supported fuel cell).
  • the pressing or compression step is necessary to assemble the fuel cell components to achieve gas tightness and/or proper electrical contact in traditional manufacturing processes.
  • the thick layers are necessary not only because traditional methods (like tape casting) cannot produce ultra-thin layers but also because the layers have to be thick to endure the pressing or compression step.
  • the manufacturing methods of this disclosure have eliminated the need for pressing or compression.
  • the manufacturing methods of this disclosure have also enabled the making of ultra-thin layers.
  • the multiplicity of the layers in a fuel cell or a fuel cell stack provides sufficient structural integrity for proper operation when they are made according to this disclosure.
  • a fuel cell comprising an anode no greater than 1 mm or 500 microns or 300 microns or 100 microns or 50 microns or no greater than 25 microns in thickness, a cathode no greater than 1 mm or 500 microns or 300 microns or 100 microns or 50 microns or no greater than 25 microns in thickness, and an electrolyte no greater than 1 mm or 500 microns or 300 microns or 100 microns or 50 microns or 30 microns in thickness.
  • the fuel cell comprises an interconnect having a thickness of no less than 50 microns.
  • a fuel cell comprises an anode no greater than 25 microns in thickness, a cathode no greater than 25 microns in thickness, and an electrolyte no greater than 10 microns or 5 microns in thickness.
  • the fuel cell comprises an interconnect having a thickness of no less than 50 microns.
  • the interconnect has a thickness of from 50 microns to 5 cm.
  • the fuel cell comprises an anode no greater than 100 microns in thickness, a cathode no greater than 100 microns in thickness, an electrolyte no greater than 20 microns in thickness, and an interconnect no greater than 30 microns in thickness.
  • a fuel cell comprises an anode no greater than 50 microns in thickness, a cathode no greater than 50 microns in thickness, an electrolyte no greater than 10 microns in thickness, and an interconnect no greater than 25 microns in thickness.
  • the interconnect has a thickness in the range of from 1 micron to 20 microns.
  • the fuel cell comprises a barrier layer between the anode and the electrolyte, or a barrier layer between the cathode and the electrolyte, or both barrier layers.
  • the barrier layers are the interconnects. In such cases, the reactants are directly injected into the anode and the cathode.
  • the cathode has a thickness of no greater than 15 microns, or no greater than 10 microns, or no greater than 5 microns.
  • the anode has a thickness of no greater than 15 microns, or no greater than 10 microns, or no greater than 5 microns.
  • the electrolyte has a thickness of no greater than 5 microns, or no greater than 2 microns, or no greater than 1 micron, or no greater than 0.5 micron.
  • the interconnect is made of a material comprising metal, stainless steel, silver, metal alloys, nickel, nickel oxide, ceramics, or graphene.
  • the fuel cell has a total thickness of no less than 1 micron.
  • each fuel cell comprises an anode no greater than 25 microns in thickness, a cathode no greater than 25 microns in thickness, an electrolyte no greater than 10 microns in thickness, and an interconnect having a thickness of from 100 nm to 100 microns.
  • each fuel cell comprises a barrier layer between the anode and the electrolyte, or a barrier layer between the cathode and the electrolyte, or both barrier layers.
  • the barrier layers are the interconnects.
  • the interconnect is made of silver.
  • the interconnect has a thickness of from 500 nm to 1000 nm.
  • the interconnect is made of a material comprising metal, stainless steel, ferritic steel, crofer, lanthanum chromite, silver, metal alloys, nickel, nickel oxide, ceramics, or graphene.
  • the cathode has a thickness of no greater than 15 microns, or no greater than 10 microns, or no greater than 5 microns.
  • the anode has a thickness of no greater than 15 microns, or no greater than 10 microns, or no greater than 5 microns.
  • the electrolyte has a thickness of no greater than 5 microns, or no greater than 2 microns, or no greater than 1 micron, or no greater than 0.5 micron.
  • each fuel cell has a total thickness of no less than 1 micron.
  • steps (a)-(c) are performed using additive manufacturing.
  • said additive manufacturing uses extrusion, photopolymerization, powder bed fusion, material jetting, binder jetting, directed energy deposition, lamination.
  • the method comprises assembling the anode, the cathode, and the electrolyte using additive manufacturing. In an embodiment, the method comprises forming an interconnect and assembling the interconnect with the anode, the cathode, and the electrolyte.
  • the method comprises making at least one barrier layer.
  • said at least one barrier layer is used between the electrolyte and the cathode or between the electrolyte and the anode or both.
  • said at least one barrier layer is an interconnect.
  • the method comprises heating the fuel cell such that shrinkage rates of the anode, the cathode, and the electrolyte are matched. In an embodiment, such heating takes place for no greater than 30 minutes, preferably no greater than 30 seconds, and most preferably no greater than 30 milliseconds. In this disclosure, matching shrinkage rates during heating is discussed in details below (matching SRTs).
  • a fuel cell comprises a first composition and a second composition, wherein the first composition has a first shrinkage rate and the second composition has a second shrinkage rate
  • the heating described in this disclosure preferably takes place such that the difference between the first shrinkage rate and the second shrinkage rate is no greater than 75% of the first shrinkage rate.
  • the heating employs electromagnetic radiation (EMR).
  • EMR electromagnetic radiation
  • EMR comprises UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser, electron beam.
  • heating is performed in situ, namely in the same machine and in the same location in that machine as the layers are deposited.
  • Also disclosed herein is a method of making a fuel cell stack comprising a multiplicity of fuel cells, the method comprising (a) forming an anode no greater than 25 microns in thickness in each fuel cell, (b) forming a cathode no greater than 25 microns in thickness in each fuel cell, (c) forming an electrolyte no greater than 10 microns in thickness in each fuel cell, and (d) producing an interconnect having a thickness of from 100 nm to 100 microns in each fuel cell.
  • steps (a)-(d) are performed using additive manufacturing.
  • said additive manufacturing employs extrusion, photopolymerization, powder bed fusion, material jetting, binder jetting, directed energy deposition, and/or lamination.
  • the method comprises assembling the anode, the cathode, the electrolyte, and the interconnect using additive manufacturing. In an embodiment, the method comprises making at least one barrier layer in each fuel cell. In an embodiment, said at least one barrier layer is used between the electrolyte and the cathode or between the electrolyte and the anode or both. In an embodiment, said at least one barrier layer is the interconnect.
  • the method comprises heating each fuel cell such that shrinkage rates of the anode, the cathode, and the electrolyte are matched. In an embodiment, such heating takes place for no greater than 30 minutes, or no greater than 30 seconds, or no greater than 30 milliseconds.
  • said heating comprises electromagnetic radiation (EMR).
  • EMR electromagnetic radiation
  • EMR comprises UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser, electron beam. In an embodiment, heating is performed in situ.
  • the method comprises heating the entire fuel cell stack such that shrinkage rates of the anode, the cathode, and the electrolyte are matched. In an embodiment, such heating takes place for no greater than 30 minutes, or no greater than 30 seconds, or no greater than 30 milliseconds.
  • an electrolyte comprising (a) formulating a colloidal suspension, wherein the colloidal suspension comprises an additive, particles having a range of diameters and a size distribution, and a solvent; (b) forming an electrolyte comprising the colloidal suspension; and (c) heating at least a portion of the electrolyte; wherein formulating the colloidal suspension is preferably optimized by controlling the pH of the colloidal suspension, or concentration of the binder in the colloidal suspension, or composition of the binder in the colloidal suspension, or the range of diameters of the particles, or maximum diameter of the particles, or median diameter of the particles, or the size distribution of the particles, or boiling point of the solvent, or surface tension of the solvent, or composition of the solvent, or thickness of the minimum dimension of the electrolyte, or the composition of the particles, or combinations thereof.
  • a method of making a fuel cell comprising (a) obtaining a cathode and an anode; (b) modifying the cathode surface and the anode surface; (c) formulating a colloidal suspension, wherein the colloidal suspension comprises an additive, particles having a range of diameters and a size distribution, and a solvent; (d) forming an electrolyte comprising the colloidal suspension between the modified anode surface and the modified cathode surface; and (e) heating at least a portion of the electrolyte; wherein formulating the colloidal suspension comprises controlling pH of the colloidal suspension, or concentration of the binder in the colloidal suspension, or composition of the binder in the colloidal suspension, or the range of diameters of the particles, or maximum diameter of the particles, or median diameter of the particles, or the size distribution of the particles, or boiling point of the solvent, or surface tension of the solvent, or composition of the solvent, or thickness of the minimum dimension of the electrolyte, or the composition of the particles, or combinations thereof
  • the anode and the cathode are obtained via any suitable means.
  • the modified anode surface and the modified cathode surface have a maximum height profile roughness that is less than the average diameter of the particles in the colloidal suspension.
  • the maximum height profile roughness refers to the maximum distance between any trough and an adjacent peak as illustrated in FIG. 9 .
  • the anode surface and the cathode surface are modified via any suitable means.
  • a method of making a fuel cell comprising (a) obtaining a cathode and an anode; (b) formulating a colloidal suspension, wherein the colloidal suspension comprises an additive, particles having a range of diameters and a size distribution, and a solvent; (c) forming an electrolyte comprising the colloidal suspension between the anode and the cathode; and (d) heating at least a portion of the electrolyte; wherein formulating the colloidal suspension comprises controlling pH of the colloidal suspension, or concentration of the binder in the colloidal suspension, or composition of the binder in the colloidal suspension, or the range of diameters of the particles, or maximum diameter of the particles, or median diameter of the particles, or the size distribution of the particles, or boiling point of the solvent, or surface tension of the solvent, or composition of the solvent, or thickness of the minimum dimension of the electrolyte, or the composition of the particles, or combinations thereof.
  • the anode and the cathode are obtained via any suitable means.
  • the anode surface in contact with the electrolyte and the cathode surface in contact with the electrolyte have a maximum height profile roughness that is less than the average diameter of the particles in the colloidal suspension.
  • the solvent comprises water. In an embodiment, the solvent comprises an organic component. In an embodiment, the solvent comprises ethanol, butanol, alcohol, terpineol, Diethyl ether 1,2-Dimethoxyethane (DME (ethylene glycol dimethyl ether), 1-Propanol (n-propanol, n-propyl alcohol), or butyl alcohol. In an embodiment, the solvent surface tension is less than half of water's surface tension in air. In an embodiment, the solvent surface tension is less than 30 mN/m at atmospheric conditions.
  • DME Diethyl ether 1,2-Dimethoxyethane
  • the electrolyte is formed adjacent to a first substrate. In an embodiment, the electrolyte is formed between a first substrate and a second substrate. In an embodiment, the first substrate has a maximum height profile roughness that is less than the average diameter of the particles. In an embodiment, the particles have a packing density greater than 40%, or greater than 50%, or greater than 60%. In an embodiment, the particles have a packing density close to the random close packing (RCP) density.
  • RCP random close packing
  • Random close packing is an empirical parameter used to characterize the maximum volume fraction of solid objects obtained when they are packed randomly.
  • a container is randomly filled with objects, and then the container is shaken or tapped until the objects do not compact any further, at this point the packing state is RCP.
  • the packing fraction is the volume taken by number of particles in a given space of volume.
  • the packing fraction determines the packing density. For example, when a solid container is filled with grain, shaking the container will reduce the volume taken up by the objects, thus allowing more grain to be added to the container. Shaking increases the density of packed objects. When shaking no longer increases the packing density, a limit is reached and if this limit is reached without obvious packing into a regular crystal lattice, this is the empirical random close-packed density.
  • the median particle diameter is preferably between 50 nm and 1000 nm, or between 100 nm and 500 nm, or approximately 200 nm.
  • the first substrate comprises particles having a median particle diameter, wherein the median particle diameter of the electrolyte is no greater than 10 times and no less than 1/10 of the median particle diameter of the first substrate.
  • the first substrate comprises a particle size distribution that is bimodal, i.e. having a first mode and a second mode, each having a median particle diameter.
  • the median particle diameter in the first mode of the first substrate is greater than 2 times, or greater than 5 times, or greater than 10 times that of the second mode.
  • the particle size distribution of the first substrate is adjusted to change the behavior of the first substrate during heating.
  • the first substrate has a shrinkage that is a function of heating temperature.
  • the particles in the colloidal suspension has a maximum particle diameter and a minimum particle diameter, wherein the maximum particle diameter is less than 2 times, or less than 3 times, or less than 5 times, or less than 10 times the minimum particle diameter.
  • the minimum dimension of the electrolyte is less than 10 microns, or less than 2 microns, or less than 1 micron, or less than 500 nm.
  • the electrolyte has a gas permeability of no greater than 1 millidarcy, preferably no greater than 100 microdarcy, and most preferably no greater than 1 microdarcy. Preferably, the electrolyte has no cracks penetrating through the minimum dimension of the electrolyte.
  • the boiling point of the solvent is no less than 200° C., or no less than 100° C., or no less than 75° C. In an embodiment, the boiling point of the solvent is no greater than 125° C., or no greater than 100° C., or no greater than 85° C., no greater than 70° C.
  • the pH of the colloidal suspension is no less than 7, or no less than 9, or no less than 10.
  • the additive comprises polyethylene glycol (PEG), ethyl cellulose, polyvinylpyrrolidone (PVP), polyvinyl butyral (PVB), butyl benzyl phthalate (BBP), polyalkalyne glycol (PAG).
  • PEG polyethylene glycol
  • PVP polyvinylpyrrolidone
  • PVB polyvinyl butyral
  • BBP butyl benzyl phthalate
  • PAG polyalkalyne glycol
  • the additive concentration is no greater than 100 mg/cm3, or no greater than 50 mg/cm3, or no greater than 30 mg/cm3, or no greater than 25 mg/cm3.
  • the colloidal suspension is milled. In an embodiment, the colloidal suspension is milled using a rotational mill. In an embodiment, the rotational mill is operated at no less than 20 rpm, or no less than 50 rpm, or no less than 100 rpm, or no less than 150 rpm. In an embodiment, the colloidal suspension is milled using zirconia milling balls or tungsten carbide balls. In an embodiment, the colloidal suspension is milled for no less than 2 hours, or no less than 4 hours, or no less than 1 day, or no less than 10 days.
  • the particle concentration in the colloidal suspension is no greater than 30 wt %, or no greater than 20 wt %, or no greater than 10 wt %. In an embodiment, the particle concentration in the colloidal suspension is no less than 2 wt %. In an embodiment, the particle concentration in the colloidal suspension is no greater than 10 vol %, or no greater than 5 vol %, or no greater than 3 vol %, or no greater than 1 vol %. In an embodiment, the particle concentration in the colloidal suspension is no less than 0.1 vol %.
  • the electrolyte is formed using an additive manufacturing machine (AMM).
  • the first substrate is formed using an AMM.
  • said heating comprises the use of electromagnetic radiation (EMR).
  • EMR electromagnetic radiation
  • the EMR comprises UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser.
  • the first substrate and the electrolyte are heated to cause co-sintering.
  • the first substrate, the second substrate, and the electrolyte are heated to cause co-sintering.
  • the EMR is controlled to preferentially sinter the first substrate over the electrolyte.
  • the electrolyte is in compression throughout its thickness after heating.
  • the first substrate and the second substrate apply compressive stress to the electrolyte after heating.
  • the first substrate and the second substrate are anode and cathode of a fuel cell.
  • the minimum dimension of the electrolyte is between 500 nm and 5 microns. In an embodiment, the minimum dimension of the electrolyte is between 1 micron and 2 microns.
  • SOFCs solid oxide fuel cells
  • the fuel cell stack is configured to be made into a cartridge form, such as an easily detachable flanged fuel cell cartridge (FCC) design.
  • FCC easily detachable flanged fuel cell cartridge
  • 1111 represents holes for bolts
  • 1112 represents a cathode in the FCC
  • 1113 represents an electrolyte in the FCC
  • 1114 represents an anode in the FCC
  • 1115 represents gas channels in the electrodes (anode and cathode)
  • 1116 represents an integrated multi-fluid heat exchanger in the FCC.
  • FIG. 11 C illustrates the top view and bottom view of an embodiment of a FCC, in which the length of the oxidant side of the FCC is shown L o , the length of the fuel side of the FCC is shown L f , the width of the oxidant (air) entrance is shown W o , the width of the fuel entrance is shown W f .
  • L o the length of the oxidant side of the FCC
  • L f the width of the oxidant (air) entrance
  • W f the width of the fuel entrance
  • W f the width of the fuel entrance
  • FIG. 11 B 1121 represents electrical bolt isolation; 1125 represents anode; 1123 represents seal that seals the anode from air flow; 1126 represents cathode; 1124 represents seal that seals the cathode from fuel flow.
  • FIG. 11 B illustrates cross-sectional views of the FCC, wherein air flow is sealed from the anode and fuel flow is sealed from the cathode. The bolts are isolated electrically with a seal as well.
  • the seal is a dual functional seal (DFS) comprising YSZ (yttria-stabilized zirconia) or a mixture of 3YSZ (3 mol % Y 2 O 3 in ZrO 2 ) and 8YSZ (8 mol % Y 2 O 3 in ZrO 2 ).
  • the DFS is impermeable to non-ionic substances and electrically insulating.
  • the mass ratio of 3YSZ/8YSZ is in the range of from 10/90 to 90/10.
  • the mass ratio of 3YSZ/8YSZ is about 50/50.
  • the mass ratio of 3YSZ/8YSZ is 100/0 or 0/100.
  • a fuel cell cartridge comprising an anode, a cathode, an electrolyte, an interconnect, a fuel entrance on a fuel side of the FCC, an oxidant entrance on an oxidant side of the FCC, at least one fluid exit, wherein the fuel entrance has a width of W f , the fuel side of the FCC has a length of L f , the oxidant entrance has a width of W o , the oxidant side of the FCC has a length of L o , wherein W f /L f is in the range of 0.1 to 1.0, or 0.1 to 0.9, or 0.2 to 0.9, or 0.5 to 0.9, or 0.5 to 1.0 and W o /L o is in the range of 0.1 to 1.0, or 0.1 to 0.9, or 0.2 to 0.9, or 0.5 to 0.9, or 0.5 to 1.0.
  • said entrances and exit are on one surface of the FCC and said FCC comprises no protruding fluid passage on said surface.
  • said surface is smooth with a maximum elevation change of no greater than 1 mm, or no greater than 100 microns, or no greater than 10 microns.
  • the FCC comprises a barrier layer between the electrolyte and the cathode or between the electrolyte and the anode or both.
  • the FCC comprises dual functional seal that is impermeable to non-ionic substances and electrically insulating.
  • said dual functional seal comprises YSZ (yttria-stabilized zirconia) or a mixture of 3YSZ (3 mol % Y 2 O 3 in ZrO 2 ) and 8YSZ (8 mol % Y 2 O 3 in ZrO 2 ).
  • said interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid dispersing components. In an embodiment, said interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid channels.
  • the FCC is detachably fixed to a mating surface and not soldered nor welded to said mating surface. In an embodiment, the FCC is bolted to or pressed to said mating surface. In an embodiment, said mating surface comprises matching fuel entrance, matching oxidant entrance, and at least one matching fluid exit.
  • a fuel cell cartridge comprising an anode, a cathode, an electrolyte, an interconnect, a fuel entrance, an oxidant entrance, at least one fluid exit, wherein said entrances and exit are on one surface of the FCC and said FCC comprises no protruding fluid passage on said surface.
  • said surface is smooth with a maximum elevation change of no greater than 1 mm, or no greater than 100 microns, or no greater than 10 microns.
  • the FCC comprises dual functional seal that is impermeable to non-ionic substances and electrically insulating.
  • said interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid dispersing components.
  • said interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid channels.
  • the FCC is detachably fixed to a mating surface and not soldered nor welded to said mating surface. In an embodiment, the FCC is bolted to or pressed to said mating surface. In an embodiment, said mating surface comprises matching fuel entrance, matching oxidant entrance, and at least one matching fluid exit.
  • the FCC is not soldered nor welded to said mating surface. In an embodiment, the FCC is bolted to or pressed to said mating surface. In an embodiment, said mating surface comprises matching fuel entrance, matching oxidant entrance, and at least one matching fluid exit.
  • said entrances and exit are on one surface of the FCC and said FCC comprises no protruding fluid passage on said surface.
  • said surface is smooth with a maximum elevation change of no greater than 1 mm, or no greater than 100 microns, or no greater than 10 microns.
  • said interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid dispersing components. In an embodiment, said interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid channels.
  • a method comprising pressing or bolting together a fuel cell cartridge (FCC) and a mating surface, said method excluding welding or soldering together the FCC and the mating surface, wherein the FCC comprises an anode, a cathode, an electrolyte, an interconnect, a fuel entrance on a fuel side of the FCC, an oxidant entrance on an oxidant side of the FCC, at least one fluid exit, wherein the fuel entrance has a width of W f , the fuel side of the FCC has a length of L f , the oxidant entrance has a width of W o , the oxidant side of the FCC has a length of L o , wherein W f /L f is in the range of 0.1 to 1.0, or 0.1 to 0.9, or 0.2 to 0.9, or 0.5 to 0.9, or 0.5 to 1.0 and W o /L o is in the range of 0.1 to 1.0, or 0.1 to 0.9
  • said entrances and exit are on one surface of the FCC and said FCC comprises no protruding fluid passage on said surface.
  • said surface is smooth with a maximum elevation change of no greater than 1 mm, or no greater than 100 microns, or no greater than 10 microns.
  • said interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid dispersing components. In an embodiment, said interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid channels.
  • a fuel cell cartridge comprising a fuel cell and a fuel cell casing, wherein the fuel cell comprises an anode, a cathode, and an electrolyte, wherein at least a portion of the fuel cell casing is made of the same material as the electrolyte.
  • the electrolyte is in contact with the portion of the fuel cell casing made of the same material.
  • the electrolyte and the portion of the fuel cell casing are made of a dual functional seal (DFS), wherein the DFS comprises 3YSZ (3 mol % Y2O3 in ZrO2) and 8YSZ (8 mol % Y2O3 in ZrO2), wherein the mass ratio of 3YSZ/8YSZ is in the range of from 100/0 to 0/100 or from 10/90 to 90/10 and wherein the DFS is impermeable to non-ionic substances and electrically insulating. In an embodiment, the mass ratio of 3YSZ/8YSZ is about 50/50 or 40/60 or 60/40 or 30/70 or 70/30 or 20/80 or 80/20.
  • DFS dual functional seal
  • said fuel cell casing comprises a fuel entrance and fuel passage for the anode, an oxidant entrance and oxidant passage for the cathode, and at least one fluid exit.
  • said entrances and exit are on one surface of the FCC and said FCC comprises no protruding fluid passage on said surface.
  • the fuel cell casing is in contact with at least a portion of the anode.
  • the FCC comprises a barrier layer between the electrolyte and the cathode and between the fuel cell casing and the cathode.
  • the FCC comprises an interconnect, wherein the interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid dispersing components.
  • the FCC comprises an interconnect, wherein the interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid channels.
  • the FCC is detachably fixed to a mating surface and not soldered nor welded to said mating surface.
  • said mating surface comprises matching fuel entrance, matching oxidant entrance, and at least one matching fluid exit.
  • a dual functional seal comprising 3YSZ (3 mol % Y2O3 in ZrO2) and 8YSZ (8 mol % Y2O3 in ZrO2), wherein the mass ratio of 3YSZ/8YSZ is in the range of from 10/90 to 90/10 and wherein the DFS is impermeable to non-ionic substances and electrically insulating.
  • the mass ratio of 3YSZ/8YSZ is about 50/50 or 40/60 or 60/40 or 30/70 or 70/30 or 20/80 or 80/20.
  • the DFS is used as an electrolyte in a fuel cell or as a portion of a fuel cell casing or both.
  • a method comprising providing a dual functional seal (DFS) in a fuel cell system, wherein the DFS comprises 3YSZ (3 mol % Y 2 O 3 in ZrO 2 ) and 8YSZ (8 mol % Y 2 O 3 in ZrO 2 ), wherein the mass ratio of 3YSZ/8YSZ is in the range of from 100/0 to 0/100 or from 10/90 to 90/10 and wherein the DFS is impermeable to non-ionic substances and electrically insulating.
  • the mass ratio of 3YSZ/8YSZ is about 50/50 or 40/60 or 60/40 or 30/70 or 70/30 or 20/80 or 80/20.
  • the DFS is used as electrolyte or a portion of a fuel cell casing or both in the fuel cell system.
  • said portion of a fuel cell casing is the entire fuel cell casing.
  • said portion of a fuel cell casing is a coating on the fuel cell casing.
  • the electrolyte and said portion of a fuel cell casing are in contact.
  • a fuel cell system comprising an anode having six surfaces, a cathode having six surfaces, an electrolyte, and an anode surround in contact with at least three surfaces of the anode, wherein the electrolyte is part of the anode surround and said anode surround is made of the same material as the electrolyte.
  • said same material is a dual functional seal (DFS) comprising 3YSZ (3 mol % Y2O3 in ZrO2) and 8YSZ (8 mol % Y2O3 in ZrO2), wherein the mass ratio of 3YSZ/8YSZ is in the range of from 100/0 to 0/100 or from 10/90 to 90/10 and wherein the DFS is impermeable to non-ionic substances and electrically insulating. In an embodiment, the mass ratio of 3YSZ/8YSZ is about 50/50 or 40/60 or 60/40 or 30/70 or 70/30 or 20/80 or 80/20.
  • DFS dual functional seal
  • the anode surround is in contact with five surfaces of the anode.
  • the fuel cell system comprises a barrier layer between the cathode and a cathode surround, wherein the barrier layer is in contact with at least three surfaces of the cathode, wherein the electrolyte is part of the cathode surround and said cathode surround is made of the same material as the electrolyte.
  • the fuel cell system comprises fuel passage and oxidant passage in the anode surround and the cathode surround.
  • the fuel cell system comprises an interconnect, wherein the interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid dispersing components.
  • the fuel cell system comprises an interconnect, wherein the interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid channels.
  • SRT refers to a component of the strain rate tensor.
  • Matching SRTs is contemplated in both heating and cooling processes. In a fuel cell, multiple materials or compositions exist. These different materials or compositions often have different thermal expansion coefficients. As such, the heating or cooling process often causes strain or even cracks in the material.
  • a treating process heating or cooling to match the SRTs of different materials/compositions to reduce, minimize, or even eliminate undesirable effects.
  • FIG. 7 shows the SRTs of a first composition and a second composition as a function of temperature.
  • heating is achieved via at least one of the following: conduction, convection, radiation.
  • heating comprises electromagnetic radiation (EMR).
  • EMR electromagnetic radiation
  • EMR comprises UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser, electron beam.
  • the first composition and the second composition are heated at the same time. In an embodiment, the first composition and the second composition are heated at different times. In an embodiment, the first composition is heated for a first period of time, the second composition is heated for a second period of time, wherein at least a portion of the first period of time overlaps with the second period of time.
  • heating takes places more than once for the first composition, or for the second composition, or for both.
  • the first composition and the second composition are heated at different temperatures.
  • the first composition and the second composition are heated using different means.
  • the first composition and the second composition are heated for different periods of time.
  • heating the first composition causes at least partial heating of the second composition, for example, via conduction.
  • heating causes densification of the first composition, or the second composition, or both.
  • the first composition is heated to achieve partial densification resulting in a modified first SRT; and then the first and second compositions are heated such that the difference between the modified first SRT and the second SRT is no greater than 75% of the first modified SRT.
  • the first composition is heated to achieve partial densification resulting in a modified first SRT
  • the second composition is heated to achieve partial densification resulting in a modified second SRT; and then the first and second compositions are heated such that the difference between the modified first SRT and the second modified SRT is no greater than 75% of the first modified SRT.
  • the fuel cell comprises a third composition having a third SRT.
  • the third composition is heated such that the difference between the first SRT and the third SRT is no greater than 75% of the first SRT.
  • the third composition is heated to achieve partial densification resulting in a modified third SRT; and then the first and second and third compositions are heated such that the difference between the first SRT and the modified third SRT is no greater than 75% of the first SRT.
  • the first and second and third compositions are heated to achieve partial densification resulting in a modified first SRT, a modified second SRT, and a modified third SRT; and then the first and second and third compositions are heated such that the difference between the modified first SRT and the modified second SRT is no greater than 75% of the modified first SRT and the difference between the modified first SRT and the modified third SRT is no greater than 75% of the modified first SRT.
  • the method produces a crack free electrolyte in the fuel cell.
  • heating is performed in situ.
  • heating causes sintering or co-sintering or both.
  • heating takes place for no greater than 30 minutes, or no greater than 30 seconds, or no greater than 30 milliseconds.
  • a process flow diagram is shown for forming and heating at least a portion of a fuel cell.
  • 810 represents forming composition 1 .
  • 820 represents heating composition 1 at temperature T 1 for time t 1 .
  • 830 represents forming composition 2 .
  • 840 represents heating composition 1 and composition 2 simultaneously at temperature T 2 for time t 2 , wherein at T 2 , the difference between SRT of composition 1 and SRT of composition 2 is no greater than 75% of SRT of composition 1 .
  • 840 represents heating composition 1 and composition 2 simultaneously at temperature T 2 and T 2 ′ (for example, using different heating mechanisms) for time t 2 , wherein at T 2 and T 2 ′, the difference between SRT of composition 1 and SRT of composition 2 is no greater than 75% of SRT of composition 1 .
  • Example 1 Making a Fuel Cell Stack
  • Example 1 is illustrative of the preferred method of making a fuel cell stack.
  • the method uses an AMM model no. 0012323 from Ceradrop and an EMR model no. 092309423 from Xenon Corp.
  • An interconnect substrate is put down to start the print.
  • an anode layer is made by the AMM.
  • This layer is deposited by the AMM as a slurry A, having the composition as shown in the table below.
  • This layer is allowed to dry by applying heat via an infrared lamp.
  • This anode layer is sintered by hitting it with an electromagnetic pulse from a xenon flash tube for 1 second.
  • An electrolyte layer is formed on top of the anode layer by the AMM depositing a slurry B, having the composition shown in the table below. This layer is allowed to dry by applying heat via an infrared lamp. This electrolyte layer is sintered by hitting it with an electromagnetic pulse from a xenon flash tube for 60 seconds.
  • a cathode layer is formed on top of the electrolyte layer by the AMM depositing a slurry C, having the composition shown in the table below.
  • This layer is allowed to dry by applying heat via an infrared lamp.
  • This cathode layer is sintered by hitting it with an electromagnetic pulse from a xenon flash tube for 1 ⁇ 2 second.
  • An interconnect layer is formed on top of the cathode layer by the AMM depositing a slurry D, having the composition shown in the table below. This layer is allowed to dry by applying heat via an infrared lamp. This interconnect layer is sintered by hitting it with an electromagnetic pulse from a xenon flash tube for 30 seconds.
  • composition of Slurries Slurry Solvents Particles A 100% isopropyl alcohol 10 wt % NiO-8YSZ B 100% isopropyl alcohol 10 wt % 8YSZ C 100% isopropyl alcohol 10 wt % LSCF D 100% isopropyl alcohol 10 wt % lanthanum chromite
  • an electrolyte 1001 (YSZ) is printed and sintered on an electrode 1002 (NiO-YSZ).
  • the scanning electron microscopy image shows the side view of the sintered structures, which demonstrates gas-tight contact between the electrolyte and the electrode, full densification of the electrolyte, and sintered and porous electrode microstructures.
  • a 48-Volt fuel cell stack has 69 cells with about 1000 Watts of power output.
  • the fuel cell in this stack has a dimension of about 4 cm ⁇ 4 cm in length and width and about 0.7 cm in height.
  • a 48-Volt fuel cell stack has 69 cells with about 5000 Watts of power output.
  • the fuel cell in this stack has a dimension of about 8.5 cm ⁇ 8.5 cm in length and width and about 0.7 cm in height.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

Herein disclosed is a method of treating a component of a fuel cell, which includes the step of exposing the component of the fuel cell to a source of electromagnetic radiation (EMR). The component comprises a first material. The EMR has a wavelength ranging from 10 to 1500 nm and the EMR has a minimum energy density of 0.1 Joule/cm2. Preferably, the treatment process has one or more of the following effects: heating, drying, curing, sintering, annealing, sealing, alloying, evaporating, restructuring, foaming. In an embodiment, the substrate is a component in a fuel cell. Such component comprises an anode, a cathode, an electrolyte, a catalyst, a barrier layer, a interconnect, a reformer, or reformer catalyst. In an embodiment, the substrate is a layer in a fuel cell or a portion of a layer in a fuel cell or a combination of layers in a fuel cell or a combination of partial layers in a fuel cell.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Patent Application No. 62/756,257 filed Nov. 6, 2018, U.S. Provisional Patent Application No. 62/756,264 filed Nov. 6, 2018, U.S. Provisional Patent Application No. 62/757,751 filed Nov. 8, 2018, U.S. Provisional Patent Application No. 62/758,778 filed Nov. 12, 2018, U.S. Provisional Patent Application No. 62/767,413 filed Nov. 14, 2018, U.S. Provisional Patent Application No. 62/768,864 filed Nov. 17, 2018, U.S. Provisional Patent Application No. 62/771,045 filed Nov. 24, 2018, U.S. Provisional Patent Application No. 62/773,071 filed Nov. 29, 2018, U.S. Provisional Patent Application No. 62/773,912 filed Nov. 30, 2018, U.S. Provisional Patent Application No. 62/777,273 filed Dec. 10, 2018, U.S. Provisional Patent Application No. 62/777,338 filed Dec. 10, 2018, U.S. Provisional Patent Application No. 62/779,005 filed Dec. 13, 2018, U.S. Provisional Patent Application No. 62/780,211 filed Dec. 15, 2018, U.S. Provisional Patent Application No. 62/783,192 filed Dec. 20, 2018, U.S. Provisional Patent Application No. 62/784,472 filed Dec. 23, 2018, U.S. Provisional Patent Application No. 62/786,341 filed Dec. 29, 2018, U.S. Provisional Patent Application No. 62/791,629 filed Jan. 11, 2019, U.S. Provisional Patent Application No. 62/797,572 filed Jan. 28, 2019, U.S. Provisional Patent Application No. 62/798,344 filed Jan. 29, 2019, U.S. Provisional Patent Application No. 62/804,115 filed Feb. 11, 2019, U.S. Provisional Patent Application No. 62/805,250 filed Feb. 13, 2019, U.S. Provisional Patent Application No. 62/808,644 filed Feb. 21, 2019, U.S. Provisional Patent Application No. 62/809,602 filed Feb. 23, 2019, U.S. Provisional Patent Application No. 62/814,695 filed Mar. 6, 2019, U.S. Provisional Patent Application No. 62/819,374 filed Mar. 15, 2019, U.S. Provisional Patent Application No. 62/819,289 filed Mar. 15, 2019, U.S. Provisional Patent Application No. 62/824,229 filed Mar. 26, 2019, U.S. Provisional Patent Application No. 62/825,576 filed Mar. 28, 2019, U.S. Provisional Patent Application No. 62/827,800 filed Apr. 1, 2019, U.S. Provisional Patent Application No. 62/834,531 filed Apr. 16, 2019, U.S. Provisional Patent Application No. 62/837,089 filed Apr. 22, 2019, U.S. Provisional Patent Application No. 62/840,381 filed Apr. 29, 2019, U.S. Provisional Patent Application No. 62/844,125 filed May 7, 2019, U.S. Provisional Patent Application No. 62/844,127 filed May 7, 2019, U.S. Provisional Patent Application No. 62/847,472 filed May 14, 2019, U.S. Provisional Patent Application No. 62/849,269 filed May 17, 2019, U.S. Provisional Patent Application No. 62/852,045 filed May 23, 2019, U.S. Provisional Patent Application No. 62/856,736 filed Jun. 3, 2019, U.S. Provisional Patent Application No. 62/863,390 filed Jun. 19, 2019, U.S. Provisional Patent Application No. 62/864,492 filed Jun. 20, 2019, U.S. Provisional Patent Application No. 62/866,758 filed Jun. 26, 2019, U.S. Provisional Patent Application No. 62/869,322 filed Jul. 1, 2019, U.S. Provisional Patent Application No. 62/875,437 filed Jul. 17, 2019, U.S. Provisional Patent Application No. 62/877,699 filed Jul. 23, 2019, U.S. Provisional Patent Application No. 62/888,319 filed Aug. 16, 2019, U.S. Provisional Patent Application No. 62/895,416 filed Sep. 3, 2019, U.S. Provisional Patent Application No. 62/896,466 filed Sep. 5, 2019, U.S. Provisional Patent Application No. 62/899,087 filed on Sep. 11, 2019, U.S. Provisional Patent Application No. 62/904,683 filed on Sep. 24, 2019, U.S. Provisional Patent Application No. 62/912,626 filed on Oct. 8, 2019, U.S. Provisional Patent Application No. 62/925,210 filed on Oct. 23, 2019, U.S. Provisional Patent Application No. 62/927,627 filed on Oct. 29, 2019, U.S. Provisional Patent Application No. 62/928,326 filed on Oct. 30, 2019. The disclosures of each of said applications are hereby incorporated herein by reference.
TECHNICAL FIELD
This invention relates to fuel cell manufacturing. More particularly, this invention relates to methods of making solid oxide fuel cells or electrochemical reactors.
BACKGROUND
A fuel cell is an electrochemical apparatus that converts the chemical energy from a fuel into electricity through an electrochemical reaction. Sometimes, the heat generated by a fuel cell is also usable. There are many types of fuel cells. For example, proton-exchange membrane fuel cells (PEMFCs) are built out of membrane electrode assemblies (MEA) which include the electrodes, electrolyte, catalyst, and gas diffusion layers. An ink of catalyst, carbon, and electrode are sprayed or painted onto the solid electrolyte and carbon paper is hot pressed on either side to protect the inside of the cell and also act as electrodes. The most important part of the cell is the triple phase boundary where the electrolyte, catalyst, and reactants mix and thus where the cell reactions actually occur. The membrane must not be electrically conductive so that the half reactions do not mix.
PEMFC is a good candidate for vehicle and other mobile applications of all sizes (e.g., mobile phones) because it is compact. However, the water management is crucial to performance: too much water will flood the membrane, too little will dry it; in both cases, power output will drop. Water management is a difficult problem in PEM fuel cell systems, mainly because water in the membrane is attracted toward the cathode of the cell through polarization. Furthermore, the platinum catalyst on the membrane is easily poisoned by carbon monoxide (CO level needs to be no more than one part per million). The membrane is also sensitive to things like metal ions, which can be introduced by corrosion of metallic bipolar plates, or metallic components in the fuel cell system, or from contaminants in the fuel and/or oxidant.
Solid oxide fuel cells (SOFCs) are a different class of fuel cells that use a solid oxide material as the electrolyte. SOFCs use a solid oxide electrolyte to conduct negative oxygen ions from the cathode to the anode. The electrochemical oxidation of the oxygen ions with fuel (e.g., hydrogen, carbon monoxide) occurs on the anode side. Some SOFCs use proton-conducting electrolytes (PC-SOFCs), which transport protons instead of oxygen ions through the electrolyte. Typically, SOFCs using oxygen ion conducting electrolytes have higher operating temperatures than PC-SOFCs. In addition, SOFCs do not typically require expensive platinum catalyst material, which is typically necessary for lower temperature fuel cells such as proton-exchange membrane fuel cells (PEMFCs), and are not vulnerable to carbon monoxide catalyst poisoning. Solid oxide fuel cells have a wide variety of applications, such as auxiliary power units for homes and vehicles as well as stationary power generation units for data centers. SOFCs comprise interconnects, which are placed between each individual cell so that the cells are connected in series and that the electricity generated by each cell is combined. One category of SOFC is segmented-in-series (SIS) type SOFC, in which electrical current flow is parallel to the electrolyte in the lateral direction. Contrary to the SIS type SOFC, a different category of SOFC has electrical current flow perpendicular to the electrolyte in the lateral direction. These two categories of SOFCs are connected differently and made differently.
For the fuel cell to function properly and continuously, components for balance of plant (BOP) are needed. For example, the mechanical balance of plant includes air preheater, reformer and/or pre-reformer, afterburner, water heat exchanger, anode tail gas oxidizer. Other components are also needed, such as, electrical balance of plant including power electronics, hydrogen sulfide sensors, and fans. These BOP components are often complex and expensive. Fuel cells and fuel cell systems are simply examples of the necessity and interest to develop advanced manufacturing system and method such that these efficient systems may be economically produced and widely deployed.
SUMMARY
Herein disclosed is a method of treating a component of a fuel cell comprising: exposing said component to a source of electromagnetic radiation (EMR), wherein the component comprises a first material; wherein the EMR has a wavelength ranging from 10 to 1500 nm and the EMR has a minimum energy density of 0.1 Joule/cm2. In an embodiment, the source of EMR comprises a xenon lamp. In an embodiment, the source of EMR is a xenon lamp. In an embodiment, peak wavelength is based on relative irradiance with respect to wavelength. In an embodiment, the first material comprises Yttria-stabilized zirconia (YSZ), 8YSZ (8 mol % YSZ powder), Yttirum, Zirconium, gadolinia-doped ceria (GDC or CGO), Samaria-doped ceria (SDC), Scandia-stabilized zirconia (SSZ), Lanthanum strontium manganite (LSM), Lanthanum Strontium Cobalt Ferrite (LSCF), Lanthanum Strontium Cobaltite (LSC), Lanthanum Strontium Gallium Magnesium Oxide (LSGM), nickel, nickel oxide (NiO), NiO—YSZ, copper (Cu), Cu-CGO, Cu2O, CuO, Cerium, silver, crofer, steel, lanthanum chromite, doped lanthanum chromite, ferritic steel, stainless steel, or combinations thereof. In an embodiment, the treated component has no or minimal cracking.
In an embodiment, the method comprises adding a second material to the component. In an embodiment, the method comprises exposing the second material to EMR. In an embodiment, the second material comprises graphite, graphene, nano diamonds, or combinations thereof. In an embodiment, the volume fraction of the second material in the component in the fuel cell is no greater than 50%, or no greater than 30%, or no greater than 20%, or no greater than 10%, or no greater than 3%, or no greater than 1%.
In an embodiment, the method comprises controlling at least one of the following: distance from the EMR to the component; energy density of the EMR; spectrum of the EMR; voltage of the EMR; exposure volume of the component; exposure location of the component; duration of exposure; burst frequency; and number of exposures. In an embodiment, the EMR comprises UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser, electron beam, microwave. In an embodiment, the EMR is provided by a xenon lamp.
In an embodiment, the method is combined with manufacturing techniques of a fuel cell. In an embodiment, said manufacturing techniques comprise screen printing, tape casting, spraying, sputtering, physical vapor deposition, additive manufacturing. In an embodiment, additive manufacturing comprises material jetting, binder jetting, inkjet printing, aerosol jetting, or aerosol jet printing, vat photopolymerization, powder bed fusion, material extrusion, directed energy deposition, sheet lamination, ultrasonic inkjet printing, or combinations thereof.
Also discussed herein is a method of making a fuel cell comprising depositing a material on a substrate; heating the material using electromagnetic radiation (EMR), wherein the deposited and heated material is a part of the fuel cell. In an embodiment, said depositing comprises material jetting, binder jetting, inkjet printing, aerosol jetting, or aerosol jet printing, vat photopolymerization, powder bed fusion, material extrusion, directed energy deposition, sheet lamination, ultrasonic inkjet printing, or combinations thereof. In an embodiment, heating is performed in situ. In an embodiment, the EMR is performed in one exposure, or no greater than 10 exposures, or no greater than 100 exposures, or no greater than 1000 exposures, or no greater than 10,000 exposures. In an embodiment, the EMR has a burst frequency of 10−4-1000 Hz or 1-1000 Hz or 10-1000 Hz. In an embodiment, the EMR has an exposure distance of no greater than 50 mm. In an embodiment, the EMR has an exposure duration no less than 0.1 ms or 1 ms. In an embodiment, the EMR is applied with a capacitor voltage of no less than 100V. In an embodiment, the EMR is provided by a xenon lamp.
Further disclosed herein is a method of making a fuel cell comprising depositing a material on a substrate; heating the material in situ to cause at least a portion of the material to sinter, wherein the deposited and heated material is a part of the fuel cell. In an embodiment, heating is performed using electromagnetic radiation (EMR), or plasma, or hot fluid, or a heating element, or combinations thereof. In an embodiment, the EMR is provided by a xenon lamp. In an embodiment, the EMR comprises UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser, electron beam, microwave. In an embodiment, depositing comprises material jetting, binder jetting, inkjet printing, aerosol jetting, or aerosol jet printing, vat photopolymerization, powder bed fusion, material extrusion, directed energy deposition, sheet lamination, ultrasonic inkjet printing, or combinations thereof. In an embodiment, depositing utilizes a multi-nozzle additive manufacturing method.
In an embodiment, a first fuel cell is stacked with a second fuel cell such that the interconnect is in contact with surface A of an electrode of the first fuel cell, wherein surface A has an area larger than the average surface area of the electrode of the first fuel cell; and the interconnect is in contact with surface B of an electrode of the second fuel cell, wherein surface B has an area larger than the average surface area of the electrode of the second fuel cell, wherein the average surface area of the electrode is the total surface area of the electrode divided by the number of surfaces of the electrode. In an embodiment, the fuel cell is a non-SIS type SOFC.
Further aspects and embodiments are provided in the following drawings, detailed description and claims. Unless specified otherwise, the features as discussed herein are combinable and all such combinations are within the scope of this disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
The following drawings are provided to illustrate certain embodiments described herein. The drawings are merely illustrative and are not intended to limit the scope of claimed inventions and are not intended to show every potential feature or embodiment of the claimed inventions. The drawings are not necessarily drawn to scale; in some instances, certain elements of the drawing may be enlarged with respect to other elements of the drawing for purposes of illustration.
FIG. 1 illustrates a fuel cell comprising an anode, an electrolyte, and a cathode, according to an embodiment of this disclosure.
FIG. 2 illustrates a fuel cell comprising an anode, an electrolyte, at least one barrier layer, and a cathode, according to an embodiment of this disclosure.
FIG. 3 illustrates a fuel cell comprising an anode, a catalyst, an electrolyte, at least one barrier layer, and a cathode, according to an embodiment of this disclosure.
FIG. 4 illustrates a fuel cell comprising an anode, a catalyst, an electrolyte, at least one barrier layer, a cathode, and an interconnect, according to an embodiment of this disclosure.
FIG. 5 illustrates a fuel cell stack, according to an embodiment of this disclosure.
FIG. 6 illustrates a method and system of integrated deposition and heating using electromagnetic radiation (EMR), according to an embodiment of this disclosure.
FIG. 7 illustrates SRTs of a first composition and a second composition as a function of temperature, according to an embodiment of this disclosure.
FIG. 8 illustrates a process flow for forming and heating at least a portion of a fuel cell, according to an embodiment of this disclosure.
FIG. 9 illustrates maximum height profile roughness, according to an embodiment of this disclosure.
FIG. 10 is a scanning electron microscopy image (side view) illustrating an electrolyte (YSZ) printed and sintered on an electrode (NiO-YSZ), according to an embodiment of this disclosure.
FIG. 11A illustrates a perspective view of a fuel cell cartridge (FCC), according to an embodiment of this disclosure.
FIG. 11B illustrates cross-sectional views of a fuel cell cartridge (FCC), according to an embodiment of this disclosure.
FIG. 11C illustrates the top view and the bottom view of a fuel cell cartridge (FCC), according to an embodiment of this disclosure.
DETAILED DESCRIPTION
The following description recites various aspects and embodiments of the inventions disclosed herein. No particular embodiment is intended to define the scope of the invention. Rather, the embodiments provide non-limiting examples of various compositions, and methods that are included within the scope of the claimed inventions. The description is to be read from the perspective of one of ordinary skill in the art. Therefore, information that is well known to the ordinarily skilled artisan is not necessarily included.
The following terms and phrases have the meanings indicated below, unless otherwise provided herein. This disclosure may employ other terms and phrases not expressly defined herein. Such other terms and phrases shall have the meanings that they would possess within the context of this disclosure to those of ordinary skill in the art. In some instances, a term or phrase may be defined in the singular or plural. In such instances, it is understood that any term in the singular may include its plural counterpart and vice versa, unless expressly indicated to the contrary.
As used herein, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. For example, reference to “a substituent” encompasses a single substituent as well as two or more substituents, and the like. As used herein, “for example,” “for instance,” “such as,” or “including” are meant to introduce examples that further clarify more general subject matter. Unless otherwise expressly indicated, such examples are provided only as an aid for understanding embodiments illustrated in the present disclosure and are not meant to be limiting in any fashion. Nor do these phrases indicate any kind of preference for the disclosed embodiment.
As used herein, compositions and materials are used interchangeably unless otherwise specified. Each composition/material may have multiple elements, phases, and components. Heating as used herein refers to actively adding energy to the compositions or materials. In situ in this disclosure refers to the treatment (e.g., heating) process being performed either at the same location or in the same device of the forming process of the compositions or materials. For example, the deposition process and the heating process are performed in the same device and at the same location, in other words, without changing the device and without changing the location within the device. For example, the deposition process and the heating process are performed in the same device at different locations, which is also considered in situ.
Additive manufacturing (AM) refers to a group of techniques that join materials to make objects, usually slice by slice or layer upon layer. AM is contrasted to subtractive manufacturing methodologies, which involve removing sections of a material by machining or cutting away. AM is also referred as additive fabrication, additive processes, additive techniques, additive layer manufacturing, layer manufacturing, and freeform fabrication. Some examples of AM are extrusion, photopolymerization, powder bed fusion, material jetting, binder jetting, directed energy deposition, lamination, direct metal laser sintering (DMLS), selective laser sintering (SLS), selective laser melting (SLM), directed energy deposition (DED), laser metal deposition (LMD), electron beam (EBAM), and metal binder jetting. A 3D printer is a type of AM machine (AMM). An inkjet printer or ultrasonic inkjet printer are also AMM's.
As used herein, the phrase “strain rate tensor” or “SRT” is meant to refer to the rate of change of the strain of a material in the vicinity of a certain point and at a certain time. It can be defined as the derivative of the strain tensor with respect to time. When SRTs or difference of SRTs are compared in this disclosure, it is the magnitude that is being used.
As used herein, lateral refers to the direction that is perpendicular to the stacking direction of the layers in a non-SIS type fuel cell. Thus, lateral direction refers to the direction that is perpendicular to the stacking direction of the layers in a fuel cell or the stacking direction of the slices to form an object during deposition. Lateral also refers to the direction that is the spread of deposition process.
Syngas (i.e., synthesis gas) in this disclosure refers to a mixture consisting primarily of hydrogen, carbon monoxide, and carbon dioxide.
In this disclosure, absorbance is a measure of the capacity of a substance to absorb electromagnetic radiation (EMR) of a wavelength.
Absorption of radiation refers to the energy absorbed by a substance when exposed to the radiation.
The typical manufacturing process of a fuel cell can sometimes require more than 100 steps utilizing dozens of machines. According to an embodiment of this disclosure, a method of making a fuel cell comprises using only one additive manufacturing machine (AMM) to manufacture a fuel cell, wherein the fuel cell comprises an anode, electrolyte, and a cathode. In an embodiment, the fuel cell comprises at least one barrier layer, for example, between the electrolyte and the cathode, or between the electrolyte and the cathode, or both. The at least one barrier layer is also preferably made by the same single AMM. In an embodiment, the AMM also produces an interconnect and assembles the interconnect with the anode, the cathode, the barrier layer(s), and the electrolyte.
In an embodiment, the interconnect, the anode, the electrolyte, and the cathode are formed layer on layer, for example, printed layer on layer. It is important to note that, within the scope of the invention, the order of forming these layers can be varied. In other words, either the anode or the cathode can be formed before the other. Naturally, the electrolyte is formed so that it is between the anode and the cathode. The barrier layer(s), catalyst layer(s) and interconnect(s) are formed so as to lie in the appropriate position within the fuel cell to perform their functions.
In an embodiment, each of the interconnect, the anode, the electrolyte, and the cathode has six faces. In some cases, the anode is printed on the interconnect and is in contact with the interconnect; the electrolyte is printed on the anode and is in contact with the anode; the cathode is printed on the electrolyte and is in contact with the electrolyte. Each print is sintered, for example, using EMR. As such, the assembling process and the forming process are simultaneous, which is not possible with conventional methods. Moreover, with the preferred embodiment, the needed electrical contact and gas tightness are also achieved at the same time. In contrast, conventional fuel cell assembling processes are required to accomplish this via pressing or compression of the fuel cell components or layers. The pressing or compression process can cause cracks in the fuel cell layers that are undesirable.
In various embodiments, the single AMM makes a first fuel cell, wherein the fuel cell comprises the anode, the electrolyte, the cathode, the at least one barrier layer, and the interconnect. In various embodiments, the single AMM makes a second fuel cell. In various embodiments, the single AMM assembles the first fuel cell with the second fuel cell to form a fuel cell stack. In various embodiments, the production using AMM is repeated as many times as desired; and a fuel cell stack is assembled using the AMM. In an embodiment, the various layers of the fuel cell are produced by the AMM above ambient temperature, for example, above 100° C., from 100° C. to 500° C., from 100° C. to 300° C. In various embodiments, the fuel cell or fuel cell stack is heated after it is formed/assembled. In an embodiment, the fuel cell or fuel cell stack is heated at a temperature above 500° C. In an embodiment, the fuel cell or fuel cell stack is heated at a temperature from 500° C. to 1500° C.
In various embodiments, the AMM comprises a chamber where the manufacturing of fuel cells takes place. This chamber is able to withstand high temperature to enable the production of the fuel cells. In an embodiment, this high temperature is at least 300° C. In an embodiment, this high temperature is at least 500° C. In an embodiment, this high temperature is at least 800° C. In an embodiment, this high temperature is at least 1000° C. In an embodiment, this high temperature is at least 1500° C. In some cases, this chamber also enables heating of the fuel cells to take place in the chamber. Various heating methods are applied, such as laser heating/curing, electromagnetic wave heating, hot fluid heating, or heating element associated with the chamber. The heating element may be a heating surface or a heating coil or a heating rod and is associated with the chamber such that the content in the chamber is heated to the desired temperature range. In various embodiments, the chamber of the AMM is able to apply pressure to the fuel cell(s) inside, for example, via a moving element (e.g., a moving stamp or plunger). In various embodiments, the chamber of the AMM is able to withstand pressure. The chamber can be pressurized by a fluid and de-pressurized as desired. The fluid in the chamber can also be changed/replaced as needed.
In an embodiment, the fuel cell or fuel cell stack is heated using EMR. In an embodiment, the fuel cell or fuel cell stack is heated using oven curing. In an embodiment, the laser beam is expanded (for example, by the use of one or more mirrors) to create a heating zone with uniform power density. In an embodiment, each layer of the fuel cell is EMR cured separately. In an embodiment, a combination of fuel cell layers is EMR cured separately, for example, a combination of the anode, the electrolyte, and the cathode layers. In an embodiment, a first fuel cell is EMR cured, assembled with a second fuel cell, and then the second fuel cell is EMR cured. In an embodiment, a first fuel cell is assembled with a second fuel cell, and then the first fuel cell and the second fuel cell are EMR cured separately. In an embodiment, a first fuel cell is assembled with a second fuel cell to form a fuel cell stack, and then the fuel cell stack is EMR cured. The sequence of laser heating/curing and assembling is applicable to all other heating methods.
In an embodiment, the AMM produces each layer of a multiplicity of fuel cells simultaneously. In an embodiment, the AMM assembles each layer of a multiplicity of fuel cells simultaneously. In an embodiment, heating of each layer or heating of a combination of layers of a multiplicity of fuel cells takes place simultaneously. All the discussion and all the features herein for a fuel cell or a fuel cell stack are applicable to the production, assembling, and heating of the multiplicity of fuel cells. In an embodiment, a multiplicity of fuel cells is 20 or more. In an embodiment, a multiplicity of fuel cells is 50 or more. In an embodiment, a multiplicity of fuel cells is 80 or more. In an embodiment, a multiplicity of fuel cells is 100 or more. In an embodiment, a multiplicity of fuel cells is 500 or more. In an embodiment, a multiplicity of fuel cells is 800 or more. In an embodiment, a multiplicity of fuel cells is 1000 or more. In an embodiment, a multiplicity of fuel cells is 5000 or more. In an embodiment, a multiplicity of fuel cells is 10,000 or more.
Herein also disclosed is a treatment process that has one or more of the following effects: heating, drying, curing, sintering, annealing, sealing, alloying, evaporating, restructuring, foaming. The treatment process comprises exposing a substrate to a source of electromagnetic radiation (EMR). In an embodiment, the EMR treats a substrate having a first material. In various embodiments, the EMR has a wavelength ranging from 10 to 1500 nm. In various embodiments, the EMR has a minimum energy density of 0.1 Joule/cm2. In an embodiment, the EMR has a burst frequency of 1-1000 Hz or 10-1000 Hz. In an embodiment, the EMR has an exposure distance of no greater than 50 mm. In an embodiment, the EMR has an exposure duration no less than 0.1 ms or 1 ms. In an embodiment, the EMR is applied with a capacitor voltage of no less than 100V. For example, a single pulse of EMR is applied with an exposure distance of about 10 mm and an exposure duration of 5-20 ms.
The following detailed discussion takes the production of solid oxide fuel cells (SOFCs) as an example. As one in the art recognizes, the methodology and the manufacturing process are applicable to any electrochemical device, reactor, vessel, catalyst, etc.
Additive Manufacturing
In a first aspect, the invention is a method of making a fuel cell comprising (a) producing an anode using an additive manufacturing machine (AMM); (b) creating an electrolyte using the AMM; and (c) making a cathode using the AMM. In an embodiment, the anode, the electrolyte, and the cathode are assembled into a fuel cell utilizing the AMM. In an embodiment, the fuel cell is formed using only the AMM. In an embodiment, steps (a), (b), and (c) exclude tape casting and exclude screen printing. In an embodiment, the method excludes compression in assembling. In an embodiment, the layers are deposited one on top of another and as such assembling is accomplished at the same time as deposition. The method of this disclosure is useful in making planar fuel cells. The method of this disclosure is useful in making fuel cells, wherein electrical current flow is perpendicular to the electrolyte in the lateral direction when the fuel cell is in use.
In an embodiment, the method comprises making at least one barrier layer using the AMM. In an embodiment, the at least one barrier layer is used between the electrolyte and the cathode or between the electrolyte and the anode or both. In an embodiment, the at least one barrier layer is assembled with the anode, the electrolyte, and the cathode using the AMM. In an embodiment, no barrier layer is utilized in the fuel cell.
In an embodiment, the method comprises making an interconnect using the AMM. In an embodiment, the interconnect is assembled with the anode, the electrolyte, and the cathode using the AMM. In an embodiment, the AMM forms a catalyst and incorporates said catalyst into the fuel cell.
In an embodiment, the anode, the electrolyte, the cathode, and the interconnect are made at a temperature above 100° C. In an embodiment, the method comprises heating the fuel cell, wherein said fuel cell comprises the anode, the electrolyte, the cathode, the interconnect, and optionally at least one barrier layer. In an embodiment, the fuel cell comprises a catalyst. In an embodiment, the method comprises heating the fuel cell to a temperature above 500° C. In an embodiment, the fuel cell is heated using EMR or oven curing.
In an embodiment, the AMM utilizes a multi-nozzle additive manufacturing method. In an embodiment, the multi-nozzle additive manufacturing method comprises nanoparticle jetting. In an embodiment, a first nozzle delivers a first material. In an embodiment, a second nozzle delivers a second material. In an embodiment, a third nozzle delivers a third material. In an embodiment, particles of a fourth material are placed in contact with a partially constructed fuel cell and bonded to the partially constructed fuel cell using a laser, photoelectric effect, light, heat, polymerization, or binding. In an embodiment, the anode, or the cathode, or the electrolyte comprises a first, second, third, or fourth material. In an embodiment, the AMM performs multiple additive manufacturing techniques. In various embodiments, the additive manufacturing techniques comprise extrusion, photopolymerization, powder bed fusion, material jetting, binder jetting, directed energy deposition, lamination. In various embodiments, additive manufacturing is a deposition technique comprising material jetting, binder jetting, inkjet printing, aerosol jetting, or aerosol jet printing, vat photopolymerization, powder bed fusion, material extrusion, directed energy deposition, sheet lamination, ultrasonic inkjet printing, or combinations thereof.
Further discussed herein is a method of making a fuel cell stack comprising (a) producing an anode using an additive manufacturing machine (AMM); (b) creating an electrolyte using the AMM; (c) making a cathode using the AMM; (d) making an interconnect using the AMM; wherein the anode, the electrolyte, the cathode, and the interconnect form a first fuel cell; (e) repeating steps (a)-(d) to make a second fuel cell; and (f) assembling the first fuel cell and the second fuel cell into a fuel cell stack.
In an embodiment, the first fuel cell and the second fuel cell are formed from the anode, the electrolyte, the cathode, and the interconnect utilizing the AMM. In an embodiment, the fuel cell stack is formed using only the AMM. In an embodiment, steps (a)-(f) exclude tape casting and exclude screen printing.
In an embodiment, the method comprises making at least one barrier layer using the AMM. In an embodiment, the at least one barrier layer is used between the electrolyte and the cathode or between the electrolyte and the anode or both for the first fuel cell and the second fuel cell.
In an embodiment, steps (a)-(d) are performed at a temperature above 100° C. In an embodiment, steps (a)-(d) are performed at a temperature from 100° C. to 500° C. In an embodiment, the AMM makes a catalyst and incorporates said catalyst into the fuel cell stack.
In an embodiment, the method comprises heating the fuel cell stack. In an embodiment, the method comprises heating the fuel cell stack to a temperature above 500° C. In an embodiment, the fuel cell stack is heated using EMR or oven curing. In an embodiment, the laser has a laser beam, wherein said laser beam is expanded to create a heating zone with uniform power density. In an embodiment, the laser beam is expanded by the use of one or more mirrors. In an embodiment, each layer of the fuel cell is EMR cured separately. In an embodiment, a combination of fuel cell layers is EMR cured separately. In an embodiment, the first fuel cell is EMR cured, assembled with the second fuel cell, and then the second fuel cell is EMR cured. In an embodiment, the first fuel cell is assembled with the second fuel cell, and then the first fuel cell and the second fuel cell are EMR cured separately. In an embodiment, the first fuel cell and the second fuel cell are EMR cured separately, and then the first fuel cell is assembled with the second fuel cell to form a fuel cell stack. In an embodiment, the first fuel cell is assembled with the second fuel cell to form a fuel cell stack, and then the fuel cell stack is EMR cured.
Also discussed herein is a method of making a multiplicity of fuel cells comprising (a) producing a multiplicity of anodes simultaneously using an additive manufacturing machine (AMM); (b) creating a multiplicity of electrolytes using the AMM simultaneously; and (c) making a multiplicity of cathodes using the AMM simultaneously. In an embodiment, the anodes, the electrolytes, and the cathodes are assembled into fuel cells utilizing the AMM simultaneously. In an embodiment, the fuel cells are formed using only the AMM.
In an embodiment, the method comprises making at least one barrier layer using the AMM for each of the multiplicity of fuel cells simultaneously. In an embodiment, said at least one barrier layer is used between the electrolyte and the cathode or between the electrolyte and the anode or both. In an embodiment, said at least one barrier layer is assembled with the anode, the electrolyte, and the cathode using the AMM for each fuel cell.
In an embodiment, the method comprises making an interconnect using the AMM for each of the multiplicity of fuel cells simultaneously. In an embodiment, said interconnect is assembled with the anode, the electrolyte, and the cathode using the AMM for each fuel cell. In an embodiment, the AMM forms a catalyst for each of the multiplicity of fuel cells simultaneously and incorporates said catalyst into each of the fuel cells. In an embodiment, heating of each layer or heating of a combination of layers of the multiplicity of fuel cells takes place simultaneously. In an embodiment, the multiplicity of fuel cells is 20 fuel cells or more.
In an embodiment, the AMM uses different nozzles to jet/print different materials at the same time. For example, in an AMM, a first nozzle makes an anode for fuel cell 1, a second nozzle makes a cathode for fuel cell 2, and a third nozzle makes an electrolyte for fuel cell 3, at the same time. For example, in an AMM, a first nozzle makes an anode for fuel cell 1, a second nozzle makes a cathode for fuel cell 2, a third nozzle makes an electrolyte for fuel cell 3, and a fourth nozzle makes an interconnect for fuel cell 4, at the same time.
Disclosed herein is an additive manufacturing machine (AMM) comprising a chamber, wherein manufacturing of fuel cells takes place, wherein said chamber is able to withstand a temperature of at least 300° C. In an embodiment, said chamber enables production of the fuel cells. In an embodiment, said chamber enables heating of the fuel cells in situ. In an embodiment, said chamber is heated by laser, or electromagnetic waves/electromagnetic radiation (EMR), or hot fluid, or heating element associated with the chamber, or combinations thereof. In an embodiment, said heating element comprises a heating surface or a heating coil or a heating rod. In an embodiment, said chamber is configured to apply pressure to the fuel cells inside. In an embodiment, the pressure is applied via a moving element associated with the chamber. In an embodiment, said moving element is a moving stamp or plunger. In an embodiment, said chamber is configured to withstand pressure. In an embodiment, said chamber is configured to be pressurized by a fluid or de-pressurized. In an embodiment, said fluid in the chamber is changed or replaced.
In some cases, the chamber is enclosed. In some cases, the chamber is sealed. In some cases, the chamber is open. In some cases, the chamber is a platform without top and side walls.
Referring to FIG. 6, 601 schematically represents deposition nozzles or material jetting nozzles; 602 represents the EMR source, e.g., xenon lamp; 603 represents the object being formed; and 604 represents the chamber as a part of an AMM. As illustrated in FIG. 6 , the chamber or receiver 604 is configured to receive both deposition from nozzles and radiation from an EMR source. In various embodiments, deposition nozzles 601 are movable. In various embodiments, the chamber or receiver 604 is movable. In various embodiments, the EMR source 602 is movable. In various embodiments, the object comprises a catalyst, a catalyst support, a catalyst composite, an anode, a cathode, an electrolyte, an electrode, an interconnect, a seal, a fuel cell, an electrochemical gas producer, an electrolyser, an electrochemical compressor, a reactor, a heat exchanger, a vessel, or combinations thereof.
Additive Manufacturing techniques suitable for this disclosure comprise extrusion, photopolymerization, powder bed fusion, material jetting, binder jetting, directed energy deposition, and lamination. In an embodiment, Additive Manufacturing is extrusion additive manufacturing. Extrusion additive manufacturing involves the spatially controlled deposition of material (e.g., thermoplastics). It is also referred to as fused filament fabrication (FFF) or fused deposition modeling (FDM) in this disclosure.
In an embodiment, Additive Manufacturing is photopolymerization, i.e., stereolithography (SLA) for the process of this disclosure. SLA involves spatially-defined curing of a photoactive liquid (a “photoresin”), using a scanning laser or a high-resolution projected image, transforming it into a crosslinked solid. Photopolymerization produces parts with details and dimensions ranging from the micrometer- to meter-scales.
In an embodiment, Additive Manufacturing is Powder bed fusion (PBF). PBF AM processes build objects by melting powdered feedstock, such as a polymer or metal. PBF processes begin by spreading a thin layer of powder across the build area. Cross sections are then melted a layer at a time, most often using a laser, electron beam, or intense infrared lamps. In an embodiment, PBF of metals is selective laser melting (SLM) or electron beam melting (EBM). In an embodiment, PBF of polymers is selective laser sintering (SLS). In various embodiments, SLS systems print thermoplastic polymer materials, polymer composites, or ceramics. In various embodiments, SLM systems are suitable for a variety of pure metals and alloys, wherein the alloys are compatible with the rapid solidification that occurs in SLM.
In an embodiment, Additive Manufacturing is material jetting. Additive manufacturing by material jetting is accomplished by depositing small drops (or droplets) of material, with spatial control. In various embodiments, material jetting is performed three dimensionally (3D) or two dimensionally (2D) or both. In an embodiment, 3D jetting is accomplished layer by layer. In an embodiment, print preparation converts the computer-aided design (CAD), along with specifications of material composition, color, and other variables to the printing instructions for each layer. Binder jetting AM involves inkjet deposition of a liquid binder onto a powder bed. In some cases, binder jetting combines physics of other AM processes: spreading of powder to make the powder bed (analogous to SLS/SLM), and inkjet printing.
In an embodiment, Additive Manufacturing is directed energy deposition (DED). Instead of using a powder bed as discussed above, the DED process uses a directed flow of powder or a wire feed, along with an energy intensive source such as laser, electric arc, or electron beam. In an embodiment, DED is a direct-write process, wherein the location of material deposition is determined by movement of the deposition head, which allows large metal structures to be built without the constraints of a powder bed.
In an embodiment, Additive Manufacturing is Lamination AM, or Laminated Object Manufacturing (LOM). In an embodiment, consecutive layers of sheet material are consecutively bonded and cut in order to form a 3D structure.
Contrary to traditional methods of manufacturing a fuel cell stack, which can comprise over 100 steps, including but not limited to milling, grinding, filtering, analyzing, mixing, binding, evaporating, aging, drying, extruding, spreading, tape casting, screen printing, stacking, heating, pressing, sintering, and compressing, the method of this disclosure manufactures a fuel cell or a fuel cell stack using one AMM.
The AMM of this disclosure preferably performs both extrusion and ink jetting to manufacture a fuel cell or fuel cell stack. Extrusion is used to manufacture thicker layers of a fuel cell, such as, the anode and/or the cathode. Ink jetting is used to manufacture thin layers of a fuel cell. Ink jetting is used to manufacture the electrolyte. The AMM operates at temperature ranges sufficient to enable curing in the AMM itself. Such temperature ranges are 100° C. or above, such as 100° C.-300° C. or 100° C.-500° C.
In the preferred embodiment, all of the layers of a fuel cell are formed and assembled via printing. The material for making the anode, the cathode, the electrolyte, and the interconnect, respectively, is made into an ink form comprising a solvent and particles (e.g., nanoparticles). There are two categories of ink formulations—aqueous inks and non-aqueous inks. In some cases, the aqueous ink comprises an aqueous solvent (e.g., water, deionized water), particles, a dispersant, and a surfactant. In some cases, the aqueous ink comprises an aqueous solvent (e.g., water, deionized water), particles, a dispersant, a surfactant, but no polymeric binder. The aqueous ink optionally comprises a co-solvent, such as an organic miscible solvent (methanol, ethanol, isopropyl alcohol). Such co-solvents preferably have a lower boiling point than water. The dispersant is an electrostatic dispersant, a steric dispersant, an ionic dispersant, a non-ionic dispersant, or a combination thereof. The surfactant is preferably non-ionic, such as an alcohol alkoxylate, an alcohol ethoxylate. The non-aqueous ink comprises an organic solvent (e.g., methanol, ethanol, isopropyl alcohol, butanol) and particles.
For example, CGO powder is mixed with water to form an aqueous ink with a dispersant added and a surfactant added but with no polymeric binder added. The CGO fraction based on mass is in the range of from 10 wt % to 25 wt %. For example, CGO powder is mixed with ethanol to form a non-aqueous ink with polyvinyl butaryl added. The CGO fraction based on mass is in the range of from 3 wt % to 30 wt %. For example, LSCF is mixed with n-butanol or ethanol to form a non-aqueous ink with polyvinyl butaryl added. The LSCF fraction based on mass is in the range of from 10 wt % to 40 wt %. For example, YSZ particles are mixed with water to form an aqueous ink with a dispersant added and a surfactant added but with no polymeric binder added. The YSZ fraction based on mass is in the range of from 3 wt % to 40 wt %. For example, NiO particles are mixed with water to form an aqueous ink with a dispersant added and a surfactant added but with no polymeric binder added. The NiO fraction based on mass is in the range of from 5 wt % to 25 wt %.
As an example, for the cathode of a fuel cell, LSCF or LSM particles are dissolved in a solvent, wherein the solvent is water or an alcohol (e.g., butanol) or a mixture of alcohols. Organic solvents other than alcohols may also be used. As an example, LSCF is deposited (e.g., printed) into a layer. A xenon lamp irradiates the LSCF layer with EMR to sinter the LSCF. The flash lamp is a 10 kW unit applied at a voltage of 400V and a frequency of 10 Hz for a total exposure duration of 1000 ms.
For example, for the electrolyte, YSZ particles are mixed with a solvent, wherein the solvent is water (e.g., de-ionized water) (e.g., de-ionized water) or an alcohol (e.g., butanol) or a mixture of alcohols. Organic solvents other than alcohols may also be used. For the interconnect, metallic particles (such as, silver nanoparticles) are dissolved in a solvent, wherein the solvent may include water (e.g., de-ionized water), organic solvents (e.g. mono-, di-, or tri-ethylene glycols or higher ethylene glycols, propylene glycol, 1,4-butanediol or ethers of such glycols, thiodiglycol, glycerol and ethers and esters thereof, polyglycerol, mono-, di-, and tri-ethanolamine, propanolamine, N,N-dimethylformamide, dimethyl sulfoxide, dimethylacetamide, N-methylpyrrolidone, 1,3-dimethylimidazolidone, methanol, ethanol, isopropanol, n-propanol, diacetone alcohol, acetone, methyl ethyl ketone, propylene carbonate), and combinations thereof. For a barrier layer in a fuel cell, CGO particles are dissolved in a solvent, wherein the solvent is water (e.g., de-ionized water) or an alcohol (e.g., butanol) or a mixture of alcohols. Organic solvents other than alcohols may also be used. CGO is used as barrier layer for LSCF. YSZ may also be used as a barrier layer for LSM. In some cases, for the aqueous inks where water is the solvent, no polymeric binder is added to the aqueous inks.
Treatment Process
Herein disclosed is a treatment process that has one or more of the following effects: heating, drying, curing, sintering, annealing, sealing, alloying, evaporating, restructuring, foaming, with sintering being the most preferred process. Preferably, the treatment process comprises exposing a substrate to a source of electromagnetic radiation (EMR). In an embodiment, the EMR treats a substrate having a first material. In various embodiments, the EMR has a peak wavelength ranging from 10 to 1500 nm. The wavelengths of the EMR utilized depend on the material being sintered. The exposure distance and the slice thickness are also adjusted to achieve desired printing and sintering results for different materials.
In various embodiments, the EMR has a minimum energy density of 0.1 Joule/cm′. In an embodiment, the EMR has a burst frequency of 10−4-1000 Hz or 1-1000 Hz or 10-1000 Hz. In an embodiment, the EMR has an exposure distance of no greater than 50 mm. In an embodiment, the EMR has an exposure duration no less than 0.1 ms or 1 ms. In an embodiment, the EMR is applied with a capacitor voltage of no less than 100V. For example, a single pulse of EMR is applied with an exposure distance of about 10 mm and an exposure duration of 5-20 ms. For example, multiple pulses of EMR are applied at a burst frequency of 100 Hz with an exposure distance of about 10 mm and an exposure duration of 5-20 ms. In an embodiment, the EMR is performed in one exposure. In an embodiment, the EMR is performed in no greater than 10 exposures, or no greater than 100 exposures, or no greater than 1000 exposures, or no greater than 10,000 exposures.
In various embodiments, metals and ceramics are sintered almost instantly (milliseconds for <<10 microns) using pulsed light. The sintering temperature is controlled to be in the range of from 100° C. to 2000° C. The sintering temperature is tailored as a function of depth. In one case, the surface temperature is 1000° C. and the sub-surface is kept at 100° C., wherein the sub-surface is 100 microns below the surface. In an embodiment, the material suitable for this treatment process includes Yttria-stabilized zirconia (YSZ), 8YSZ (8 mol % YSZ powder), Yttirum, Zirconium, gadolinia-doped ceria (GDC or CGO), Samaria-doped ceria (SDC), Scandia-stabilized zirconia (SSZ), Lanthanum strontium manganite (LSM), Lanthanum Strontium Cobalt Ferrite (LSCF), Lanthanum Strontium Cobaltite (LSC), Lanthanum Strontium Gallium Magnesium Oxide (LSGM), Nickel, NiO, NiO-YSZ, Cu-CGO, Cu2O, CuO, Cerium, copper, silver, crofer, steel, lanthanum chromite, doped lanthanum chromite, ferritic steel, stainless steel, or combinations thereof.
This treatment process is applicable in the manufacturing process of a fuel cell. In an embodiment, a layer of a fuel cell (anode, cathode, electrolyte, seal, catalyst) is treated using the process of this disclosure to be heated, cured, sintered, sealed, alloyed, foamed, evaporated, restructured, dried, or annealed. In an embodiment, a portion of a layer of a fuel cell (anode, cathode, electrolyte, seal, catalyst) is treated using the process of this disclosure to be heated, cured, sintered, sealed, alloyed, foamed, evaporated, restructured, dried, or annealed. In an embodiment, a combination of layers of a fuel cell (anode, cathode, electrolyte, seal, catalyst) is treated using the process of this disclosure to be heated, cured, sintered, sealed, alloyed, foamed, evaporated, restructured, dried, or annealed, wherein the layers may be a complete layer or a partial layer. Preferably, the treatment process is sintering and is accomplished by EMR.
The treatment process of this disclosure is preferably rapid with the treatment duration varied from microseconds to milliseconds. The treatment duration is accurately controlled. The treatment process of this disclosure produces fuel cell layers that have no crack or have minimal cracking. By minimal cracking is meant that any cracks present do not degrade the performance of the fuel cell. The treatment process of this disclosure controls the power density or energy density in the treatment volume of the material being treated. The treatment volume is accurately controlled. In an embodiment, the treatment process of this disclosure provides the same energy density or different energy densities in a treatment volume. In an embodiment, the treatment process of this disclosure provides the same treatment duration or different treatment durations in a treatment volume. In an embodiment, the treatment process of this disclosure provides simultaneous treatment for one or more treatment volumes. In an embodiment, the treatment process of this disclosure provides simultaneous treatment for one or more fuel cell layers or partial layers or combination of layers. In an embodiment, the treatment volume is varied by changing the treatment depth.
In an embodiment, a first portion of a treatment volume is treated by electromagnetic radiation of a first wavelength; a second portion of the treatment volume is treated by electromagnetic radiation of a second wavelength. In some cases, the first wavelength is the same as the second wavelength. In some cases, the first wavelength is different from the second wavelength. In an embodiment, the first portion of a treatment volume has a different energy density from the second portion of the treatment volume. In an embodiment, the first portion of a treatment volume has a different treatment duration from the second portion of the treatment volume.
In an embodiment, the EMR has a broad emission spectrum so that the desired effects are achieved for a wide range of materials having different absorption characteristics. In this disclosure, absorption of electromagnetic radiation (EMR) refers to the process, wherein the energy of a photon is taken up by matter, such as the electrons of an atom. Thus, the electromagnetic energy is transformed into internal energy of the absorber, for example, thermal energy. For example, the EMR spectrum extends from the deep ultraviolet (UV) range to the near infrared (IR) range, with peak pulse powers at 220 nm wavelength. The power of such EMR is on the order of Megawatts. Such EMR sources perform tasks such as breaking chemical bonds, sintering, ablating or sterilizing.
In an embodiment, the EMR has an energy density of no less than 0.1, 1, or 10 Joule/cm2. In an embodiment, the EMR has a power output of no less than 1 watt (W), 10 W, 100 W, 1000 W. The EMR delivers power to the substrate of no less than 1 W, 10 W, 100 W, 1000 W. In an embodiment, such EMR exposure heats the material in the substrate. In an embodiment, the EMR has a range or a spectrum of different wavelengths. In various embodiments, the treated substrate is at least a portion of an anode, cathode, electrolyte, catalyst, barrier layer, or interconnect of a fuel cell.
In an embodiment, the peak wavelength of the EMR is between 50 and 550 nm or between 100 and 300 nm. In an embodiment, the wavelength of the EMR is between 50 and 550 nm or between 100 and 300 nm. In an embodiment, the absorption of at least a portion of the substrate for at least one frequency of the EMR between 10 and 1500 nm is no less than 30% or no less than 50%. In an embodiment, the absorption of at least a portion of the substrate for at least one frequency between 50 and 550 nm is no less than 30% or no less than 50%. In an embodiment, the absorption of at least a portion of the substrate for at least one frequency between 100 and 300 nm is no less than 30% or no less than 50%.
Sintering is the process of compacting and forming a solid mass of material by heat or pressure without melting it to the point of liquefaction. In this disclosure, the substrate under EMR exposure is sintered but not melted. In an embodiment, the EMR is UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser, electron beam, microwave. In an embodiment, the substrate is exposed to the EMR for no less than 1 microsecond, no less than 1 millisecond. In an embodiment, the substrate is exposed to the EMR for less than 1 second at a time or less than 10 seconds at a time. In an embodiment, the substrate is exposed to the EMR for less than 1 second or less than 10 seconds. In an embodiment, the substrate is exposed to the EMR repeatedly, for example, more than 1 time, more than 3 times, more than 10 times. In an embodiment, the substrate is distanced from the source of the EMR for less than 50 cm, less than 10 cm, less than 1 cm, or less than 1 mm.
In an embodiment, after EMR exposure a second material is added to or placed on to the first material. In various cases, the second material is the same as the first material. In an embodiment, the second material is exposed to the EMR. In some cases, a third material is added. In an embodiment, the third material is exposed to the EMR.
In an embodiment, the first material comprises YSZ, 8YSZ, Yttirum, Zirconium, GDC, SDC, LSM, LSCF, LSC, Nickel, NiO, Cerium. In an embodiment, the second material comprises graphite. In an embodiment, the electrolyte, anode, or cathode comprises a second material. In some cases, the volume fraction of the second material in the electrolyte, anode, or cathode is less than 20%, 10%, 3%, or 1%. The absorption rate of the second material for at least one frequency (e.g., between 10 and 1500 nm or between 100 and 300 nm or between 50 and 550 nm) is greater than 30% or greater than 50%.
In various embodiments, one or a combination of parameters are controlled, wherein such parameters include distance between the EMR source and the substrate, the energy density of the EMR, the spectrum of the EMR, the voltage of the EMR, the duration of exposure, the burst frequency, and the number of EMR exposures. Preferably, these parameters are controlled to minimize the formation of cracks in the substrate.
In an embodiment, the EMR energy is delivered to a surface area of no less than 1 mm2, or no less than 1 cm2, or no less than 10 cm2, or no less than 100 cm2. In some cases, during EMR exposure of the first material, at least a portion of an adjacent material is heated at least in part by conduction of heat from the first material. In various embodiments, the layers of the fuel cell (e.g., anode, cathode, electrolyte) are thin. Preferably, they are no greater than 30 microns, no greater than 10 microns, or no greater than 1 micron.
In an embodiment, the first material of the substrate is in the form of a powder, sol gel, colloidal suspension, hybrid solution, or sintered material. In various embodiments, the second material may be added by vapor deposition. In an embodiment, the second material coats the first material. In an embodiment, the second material reacts with light, e.g. focused light, as by a laser, and sinters or anneals with the first material.
Advantages
The preferred treatment process of this disclosure enables rapid manufacturing of fuel cells by eliminating traditional, costly, time consuming, expensive sintering processes and replacing them with rapid, in-situ methods that allow continuous manufacturing of the layers of a fuel cell in a single machine if desired. This process also shortens sintering time from hours and days to seconds or milliseconds or even microseconds.
In various embodiments, this treatment method is used in combination with manufacturing techniques like screen printing, tape casting, spraying, sputtering, physical vapor deposition, and additive manufacturing.
This preferred treatment method enables tailored and controlled heating by tuning EMR characteristics (such as, wavelengths, energy density, burst frequency, and exposure duration) combined with controlling thicknesses of the layers of the substrate and heat conduction into adjacent layers to allow each layer to sinter, anneal, or cure at each desired target temperature. This preferred process enables more uniform energy application, decreases or eliminates cracking, which improves electrolyte performance. The substrate treated with this preferred process also has less thermal stress due to more uniform heating.
Integrated Deposition and Heating
Herein disclosed is a method comprises depositing a composition on a substrate slice by slice to form an object; heating in situ the object using electromagnetic radiation (EMR); wherein said composition comprises a first material and a second material, wherein the second material has a higher absorbance of the radiation than the first material. In various embodiments, heating causes an effect comprising drying, curing, sintering, annealing, sealing, alloying, evaporating, restructuring, foaming, or combinations thereof. The preferred effect is sintering. In an embodiment, the EMR has a wavelength ranging from 10 to 1500 nm and the EMR has a minimum energy density of 0.1 Joule/cm′. In an embodiment, peak wavelength is on the basis of relative irradiance with respect to wavelength. In an embodiment, the EMR comprises UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser, electron beam.
FIG. 6 illustrates an object on a substrate formed by deposition nozzles and EMR for heating in situ, according to the preferred embodiment of this disclosure.
In an embodiment, the first material comprises YSZ, SSZ, CGO, SDC, NiO-YSZ, LSM-YSZ, CGO-LSCF, doped lanthanum chromite, stainless steel, or combinations thereof. In an embodiment, the second material comprises carbon, nickel oxide, nickel, silver, copper, CGO, SDC, NiO-YSZ, NiO—SSZ, LSCF, LSM, doped lanthanum chromite ferritic steels, or combinations thereof. In an embodiment, said object comprises a catalyst, a catalyst support, a catalyst composite, an anode, a cathode, an electrolyte, an electrode, an interconnect, a seal, a fuel cell, an electrochemical gas producer, an electrolyser, an electrochemical compressor, a reactor, a heat exchanger, a vessel, or combinations thereof.
In the preferred embodiment, the second material is a deposited in the same slice as the first material. In an alternative embodiment, the second material is a deposited in a slice adjacent another slice that contains the first material. In an embodiment, said heating removes at least a portion of the second material. In an embodiment, said removing leaves minimal residue of the portion of the second material. Preferably, this step leaves minimal residue of the portion of the second material, which is to say that there is no significant residue that would interfere with the subsequent steps in the process or the operation of the device being constructed. More preferably, this leaves no measurable reside of the portion of the second material.
In an embodiment, the second material adds thermal energy to the first material during heating. In an embodiment, the second material has a radiation absorbance that is at least 5 times that of the first material; preferably the second material has a radiation absorbance that is at least 10 times that of the first material; more preferably the second material has a radiation absorbance that is at least 50 times that of the first material; most preferably the second material has a radiation absorbance that is at least 100 times that of the first material.
In an embodiment, the second material has a peak absorbance wavelength no less than 200 nm, or no less than 250 nm, or no less than 300 nm, or no less than 400 nm, or no less than 500 nm. In an embodiment, the first material has a peak absorbance wavelength no greater than 700 nm, or no greater than 600 nm, or no greater than 500 nm, or no greater than 400 nm, or no greater than 300 nm. In an embodiment, the EMR has a wavelength no less than 200 nm, or no less than 250 nm, or no less than 300 nm, or no less than 400 nm, or no less than 500 nm. In an embodiment, the second material comprises carbon, nickel oxide, nickel, silver, copper, CGO, NiO-YSZ, LSCF, LSM, ferritic steels, or combinations thereof. In some cases, the ferritic steel is Crofer 22 APU. Preferably, the second material is carbon and is in the form of graphite, graphene, carbon nanoparticles, nano diamonds, or combinations thereof. Most preferably, the carbon is in the form of graphite particles.
In an embodiment, the depositing is accomplished by material jetting, binder jetting, inkjet printing, aerosol jetting, or aerosol jet printing, vat photopolymerization, powder bed fusion, material extrusion, directed energy deposition, sheet lamination, ultrasonic inkjet printing, or combinations thereof.
In an embodiment, the depositing is manipulated by controlling the distance from the EMR to the substrate, the EMR energy density, the EMR spectrum, the EMR voltage, the EMR exposure duration, the EMR exposure area, the EMR exposure volume, the EMR burst frequency, the EMR exposure repetition number, or combinations thereof. Preferably, the object does not change location between depositing and heating. In an embodiment, the EMR has a power output of no less than 1 W, or 10 W, or 100 W, or 1000 W.
Herein also disclosed is a system comprising at least one deposition nozzle, an electromagnetic radiation (EMR) source, and a deposition receiver, wherein the deposition receiver is configured to receive EMR exposure and deposition at the same location.
The following detailed discussion takes the production of solid oxide fuel cells (SOFCs) as an example. As one in the art recognizes, the methodology and the manufacturing process are applicable to all fuel cell types. As such, the production of all fuel cell types is within the scope of this disclosure.
Fuel Cell
A fuel cell is an electrochemical apparatus that converts the chemical energy from a fuel into electricity through an electrochemical reaction. As mentioned above, there are many types of fuel cells, e.g., proton-exchange membrane fuel cells (PEMFCs), solid oxide fuel cells (SOFCs). A fuel cell typically comprises an anode, a cathode, an electrolyte, an interconnect, optionally a barrier layer and/or optionally a catalyst. Both the anode and the cathode are electrodes.
FIGS. 1-5 illustrate various embodiments of the components in a fuel cell or a fuel cell stack. In these embodiments, the anode, cathode, electrolyte, and interconnect are cuboids or rectangular prisms.
Referring to FIG. 1, 101 schematically represents the anode; 102 represents the cathode; and 103 represents the electrolyte.
Referring to FIG. 2, 201 schematically represents the anode; 202 represents the cathode; 203 represents the electrolyte; and 204 represents the barrier layers.
Referring to FIG. 3, 301 schematically represents the anode; 302 represents the cathode; 303 represents the electrolyte; 304 represents the barrier layers; and 305 represents the catalyst.
Referring to FIG. 4, 401 schematically represents the anode; 402 represents the cathode; 403 represents the electrolyte; 404 represents the barrier layers; 405 represents the catalyst; and 406 represents the interconnect.
FIG. 5 depicts a two fuel cell stack. Item 501 schematically represents anode; 502 represents the cathode; 503 represents the electrolyte; 504 represents the barrier layers; 505 represents the catalyst; and 506 represents the interconnect. Two fuel cell repeat units or two fuel cells form a stack as illustrated. As is seen, on one side the interconnect is in contact with the largest surface of the cathode of the top fuel cell (or fuel cell repeat unit) and on the opposite side the interconnect is in contact with the largest surface of the catalyst (optional) or the anode of the bottom fuel cell (or fuel cell repeat unit). These repeat units or fuel cells are connected in parallel by being stacked atop one another and sharing an interconnect in between via direct contact with the interconnect rather than via electrical wiring. This kind of configuration is in contrast to segmented-in-series (SIS) type fuel cells.
The listings of material for the electrodes, the electrolyte, and the interconnect in a fuel cell are only exemplary and not limiting. The designations of anode material and cathode material are also not limiting because the function of the material during operation (e.g., whether it is oxidizing or reducing) determines whether the material is used as an anode or a cathode.
Cathode
In an embodiment, the cathode comprises perovskites, such as LSC, LSCF, LSM. In an embodiment, the cathode comprises lanthanum, cobalt, strontium, manganite. In an embodiment, the cathode is porous. In an embodiment, the cathode comprises YSZ, Nitrogen, Nitrogen Boron doped Graphene, La0.6Sr0.4Co0.2Fe0.8O3, SrCo0.5Sc0.5O3, BaFe0.75Ta0.25O3, BaFe0.875Re0.125O3, Ba0.5La0.125Zn0.375NiO3, Ba0.75Sr0.25Fe0.875Ga0.125O3, BaFe0.125Co0.125, Zr0.75O3. In an embodiment, the cathode comprises LSCo, LCo, LSF, LSCoF. In an embodiment, the cathode comprises perovskites LaCoO3, LaFeO3, LaMnO3, (La,Sr)MnO3, LSM-GDC, LSCF-GDC, LSC-GDC. Cathodes containing LSCF are suitable for intermediate-temperature fuel cell operation.
In an embodiment, the cathode comprises a material selected from the group consisting of lanthanum strontium manganite, lanthanum strontium ferrite, and lanthanum strontium cobalt ferrite. In an embodiment, the cathode comprises lanthanum strontium manganite.
Anode
In an embodiment, the anode comprises Copper, Nickle-Oxide, Nickle-Oxide-YSZ, NiO-GDC, NiO-SDC, Aluminum doped Zinc Oxide, Molybdenum Oxide, Lanthanum, strontium, chromite, ceria, perovskites (such as, LSCF [La{1−x}Sr{x}Co{1−y}Fe{y}O3] or LSM [La{1−x}Sr{x}MnO3], where x is usually 0.15-0.2 and y is 0.7 to 0.8). In an embodiment, the anode comprises SDC or BZCYYb coating or barrier layer to reduce coking and sulfur poisoning. In an embodiment, the anode is porous. In an embodiment, the anode comprises combination of electrolyte material and electrochemically active material, combination of electrolyte material and electrically conductive material.
In an embodiment, the anode comprises nickel and yttria stabilized zirconia. In an embodiment, the anode is formed by reduction of a material comprising nickel oxide and yttria stabilized zirconia. In an embodiment, the anode comprises nickel and gadolinium stabilized ceria. In an embodiment, the anode is formed by reduction of a material comprising nickel oxide and gadolinium stabilized ceria.
Electrolyte
In an embodiment, the electrolyte in a fuel cell comprises stabilized zirconia e.g., YSZ, YSZ-8, Y0.16Zr0.84O2. In an embodiment, the electrolyte comprises doped LaGaO3, e.g., LSGM, La0.9Sr0.1Ga0.8Mg0.2O3. In an embodiment, the electrolyte comprises doped ceria, e.g., GDC, Gd0.2Ce0.8O2. In an embodiment, the electrolyte comprises stabilized bismuth oxide e.g., BVCO, Bi2V0.9Cu0.1O5.35.
In an embodiment, the electrolyte comprises zirconium oxide, yttria stabilized zirconium oxide (also known as YSZ, YSZ8 (8 mole % YSZ)), ceria, gadolinia, scandia, magnesia, calcia. In an embodiment, the electrolyte is sufficiently impermeable to prevent significant gas transport and prevent significant electrical conduction; and allow ion conductivity. In an embodiment, the electrolyte comprises doped oxide such as cerium oxide, yttrium oxide, bismuth oxide, lead oxide, lanthanum oxide. In an embodiment, the electrolyte comprises perovskite, such as, LaCoFeO3 or LaCoO3 or Ce0.9Gd0.1O2 (GDC) or Ce0.9Sm0.1O2 (SDC, samaria doped ceria) or scandia stabilized zirconia.
In an embodiment, the electrolyte comprises a material selected from the group consisting of zirconia, ceria, and gallia. In an embodiment, the material is stabilized with a stabilizing material selected from the group consisting of scandium, samarium, gadolinium, and yttrium. In an embodiment, the material comprises yttria stabilized zirconia.
Interconnect
In an embodiment, the interconnect comprises silver, gold, platinum, AISI441, ferritic stainless steel, stainless steel, Lanthanum, Chromium, Chromium Oxide, Chromite, Cobalt, Cesium, Cr2O3. In an embodiment, the anode comprises LaCrO3 coating on Cr2O3 or NiCo2O4 or MnCo2O4 coatings. In an embodiment, the interconnect surface is coated with Cobalt and/or Cesium. In an embodiment, the interconnect comprises ceramics. In an embodiment, the interconnect comprises Lanthanum Chromite or doped Lanthanum Chromite. In an embodiment, the interconnect is made of a material comprising metal, stainless steel, ferritic steel, crofer, lanthanum chromite, silver, metal alloys, nickel, nickel oxide, ceramics, or graphene.
Catalyst
In various embodiments, the fuel cell comprises a catalyst, such as, platinum, palladium, scandia, chromium, cobalt, cesium, CeO2, nickle, nickle oxide, zine, copper, titantia, ruthenium, rhodiu, MoS2, molybdenum, rhenium, vandia, manganese, magnesium, iron. In various embodiments, the catalyst promotes methane reforming reactions to generate hydrogen and carbon monoxide for them to be oxidized in the fuel cell. Very often, the catalyst is part of the anode, especially nickel anode has inherent methane reforming properties. In an embodiment, the catalyst is between 1%-5%, or 0.1% to 10% by mass. In an embodiment, the catalyst is used on the anode surface or in the anode. In various embodiments, such anode catalysts reduce harmful coking reactions and carbon deposits. In various embodiments, simple oxide version of catalysts is used or perovskite. For example, 2% mass CeO2 catalyst is used for methane-powered fuel cells. In various embodiments, the catalyst is dipped or coated on the anode. In various embodiments, the catalyst is made by an additive manufacturing machine (AMM) and incorporated into the fuel cell using the AMM.
The unique manufacturing methods as discussed herein have allowed the making of ultra-thin fuel cells and fuel cell stacks. Conventionally, to achieve structural integrity, the fuel cell has at least one thick layer per repeat unit, like the anode (an anode-supported fuel cell) or the interconnect (an interconnect-supported fuel cell). As discussed above, the pressing or compression step is necessary to assemble the fuel cell components to achieve gas tightness and/or proper electrical contact in traditional manufacturing processes. As such, the thick layers are necessary not only because traditional methods (like tape casting) cannot produce ultra-thin layers but also because the layers have to be thick to endure the pressing or compression step. The manufacturing methods of this disclosure have eliminated the need for pressing or compression. The manufacturing methods of this disclosure have also enabled the making of ultra-thin layers. The multiplicity of the layers in a fuel cell or a fuel cell stack provides sufficient structural integrity for proper operation when they are made according to this disclosure.
Herein disclosed is a fuel cell comprising an anode no greater than 1 mm or 500 microns or 300 microns or 100 microns or 50 microns or no greater than 25 microns in thickness, a cathode no greater than 1 mm or 500 microns or 300 microns or 100 microns or 50 microns or no greater than 25 microns in thickness, and an electrolyte no greater than 1 mm or 500 microns or 300 microns or 100 microns or 50 microns or 30 microns in thickness. In an embodiment, the fuel cell comprises an interconnect having a thickness of no less than 50 microns. In some cases, a fuel cell comprises an anode no greater than 25 microns in thickness, a cathode no greater than 25 microns in thickness, and an electrolyte no greater than 10 microns or 5 microns in thickness. In an embodiment, the fuel cell comprises an interconnect having a thickness of no less than 50 microns. In an embodiment, the interconnect has a thickness of from 50 microns to 5 cm.
In a preferred embodiment, the fuel cell comprises an anode no greater than 100 microns in thickness, a cathode no greater than 100 microns in thickness, an electrolyte no greater than 20 microns in thickness, and an interconnect no greater than 30 microns in thickness. In a more preferred embodiment, a fuel cell comprises an anode no greater than 50 microns in thickness, a cathode no greater than 50 microns in thickness, an electrolyte no greater than 10 microns in thickness, and an interconnect no greater than 25 microns in thickness. In an embodiment, the interconnect has a thickness in the range of from 1 micron to 20 microns.
In a preferred embodiment, the fuel cell comprises a barrier layer between the anode and the electrolyte, or a barrier layer between the cathode and the electrolyte, or both barrier layers. In some cases, the barrier layers are the interconnects. In such cases, the reactants are directly injected into the anode and the cathode.
In a preferred embodiment, the cathode has a thickness of no greater than 15 microns, or no greater than 10 microns, or no greater than 5 microns. In an embodiment, the anode has a thickness of no greater than 15 microns, or no greater than 10 microns, or no greater than 5 microns. In an embodiment, the electrolyte has a thickness of no greater than 5 microns, or no greater than 2 microns, or no greater than 1 micron, or no greater than 0.5 micron. In an embodiment, the interconnect is made of a material comprising metal, stainless steel, silver, metal alloys, nickel, nickel oxide, ceramics, or graphene. In an embodiment, the fuel cell has a total thickness of no less than 1 micron.
Also discussed herein is a fuel cell stack comprising a multiplicity of fuel cells, wherein each fuel cell comprises an anode no greater than 25 microns in thickness, a cathode no greater than 25 microns in thickness, an electrolyte no greater than 10 microns in thickness, and an interconnect having a thickness of from 100 nm to 100 microns. In an embodiment, each fuel cell comprises a barrier layer between the anode and the electrolyte, or a barrier layer between the cathode and the electrolyte, or both barrier layers. In an embodiment, the barrier layers are the interconnects. For example, the interconnect is made of silver. For example, the interconnect has a thickness of from 500 nm to 1000 nm. In an embodiment, the interconnect is made of a material comprising metal, stainless steel, ferritic steel, crofer, lanthanum chromite, silver, metal alloys, nickel, nickel oxide, ceramics, or graphene.
In an embodiment, the cathode has a thickness of no greater than 15 microns, or no greater than 10 microns, or no greater than 5 microns. In an embodiment, the anode has a thickness of no greater than 15 microns, or no greater than 10 microns, or no greater than 5 microns. In an embodiment, the electrolyte has a thickness of no greater than 5 microns, or no greater than 2 microns, or no greater than 1 micron, or no greater than 0.5 micron. In an embodiment, each fuel cell has a total thickness of no less than 1 micron.
Further discussed herein is a method of making a fuel cell comprising (a) forming an anode no greater than 25 microns in thickness, (b) forming a cathode no greater than 25 microns in thickness, and (c) forming an electrolyte no greater than 10 microns in thickness. In an embodiment, steps (a)-(c) are performed using additive manufacturing. In various embodiments, said additive manufacturing uses extrusion, photopolymerization, powder bed fusion, material jetting, binder jetting, directed energy deposition, lamination.
In an embodiment, the method comprises assembling the anode, the cathode, and the electrolyte using additive manufacturing. In an embodiment, the method comprises forming an interconnect and assembling the interconnect with the anode, the cathode, and the electrolyte.
In an embodiment, the method comprises making at least one barrier layer. In an embodiment, said at least one barrier layer is used between the electrolyte and the cathode or between the electrolyte and the anode or both. In an embodiment, said at least one barrier layer is an interconnect.
In an embodiment, the method comprises heating the fuel cell such that shrinkage rates of the anode, the cathode, and the electrolyte are matched. In an embodiment, such heating takes place for no greater than 30 minutes, preferably no greater than 30 seconds, and most preferably no greater than 30 milliseconds. In this disclosure, matching shrinkage rates during heating is discussed in details below (matching SRTs). When a fuel cell comprises a first composition and a second composition, wherein the first composition has a first shrinkage rate and the second composition has a second shrinkage rate, the heating described in this disclosure preferably takes place such that the difference between the first shrinkage rate and the second shrinkage rate is no greater than 75% of the first shrinkage rate.
In a preferred embodiment, the heating employs electromagnetic radiation (EMR). In various embodiments, EMR comprises UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser, electron beam. Preferably, heating is performed in situ, namely in the same machine and in the same location in that machine as the layers are deposited.
Also disclosed herein is a method of making a fuel cell stack comprising a multiplicity of fuel cells, the method comprising (a) forming an anode no greater than 25 microns in thickness in each fuel cell, (b) forming a cathode no greater than 25 microns in thickness in each fuel cell, (c) forming an electrolyte no greater than 10 microns in thickness in each fuel cell, and (d) producing an interconnect having a thickness of from 100 nm to 100 microns in each fuel cell.
In an embodiment, steps (a)-(d) are performed using additive manufacturing. In various embodiments, said additive manufacturing employs extrusion, photopolymerization, powder bed fusion, material jetting, binder jetting, directed energy deposition, and/or lamination.
In an embodiment, the method comprises assembling the anode, the cathode, the electrolyte, and the interconnect using additive manufacturing. In an embodiment, the method comprises making at least one barrier layer in each fuel cell. In an embodiment, said at least one barrier layer is used between the electrolyte and the cathode or between the electrolyte and the anode or both. In an embodiment, said at least one barrier layer is the interconnect.
In an embodiment, the method comprises heating each fuel cell such that shrinkage rates of the anode, the cathode, and the electrolyte are matched. In an embodiment, such heating takes place for no greater than 30 minutes, or no greater than 30 seconds, or no greater than 30 milliseconds. In an embodiment, said heating comprises electromagnetic radiation (EMR). In various embodiments, EMR comprises UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser, electron beam. In an embodiment, heating is performed in situ.
In an embodiment, the method comprises heating the entire fuel cell stack such that shrinkage rates of the anode, the cathode, and the electrolyte are matched. In an embodiment, such heating takes place for no greater than 30 minutes, or no greater than 30 seconds, or no greater than 30 milliseconds.
Herein discussed is a method of making an electrolyte comprising (a) formulating a colloidal suspension, wherein the colloidal suspension comprises an additive, particles having a range of diameters and a size distribution, and a solvent; (b) forming an electrolyte comprising the colloidal suspension; and (c) heating at least a portion of the electrolyte; wherein formulating the colloidal suspension is preferably optimized by controlling the pH of the colloidal suspension, or concentration of the binder in the colloidal suspension, or composition of the binder in the colloidal suspension, or the range of diameters of the particles, or maximum diameter of the particles, or median diameter of the particles, or the size distribution of the particles, or boiling point of the solvent, or surface tension of the solvent, or composition of the solvent, or thickness of the minimum dimension of the electrolyte, or the composition of the particles, or combinations thereof.
Herein discussed is a method of making a fuel cell comprising (a) obtaining a cathode and an anode; (b) modifying the cathode surface and the anode surface; (c) formulating a colloidal suspension, wherein the colloidal suspension comprises an additive, particles having a range of diameters and a size distribution, and a solvent; (d) forming an electrolyte comprising the colloidal suspension between the modified anode surface and the modified cathode surface; and (e) heating at least a portion of the electrolyte; wherein formulating the colloidal suspension comprises controlling pH of the colloidal suspension, or concentration of the binder in the colloidal suspension, or composition of the binder in the colloidal suspension, or the range of diameters of the particles, or maximum diameter of the particles, or median diameter of the particles, or the size distribution of the particles, or boiling point of the solvent, or surface tension of the solvent, or composition of the solvent, or thickness of the minimum dimension of the electrolyte, or the composition of the particles, or combinations thereof. In various embodiments, the anode and the cathode are obtained via any suitable means. In an embodiment, the modified anode surface and the modified cathode surface have a maximum height profile roughness that is less than the average diameter of the particles in the colloidal suspension. The maximum height profile roughness refers to the maximum distance between any trough and an adjacent peak as illustrated in FIG. 9 . In various embodiments, the anode surface and the cathode surface are modified via any suitable means.
Further disclosed herein is a method of making a fuel cell comprising (a) obtaining a cathode and an anode; (b) formulating a colloidal suspension, wherein the colloidal suspension comprises an additive, particles having a range of diameters and a size distribution, and a solvent; (c) forming an electrolyte comprising the colloidal suspension between the anode and the cathode; and (d) heating at least a portion of the electrolyte; wherein formulating the colloidal suspension comprises controlling pH of the colloidal suspension, or concentration of the binder in the colloidal suspension, or composition of the binder in the colloidal suspension, or the range of diameters of the particles, or maximum diameter of the particles, or median diameter of the particles, or the size distribution of the particles, or boiling point of the solvent, or surface tension of the solvent, or composition of the solvent, or thickness of the minimum dimension of the electrolyte, or the composition of the particles, or combinations thereof. In various embodiments, the anode and the cathode are obtained via any suitable means. In an embodiment, the anode surface in contact with the electrolyte and the cathode surface in contact with the electrolyte have a maximum height profile roughness that is less than the average diameter of the particles in the colloidal suspension.
In an embodiment, the solvent comprises water. In an embodiment, the solvent comprises an organic component. In an embodiment, the solvent comprises ethanol, butanol, alcohol, terpineol, Diethyl ether 1,2-Dimethoxyethane (DME (ethylene glycol dimethyl ether), 1-Propanol (n-propanol, n-propyl alcohol), or butyl alcohol. In an embodiment, the solvent surface tension is less than half of water's surface tension in air. In an embodiment, the solvent surface tension is less than 30 mN/m at atmospheric conditions.
In an embodiment, the electrolyte is formed adjacent to a first substrate. In an embodiment, the electrolyte is formed between a first substrate and a second substrate. In an embodiment, the first substrate has a maximum height profile roughness that is less than the average diameter of the particles. In an embodiment, the particles have a packing density greater than 40%, or greater than 50%, or greater than 60%. In an embodiment, the particles have a packing density close to the random close packing (RCP) density.
Random close packing (RCP) is an empirical parameter used to characterize the maximum volume fraction of solid objects obtained when they are packed randomly. A container is randomly filled with objects, and then the container is shaken or tapped until the objects do not compact any further, at this point the packing state is RCP. The packing fraction is the volume taken by number of particles in a given space of volume. The packing fraction determines the packing density. For example, when a solid container is filled with grain, shaking the container will reduce the volume taken up by the objects, thus allowing more grain to be added to the container. Shaking increases the density of packed objects. When shaking no longer increases the packing density, a limit is reached and if this limit is reached without obvious packing into a regular crystal lattice, this is the empirical random close-packed density.
In an embodiment, the median particle diameter is preferably between 50 nm and 1000 nm, or between 100 nm and 500 nm, or approximately 200 nm. In an embodiment, the first substrate comprises particles having a median particle diameter, wherein the median particle diameter of the electrolyte is no greater than 10 times and no less than 1/10 of the median particle diameter of the first substrate. In an embodiment, the first substrate comprises a particle size distribution that is bimodal, i.e. having a first mode and a second mode, each having a median particle diameter. In an embodiment, the median particle diameter in the first mode of the first substrate is greater than 2 times, or greater than 5 times, or greater than 10 times that of the second mode. In an embodiment, the particle size distribution of the first substrate is adjusted to change the behavior of the first substrate during heating. In an embodiment, the first substrate has a shrinkage that is a function of heating temperature. In an embodiment, the particles in the colloidal suspension has a maximum particle diameter and a minimum particle diameter, wherein the maximum particle diameter is less than 2 times, or less than 3 times, or less than 5 times, or less than 10 times the minimum particle diameter. In an embodiment, the minimum dimension of the electrolyte is less than 10 microns, or less than 2 microns, or less than 1 micron, or less than 500 nm.
In an embodiment, the electrolyte has a gas permeability of no greater than 1 millidarcy, preferably no greater than 100 microdarcy, and most preferably no greater than 1 microdarcy. Preferably, the electrolyte has no cracks penetrating through the minimum dimension of the electrolyte. In an embodiment, the boiling point of the solvent is no less than 200° C., or no less than 100° C., or no less than 75° C. In an embodiment, the boiling point of the solvent is no greater than 125° C., or no greater than 100° C., or no greater than 85° C., no greater than 70° C. In an embodiment, the pH of the colloidal suspension is no less than 7, or no less than 9, or no less than 10.
In an embodiment, the additive comprises polyethylene glycol (PEG), ethyl cellulose, polyvinylpyrrolidone (PVP), polyvinyl butyral (PVB), butyl benzyl phthalate (BBP), polyalkalyne glycol (PAG). In an embodiment, the additive concentration is no greater than 100 mg/cm3, or no greater than 50 mg/cm3, or no greater than 30 mg/cm3, or no greater than 25 mg/cm3.
In an embodiment, the colloidal suspension is milled. In an embodiment, the colloidal suspension is milled using a rotational mill. In an embodiment, the rotational mill is operated at no less than 20 rpm, or no less than 50 rpm, or no less than 100 rpm, or no less than 150 rpm. In an embodiment, the colloidal suspension is milled using zirconia milling balls or tungsten carbide balls. In an embodiment, the colloidal suspension is milled for no less than 2 hours, or no less than 4 hours, or no less than 1 day, or no less than 10 days.
In an embodiment, the particle concentration in the colloidal suspension is no greater than 30 wt %, or no greater than 20 wt %, or no greater than 10 wt %. In an embodiment, the particle concentration in the colloidal suspension is no less than 2 wt %. In an embodiment, the particle concentration in the colloidal suspension is no greater than 10 vol %, or no greater than 5 vol %, or no greater than 3 vol %, or no greater than 1 vol %. In an embodiment, the particle concentration in the colloidal suspension is no less than 0.1 vol %.
In an embodiment, the electrolyte is formed using an additive manufacturing machine (AMM). In an embodiment, the first substrate is formed using an AMM. In an embodiment, said heating comprises the use of electromagnetic radiation (EMR). In an embodiment, the EMR comprises UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser. In an embodiment, the first substrate and the electrolyte are heated to cause co-sintering. In an embodiment, the first substrate, the second substrate, and the electrolyte are heated to cause co-sintering. In an embodiment, the EMR is controlled to preferentially sinter the first substrate over the electrolyte.
In an embodiment, the electrolyte is in compression throughout its thickness after heating. In an embodiment, the first substrate and the second substrate apply compressive stress to the electrolyte after heating. In an embodiment, the first substrate and the second substrate are anode and cathode of a fuel cell. In an embodiment, the minimum dimension of the electrolyte is between 500 nm and 5 microns. In an embodiment, the minimum dimension of the electrolyte is between 1 micron and 2 microns.
The detailed discussion is generally directed to the production of solid oxide fuel cells (SOFCs) as an example. As one in the art recognizes, the methodology and the manufacturing process are applicable to all fuel cell types. As such, the production of all fuel cell types are within the scope of this disclosure.
Fuel Cell Cartridge
In various embodiments, the fuel cell stack is configured to be made into a cartridge form, such as an easily detachable flanged fuel cell cartridge (FCC) design. Referring to FIG. 11A, 1111 represents holes for bolts; 1112 represents a cathode in the FCC; 1113 represents an electrolyte in the FCC; 1114 represents an anode in the FCC; 1115 represents gas channels in the electrodes (anode and cathode); 1116 represents an integrated multi-fluid heat exchanger in the FCC. In an embodiment, there is no barrier layer between the cathode and the electrolyte. Referring to FIG. 11C, 1130 represents holes for bolts in the FCC; 1131 represents air inlet; 1132 represents air outlet; 1133 represents fuel inlet; 1134 represents fuel outlet; 1135 represents bottom of the FCC; 1136 represents top of the FCC. FIG. 11C illustrates the top view and bottom view of an embodiment of a FCC, in which the length of the oxidant side of the FCC is shown Lo, the length of the fuel side of the FCC is shown Lf, the width of the oxidant (air) entrance is shown Wo, the width of the fuel entrance is shown Wf. In FIG. 11C, two fluid exits are shown (Air Outlet 1132 and Fuel Outlet 1134). In some cases, the anode exhaust and the cathode exhaust are mixed and extracted through one fluid exit.
Referring to FIG. 11B, 1121 represents electrical bolt isolation; 1125 represents anode; 1123 represents seal that seals the anode from air flow; 1126 represents cathode; 1124 represents seal that seals the cathode from fuel flow. FIG. 11B illustrates cross-sectional views of the FCC, wherein air flow is sealed from the anode and fuel flow is sealed from the cathode. The bolts are isolated electrically with a seal as well. In various embodiments, the seal is a dual functional seal (DFS) comprising YSZ (yttria-stabilized zirconia) or a mixture of 3YSZ (3 mol % Y2O3 in ZrO2) and 8YSZ (8 mol % Y2O3 in ZrO2). In embodiments, the DFS is impermeable to non-ionic substances and electrically insulating. In an embodiment, the mass ratio of 3YSZ/8YSZ is in the range of from 10/90 to 90/10. In an embodiment, the mass ratio of 3YSZ/8YSZ is about 50/50. In an embodiment, the mass ratio of 3YSZ/8YSZ is 100/0 or 0/100.
Herein disclosed is a fuel cell cartridge (FCC) comprising an anode, a cathode, an electrolyte, an interconnect, a fuel entrance on a fuel side of the FCC, an oxidant entrance on an oxidant side of the FCC, at least one fluid exit, wherein the fuel entrance has a width of Wf, the fuel side of the FCC has a length of Lf, the oxidant entrance has a width of Wo, the oxidant side of the FCC has a length of Lo, wherein Wf/Lf is in the range of 0.1 to 1.0, or 0.1 to 0.9, or 0.2 to 0.9, or 0.5 to 0.9, or 0.5 to 1.0 and Wo/Lo is in the range of 0.1 to 1.0, or 0.1 to 0.9, or 0.2 to 0.9, or 0.5 to 0.9, or 0.5 to 1.0.
In an embodiment, said entrances and exit are on one surface of the FCC and said FCC comprises no protruding fluid passage on said surface. In an embodiment, said surface is smooth with a maximum elevation change of no greater than 1 mm, or no greater than 100 microns, or no greater than 10 microns.
In an embodiment, the FCC comprises a barrier layer between the electrolyte and the cathode or between the electrolyte and the anode or both. In an embodiment, the FCC comprises dual functional seal that is impermeable to non-ionic substances and electrically insulating. In an embodiment, said dual functional seal comprises YSZ (yttria-stabilized zirconia) or a mixture of 3YSZ (3 mol % Y2O3 in ZrO2) and 8YSZ (8 mol % Y2O3 in ZrO2).
In an embodiment, said interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid dispersing components. In an embodiment, said interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid channels.
In an embodiment, the FCC is detachably fixed to a mating surface and not soldered nor welded to said mating surface. In an embodiment, the FCC is bolted to or pressed to said mating surface. In an embodiment, said mating surface comprises matching fuel entrance, matching oxidant entrance, and at least one matching fluid exit.
Also discussed herein is a fuel cell cartridge (FCC) comprising an anode, a cathode, an electrolyte, an interconnect, a fuel entrance, an oxidant entrance, at least one fluid exit, wherein said entrances and exit are on one surface of the FCC and said FCC comprises no protruding fluid passage on said surface. In an embodiment, said surface is smooth with a maximum elevation change of no greater than 1 mm, or no greater than 100 microns, or no greater than 10 microns.
In an embodiment, the FCC comprises dual functional seal that is impermeable to non-ionic substances and electrically insulating. In an embodiment, said interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid dispersing components. In an embodiment, said interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid channels.
In an embodiment, the FCC is detachably fixed to a mating surface and not soldered nor welded to said mating surface. In an embodiment, the FCC is bolted to or pressed to said mating surface. In an embodiment, said mating surface comprises matching fuel entrance, matching oxidant entrance, and at least one matching fluid exit.
Further disclosed herein is an assembly comprising a fuel cell cartridge (FCC) and a mating surface, wherein the FCC comprises an anode, a cathode, an electrolyte, an interconnect, a fuel entrance on a fuel side of the FCC, an oxidant entrance on an oxidant side of the FCC, at least one fluid exit, wherein the fuel entrance has a width of Wf, the fuel side of the FCC has a length of Lf, the oxidant entrance has a width of Wo, the oxidant side of the FCC has a length of Lo, wherein Wf/Lf is in the range of 0.1 to 1.0, or 0.1 to 0.9, or 0.2 to 0.9, or 0.5 to 0.9, or 0.5 to 1.0 and Wo/Lo is in the range of 0.1 to 1.0, or 0.1 to 0.9, or 0.2 to 0.9, or 0.5 to 0.9, or 0.5 to 1.0, wherein the FCC is detachably fixed to the mating surface.
In an embodiment, the FCC is not soldered nor welded to said mating surface. In an embodiment, the FCC is bolted to or pressed to said mating surface. In an embodiment, said mating surface comprises matching fuel entrance, matching oxidant entrance, and at least one matching fluid exit.
In an embodiment, said entrances and exit are on one surface of the FCC and said FCC comprises no protruding fluid passage on said surface. In an embodiment, said surface is smooth with a maximum elevation change of no greater than 1 mm, or no greater than 100 microns, or no greater than 10 microns.
In an embodiment, said interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid dispersing components. In an embodiment, said interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid channels.
Discussed herein is a method comprising pressing or bolting together a fuel cell cartridge (FCC) and a mating surface, said method excluding welding or soldering together the FCC and the mating surface, wherein the FCC comprises an anode, a cathode, an electrolyte, an interconnect, a fuel entrance on a fuel side of the FCC, an oxidant entrance on an oxidant side of the FCC, at least one fluid exit, wherein the fuel entrance has a width of Wf, the fuel side of the FCC has a length of Lf, the oxidant entrance has a width of Wo, the oxidant side of the FCC has a length of Lo, wherein Wf/Lf is in the range of 0.1 to 1.0, or 0.1 to 0.9, or 0.2 to 0.9, or 0.5 to 0.9, or 0.5 to 1.0 and Wo/Lo is in the range of 0.1 to 1.0, or 0.1 to 0.9, or 0.2 to 0.9, or 0.5 to 0.9, or 0.5 to 1.0, wherein the FCC and the mating surface are detachable.
In an embodiment, said entrances and exit are on one surface of the FCC and said FCC comprises no protruding fluid passage on said surface. In an embodiment, said surface is smooth with a maximum elevation change of no greater than 1 mm, or no greater than 100 microns, or no greater than 10 microns. In an embodiment, said interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid dispersing components. In an embodiment, said interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid channels.
Herein disclosed is a fuel cell cartridge (FCC) comprising a fuel cell and a fuel cell casing, wherein the fuel cell comprises an anode, a cathode, and an electrolyte, wherein at least a portion of the fuel cell casing is made of the same material as the electrolyte. In an embodiment, the electrolyte is in contact with the portion of the fuel cell casing made of the same material. In an embodiment, the electrolyte and the portion of the fuel cell casing are made of a dual functional seal (DFS), wherein the DFS comprises 3YSZ (3 mol % Y2O3 in ZrO2) and 8YSZ (8 mol % Y2O3 in ZrO2), wherein the mass ratio of 3YSZ/8YSZ is in the range of from 100/0 to 0/100 or from 10/90 to 90/10 and wherein the DFS is impermeable to non-ionic substances and electrically insulating. In an embodiment, the mass ratio of 3YSZ/8YSZ is about 50/50 or 40/60 or 60/40 or 30/70 or 70/30 or 20/80 or 80/20.
In an embodiment, said fuel cell casing comprises a fuel entrance and fuel passage for the anode, an oxidant entrance and oxidant passage for the cathode, and at least one fluid exit. In an embodiment, said entrances and exit are on one surface of the FCC and said FCC comprises no protruding fluid passage on said surface. In an embodiment, the fuel cell casing is in contact with at least a portion of the anode.
In an embodiment, the FCC comprises a barrier layer between the electrolyte and the cathode and between the fuel cell casing and the cathode. In an embodiment, the FCC comprises an interconnect, wherein the interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid dispersing components. In an embodiment, the FCC comprises an interconnect, wherein the interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid channels.
In an embodiment, the FCC is detachably fixed to a mating surface and not soldered nor welded to said mating surface. In an embodiment, said mating surface comprises matching fuel entrance, matching oxidant entrance, and at least one matching fluid exit.
Also discussed herein is a dual functional seal (DFS) comprising 3YSZ (3 mol % Y2O3 in ZrO2) and 8YSZ (8 mol % Y2O3 in ZrO2), wherein the mass ratio of 3YSZ/8YSZ is in the range of from 10/90 to 90/10 and wherein the DFS is impermeable to non-ionic substances and electrically insulating. In an embodiment, the mass ratio of 3YSZ/8YSZ is about 50/50 or 40/60 or 60/40 or 30/70 or 70/30 or 20/80 or 80/20. In an embodiment, the DFS is used as an electrolyte in a fuel cell or as a portion of a fuel cell casing or both.
Further disclosed herein is a method comprising providing a dual functional seal (DFS) in a fuel cell system, wherein the DFS comprises 3YSZ (3 mol % Y2O3 in ZrO2) and 8YSZ (8 mol % Y2O3 in ZrO2), wherein the mass ratio of 3YSZ/8YSZ is in the range of from 100/0 to 0/100 or from 10/90 to 90/10 and wherein the DFS is impermeable to non-ionic substances and electrically insulating. In an embodiment, the mass ratio of 3YSZ/8YSZ is about 50/50 or 40/60 or 60/40 or 30/70 or 70/30 or 20/80 or 80/20.
In an embodiment, the DFS is used as electrolyte or a portion of a fuel cell casing or both in the fuel cell system. In an embodiment, said portion of a fuel cell casing is the entire fuel cell casing. In an embodiment, said portion of a fuel cell casing is a coating on the fuel cell casing. In an embodiment, the electrolyte and said portion of a fuel cell casing are in contact.
Disclosed herein is a fuel cell system comprising an anode having six surfaces, a cathode having six surfaces, an electrolyte, and an anode surround in contact with at least three surfaces of the anode, wherein the electrolyte is part of the anode surround and said anode surround is made of the same material as the electrolyte. In an embodiment, said same material is a dual functional seal (DFS) comprising 3YSZ (3 mol % Y2O3 in ZrO2) and 8YSZ (8 mol % Y2O3 in ZrO2), wherein the mass ratio of 3YSZ/8YSZ is in the range of from 100/0 to 0/100 or from 10/90 to 90/10 and wherein the DFS is impermeable to non-ionic substances and electrically insulating. In an embodiment, the mass ratio of 3YSZ/8YSZ is about 50/50 or 40/60 or 60/40 or 30/70 or 70/30 or 20/80 or 80/20.
In an embodiment, the anode surround is in contact with five surfaces of the anode. In an embodiment, the fuel cell system comprises a barrier layer between the cathode and a cathode surround, wherein the barrier layer is in contact with at least three surfaces of the cathode, wherein the electrolyte is part of the cathode surround and said cathode surround is made of the same material as the electrolyte.
In an embodiment, the fuel cell system comprises fuel passage and oxidant passage in the anode surround and the cathode surround. In an embodiment, the fuel cell system comprises an interconnect, wherein the interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid dispersing components. In an embodiment, the fuel cell system comprises an interconnect, wherein the interconnect comprises no fluid dispersing element and said anode and cathode comprise fluid channels.
Matching SRTs
In this disclosure, SRT refers to a component of the strain rate tensor. Matching SRTs is contemplated in both heating and cooling processes. In a fuel cell, multiple materials or compositions exist. These different materials or compositions often have different thermal expansion coefficients. As such, the heating or cooling process often causes strain or even cracks in the material. We have unexpectedly discovered a treating process (heating or cooling) to match the SRTs of different materials/compositions to reduce, minimize, or even eliminate undesirable effects.
Herein discussed is a method of making a fuel cell, wherein the fuel cell comprises a first composition and a second composition, the method comprising heating the first and second compositions, wherein the first composition has a first SRT and the second composition has a second SRT, such that the difference between the first SRT and the second SRT is no greater than 75% of the first SRT. As an illustration, FIG. 7 shows the SRTs of a first composition and a second composition as a function of temperature.
In an embodiment, wherein the SRTs are measured in mm/min. In an embodiment, the difference between the first SRT and the second SRT is no greater than 50% or 30% or 20% of the first SRT. In an embodiment, heating is achieved via at least one of the following: conduction, convection, radiation. In an embodiment, heating comprises electromagnetic radiation (EMR). In an embodiment, EMR comprises UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser, electron beam.
In an embodiment, the first composition and the second composition are heated at the same time. In an embodiment, the first composition and the second composition are heated at different times. In an embodiment, the first composition is heated for a first period of time, the second composition is heated for a second period of time, wherein at least a portion of the first period of time overlaps with the second period of time.
In an embodiment, heating takes places more than once for the first composition, or for the second composition, or for both. In an embodiment, the first composition and the second composition are heated at different temperatures. In an embodiment, the first composition and the second composition are heated using different means. In an embodiment, the first composition and the second composition are heated for different periods of time. In an embodiment, heating the first composition causes at least partial heating of the second composition, for example, via conduction. In an embodiment, heating causes densification of the first composition, or the second composition, or both.
In an embodiment, the first composition is heated to achieve partial densification resulting in a modified first SRT; and then the first and second compositions are heated such that the difference between the modified first SRT and the second SRT is no greater than 75% of the first modified SRT. In an embodiment, the first composition is heated to achieve partial densification resulting in a modified first SRT, the second composition is heated to achieve partial densification resulting in a modified second SRT; and then the first and second compositions are heated such that the difference between the modified first SRT and the second modified SRT is no greater than 75% of the first modified SRT.
In an embodiment, the fuel cell comprises a third composition having a third SRT. In an embodiment, the third composition is heated such that the difference between the first SRT and the third SRT is no greater than 75% of the first SRT. In an embodiment, the third composition is heated to achieve partial densification resulting in a modified third SRT; and then the first and second and third compositions are heated such that the difference between the first SRT and the modified third SRT is no greater than 75% of the first SRT. In an embodiment, the first and second and third compositions are heated to achieve partial densification resulting in a modified first SRT, a modified second SRT, and a modified third SRT; and then the first and second and third compositions are heated such that the difference between the modified first SRT and the modified second SRT is no greater than 75% of the modified first SRT and the difference between the modified first SRT and the modified third SRT is no greater than 75% of the modified first SRT.
In various embodiments, the method produces a crack free electrolyte in the fuel cell. In various embodiments, heating is performed in situ. In various embodiments, heating causes sintering or co-sintering or both. In various embodiments, heating takes place for no greater than 30 minutes, or no greater than 30 seconds, or no greater than 30 milliseconds.
Referring to FIG. 8 , in an embodiment, a process flow diagram is shown for forming and heating at least a portion of a fuel cell. 810 represents forming composition 1. 820 represents heating composition 1 at temperature T1 for time t1. 830 represents forming composition 2. 840 represents heating composition 1 and composition 2 simultaneously at temperature T2 for time t2, wherein at T2, the difference between SRT of composition 1 and SRT of composition 2 is no greater than 75% of SRT of composition 1. Alternatively, 840 represents heating composition 1 and composition 2 simultaneously at temperature T2 and T2′ (for example, using different heating mechanisms) for time t2, wherein at T2 and T2′, the difference between SRT of composition 1 and SRT of composition 2 is no greater than 75% of SRT of composition 1.
EXAMPLES
The following examples are provided as part of the disclosure of various embodiments of the present invention. As such, none of the information provided below is to be taken as limiting the scope of the invention.
Example 1. Making a Fuel Cell Stack
Example 1 is illustrative of the preferred method of making a fuel cell stack. The method uses an AMM model no. 0012323 from Ceradrop and an EMR model no. 092309423 from Xenon Corp. An interconnect substrate is put down to start the print.
As a first step, an anode layer is made by the AMM. This layer is deposited by the AMM as a slurry A, having the composition as shown in the table below. This layer is allowed to dry by applying heat via an infrared lamp. This anode layer is sintered by hitting it with an electromagnetic pulse from a xenon flash tube for 1 second.
An electrolyte layer is formed on top of the anode layer by the AMM depositing a slurry B, having the composition shown in the table below. This layer is allowed to dry by applying heat via an infrared lamp. This electrolyte layer is sintered by hitting it with an electromagnetic pulse from a xenon flash tube for 60 seconds.
Next a cathode layer is formed on top of the electrolyte layer by the AMM depositing a slurry C, having the composition shown in the table below. This layer is allowed to dry by applying heat via an infrared lamp. This cathode layer is sintered by hitting it with an electromagnetic pulse from a xenon flash tube for ½ second.
An interconnect layer is formed on top of the cathode layer by the AMM depositing a slurry D, having the composition shown in the table below. This layer is allowed to dry by applying heat via an infrared lamp. This interconnect layer is sintered by hitting it with an electromagnetic pulse from a xenon flash tube for 30 seconds.
These steps are then repeated 60 times, with the anode layers being formed on top of the interconnects. The result is a fuel cell stack with 61 fuel cells.
Composition of Slurries
Slurry Solvents Particles
A 100% isopropyl alcohol 10 wt % NiO-8YSZ
B 100% isopropyl alcohol 10 wt % 8YSZ
C 100% isopropyl alcohol 10 wt % LSCF
D 100% isopropyl alcohol 10 wt % lanthanum chromite
Example 2. LSCF in Ethanol
Mix 200 ml of ethanol with 30 grams of LSCF powder in a beaker. Centrifuge the mixture and obtain an upper dispersion and a lower dispersion. Extract and deposit the upper dispersion using a 3D printer on a substrate and form a LSCF layer. Use a xenon lamp (10 kW) to irradiate the LSCF layer at a voltage of 400V and a burst frequency of 10 Hz for a total exposure duration of 1,000 ms.
Example 3. CGO in Ethanol
Mix 200 ml of ethanol with 30 grams of CGO powder in a beaker. Centrifuge the mixture and obtain an upper dispersion and a lower dispersion. Extract and deposit the upper dispersion using a 3D printer on a substrate and form a CGO layer. Use a xenon lamp (10 kW) to irradiate the CGO layer at a voltage of 400V and a burst frequency of 10 Hz for a total exposure duration of 8,000 ms.
Example 4. CGO in Water
Mix 200 ml of deionized water with 30 grams of CGO powder in a beaker. Centrifuge the mixture and obtain an upper dispersion and a lower dispersion. Extract and deposit the upper dispersion using a 3D printer on a substrate and form a CGO layer. Use a xenon lamp (10 kW) to irradiate the CGO layer at a voltage of 400V and a burst frequency of 10 Hz for a total exposure duration of 8,000 ms.
Example 5. NiO in Water
Mix 200 ml of deionized water with 30 grams of NiO powder in a beaker. Centrifuge the mixture and obtain an upper dispersion and a lower dispersion. Extract and deposit the upper dispersion using a 3D printer on a substrate and form a NiO layer. Use a xenon lamp (10 kW) to irradiate the NiO layer at a voltage of 400V and a burst frequency of 10 Hz for a total exposure duration of 15,000 ms.
Example 6. Sintering Results
Referring to FIG. 10 , an electrolyte 1001 (YSZ) is printed and sintered on an electrode 1002 (NiO-YSZ). The scanning electron microscopy image shows the side view of the sintered structures, which demonstrates gas-tight contact between the electrolyte and the electrode, full densification of the electrolyte, and sintered and porous electrode microstructures.
Example 7. Fuel Cell Stack Configurations
A 48-Volt fuel cell stack has 69 cells with about 1000 Watts of power output. The fuel cell in this stack has a dimension of about 4 cm×4 cm in length and width and about 0.7 cm in height. A 48-Volt fuel cell stack has 69 cells with about 5000 Watts of power output. The fuel cell in this stack has a dimension of about 8.5 cm×8.5 cm in length and width and about 0.7 cm in height.
It is to be understood that this disclosure describes exemplary embodiments for implementing different features, structures, or functions of the invention. Exemplary embodiments of components, arrangements, and configurations are described to simplify the present disclosure; however, these exemplary embodiments are provided merely as examples and are not intended to limit the scope of the invention. The embodiments as presented herein may be combined unless otherwise specified. Such combinations do not depart from the scope of the disclosure.
Additionally, certain terms are used throughout the description and claims to refer to particular components or steps. As one skilled in the art appreciates, various entities may refer to the same component or process step by different names, and as such, the naming convention for the elements described herein is not intended to limit the scope of the invention. Further, the terms and naming convention used herein are not intended to distinguish between components, features, and/or steps that differ in name but not in function.
While the disclosure is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and description. It should be understood, however, that the drawings and detailed description are not intended to limit the disclosure to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of this disclosure.

Claims (16)

What is claimed is:
1. A method of treating a component, the method comprising:
exposing said component to a source of electromagnetic radiation (EMR) such that at least a portion of the component is sintered, wherein the component consists of a material selected from the group consisting of Yttria-stabilized zirconia (YSZ), 8YSZ (8 mol % YSZ powder), gadolinia-doped ceria (GDC or CGO), Samaria-doped ceria (SDC), Scandia-stabilized zirconia (SSZ), Lanthanum strontium manganite (LSM), Lanthanum Strontium Cobalt Ferrite (LSCF), Lanthanum Strontium Cobaltite (LSC), Lanthanum Strontium Gallium Magnesium Oxide (LSGM), nickel oxide (NiO), Cu2O, CuO, lanthanum chromite, doped lanthanum chromite, and combinations thereof;
wherein the source of EMR is a xenon lamp, and wherein the EMR has a wavelength ranging from 10 to 1500 nm and the EMR has a minimum energy density of 0.1 Joule/cm2; and
wherein the material is in dry particulate form when sintered by the xenon lamp.
2. The method of claim 1, wherein the treated component has no cracking.
3. The method of claim 1 comprising controlling at least one of the following:
distance from the electromagnetic radiation to the component;
energy density of the electromagnetic radiation;
voltage of the electromagnetic radiation;
spectrum of the electromagnetic radiation;
exposure volume of the component;
exposure location of the component;
duration of exposure;
burst frequency; and
number of exposures.
4. The method of claim 1 further comprising at least one step selected from the group consisting of screen printing, tape casting, spraying, sputtering, physical vapor deposition, and additive manufacturing.
5. The method of claim 4, wherein additive manufacturing comprises material jetting, binder jetting, inkjet printing, aerosol jetting, or aerosol jet printing, vat photopolymerization, powder bed fusion, material extrusion, directed energy deposition, sheet lamination, ultrasonic inkjet printing, or combinations thereof.
6. A method of making a fuel cell comprising heating a material using electromagnetic radiation (EMR) such that at least a portion of the material is sintered, wherein the EMR is provided by a xenon lamp;
wherein the heated material forms a part of the fuel cell;
wherein the material is selected from the group consisting of Yttria-stabilized zirconia (YSZ), 8YSZ (8 mol % YSZ powder), gadolinia-doped ceria (GDC or CGO), Samaria-doped ceria (SDC), Scandia-stabilized zirconia (SSZ), Lanthanum strontium manganite (LSM), Lanthanum Strontium Cobalt Ferrite (LSCF), Lanthanum Strontium Cobaltite (LSC), Lanthanum Strontium Gallium Magnesium Oxide (LSGM), nickel oxide (NiO), Cu2O, CuO, lanthanum chromite, doped lanthanum chromite, and combinations thereof; and
wherein the material is in dry particulate form when sintered by the xenon lamp.
7. The method of claim 6, further comprising depositing a composition containing the material on a substrate, wherein depositing comprises material jetting, binder jetting, inkjet printing, aerosol jetting, or aerosol jet printing, vat photopolymerization, powder bed fusion, material extrusion, directed energy deposition, sheet lamination, ultrasonic inkjet printing, or combinations thereof.
8. The method of claim 6, wherein heating is performed in situ.
9. The method of claim 6, wherein the electromagnetic radiation is performed in no greater than 10,000 exposures.
10. The method of claim 6, wherein the electromagnetic radiation has a burst frequency of 10−4-1000 Hz.
11. The method of claim 6, wherein the electromagnetic radiation has an exposure distance of no greater than 50 mm.
12. The method of claim 6, wherein the electromagnetic radiation has an exposure duration no less than 0.1 ms.
13. The method of claim 6, wherein the xenon lamp has a capacitor voltage of no less than 100V.
14. A method of making a fuel cell comprising heating a material in situ using electromagnetic radiation (EMR) to cause at least a portion of the material to sinter, wherein the heated material is a part of the fuel cell, wherein the EMR is provided by a xenon lamp; and
wherein the material is selected from the group consisting of Yttria-stabilized zirconia (YSZ), 8YSZ (8 mol % YSZ powder), gadolinia-doped ceria (GDC or CGO), Samaria-doped ceria (SDC), Scandia-stabilized zirconia (SSZ), Lanthanum strontium manganite (LSM), Lanthanum Strontium Cobalt Ferrite (LSCF), Lanthanum Strontium Cobaltite (LSC), Lanthanum Strontium Gallium Magnesium Oxide (LSGM), nickel oxide (NiO), Cu2O, CuO, lanthanum chromite, doped lanthanum chromite, and combinations thereof; and
wherein the material is in dry particulate form when sintered by the xenon lamp.
15. The method of claim 14, further comprising deposition a composition containing the material on a substrate, wherein depositing comprises material jetting, binder jetting, inkjet printing, aerosol jetting, or aerosol jet printing, vat photopolymerization, powder bed fusion, material extrusion, directed energy deposition, sheet lamination, ultrasonic inkjet printing, or combinations thereof.
16. The method of claim 15, wherein depositing utilizes a multi-nozzle additive manufacturing method.
US16/674,629 2018-11-06 2019-11-05 Method of making a fuel cell and treating a component thereof Active 2040-06-10 US11557784B2 (en)

Priority Applications (52)

Application Number Priority Date Filing Date Title
PCT/US2019/059923 WO2020097118A1 (en) 2018-11-06 2019-11-05 Method of making fuel cells and a fuel cell stack
PCT/US2019/059925 WO2020097120A1 (en) 2018-11-06 2019-11-05 Method and system for making a fuel cell
US16/674,629 US11557784B2 (en) 2018-11-06 2019-11-05 Method of making a fuel cell and treating a component thereof
PCT/US2019/059924 WO2020097119A1 (en) 2018-11-06 2019-11-05 Method of making a fusl cell and treating a component thereof
JP2021525032A JP2022512964A (en) 2018-11-06 2019-11-05 How to manufacture a fuel cell and process its components
PCT/US2019/059926 WO2020112316A1 (en) 2018-11-06 2019-11-05 System and method for integrated deposition and heating
US16/680,770 US20200156104A1 (en) 2018-11-06 2019-11-12 Manufacturing Method with Particle Size Control
PCT/US2019/060838 WO2020102140A1 (en) 2018-11-12 2019-11-12 Manufacturing method with particle size control
EP19886007.4A EP3881384A4 (en) 2018-11-12 2019-11-12 Manufacturing method with particle size control
CN201980083279.5A CN113302771A (en) 2018-11-17 2019-11-15 Method for producing an electrochemical reactor
PCT/US2019/061637 WO2020102634A1 (en) 2018-11-17 2019-11-15 Method of making electrochemical reactors
US16/684,838 US20200144654A1 (en) 2018-11-06 2019-11-15 Compact Electrochemical Reactors
US16/684,864 US11611097B2 (en) 2018-11-06 2019-11-15 Method of making an electrochemical reactor via sintering inorganic dry particles
EP19884059.7A EP3881377A4 (en) 2018-11-17 2019-11-15 Method of making electrochemical reactors
US16/693,271 US20200144627A1 (en) 2018-11-06 2019-11-23 Method of Making Channeled Electrodes
PCT/US2019/062882 WO2020107029A1 (en) 2018-11-22 2019-11-23 Method of making channeled electrodes
PCT/US2019/062878 WO2020107026A1 (en) 2018-11-22 2019-11-23 Electrochemical reactors with fluid dispersing components
US16/693,270 US11603324B2 (en) 2018-11-06 2019-11-23 Channeled electrodes and method of making
PCT/US2019/062881 WO2020107028A1 (en) 2018-11-22 2019-11-23 Channeled electrodes and method of making
US16/693,268 US20200144653A1 (en) 2018-11-06 2019-11-23 Electrochemical Reactors with Fluid Dispersing Components
PCT/US2019/062879 WO2020107027A1 (en) 2018-11-22 2019-11-23 Dual porosity electrodes and method of making
US16/693,269 US20200144628A1 (en) 2018-11-06 2019-11-23 Dual Porosity Electrodes and Method of Making
PCT/US2019/063863 WO2020113170A1 (en) 2018-11-29 2019-11-29 Interconnect with microchannels and method of making
US16/699,461 US20200144635A1 (en) 2018-11-06 2019-11-29 Method of Making an Interconnect
PCT/US2019/063865 WO2020113172A1 (en) 2018-11-29 2019-11-29 Method of making an interconnect
US16/699,453 US20200144633A1 (en) 2018-11-06 2019-11-29 Interconnect with Microchannels and Method of Making
US16/707,084 US20200235410A1 (en) 2018-11-06 2019-12-09 Heat Exchanger for an Electrochemical Reactor and Method of Making
PCT/US2019/065255 WO2020123393A1 (en) 2018-12-10 2019-12-09 Multi-fluid heat exchanger and methods of making and using
US16/707,066 US20200182549A1 (en) 2018-11-06 2019-12-09 Multi-Fluid Heat Exchanger and Methods of Making and Using
PCT/US2019/065247 WO2020123389A1 (en) 2018-12-10 2019-12-09 Balance of plant for electrochemical reactors
PCT/US2019/065261 WO2020123396A1 (en) 2018-12-10 2019-12-09 Heat exchanger for an electrochemical reactor and method of making
US16/707,046 US20200235409A1 (en) 2018-11-06 2019-12-09 Balance of Plant for Electrochemical Reactors
US16/739,748 US11767600B2 (en) 2018-11-06 2020-01-10 Hydrogen production system
PCT/US2020/013121 WO2020146754A1 (en) 2019-01-09 2020-01-10 Electrochemical device and method of making
EP20738885.1A EP3909089A4 (en) 2019-01-11 2020-01-10 Electrochemical device and method of making
EP20738706.9A EP3908549A4 (en) 2019-01-11 2020-01-10 Hydrogen production system
CA3126466A CA3126466C (en) 2019-01-11 2020-01-10 Method of producing hydrogen
PCT/US2020/013133 WO2020146762A1 (en) 2019-01-09 2020-01-10 Hydrogen production system
US16/739,671 US20200259186A1 (en) 2018-11-06 2020-01-10 Methods of Making Gas Producer
EP20738984.2A EP3908551A4 (en) 2019-01-11 2020-01-10 Method of producing hydrogen
PCT/US2020/013129 WO2020146759A1 (en) 2019-01-09 2020-01-10 Method of producing hydrogen
JP2021539923A JP2022522603A (en) 2019-01-11 2020-01-10 How to generate hydrogen
CN202080008648.7A CN113631502B (en) 2019-01-11 2020-01-10 Method for producing hydrogen
PCT/US2020/013126 WO2020146757A1 (en) 2019-01-09 2020-01-10 Methods of making gas producer
US16/739,727 US11761096B2 (en) 2018-11-06 2020-01-10 Method of producing hydrogen
US16/739,612 US11761100B2 (en) 2018-11-06 2020-01-10 Electrochemical device and method of making
PCT/US2020/015492 WO2020160052A1 (en) 2019-01-28 2020-01-28 Electrochemical reactor systems
US16/775,176 US20200227763A1 (en) 2018-11-06 2020-01-28 Electrochemical Reactor Systems
US15/931,585 US11539053B2 (en) 2018-11-12 2020-05-14 Method of making copper electrode
PCT/US2020/052277 WO2021061817A1 (en) 2019-09-24 2020-09-23 Ceramic sintering
EP20867019.0A EP4034512A1 (en) 2019-09-24 2020-09-23 Ceramic sintering
US17/030,000 US11453618B2 (en) 2018-11-06 2020-09-23 Ceramic sintering

Applications Claiming Priority (55)

Application Number Priority Date Filing Date Title
US201862756257P 2018-11-06 2018-11-06
US201862756264P 2018-11-06 2018-11-06
US201862757751P 2018-11-08 2018-11-08
US201862758778P 2018-11-12 2018-11-12
US201862767413P 2018-11-14 2018-11-14
US201862768864P 2018-11-17 2018-11-17
US201862771045P 2018-11-24 2018-11-24
US201862773071P 2018-11-29 2018-11-29
US201862773912P 2018-11-30 2018-11-30
US201862777338P 2018-12-10 2018-12-10
US201862777273P 2018-12-10 2018-12-10
US201862779005P 2018-12-13 2018-12-13
US201862780211P 2018-12-15 2018-12-15
US201862783192P 2018-12-20 2018-12-20
US201862784472P 2018-12-23 2018-12-23
US201862786341P 2018-12-29 2018-12-29
US201962791629P 2019-01-11 2019-01-11
US201962797572P 2019-01-28 2019-01-28
US201962798344P 2019-01-29 2019-01-29
US201962804115P 2019-02-11 2019-02-11
US201962805250P 2019-02-13 2019-02-13
US201962808644P 2019-02-21 2019-02-21
US201962809602P 2019-02-23 2019-02-23
US201962814695P 2019-03-06 2019-03-06
US201962819374P 2019-03-15 2019-03-15
US201962819289P 2019-03-15 2019-03-15
US201962824229P 2019-03-26 2019-03-26
US201962825576P 2019-03-28 2019-03-28
US201962827800P 2019-04-01 2019-04-01
US201962834531P 2019-04-16 2019-04-16
US201962837089P 2019-04-22 2019-04-22
US201962839587P 2019-04-26 2019-04-26
US201962840381P 2019-04-29 2019-04-29
US201962844127P 2019-05-07 2019-05-07
US201962844126P 2019-05-07 2019-05-07
US201962847472P 2019-05-14 2019-05-14
US201962849269P 2019-05-17 2019-05-17
US201962852045P 2019-05-23 2019-05-23
US201962856736P 2019-06-03 2019-06-03
US201962863390P 2019-06-19 2019-06-19
US201962864492P 2019-06-20 2019-06-20
US201962866758P 2019-06-26 2019-06-26
US201962869322P 2019-07-01 2019-07-01
US201962875437P 2019-07-17 2019-07-17
US201962877699P 2019-07-23 2019-07-23
US201962888319P 2019-08-16 2019-08-16
US201962895416P 2019-09-03 2019-09-03
US201962896466P 2019-09-05 2019-09-05
US201962899087P 2019-09-11 2019-09-11
US201962904683P 2019-09-24 2019-09-24
US201962912626P 2019-10-08 2019-10-08
US201962925210P 2019-10-23 2019-10-23
US201962927627P 2019-10-29 2019-10-29
US201962928326P 2019-10-30 2019-10-30
US16/674,629 US11557784B2 (en) 2018-11-06 2019-11-05 Method of making a fuel cell and treating a component thereof

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US16/674,695 Continuation-In-Part US11735755B2 (en) 2018-11-06 2019-11-05 System and method for integrated deposition and heating
US16/674,657 Continuation-In-Part US11575142B2 (en) 2018-11-06 2019-11-05 Method and system for making a fuel cell
US16/674,580 Continuation-In-Part US20200176803A1 (en) 2018-11-06 2019-11-05 Method of Making Fuel Cells and a Fuel Cell Stack

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US16/674,695 Continuation-In-Part US11735755B2 (en) 2018-11-06 2019-11-05 System and method for integrated deposition and heating
US16/674,657 Continuation-In-Part US11575142B2 (en) 2018-11-06 2019-11-05 Method and system for making a fuel cell
US16/674,580 Continuation-In-Part US20200176803A1 (en) 2018-11-06 2019-11-05 Method of Making Fuel Cells and a Fuel Cell Stack
US16/680,770 Continuation-In-Part US20200156104A1 (en) 2018-11-06 2019-11-12 Manufacturing Method with Particle Size Control

Publications (2)

Publication Number Publication Date
US20200144646A1 US20200144646A1 (en) 2020-05-07
US11557784B2 true US11557784B2 (en) 2023-01-17

Family

ID=70458327

Family Applications (4)

Application Number Title Priority Date Filing Date
US16/674,629 Active 2040-06-10 US11557784B2 (en) 2018-11-06 2019-11-05 Method of making a fuel cell and treating a component thereof
US16/674,580 Abandoned US20200176803A1 (en) 2018-11-06 2019-11-05 Method of Making Fuel Cells and a Fuel Cell Stack
US16/674,657 Active 2041-05-14 US11575142B2 (en) 2018-11-06 2019-11-05 Method and system for making a fuel cell
US16/674,695 Active 2041-01-26 US11735755B2 (en) 2018-11-06 2019-11-05 System and method for integrated deposition and heating

Family Applications After (3)

Application Number Title Priority Date Filing Date
US16/674,580 Abandoned US20200176803A1 (en) 2018-11-06 2019-11-05 Method of Making Fuel Cells and a Fuel Cell Stack
US16/674,657 Active 2041-05-14 US11575142B2 (en) 2018-11-06 2019-11-05 Method and system for making a fuel cell
US16/674,695 Active 2041-01-26 US11735755B2 (en) 2018-11-06 2019-11-05 System and method for integrated deposition and heating

Country Status (3)

Country Link
US (4) US11557784B2 (en)
EP (2) EP3877152A4 (en)
JP (1) JP2022512964A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11283085B1 (en) 2020-03-06 2022-03-22 Bloom Energy Corporation Low VOC ink compositions and methods of forming fuel cell system components using the same
JP7141431B2 (en) * 2020-09-16 2022-09-22 本田技研工業株式会社 Method for manufacturing fuel cell stack and method for manufacturing fuel cell stack
CN112242546B (en) * 2020-10-16 2021-10-01 广东省科学院新材料研究所 Metal-supported self-sealing solid oxide fuel cell/electrolytic cell and electric pile based on additive manufacturing
JP2024518971A (en) 2021-05-13 2024-05-08 ユティリティ・グローバル・インコーポレイテッド Integrated hydrogen production method and system

Citations (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374906A (en) 1981-09-29 1983-02-22 United Technologies Corporation Ribbed electrode substrates
US4749632A (en) 1986-10-23 1988-06-07 The United States Of America As Represented By The United States Department Of Energy Sintering aid for lanthanum chromite refractories
US4992341A (en) 1988-10-21 1991-02-12 The United States Of America As Represented By The United States Department Of Energy Fabrication of dual porosity electrode structure
US5364712A (en) 1992-02-21 1994-11-15 Hughes Aircraft Company Dual porosity gas evolving electrode
US5431967A (en) 1989-09-05 1995-07-11 Board Of Regents, The University Of Texas System Selective laser sintering using nanocomposite materials
US5554454A (en) 1994-02-19 1996-09-10 Rolls-Royce Plc Solid oxide fuel cell stack
US5908713A (en) 1997-09-22 1999-06-01 Siemens Westinghouse Power Corporation Sintered electrode for solid oxide fuel cells
US20020028367A1 (en) 2000-05-22 2002-03-07 Nigel Sammes Electrode-supported solid state electrochemical cell
US6399233B1 (en) 1999-07-29 2002-06-04 Technology Management, Inc. Technique for rapid cured electrochemical apparatus component fabrication
US20020081481A1 (en) 2000-12-22 2002-06-27 Keegan Kevin Richard Fluid distribution surface for solid oxide fuel cells
US20020102450A1 (en) 2000-05-18 2002-08-01 Badding Michael E. High performance solid electrolyte fuel cells
US20030134171A1 (en) 2002-01-16 2003-07-17 Partho Sarkar Metal-supported tubular micro-fuel cell
US20030190503A1 (en) 2002-04-05 2003-10-09 Kumar Ravi Vipperla Fuel processor apparatus and method based on autothermal cyclic reforming
US6645660B2 (en) 1998-08-26 2003-11-11 Siemens Aktiengesellschaft Screen-printing paste and screen-printing method of fabricating a gas diffusion electrode
US20030235738A1 (en) 2002-06-19 2003-12-25 Yongjian Zheng Monolithic fuel cell and method of manufacture of same
US20040000489A1 (en) 2002-05-07 2004-01-01 University Of Southern California Methods and apparatus for monitoring deposition quality during conformable contact mask plating operations
WO2004019434A1 (en) 2002-08-23 2004-03-04 Fuelcell Energy, Inc. Dual-porosity ribbed fuel cell cathode
US20040151957A1 (en) 2002-07-09 2004-08-05 Brooks Juliana H. J. Optimizing reactions in fuel cells and electrochemical reactions
US20040166380A1 (en) 2003-02-21 2004-08-26 Gorte Raymond J. Porous electrode, solid oxide fuel cell, and method of producing the same
US20050016839A1 (en) 2003-06-06 2005-01-27 Horne Craig R. Reactive deposition for electrochemical cell production
US20050053819A1 (en) 2003-07-18 2005-03-10 Paz Eduardo E. Solid oxide fuel cell interconnect with catalyst coating
US20050118493A1 (en) 1998-08-26 2005-06-02 Siemens Aktiengesellschaft Gas diffusion electrode and method for its production
US20060228613A1 (en) 2005-04-07 2006-10-12 Bourgeois Richard S System and method for manufacturing fuel cell stacks
US7141271B2 (en) 2000-08-30 2006-11-28 Siemens Power Generation, Inc. Method for producing a solid ceramic fuel cell
US20070202378A1 (en) 2006-02-28 2007-08-30 D Urso John J Integrated micro fuel cell apparatus
US20080008826A1 (en) 2004-12-23 2008-01-10 Commissariat A L'energie Atomique Method For Manufacturing An Assembly For A Fuel Cell
US20080085369A1 (en) 2006-08-16 2008-04-10 Lexmark International, Inc. Thermally inkjettable acrylic dielectric ink formulation and process
US20080160376A1 (en) 2000-05-18 2008-07-03 Badding Michael E Fuel cells with enhanced via fill compositions and/or enhanced via fill geometries
US20080178461A1 (en) 2007-01-31 2008-07-31 Motorola, Inc. Method for forming a micro fuel cell
US20080220307A1 (en) 2007-03-09 2008-09-11 Sanyo Electric Co., Ltd. Membrane electrode assembly, method for manufacturing the same, and fuel cell including the same
US20100099000A1 (en) 2005-08-05 2010-04-22 Mitsubishi Pencil Co., Ltd. Separator for Fuel Cell and Production Process for the Same
US20100136376A1 (en) 2007-05-01 2010-06-03 Ceres Intellectual Property Company Limited Improvements in or relating to fuel cells
US7909971B2 (en) 2004-03-08 2011-03-22 The Board Of Trustees Of The University Of Illinois Microfluidic electrochemical reactors
US20110070493A1 (en) 2009-09-24 2011-03-24 Kishor Purushottam Gadkaree Current collectors having textured coating
US20110111292A1 (en) 2009-11-12 2011-05-12 Samsung Electronics Co., Ltd. Electrode composition for inkjet printing, and electrode and secondary battery prepared using the electrode composition
US20110120537A1 (en) 2009-09-21 2011-05-26 Goujun Liu Silicon inks for thin film solar cell formation, corresponding methods and solar cell structures
US20110171555A1 (en) 2008-08-07 2011-07-14 Colin Oloman Mixed reactant flow-by fuel cell
US20120032120A1 (en) 2009-05-27 2012-02-09 Byd Company Limited Conductive slurry for solar battery and preparation method thereof
US20120070746A1 (en) 2007-09-21 2012-03-22 Sion Power Corporation Low electrolyte electrochemical cells
US8163353B2 (en) 2008-07-08 2012-04-24 Siemens Energy, Inc. Fabrication of copper-based anodes via atmosphoric plasma spraying techniques
US8211587B2 (en) 2003-09-16 2012-07-03 Siemens Energy, Inc. Plasma sprayed ceramic-metal fuel electrode
US20120183858A1 (en) 2009-06-05 2012-07-19 Robert Ellenwood High Density Cathode Materials for Secondary Batteries
US20130026032A1 (en) 2005-06-16 2013-01-31 The Trustees Of Boston University Waste to hydrogen conversion process and related apparatus
KR20130047175A (en) 2011-10-31 2013-05-08 한양대학교 산학협력단 Preparation method of solid oxide fuel cell having ceramic granule, and a fabrication thereof
US20130228547A1 (en) 2010-06-09 2013-09-05 Chambre De Commerce Et D'industrie De Paris (Esiee Paris) Method for manufacturing a flexible intraocular retinal implant having doped diamond electrodes
US20130344383A1 (en) 2009-05-07 2013-12-26 Amprius, Inc. Template electrode structures for depositing active materials
US20140051014A1 (en) 2011-04-21 2014-02-20 Airbus Operations Gmbh Method for manufacturing a solid oxide fuel cell element by layer-wise buildup and solid oxide fuel cell element
US20140059846A1 (en) 2011-02-14 2014-03-06 Li-Tec Battery Gmbh Method for the manufacture of electrodes
US20140072702A1 (en) 2012-09-07 2014-03-13 Colorado School Of Mines Inkjet printing of dense and porous ceramic layers onto porous substrates for manufacture of ceramic electrochemical devices
US20140072720A1 (en) * 2012-05-22 2014-03-13 University Of Massachusetts Patterned nanoparticle structures
US20140315095A1 (en) 2011-07-29 2014-10-23 Uacj Foil Corporation Collector, electrode structure, nonaqueous electrolyte battery, and electrical storage device
US20140352573A1 (en) 2012-04-24 2014-12-04 Vladek Kasperchik Inkjet ink
US20140367894A1 (en) 2013-06-14 2014-12-18 Lawrence Livermore National Security, Llc System And Method For Enhanced Additive Manufacturing
US20150035200A1 (en) 2013-08-01 2015-02-05 MetaMason, Inc. Systems and methods for fabricating objects using investment molding techniques
WO2015076005A1 (en) 2013-11-20 2015-05-28 株式会社村田製作所 Method for sintering ceramics and method for producing multilayer ceramic electronic component
US20150158728A1 (en) 2006-12-07 2015-06-11 Clariant (Canada) Inc. Method for preparing a particulate cathode material
US20150290860A1 (en) 2014-04-09 2015-10-15 Leon L. Shaw Additive manufacture via high aspect ratio nozzles
US20160067827A1 (en) 2013-04-29 2016-03-10 Nuburu, Inc. Applications, methods and systems for materials processing with visible raman laser
US20160104882A1 (en) 2014-10-14 2016-04-14 Sila Nanotechnologies Inc. Nanocomposite battery electrode particles with changing properties
US9327448B2 (en) 2013-08-02 2016-05-03 Northwestern University Methods for fabricating three-dimensional metallic objects via additive manufacturing using metal oxide pastes
US20160167132A1 (en) 2014-12-10 2016-06-16 Washington State University Additive manufacturing of porous scaffold structures
US20160197356A1 (en) 2013-08-13 2016-07-07 Sofcpower S.P.A. Method for depositing a layer of material onto a metallic support for fuel cells or electrolysis cells
KR20160119551A (en) * 2015-04-06 2016-10-14 한양대학교 산학협력단 Composition for forming conductive copper pattern by light sintering including carbon nanostructures, method for preparing conductive copper pattern by light sintering, and electronic device including the conductive copper pattern prepared therefrom
US20160368056A1 (en) 2015-06-19 2016-12-22 Bharath Swaminathan Additive manufacturing with electrostatic compaction
US20170012319A1 (en) 2013-07-16 2017-01-12 Ford Global Technologies, Llc Flexible composite solid state battery
US20170081534A1 (en) 2014-05-15 2017-03-23 Northwestern University Ink compositions for three-dimensional printing and methods of forming objects using the ink compositions
US20170098857A1 (en) * 2015-04-15 2017-04-06 Optodot Corporation Coated stacks for batteries and related manufacturing methods
KR20170052816A (en) * 2015-11-04 2017-05-15 한양대학교 산학협력단 Method for manufacturing a perovskite thin film, and method for manufacturing a fuel cell using same
US20170222236A1 (en) 2016-02-03 2017-08-03 Bloom Energy Corporation Anode splitter plate and methods for making the same
US20170304944A1 (en) * 2016-04-26 2017-10-26 Velo3D, Inc. Three dimensional objects comprising robust alloys
US20170346084A1 (en) 2013-03-14 2017-11-30 Group 14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
WO2017207514A1 (en) 2016-06-02 2017-12-07 Philips Lighting Holding B.V. Filaments for fused deposition modeling including an electronic component
WO2017221010A1 (en) 2016-06-22 2017-12-28 Imperial Innovations Limited Aqueous ink compositions
US20180006301A1 (en) 2015-03-06 2018-01-04 Lg Chem, Ltd. Method for manufacturing electrode, electrode manufactured by same, electrode structure including electrode, fuel cell or metal-air secondary battery, battery module including cell or battery, and composition for manufacturing electrode
US20180019493A1 (en) 2016-07-18 2018-01-18 Northwestern University Three dimensional extrusion printed electrochemical devices
WO2018038954A1 (en) 2016-08-25 2018-03-01 3M Innovative Properties Company Coloured curable composition for additive manufacturing processes, 3-dim composite article and use thereof
US20180056292A1 (en) 2016-08-24 2018-03-01 Board Of Trustees Of Michigan State Universtiy Microchemical system apparatus and related methods of fabrication
WO2018068662A1 (en) 2016-10-11 2018-04-19 Grst International Limited Cathode slurry for lithium ion battery
WO2018068663A1 (en) 2016-10-11 2018-04-19 Grst International Limited Anode slurry for lithium ion battery
WO2018080537A1 (en) 2016-10-31 2018-05-03 Hewlett-Packard Development Company, L.P. 3d printer with a uv light absorbing agent
US20180212083A1 (en) 2017-01-20 2018-07-26 Lg Electronics Inc. Heterojunction solar cell and manufacturing method thereof
US20180250746A1 (en) 2017-03-02 2018-09-06 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US20180301420A1 (en) 2017-04-13 2018-10-18 Amkor Technology, Inc. Semiconductor device and manufacturing method thereof
US10350329B2 (en) 2014-10-15 2019-07-16 Northwestern University Graphene-based ink compositions for three-dimensional printing applications
US20210323068A1 (en) * 2018-06-01 2021-10-21 Hewlett-Packard Development Company, L.P. Material sets

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5419090B2 (en) * 2009-06-25 2014-02-19 一般財団法人電力中央研究所 COMPOSITE MEMBRANE STRUCTURE COMPRISING SOLID ELECTROLYTE MEMBRANE-HYDROGEN PERMEABLE METAL MEMBRANE, FUEL CELL AND METHOD FOR PRODUCING THEM
JP5343836B2 (en) * 2009-12-10 2013-11-13 株式会社ノリタケカンパニーリミテド Solid oxide fuel cell and method for producing the same
WO2016057034A1 (en) * 2014-10-08 2016-04-14 Hewlett-Packard Development Company, L.P. Fabricating a three-dimensional object
US10759084B1 (en) * 2015-06-16 2020-09-01 Oceanit Laboratories, Inc. Methods for material synthesis and manufacturing using shock consolidation
US10710353B2 (en) * 2015-09-11 2020-07-14 Arizona Board Of Regents On Behalf Of Arizona State University Systems and methods for laser preheating in connection with fused deposition modeling
KR102327262B1 (en) * 2016-03-31 2021-11-17 한양대학교 산학협력단 Method for manufacturing solid oxide fuel cell and solid oxide electrolyte cell
WO2018022034A1 (en) * 2016-07-27 2018-02-01 Hewlett-Packard Development Company, L.P. Forming three-dimensional (3d) electronic parts
WO2018053323A1 (en) * 2016-09-15 2018-03-22 Board Of Regents, The University Of Texas System Systems and methods for additive manufacturing of ceramics

Patent Citations (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374906A (en) 1981-09-29 1983-02-22 United Technologies Corporation Ribbed electrode substrates
US4749632A (en) 1986-10-23 1988-06-07 The United States Of America As Represented By The United States Department Of Energy Sintering aid for lanthanum chromite refractories
US4992341A (en) 1988-10-21 1991-02-12 The United States Of America As Represented By The United States Department Of Energy Fabrication of dual porosity electrode structure
US5431967A (en) 1989-09-05 1995-07-11 Board Of Regents, The University Of Texas System Selective laser sintering using nanocomposite materials
US5364712A (en) 1992-02-21 1994-11-15 Hughes Aircraft Company Dual porosity gas evolving electrode
US5554454A (en) 1994-02-19 1996-09-10 Rolls-Royce Plc Solid oxide fuel cell stack
US5908713A (en) 1997-09-22 1999-06-01 Siemens Westinghouse Power Corporation Sintered electrode for solid oxide fuel cells
US6645660B2 (en) 1998-08-26 2003-11-11 Siemens Aktiengesellschaft Screen-printing paste and screen-printing method of fabricating a gas diffusion electrode
US20050118493A1 (en) 1998-08-26 2005-06-02 Siemens Aktiengesellschaft Gas diffusion electrode and method for its production
US7682725B2 (en) 1998-08-26 2010-03-23 Siemens Aktiengesellschaft Gas diffusion electrode and method for its production
US6399233B1 (en) 1999-07-29 2002-06-04 Technology Management, Inc. Technique for rapid cured electrochemical apparatus component fabrication
US20080160376A1 (en) 2000-05-18 2008-07-03 Badding Michael E Fuel cells with enhanced via fill compositions and/or enhanced via fill geometries
US20020102450A1 (en) 2000-05-18 2002-08-01 Badding Michael E. High performance solid electrolyte fuel cells
US20020028367A1 (en) 2000-05-22 2002-03-07 Nigel Sammes Electrode-supported solid state electrochemical cell
US7141271B2 (en) 2000-08-30 2006-11-28 Siemens Power Generation, Inc. Method for producing a solid ceramic fuel cell
US20020081481A1 (en) 2000-12-22 2002-06-27 Keegan Kevin Richard Fluid distribution surface for solid oxide fuel cells
US20030134171A1 (en) 2002-01-16 2003-07-17 Partho Sarkar Metal-supported tubular micro-fuel cell
US20030190503A1 (en) 2002-04-05 2003-10-09 Kumar Ravi Vipperla Fuel processor apparatus and method based on autothermal cyclic reforming
US20040000489A1 (en) 2002-05-07 2004-01-01 University Of Southern California Methods and apparatus for monitoring deposition quality during conformable contact mask plating operations
US20030235738A1 (en) 2002-06-19 2003-12-25 Yongjian Zheng Monolithic fuel cell and method of manufacture of same
US20040151957A1 (en) 2002-07-09 2004-08-05 Brooks Juliana H. J. Optimizing reactions in fuel cells and electrochemical reactions
US6890679B2 (en) 2002-08-23 2005-05-10 Fuelcell Energy, Inc. Dual-porosity ribbed fuel cell cathode
WO2004019434A1 (en) 2002-08-23 2004-03-04 Fuelcell Energy, Inc. Dual-porosity ribbed fuel cell cathode
US20040166380A1 (en) 2003-02-21 2004-08-26 Gorte Raymond J. Porous electrode, solid oxide fuel cell, and method of producing the same
US20050016839A1 (en) 2003-06-06 2005-01-27 Horne Craig R. Reactive deposition for electrochemical cell production
US20050053819A1 (en) 2003-07-18 2005-03-10 Paz Eduardo E. Solid oxide fuel cell interconnect with catalyst coating
US8211587B2 (en) 2003-09-16 2012-07-03 Siemens Energy, Inc. Plasma sprayed ceramic-metal fuel electrode
US7909971B2 (en) 2004-03-08 2011-03-22 The Board Of Trustees Of The University Of Illinois Microfluidic electrochemical reactors
US20080008826A1 (en) 2004-12-23 2008-01-10 Commissariat A L'energie Atomique Method For Manufacturing An Assembly For A Fuel Cell
US20060228613A1 (en) 2005-04-07 2006-10-12 Bourgeois Richard S System and method for manufacturing fuel cell stacks
US20130026032A1 (en) 2005-06-16 2013-01-31 The Trustees Of Boston University Waste to hydrogen conversion process and related apparatus
US20100099000A1 (en) 2005-08-05 2010-04-22 Mitsubishi Pencil Co., Ltd. Separator for Fuel Cell and Production Process for the Same
US20070202378A1 (en) 2006-02-28 2007-08-30 D Urso John J Integrated micro fuel cell apparatus
US20080085369A1 (en) 2006-08-16 2008-04-10 Lexmark International, Inc. Thermally inkjettable acrylic dielectric ink formulation and process
US20150158728A1 (en) 2006-12-07 2015-06-11 Clariant (Canada) Inc. Method for preparing a particulate cathode material
US20080178461A1 (en) 2007-01-31 2008-07-31 Motorola, Inc. Method for forming a micro fuel cell
US20080220307A1 (en) 2007-03-09 2008-09-11 Sanyo Electric Co., Ltd. Membrane electrode assembly, method for manufacturing the same, and fuel cell including the same
US20100136376A1 (en) 2007-05-01 2010-06-03 Ceres Intellectual Property Company Limited Improvements in or relating to fuel cells
US20120070746A1 (en) 2007-09-21 2012-03-22 Sion Power Corporation Low electrolyte electrochemical cells
US8163353B2 (en) 2008-07-08 2012-04-24 Siemens Energy, Inc. Fabrication of copper-based anodes via atmosphoric plasma spraying techniques
US20110171555A1 (en) 2008-08-07 2011-07-14 Colin Oloman Mixed reactant flow-by fuel cell
US20130344383A1 (en) 2009-05-07 2013-12-26 Amprius, Inc. Template electrode structures for depositing active materials
US20120032120A1 (en) 2009-05-27 2012-02-09 Byd Company Limited Conductive slurry for solar battery and preparation method thereof
US20120183858A1 (en) 2009-06-05 2012-07-19 Robert Ellenwood High Density Cathode Materials for Secondary Batteries
US20110120537A1 (en) 2009-09-21 2011-05-26 Goujun Liu Silicon inks for thin film solar cell formation, corresponding methods and solar cell structures
US20110070493A1 (en) 2009-09-24 2011-03-24 Kishor Purushottam Gadkaree Current collectors having textured coating
US20110111292A1 (en) 2009-11-12 2011-05-12 Samsung Electronics Co., Ltd. Electrode composition for inkjet printing, and electrode and secondary battery prepared using the electrode composition
US20130228547A1 (en) 2010-06-09 2013-09-05 Chambre De Commerce Et D'industrie De Paris (Esiee Paris) Method for manufacturing a flexible intraocular retinal implant having doped diamond electrodes
US20140059846A1 (en) 2011-02-14 2014-03-06 Li-Tec Battery Gmbh Method for the manufacture of electrodes
US20140051014A1 (en) 2011-04-21 2014-02-20 Airbus Operations Gmbh Method for manufacturing a solid oxide fuel cell element by layer-wise buildup and solid oxide fuel cell element
US20140315095A1 (en) 2011-07-29 2014-10-23 Uacj Foil Corporation Collector, electrode structure, nonaqueous electrolyte battery, and electrical storage device
KR20130047175A (en) 2011-10-31 2013-05-08 한양대학교 산학협력단 Preparation method of solid oxide fuel cell having ceramic granule, and a fabrication thereof
US20140352573A1 (en) 2012-04-24 2014-12-04 Vladek Kasperchik Inkjet ink
US20140072720A1 (en) * 2012-05-22 2014-03-13 University Of Massachusetts Patterned nanoparticle structures
US20140072702A1 (en) 2012-09-07 2014-03-13 Colorado School Of Mines Inkjet printing of dense and porous ceramic layers onto porous substrates for manufacture of ceramic electrochemical devices
US20170346084A1 (en) 2013-03-14 2017-11-30 Group 14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US20160067827A1 (en) 2013-04-29 2016-03-10 Nuburu, Inc. Applications, methods and systems for materials processing with visible raman laser
US20140367894A1 (en) 2013-06-14 2014-12-18 Lawrence Livermore National Security, Llc System And Method For Enhanced Additive Manufacturing
US20170012319A1 (en) 2013-07-16 2017-01-12 Ford Global Technologies, Llc Flexible composite solid state battery
US20150035200A1 (en) 2013-08-01 2015-02-05 MetaMason, Inc. Systems and methods for fabricating objects using investment molding techniques
US9327448B2 (en) 2013-08-02 2016-05-03 Northwestern University Methods for fabricating three-dimensional metallic objects via additive manufacturing using metal oxide pastes
US20160197356A1 (en) 2013-08-13 2016-07-07 Sofcpower S.P.A. Method for depositing a layer of material onto a metallic support for fuel cells or electrolysis cells
WO2015076005A1 (en) 2013-11-20 2015-05-28 株式会社村田製作所 Method for sintering ceramics and method for producing multilayer ceramic electronic component
US20150290860A1 (en) 2014-04-09 2015-10-15 Leon L. Shaw Additive manufacture via high aspect ratio nozzles
US20170081534A1 (en) 2014-05-15 2017-03-23 Northwestern University Ink compositions for three-dimensional printing and methods of forming objects using the ink compositions
US20160104882A1 (en) 2014-10-14 2016-04-14 Sila Nanotechnologies Inc. Nanocomposite battery electrode particles with changing properties
US10350329B2 (en) 2014-10-15 2019-07-16 Northwestern University Graphene-based ink compositions for three-dimensional printing applications
US20160167132A1 (en) 2014-12-10 2016-06-16 Washington State University Additive manufacturing of porous scaffold structures
US20180006301A1 (en) 2015-03-06 2018-01-04 Lg Chem, Ltd. Method for manufacturing electrode, electrode manufactured by same, electrode structure including electrode, fuel cell or metal-air secondary battery, battery module including cell or battery, and composition for manufacturing electrode
KR20160119551A (en) * 2015-04-06 2016-10-14 한양대학교 산학협력단 Composition for forming conductive copper pattern by light sintering including carbon nanostructures, method for preparing conductive copper pattern by light sintering, and electronic device including the conductive copper pattern prepared therefrom
US20170098857A1 (en) * 2015-04-15 2017-04-06 Optodot Corporation Coated stacks for batteries and related manufacturing methods
US20160368056A1 (en) 2015-06-19 2016-12-22 Bharath Swaminathan Additive manufacturing with electrostatic compaction
KR20170052816A (en) * 2015-11-04 2017-05-15 한양대학교 산학협력단 Method for manufacturing a perovskite thin film, and method for manufacturing a fuel cell using same
US20170222236A1 (en) 2016-02-03 2017-08-03 Bloom Energy Corporation Anode splitter plate and methods for making the same
US20170304944A1 (en) * 2016-04-26 2017-10-26 Velo3D, Inc. Three dimensional objects comprising robust alloys
WO2017207514A1 (en) 2016-06-02 2017-12-07 Philips Lighting Holding B.V. Filaments for fused deposition modeling including an electronic component
WO2017221010A1 (en) 2016-06-22 2017-12-28 Imperial Innovations Limited Aqueous ink compositions
US20190207227A1 (en) 2016-06-22 2019-07-04 Imperial Innovations Limited Aqueous ink compositions
US10236528B2 (en) 2016-07-18 2019-03-19 Northwestern University Three dimensional extrusion printed electrochemical devices
US20180019493A1 (en) 2016-07-18 2018-01-18 Northwestern University Three dimensional extrusion printed electrochemical devices
US20180056292A1 (en) 2016-08-24 2018-03-01 Board Of Trustees Of Michigan State Universtiy Microchemical system apparatus and related methods of fabrication
WO2018038954A1 (en) 2016-08-25 2018-03-01 3M Innovative Properties Company Coloured curable composition for additive manufacturing processes, 3-dim composite article and use thereof
WO2018068662A1 (en) 2016-10-11 2018-04-19 Grst International Limited Cathode slurry for lithium ion battery
WO2018068663A1 (en) 2016-10-11 2018-04-19 Grst International Limited Anode slurry for lithium ion battery
WO2018080537A1 (en) 2016-10-31 2018-05-03 Hewlett-Packard Development Company, L.P. 3d printer with a uv light absorbing agent
US20180212083A1 (en) 2017-01-20 2018-07-26 Lg Electronics Inc. Heterojunction solar cell and manufacturing method thereof
US20180250746A1 (en) 2017-03-02 2018-09-06 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US20180301420A1 (en) 2017-04-13 2018-10-18 Amkor Technology, Inc. Semiconductor device and manufacturing method thereof
US20210323068A1 (en) * 2018-06-01 2021-10-21 Hewlett-Packard Development Company, L.P. Material sets

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
⋅ Abstract of Mitchell and Wood, Rapid and Low Temperature Densification of Gadolinia Doped Ceria Barrier Layers by Photonic Curing, Technical Report No. DOE-nanohmics-SC0017134, Publication Date Dec. 4, 2017 (Year: 2017). *
Akanksha Umrani Fabrication of Micro Pillar Arrays Via Aerosol Jet Printing, Rochester Institute of Technology, Rochester, NY, USA, Dissertation, Jan. 2015.
English translation of KR20160119551A (Year: 2016). *
English translation of KR-2017052816-A (Year: 2017). *
Kharton et al., Mixed Electronic and Ionic Conductivity of LaCo(M)O3 (M=Ga,Cr,Fe or Ni) Solid State Ionics, 1997, v104, p. 68, 76, Elsevier.
Min Yu, Salvatore Grasso, Ruth Mckinnon, Theo Saunders & Michael J. Reece (2017) Review of flash sintering: materials, mechanisms and modelling, Advances in Applied Ceramics, 116:1, 24-60, DOI: 10.1080/17436753.2016.1251051 (Year: 2017). *
N. Farandos, Additive Manufacturing—The Printing Press Meets Energy Storage?, Energy Futures Lab Blog, Feb. 14, 2017.
N. Geisendorfer, Efficient and Scalable Fabrication of Solid Oxide Fuel Cells via 3D-Printing, NASA, Sep. 15, 2017.
N.M. Farandos et al., Three-dimensiona Inkjet Printed Solid Oxide Electrochemical Reactors, Electrochemica Acta 213 (2016), 324-331.
Nicholas M. Farandos, Inkjet Printing for Solid Oxide Electrochemical Reactors, Imperial College London, UK, Department of Chemical Engineering Dissertation, May 2018.
Park, JS., Kim, DJ., Chung, WH. et al. Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films. Sci Rep 7, 12458 (2017) (Year: 2017). *
Wang et al. Electrical and Ionic Conductivity of Gd-Doped Ceria, J Electrochemical Society, vol. 147, pp. 3606-3609, 2000.
X.Y. Tai et al, Accelerating Fuel Cell Development With Additive Manufacturing Technologies, Fuel Cells, vol. 19 (2016), 636-650.

Also Published As

Publication number Publication date
EP3877180A1 (en) 2021-09-15
US20200144647A1 (en) 2020-05-07
JP2022512964A (en) 2022-02-07
US20200144646A1 (en) 2020-05-07
EP3877152A1 (en) 2021-09-15
EP3877152A4 (en) 2022-10-12
US11575142B2 (en) 2023-02-07
US20200176803A1 (en) 2020-06-04
EP3877180A4 (en) 2022-12-14
US20210069786A1 (en) 2021-03-11
US11735755B2 (en) 2023-08-22

Similar Documents

Publication Publication Date Title
US11557784B2 (en) Method of making a fuel cell and treating a component thereof
WO2020097118A1 (en) Method of making fuel cells and a fuel cell stack
US11603324B2 (en) Channeled electrodes and method of making
US11611097B2 (en) Method of making an electrochemical reactor via sintering inorganic dry particles
US20200144653A1 (en) Electrochemical Reactors with Fluid Dispersing Components
WO2020146754A1 (en) Electrochemical device and method of making
US20200144635A1 (en) Method of Making an Interconnect
US20200144654A1 (en) Compact Electrochemical Reactors
US20200235410A1 (en) Heat Exchanger for an Electrochemical Reactor and Method of Making
US20200156104A1 (en) Manufacturing Method with Particle Size Control
US20200144627A1 (en) Method of Making Channeled Electrodes
WO2020112316A1 (en) System and method for integrated deposition and heating
US20200144633A1 (en) Interconnect with Microchannels and Method of Making
US11761100B2 (en) Electrochemical device and method of making
US20200182549A1 (en) Multi-Fluid Heat Exchanger and Methods of Making and Using
US20200144628A1 (en) Dual Porosity Electrodes and Method of Making
US20200227763A1 (en) Electrochemical Reactor Systems
US11761096B2 (en) Method of producing hydrogen
US20200303749A1 (en) Copper Electrode and Method of Making
WO2020107029A1 (en) Method of making channeled electrodes
WO2020102140A1 (en) Manufacturing method with particle size control
US20200235409A1 (en) Balance of Plant for Electrochemical Reactors
EP3881377A1 (en) Method of making electrochemical reactors
WO2020123393A1 (en) Multi-fluid heat exchanger and methods of making and using
EP3881384A1 (en) Manufacturing method with particle size control

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

AS Assignment

Owner name: UTILITY GLOBAL, INC., UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HALL, DAVID R;DAWSON, MATTHEW;DAWSON, JIN;SIGNING DATES FROM 20191104 TO 20191105;REEL/FRAME:051705/0255

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE