US11444083B2 - Fabrication of fin field effect transistors utilizing different fin channel materials while maintaining consistent fin widths - Google Patents
Fabrication of fin field effect transistors utilizing different fin channel materials while maintaining consistent fin widths Download PDFInfo
- Publication number
- US11444083B2 US11444083B2 US16/866,150 US202016866150A US11444083B2 US 11444083 B2 US11444083 B2 US 11444083B2 US 202016866150 A US202016866150 A US 202016866150A US 11444083 B2 US11444083 B2 US 11444083B2
- Authority
- US
- United States
- Prior art keywords
- substrate
- fin
- pillar
- region
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 75
- 230000005669 field effect Effects 0.000 title claims description 11
- 238000004519 manufacturing process Methods 0.000 title description 8
- 239000000758 substrate Substances 0.000 claims abstract description 211
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 34
- 229910052732 germanium Inorganic materials 0.000 claims description 34
- 239000000945 filler Substances 0.000 claims description 30
- 239000004065 semiconductor Substances 0.000 claims description 30
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 27
- 229910052710 silicon Inorganic materials 0.000 claims description 26
- 239000010703 silicon Substances 0.000 claims description 26
- 239000002019 doping agent Substances 0.000 claims description 12
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical group [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 11
- 238000002955 isolation Methods 0.000 claims description 6
- 230000000295 complement effect Effects 0.000 claims description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 34
- 239000000203 mixture Substances 0.000 abstract description 19
- 239000002131 composite material Substances 0.000 description 44
- 125000006850 spacer group Chemical group 0.000 description 41
- 230000008569 process Effects 0.000 description 24
- 230000006870 function Effects 0.000 description 23
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 21
- -1 for example Substances 0.000 description 18
- 229910052581 Si3N4 Inorganic materials 0.000 description 17
- 238000012545 processing Methods 0.000 description 14
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 14
- 238000005229 chemical vapour deposition Methods 0.000 description 13
- 230000000873 masking effect Effects 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 10
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 238000000231 atomic layer deposition Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 7
- 238000005530 etching Methods 0.000 description 7
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 6
- 239000000376 reactant Substances 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 239000012212 insulator Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 238000005240 physical vapour deposition Methods 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 229910052580 B4C Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 4
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 229920003209 poly(hydridosilsesquioxane) Polymers 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 3
- 239000011133 lead Substances 0.000 description 3
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229910003468 tantalcarbide Inorganic materials 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 229910020781 SixOy Inorganic materials 0.000 description 2
- 229910002370 SrTiO3 Inorganic materials 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- CEPICIBPGDWCRU-UHFFFAOYSA-N [Si].[Hf] Chemical compound [Si].[Hf] CEPICIBPGDWCRU-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 238000005328 electron beam physical vapour deposition Methods 0.000 description 2
- 238000001900 extreme ultraviolet lithography Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- WHJFNYXPKGDKBB-UHFFFAOYSA-N hafnium;methane Chemical compound C.[Hf] WHJFNYXPKGDKBB-UHFFFAOYSA-N 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000004943 liquid phase epitaxy Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000001289 rapid thermal chemical vapour deposition Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000000038 ultrahigh vacuum chemical vapour deposition Methods 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910002244 LaAlO3 Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910020751 SixGe1-x Inorganic materials 0.000 description 1
- 229910004160 TaO2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- XWCMFHPRATWWFO-UHFFFAOYSA-N [O-2].[Ta+5].[Sc+3].[O-2].[O-2].[O-2] Chemical compound [O-2].[Ta+5].[Sc+3].[O-2].[O-2].[O-2] XWCMFHPRATWWFO-UHFFFAOYSA-N 0.000 description 1
- ILCYGSITMBHYNK-UHFFFAOYSA-N [Si]=O.[Hf] Chemical compound [Si]=O.[Hf] ILCYGSITMBHYNK-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- GPBUGPUPKAGMDK-UHFFFAOYSA-N azanylidynemolybdenum Chemical compound [Mo]#N GPBUGPUPKAGMDK-UHFFFAOYSA-N 0.000 description 1
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 description 1
- IVHJCRXBQPGLOV-UHFFFAOYSA-N azanylidynetungsten Chemical compound [W]#N IVHJCRXBQPGLOV-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- VKJLWXGJGDEGSO-UHFFFAOYSA-N barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[Ti+4].[Ba+2] VKJLWXGJGDEGSO-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- NQKXFODBPINZFK-UHFFFAOYSA-N dioxotantalum Chemical compound O=[Ta]=O NQKXFODBPINZFK-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 229910000167 hafnon Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000000671 immersion lithography Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- JQJCSZOEVBFDKO-UHFFFAOYSA-N lead zinc Chemical compound [Zn].[Pb] JQJCSZOEVBFDKO-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910021334 nickel silicide Inorganic materials 0.000 description 1
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- KJXBRHIPHIVJCS-UHFFFAOYSA-N oxo(oxoalumanyloxy)lanthanum Chemical compound O=[Al]O[La]=O KJXBRHIPHIVJCS-UHFFFAOYSA-N 0.000 description 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HWEYZGSCHQNNEH-UHFFFAOYSA-N silicon tantalum Chemical compound [Si].[Ta] HWEYZGSCHQNNEH-UHFFFAOYSA-N 0.000 description 1
- UVGLBOPDEUYYCS-UHFFFAOYSA-N silicon zirconium Chemical compound [Si].[Zr] UVGLBOPDEUYYCS-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- CZXRMHUWVGPWRM-UHFFFAOYSA-N strontium;barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[Ti+4].[Sr+2].[Ba+2] CZXRMHUWVGPWRM-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0924—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/107—Substrate region of field-effect devices
- H01L29/1075—Substrate region of field-effect devices of field-effect transistors
- H01L29/1079—Substrate region of field-effect devices of field-effect transistors with insulated gate
- H01L29/1083—Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/823431—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823807—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823821—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/0886—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
- H01L29/1033—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
- H01L29/1054—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66787—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
- H01L29/66795—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66787—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
- H01L29/66795—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
- H01L29/66818—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the channel being thinned after patterning, e.g. sacrificial oxidation on fin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/161—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
Definitions
- the present invention generally relates to formation of multiple vertical fins, where neighboring fins have different material compositions, and more particularly to fabricating fin field effect transistors (FinFETs) having fin channels with different material compositions, while avoiding disparities in channel width due to material related processing characteristics.
- FinFETs fin field effect transistors
- a Field Effect Transistor typically has a source, a channel, and a drain, where current flows from the source to the drain, and a gate that controls the flow of current through the channel.
- Field Effect Transistors can have a variety of different structures, for example, FETs have been fabricated with the source, channel, and drain formed in the substrate material itself, where the current flows horizontally (i.e., in the plane of the substrate), and finFETs have been formed with the channel extending outward from the substrate, but where the current also flows horizontally from a source to a drain.
- the channel for the finFET can be an upright slab of thin Si, commonly referred to as the fin with a gate on the fin, as compared to a MOSFET with a single gate in the plane of the substrate.
- an n-FET or a p-FET can be formed.
- FETs can include a metal-oxide-semiconductor field effect transistor (MOSFET) and an insulated-gate field-effect transistor (IGFET). Two FETs also can be coupled to form a complementary metal oxide semiconductor (CMOS) device, where a p-channel MOSFET and n-channel MOSFET are coupled together.
- MOSFET metal-oxide-semiconductor field effect transistor
- IGFET insulated-gate field-effect transistor
- a method of forming vertical fins on a substrate at the same time including, forming a mask segment on a first region of the substrate while exposing the surface of a second region of the substrate, removing a portion of the substrate in the second region to form a recess, forming a fin layer in the recess, where the fin layer has a different material composition than the substrate, and forming at least one vertical fin on the first region of the substrate and at least one vertical fin on the second region of the substrate, where the vertical fin on the second region of the substrate includes a fin layer pillar formed from the fin layer and a substrate pillar is provided.
- a method of forming vertical fins on a substrate at the same time including, forming a recess in a substrate, where the recess defines a second region of the substrate, forming a fin layer in the recess, where the fin layer has a different material composition than the substrate, forming at least one vertical fin on the second region of the substrate, where the vertical fin on the second region of the substrate includes a fin layer pillar formed from the fin layer, and forming at least one vertical fin on a first region of the substrate adjacent to the fin layer, forming a filler layer on a lower portion of the at least one vertical fin on the first region of the substrate and the at least one vertical fin on the second region of the substrate, where at least a portion of the fin layer pillar is exposed above the filler layer, and removing a portion of the at least one vertical fin on the first region of the substrate to form a fin core, and removing a portion of the at least one vertical fin on the second region of the substrate to
- a semiconductor device with vertical fins made of different materials including, one or more vertical fins formed on a first region of a substrate, wherein each of the one or more vertical fins formed on a first region of a substrate includes a fin core made of a same material as the substrate, and one or more vertical fins formed on a second region of the substrate, where the second region of the substrate is adjacent to the first region of the substrate, and wherein each of the one or more vertical fins formed on the second region of the substrate includes a pillar core and a flared pillar section made of a different material than the one or more vertical fins formed on a first region of a substrate is provided.
- FIG. 1 is a cross-sectional side view showing a masking layer on a substrate, in accordance with an embodiment of the present invention
- FIG. 2 is a cross-sectional side view showing a patterned mask segment on the substrate and an exposed portion of the substrate, in accordance with an embodiment of the present invention
- FIG. 3 is a cross-sectional side view showing a recess formed in the substrate, in accordance with an embodiment of the present invention
- FIG. 4 is a cross-sectional side view showing a fin layer formed in a recess on a second region of the substrate, in accordance with an embodiment of the present invention
- FIG. 5 is a cross-sectional side view showing a fin template layer formed on the surface of the substrate and fin layer, a mandrel layer formed on the fin template layer, a mandrel template layer formed on the mandrel layer, and a mandrel mask layer formed on the mandrel template layer, in accordance with an embodiment of the present invention
- FIG. 6 is a cross-sectional side view showing a patterned mandrel mask layer and mandrel template layer on a plurality of sacrificial mandrels, in accordance with an embodiment of the present invention
- FIG. 7 is a cross-sectional side view showing a sidewall layer formed on the mandrel templates, sacrificial mandrels, and fin template layer, in accordance with an embodiment of the present invention
- FIG. 8 is a cross-sectional side view showing sidewalls spacers formed on opposite sides of the sacrificial mandrels, in accordance with an embodiment of the present invention.
- FIG. 9 is a cross-sectional side view showing sidewall spacers formed on the fin template layer after removal of the sacrificial mandrels, in accordance with an embodiment of the present invention.
- FIG. 10 is a cross-sectional side view showing fin templates formed on the substrate and fin layer with sidewall spacers on each fin template, in accordance with an embodiment of the present invention.
- FIG. 11 is a cross-sectional side view showing a plurality of vertical fins formed on the substrate and a plurality of vertical fins formed on the fin layer with a fin template and a sidewall spacer on each vertical fin, in accordance with an embodiment of the present invention
- FIG. 12 is a cross-sectional side view showing a filler layer formed on the vertical fins(s) 111 , in accordance with an embodiment of the present invention.
- FIG. 13 is a cross-sectional side view showing fin templates with reduced widths forming template posts, in accordance with an embodiment of the present invention.
- FIG. 14 is a cross-sectional side view showing the conversion of an exposed portion of the vertical fins, where some vertical fins include a fin layer pillar, to a composite fin layer, in accordance with an embodiment of the present invention
- FIG. 15 is a cross-sectional side view showing removal of the composite fin layer and composite pillar layer, in accordance with an embodiment of the present invention.
- FIG. 16 is a cross-sectional side view showing removal of the composite fin layer and composite pillar layer, and diffusion of dopants into the flared fin section, lower fin section, pillar core, and flared pillar section, in accordance with an embodiment of the present invention
- FIG. 17 is a cross-sectional side view showing exposed fin cores and pillar cores after removal of the template posts, in accordance with an embodiment of the present invention.
- FIG. 18 is a cross-sectional side view showing a gate dielectric layer formed on the in core, pillar core, and filler layer, in accordance with an embodiment of the present invention.
- FIG. 19 is a cross-sectional side view showing a work function layer on the gate dielectric layer, in accordance with an embodiment of the present invention.
- FIG. 20 is a cross-sectional side view showing a gate fill layer on the work function layer, in accordance with an embodiment of the present invention.
- FIG. 21 is a cross-sectional side view showing an isolation trench formed between vertical fins formed on a first region of the substrate and vertical fins formed on a second region of the substrate, in accordance with an embodiment of the present invention.
- Principles and embodiments of the present invention relate generally to forming a set of vertical fins on a substrate, where the vertical fins of a first subset include a first material, and the vertical fins of a second subset include a second material different from the first material, such that the vertical fins may experience different responses to processing conditions.
- Different channel materials are desired for nFETs and pFETs so that the performances of the nFETs and pFETs can be altered and improved independently. With ever decreasing device dimensions, forming transistors from different materials becomes even more difficult.
- FinFETs fin field effect transistors
- critical dimensions i.e., line width, fin width
- nm nanometers
- Principles and embodiments of the present invention also relates generally to adjusting the composition of the vertical fins of a second subset after processing the full set of vertical fins on the substrate, where the composition of a compound semiconductor can be adjusted by preferentially reacting one of the semiconductor material constituents.
- a silicon-germanium (SiGe) fin can undergo a preferential oxidation of the silicon (Si) constituent to consume a portion of the fin material, while increasing the germanium (Ge) concentration in the remaining fin material.
- Principles and embodiments of the present invention also relate generally to processing a combination of vertical fins on a substrate that have different compositions resulting in different etch rates, where one vertical fin may be preferentially etched due to its material composition relative to other vertical fins on a neighboring portion of the same substrate.
- Different vertical fin widths are undesired due to the resulting differences in the devices' electrical properties.
- SiGe vertical fins can be 2-3 nm narrower than Si vertical fins formed on the same substrate by the end of fin processing due to differences in material behavior under the same processing conditions.
- Principles and embodiments of the present invention relate generally to forming Si fins and SiGe fins with comparable fin widths, where the starting material compositions can be altered to compensate for the differences in the composition's response to the same processing conditions. For example, instead of fabricating a SiGe fin from a material starting with the desired final Ge concentration (e.g., 20% Ge), a lower Ge concentration for the SiGe fin material is initially used (e.g., 10% Ge), so that the Si and SiGe (10% Ge, Si 0.9 Ge 0.1 ) can be processed with minimal fin width difference.
- the desired final Ge concentration e.g. 20% Ge
- a lower Ge concentration for the SiGe fin material e.g. 10% Ge
- Wider vertical fins can be fabricated by the earlier fin fabrication processes, and a thinning process used to achieve two results at the same time: (1) adjusting the fin width to a final predetermined size; (2) increasing the Ge % in the SiGe fins. In this manner, a plurality of vertical fins having essentially the same fin width can be formed from materials having two different compositions on the same substrate without additional masking and stripping processes. There are also difficulties in separately patterning different fin widths on the same substrate.
- CMOS Complementary metal-oxide-semiconductor
- logic circuits e.g., NAND, NOR, XOR, etc.
- high speed memory e.g., SRAM
- ASICs application specific integrated circuits
- the materials and layers can be deposited by physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD), molecular beam epitaxy (MBE), or any of the various modifications thereof, for example, plasma-enhanced chemical vapor deposition (PECVD), metal-organic chemical vapor deposition (MOCVD), low pressure chemical vapor deposition (LPCVD), electron-beam physical vapor deposition (EB-PVD), and plasma-enhanced atomic layer deposition (PEALD).
- PECVD plasma-enhanced chemical vapor deposition
- MOCVD metal-organic chemical vapor deposition
- LPCVD low pressure chemical vapor deposition
- EB-PVD electron-beam physical vapor deposition
- PEALD plasma-enhanced atomic layer deposition
- the depositions can be epitaxial processes, and the deposited material can be crystalline.
- formation of a layer can be by one or more deposition processes, where, for example, a conformal layer may be formed by a first process (e.g., ALD, PEALD, etc.) and a fill may be formed by a second process (e.g., CVD, electrodeposition, PVD, etc.).
- a first process e.g., ALD, PEALD, etc.
- a second process e.g., CVD, electrodeposition, PVD, etc.
- Source/drain projections, layers, regions, etc. is intended to indicate that the particular device feature can be implemented as a source or a drain except as expressly indicated otherwise.
- the role of source and drain for an active device can in some instances be reversed, so a previously indicated drain may instead be a source and vice versa.
- Reference to a source/drain is, therefore, intended to encompass the broadest reasonable scope of the term.
- FIG. 1 a cross-sectional side view of a masking layer on a substrate is shown, in accordance with an embodiment of the present invention.
- a substrate 110 can be a semiconductor or an insulator with an active surface semiconductor layer.
- the substrate can include a carrier layer that provides mechanical support for other layers of the substrate.
- the substrate can include crystalline, semi-crystalline, microcrystalline, or amorphous regions.
- the substrate can be essentially (i.e., except for contaminants) a single element (e.g., silicon), primarily (i.e., with doping) of a single element, for example, silicon (Si) or germanium (Ge), or the substrate can include a compound, for example, Al 2 O 3 , SiO 2 , GaAs, SiC, Si:C, or SiGe.
- the substrate can also have multiple material layers, for example, a semiconductor-on-insulator substrate (SeOI), such as a silicon-on-insulator substrate (SOI), germanium-on-insulator substrate (GeOI), or silicon-germanium-on-insulator substrate (SGOI).
- a semiconductor-on-insulator substrate such as a silicon-on-insulator substrate (SOI), germanium-on-insulator substrate (GeOI), or silicon-germanium-on-insulator substrate (SGOI).
- SOI silicon-on-insulator substrate
- GeOI germanium-on-insulator substrate
- SGOI silicon-germanium-on-insulator substrate
- the substrate can also have other layers forming the substrate, including high-k oxides and/or nitrides.
- the substrate 110 can be a silicon wafer.
- the substrate can be a single crystal silicon (Si), silicon germanium (SiGe), or III-V semiconductor (e.g., GaAs) wafer, or have a single crystal silicon (Si), silicon germanium (SiGe), or III-V semiconductor (e.g., GaAs) surface/active layer.
- a masking layer 120 can be formed on at least a portion of a surface of a substrate 110 .
- the masking layer 120 can be formed on the substrate surface by CVD, LPCVD or a spin-on method, where the masking layer 120 can be blanket deposited on the substrate.
- the masking layer 120 can be hardmask, for example, silicon nitride (SiN), which can be deposited by CVD.
- SiN silicon nitride
- FIG. 2 is a cross-sectional side view showing a patterned mask segment on the substrate and an exposed portion of the substrate, in accordance with an embodiment of the present invention
- the masking layer 120 can be patterned and developed to form a mask segment 121 that covers a portion of the substrate surface, where the remaining masked portion of the substrate 110 can form a first region 101 .
- a portion of the masking layer 120 can be developed and removed to expose at least one portion of the underlying surface of the substrate 110 , where the exposed portion of the substrate 110 can form a second region 102 of the substrate surface.
- the second region 102 can be adjacent to the first region 101 , such that vertical fins formed on one region are neighbors to the vertical fins formed on the adjacent region.
- FIG. 3 is a cross-sectional side view showing a recess formed in the substrate, in accordance with an embodiment of the present invention
- a portion of the substrate 110 exposed by removal of a portion of the masking layer 120 can be removed to form a recess 105 in the substrate, where the recess can be formed by a directional etch, for example a reactive ion etch (RIE) to provide defined sidewalls.
- the remaining mask segment 121 can be adjacent to the recess 105 , where the second region 102 is recessed, and the first region 101 is covered by mask segment 121 .
- the recess 105 can define the area of a second region 102 of the substrate 110 .
- the recess 105 can be formed to a predetermined depth, D 1 , that can be substantially equal to the intended height of a subsequently formed fin layer, and thereby the intended height of subsequently formed fin layer pillar(s).
- the recess 105 can have a depth in the range of about 10 nm to about 100 nm, or in the range of about 10 nm to about 40 nm, or in the range of about 10 nm to about 30 nm, or in the range of about 15 nm to about 50 nm, or in the range of about 20 nm to about 50 nm, or in the range of about 30 nm to about 50 nm. Other depths are also contemplated.
- the depth, D 1 can be about 1 ⁇ 2 to about 2 ⁇ 3 of the intended height of subsequently formed vertical fins.
- FIG. 4 is a cross-sectional side view showing a fin layer formed in a recess on a second region of the substrate, in accordance with an embodiment of the present invention.
- a fin layer 130 can be formed on the exposed surface of the substrate 110 at the bottom of a recess 105 , where the fin layer can be a material different from the material of the substrate 110 .
- the fin layer 130 can be formed on the exposed surface of the substrate 110 by epitaxial growth (e.g., vapor phase epitaxy (VPE), ion beam epitaxy (IBE), molecular beam epitaxy (MBE), ultrahigh vacuum chemical vapor deposition (UHVCVD), rapid thermal chemical vapor deposition (RTCVD), metalorganic chemical vapor deposition (MOCVD), low-pressure chemical vapor deposition (LPCVD), limited reaction processing CVD (LRPCVD), liquid-phase epitaxy (LPE), or other suitable process), where the fin layer 130 is a single crystal with the same crystal orientation as the substrate surface on which it is grown.
- VPE vapor phase epitaxy
- IBE ion beam epitaxy
- MBE molecular beam epitaxy
- UHVCVD ultrahigh vacuum
- the fin layer 130 can fill the recess 105 such that the fin layer 130 has a thickness that is the same as the depth, D 1 , of the recess.
- the fin layer 130 may be formed to a thickness greater than the depth, D 1 , and a portion of the fin layer 130 subsequently removed to reduce the thickness of the fin layer, for example, by chemical-mechanical polishing (CMP), where the final thickness is the same as the depth, D 1 .
- CMP chemical-mechanical polishing
- the fin layer 130 has a thickness in the range of about 10 nm to about 70 nm, or in the range of about 10 nm to about 50 nm, or in the range of about 10 nm to about 30 nm, or in the range of about 15 nm to about 45 nm. Other thicknesses are also contemplated.
- the fin layer 130 can be silicon-germanium (SiGe) or carbon-doped silicon-germanium (SiGe:C).
- a silicon-germanium fin layer 130 can have a germanium concentration in the range of about 5 at. % to about 60 at. %, or in the range of about 5 at. % to about 30 at. %, or in the range of about 5 at. % to about 25 at. %, or in the range of about 5% (i.e., Si .95 Ge .05 ) to about 15% (i.e., Si .85 Ge .15 ), or in the range of about 10 at. % to about 15 at.
- germanium concentrations are also contemplated.
- the mask segment(s) 121 can be removed from the substrate 110 , for example, by etching (e.g., wet etching, dry plasma etching, etc.), to expose the first region 101 of the substrate 110 .
- etching e.g., wet etching, dry plasma etching, etc.
- a CMP may be used to provide a uniform, smooth, flat surface to the substrate and the fin layer.
- FIG. 5 is a cross-sectional side view showing a fin template layer formed on the surface of the substrate and fin layer, a mandrel layer formed on the fin template layer, a mandrel template layer formed on the mandrel layer, and a mandrel mask layer formed on the mandrel template layer, in accordance with an embodiment of the present invention.
- a fin template layer 140 can be formed on at least a portion of a surface of a substrate 110 and a portion of the fin layer 130 , where the fin template layer 140 can cover a portion of a first region and a portion of a second region of the substrate.
- the fin template layer 140 can be formed on the substrate surface by CVD, PECVD, PVD, thermal growth, or combinations thereof, where the fin template layer 140 can be blanket deposited on the substrate.
- a fin template layer 140 can be a hard mask layer for masking the substrate 110 and fin layer 130 during transfer of a vertical fin pattern to the substrate and fin layer.
- the fin template layer 140 can be silicon oxide (SiO), silicon nitride (SiN), silicon oxynitride (SiON), silicon carbonitride (SiCN), silicon boronitride (SiBN), silicon carbide (SiC), silicon borocarbide (SiBC), silicon boro carbonitride (SiBCN), boron carbide (BC), boron nitride (BN), titanium nitride (TiN), or combinations thereof, where the fin template layer 140 may include one or more layers.
- the fin template layer 140 can also act as an etch-stop layer for forming sacrificial mandrels from a mandrel layer, where the fin template layer 140 can be selectively etched relative to other layers.
- the fin template layer 140 can be silicon nitride (SiN), for example, Si 3 N 4 .
- a mandrel layer 150 can be formed on at least a portion of the fin template layer 140 .
- the mandrel layer 150 can be formed by CVD, PECVD, PVD, a spin-on process, or combinations thereof, where the mandrel layer 150 can be blanket deposited on the fin template layer 140 .
- mandrel layer 150 can be a sacrificial material that can be easily and selectively patterned and etched.
- the mandrel layer 150 can be amorphous silicon (a-Si), poly-silicon (p-Si), amorphous carbon (a-C), silicon-germanium (SiGe), an organic planarization layer (OPL), silicon oxide (SiO), silicon nitride (SiN), or suitable combinations thereof.
- a mandrel template layer 160 can be formed on the mandrel layer 150 , where the mandrel template layer can be a hard mask layer.
- the mandrel template layer can be optional, and other processes can be used (e.g., direct write).
- the mandrel template layer 160 can be a silicon oxide (SiO), a silicon nitride (SiN), a silicon oxynitride (SiON), a silicon carbonitride (SiCN), a silicon boronitride (SiBN), a silicon borocarbide (SiBC), a silicon boro carbonitride (SiBCN), a boron carbide (BC), a boron nitride (BN), or combinations thereof, where the mandrel template layer 160 may include one or more layers.
- a mandrel mask layer 170 can be formed on the mandrel template layer 160 , where the mandrel mask layer 170 can be a hard mask layer or soft mask layer for masking the mandrel template layer 160 .
- the mandrel mask layer 170 can be a lithographic resist material (e.g., a photo resist material, an e-beam resist material, etc.).
- the mandrel mask layer 170 can be a positive or negative resist material, for example, Poly(methyl methacrylate) (PMMA) or SU-8, or an electron-beam (e-beam) cured material, for example, hydrogen silsesquioxane (HSQ).
- PMMA Poly(methyl methacrylate)
- e-beam electron-beam
- HSQ hydrogen silsesquioxane
- FIG. 6 is a cross-sectional side view showing a patterned mandrel mask layer and mandrel template layer on a plurality of sacrificial mandrels, in accordance with an embodiment of the present invention.
- the mandrel mask layer 170 can be patterned and developed to form mandrel mask segments 171 on the mandrel template layer 160 , where the mandrel mask segments 171 cover portions of the mandrel template layer 160 and expose other portions of the mandrel template layer.
- the exposed portions of the mandrel template layer 160 can be removed by wet etching or by a dry plasma etch, where the dry plasma can be a directional reactive ion etch (RIE). Removal of the exposed portions of the mandrel template layer 160 can form one or more mandrel templates 161 below the mandrel mask segments 171 , and expose underlying portions of the mandrel layer 150 .
- the mandrel templates 161 can be used to transfer the mandrel pattern to the mandrel layer 150 .
- a directional etch e.g., RIE
- RIE etching etch
- the mandrel mask segments 171 can be removed to expose the mandrel templates 161 , for example, by stripping or ashing.
- FIG. 7 is a cross-sectional side view showing a sidewall layer formed on the mandrel templates, sacrificial mandrels, and fin template layer, in accordance with an embodiment of the present invention.
- a sidewall spacer layer 180 can be formed on the exposed surfaces of the mandrel templates 161 and sacrificial mandrels 151 , where the sidewall spacer layer 180 can be formed by a conformal deposition, for example, ALD or PEALD, to control the thickness of the sidewall spacer layer 180 .
- the sidewall spacer layer 180 can have a thickness in the range of about 8 nm to about 40 nm, or about 10 nm to about 30 nm, or about 15 nm to 20 nm, where the thickness of the sidewall spacer layer 160 can determine the initial width of subsequently formed vertical fins.
- the sidewall spacer layer 180 can be silicon oxide (SiO), silicon nitride (SiN), silicon oxynitride (SiON), silicon carbide (SiC), conformal amorphous carbon (a-C), or combinations thereof.
- a sacrificial mandrel 151 and sidewall spacer layer 180 can be formed on a first region of the substrate 110 , and a sacrificial mandrel 151 and sidewall spacer layer 180 can be formed on a fin layer 130 on a second region of the substrate 110 .
- the sacrificial mandrels 151 and sidewall spacer layer 180 can be used to form vertical fins on two different regions of the substrate from two different materials at the same time. Other processes can be used to form vertical fins on two different regions of the substrate from two different materials at the same time.
- FIG. 8 is a cross-sectional side view showing sidewalls spacers formed on opposite sides of the sacrificial mandrels, in accordance with an embodiment of the present invention.
- a portion of the sidewall spacer layer 180 on the fin template layer 140 and the top surfaces of the mandrel templates 161 can be removed by an etch-back process using a directional etch, for example, RIE to remove the portion of the sidewall spacer layer on surfaces approximately perpendicular to the incident ion beam, while the sidewall spacer layer 180 on the vertical sidewalls of the sacrificial mandrels 151 remain essentially unetched.
- the remaining portion of the sidewall spacer layer 180 on the sacrificial mandrels 151 can form sidewall spacers 181 , where the thickness of the sidewall spacer layer 180 can determine the width of the sidewall spacers 181 .
- a plurality of vertical fins can be formed by a sidewall image transfer (SIT) process, self-aligned double patterning (SADP), or self-aligned quadruple patterning (SAQP) to provide a tight pitch between vertical fins.
- a direct print can be used to provide fins.
- Immersion Lithography can direct print down to about 78 nm pitch.
- Extreme ultraviolet lithography also known as EUV or EUVL
- EUV extreme ultraviolet
- SADP Self-aligned double patterning
- SADP can achieve down to about 40 nm to 60 nm fin pitch.
- Self-aligned quadruple patterning may be used to go down to below 40 nm fin pitch. While the figures illustrate a sidewall image transfer (SIT) process, this is for descriptive purposes, since these other processes are also contemplated, and the scope of the claims and invention should not be limited to the particular illustrated features.
- FIG. 9 is a cross-sectional side view showing sidewall spacers formed on the fin template layer after removal of the sacrificial mandrels, in accordance with an embodiment of the present invention.
- the mandrel templates 161 and sacrificial mandrels 151 can be removed after the sidewalls spacers 181 are formed, where the mandrel templates 161 and sacrificial mandrels 151 can be removed by selective etching (e.g., RIE or wet etch).
- the mandrel templates 161 and sacrificial mandrels 151 can be selectively removed, while the sidewalls spacers 181 remain on the fin template layer 140 forming a fin pattern.
- the sidewalls spacers 181 can be made of a different material from the mandrel templates 161 and sacrificial mandrels 151 , so the mandrel templates 161 and sacrificial mandrels 151 can be selectively removed.
- one or more sidewalls spacers 181 can be formed on a region of the substrate made of a first material and one or more sidewalls spacers 181 can be formed on a region of the substrate made of a second material different from the first material.
- the first material and second material can have different etch rates.
- the first material can be silicon and the second material can be silicon-germanium.
- FIG. 10 is a cross-sectional side view showing fin templates formed on the substrate and fin layer with sidewall spacers on each fin template, in accordance with an embodiment of the present invention.
- the fin pattern formed by the sidewalls spacers 181 can be transferred to the fin template layer 140 by removing the exposed portion of the fin template layer 140 .
- a portion of the fin template layer 140 can be removed to form a fin template 141 below each of the one or more sidewall spacers 181 by a directional RIE. Removal of the portions of the fin template layer 140 can expose portions of the underlying substrate 110 , surface/active layer(s), or source/drain layer(s) between each of the sidewall spacers 181 and fin templates 141 .
- FIG. 11 is a cross-sectional side view showing a plurality of vertical fins formed on the substrate and a plurality of vertical fins formed on the fin layer with a fin template and a sidewall spacer on each vertical fin, in accordance with an embodiment of the present invention.
- one or more vertical fin(s) 111 can be formed on the substrate 110 , where the vertical fin(s) 111 can be formed by removing a portion of the substrate 110 and/or fin layer 130 between and/or around a sidewall spacer 181 and fin template 141 .
- the one or more vertical fin(s) 111 can be formed by a directional etch, for example, a reactive ion etch (RIE) that removes the portion of the substrate 110 or fin layer 130 not covered by a sidewall spacer 181 .
- RIE reactive ion etch
- Vertical fin(s) 111 can be formed with a tapered profile having a greater width at the base of the vertical fin(s) and a narrower width at the top of the fin(s), or with a straight profile (i.e., an essentially uniform width), where the straight or tapered profile can be produced as an aspect of the etching process.
- one or more fin layer pillar(s) 131 can be formed from the underlying fin layer 130 on the substrate 110 , where the fin layer pillar(s) 131 can be formed by removing a portion of the fin layer 130 between and/or around a sidewall spacer 181 and fin template 141 .
- the one or more fin layer pillar(s) 131 can be formed by a directional etch, for example, a reactive ion etch (RIE) that removes the portion of the fin layer 130 not covered by a sidewall spacer 181 and fin template 141 .
- RIE reactive ion etch
- Fin layer pillar(s) 131 can be formed with a tapered profile having a greater width at the base and a narrower width at the top, or with a straight profile (i.e., an essentially uniform width, as depicted in FIG. 11 ), where the straight or tapered profile can be produced as an aspect of the etching process.
- the fin layer pillar(s) 131 can be on a substrate pillar 112 formed from the underlying substrate 110 , where a directional etching process can be continued into the underlying substrate. Portions of the substrate 110 below the fin layer 130 can be removed using the directional etch to increase the height of the vertical fin 111 formed by the fin layer pillar 131 and substrate pillar 112 .
- the height of the fin layer pillar 131 can form 1 ⁇ 2 to 2 ⁇ 3 of the total height, H 1 , of the vertical fin 111
- the height of the substrate pillar 112 can form 1 ⁇ 3 to 1 ⁇ 2 of the total height, H 1 , of the vertical fin.
- the vertical fin(s) 111 can be formed with an initial width, W 1 , intentionally greater than a predetermined final vertical fin width, W 2 .
- the vertical fin(s) 111 can have an initial width, W 1 , in the range of about 8 nm to about 40 nm, or about 10 nm to about 30 nm, or about 15 nm to 20 nm, where the initial vertical fin width can be greater than an intended final vertical fin width, W 2 .
- the initial vertical fin width, W 1 can be in the range of 50% to 100% greater, or 25% to 75% greater, or 50% to 75% greater than the intended final vertical fin width, W 2 .
- Other ranges of the width difference are also contemplated.
- substantially the same width can be formed for all fins, where fins with substantially the same width decreases the variability in properties of the later formed devices.
- the vertical fin(s) 111 can have a total height, H 1 , in the range of about 20 nm to about 100 nm or about 30 nm to about 75 nm, or about 45 nm to about 60 nm.
- the vertical fin(s) 111 can be rectangular with a long axis (i.e., length) and a narrow axis (i.e., width) perpendicular to the long axis.
- the vertical fin(s) 111 can have cross-sectional geometries that are trapezoidal (i.e., tapered fins).
- the vertical fin(s) 111 formed from only the substrate material can be formed at the same time by the same process, such as the etching process, as the vertical fin(s) 111 including a fin layer pillar 131 .
- the vertical fins(s) 111 can be strained or unstrained fin(s), for example, a strained Si x Ge (1-x) PFET and/or an unstrained silicon NFET.
- the vertical fin(s) 111 on the substrate may be used to fabricate one or more horizontal transport fin field effect transistors (HT FinFETs), where the current flows through the fin channel parallel to the plane of the substrate 110 .
- the vertical fin(s) 111 on the substrate may be used to fabricate one or more vertical transport fin field effect transistors (VT FinFETs), where the current flows through the fin channel perpendicular to the plane of the substrate 110 .
- the HT FinFETs may be electrically coupled to form CMOS devices, where an NFET and a PFET are coupled to form the CMOS device.
- FIG. 12 is a cross-sectional side view showing a filler layer formed on the vertical fins(s) 111 , in accordance with an embodiment of the present invention.
- the sidewall spacers 181 can be removed from the fin templates 141 and vertical fins 111 .
- the sidewall spacers 181 can be removed, for example, by an isotropic dry etch, a selective RIE process, or a selective wet etch.
- the underlying fin template(s) 141 can act as an etch stop.
- the fin template(s) 141 can remain on the vertical fin(s) 111 after the sidewall spacers 181 are removed, and be subsequently removed by a separate selective etch.
- a filler layer 190 can be formed on the exposed surfaces of the vertical fin(s) 111 , including the fin layer pillar 131 , and exposed surface of the substrate 110 , where the filler layer 170 can be formed by a blanket or directional deposition, for example, by CVD, LPCVD, PECVD, high density plasma (HDP) depositions, gas cluster ion beam (GCIB), or combinations thereof.
- CVD chemical vapor deposition
- PECVD high density plasma
- HDP high density plasma
- GCIB gas cluster ion beam
- the filler layer can be silicon oxide (SiO), a low-k dielectric, a flowable polymeric material, or a combination thereof.
- a low-k dielectric material can include, but not be limited to, carbon-doped silicon oxide (SiOC), a fluoride-doped silicon oxide (e.g., fluoride doped glass), a carbon doped silicon oxide, a porous silicon oxide, a spin-on silicon based polymeric material (e.g., tetraethyl orthosilicate (TEOS), hydrogen silsesquioxane (HSQ) and methylsilsesquioxane (MSQ)), or combinations thereof.
- TEOS tetraethyl orthosilicate
- HSQ hydrogen silsesquioxane
- MSQ methylsilsesquioxane
- the filler layer 190 can fill the spaces between vertical fins 111 , and be etched back to a predetermined height, where the filler layer 190 can cover the substrate pillar 112 and at least a portion of the fin layer pillar 131 .
- a planarization step such as chemical mechanical polish (CMP) can be performed between the deposition and etch back of the filler layer 190 to provide a smooth, flat surface for subsequent processing.
- FIG. 13 is a cross-sectional side view showing fin templates with reduced widths forming template posts, in accordance with an embodiment of the present invention.
- portions of the fin templates 141 can be removed to reduce the width of the fin templates 141 to form template posts 142 .
- an isotropic etch e.g., SiCoNiTM, wet etch, dry plasma etch
- SiCoNiTM e.g., SiCoNiTM, wet etch, dry plasma etch
- a portion of the top surface of the vertical fins 111 can be exposed by reducing the width of the fin templates 141 .
- removal of a portion of the fin templates 141 to form template posts 142 can be optional.
- the width of the fin templates 141 , W 1 to W 2 can be adjusted to effect the geometry of the substrate pillar 112 and/or the fin layer pillar 131 through different spatial diffusion of reactants into the substrate pillar 112 and/or the fin layer pillar 131 .
- An exposed top surface of the vertical fins 111 can allow more reactant to penetrate into a vertical fin, substrate pillar 112 , and/or the fin layer pillar 131 from different angles.
- a narrower template post 142 allows more material conversion at the top of the vertical fins 111 , which can be more important for wider vertical fins.
- a higher Ge concentration can provide faster conversion of a SiGe fin layer pillar 131 that can result in a thicker composite pillar layer than composite fin layer.
- the reduced width, W 2 , of the template posts 142 can be less than the initial width, W 1 , of the vertical fins 111 , where the difference in widths, W 1 ⁇ W 2 , can expose a predetermined portion of the vertical fins 111 .
- FIG. 14 is a cross-sectional side view showing the conversion of an exposed portion of the vertical fins, where some vertical fins include a fin layer pillar, to a composite fin layer, in accordance with an embodiment of the present invention.
- an exposed portion of the vertical fins 111 can be converted into a composite fin layer 113 having a chemical composition different from the chemical composition of the fin layer pillar 131 and substrate 110 .
- the exposed portion of the vertical fins 111 can be converted into a different chemical composition by reacting the exposed material with a reactant.
- the outer layer of the vertical fins 111 can be converted to form a composite fin layer 113 on a fin core 115 , where a portion of the vertical fins 111 below the top surface of the filler layer 190 can form a flared fin section 116 (e.g., trapezoidal, trumpet shaped) due to reactant diffusion.
- the partial conversion of the vertical fins 111 below the top surface of the filler layer 190 can form a flared fin section 116 between the fin core 115 and a lower fin section 117 that is unreacted.
- an exposed portion of the fin layer pillar 131 can be converted into a composite pillar layer 133 having a chemical composition different from the chemical composition of the fin layer pillar 131 and substrate 110 .
- the outer layer of the fin layer pillars 131 can be converted to form the composite pillar layer 133 on a pillar core 135 , where a portion of the fin layer pillar 131 below the top surface of the filler layer 190 can form a flared pillar section 136 due to reactant diffusion.
- the partial conversion of the fin layer pillar 131 below the top surface of the filler layer 190 can form a flared pillar section 136 between the pillar core 135 and the substrate pillar 112 that is unreacted.
- formation of the composite pillar layer 133 through a reaction that consumes a portion of the fin layer pillar 131 can create a germanium (Ge) concentration gradient in the flared pillar section 136 due to increased Ge concentration density towards the narrowest portion of the flared pillar section 136 and a Ge concentration substantially the same as the germanium concentration in the fin layer 130 at the widest portion of the flared pillar section, with a concentration gradient therebetween.
- the germanium concentration in the substrate pillar 112 can remain the same as the substrate 110 Ge concentration (i.e., essentially 0% Ge).
- the composite fin layer 113 and composite pillar layer 133 can be formed by reacting the vertical fins 111 and fin layer pillars 131 at the same time (e.g., through co-exposure to the reactants).
- the vertical fins 111 and fin layer pillars 131 can be different materials that react at substantially comparable rates to form composite fin layers 113 and composite pillar layers 133 having substantially comparable thicknesses.
- the vertical fins 111 and fin layer pillars 131 can be different materials that react at different rates to form composite fin layers 113 and composite pillar layers 133 having different thicknesses.
- the reaction can be an oxidation, where the oxidation can be a thermal oxidation or a chemical oxidation.
- the reaction can be a condensation reaction that causes germanium to migrate from the surface region of the fin layer pillars 131 into the pillar core 135 .
- the initial width, W 1 can be predetermined based on the thickness of composite fin layers 113 and composite pillar layers 133 to be formed.
- the composite fin layer 113 has a thickness in the range of about 1 nm to about 10 nm, or in the range of about 3 nm to about 5 nm.
- the composite pillar layer 133 has a thickness in the range of about 1 nm to about 10 nm, or in the range of about 2 nm to about 10 nm, or in the range of about 3 nm to about 5 nm.
- the silicon of both the vertical fins 111 composed of silicon substrate material and the vertical fins 111 having exposed fin layer pillars 131 composed of SiGe can be at least partially oxidized to form a silicon oxide (SiO) composite fin layer 113 on a Si fin core 115 , and a SiO composite pillar layer 133 on an SiGe pillar core 135 .
- SiO silicon oxide
- An oxidizing agent can be used to form the silicon oxide (SiO) from the silicon (Si) of the vertical fins 111 , where the oxidizing agent can include, but not be limited to, atomic oxygen (O), molecular oxygen (O 2 ), oxygen plasma, ozone (O 3 ), water (H 2 O), ionized oxygen (O 2 + ), and suitable combinations thereof. Since an oxidizing agent can diffuse through an SiO composite fin layer 113 , the composite layer 113 can be grown to a predetermined thickness, and a predetermined amount of Si consumed from the vertical fins 111 .
- the oxidizing agent can be used to form the silicon oxide (SiO) of the composite pillar layer 133 from the silicon (Si) of the SiGe in layer pillars 131 , while increasing the Ge concentration of the pillar core 135 .
- Migration of germanium (Ge) into the pillar core 135 can increase the Ge concentration from the initial value of the fin layer 130 to a final value intended for the vertical fin 111 .
- the final germanium concentration in the pillar core 135 can be in the range of about 10 at. % to about 85 at. %, or in the range of about 10 at. % to about 50 at. %, or in the range of about 20 at. % to about 50 at. %, where the concentration is atomic percent (at. %).
- the initial germanium concentration in the fin layer 130 can be in the range of about 5 at. % to about 60 at. %, or in the range of about 5 at. % to about 25 at. %, or in the range of about 10 at. % to about 15 at. %.
- the initial germanium concentration in the fin layer 130 is at least 3 at. %.
- the initial germanium concentration in the fin layer 130 is greater than 0.1%.
- the change in germanium concentration from an initial germanium concentration to a final germanium concentration can be calculated from the initial germanium concentration and the final width, W 2 , by determining the final germanium density.
- a fin layer pillar 131 having 10 at. % Ge and an initial width, W 1 , of 10 nm can be converted into a pillar core 135 with a final width, W 2 , of 5 nm and a 20 at. % Ge concentration because the initial amount of germanium has been condensed into half the fin volume.
- This relationship and the migration of the germanium can create a Ge concentration profile in the pillar core 135 and flared pillar section 136 .
- the reduced width, W 2 , of the template posts 142 and difference in widths, W 1 ⁇ W 2 can affect the thickness of the composite fin layer 113 and composite pillar layer 133 .
- the larger the difference between W 1 and W 2 the greater the Ge % generated in the final SiGe material section (e.g., fin layer pillars 131 ) of the vertical fin 111 , as Ge is further condensed into a final SiGe pillar core 135 .
- the Ge concentration in the pillar core 135 is substantially uniform from left to right.
- the Ge concentration in the pillar core 135 may be higher at the fin surface if the Ge diffusion length is small compared with the width of the fin layer pillars 131 . Ge can be condensed and localized in the regions below surfaces.
- a portion of the at least one vertical fin 111 on the first region of the substrate can be removed to leave a fin core 115
- a portion of the at least one vertical fin 111 on the second region of the substrate can be removed to leave a pillar core 135 .
- a vertical fin on the first region can include the fin core
- a vertical fin on the second region can include the pillar core.
- FIG. 15 is a cross-sectional side view showing removal of the composite fin layer and composite pillar layer, in accordance with an embodiment of the present invention.
- the composite fin layer 113 can be removed from the fin core 115 , and the composite pillar layer 133 can be removed from the pillar core 135 , where the composite fin layer 113 and composite pillar layer 133 can be removed at the same time.
- the composite fin layer 113 and composite pillar layer 133 can be removed using a selective isotropic etch (e.g., wet etch, etc.) that leaves the fin core 115 and pillar core 135 .
- a selective isotropic etch e.g., wet etch, etc.
- the filler layer 190 is the same material as the composite fin layer 113 or composite pillar layer 133
- an upper portion of the filler layer 190 can be removed when the composite fin layer 113 or composite pillar layer 133 is removed.
- the final vertical fin width, W 2 after removal of the composite fin layer 113 and composite pillar layer 133 can be in the range of 4 nm to 20 nm, or about 5 nm to about 10 nm, or about 7 nm.
- the final vertical fin width, W 2 can be the same for fin core 115 and pillar core 135 .
- Each of the fin cores 115 and each of the pillar cores 135 can have a width, W 2 , that is less than the width, W 1 , of a lower fin section 117 below the each of the fin cores 115 .
- the vertical fin(s) can have 3 sections: (1) a fin core 115 or pillar core 135 with a narrower width, W 2 , (2) a flared fin section 116 or flared pillar section 136 , and (3) a lower fin section 117 or substrate pillar 112 with a greater width, W 1 .
- the lower fin section 117 and substrate pillar 112 can be the same material as the substrate, whereas the pillar core 135 and a portion of the flared pillar section 136 can be a semiconductor material with a different composition that the substrate 110 .
- the greater width, W 1 , of the a lower fin section 117 or substrate pillar 112 can provide greater heat dissipation, where the heat can be ohmic heating generated by the current flow through the vertical fin (e.g., a source/channel/drain of a FET).
- FIG. 16 is a cross-sectional side view showing the diffusion of dopants into the flared fin section, lower fin section, pillar core, and flared pillar section, in accordance with an embodiment of the present invention.
- dopants can be introduced into the flared fin section 116 and the lower fin section 117 , and into the flared pillar section 136 and the substrate pillar 112 , where dopants can diffuse from the filler layer 190 or a doped oxide liner (e.g., solid phase diffusion).
- the same or different dopants can be introduced into the flared fin section 116 and the lower fin section 117 , than into the flared pillar section 136 and the substrate pillar 112 .
- the doped flared fin section 116 , lower fin section 117 , flared pillar section 136 , and substrate pillar 112 can form a punch-through stop (PTS) 118 below the fin core 115 and a punch-through stop (PTS) 119 below the pillar core 135 that can form the channels of a PFET or NFET.
- PTS punch-through stop
- PTS punch-through stop
- p-type dopants e.g., boron, gallium, and indium
- n-type dopants e.g., phosphorus, arsenic, antimony
- the PTS can be formed by any suitable doping techniques, including but not limited to, ion implantation, gas phase doping, plasma doping, plasma immersion ion implantation, cluster doping, infusion doping, liquid phase doping, solid phase doping, etc.
- a doped liner layer can be formed on at least a portion of the vertical fins 111 and substrate surface, and the dopant caused to migrate from the doped liner layer into the vertical fins 111 and substrate 110 .
- the PTS can be formed below the vertical fin(s) 111 and/or under a source/drain region at the base of a vertical fin.
- the PTS may be formed before vertical fin formation, but after fin layer 130 formation, such that the dopant may be below the fin layer 130 and in the first region.
- FIG. 17 is a cross-sectional side view showing exposed fin cores and pillar cores after removal of the template posts, in accordance with an embodiment of the present invention.
- the template posts 142 can be removed from the fin cores 115 and pillar cores 135 , where the template posts 142 can be removed using a selective isotropic etch (e.g., a wet etch).
- a selective isotropic etch e.g., a wet etch
- FIG. 18 is a cross-sectional side view showing a gate dielectric layer formed on the in core, pillar core, and filler layer, in accordance with an embodiment of the present invention.
- a gate dielectric layer 200 can be formed on the exposed surfaces of the fin core 115 , pillar core 135 , and top surface of the filler layer 190 , where the gate dielectric layer 200 can be blanket (e.g., CVD, PECVD) or conformally (e.g., ALD, PEALD) deposited.
- the gate dielectric layer 200 can be an insulating dielectric layer, for example, a silicon oxide (SiO), silicon nitride (SiN), silicon oxynitride (SiON), a high-K dielectric, or a suitable combination of these materials.
- the gate dielectric layer 200 can be a high-K dielectric material that can include, but is not limited to, transition metal oxides such as hafnium oxide (e.g., HfO 2 ), hafnium silicon oxide (e.g., HfSiO 4 ), hafnium silicon oxynitride (Hf w Si x O y N z ), lanthanum oxide (e.g., La 2 O 3 ), lanthanum aluminum oxide (e.g., LaAlO 3 ), zirconium oxide (e.g., ZrO 2 ), zirconium silicon oxide (e.g., ZrSiO 4 ), zirconium silicon oxynitride (Zr w Si x O y N z ), tantalum oxide (e.g., TaO 2 , Ta 2 O 5 ), titanium oxide (e.g., TiO 2 ), barium strontium titanium oxide (e.g., BaTiO 3 —
- the gate dielectric layer 200 can have a thickness in the range of about 1 nm to about 4 nm, or can have a thickness in the range of about 1 nm to about 2 nm.
- FIG. 19 is a cross-sectional side view showing a work function layer on the gate dielectric layer, in accordance with an embodiment of the present invention.
- a work function layer 210 can be formed on the exposed surfaces of the gate dielectric layer 200 , where the work function layer 210 can be conformally deposited by ALD, PEALD, CVD, PECVD, or combinations thereof.
- a work function layer 210 can be formed on the gate dielectric layer 200 , where the work function layer 210 and gate dielectric layer 200 can surround at least a portion of each of one or more vertical fin(s) 111 as a part of a gate structure.
- the work function layer 210 can be formed on the gate dielectric layer 200 to adjust the electrical properties of a gate electrode.
- the work function layer can be optional.
- a portion of the work function layer 210 can be formed on the gate dielectric layer 200 on the spacer trough(s) 181 and liner(s) 171 .
- different work function layers can be formed for the nFETs and pFETs, respectively.
- a work function layer 210 can be a conductive nitride, including but not limited to titanium nitride (TiN), titanium aluminum nitride (TiAlN), hafnium nitride (HfN), hafnium silicon nitride (HfSiN), tantalum nitride (TaN), tantalum silicon nitride (TaSiN), tungsten nitride (WN), molybdenum nitride (MoN), niobium nitride (NbN); a conductive carbide, including but not limited to titanium carbide (TiC), titanium aluminum carbide (TiAlC), tantalum carbide (TaC), hafnium carbide (HfC); or combinations thereof.
- the work function layer 210 can include multiple layers of work function materials, for example, a work function layer can be a TiN/TiC stack.
- the work function layer 210 can have a thickness in the range of about 1 nm to about 11 nm, or can have a thickness in the range of about 3 nm to about 5 nm.
- FIG. 20 is a cross-sectional side view showing a gate fill layer on the work function layer, in accordance with an embodiment of the present invention.
- a gate fill layer 220 can be formed on the gate dielectric layer 200 and/or work function layer 210 if present, where the gate fill layer 220 can fill in the space between vertical fins 111 .
- the gate fill layer 220 , gate dielectric layer 200 , and optionally the work function layer 210 can form a gate structure on one or more vertical fin(s) 111 , where the gate fill layer 220 and work function layer 210 can form a conductive gate electrode.
- the gate fill layer 220 can be doped polycrystalline or amorphous silicon, germanium, silicon-germanium, a metal (e.g., tungsten, titanium, tantalum, ruthenium, zirconium, cobalt, copper, aluminum, lead, platinum, tin, silver, gold), a conducting metallic compound material (e.g., tantalum nitride, titanium nitride, tantalum carbide, titanium carbide, titanium aluminum carbide, tungsten silicide, tungsten nitride, ruthenium oxide, cobalt silicide, nickel silicide), carbon nanotube, conductive carbon, graphene, or any suitable combination of these materials.
- the conductive material may further comprise dopants that are incorporated during or after deposition.
- the gate fill layer 220 can be blanket deposited, and a chemical-mechanical polishing (CMP) used to remove gate fill layer material that extends above the top surfaces of the gate dielectric layer 200 and/or work function layer 210 if present, where the CMP can provide a smooth, flat surface.
- CMP chemical-mechanical polishing
- FIG. 21 is a cross-sectional side view showing an isolation trench formed between vertical fins formed on a first region of the substrate and vertical fins formed on a second region of the substrate, in accordance with an embodiment of the present invention.
- the gate fill layer 220 can be masked and an opening formed in the mask.
- a directional etch can be used to remove a portion of the gate fill layer 220 , work function layer 210 , and gate dielectric layer 200 to form an isolation trench 230 between vertical fins 111 formed on a first region 101 of the substrate 110 and vertical fins 111 formed on a second region 102 of the substrate 110 .
- the isolation trench 230 can separate a gate structure into two physically and electrically separate gate structures, where one gate structure is on a first region 101 of the substrate 110 , and another gate structure is on the second region 102 of the substrate 110 .
- the isolation trench 230 can expose the surface of the filler layer 190 .
- electrical connections can be formed that electrically connect the vertical fins 111 formed on the first region 101 and vertical fins 111 formed on a second region 102 to form a PFET and an NFET, which may be connected to form a CMOS device.
- the gate structure can be formed directly on the vertical fins 111 , through a so-called ‘gate-first’ process sequence.
- a gate structure can be formed by first forming a dummy gate, and later replacing the dummy gate with a real gate structure, through a so-called replacement metal gate process sequence.
- Other transistor structures such as spacers, source/drains, etc. can be formed after the formation of the real gate or dummy gate.
- source/drains can be formed on the vertical fins for HTFETs, or on the vertical fins 111 and in the substrate 110 for VTFETs.
- Electrical connections can be formed, for example, by via etching and a conductor fill to electrically connect the device components to form the NFETs, PFETs, and CMOS devices.
- the devices may be suitably packaged and configured to form device chips, electrical circuits, etc.
- the present embodiments can include a design for an integrated circuit chip, which can be created in a graphical computer programming language, and stored in a computer storage medium (such as a disk, tape, physical hard drive, or virtual hard drive such as in a storage access network). If the designer does not fabricate chips or the photolithographic masks used to fabricate chips, the designer can transmit the resulting design by physical means (e.g., by providing a copy of the storage medium storing the design) or electronically (e.g., through the Internet) to such entities, directly or indirectly.
- the stored design is then converted into the appropriate format (e.g., GDSII) for the fabrication of photolithographic masks, which typically include multiple copies of the chip design in question that are to be formed on a wafer.
- the photolithographic masks are utilized to define areas of the wafer (and/or the layers thereon) to be etched or otherwise processed.
- the resulting integrated circuit chips can be distributed by the fabricator in raw wafer form (that is, as a single wafer that has multiple unpackaged chips), as a bare die, or in a packaged form.
- the chip is mounted in a single chip package (such as a plastic carrier, with leads that are affixed to a motherboard or other higher level carrier) or in a multichip package (such as a ceramic carrier that has either or both surface interconnections or buried interconnections).
- the chip is then integrated with other chips, discrete circuit elements, and/or other signal processing devices as part of either (a) an intermediate product, such as a motherboard, or (b) an end product.
- the end product can be any product that includes integrated circuit chips, ranging from toys and other low-end applications to advanced computer products having a display, a keyboard or other input device, and a central processor.
- material compounds will be described in terms of listed elements, e.g., SiGe. These compounds include different proportions of the elements within the compound, e.g., SiGe includes Si x Ge 1-x where x is less than or equal to 1, etc.
- SiGe includes Si x Ge 1-x where x is less than or equal to 1, etc.
- other elements can be included in the compound and still function in accordance with the present principles.
- the compounds with additional elements will be referred to herein as alloys.
- any of the following “/”, “and/or”, and “at least one of”, for example, in the cases of “A/B”, “A and/or B” and “at least one of A and B”, is intended to encompass the selection of the first listed option (A) only, or the selection of the second listed option (B) only, or the selection of both options (A and B).
- such phrasing is intended to encompass the selection of the first listed option (A) only, or the selection of the second listed option (B) only, or the selection of the third listed option (C) only, or the selection of the first and the second listed options (A and B) only, or the selection of the first and third listed options (A and C) only, or the selection of the second and third listed options (B and C) only, or the selection of all three options (A and B and C).
- This can be extended, as readily apparent by one of ordinary skill in this and related arts, for as many items listed.
- spatially relative terms such as “beneath,” “below,” “lower,” “above,” “upper,” and the like, can be used herein for ease of description to describe one element's or feature's relationship to another element(s) or feature(s) as illustrated in the FIGS. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the FIGS. For example, if the device in the FIGS. is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the t “below” encompass both an orientation of above and below.
- the device can be otherwise oriented (rotated 90 degrees or at other orientations), and the spatially relative descriptors used herein can be interpreted accordingly.
- a layer is referred to as being “between” two layers, it can be the only layer between the two layers, or more intervening layers can also be present.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
Abstract
Description
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/866,150 US11444083B2 (en) | 2017-02-27 | 2020-05-04 | Fabrication of fin field effect transistors utilizing different fin channel materials while maintaining consistent fin widths |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/443,644 US10707208B2 (en) | 2017-02-27 | 2017-02-27 | Fabrication of fin field effect transistors utilizing different fin channel materials while maintaining consistent fin widths |
US16/866,150 US11444083B2 (en) | 2017-02-27 | 2020-05-04 | Fabrication of fin field effect transistors utilizing different fin channel materials while maintaining consistent fin widths |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/443,644 Division US10707208B2 (en) | 2017-02-27 | 2017-02-27 | Fabrication of fin field effect transistors utilizing different fin channel materials while maintaining consistent fin widths |
Publications (2)
Publication Number | Publication Date |
---|---|
US20200266195A1 US20200266195A1 (en) | 2020-08-20 |
US11444083B2 true US11444083B2 (en) | 2022-09-13 |
Family
ID=63246410
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/443,644 Expired - Fee Related US10707208B2 (en) | 2017-02-27 | 2017-02-27 | Fabrication of fin field effect transistors utilizing different fin channel materials while maintaining consistent fin widths |
US16/866,150 Active US11444083B2 (en) | 2017-02-27 | 2020-05-04 | Fabrication of fin field effect transistors utilizing different fin channel materials while maintaining consistent fin widths |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/443,644 Expired - Fee Related US10707208B2 (en) | 2017-02-27 | 2017-02-27 | Fabrication of fin field effect transistors utilizing different fin channel materials while maintaining consistent fin widths |
Country Status (1)
Country | Link |
---|---|
US (2) | US10707208B2 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107706111B (en) * | 2016-08-09 | 2020-07-10 | 中芯国际集成电路制造(上海)有限公司 | Method for forming semiconductor device |
WO2019005106A1 (en) * | 2017-06-30 | 2019-01-03 | Intel Corporation | Transistor with wide bandgap channel and narrow bandgap source/drain |
CN109545684B (en) * | 2017-09-22 | 2020-11-27 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
US10297668B1 (en) * | 2018-01-22 | 2019-05-21 | International Business Machines Corporation | Vertical transport fin field effect transistor with asymmetric channel profile |
US10529850B2 (en) * | 2018-04-18 | 2020-01-07 | International Business Machines Corporation | Vertical field-effect transistor including a fin having sidewalls with a tapered bottom profile |
US10741557B2 (en) * | 2018-05-22 | 2020-08-11 | International Business Machines Corporation | Hybrid high mobility channel transistors |
US10475791B1 (en) * | 2018-05-31 | 2019-11-12 | Globalfoundries Inc. | Transistor fins with different thickness gate dielectric |
US11211479B2 (en) * | 2018-08-14 | 2021-12-28 | Taiwan Semiconductor Manufaciuring Co., Ltd. | Method of fabricating trimmed fin and fin structure |
DE102019121270B4 (en) | 2018-09-28 | 2024-05-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Formation method of a semiconductor device with fin structures |
US11094597B2 (en) * | 2018-09-28 | 2021-08-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Structure and formation method of semiconductor device with fin structures |
US10700183B2 (en) * | 2018-10-19 | 2020-06-30 | Taiwan Semiconductor Manufacturing Co., Ltd. | Fin field effect transistor (FinFET) device structure and method for forming the same |
US10847426B2 (en) * | 2018-10-28 | 2020-11-24 | Taiwan Semicondutor Manufacturing Company, Ltd. | FinFET devices and methods of forming the same |
US11551930B2 (en) * | 2018-12-12 | 2023-01-10 | Tokyo Electron Limited | Methods to reshape spacer profiles in self-aligned multiple patterning |
US11257681B2 (en) * | 2019-07-17 | 2022-02-22 | International Business Machines Corporation | Using a same mask for direct print and self-aligned double patterning of nanosheets |
US11158726B2 (en) * | 2019-07-31 | 2021-10-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Controlling fin-thinning through feedback |
US10861960B1 (en) * | 2019-07-31 | 2020-12-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET device and method |
US11901457B2 (en) * | 2019-12-02 | 2024-02-13 | Intel Corporation | Fin shaping and integrated circuit structures resulting therefrom |
US11164952B2 (en) | 2020-03-07 | 2021-11-02 | Qualcomm Incorporated | Transistor with insulator |
US11189697B2 (en) | 2020-04-01 | 2021-11-30 | Taiwan Semiconductor Manufacturing Co., Ltd. | Ultra-thin fin structure and method of fabricating the same |
US11424347B2 (en) | 2020-06-11 | 2022-08-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and method |
US11335683B2 (en) * | 2020-06-30 | 2022-05-17 | Qualcomm Incorporated | Device channel profile structure |
US11527616B2 (en) | 2020-11-20 | 2022-12-13 | International Business Machines Corporation | Vertical transport CMOS transistors with asymmetric threshold voltage |
US11923438B2 (en) | 2021-09-21 | 2024-03-05 | International Business Machines Corporation | Field-effect transistor with punchthrough stop region |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080102570A1 (en) * | 2006-11-01 | 2008-05-01 | Micron Technology, Inc. | Fin field emission transistor apparatus and processes |
US20110108920A1 (en) * | 2009-11-09 | 2011-05-12 | International Business Machines Corporation | High-k/metal gate cmos finfet with improved pfet threshold voltage |
US20110147811A1 (en) * | 2009-12-23 | 2011-06-23 | Kavalieros Jack T | Two-dimensional condensation for uniaxially strained semiconductor fins |
US8048723B2 (en) | 2008-12-05 | 2011-11-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Germanium FinFETs having dielectric punch-through stoppers |
US20130224936A1 (en) * | 2012-02-23 | 2013-08-29 | Samsung Electronics Co., Ltd. | Methods of manufacturing a semiconductor device |
US20130309838A1 (en) * | 2012-05-17 | 2013-11-21 | Globalfoundries Inc. | Methods for fabricating finfet integrated circuits on bulk semiconductor substrates |
US20140097518A1 (en) * | 2012-10-04 | 2014-04-10 | International Business Machines Corporation | Semiconductor alloy fin field effect transistor |
US8703565B2 (en) | 2010-02-09 | 2014-04-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bottom-notched SiGe FinFET formation using condensation |
US9093326B2 (en) | 2013-10-21 | 2015-07-28 | International Business Machines Corporation | Electrically isolated SiGe fin formation by local oxidation |
US20150228653A1 (en) * | 2014-02-10 | 2015-08-13 | International Business Machines Corporation | SiGe and Si FinFET Structures and Methods for Making the Same |
US20160027775A1 (en) | 2014-07-25 | 2016-01-28 | Globalfoundries Inc. | Dual-width fin structure for finfets devices |
US9257556B2 (en) | 2014-01-03 | 2016-02-09 | Qualcomm Incorporated | Silicon germanium FinFET formation by Ge condensation |
US9276013B1 (en) | 2015-01-21 | 2016-03-01 | International Business Machines Corporation | Integrated formation of Si and SiGe fins |
US9299809B2 (en) | 2012-12-17 | 2016-03-29 | Globalfoundries Inc. | Methods of forming fins for a FinFET device wherein the fins have a high germanium content |
US20160111338A1 (en) | 2013-05-31 | 2016-04-21 | Stmicroelectronics, Inc. | METHOD TO CO-INTEGRATE SiGe AND Si CHANNELS FOR FINFET DEVICES |
US9324843B2 (en) | 2014-09-05 | 2016-04-26 | International Business Machines Corporation | High germanium content silicon germanium fins |
US20160181095A1 (en) | 2014-12-18 | 2016-06-23 | Globalfoundries Inc. | Silicon-germanium fin of height above critical thickness |
US20170162447A1 (en) * | 2014-06-24 | 2017-06-08 | Intel Corporation | Techniques for forming ge/sige-channel and iii-v-channel transistors on the same die |
US20170213912A1 (en) * | 2016-01-27 | 2017-07-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method and Structure for FinFET Device |
US20170358680A1 (en) * | 2016-06-13 | 2017-12-14 | Samsung Electronics Co., Ltd. | Semiconductor Devices Including Gate Dielectric Structures |
US20180122916A1 (en) * | 2016-10-31 | 2018-05-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Nanolaminate structure, semiconductor device and method of forming nanolaminate structure |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006001680B3 (en) * | 2006-01-12 | 2007-08-09 | Infineon Technologies Ag | Manufacturing method for a FinFET transistor arrangement and corresponding FinFET transistor arrangement |
US9093533B2 (en) * | 2013-07-24 | 2015-07-28 | International Business Machines Corporation | FinFET structures having silicon germanium and silicon channels |
US9536900B2 (en) * | 2014-05-22 | 2017-01-03 | Globalfoundries Inc. | Forming fins of different semiconductor materials on the same substrate |
US9514995B1 (en) * | 2015-05-21 | 2016-12-06 | Globalfoundries Inc. | Implant-free punch through doping layer formation for bulk FinFET structures |
US9666581B2 (en) * | 2015-08-21 | 2017-05-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET with source/drain structure and method of fabrication thereof |
US9882052B2 (en) * | 2016-06-30 | 2018-01-30 | Globalfoundries Inc. | Forming defect-free relaxed SiGe fins |
-
2017
- 2017-02-27 US US15/443,644 patent/US10707208B2/en not_active Expired - Fee Related
-
2020
- 2020-05-04 US US16/866,150 patent/US11444083B2/en active Active
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080102570A1 (en) * | 2006-11-01 | 2008-05-01 | Micron Technology, Inc. | Fin field emission transistor apparatus and processes |
US8048723B2 (en) | 2008-12-05 | 2011-11-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Germanium FinFETs having dielectric punch-through stoppers |
US20110108920A1 (en) * | 2009-11-09 | 2011-05-12 | International Business Machines Corporation | High-k/metal gate cmos finfet with improved pfet threshold voltage |
US20110147811A1 (en) * | 2009-12-23 | 2011-06-23 | Kavalieros Jack T | Two-dimensional condensation for uniaxially strained semiconductor fins |
US8703565B2 (en) | 2010-02-09 | 2014-04-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bottom-notched SiGe FinFET formation using condensation |
US20130224936A1 (en) * | 2012-02-23 | 2013-08-29 | Samsung Electronics Co., Ltd. | Methods of manufacturing a semiconductor device |
US20130309838A1 (en) * | 2012-05-17 | 2013-11-21 | Globalfoundries Inc. | Methods for fabricating finfet integrated circuits on bulk semiconductor substrates |
US20140097518A1 (en) * | 2012-10-04 | 2014-04-10 | International Business Machines Corporation | Semiconductor alloy fin field effect transistor |
US9299809B2 (en) | 2012-12-17 | 2016-03-29 | Globalfoundries Inc. | Methods of forming fins for a FinFET device wherein the fins have a high germanium content |
US20160111338A1 (en) | 2013-05-31 | 2016-04-21 | Stmicroelectronics, Inc. | METHOD TO CO-INTEGRATE SiGe AND Si CHANNELS FOR FINFET DEVICES |
US9093326B2 (en) | 2013-10-21 | 2015-07-28 | International Business Machines Corporation | Electrically isolated SiGe fin formation by local oxidation |
US9257556B2 (en) | 2014-01-03 | 2016-02-09 | Qualcomm Incorporated | Silicon germanium FinFET formation by Ge condensation |
US20150228653A1 (en) * | 2014-02-10 | 2015-08-13 | International Business Machines Corporation | SiGe and Si FinFET Structures and Methods for Making the Same |
US20170162447A1 (en) * | 2014-06-24 | 2017-06-08 | Intel Corporation | Techniques for forming ge/sige-channel and iii-v-channel transistors on the same die |
US20160027775A1 (en) | 2014-07-25 | 2016-01-28 | Globalfoundries Inc. | Dual-width fin structure for finfets devices |
US9324843B2 (en) | 2014-09-05 | 2016-04-26 | International Business Machines Corporation | High germanium content silicon germanium fins |
US20160181095A1 (en) | 2014-12-18 | 2016-06-23 | Globalfoundries Inc. | Silicon-germanium fin of height above critical thickness |
US9276013B1 (en) | 2015-01-21 | 2016-03-01 | International Business Machines Corporation | Integrated formation of Si and SiGe fins |
US20170213912A1 (en) * | 2016-01-27 | 2017-07-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method and Structure for FinFET Device |
US20170358680A1 (en) * | 2016-06-13 | 2017-12-14 | Samsung Electronics Co., Ltd. | Semiconductor Devices Including Gate Dielectric Structures |
US20180122916A1 (en) * | 2016-10-31 | 2018-05-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Nanolaminate structure, semiconductor device and method of forming nanolaminate structure |
Non-Patent Citations (1)
Title |
---|
List of IBM Patents or Patent Applications Treated as Related dated May 4, 2020, 2 pages. |
Also Published As
Publication number | Publication date |
---|---|
US10707208B2 (en) | 2020-07-07 |
US20200266195A1 (en) | 2020-08-20 |
US20180247938A1 (en) | 2018-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11444083B2 (en) | Fabrication of fin field effect transistors utilizing different fin channel materials while maintaining consistent fin widths | |
US11081400B2 (en) | Fabrication of a pair of vertical fin field effect transistors having a merged top source/drain | |
US10998230B2 (en) | Fabrication of self-aligned gate contacts and source/drain contacts directly above gate electrodes and source/drains | |
US11081482B2 (en) | Fabrication of vertical fin field effect transistors having top air spacers and a self aligned top junction | |
US10381476B2 (en) | Vertical transport fin field effect transistors on a substrate with varying effective gate lengths | |
CN110235224B (en) | Bottom dielectric isolation method for vertical transmission fin field effect transistor | |
US10411127B2 (en) | Forming a combination of long channel devices and vertical transport fin field effect transistors on the same substrate | |
US10446647B2 (en) | Approach to minimization of strain loss in strained fin field effect transistors | |
US10727352B2 (en) | Long-channel fin field effect transistors | |
US11251267B2 (en) | Vertical transistors with multiple gate lengths |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHENG, KANGGUO;LI, JUNTAO;XU, PENG;SIGNING DATES FROM 20170130 TO 20170131;REEL/FRAME:052564/0213 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW YORK Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECORDING INFORMATION PREVIOUSLY RECORDED AT REEL: 052564 FRAME: 0213. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:CHENG, KANGGUO;LI, JUNTAO;XU, PENG;SIGNING DATES FROM 20170130 TO 20170131;REEL/FRAME:052583/0427 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |