US10385839B2 - Linear peristaltic pump - Google Patents
Linear peristaltic pump Download PDFInfo
- Publication number
- US10385839B2 US10385839B2 US14/402,754 US201314402754A US10385839B2 US 10385839 B2 US10385839 B2 US 10385839B2 US 201314402754 A US201314402754 A US 201314402754A US 10385839 B2 US10385839 B2 US 10385839B2
- Authority
- US
- United States
- Prior art keywords
- pump body
- pump
- tube
- application system
- force application
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 230000002572 peristaltic effect Effects 0.000 title claims abstract description 17
- 239000012530 fluid Substances 0.000 claims abstract description 19
- 238000013519 translation Methods 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 description 8
- 238000000502 dialysis Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/12—Machines, pumps, or pumping installations having flexible working members having peristaltic action
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/12—Machines, pumps, or pumping installations having flexible working members having peristaltic action
- F04B43/1253—Machines, pumps, or pumping installations having flexible working members having peristaltic action by using two or more rollers as squeezing elements, the rollers moving on an arc of a circle during squeezing
- F04B43/1276—Means for pushing the rollers against the tubular flexible member
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
- A61M1/3663—Flow rate transducers; Flow integrators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/14212—Pumping with an aspiration and an expulsion action
- A61M5/14228—Pumping with an aspiration and an expulsion action with linear peristaltic action, i.e. comprising at least three pressurising members or a helical member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/0009—Special features
- F04B43/0081—Special features systems, control, safety measures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/08—Machines, pumps, or pumping installations having flexible working members having tubular flexible members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/12—Machines, pumps, or pumping installations having flexible working members having peristaltic action
- F04B43/1223—Machines, pumps, or pumping installations having flexible working members having peristaltic action the actuating elements, e.g. rollers, moving in a straight line during squeezing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/06—Control using electricity
- F04B49/065—Control using electricity and making use of computers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2202/00—Special media to be introduced, removed or treated
- A61M2202/0021—Special media to be introduced, removed or treated removed from and reintroduced into the body, e.g. after treatment
Definitions
- the present invention relates to peristaltic pumps.
- the invention relates to a peristaltic pump for a dialysis machine, comprising firstly, a plate, known as a pump body, that includes a substantially plane surface against which a flexible tube for passing fluid is to be positioned, and secondly, a force application system comprising a plurality of presser members, such as rollers, and drive means for moving said presser members enabling said presser members to be moved while pressed against the tube in order to deform it against said pump body.
- a plate known as a pump body
- a force application system comprising a plurality of presser members, such as rollers, and drive means for moving said presser members enabling said presser members to be moved while pressed against the tube in order to deform it against said pump body.
- the flexible tube may not be pinched sufficiently between the pump body and the force application system, and that prevents fluid from flowing in the tube with sufficient flow rate and/or regularity. Conversely, with other pumps, the flexible tube is pinched too tightly between the pump body and the force application system, and that may also impede the flow of the fluid and may damage the tube.
- Document FR 2 594 496 relates to a fluid transfer duct presenting an intermediate portion having a section that is larger and a wall of thickness that is considerably smaller, with resistance to deformation that is substantially lower in the other portions of said duct.
- An object of the present invention is to provide a peristaltic pump making it possible to overcome the above-mentioned problems.
- the invention provides a peristaltic pump for a dialysis machine, comprising firstly, a plate, known as a pump body, that includes a substantially plane surface against which a flexible tube for passing fluid is to be positioned, and secondly, a force application system comprising a plurality of presser members, such as rollers, and drive means for moving said presser members enabling said presser members to be moved while pressed against the tube in order to deform it against said pump body, said pump body being mounted to move relative to the force application system between a position spaced apart from said force application system and a position close to said force application system;
- said pump being characterized in that it includes means for determining a magnitude representative of the force applied to the tube, when said tube is in its state positioned between the force application system and the pump body;
- said pump further comprises governor means for governing the movement of the pump body relative to the system as a function of said determined magnitude.
- Said determined force corresponds to the pinching force to which the tube is subjected when engaged between the force application system and said pump body when one is moved towards the other.
- Said measured force is mainly transverse, preferably orthogonal, relative to the axis of the tube.
- this force measurement is performed in the absence of fluid flowing through the duct, i.e. when the elements of the force application system that are used to cause the fluid to flow, e.g. cylinders, are stationary (relative to one another).
- Said force is measured at a given frequency until reaching the setpoint value, or a value contained in a range given around the setpoint value, in order to be able to govern the movement of the pump body relative to the force application system in real time.
- the choice of measuring the pinching force so as to govern the movement of the pump body relative to the force application system is particularly advantageous in order to ensure a fluid flow rate through the tube that is sufficient, while reducing the risk of damage to the tube, since by means of this applied force parameter, a given degree of pinching may be obtained accurately, in reliable and repeatable manner, obtained for tubes of different diameters or materials.
- governing the movement of the pump body as a function of the pinching force applied to the tube makes it possible to adapt the pinching force of the tube automatically in order to reach a setpoint value so that said force is sufficient to enable the force application system to deform the tube, and thus to cause the fluid to flow effectively, while being limited so as not to damage the tube and to allow effective flow of the fluid.
- said pump body is mounted to move in translation along a direction that is transverse (preferably orthogonal) relative to said plane surface of the pump body.
- said pump includes motor means for moving said pump body between said close position and said spaced apart position.
- said governor means include means for defining a setpoint value for said magnitude, and regulator means that are configured to regulate the movement of the pump body in the direction moving the force application system closer or further apart as a function of the determined value of said magnitude in order to reach said setpoint value.
- said means for determining a magnitude representative of the force applied to the tube comprise at least one strain gauge, and preferably a plurality of strain gauges.
- said means for driving the presser members in movement include a loop element that connects the presser members to one another, and two rotary cylinders, positioned inside and at opposite ends of said loop element, at least one of the cylinders being motor-driven in order to drive the loop element in movement around said cylinders.
- said pump includes a housing in which the system and the pump body are housed, and the pump body is mounted to move relative to said housing.
- said pump includes a housing in which the system and the pump body are housed, and said pump includes a diaphragm that, when said tube is in the state positioned between the force application system and the pump body plate, extends around the peripheral wall of said tube in order to form a protective casing around said tube in cooperation with a wall of the housing.
- the flexible leakproof diaphragm makes it possible to isolate the inside of the pump from the tube, and that makes it possible to avoid soiling the inside of the machine in the event of a leak. Furthermore, the leakproof flexible diaphragm also improves the soundproofing of the pump.
- said diaphragm is made out of a liquid-proof flexible material.
- the invention relates to a linear peristaltic pump 1 for a dialysis machine.
- Said peristaltic pump 1 comprises a plate, known as a pump body 3 , that includes a substantially plane surface 32 against which a flexible tube 5 for passing fluid is to be positioned.
- Said surface 32 is considered to be plane, or flat, i.e. straight, as opposed to contact surfaces in contact with the tube of so-called “rotary” peristaltic pump bodies that present a circularly arcuate shape.
- the peristaltic pump 1 also comprises a force application system 2 , the system having a plurality of presser members 7 and drive means for moving said presser members 7 enabling said presser members to be moved while pressed against the tube in order to deform it against said pump body 3 .
- Said pump body 3 and said system 2 are arranged relative to each other so as to allow a flexible tube 5 for passing fluid to be positioned between the plane surface 32 of the pump body 3 and the system 2 .
- Said presser members 7 are moved along a closed loop path as described below. This closed loop path includes a portion directed towards the side of the pump body 3 and that allows the presser members 7 passing along this portion to press the duct against the plane surface 32 of the pump body 3 .
- said pump is used for pumping blood in a dialysis machine.
- said tube 5 forms a bloodline.
- Said plane surface 32 is directed towards said force application system 2 in order to make it possible for said system to apply a pressure force to the peripheral wall of said flexible tube 5 positioned against the pump body 3 .
- Said pump body 3 is mounted to move relative to the force application system 2 between a position spaced apart from said force application system (see FIG. 4 ), and a position close to said force application system 2 (see FIG. 5 ). Said pump body 3 and the force application system 2 thus define between them a space for inserting the substantially straight flexible tube since it extends along the plane surface 32 of the pump body.
- a force is applied to the peripheral wall of the tube 5 by said presser members 7 pressing against the peripheral wall of said tube so as to gradually deform it along its portion pressing against the plane face 32 of the pump body 3 and thus causing the fluid contained in the tube 5 to flow from one end of the surface 32 towards its other end.
- Said pump body 3 is mounted to move in translation along a (preferably orthogonal) direction D 31 that is transverse to said plane surface 32 of the pump body.
- Said pump includes motor means 31 for moving said pump body 3 between said closer position and said spaced apart position.
- Said pump 1 also includes means 35 for determining a magnitude that is representative of the force applied to the peripheral wall of the tube 5 , when said tube 5 is in its state positioned between the force application system 2 and the pump body 3 .
- Said means 35 for determining a magnitude representative of the force applied to the tube 5 include at least one strain gauge.
- said at least one strain gauge is positioned on a plate arranged so as to become deformed as a function of the relative position between system 2 and said pump body 3 .
- said means 35 include two or four strain gauges.
- Said pump 1 further comprises governor means 36 for governing the movement of the pump body 3 relative to the system 2 as a function of said determined magnitude.
- Said governor means are formed by an electronic and computer unit for processing and calculation.
- Said unit may be embodied in the form of an electronic circuit provided with a microcontroller or a microprocessor associated with a memory for storing data.
- the electronic and computer system forming said means includes computer instructions making it possible to perform said operation.
- Said governor means 36 include means 360 for defining a setpoint value for said magnitude. This setpoint value corresponds to the force desired for pinching the tube 5 between the system 2 and the pump body 3 . Said governor means 36 further include regulator means 361 that are configured to regulate the movement of the pump body 3 in the direction moving the force application system 2 closer or further apart as a function of the determined value of said magnitude in order to reach said setpoint value.
- said regulation means 36 are configured to acquire the value of said magnitude representative of the force applied to the peripheral wall of the tube 5 , and to compare this acquired value with the stored setpoint value. Depending on the result of this comparison the governor means 36 control the motor 31 so that it moves the pump body 3 towards or away from the system 2 until a value is reached that is close to the setpoint value or that is located in a given range relative to the setpoint value.
- Said drive means for moving the presser members 7 include a loop element 6 that connects the presser members 7 to one another, and two rotary cylinders 8 , positioned inside and at opposite ends of said loop element 6 . At least one of the cylinders 8 is motor-driven in order to cause the loop element 6 to move around said cylinders 8 .
- the presser members 7 are rollers.
- the loop element 6 comprises a drive belt arranged in a loop around the cylinders 8 .
- One of the cylinders 8 is driven by a motor 81 so that said cylinder forms a cylinder suitable for driving the belt around said cylinders.
- the other cylinder forms a support for guiding movement of the belt.
- rollers 7 are mounted to be constrained to move with the belt 6 and they project from the outer face of said belt so that the tube is pressed when said rollers move along the tube.
- the loop element includes at least one substantially straight portion that extends substantially parallel to the plane surface 32 of the pump body 3 , so that the rollers that are moved along said straight portion press the tube from one end of the portion towards the other end.
- Said pump includes a housing 10 in which the system 2 and the pump body 3 are housed, and the pump body 3 is mounted to move relative to said housing 10 .
- said pump 1 includes a diaphragm 9 that, when said tube is in the state positioned between the force application system and the pump body plate extends around the peripheral wall of said tube 5 in order to form a protective casing around said tube 5 in cooperation with a wall of the housing 10 , opposite the bottom of the diaphragm.
- Said diaphragm 9 is made out of a liquid-proof flexible material.
- provision may be made for the space left free between the system 2 and the pump body 3 to be located in the top portion of the pump so as to be easily accessible by the operator.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Cardiology (AREA)
- Emergency Medicine (AREA)
- Urology & Nephrology (AREA)
- Reciprocating Pumps (AREA)
- External Artificial Organs (AREA)
Abstract
Description
-
-
FIG. 1 is a diagrammatic view of a linear peristaltic pump in an embodiment of the invention; -
FIG. 2 is a perspective view of the inside of a portion of theFIG. 1 pump; -
FIG. 3 is a perspective view of a leakproof diaphragm for surrounding the tube inserted into theFIG. 1 pump; -
FIG. 4 is a perspective view of the pump body and of the force application system of theFIG. 1 pump in a spaced apart position so as to allow insertion of said tube; and -
FIG. 5 is a perspective view of the pump body and of the force application system of theFIG. 1 pump in the close position.
-
Claims (9)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1254691A FR2991010B1 (en) | 2012-05-23 | 2012-05-23 | LINEAR PERISTALTIC PUMP |
FR1254691 | 2012-05-23 | ||
PCT/FR2013/051100 WO2013175115A1 (en) | 2012-05-23 | 2013-05-21 | Linear peristaltic pump |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150110655A1 US20150110655A1 (en) | 2015-04-23 |
US10385839B2 true US10385839B2 (en) | 2019-08-20 |
Family
ID=46754620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/402,754 Active 2034-06-23 US10385839B2 (en) | 2012-05-23 | 2013-05-21 | Linear peristaltic pump |
Country Status (16)
Country | Link |
---|---|
US (1) | US10385839B2 (en) |
EP (1) | EP2852761B1 (en) |
JP (1) | JP6377055B2 (en) |
KR (1) | KR102088252B1 (en) |
CN (1) | CN104428534B (en) |
AU (1) | AU2013265100B2 (en) |
BR (1) | BR112014028579B1 (en) |
CA (1) | CA2872742C (en) |
DK (1) | DK2852761T3 (en) |
ES (1) | ES2580505T3 (en) |
FR (1) | FR2991010B1 (en) |
MX (1) | MX347375B (en) |
PL (1) | PL2852761T3 (en) |
RU (1) | RU2599696C2 (en) |
WO (1) | WO2013175115A1 (en) |
ZA (1) | ZA201408570B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015105323A1 (en) * | 2015-04-08 | 2016-10-13 | B. Braun Avitum Ag | Fluid delivery monitoring method in an extracorporeal blood treatment device |
ES2927716T3 (en) * | 2017-10-31 | 2022-11-10 | Cme America Llc | Cartridge for tubing placement in a peristaltic infusion pump |
CN108339164A (en) * | 2018-03-22 | 2018-07-31 | 温州市中心医院 | A kind of polycythemia vera bloodletting device |
CN109675126A (en) * | 2018-09-28 | 2019-04-26 | 德州飚丰信息技术有限公司 | A kind of medical drainage device |
CN112472413B (en) * | 2019-09-11 | 2023-06-16 | 微创视神医疗科技(上海)有限公司 | Active perfusion system for ultrasonic emulsification |
FR3107189B1 (en) | 2020-02-18 | 2024-01-19 | Physidia | DIALYSIS MACHINE AND FLUSHING METHOD |
CN111437448B (en) * | 2020-05-12 | 2022-09-06 | 河南科技大学第一附属医院 | Blood pump capable of reducing pulsating femoral flow output for hemodialysis |
US20220241499A1 (en) * | 2021-02-04 | 2022-08-04 | Micrel Medica Devices S.A. | Peristaltic infusion pump tube segment and infusion pump device with such a tube segment |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1988337A (en) * | 1933-12-21 | 1935-01-15 | Santiago Manoel Cordeiro | Pump |
GB953579A (en) | 1961-01-10 | 1964-03-25 | David Kilroy Brooks | Flexible tube pumps |
BE685301A (en) | 1966-08-10 | 1967-01-16 | ||
US3523000A (en) * | 1968-09-19 | 1970-08-04 | Eldon S Miller | Pump |
US4617014A (en) | 1985-11-26 | 1986-10-14 | Warner-Lambert Company | Dual mode I. V. infusion device |
FR2594496A1 (en) | 1986-09-12 | 1987-08-21 | Baxter Travenol Lab | Duct for transferring fluids, especially for a peristaltic pump, and method for producing it |
GB2230301A (en) | 1989-04-07 | 1990-10-17 | Unilever Plc | Adjustable peristaltic pump |
US4965713A (en) * | 1988-08-15 | 1990-10-23 | Viking Pump Inc. | Terminal element |
US5395320A (en) * | 1992-06-09 | 1995-03-07 | Sabratek Corporation | Programmable infusion pump with interchangeable tubing |
US5693020A (en) * | 1994-07-28 | 1997-12-02 | Loctite Europa E.E.I.G. (E.W.I.V.) | Hose pump for the exact dosing of small quantities of liquids |
EP0837242A1 (en) | 1996-10-21 | 1998-04-22 | René Boisseau | Peristaltic pump with disconnectable rollers |
JP2003061682A (en) | 2001-06-11 | 2003-03-04 | Sumitomo Chem Co Ltd | Reductase gene and use thereof |
JP2003113782A (en) | 2001-10-03 | 2003-04-18 | Senko Medical Instr Mfg Co Ltd | Roller pump |
US20060228240A1 (en) | 2005-03-30 | 2006-10-12 | Lancer Partnership, Ltd. | Method and apparatus for a linear peristaltic pump |
JP2010037981A (en) | 2008-08-01 | 2010-02-18 | Olympus Corp | Liquid feeding device |
US20100106082A1 (en) | 2008-10-24 | 2010-04-29 | Baxter International Inc. | In situ tubing measurements for infusion pumps |
US20100234873A1 (en) * | 2007-11-27 | 2010-09-16 | Yoshitaka Nagano | Drive device, and medical apparatus and training apparatus including the same |
JP2010539386A (en) | 2007-09-20 | 2010-12-16 | フレセニウス ヴィアル サス | Finger-type linear peristaltic pump and its membrane and finger |
US20110060284A1 (en) * | 2009-09-10 | 2011-03-10 | Tyco Healthcare Group Lp | Compact peristaltic medical pump |
US7985057B2 (en) * | 2006-03-14 | 2011-07-26 | Roche Diagnostics Operations, Inc. | Micropump for peristaltic pumping of a liquid medium |
US20110319823A1 (en) * | 2010-06-29 | 2011-12-29 | Baxter Healthcare S.A. | Tube measurement technique using linear actuator and pressure sensor |
JP2012082730A (en) | 2010-10-08 | 2012-04-26 | Olympus Corp | Liquid feeding device |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2559214A1 (en) * | 1984-02-08 | 1985-08-09 | Levi Andre | Volumetric pump with multiple action and adjustable flow rate |
FR2581133B1 (en) | 1985-04-30 | 1987-07-24 | Vidal Lucien | LINEAR PERISTALTIC PUMP FOR VEHICLE OF CONCRETE OR OTHER |
SU1288345A1 (en) * | 1985-09-23 | 1987-02-07 | Государственный проектный и научно-исследовательский институт "Гипроникель" | Peristaltic-action pump |
SU1393929A1 (en) * | 1986-01-13 | 1988-05-07 | Научно-производственное объединение по топливной аппаратуре двигателей "ЦНИТА" | Compressive drive |
JPH0361682A (en) * | 1989-07-31 | 1991-03-18 | Terumo Corp | Pelistaltic pump |
JP3026631B2 (en) * | 1991-03-30 | 2000-03-27 | 武蔵エンジニアリング株式会社 | Fixed volume discharge tube pump |
JPH06218042A (en) * | 1993-01-28 | 1994-08-09 | Toray Ind Inc | Tube pump and blood pump and artificial dialysis using the blood pump |
JPH0720009A (en) * | 1993-06-16 | 1995-01-24 | Shimadzu Corp | Analyzing instrument |
JPH07224764A (en) * | 1994-02-07 | 1995-08-22 | Shigeo Kai | Content discharging method for discharging content of tube in vertical direction by fixed quantity at a time, and its tube pump |
JP2007002717A (en) * | 2005-06-23 | 2007-01-11 | Japan Servo Co Ltd | Series rotor type tube pump |
US8186973B2 (en) * | 2008-08-14 | 2012-05-29 | Euro-Pro Operating Llc | Tubular pump |
-
2012
- 2012-05-23 FR FR1254691A patent/FR2991010B1/en active Active
-
2013
- 2013-05-21 ES ES13730290.7T patent/ES2580505T3/en active Active
- 2013-05-21 PL PL13730290.7T patent/PL2852761T3/en unknown
- 2013-05-21 JP JP2015513243A patent/JP6377055B2/en active Active
- 2013-05-21 DK DK13730290.7T patent/DK2852761T3/en active
- 2013-05-21 WO PCT/FR2013/051100 patent/WO2013175115A1/en active Application Filing
- 2013-05-21 CA CA2872742A patent/CA2872742C/en active Active
- 2013-05-21 KR KR1020147036036A patent/KR102088252B1/en active IP Right Grant
- 2013-05-21 US US14/402,754 patent/US10385839B2/en active Active
- 2013-05-21 BR BR112014028579-9A patent/BR112014028579B1/en active IP Right Grant
- 2013-05-21 MX MX2014014076A patent/MX347375B/en active IP Right Grant
- 2013-05-21 AU AU2013265100A patent/AU2013265100B2/en active Active
- 2013-05-21 EP EP13730290.7A patent/EP2852761B1/en active Active
- 2013-05-21 CN CN201380026960.9A patent/CN104428534B/en active Active
- 2013-05-21 RU RU2014152019/06A patent/RU2599696C2/en active
-
2014
- 2014-11-21 ZA ZA2014/08570A patent/ZA201408570B/en unknown
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1988337A (en) * | 1933-12-21 | 1935-01-15 | Santiago Manoel Cordeiro | Pump |
GB953579A (en) | 1961-01-10 | 1964-03-25 | David Kilroy Brooks | Flexible tube pumps |
BE685301A (en) | 1966-08-10 | 1967-01-16 | ||
US3523000A (en) * | 1968-09-19 | 1970-08-04 | Eldon S Miller | Pump |
US4617014A (en) | 1985-11-26 | 1986-10-14 | Warner-Lambert Company | Dual mode I. V. infusion device |
FR2594496A1 (en) | 1986-09-12 | 1987-08-21 | Baxter Travenol Lab | Duct for transferring fluids, especially for a peristaltic pump, and method for producing it |
US4965713A (en) * | 1988-08-15 | 1990-10-23 | Viking Pump Inc. | Terminal element |
GB2230301A (en) | 1989-04-07 | 1990-10-17 | Unilever Plc | Adjustable peristaltic pump |
US5395320A (en) * | 1992-06-09 | 1995-03-07 | Sabratek Corporation | Programmable infusion pump with interchangeable tubing |
US5693020A (en) * | 1994-07-28 | 1997-12-02 | Loctite Europa E.E.I.G. (E.W.I.V.) | Hose pump for the exact dosing of small quantities of liquids |
EP0837242A1 (en) | 1996-10-21 | 1998-04-22 | René Boisseau | Peristaltic pump with disconnectable rollers |
JP2003061682A (en) | 2001-06-11 | 2003-03-04 | Sumitomo Chem Co Ltd | Reductase gene and use thereof |
JP2003113782A (en) | 2001-10-03 | 2003-04-18 | Senko Medical Instr Mfg Co Ltd | Roller pump |
US20060228240A1 (en) | 2005-03-30 | 2006-10-12 | Lancer Partnership, Ltd. | Method and apparatus for a linear peristaltic pump |
US7985057B2 (en) * | 2006-03-14 | 2011-07-26 | Roche Diagnostics Operations, Inc. | Micropump for peristaltic pumping of a liquid medium |
JP2010539386A (en) | 2007-09-20 | 2010-12-16 | フレセニウス ヴィアル サス | Finger-type linear peristaltic pump and its membrane and finger |
US20100234873A1 (en) * | 2007-11-27 | 2010-09-16 | Yoshitaka Nagano | Drive device, and medical apparatus and training apparatus including the same |
JP2010037981A (en) | 2008-08-01 | 2010-02-18 | Olympus Corp | Liquid feeding device |
US20100106082A1 (en) | 2008-10-24 | 2010-04-29 | Baxter International Inc. | In situ tubing measurements for infusion pumps |
US20110060284A1 (en) * | 2009-09-10 | 2011-03-10 | Tyco Healthcare Group Lp | Compact peristaltic medical pump |
US20110319823A1 (en) * | 2010-06-29 | 2011-12-29 | Baxter Healthcare S.A. | Tube measurement technique using linear actuator and pressure sensor |
JP2012082730A (en) | 2010-10-08 | 2012-04-26 | Olympus Corp | Liquid feeding device |
Non-Patent Citations (4)
Title |
---|
English Translation of Japanese Office Action dated Mar. 14, 2017. |
International Search Report dated Jul. 30, 2013, corresponding to PCT/FR2013/051100. |
JP Office Action citing two JP references. |
Larson, Ron, et al. "Calculus: Early Transcendental Functions." Calculus: Early Transcendental Functions, Houghton Mifflin, 1999, pp. 465-466. * |
Also Published As
Publication number | Publication date |
---|---|
KR102088252B1 (en) | 2020-03-12 |
KR20150018587A (en) | 2015-02-23 |
CA2872742A1 (en) | 2013-11-28 |
RU2599696C2 (en) | 2016-10-10 |
BR112014028579A2 (en) | 2017-06-27 |
BR112014028579B1 (en) | 2021-11-03 |
EP2852761A1 (en) | 2015-04-01 |
CN104428534A (en) | 2015-03-18 |
DK2852761T3 (en) | 2016-07-25 |
FR2991010A1 (en) | 2013-11-29 |
RU2014152019A (en) | 2016-07-20 |
FR2991010B1 (en) | 2019-05-10 |
US20150110655A1 (en) | 2015-04-23 |
ZA201408570B (en) | 2016-08-31 |
AU2013265100B2 (en) | 2015-11-05 |
ES2580505T3 (en) | 2016-08-24 |
WO2013175115A1 (en) | 2013-11-28 |
AU2013265100A1 (en) | 2014-11-27 |
CN104428534B (en) | 2017-07-04 |
EP2852761B1 (en) | 2016-04-06 |
MX2014014076A (en) | 2015-01-26 |
MX347375B (en) | 2017-04-25 |
CA2872742C (en) | 2019-12-31 |
JP2015522739A (en) | 2015-08-06 |
JP6377055B2 (en) | 2018-08-22 |
PL2852761T3 (en) | 2016-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10385839B2 (en) | Linear peristaltic pump | |
CN107073185B (en) | Method for determining system compression rate value of medical membrane pump driver | |
TWI458937B (en) | Analogue measurement probe for a machine tool apparatus and method of operation | |
JP4109685B2 (en) | Peristaltic pump including a support member and a counter member adapted to cooperate with the tube | |
CN104717990B (en) | System and method for external pressure sensing | |
CN102196832B (en) | Infusion pump and method of in situ measuring the diameter of an infusion tube | |
KR101912000B1 (en) | Digital feeler gauge and method of using same | |
CN105392511A (en) | Combination linear potentiometer and syringe thumbpress detection sensor and related systems and methods | |
CN105555688A (en) | Needle gripper | |
US10589022B2 (en) | Syringe plunger positioning apparatus and method | |
US9649432B2 (en) | Certification cassette and related methods | |
JP6185550B2 (en) | Device for supplying and measuring fluids for medical purposes | |
EP3496785A1 (en) | A delivery system including a position detecting unit | |
IT201600083221A1 (en) | EQUIPMENT FOR MECHANICAL PROCESSING OF LASTRIFORMS ELEMENTS | |
TWM550149U (en) | Displacement sensing device and peritoneal dialysis system | |
CN207285529U (en) | Hairdressing apparatus including removable reservoir | |
US10444002B2 (en) | Sensor device for geometrically testing parts | |
CN207456669U (en) | For the pressure-detecting device of kitchen appliance and with its kitchen appliance | |
CN205763454U (en) | A kind of rear stop device of plate flanging | |
JP2017189503A (en) | Pulse wave detection device and biological information measuring apparatus | |
EP3962382B1 (en) | External actuation device for adjustable implanted medical device | |
KR102269888B1 (en) | Tdevice to test the performance of pressure sensor of smart shoes | |
WO2022027036A1 (en) | Pressure sensors, including pressure sensors for automated peritoneal dialysis systems, and associated systems, devices, and methods | |
CN111867651A (en) | Device for monitoring a vascular access in extracorporeal blood treatment | |
Aktas et al. | A Force-Limiting Mechanism for Needle Insertions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PHYSIDIA, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FERME, PHILIPPE;MARINE, JULIEN;VINCENT, ERIC;SIGNING DATES FROM 20141107 TO 20141121;REEL/FRAME:034435/0170 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |