US10027588B2 - Dynamic load balancing under partial service conditions - Google Patents
Dynamic load balancing under partial service conditions Download PDFInfo
- Publication number
- US10027588B2 US10027588B2 US14/924,920 US201514924920A US10027588B2 US 10027588 B2 US10027588 B2 US 10027588B2 US 201514924920 A US201514924920 A US 201514924920A US 10027588 B2 US10027588 B2 US 10027588B2
- Authority
- US
- United States
- Prior art keywords
- service mode
- partial service
- channel
- modems
- channels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/12—Avoiding congestion; Recovering from congestion
- H04L47/125—Avoiding congestion; Recovering from congestion by balancing the load, e.g. traffic engineering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2854—Wide area networks, e.g. public data networks
- H04L12/2856—Access arrangements, e.g. Internet access
- H04L12/2863—Arrangements for combining access network resources elements, e.g. channel bonding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/12—Avoiding congestion; Recovering from congestion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/50—Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate
-
- Y02D50/30—
Definitions
- the field of this disclosure relates to load balancing of a set of modems in a network and, more particularly, relates to deferring load balancing under certain partial service conditions.
- a typical cable network comprises a head end, which communicates with a cable modem termination system (CMTS) containing multiple transmitters and receivers.
- CMTS cable modem termination system
- Each transmitter and receiver generally communicates with multiple cable modems (CMs) via a coaxial cable or hybrid fiber-coaxial network.
- the bandwidth between a CM and the CMTS is divided into a set of channels.
- a receiver at the CMTS is generally allocated to each upstream channel that is in use, and a transmitter is allocated to each downstream channel.
- One or more bonded channels may be allocated to one or more of the CMs in communication with a CMTS. At times, the bonded channel(s) may become unsuitable for communication. To operate under these conditions, CMs may enter a partial service mode and discontinue use of the problematic channel, while continuing to operate using the remaining channels. The CM may continue ranging on the problematic channel, however, waiting for the partial service condition to be resolved such that it may again pass data on the channel.
- a load balancing manager may consider the channel to be underutilized and actually assign additional modems to that channel.
- CMs newly moved by the load balancer to a bonding group that includes the channel impacted by the partial service condition may then also enter partial service mode because of the problem.
- the throughput of the CMs would be reduced, not increased, by the balancing operation.
- the load balancer may be led to add more modems still to the impacted channel.
- modems entering partial service mode may shift more traffic to their other channels, potentially overloading those channels and starving modems for which only a single channel is available.
- the CMs come out of partial service mode the formerly impacted channel may quickly become overloaded, requiring further channel reallocations.
- channel allocations using current load balancing techniques may not only be inefficient, but may also increase the chances of disruption of data and voice traffic.
- FIG. 1 is an exemplary schematic representation of a bi-directional cable system.
- FIG. 2 illustrates an exemplary upstream module of a cable modem termination system.
- FIG. 3 is a flowchart of a method for controlling the load balancing of a set of modems, wherein the method accounts for an impaired channel.
- FIG. 4 is a flowchart of a method for controlling the load balancing of a set of modems by balancing modem counts, wherein the method accounts for partial service mode modems.
- FIG. 5 is a flowchart of a method for controlling the load balancing of a set of modems by balancing utilization, wherein the method accounts for modems in partial service mode.
- the disclosed techniques may account for modems in partial service mode in the determination of whether to perform load balancing. Improving load balancing to account for partial service mode modems may reduce the number of problems that result from unnecessary or counterproductive modem moves, such as reduction of throughput, de-registration, and loss of data or voice traffic.
- the method comprises, but is not limited to: receiving an indication of impairment of a channel, placing modems using the impaired channel into a partial service mode and removing the channel from a list of channels available for load balancing, monitoring the quality of the impaired channel, and, responsive to detection of acceptable quality on the impaired channel, removing the modems from partial service mode and adding the channel to a list of channels available for load balancing.
- the method prevents load balancing assignment of additional modems to the impaired channel, thereby avoiding unnecessary moves of modems and reducing the associated risk of data loss or disruption of transmissions that would occur under prior art load balancing methods.
- the method comprises, but is not limited to: receiving an indication of a partial service mode for a first modem of a plurality of modems, incrementing a partial service mode counter for a first channel of the plurality of channels associated with the partial service mode indication responsive to the indication of the partial service mode, computing a partial service mode metric based in part upon the partial service mode counter, and, responsive to a determination that the partial service mode metric meets a threshold, determining an allocation of the plurality of modems to the plurality of channels, including the first channel.
- the method avoids generating new load balancing channel allocations that would be counter-productive once those modems leave partial service mode, thereby avoiding unnecessary moves of modems and reducing the associated risk of data loss or disruption of transmissions that would occur under prior art load balancing methods.
- the improved load balancing is performed by an apparatus comprising, but not limited to: a plurality of receivers for receiving data transmitted from a plurality of modems or a plurality of transmitters for transmitting data to a plurality of modems, a memory for storing a list of channels available for load balancing, and a processor for performing: receiving an indication of impairment of a channel, placing a plurality of modems using the impaired channel into a partial service mode and removing the channel from the list of channels available for load balancing, monitoring the quality of the impaired channel, and responsive to detection of acceptable quality on the impaired channel, removing the plurality of modems from a partial service mode and adding the channel to the list of channels available for load balancing.
- FIG. 1 is an exemplary schematic representation of a bi-directional cable system.
- the cable modem termination system (CMTS) 120 communicates Internet Protocol (IP) traffic to and from a wide area network (WAN) 110 , and to and from subscriber cable modems (CMs) 140 over the cable network 130 .
- Cable network 130 may commonly be a coaxial network or hybrid fiber-coaxial (HFC) network.
- Cable modems 140 are connected directly or via wired or wireless local area networks (LANs) to customer premises equipment (CPE) 150 .
- LANs local area networks
- CPE customer premises equipment
- CMTS generally refers to any suitable modem termination system, that the architecture illustrated is exemplary, and that any type of cabling may be used, such as coaxial wires, optical fibers, twisted pairs, and wireless connections.
- Upstream and downstream communications may be handled by the same or different processors, transceivers, and cabling.
- the CMTS comprises a Motorola BSR 64000 I-CMTS Chassis housing multiple Motorola RX 48 Decoupled Upstream Modules and Motorola TX 32 Decoupled Downstream Modules.
- the receiver or transmitter may be part of a combined video and data services platform.
- the CMs comprise Motorola SURFboard SB6120, SB6121, or SBG6580 modems.
- the bandwidth between a CM 140 and the CMTS 120 is divided into a set of channels.
- a receiver 270 at the CMTS 120 is generally allocated to each upstream channel that is in use, and a transmitter is allocated to each downstream channel.
- the bandwidth available over each channel may be limited.
- the number of channels is generally much smaller than the number of connected CMs 140 .
- multiple CMs 140 may share each channel. Sharing of a channel may be accomplished, for instance, using variants of time division multiple access (TDMA) or code division multiple access (CDMA) channel access methods.
- TDMA time division multiple access
- CDMA code division multiple access
- Channel bonding may provide throughput and reduce transmission delays through the concurrent use of multiple channels.
- a bonded CM 140 may send and receive data traffic on multiple channels in parallel, to and from the CMTS 120 , allowing higher-speed operation.
- packet delays may be reduced since individual data packets may be segmented for transmission over the multiple channels and reassembled at the destination, reducing the transmission time for the packet.
- one or more of the bonded channels allocated to one or more of the CMs 140 in communication with a CMTS 120 may become unsuitable for communication.
- the communication problem may be caused by a localized hardware or software issue, affecting a subset of CMs 140 using the channel, or by general channel impairment, affecting all CMs 140 on the channel.
- CMs 140 may enter a “partial service mode.” In partial service mode, a CM 140 discontinues use of the problematic channel and continues operating using the remaining channels. The CM 140 may continue ranging on the problematic channel, however, waiting for the partial service condition to be resolved such that it may again pass data on the channel.
- Utilization of certain channels can become higher than desired due to either the number of CMs 140 on the channel or the volume of data being passed by those CMs 140 .
- cable operators may employ load balancing techniques to equalize traffic, generally balancing modem count or utilization across the available channels.
- Load balancing is a feature of the CMTS 120 that controls dynamic changes to the set of downstream and upstream channels used by a CM 140 .
- a Load Balancing Group (LBG) is a set of upstream and downstream channels over which a CMTS performs load balancing for a set of CMs.
- the CMTS generally attempts to balance load among all of the channels of each LBG.
- the CMTS might have to consider all LBGs for which such overlaps exist in its load balancing algorithm.
- the CMTS may perform load balancing by using Dynamic Channel Change (DCC) or Dynamic Bonding Change (DBC) messages, by changing the Receive Channel Set (RCS) of the CM, by moving one or more service flows to different downstream channels within the current RCS of the CM, by changing the Transmit Channel Set (TCS) of the CM, or by moving one or more service flows to different upstream channels within the current TCS of the CM.
- DCC Dynamic Channel Change
- DRCS Receive Channel Set
- TCS Transmit Channel Set
- CMTS Transmit Channel Set
- FIG. 2 illustrates an exemplary upstream module 200 of a CMTS 120 of FIG. 1 .
- the upstream module 200 may perform various methods to control load balancing, which are adapted to account for partial service mode conditions.
- Processing unit 210 may include a microprocessor 220 for receiving information, such as instructions and data, from a ROM 240 or RAM 260 .
- Upstream module 200 may also comprise a network module 230 for communications with other CMTS elements, such as corresponding downstream modules.
- Receivers 270 allow reception of data from CMs, including user data and control data, which may include indications of partial service mode conditions.
- the receiver portion of upstream module 200 may comprise multiple connectors, RF switches, tuners, and RF receivers.
- the Motorola RX48 BSR 64000 Decoupled Upstream Module which may be adapted for use with the disclosed techniques, provides eight physical RF ports, each with six upstream QAM receivers.
- a corresponding exemplary downstream module such as the Motorola TX32 BSR 64000 Decoupled Downstream Module, element 270 would be replaced with a transmission section.
- receivers and transmitters may be combined on the same card.
- Processing unit 210 may be connected, directly or over a network, to a display 280 , which may display status information.
- An input keypad 290 may also be connected, directly or indirectly, to processing unit 210 and may allow an operator to provide instructions, processing requests and/or data to upstream module 200 .
- ROM 240 and/or RAM 260 may also carry instructions for microprocessor 220 to perform the processes illustrated in any or all of the following figures.
- any of the processes described below may be contained on a computer readable medium, which may be read by microprocessor 220 .
- a computer readable medium may be any tangible storage medium capable of carrying instructions to be performed by a microprocessor, including a CD disc, DVD disc, magnetic or optical disc, tape, silicon based removable or non-removable memory. While microprocessor 220 is shown as being associated with an exemplary upstream module, it is understood that a common microprocessor may be shared amongst multiple upstream modules or combinations of upstream and downstream modules in CMTS 120 .
- Conditions causing entry into a partial service mode may be detected either by the CMTS 120 or by individual modems 140 .
- the load balancing manager may work in conjunction with a spectrum manager process, or other CMTS process, to monitor channel quality. If the spectrum manager detects that a particular channel is impaired, all of the CMs 140 using that channel may be put into partial service mode by the CMTS 120 . However, this may cause the data utilization on that channel to be reduced, leading a normal load balancing algorithm to add CMs to that channel in an attempt to balance loads.
- FIG. 3 is a flowchart of such an improved method 300 for controlling the load balancing of modems, which accounts for a channel being impaired.
- the method may be performed within a CMTS 120 , or particularly within an upstream module 200 , a downstream module, or a combined upstream/downstream unit.
- Program code for the method may be stored on ROM 240 and/or RAM 260 , and may be executed by microprocessor 220 .
- the CMTS 120 receives an indication of an impairment of one of the communication channels used for communications with CMs 140 .
- the indication may be received from a process running on microprocessor 220 , such as a spectrum management process, when a channel is determined to be impaired.
- the spectrum management process may generate the indication of impairment based upon information received from receivers or transmitters 270 .
- the detection of impairment may be based upon metrics such as signal strength, signal-to-noise ratio, detected errors, or other indications generated by hardware or software.
- the CMTS 120 places all modems associated with the impaired channel into a partial service mode.
- the CMTS 120 may accomplish this via the microprocessor 220 sending control messages to each of the affected CMs 140 via transmitters or network interface 230 .
- the control messages may be sent to the CMs 140 using the modulation used for regular data transmission, such as 8-QAM, 16-QAM, 32-QAM, 64-QAM, 128-QAM, or 256-QAM, or using a different, more robust modulation scheme such as quadrature phase-shift keying (QPSK).
- QPSK quadrature phase-shift keying
- the message may be sent via the regular data transmission path or via a separate control channel.
- CMs into partial service mode may lead to an increase in traffic on the remaining non-impaired channels allocated to those modems. For instance, in a DOCSIS 3.0-capable system where the DOCSIS 3.0 modems each use two bonded channels, an impairment of one channel, and subsequent entry of those modems into partial service mode, will cause those modems to shift more of their traffic to their other channel.
- the impaired channel is removed from the list of channels available to the load balancing process. With the impaired channel removed, CMs will not be moved by the load balancer to the impaired channel or to a bonding group containing the impaired channel.
- Channel availability may be stored as an array, or in another suitable form, in RAM or other memory accessible to the load balancing manager process.
- the actions of 320 and 330 may take place in either order or in parallel.
- the quality of the impaired channel is monitored.
- the monitoring may be performed by a spectrum manager or other process on the CMTS 120 .
- Metrics such as signal strength, signal-to-noise ratio, or detected errors, may be used in the monitoring.
- Monitoring signals may be generated by hardware, software, or a combination of the two.
- the results of the monitoring of 340 are assessed. If the channel quality is deemed to be acceptable, the algorithm proceeds to 360 and those modems placed in partial service mode due to the channel impairment are taken out of partial service mode.
- the channel removed from the load balancing list at 330 is marked as being available again for use in load balancing. The actions of 360 and 370 may take place in either order, or in parallel.
- the algorithm returns to 340 for further monitoring.
- load balancing involving the impaired channel is delayed until the impairment is resolved and counterproductive moves of modems to the impaired channel are prevented.
- the method of FIG. 3 may be performed by an apparatus such as the upstream module 200 of FIG. 2 .
- the receivers 270 may receive data transmitted from modems on a plurality of channels.
- a random access memory 260 may store a list of channels available for load balancing.
- Microprocessor 220 may receive an indication of impairment of at least one channel. Responsive to the indication of impairment of the channel, the CMTS 120 may place those modems using the impaired channel into a partial service mode and remove the impaired channel from the list of channels available for load balancing.
- the microprocessor 220 may then monitor the quality of the impaired channel, or monitor indicators of the quality received from another component, and, responsive to detection of acceptable quality on the impaired channel, remove the modems from partial service mode and add the channel back to the list of channels available for load balancing.
- Program code related to execution of the method may be stored in RAM 260 , ROM 240 , or other memory.
- channel impairment is detected by the CMTS 120 , generally affecting all CMs 140 that are using the impaired channel.
- modems themselves detect problems, which may or may not be affecting other CMs, which necessitate entry into a partial service mode. These problems may be caused by localized noise issues, ranging issues, faulty splitters, or other software or hardware failures or malfunctions within the customer premises or in the network. Different methods are needed to address these cases, which may depend upon the load balancing technique being used.
- load balancing is the balancing of modem counts across channels. If an assumption is made that sets of modems will, on average, produce, or consume, similar amounts of traffic, equalizing the numbers of modems on each channel would result in balanced utilization. Load balancing in this scenario is performed by moving modems between channels to balance the modem counts. When the difference in the number of modems between channels exceeds a threshold, modems are moved to rebalance the system.
- modems in partial service mode may not appear to be using a channel, while in fact, they are in the process of ranging and could resume transmission on that channel in a short time. Performing load balancing using prior art algorithms that fail to account for the modems in partial service mode may therefore be counterproductive and lead to a worse load imbalance in the near future.
- the load balancing manager may store a counter for each channel to keep track of the number of modems currently in partial service.
- the number of modems considered to be using each channel during the modem count comparison will be adjusted to include the modems in partial service.
- the load balancing manager will be less likely to initiate unnecessary modem moves that would likely need to be reversed when modems come out of partial service.
- FIG. 4 is a flowchart of such a method 400 for controlling the load balancing of CMs, which accounts for partial service mode CMs.
- the method may be performed within a CMTS 120 , or particularly within an upstream module 200 , a downstream module, or a combined upstream/downstream unit.
- Program code for the method may be stored on ROM 240 and/or RAM 260 , and may be executed by microprocessor 220 .
- the CMTS 120 receives an indication of a partial service mode for one of the modems.
- the indication may be received directly from the modem 140 , as described above, due to detection by the modem of any inability to communicate effectively on one or more of its channels.
- the control messages may be sent to the CMTS 120 by the CM 140 using the modulation used for regular data transmission, such as 8-QAM, 16-QAM, 32-QAM, 64-QAM, 128-QAM, or 256-QAM, or using a different, more robust modulation scheme such as quadrature phase-shift keying (QPSK).
- QPSK quadrature phase-shift keying
- the message may be received via the regular data transmission path or via a separate control channel.
- the indication may take the form of a DOCSIS REG-ACK message if a channel is not acquired during registration, a DBC-RSP message if the channel is not acquired during Dynamic Bonding Change, or a CM-STATUS message if a channel becomes unusable during normal operation.
- the CMTS increments a partial service mode counter for each affected channel in response to the indication of the partial service mode.
- the partial service mode counter may be stored in RAM 260 and may be adjusted by microprocessor 220 .
- the partial service mode counter may be implemented as a separate count of partial service mode CMs that can be added to the active modem count for a total, or a total count of the combined number of active and partial service mode CMs.
- a load balancing trigger is detected.
- the trigger may be generated by a timer.
- the timer may be a process executed by processor 220 .
- the trigger may be related to utilization, modem count imbalances, or other indicators.
- one or more differences are computed between the number of CMs associated with a channel and counts related to one or more other channels.
- the difference may be computed as a difference between the modem count of the relevant channel and one other channel or an average modem count for all channels related to an LBG, or perhaps a difference between the modem count of the relevant channel and the minimum of the modem counts for the other channels in the LBG.
- the maximum and minimum modem counts for the relevant channels are determined and the difference between them used in the assessment.
- 450 if the difference in the counts of CMs, where the counts include the partial service mode CMs, exceeds a threshold, the algorithm proceeds to 460 and load balancing is performed. It should be noted that 450 may be equivalently implemented as a check of whether the difference meets or exceeds the threshold with the corresponding selection of a higher threshold. Furthermore, the decision may be equivalently considered in the opposite sense, wherein load balancing is deferred if the difference is below a threshold.
- load balancing itself may involve any set of two or more channels in the LBG.
- load balancing once triggered, may potentially impact allocation of modems across all channels in the LBG.
- the load balancing may simply move modems from the most heavily loaded channel to the least heavily loaded channel.
- the difference in modem count does not exceed a threshold when the partial service modems are considered, it could be counterproductive to rebalance.
- the partial service mode modems are expected to eventually recover and begin to pass data evenly on all of their upstream channels, causing the channels to go back to the balanced condition.
- the difference threshold is not exceeded, rebalancing is delayed and the algorithm then returns to 430 to await the next trigger.
- the method of FIG. 4 is applicable particularly to systems where load balancing is based on modem counts.
- the method serves to prevent load balancing when the difference in counts of active modems is based upon the inactivity of modems in partial service mode, which are expected to return to active service in the near term, rather than upon a difference in the expected longer-term modem counts.
- Balancing modem counts will not always produce balanced utilization of channels. Therefore, in some systems, load balancing is performed not based upon differences in modem counts, but upon differences in data utilization. As above, modems in partial service mode may also impact whether load balancing should be performed or deferred in a system based upon utilization.
- modems in partial service mode may lead to an appearance that a channel is underutilized, when in fact the modems are likely to resume communications on the channel in the near term. Moving modems to such a channel could lead to counterproductive load balancing, unnecessary modem moves, and disruption of communications.
- a modified method, described below, is desirable for such systems.
- FIG. 5 is a flowchart of such a method 500 wherein load balancing is deferred for a channel until the percentage of modems in partial service mode is below a threshold, or, equivalently, the percentage of active modems is above a threshold.
- the method may be performed within a CMTS 120 , or particularly within an upstream module 200 , a downstream module, or a combined upstream/downstream unit.
- Program code for the method may be stored on ROM 240 and/or RAM 260 , and may be executed by microprocessor 220 .
- the CMTS receives an indication of a partial service mode for one of the modems.
- the indication may be received directly from the modem, as described above, due to detection by the modem of any inability to communicate effectively on one or more of its channels.
- the indication may take the form of a DOCSIS REG-ACK message if a channel is not acquired during registration, a DBC-RSP message if the channel is not acquired during Dynamic Bonding Change, or a CM-STATUS message if a channel becomes unusable during normal operation.
- the CMTS 120 increments a partial service mode counter for the relevant channels in response to the indication of the partial service mode from the CM.
- the partial service mode counter may be stored in RAM 260 and may be adjusted by microprocessor 220 .
- the partial service mode counter may be implemented as a separate count of partial service mode CMs that can be added to the active modem count for a total, or a total count of the combined number of active and partial service mode CMs.
- a load balancing trigger is detected.
- the trigger may be received from a timer process.
- the timer may be a process executed by processor 220 .
- the trigger may be related to utilization or other indicators.
- the percentage of CMs in partial service mode for the channel of interest is calculated. If a large percentage of CMs are in partial service mode, the utilization metrics for the channel are likely to be misleading. CMs that will likely be communicating on the channel in the near future are not presently communicating. Thus, moving CMs to the channel based on the temporary underutilization could be counterproductive.
- the algorithm proceeds to 560 and load balancing is conducted with the relevant channel included. For instance, if a 10% threshold is used, load balancing would be allowed for a channel where fewer than ten of a total of one hundred CMs were in partial service mode.
- the threshold percentage is an implementation decision and could be based on average utilization statistics of modems.
- the partial service mode metric may exceed the threshold. In these cases, it could be counterproductive to rebalance since the partial service CMs should eventually recover and resume communications on all of their channels, causing the channels to go back to a more balanced condition. Thus, in those cases, the algorithm returns to 530 without rebalancing the channel and awaits the next trigger. For instance, if a 10% threshold is used, load balancing would be deferred for a channel where one or more of a total of eight modems were in partial service mode.
- the load balancing algorithm may equivalently compute the percentage of CMs that are not in partial service mode and require that the percentage exceed the threshold for rebalancing to occur. In some embodiments, load balancing will also be contingent upon a minimum utilization level regardless of the differences in utilization, or other conditions.
- the methods of FIG. 4 and FIG. 5 may also be performed by the apparatus of FIG. 2 .
- the receivers 270 may receive an indication of a partial service mode for a modem. Responsive to the indication of a partial service mode for the modem, processor 220 may increment a first partial service mode counter for channel associated with the partial service mode indication, compute a first partial service mode metric based in part upon the partial service mode counter, and responsive to a determination that the partial service mode metric meets a threshold, determine an allocation of modems to channels, including the first channel associated with the partial service mode indication.
- the indication of a partial service mode for a modem may alternatively be received via network interface 230 .
- Program code related to execution of the method may be stored in RAM 260 , ROM 240 , or other memory.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Environmental & Geological Engineering (AREA)
- Telephonic Communication Services (AREA)
Abstract
Description
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/924,920 US10027588B2 (en) | 2012-12-27 | 2015-10-28 | Dynamic load balancing under partial service conditions |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/728,220 US9203639B2 (en) | 2012-12-27 | 2012-12-27 | Dynamic load balancing under partial service conditions |
US14/924,920 US10027588B2 (en) | 2012-12-27 | 2015-10-28 | Dynamic load balancing under partial service conditions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/728,220 Division US9203639B2 (en) | 2012-12-27 | 2012-12-27 | Dynamic load balancing under partial service conditions |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160050154A1 US20160050154A1 (en) | 2016-02-18 |
US10027588B2 true US10027588B2 (en) | 2018-07-17 |
Family
ID=51017065
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/728,220 Active 2033-07-25 US9203639B2 (en) | 2012-12-27 | 2012-12-27 | Dynamic load balancing under partial service conditions |
US14/924,920 Active 2033-01-02 US10027588B2 (en) | 2012-12-27 | 2015-10-28 | Dynamic load balancing under partial service conditions |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/728,220 Active 2033-07-25 US9203639B2 (en) | 2012-12-27 | 2012-12-27 | Dynamic load balancing under partial service conditions |
Country Status (2)
Country | Link |
---|---|
US (2) | US9203639B2 (en) |
CA (1) | CA2836755C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11895182B1 (en) | 2023-01-23 | 2024-02-06 | Bank Of America Corporation | Systems, methods, and apparatuses for dynamically determining data center transmissions by implementing load balancers in an electronic network |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9088355B2 (en) | 2006-03-24 | 2015-07-21 | Arris Technology, Inc. | Method and apparatus for determining the dynamic range of an optical link in an HFC network |
US9113181B2 (en) | 2011-12-13 | 2015-08-18 | Arris Technology, Inc. | Dynamic channel bonding partial service triggering |
US9065731B2 (en) | 2012-05-01 | 2015-06-23 | Arris Technology, Inc. | Ensure upstream channel quality measurement stability in an upstream channel bonding system using T4 timeout multiplier |
US9197886B2 (en) | 2013-03-13 | 2015-11-24 | Arris Enterprises, Inc. | Detecting plant degradation using peer-comparison |
US9160447B1 (en) * | 2013-03-14 | 2015-10-13 | CSC Holdings, LLC | Detection of impairments in a network system |
US9042236B2 (en) | 2013-03-15 | 2015-05-26 | Arris Technology, Inc. | Method using equalization data to determine defects in a cable plant |
US9025469B2 (en) | 2013-03-15 | 2015-05-05 | Arris Technology, Inc. | Method for estimating cable plant topology |
US10477199B2 (en) | 2013-03-15 | 2019-11-12 | Arris Enterprises Llc | Method for identifying and prioritizing fault location in a cable plant |
US9325620B2 (en) * | 2013-09-24 | 2016-04-26 | Cisco Technology, Inc. | Channel load balancing system |
WO2015148965A2 (en) * | 2014-03-28 | 2015-10-01 | Weigel Broadcasting Co. | Channel bonding |
US10080159B2 (en) * | 2014-06-24 | 2018-09-18 | Qualcomm Incorporated | Dynamic bandwidth management for load-based equipment in unlicensed spectrum |
US10680935B2 (en) * | 2015-08-24 | 2020-06-09 | Arris Enterprises Llc | Automatic recovery from impaired data path |
US11153832B2 (en) | 2016-03-24 | 2021-10-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Adaptive microwave communication link |
US10868655B2 (en) | 2016-07-13 | 2020-12-15 | Cable Television Laboratories, Inc. | System and method for pipelining HARQ retransmissions for small cell backhaul |
US10887061B2 (en) | 2016-07-13 | 2021-01-05 | Cable Television Laboratories, Inc. | Systems and methods for packet segmentation in standalone small cell |
US10404585B1 (en) * | 2016-12-19 | 2019-09-03 | Harmonic, Inc. | Dynamically segregating sources of ingress at a node |
US12041589B2 (en) * | 2020-08-17 | 2024-07-16 | Charter Communications Operating, Llc | Methods and apparatus for spectrum utilization coordination between wireline backhaul and wireless systems |
US11582055B2 (en) | 2020-08-18 | 2023-02-14 | Charter Communications Operating, Llc | Methods and apparatus for wireless device attachment in a managed network architecture |
US11563593B2 (en) | 2020-08-19 | 2023-01-24 | Charter Communications Operating, Llc | Methods and apparatus for coordination between wireline backhaul and wireless systems |
US11844057B2 (en) | 2020-09-09 | 2023-12-12 | Charter Communications Operating, Llc | Methods and apparatus for wireless data traffic management in wireline backhaul systems |
CN113553171A (en) * | 2021-06-07 | 2021-10-26 | 用友汽车信息科技(上海)股份有限公司 | Load balancing control method, device and computer readable storage medium |
Citations (243)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3838221A (en) | 1971-08-11 | 1974-09-24 | Communications Satellite Corp | Tdma satellite communications system having special reference bursts |
JPS55132161A (en) | 1979-04-03 | 1980-10-14 | Nec Corp | Measuring method for margin of digital regenerative repeater |
US4245342A (en) | 1979-01-10 | 1981-01-13 | Intech Laboratories, Inc. | One-for-n modem control apparatus |
US4385392A (en) | 1981-07-31 | 1983-05-24 | Angell Gary W | Modem fault detector and corrector system |
US4811360A (en) | 1988-01-14 | 1989-03-07 | General Datacomm, Inc. | Apparatus and method for adaptively optimizing equalization delay of data communication equipment |
US4999787A (en) | 1988-07-15 | 1991-03-12 | Bull Hn Information Systems Inc. | Hot extraction and insertion of logic boards in an on-line communication system |
JPH04208707A (en) | 1990-11-21 | 1992-07-30 | Mitsubishi Electric Corp | Adaptive equalizer |
US5228060A (en) | 1990-07-31 | 1993-07-13 | Ricoh Company, Ltd. | Control unit for controlling modem used in receiver |
US5251324A (en) | 1990-03-20 | 1993-10-05 | Scientific-Atlanta, Inc. | Method and apparatus for generating and collecting viewing statistics for remote terminals in a cable television system |
US5271060A (en) | 1990-01-12 | 1993-12-14 | Codex Corporation | Circuitry for interfacing telecommunications equipment to a communication channel |
US5278977A (en) | 1991-03-19 | 1994-01-11 | Bull Hn Information Systems Inc. | Intelligent node resident failure test and response in a multi-node system |
JPH06120896A (en) | 1992-10-09 | 1994-04-28 | Matsushita Electric Ind Co Ltd | Optical transmission terminal and wavelength setting method |
JPH06177840A (en) | 1992-12-08 | 1994-06-24 | Nippon Telegr & Teleph Corp <Ntt> | Optical communication system |
US5347539A (en) | 1991-04-15 | 1994-09-13 | Codex Corporation | High speed two wire modem |
US5390339A (en) | 1991-10-23 | 1995-02-14 | Motorola Inc. | Method and apparatus for selecting a serving transceiver |
US5463661A (en) | 1995-02-23 | 1995-10-31 | Motorola, Inc. | TX preemphasis filter and TX power control based high speed two wire modem |
US5532865A (en) | 1992-10-09 | 1996-07-02 | Matsushita Electric Industrial Co., Ltd. | Fiber optic communication terminal, fiber optic communication system, and its wavelength setting method |
US5557603A (en) | 1991-12-23 | 1996-09-17 | Motorola, Inc. | Radio communications apparatus with diversity |
JPH098738A (en) | 1995-06-21 | 1997-01-10 | Nippon Telegr & Teleph Corp <Ntt> | Device and method for measuring operational margin of optical repeater |
US5606725A (en) | 1994-11-29 | 1997-02-25 | Xel Communications, Inc. | Broadband network having an upstream power transmission level that is dynamically adjusted as a function of the bit error rate |
US5631846A (en) | 1995-02-28 | 1997-05-20 | Lucent Technologies Inc. | Upstream communications for interactive networks |
JPH09162816A (en) | 1995-12-07 | 1997-06-20 | Nippon Telegr & Teleph Corp <Ntt> | System margin measuring device |
US5694437A (en) | 1995-10-10 | 1997-12-02 | Motorola, Inc. | Device and method for data signal detection in the presence of distortion and interference in communication systems |
US5732104A (en) | 1994-12-14 | 1998-03-24 | Motorola, Inc. | Signalling techniques and device for high speed data transmission over voiceband channels |
US5790523A (en) | 1993-09-17 | 1998-08-04 | Scientific-Atlanta, Inc. | Testing facility for a broadband communications system |
JPH10247893A (en) | 1997-03-04 | 1998-09-14 | Mitsubishi Electric Corp | Optical sub-carrier transmission system |
US5862451A (en) | 1996-01-22 | 1999-01-19 | Motorola, Inc. | Channel quality management in a cable telephony system |
US5867539A (en) | 1995-07-21 | 1999-02-02 | Hitachi America, Ltd. | Methods and apparatus for reducing the effect of impulse noise on receivers |
US5870429A (en) | 1996-06-17 | 1999-02-09 | Motorola, Inc. | Apparatus method, and software modem for utilizing envelope delay distortion characteristics to determine a symbol rate and a carrier frequency for data transfer |
US5886749A (en) | 1996-12-13 | 1999-03-23 | Cable Television Laboratories, Inc. | Demodulation using a time domain guard interval with an overlapped transform |
US5939887A (en) | 1997-09-05 | 1999-08-17 | Tektronix, Inc. | Method for measuring spectral energy interference in a cable transmission system |
US5943604A (en) | 1997-10-31 | 1999-08-24 | Cisco Technology, Inc. | Echo device method for locating upstream ingress noise gaps at cable television head ends |
JPH11230857A (en) | 1998-02-18 | 1999-08-27 | Kdd | System and method for measuring quality of light transmitting line and light transmitting device |
US6061393A (en) | 1995-04-27 | 2000-05-09 | Wavetek Wandel And Goltermann | Non-invasive digital cable test system |
US6108351A (en) | 1995-11-09 | 2000-08-22 | Thomson Broadcast Systems | Non-linearity estimation method and device |
US6154503A (en) | 1996-06-07 | 2000-11-28 | Sharp Kk Corporation | Automatic gain control system that responds to baseband signal distortion |
JP2001044956A (en) | 1999-06-21 | 2001-02-16 | Terayon Communication Syst Inc | Docsis1.0tdma burst mixed with scdma transmission on same frequency channel |
US6229792B1 (en) | 1993-11-01 | 2001-05-08 | Xircom, Inc. | Spread spectrum communication system |
US6230326B1 (en) | 1998-07-30 | 2001-05-08 | Nortel Networks Limited | Method and apparatus for initialization of a cable modem |
US6233274B1 (en) | 1995-04-27 | 2001-05-15 | Wavetek Wandel Goltermann | Non-invasive digital cable test system |
US6240553B1 (en) | 1999-03-31 | 2001-05-29 | Diva Systems Corporation | Method for providing scalable in-band and out-of-band access within a video-on-demand environment |
US6272150B1 (en) | 1997-01-17 | 2001-08-07 | Scientific-Atlanta, Inc. | Cable modem map display for network management of a cable data delivery system |
US6308286B1 (en) | 1994-06-30 | 2001-10-23 | Hughes Electronics Corporation | Complexity reduction system and method for integrated redundancy switchover systems |
US6310909B1 (en) | 1998-12-23 | 2001-10-30 | Broadcom Corporation | DSL rate adaptation |
US6321384B1 (en) | 1994-11-30 | 2001-11-20 | General Instrument Corporation | Noise reduction in cable return paths |
WO2001092901A1 (en) | 2000-05-30 | 2001-12-06 | Motorola, Inc. | Spectrum management method for a cable data system |
US6330221B1 (en) | 1998-06-18 | 2001-12-11 | Cisco Technology, Inc. | Failure tolerant high density dial router |
US6334219B1 (en) | 1994-09-26 | 2001-12-25 | Adc Telecommunications Inc. | Channel selection for a hybrid fiber coax network |
US20010055319A1 (en) | 1998-10-30 | 2001-12-27 | Broadcom Corporation | Robust techniques for optimal upstream communication between cable modem subscribers and a headend |
US20020038461A1 (en) | 2000-04-19 | 2002-03-28 | Gerard White | Radio-frequency communications redundancy |
US20020044531A1 (en) | 1998-03-31 | 2002-04-18 | Cooper Michael J. | Method for measuring channel characteristics with the internet control message protocol |
US6377552B1 (en) | 1997-08-29 | 2002-04-23 | Motorola, Inc. | System, device, and method for evaluating dynamic range in a communication system |
WO2002033974A1 (en) | 2000-10-18 | 2002-04-25 | Motorola, Inc. A Corporation Of The State Of Delaware | Switch matrix packaging for high availablity |
US6385773B1 (en) | 1999-01-07 | 2002-05-07 | Cisco Techology, Inc. | Method and apparatus for upstream frequency channel transition |
US6389068B1 (en) | 2000-05-15 | 2002-05-14 | Motorola, Inc. | Sliced bandwidth distortion prediction |
US20020091970A1 (en) | 2001-01-11 | 2002-07-11 | Naoki Furudate | Communication control system |
US20020116493A1 (en) | 1995-11-16 | 2002-08-22 | David Schenkel | Method of determining the topology of a network of objects |
EP1235402A2 (en) | 2001-02-23 | 2002-08-28 | Terayon Communication Systems, Inc. | Head end receiver for digital data delivery systems using mixed mode SCDMA and TDMA multiplexing |
US6445734B1 (en) | 1999-06-30 | 2002-09-03 | Conexant Systems, Inc. | System and method of validating equalizer training |
US6456597B1 (en) | 1998-05-04 | 2002-09-24 | Hewlett Packard Co. | Discovery of unknown MAC addresses using load balancing switch protocols |
US6477197B1 (en) | 1998-06-30 | 2002-11-05 | Arris International, Inc. | Method and apparatus for a cable modem upstream RF switching system |
US6480469B1 (en) | 1998-12-16 | 2002-11-12 | Worldcom, Inc. | Dial-up access response testing method and system therefor |
US20020168131A1 (en) | 2001-05-14 | 2002-11-14 | Tony Walter | Wavelength power equalization by attenuation in an optical switch |
US6483033B1 (en) | 2000-10-11 | 2002-11-19 | Motorola, Inc. | Cable management apparatus and method |
US20020181395A1 (en) | 2001-04-27 | 2002-12-05 | Foster Michael S. | Communicating data through a network so as to ensure quality of service |
US6498663B1 (en) | 1999-09-24 | 2002-12-24 | Scientific-Atlanta, Inc. | Methods and systems for detecting optical link performance of an optical link in a hybrid fiber coaxial path |
US6512616B1 (en) | 1998-11-30 | 2003-01-28 | Nec Corporation | Optical packet switch |
US20030028898A1 (en) | 2001-05-04 | 2003-02-06 | General Instrument Corporation | Enhanced return path performance using modulation-based alignment criteria |
US6526260B1 (en) | 1999-06-24 | 2003-02-25 | Mitel Semiconductor Limited | Cross-channel interference |
US20030043732A1 (en) | 2001-05-17 | 2003-03-06 | Walton Jay R. | Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel transmission |
US6546557B1 (en) | 1998-10-13 | 2003-04-08 | General Instrument Corporation | Method and system for enhancing digital video transmission to a set-top box |
US20030067883A1 (en) | 2001-10-09 | 2003-04-10 | Yehuda Azenkot | Method and apparatus to improve SCDMA headroom |
US6556239B1 (en) | 2000-04-10 | 2003-04-29 | Scientific-Atlanta, Inc. | Distortion monitoring system for CATV transmission networks |
US6556562B1 (en) | 1999-09-29 | 2003-04-29 | At&T Corp. | System to provide lifeline IP telephony service on cable access networks |
US6556660B1 (en) | 2001-04-25 | 2003-04-29 | At&T Corp. | Apparatus for providing redundant services path to customer premises equipment |
US6559756B2 (en) | 2001-06-13 | 2003-05-06 | Scientific-Atlanta, Inc. | Ingress monitoring device in a broadband communications system |
US6563868B1 (en) | 1998-07-17 | 2003-05-13 | General Instruments Corporation | Method and apparatus for adaptive equalization in the presence of large multipath echoes |
US6570394B1 (en) | 1999-01-22 | 2003-05-27 | Thomas H. Williams | Tests for non-linear distortion using digital signal processing |
US6570913B1 (en) | 1999-04-05 | 2003-05-27 | Cisco Technology, Inc. | Method and apparatus for selecting optimum frequency for upstream data transmission in a network system utilizing cable modems |
US20030101463A1 (en) | 2001-11-26 | 2003-05-29 | Adc Telecommunications, Inc. | Passive CMTS redundancy |
US6574797B1 (en) | 1999-01-08 | 2003-06-03 | Cisco Technology, Inc. | Method and apparatus for locating a cleaner bandwidth in a frequency channel for data transmission |
US20030108052A1 (en) | 2001-12-06 | 2003-06-12 | Rumiko Inoue | Server load sharing system |
US20030120819A1 (en) | 2001-12-20 | 2003-06-26 | Abramson Howard D. | Active-active redundancy in a cable modem termination system |
US6588016B1 (en) | 1998-06-30 | 2003-07-01 | Cisco Technology, Inc. | Method and apparatus for locating a faulty component in a cable television system having cable modems |
US20030138250A1 (en) | 2000-04-06 | 2003-07-24 | Glynn Gerard James | Wavelength division multiplex (wdm) signal monitor |
US20030149991A1 (en) | 2002-02-07 | 2003-08-07 | Reidhead Lance R. | Radio frequency characterization of cable plant and corresponding calibration of communication equipment communicating via the cable plant |
US20030158940A1 (en) | 2002-02-20 | 2003-08-21 | Leigh Kevin B. | Method for integrated load balancing among peer servers |
US6611795B2 (en) | 2000-12-06 | 2003-08-26 | Motorola, Inc. | Apparatus and method for providing adaptive forward error correction utilizing the error vector magnitude metric |
EP1341335A2 (en) | 2002-02-28 | 2003-09-03 | Texas Instruments Incorporated | Channel monitoring for improved parameter selection in a communication system |
US20030181185A1 (en) | 2002-02-28 | 2003-09-25 | Itay Lusky | Noise identification in a communication system |
US20030179770A1 (en) | 2002-02-28 | 2003-09-25 | Zvi Reznic | Channel allocation and reallocation in a communication system |
US20030179821A1 (en) | 2002-02-28 | 2003-09-25 | Itay Lusky | Channel monitoring for improved parameter selection in a communication system |
US20030182664A1 (en) | 2002-02-28 | 2003-09-25 | Itay Lusky | Parameter selection in a communication system |
US20030179768A1 (en) | 2002-02-28 | 2003-09-25 | Itay Lusky | Constellation selection in a communication system |
US20030185176A1 (en) | 2002-02-28 | 2003-10-02 | Itay Lusky | Noise analysis in a communication system |
US20030188254A1 (en) | 2002-02-28 | 2003-10-02 | Itay Lusky | Error correction code parameter selection in a communication system |
US20030200317A1 (en) | 2002-04-19 | 2003-10-23 | Native Networks Technologies Ltd | Method and system for dynamically allocating bandwidth to a plurality of network elements |
US6646677B2 (en) | 1996-10-25 | 2003-11-11 | Canon Kabushiki Kaisha | Image sensing control method and apparatus, image transmission control method, apparatus, and system, and storage means storing program that implements the method |
US20030212999A1 (en) | 2002-05-08 | 2003-11-13 | Simin Cai | System and method for providing video telephony over a cable access network infrastructure |
US6662135B1 (en) | 1998-12-09 | 2003-12-09 | 3Com Corporation | Method and apparatus for reflective mixer testing of a cable modem |
US6662368B1 (en) | 2000-09-11 | 2003-12-09 | Arris International, Inc. | Variable spare circuit group size and quantity having multiple active circuits |
US6671334B1 (en) | 1998-11-03 | 2003-12-30 | Tektronix, Inc. | Measurement receiver demodulator |
US20040015765A1 (en) | 2000-12-06 | 2004-01-22 | Motorola, Inc. | Apparatus and method for providing optimal adaptive forward error correction in data communications |
US6687632B1 (en) | 1998-01-23 | 2004-02-03 | Trilithic, Inc. | Testing of CATV systems |
US6690655B1 (en) | 2000-10-19 | 2004-02-10 | Motorola, Inc. | Low-powered communication system and method of operation |
US6700927B1 (en) | 1999-03-10 | 2004-03-02 | Next Level Communications, Inc. | Method for establishing and adapting communication link parameters in XDSL transmission systems |
US6700875B1 (en) | 1998-03-31 | 2004-03-02 | Motorola, Inc. | System, device, and method for selecting a channel in a multichannel communication network |
US20040042385A1 (en) | 2002-08-31 | 2004-03-04 | Ki-Yun Kim | Preamble design for frequency offset estimation and channel equalization in burst OFDM transmission system |
US20040047284A1 (en) | 2002-03-13 | 2004-03-11 | Eidson Donald Brian | Transmit diversity framing structure for multipath channels |
US20040052356A1 (en) | 2002-09-18 | 2004-03-18 | Sbc Properties, L.P., Of Reno, Nv | Multi-modal address book |
US6711134B1 (en) | 1999-11-30 | 2004-03-23 | Agilent Technologies, Inc. | Monitoring system and method implementing an automatic test plan |
US20040062548A1 (en) | 2002-09-30 | 2004-04-01 | Obeda Paul David | Method and system for identification of channels in an optical network |
US20040073937A1 (en) | 2002-09-30 | 2004-04-15 | Williams Thomas H. | System and method to test network performance with impairments |
US20040096216A1 (en) | 2002-11-19 | 2004-05-20 | Fujitsu Limited | Transmission route applicability inspection system in wavelength division multiplexing optical transmission network system |
US6741947B1 (en) | 1999-11-30 | 2004-05-25 | Agilent Technologies, Inc. | Monitoring system and method implementing a total node power test |
US20040109661A1 (en) | 2002-12-05 | 2004-06-10 | Bierman Robert Michael | Method and apparatus for controlling a variable optical attenuator in an optical network |
US20040139473A1 (en) | 2003-01-10 | 2004-07-15 | Adc Broadband Access Systems, Inc. | Increasing capacity in a cable modem termination system (CMTS) with passive redundancy |
WO2004062124A1 (en) | 2002-12-17 | 2004-07-22 | Bae Systems Information And Electronic Systems Integration Inc | Bandwidth efficient cable network modem |
US6772437B1 (en) | 1999-07-28 | 2004-08-03 | Telefonaktiebolaget Lm Ericsson | Cable modems and systems and methods for identification of a noise signal source on a cable network |
US20040163129A1 (en) | 2003-02-04 | 2004-08-19 | Cisco Technology, Inc. | Wideband cable system |
US20040181811A1 (en) | 2003-03-13 | 2004-09-16 | Rakib Selim Shlomo | Thin DOCSIS in-band management for interactive HFC service delivery |
US20040202202A1 (en) | 2003-04-09 | 2004-10-14 | Broadcom Corporation | Method and apparatus for maintaining synchronization in a communication system |
US20040208513A1 (en) | 2002-04-12 | 2004-10-21 | Fujitsu Network Communications, Inc. | Management of optical links using power level information |
US20040233926A1 (en) | 2003-05-19 | 2004-11-25 | Broadcom Corporation | System, method, and computer program product for facilitating communication between devices implementing proprietary features in a DOCSIS-compliant broadband communication system |
US20040233234A1 (en) | 2003-05-22 | 2004-11-25 | International Business Machines Corporation | Appparatus and method for automating the diagramming of virtual local area networks |
JP2004343678A (en) | 2002-10-17 | 2004-12-02 | Matsushita Electric Ind Co Ltd | Radio communication system |
US20040248520A1 (en) | 2002-06-28 | 2004-12-09 | Kenichi Miyoshi | Transmission apparatus and communication mode selection table updating method |
US20040261119A1 (en) | 2003-06-17 | 2004-12-23 | Williams Christopher Pierce | Addressable fiber node |
US6839829B1 (en) | 2000-01-18 | 2005-01-04 | Cisco Technology, Inc. | Routing protocol based redundancy design for shared-access networks |
US20050010958A1 (en) | 2002-07-08 | 2005-01-13 | Rakib Shlomo Selim | Upstream only linecard with front end multiplexer for CMTS |
US20050025145A1 (en) | 2002-11-15 | 2005-02-03 | Rakib Selim Shlomo | Cable modem termination system with flexible addition of single upstreams or downstreams |
US6853932B1 (en) | 1999-11-30 | 2005-02-08 | Agilent Technologies, Inc. | Monitoring system and method implementing a channel plan and test plan |
US20050034159A1 (en) | 2002-12-20 | 2005-02-10 | Texas Instruments Incorporated | Implementing a hybrid wireless and coaxial cable network |
US20050039103A1 (en) | 2003-07-31 | 2005-02-17 | Yehuda Azenko | Method and apparatus for automatic rate adaptation in a DOCSIS upstream |
US20050058082A1 (en) | 2003-09-11 | 2005-03-17 | Moran John L. | Spectrum management systems and methods for cable networks |
US20050064890A1 (en) | 2003-09-08 | 2005-03-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Modulation scheme management |
US6877166B1 (en) | 2000-01-18 | 2005-04-05 | Cisco Technology, Inc. | Intelligent power level adjustment for cable modems in presence of noise |
US20050097617A1 (en) | 1999-08-31 | 2005-05-05 | Currivan Bruce J. | Ranging and registering cable modems under attenuated transmission conditions |
US6895043B1 (en) | 1999-06-03 | 2005-05-17 | Cisco Technology, Inc. | Method and apparatus for measuring quality of upstream signal transmission of a cable modem |
US20050108763A1 (en) | 2001-12-27 | 2005-05-19 | Paul Baran | Method and apparatus for increasing video streams in a video system |
US20050122996A1 (en) | 2003-12-06 | 2005-06-09 | Yehuda Azenkot | Establishment of multiple upstream docsis logical channels based upon performance |
US6906526B2 (en) | 2003-03-14 | 2005-06-14 | General Instrument Corporation | Non-intrusive cable connection monitoring for use in HFC networks |
US20050163088A1 (en) | 2004-01-27 | 2005-07-28 | Nec Corporation | Radio communication method, radio communication system and wireless terminal |
US20050175080A1 (en) | 2002-04-17 | 2005-08-11 | Bouillett Aaron R. | Equalizer status monitor |
US20050183130A1 (en) | 2004-02-12 | 2005-08-18 | Sadja Aran L. | Cable diagnostic and monitoring system |
US20050198688A1 (en) | 2000-09-19 | 2005-09-08 | Fong Thomas K.T. | System and method for digitally monitoring a cable plant |
US6944881B1 (en) | 2000-06-19 | 2005-09-13 | 3Com Corporation | Method for using an initial maintenance opportunity for non-contention ranging |
US20050226161A1 (en) | 2004-04-06 | 2005-10-13 | Jaworski Richard C | System for monitoring the upstream and downstream cable modem channel |
US6961314B1 (en) | 1998-10-30 | 2005-11-01 | Broadcom Corporation | Burst receiver for cable modem system |
US6961370B2 (en) | 2001-03-29 | 2005-11-01 | Acterna | Sweep method using digital signals |
US6967994B2 (en) | 2000-09-20 | 2005-11-22 | Agere Systems Inc. | Method for operating a communication system and a communication system with training means |
US6973141B1 (en) | 2001-10-04 | 2005-12-06 | Wideband Semiconductors, Inc. | Flexible multimode QAM modulator |
US20050281200A1 (en) | 2004-06-16 | 2005-12-22 | Gerard Terreault | QAM signal analysis in a network |
US6985437B1 (en) | 1999-05-25 | 2006-01-10 | 3Com Corporation | Method for dynamic performance optimization in a data-over-cable system |
US20060013147A1 (en) | 2004-05-03 | 2006-01-19 | Level 3 Communications, Inc. | Registration redirect server |
US7010002B2 (en) | 2001-06-14 | 2006-03-07 | At&T Corp. | Broadband network with enterprise wireless communication method for residential and business environment |
US7017176B1 (en) | 1999-06-10 | 2006-03-21 | Cisco Technology, Inc. | Data transmission over multiple upstream channels within a cable modem system |
US7039939B1 (en) | 2000-05-09 | 2006-05-02 | Cisco Technology, Inc. | Method and apparatus for creating virtual upstream channels for enhanced lookahead channel parameter testing |
US7054554B1 (en) | 2001-11-02 | 2006-05-30 | Ciena Corporation | Method and system for detecting network elements in an optical communications network |
US7058007B1 (en) | 2000-01-18 | 2006-06-06 | Cisco Technology, Inc. | Method for a cable modem to rapidly switch to a backup CMTS |
US20060121946A1 (en) | 2001-11-06 | 2006-06-08 | Walton Jay R | Multiple-access multiple-input multiple-output (MIMO) communication system |
US7072365B1 (en) | 2000-12-29 | 2006-07-04 | Arris Interactive, Llc | System and method for multiplexing broadband signals |
US7079457B2 (en) | 1999-01-07 | 2006-07-18 | Hitachi, Ltd. | Method of reproducing information with equalization coefficient for the reproduced information |
US7099412B2 (en) | 2001-05-14 | 2006-08-29 | Texas Instruments Incorporated | Sequential decoding with backtracking and adaptive equalization to combat narrowband interference |
US7099580B1 (en) | 2001-11-02 | 2006-08-29 | Ciena Corporation | Method and system for communicating network topology in an optical communications network |
US20060250967A1 (en) | 2005-04-25 | 2006-11-09 | Walter Miller | Data connection quality analysis apparatus and methods |
US20060262722A1 (en) | 1999-10-13 | 2006-11-23 | Cisco Technology, Inc. | Downstream channel change technique implemented in an access network |
US7142609B2 (en) | 2000-11-29 | 2006-11-28 | Sunrise Telecom Incorporated | Method and apparatus for detecting and quantifying impairments in QAM signals |
US7158542B1 (en) | 2002-05-03 | 2007-01-02 | Atheros Communications, Inc. | Dynamic preamble detection |
US20070002752A1 (en) | 2005-06-30 | 2007-01-04 | Thibeault Brian K | Automated monitoring of a network |
US7164694B1 (en) | 1998-11-17 | 2007-01-16 | Cisco Technology, Inc. | Virtual loop carrier system with gateway protocol mediation |
US7177324B1 (en) | 2001-07-12 | 2007-02-13 | At&T Corp. | Network having bandwidth sharing |
US20070058542A1 (en) | 2005-09-01 | 2007-03-15 | Thibeault Brian K | Automated load balancing of receivers in a network |
US20070076790A1 (en) | 2005-09-30 | 2007-04-05 | Thibeault Brian K | Method and apparatus for testing a network using a spare receiver |
US20070076789A1 (en) | 2005-09-30 | 2007-04-05 | Thibeault Brian K | Method and apparatus for preventing loss of service from hardware failure in a network |
US20070076592A1 (en) | 2005-09-30 | 2007-04-05 | Thibeault Brian K | Non-invasive frequency rollback apparatus and method |
US20070086328A1 (en) | 2005-10-14 | 2007-04-19 | Via Technologies Inc. | Method and circuit for frequency offset estimation in frequency domain in the orthogonal frequency division multiplexing baseband receiver for IEEE 802.11A/G wireless LAN standard |
US20070094691A1 (en) | 2005-10-24 | 2007-04-26 | Gazdzinski Robert F | Method and apparatus for on-demand content transmission and control over networks |
US20070097907A1 (en) | 2005-10-28 | 2007-05-03 | Broadcom Corporation | Optimizing packet queues for channel bonding over a plurality of downstream channels of a communications management system |
US7222255B1 (en) | 2001-02-28 | 2007-05-22 | 3Com Corporation | System and method for network performance testing |
US7227863B1 (en) | 2001-11-09 | 2007-06-05 | Cisco Technology, Inc. | Methods and apparatus for implementing home agent redundancy |
US20070133672A1 (en) | 2005-12-09 | 2007-06-14 | Electronics And Telecommunications Research Institute | Apparatus and method for stable DEF using selective FBF |
US20070143654A1 (en) | 2005-12-15 | 2007-06-21 | General Instrument Corporation | Method and apparatus for using long forward error correcting codes in a content distribution system |
US20070147489A1 (en) | 2003-12-26 | 2007-06-28 | Zie Corporation | Uplink burst equalizing method in broad wide access system |
US7242862B2 (en) | 2002-01-21 | 2007-07-10 | Altera Corporation | Network diagnostic tool for an optical transport network |
US7246368B1 (en) | 2000-01-28 | 2007-07-17 | Cisco Technology, Inc. | Cable plant certification procedure using cable modems |
US20070177526A1 (en) | 2005-11-23 | 2007-08-02 | Pak Siripunkaw | Customer premise equipment device-specific access-limiting for a cable modem and a customer premise equipment device |
US20070184835A1 (en) | 2006-02-09 | 2007-08-09 | Altair Semiconductor Ltd. | Scanning for network connections with variable scan rate |
US20070189770A1 (en) | 2006-02-13 | 2007-08-16 | Guy Sucharczuk | Point-to-multipoint high data rate delivery systems from optical node in HFC systems over existing and advanced coaxial network |
US7263123B2 (en) | 2001-09-18 | 2007-08-28 | Broadcom Corporation | Fast computation of coefficients for a variable delay decision feedback equalizer |
US20070206600A1 (en) | 2006-03-06 | 2007-09-06 | Texas Instruments Incorporated | Cable Modem Downstream Channel Bonding Re-sequencing Mechanism |
US20070206625A1 (en) | 2006-03-01 | 2007-09-06 | Junichi Maeda | Communication device, communication system, and communication method performing communication using a plurality of signals having different frequencies |
US20070211618A1 (en) | 2006-03-13 | 2007-09-13 | Cooper Michael J | Method and apparatus for dynamically changing the preamble length of a burst communication |
US20070223512A1 (en) | 2006-03-24 | 2007-09-27 | General Instruments Corporation | Method and apparatus for configuring logical channels in a network |
US20070223920A1 (en) | 2006-03-24 | 2007-09-27 | General Instrument Corporation | Method and Apparatus for Determining the Dynamic Range of an Optical Link in an HFC Network |
US20070245177A1 (en) | 2006-03-24 | 2007-10-18 | General Instrument Corporation | Method and apparatus for determining the total power margin available for an hfc network |
US20080056713A1 (en) | 2006-09-05 | 2008-03-06 | Cooper Michael J | Efficient Use of Trusted Third Parties for Additional Content-Sharing Security |
US20080075157A1 (en) | 2006-09-25 | 2008-03-27 | Jim Allen | Method and system for detecting impulse noise in a broadband communication system |
US20080101210A1 (en) | 2006-10-26 | 2008-05-01 | General Instrument Corporation | Method and Apparatus for Characterizing Modulation Schemes in an HFC Network |
US20080140823A1 (en) | 2006-12-07 | 2008-06-12 | General Instrument Corporation | Method and Apparatus for Determining Micro-Reflections in a Network |
US7400677B2 (en) | 2002-07-01 | 2008-07-15 | Solarflare Communications, Inc. | Method and apparatus for channel equalization |
US20080193137A1 (en) | 2007-02-08 | 2008-08-14 | General Instrument Corporation | Method and apparatus for extending broadband communication services over a wireless link while protecting the network from performance degradations caused by the wireless link |
US20080200129A1 (en) | 2007-01-30 | 2008-08-21 | General Instrument Corporation | Method and apparatus for determining modulation levels that are supported on a channel |
US7421276B2 (en) | 2003-04-09 | 2008-09-02 | Nortel Networks Limited | Method, apparatus and system of configuring a wireless device based on location |
US20080242339A1 (en) | 2002-10-08 | 2008-10-02 | Qualcomm Incorporated | Controlling forward and reverse link traffic channel power |
US20080250508A1 (en) | 2007-04-06 | 2008-10-09 | General Instrument Corporation | System, Device and Method for Interoperability Between Different Digital Rights Management Systems |
US20080274700A1 (en) | 2003-11-07 | 2008-11-06 | Jifeng Li | Radio Communication Apparatus and Mcs Determination Method |
US20080291840A1 (en) | 2007-05-22 | 2008-11-27 | General Instrument Corporation | Method and Apparatus for Selecting a Network Element for Testing a Network |
US20090031384A1 (en) | 2007-07-24 | 2009-01-29 | Brooks Paul D | Methods and apparatus for format selection for network optimization |
US20090103669A1 (en) | 2007-10-17 | 2009-04-23 | Broadcom Corporation | Adaptive equalization and interference cancellation with time-varying noise and/or interference |
US20090103557A1 (en) | 2007-10-19 | 2009-04-23 | Seung Eun Hong | Method and apparatus for allocating upstream channel resource in hybrid fiber coaxial network |
US7573935B2 (en) | 2001-06-08 | 2009-08-11 | Broadcom Corporation | System and method for performing ranging in a cable modem system |
US20090249421A1 (en) | 2008-03-26 | 2009-10-01 | Xiaomei Liu | Distributing digital video content to multiple end-user devices |
WO2009146426A1 (en) | 2008-05-30 | 2009-12-03 | Arris Group, Inc. | Fast initialization of multi-mode devices |
US20100014425A1 (en) | 2008-07-18 | 2010-01-21 | Hon Hai Precision Industry Co., Ltd. | Method for balancing of modem load |
US7684315B1 (en) | 2002-11-08 | 2010-03-23 | Juniper Networks, Inc. | Ordered switchover of cable modems |
US20100083356A1 (en) | 2008-09-29 | 2010-04-01 | Andrew Steckley | System and method for intelligent automated remote management of electromechanical devices |
US20100095360A1 (en) | 2008-10-14 | 2010-04-15 | International Business Machines Corporation | Method and system for authentication |
US7716712B2 (en) | 2003-06-18 | 2010-05-11 | General Instrument Corporation | Narrowband interference and identification and digital processing for cable television return path performance enhancement |
US7739359B1 (en) | 2002-09-12 | 2010-06-15 | Cisco Technology, Inc. | Methods and apparatus for secure cable modem provisioning |
US20100154017A1 (en) * | 2008-12-15 | 2010-06-17 | Cisco Technology, Inc. | Apparatus and methods for moving cable modems between upstream channels |
US20100158093A1 (en) | 2008-12-23 | 2010-06-24 | General Instrument Corporation | Methods and System for Determining a Dominant Impairment of an Impaired Communication Channel |
US20100157824A1 (en) | 2008-12-23 | 2010-06-24 | General Instrument Corporation | Methods and System for Determining a Dominant Impairment of an Impaired Communication Channel |
US7778314B2 (en) | 2006-05-04 | 2010-08-17 | Texas Instruments Incorporated | Apparatus for and method of far-end crosstalk (FEXT) detection and estimation |
US7787557B2 (en) | 2006-10-16 | 2010-08-31 | Samsung Electronics Co., Ltd. | Apparatus for equalizing clipping noise signals of receiver systems and method thereof |
US20100223650A1 (en) | 2009-02-27 | 2010-09-02 | Cisco Technology, Inc. | Wideband fault correlation system |
US7792183B2 (en) | 2006-10-12 | 2010-09-07 | Acterna Llc | Digital quality index for QAM digital signals |
US20110030019A1 (en) | 2009-07-28 | 2011-02-03 | General Instrument Corporation | Ip video delivery using flexible channel bonding |
US20110026577A1 (en) | 2009-08-03 | 2011-02-03 | Haim Primo | Equalization for OFDM Communication |
US20110069745A1 (en) | 2009-09-23 | 2011-03-24 | General Instrument Corporation | Using equalization coefficients of end devices in a cable television network to determine and diagnose impairments in upstream channels |
US20110080868A1 (en) | 2009-10-01 | 2011-04-07 | Qualcomm Incorporated | Energy efficient quality of service aware communication over multiple air-links |
US20110110415A1 (en) | 2009-11-11 | 2011-05-12 | General Instrument Corporation | Monitoring instability and resetting an equalizer |
US7970010B2 (en) | 2004-12-10 | 2011-06-28 | Broadcom Corporation | Upstream channel bonding in a cable communications system |
US20110194597A1 (en) | 2010-02-05 | 2011-08-11 | Comcast Cable Communications, Llc | Modulation analysis and distortion identification |
US20110206103A1 (en) * | 2002-09-12 | 2011-08-25 | Juniper Networks, Inc. | Systems and methods for increasing cable modem system bandwidth efficiency |
US20110243214A1 (en) | 2010-02-05 | 2011-10-06 | Comcast Cable Communications, Llc | Inducing response signatures in a communication network |
US8059546B2 (en) | 2008-09-05 | 2011-11-15 | Cisco Technology, Inc. | Traffic flow scheduling techniques implemented on bonded channels of a shared access cable network |
US20120054312A1 (en) | 2010-08-24 | 2012-03-01 | Comcast Cable Communications, Llc | Dynamic bandwidth load balancing in a data distribution network |
US20120084416A1 (en) | 2010-09-30 | 2012-04-05 | General Instrument Corporation | Adaptive protocol/initialization technique selection |
US20120147751A1 (en) | 2010-12-08 | 2012-06-14 | General Instrument Corporation | System and method for ip video delivery using distributed flexible channel bonding |
US8310926B1 (en) * | 2010-02-18 | 2012-11-13 | Cisco Technology, Inc. | Modem count based load balancing in a cable network |
US20130088961A1 (en) * | 2011-10-11 | 2013-04-11 | General Instrument Corporation | Apparatus and Method for Load Balancing in a Cable Network |
US8788647B1 (en) | 2010-04-29 | 2014-07-22 | Arris Enterprises, Inc. | Load balancing for network devices |
-
2012
- 2012-12-27 US US13/728,220 patent/US9203639B2/en active Active
-
2013
- 2013-12-17 CA CA2836755A patent/CA2836755C/en active Active
-
2015
- 2015-10-28 US US14/924,920 patent/US10027588B2/en active Active
Patent Citations (292)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3838221A (en) | 1971-08-11 | 1974-09-24 | Communications Satellite Corp | Tdma satellite communications system having special reference bursts |
US4245342A (en) | 1979-01-10 | 1981-01-13 | Intech Laboratories, Inc. | One-for-n modem control apparatus |
JPS55132161A (en) | 1979-04-03 | 1980-10-14 | Nec Corp | Measuring method for margin of digital regenerative repeater |
US4385392A (en) | 1981-07-31 | 1983-05-24 | Angell Gary W | Modem fault detector and corrector system |
US4811360A (en) | 1988-01-14 | 1989-03-07 | General Datacomm, Inc. | Apparatus and method for adaptively optimizing equalization delay of data communication equipment |
US4999787A (en) | 1988-07-15 | 1991-03-12 | Bull Hn Information Systems Inc. | Hot extraction and insertion of logic boards in an on-line communication system |
US5271060A (en) | 1990-01-12 | 1993-12-14 | Codex Corporation | Circuitry for interfacing telecommunications equipment to a communication channel |
US5251324A (en) | 1990-03-20 | 1993-10-05 | Scientific-Atlanta, Inc. | Method and apparatus for generating and collecting viewing statistics for remote terminals in a cable television system |
US5228060A (en) | 1990-07-31 | 1993-07-13 | Ricoh Company, Ltd. | Control unit for controlling modem used in receiver |
JPH04208707A (en) | 1990-11-21 | 1992-07-30 | Mitsubishi Electric Corp | Adaptive equalizer |
US5278977A (en) | 1991-03-19 | 1994-01-11 | Bull Hn Information Systems Inc. | Intelligent node resident failure test and response in a multi-node system |
US5347539A (en) | 1991-04-15 | 1994-09-13 | Codex Corporation | High speed two wire modem |
US5390339A (en) | 1991-10-23 | 1995-02-14 | Motorola Inc. | Method and apparatus for selecting a serving transceiver |
US5557603A (en) | 1991-12-23 | 1996-09-17 | Motorola, Inc. | Radio communications apparatus with diversity |
US5532865A (en) | 1992-10-09 | 1996-07-02 | Matsushita Electric Industrial Co., Ltd. | Fiber optic communication terminal, fiber optic communication system, and its wavelength setting method |
JPH06120896A (en) | 1992-10-09 | 1994-04-28 | Matsushita Electric Ind Co Ltd | Optical transmission terminal and wavelength setting method |
JPH06177840A (en) | 1992-12-08 | 1994-06-24 | Nippon Telegr & Teleph Corp <Ntt> | Optical communication system |
US5790523A (en) | 1993-09-17 | 1998-08-04 | Scientific-Atlanta, Inc. | Testing facility for a broadband communications system |
US6229792B1 (en) | 1993-11-01 | 2001-05-08 | Xircom, Inc. | Spread spectrum communication system |
US6308286B1 (en) | 1994-06-30 | 2001-10-23 | Hughes Electronics Corporation | Complexity reduction system and method for integrated redundancy switchover systems |
US6334219B1 (en) | 1994-09-26 | 2001-12-25 | Adc Telecommunications Inc. | Channel selection for a hybrid fiber coax network |
US5606725A (en) | 1994-11-29 | 1997-02-25 | Xel Communications, Inc. | Broadband network having an upstream power transmission level that is dynamically adjusted as a function of the bit error rate |
US6321384B1 (en) | 1994-11-30 | 2001-11-20 | General Instrument Corporation | Noise reduction in cable return paths |
US5732104A (en) | 1994-12-14 | 1998-03-24 | Motorola, Inc. | Signalling techniques and device for high speed data transmission over voiceband channels |
US6606351B1 (en) | 1995-02-06 | 2003-08-12 | Adc Telecommunications, Inc. | Ingress protection in a communication system with orthogonal carriers |
US5463661A (en) | 1995-02-23 | 1995-10-31 | Motorola, Inc. | TX preemphasis filter and TX power control based high speed two wire modem |
US5631846A (en) | 1995-02-28 | 1997-05-20 | Lucent Technologies Inc. | Upstream communications for interactive networks |
US6278730B1 (en) | 1995-04-27 | 2001-08-21 | Wavetek Wandell Goltermann | Non-invasive digital cable test system |
US6233274B1 (en) | 1995-04-27 | 2001-05-15 | Wavetek Wandel Goltermann | Non-invasive digital cable test system |
US6061393A (en) | 1995-04-27 | 2000-05-09 | Wavetek Wandel And Goltermann | Non-invasive digital cable test system |
JPH098738A (en) | 1995-06-21 | 1997-01-10 | Nippon Telegr & Teleph Corp <Ntt> | Device and method for measuring operational margin of optical repeater |
US5867539A (en) | 1995-07-21 | 1999-02-02 | Hitachi America, Ltd. | Methods and apparatus for reducing the effect of impulse noise on receivers |
US5694437A (en) | 1995-10-10 | 1997-12-02 | Motorola, Inc. | Device and method for data signal detection in the presence of distortion and interference in communication systems |
DE69631420T2 (en) | 1995-11-09 | 2004-12-02 | Thomson Broadcast Systems | METHOD AND DEVICE FOR ESTIMATING NONLINEARITY |
US6108351A (en) | 1995-11-09 | 2000-08-22 | Thomson Broadcast Systems | Non-linearity estimation method and device |
US6928475B2 (en) | 1995-11-16 | 2005-08-09 | Peregrine Systems, Inc. | Method of determining the topology of a network of objects |
US20020116493A1 (en) | 1995-11-16 | 2002-08-22 | David Schenkel | Method of determining the topology of a network of objects |
JPH09162816A (en) | 1995-12-07 | 1997-06-20 | Nippon Telegr & Teleph Corp <Ntt> | System margin measuring device |
US5862451A (en) | 1996-01-22 | 1999-01-19 | Motorola, Inc. | Channel quality management in a cable telephony system |
US6434583B1 (en) | 1996-05-20 | 2002-08-13 | Adc Telecommunications, Inc. | Fast fourier transform apparatus and method |
US6154503A (en) | 1996-06-07 | 2000-11-28 | Sharp Kk Corporation | Automatic gain control system that responds to baseband signal distortion |
US5870429A (en) | 1996-06-17 | 1999-02-09 | Motorola, Inc. | Apparatus method, and software modem for utilizing envelope delay distortion characteristics to determine a symbol rate and a carrier frequency for data transfer |
US6646677B2 (en) | 1996-10-25 | 2003-11-11 | Canon Kabushiki Kaisha | Image sensing control method and apparatus, image transmission control method, apparatus, and system, and storage means storing program that implements the method |
US5886749A (en) | 1996-12-13 | 1999-03-23 | Cable Television Laboratories, Inc. | Demodulation using a time domain guard interval with an overlapped transform |
US6272150B1 (en) | 1997-01-17 | 2001-08-07 | Scientific-Atlanta, Inc. | Cable modem map display for network management of a cable data delivery system |
JPH10247893A (en) | 1997-03-04 | 1998-09-14 | Mitsubishi Electric Corp | Optical sub-carrier transmission system |
US6377552B1 (en) | 1997-08-29 | 2002-04-23 | Motorola, Inc. | System, device, and method for evaluating dynamic range in a communication system |
US5939887A (en) | 1997-09-05 | 1999-08-17 | Tektronix, Inc. | Method for measuring spectral energy interference in a cable transmission system |
US5943604A (en) | 1997-10-31 | 1999-08-24 | Cisco Technology, Inc. | Echo device method for locating upstream ingress noise gaps at cable television head ends |
US6032019A (en) | 1997-10-31 | 2000-02-29 | Cisco Technologies, Inc. | Echo device method for locating upstream ingress noise gaps at cable television head ends |
US6687632B1 (en) | 1998-01-23 | 2004-02-03 | Trilithic, Inc. | Testing of CATV systems |
JPH11230857A (en) | 1998-02-18 | 1999-08-27 | Kdd | System and method for measuring quality of light transmitting line and light transmitting device |
US6700875B1 (en) | 1998-03-31 | 2004-03-02 | Motorola, Inc. | System, device, and method for selecting a channel in a multichannel communication network |
US6816463B2 (en) | 1998-03-31 | 2004-11-09 | Motorola, Inc | Method for measuring channel characteristics with the internet control message protocol |
US20020044531A1 (en) | 1998-03-31 | 2002-04-18 | Cooper Michael J. | Method for measuring channel characteristics with the internet control message protocol |
US6456597B1 (en) | 1998-05-04 | 2002-09-24 | Hewlett Packard Co. | Discovery of unknown MAC addresses using load balancing switch protocols |
US6330221B1 (en) | 1998-06-18 | 2001-12-11 | Cisco Technology, Inc. | Failure tolerant high density dial router |
US6999408B1 (en) | 1998-06-18 | 2006-02-14 | Cisco Technology, Inc. | Failure tolerant high density dial router |
US6588016B1 (en) | 1998-06-30 | 2003-07-01 | Cisco Technology, Inc. | Method and apparatus for locating a faulty component in a cable television system having cable modems |
US6477197B1 (en) | 1998-06-30 | 2002-11-05 | Arris International, Inc. | Method and apparatus for a cable modem upstream RF switching system |
US6563868B1 (en) | 1998-07-17 | 2003-05-13 | General Instruments Corporation | Method and apparatus for adaptive equalization in the presence of large multipath echoes |
US6230326B1 (en) | 1998-07-30 | 2001-05-08 | Nortel Networks Limited | Method and apparatus for initialization of a cable modem |
US6546557B1 (en) | 1998-10-13 | 2003-04-08 | General Instrument Corporation | Method and system for enhancing digital video transmission to a set-top box |
US6961314B1 (en) | 1998-10-30 | 2005-11-01 | Broadcom Corporation | Burst receiver for cable modem system |
US20010055319A1 (en) | 1998-10-30 | 2001-12-27 | Broadcom Corporation | Robust techniques for optimal upstream communication between cable modem subscribers and a headend |
US7139283B2 (en) | 1998-10-30 | 2006-11-21 | Broadcom Corporation | Robust techniques for optimal upstream communication between cable modem subscribers and a headend |
US6671334B1 (en) | 1998-11-03 | 2003-12-30 | Tektronix, Inc. | Measurement receiver demodulator |
US7164694B1 (en) | 1998-11-17 | 2007-01-16 | Cisco Technology, Inc. | Virtual loop carrier system with gateway protocol mediation |
US6512616B1 (en) | 1998-11-30 | 2003-01-28 | Nec Corporation | Optical packet switch |
US6662135B1 (en) | 1998-12-09 | 2003-12-09 | 3Com Corporation | Method and apparatus for reflective mixer testing of a cable modem |
US6480469B1 (en) | 1998-12-16 | 2002-11-12 | Worldcom, Inc. | Dial-up access response testing method and system therefor |
US6310909B1 (en) | 1998-12-23 | 2001-10-30 | Broadcom Corporation | DSL rate adaptation |
US7079457B2 (en) | 1999-01-07 | 2006-07-18 | Hitachi, Ltd. | Method of reproducing information with equalization coefficient for the reproduced information |
US6385773B1 (en) | 1999-01-07 | 2002-05-07 | Cisco Techology, Inc. | Method and apparatus for upstream frequency channel transition |
US6574797B1 (en) | 1999-01-08 | 2003-06-03 | Cisco Technology, Inc. | Method and apparatus for locating a cleaner bandwidth in a frequency channel for data transmission |
US6570394B1 (en) | 1999-01-22 | 2003-05-27 | Thomas H. Williams | Tests for non-linear distortion using digital signal processing |
US6700927B1 (en) | 1999-03-10 | 2004-03-02 | Next Level Communications, Inc. | Method for establishing and adapting communication link parameters in XDSL transmission systems |
US6240553B1 (en) | 1999-03-31 | 2001-05-29 | Diva Systems Corporation | Method for providing scalable in-band and out-of-band access within a video-on-demand environment |
US6570913B1 (en) | 1999-04-05 | 2003-05-27 | Cisco Technology, Inc. | Method and apparatus for selecting optimum frequency for upstream data transmission in a network system utilizing cable modems |
US6985437B1 (en) | 1999-05-25 | 2006-01-10 | 3Com Corporation | Method for dynamic performance optimization in a data-over-cable system |
US6895043B1 (en) | 1999-06-03 | 2005-05-17 | Cisco Technology, Inc. | Method and apparatus for measuring quality of upstream signal transmission of a cable modem |
US7017176B1 (en) | 1999-06-10 | 2006-03-21 | Cisco Technology, Inc. | Data transmission over multiple upstream channels within a cable modem system |
JP2001044956A (en) | 1999-06-21 | 2001-02-16 | Terayon Communication Syst Inc | Docsis1.0tdma burst mixed with scdma transmission on same frequency channel |
US6459703B1 (en) | 1999-06-21 | 2002-10-01 | Terayon Communication Systems, Inc. | Mixed DOCSIS 1.0 TDMA bursts with SCDMA transmissions on the same frequency channel |
US6526260B1 (en) | 1999-06-24 | 2003-02-25 | Mitel Semiconductor Limited | Cross-channel interference |
US6445734B1 (en) | 1999-06-30 | 2002-09-03 | Conexant Systems, Inc. | System and method of validating equalizer training |
US6772437B1 (en) | 1999-07-28 | 2004-08-03 | Telefonaktiebolaget Lm Ericsson | Cable modems and systems and methods for identification of a noise signal source on a cable network |
US7856049B2 (en) | 1999-08-31 | 2010-12-21 | Broadcom Corporation | Ranging and registering cable modems under attenuated transmission conditions |
US20050097617A1 (en) | 1999-08-31 | 2005-05-05 | Currivan Bruce J. | Ranging and registering cable modems under attenuated transmission conditions |
US6498663B1 (en) | 1999-09-24 | 2002-12-24 | Scientific-Atlanta, Inc. | Methods and systems for detecting optical link performance of an optical link in a hybrid fiber coaxial path |
US6556562B1 (en) | 1999-09-29 | 2003-04-29 | At&T Corp. | System to provide lifeline IP telephony service on cable access networks |
US20060262722A1 (en) | 1999-10-13 | 2006-11-23 | Cisco Technology, Inc. | Downstream channel change technique implemented in an access network |
US6711134B1 (en) | 1999-11-30 | 2004-03-23 | Agilent Technologies, Inc. | Monitoring system and method implementing an automatic test plan |
US6853932B1 (en) | 1999-11-30 | 2005-02-08 | Agilent Technologies, Inc. | Monitoring system and method implementing a channel plan and test plan |
US6741947B1 (en) | 1999-11-30 | 2004-05-25 | Agilent Technologies, Inc. | Monitoring system and method implementing a total node power test |
US7058007B1 (en) | 2000-01-18 | 2006-06-06 | Cisco Technology, Inc. | Method for a cable modem to rapidly switch to a backup CMTS |
US6839829B1 (en) | 2000-01-18 | 2005-01-04 | Cisco Technology, Inc. | Routing protocol based redundancy design for shared-access networks |
US6877166B1 (en) | 2000-01-18 | 2005-04-05 | Cisco Technology, Inc. | Intelligent power level adjustment for cable modems in presence of noise |
US7246368B1 (en) | 2000-01-28 | 2007-07-17 | Cisco Technology, Inc. | Cable plant certification procedure using cable modems |
JP2003530761A (en) | 2000-04-06 | 2003-10-14 | マルコニ コミュニケイションズ リミテッド | Wavelength multiplexing (WDM) signal monitor |
US20030138250A1 (en) | 2000-04-06 | 2003-07-24 | Glynn Gerard James | Wavelength division multiplex (wdm) signal monitor |
US6556239B1 (en) | 2000-04-10 | 2003-04-29 | Scientific-Atlanta, Inc. | Distortion monitoring system for CATV transmission networks |
US20020038461A1 (en) | 2000-04-19 | 2002-03-28 | Gerard White | Radio-frequency communications redundancy |
US7039939B1 (en) | 2000-05-09 | 2006-05-02 | Cisco Technology, Inc. | Method and apparatus for creating virtual upstream channels for enhanced lookahead channel parameter testing |
US6389068B1 (en) | 2000-05-15 | 2002-05-14 | Motorola, Inc. | Sliced bandwidth distortion prediction |
US6757253B1 (en) | 2000-05-30 | 2004-06-29 | Motorola, Inc. | Spectrum management method for a cable data system |
WO2001092901A1 (en) | 2000-05-30 | 2001-12-06 | Motorola, Inc. | Spectrum management method for a cable data system |
US6944881B1 (en) | 2000-06-19 | 2005-09-13 | 3Com Corporation | Method for using an initial maintenance opportunity for non-contention ranging |
US6662368B1 (en) | 2000-09-11 | 2003-12-09 | Arris International, Inc. | Variable spare circuit group size and quantity having multiple active circuits |
US20050198688A1 (en) | 2000-09-19 | 2005-09-08 | Fong Thomas K.T. | System and method for digitally monitoring a cable plant |
US6967994B2 (en) | 2000-09-20 | 2005-11-22 | Agere Systems Inc. | Method for operating a communication system and a communication system with training means |
US6483033B1 (en) | 2000-10-11 | 2002-11-19 | Motorola, Inc. | Cable management apparatus and method |
WO2002033974A1 (en) | 2000-10-18 | 2002-04-25 | Motorola, Inc. A Corporation Of The State Of Delaware | Switch matrix packaging for high availablity |
US6895594B1 (en) | 2000-10-18 | 2005-05-17 | Michael J. Simoes | Switch matrix packaging for high availability |
US6690655B1 (en) | 2000-10-19 | 2004-02-10 | Motorola, Inc. | Low-powered communication system and method of operation |
US7142609B2 (en) | 2000-11-29 | 2006-11-28 | Sunrise Telecom Incorporated | Method and apparatus for detecting and quantifying impairments in QAM signals |
US20040015765A1 (en) | 2000-12-06 | 2004-01-22 | Motorola, Inc. | Apparatus and method for providing optimal adaptive forward error correction in data communications |
US6611795B2 (en) | 2000-12-06 | 2003-08-26 | Motorola, Inc. | Apparatus and method for providing adaptive forward error correction utilizing the error vector magnitude metric |
US6772388B2 (en) | 2000-12-06 | 2004-08-03 | Motorola, Inc | Apparatus and method for providing optimal adaptive forward error correction in data communications |
US7072365B1 (en) | 2000-12-29 | 2006-07-04 | Arris Interactive, Llc | System and method for multiplexing broadband signals |
US6748551B2 (en) | 2001-01-11 | 2004-06-08 | Fujitsu Limited | Communication control system |
US20020091970A1 (en) | 2001-01-11 | 2002-07-11 | Naoki Furudate | Communication control system |
EP1235402A2 (en) | 2001-02-23 | 2002-08-28 | Terayon Communication Systems, Inc. | Head end receiver for digital data delivery systems using mixed mode SCDMA and TDMA multiplexing |
US20020154620A1 (en) | 2001-02-23 | 2002-10-24 | Yehuda Azenkot | Head end receiver for digital data delivery systems using mixed mode SCDMA and TDMA multiplexing |
US7050419B2 (en) | 2001-02-23 | 2006-05-23 | Terayon Communicaion Systems, Inc. | Head end receiver for digital data delivery systems using mixed mode SCDMA and TDMA multiplexing |
US7222255B1 (en) | 2001-02-28 | 2007-05-22 | 3Com Corporation | System and method for network performance testing |
US6961370B2 (en) | 2001-03-29 | 2005-11-01 | Acterna | Sweep method using digital signals |
US6556660B1 (en) | 2001-04-25 | 2003-04-29 | At&T Corp. | Apparatus for providing redundant services path to customer premises equipment |
US20020181395A1 (en) | 2001-04-27 | 2002-12-05 | Foster Michael S. | Communicating data through a network so as to ensure quality of service |
US7684341B2 (en) | 2001-05-04 | 2010-03-23 | General Instrument Corporation | Enhanced return path performance using modulation-based alignment criteria |
US20030028898A1 (en) | 2001-05-04 | 2003-02-06 | General Instrument Corporation | Enhanced return path performance using modulation-based alignment criteria |
US20020168131A1 (en) | 2001-05-14 | 2002-11-14 | Tony Walter | Wavelength power equalization by attenuation in an optical switch |
US7099412B2 (en) | 2001-05-14 | 2006-08-29 | Texas Instruments Incorporated | Sequential decoding with backtracking and adaptive equalization to combat narrowband interference |
US20030043732A1 (en) | 2001-05-17 | 2003-03-06 | Walton Jay R. | Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel transmission |
US7573935B2 (en) | 2001-06-08 | 2009-08-11 | Broadcom Corporation | System and method for performing ranging in a cable modem system |
US6559756B2 (en) | 2001-06-13 | 2003-05-06 | Scientific-Atlanta, Inc. | Ingress monitoring device in a broadband communications system |
US7010002B2 (en) | 2001-06-14 | 2006-03-07 | At&T Corp. | Broadband network with enterprise wireless communication method for residential and business environment |
US7177324B1 (en) | 2001-07-12 | 2007-02-13 | At&T Corp. | Network having bandwidth sharing |
US7263123B2 (en) | 2001-09-18 | 2007-08-28 | Broadcom Corporation | Fast computation of coefficients for a variable delay decision feedback equalizer |
US6973141B1 (en) | 2001-10-04 | 2005-12-06 | Wideband Semiconductors, Inc. | Flexible multimode QAM modulator |
US7002899B2 (en) | 2001-10-09 | 2006-02-21 | Ati Technologies Inc. | Method and apparatus to improve SCDMA headroom |
US20030067883A1 (en) | 2001-10-09 | 2003-04-10 | Yehuda Azenkot | Method and apparatus to improve SCDMA headroom |
US7054554B1 (en) | 2001-11-02 | 2006-05-30 | Ciena Corporation | Method and system for detecting network elements in an optical communications network |
US7099580B1 (en) | 2001-11-02 | 2006-08-29 | Ciena Corporation | Method and system for communicating network topology in an optical communications network |
US20060121946A1 (en) | 2001-11-06 | 2006-06-08 | Walton Jay R | Multiple-access multiple-input multiple-output (MIMO) communication system |
US7227863B1 (en) | 2001-11-09 | 2007-06-05 | Cisco Technology, Inc. | Methods and apparatus for implementing home agent redundancy |
US20030101463A1 (en) | 2001-11-26 | 2003-05-29 | Adc Telecommunications, Inc. | Passive CMTS redundancy |
US20030108052A1 (en) | 2001-12-06 | 2003-06-12 | Rumiko Inoue | Server load sharing system |
US20030120819A1 (en) | 2001-12-20 | 2003-06-26 | Abramson Howard D. | Active-active redundancy in a cable modem termination system |
US20050108763A1 (en) | 2001-12-27 | 2005-05-19 | Paul Baran | Method and apparatus for increasing video streams in a video system |
US7242862B2 (en) | 2002-01-21 | 2007-07-10 | Altera Corporation | Network diagnostic tool for an optical transport network |
US20030149991A1 (en) | 2002-02-07 | 2003-08-07 | Reidhead Lance R. | Radio frequency characterization of cable plant and corresponding calibration of communication equipment communicating via the cable plant |
US20030158940A1 (en) | 2002-02-20 | 2003-08-21 | Leigh Kevin B. | Method for integrated load balancing among peer servers |
US20030179821A1 (en) | 2002-02-28 | 2003-09-25 | Itay Lusky | Channel monitoring for improved parameter selection in a communication system |
US20080062888A1 (en) | 2002-02-28 | 2008-03-13 | Texas Instruments Incorporated | Channel Monitoring for Improved Parameter Selection in a Communication System |
US7274735B2 (en) | 2002-02-28 | 2007-09-25 | Texas Instruments Incorporated | Constellation selection in a communication system |
EP1341335A2 (en) | 2002-02-28 | 2003-09-03 | Texas Instruments Incorporated | Channel monitoring for improved parameter selection in a communication system |
US20030182664A1 (en) | 2002-02-28 | 2003-09-25 | Itay Lusky | Parameter selection in a communication system |
US7032159B2 (en) | 2002-02-28 | 2006-04-18 | Texas Instruments Incorporated | Error correction code parameter selection in a communication system |
US20030181185A1 (en) | 2002-02-28 | 2003-09-25 | Itay Lusky | Noise identification in a communication system |
US7152025B2 (en) | 2002-02-28 | 2006-12-19 | Texas Instruments Incorporated | Noise identification in a communication system |
US20030179770A1 (en) | 2002-02-28 | 2003-09-25 | Zvi Reznic | Channel allocation and reallocation in a communication system |
US7492703B2 (en) | 2002-02-28 | 2009-02-17 | Texas Instruments Incorporated | Noise analysis in a communication system |
US7197067B2 (en) | 2002-02-28 | 2007-03-27 | Texas Instruments Incorporated | Parameter selection in a communication system |
US20030188254A1 (en) | 2002-02-28 | 2003-10-02 | Itay Lusky | Error correction code parameter selection in a communication system |
US20030185176A1 (en) | 2002-02-28 | 2003-10-02 | Itay Lusky | Noise analysis in a communication system |
US20030179768A1 (en) | 2002-02-28 | 2003-09-25 | Itay Lusky | Constellation selection in a communication system |
US7315573B2 (en) | 2002-02-28 | 2008-01-01 | Texas Instruments Incorporated | Channel monitoring for improved parameter selection in a communication system |
US20040047284A1 (en) | 2002-03-13 | 2004-03-11 | Eidson Donald Brian | Transmit diversity framing structure for multipath channels |
US20040208513A1 (en) | 2002-04-12 | 2004-10-21 | Fujitsu Network Communications, Inc. | Management of optical links using power level information |
US20050175080A1 (en) | 2002-04-17 | 2005-08-11 | Bouillett Aaron R. | Equalizer status monitor |
US20030200317A1 (en) | 2002-04-19 | 2003-10-23 | Native Networks Technologies Ltd | Method and system for dynamically allocating bandwidth to a plurality of network elements |
US7158542B1 (en) | 2002-05-03 | 2007-01-02 | Atheros Communications, Inc. | Dynamic preamble detection |
US20030212999A1 (en) | 2002-05-08 | 2003-11-13 | Simin Cai | System and method for providing video telephony over a cable access network infrastructure |
US20040248520A1 (en) | 2002-06-28 | 2004-12-09 | Kenichi Miyoshi | Transmission apparatus and communication mode selection table updating method |
US7400677B2 (en) | 2002-07-01 | 2008-07-15 | Solarflare Communications, Inc. | Method and apparatus for channel equalization |
US20050010958A1 (en) | 2002-07-08 | 2005-01-13 | Rakib Shlomo Selim | Upstream only linecard with front end multiplexer for CMTS |
US20040042385A1 (en) | 2002-08-31 | 2004-03-04 | Ki-Yun Kim | Preamble design for frequency offset estimation and channel equalization in burst OFDM transmission system |
US7554902B2 (en) | 2002-08-31 | 2009-06-30 | Samsung Thales Co., Ltd. | Preamble design for frequency offset estimation and channel equalization in burst OFDM transmission system |
US7739359B1 (en) | 2002-09-12 | 2010-06-15 | Cisco Technology, Inc. | Methods and apparatus for secure cable modem provisioning |
US20110206103A1 (en) * | 2002-09-12 | 2011-08-25 | Juniper Networks, Inc. | Systems and methods for increasing cable modem system bandwidth efficiency |
US20040052356A1 (en) | 2002-09-18 | 2004-03-18 | Sbc Properties, L.P., Of Reno, Nv | Multi-modal address book |
US20040062548A1 (en) | 2002-09-30 | 2004-04-01 | Obeda Paul David | Method and system for identification of channels in an optical network |
US20040073937A1 (en) | 2002-09-30 | 2004-04-15 | Williams Thomas H. | System and method to test network performance with impairments |
US7451472B2 (en) | 2002-09-30 | 2008-11-11 | Cable Television Laboratories, Inc. | System and method to test network performance with impairments |
US20080242339A1 (en) | 2002-10-08 | 2008-10-02 | Qualcomm Incorporated | Controlling forward and reverse link traffic channel power |
JP2004343678A (en) | 2002-10-17 | 2004-12-02 | Matsushita Electric Ind Co Ltd | Radio communication system |
US7650112B2 (en) | 2002-10-17 | 2010-01-19 | Panasonic Corporation | Method and system for extending coverage of WLAN access points via optically multiplexed connection of access points to sub-stations |
US7684315B1 (en) | 2002-11-08 | 2010-03-23 | Juniper Networks, Inc. | Ordered switchover of cable modems |
US20050025145A1 (en) | 2002-11-15 | 2005-02-03 | Rakib Selim Shlomo | Cable modem termination system with flexible addition of single upstreams or downstreams |
JP2004172783A (en) | 2002-11-19 | 2004-06-17 | Fujitsu Ltd | System for verifying transmission propriety of route in wavelength division multiplex optical transmission network system |
US20040096216A1 (en) | 2002-11-19 | 2004-05-20 | Fujitsu Limited | Transmission route applicability inspection system in wavelength division multiplexing optical transmission network system |
US20040109661A1 (en) | 2002-12-05 | 2004-06-10 | Bierman Robert Michael | Method and apparatus for controlling a variable optical attenuator in an optical network |
WO2004062124A1 (en) | 2002-12-17 | 2004-07-22 | Bae Systems Information And Electronic Systems Integration Inc | Bandwidth efficient cable network modem |
US20050034159A1 (en) | 2002-12-20 | 2005-02-10 | Texas Instruments Incorporated | Implementing a hybrid wireless and coaxial cable network |
US20040139473A1 (en) | 2003-01-10 | 2004-07-15 | Adc Broadband Access Systems, Inc. | Increasing capacity in a cable modem termination system (CMTS) with passive redundancy |
US20040163129A1 (en) | 2003-02-04 | 2004-08-19 | Cisco Technology, Inc. | Wideband cable system |
US20040181811A1 (en) | 2003-03-13 | 2004-09-16 | Rakib Selim Shlomo | Thin DOCSIS in-band management for interactive HFC service delivery |
US6906526B2 (en) | 2003-03-14 | 2005-06-14 | General Instrument Corporation | Non-intrusive cable connection monitoring for use in HFC networks |
US7421276B2 (en) | 2003-04-09 | 2008-09-02 | Nortel Networks Limited | Method, apparatus and system of configuring a wireless device based on location |
US20040202202A1 (en) | 2003-04-09 | 2004-10-14 | Broadcom Corporation | Method and apparatus for maintaining synchronization in a communication system |
US20040233926A1 (en) | 2003-05-19 | 2004-11-25 | Broadcom Corporation | System, method, and computer program product for facilitating communication between devices implementing proprietary features in a DOCSIS-compliant broadband communication system |
US8040915B2 (en) | 2003-05-19 | 2011-10-18 | Broadcom Corporation | System, method, and computer program product for facilitating communication between devices implementing proprietary features in a DOCSIS-compliant broadband communication system |
US20040233234A1 (en) | 2003-05-22 | 2004-11-25 | International Business Machines Corporation | Appparatus and method for automating the diagramming of virtual local area networks |
US20040261119A1 (en) | 2003-06-17 | 2004-12-23 | Williams Christopher Pierce | Addressable fiber node |
US7716712B2 (en) | 2003-06-18 | 2010-05-11 | General Instrument Corporation | Narrowband interference and identification and digital processing for cable television return path performance enhancement |
US20050039103A1 (en) | 2003-07-31 | 2005-02-17 | Yehuda Azenko | Method and apparatus for automatic rate adaptation in a DOCSIS upstream |
US7315967B2 (en) | 2003-07-31 | 2008-01-01 | Terayon Communication Systems, Inc. | Method and apparatus for automatic rate adaptation in a DOCSIS upstream |
US20050064890A1 (en) | 2003-09-08 | 2005-03-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Modulation scheme management |
US7616654B2 (en) | 2003-09-11 | 2009-11-10 | General Instrument Corporation | Spectrum management systems and methods for cable networks |
US20050058082A1 (en) | 2003-09-11 | 2005-03-17 | Moran John L. | Spectrum management systems and methods for cable networks |
US20080274700A1 (en) | 2003-11-07 | 2008-11-06 | Jifeng Li | Radio Communication Apparatus and Mcs Determination Method |
US20050122996A1 (en) | 2003-12-06 | 2005-06-09 | Yehuda Azenkot | Establishment of multiple upstream docsis logical channels based upon performance |
US20070147489A1 (en) | 2003-12-26 | 2007-06-28 | Zie Corporation | Uplink burst equalizing method in broad wide access system |
US20050163088A1 (en) | 2004-01-27 | 2005-07-28 | Nec Corporation | Radio communication method, radio communication system and wireless terminal |
US20050183130A1 (en) | 2004-02-12 | 2005-08-18 | Sadja Aran L. | Cable diagnostic and monitoring system |
US20050226161A1 (en) | 2004-04-06 | 2005-10-13 | Jaworski Richard C | System for monitoring the upstream and downstream cable modem channel |
US20060013147A1 (en) | 2004-05-03 | 2006-01-19 | Level 3 Communications, Inc. | Registration redirect server |
US20050281200A1 (en) | 2004-06-16 | 2005-12-22 | Gerard Terreault | QAM signal analysis in a network |
US7970010B2 (en) | 2004-12-10 | 2011-06-28 | Broadcom Corporation | Upstream channel bonding in a cable communications system |
US20060250967A1 (en) | 2005-04-25 | 2006-11-09 | Walter Miller | Data connection quality analysis apparatus and methods |
US8345557B2 (en) | 2005-06-30 | 2013-01-01 | General Instrument Corporation | Automated monitoring of a network |
US20070002752A1 (en) | 2005-06-30 | 2007-01-04 | Thibeault Brian K | Automated monitoring of a network |
US7742771B2 (en) | 2005-09-01 | 2010-06-22 | General Instrument Corporation | Automated load balancing of receivers in a network |
US20070058542A1 (en) | 2005-09-01 | 2007-03-15 | Thibeault Brian K | Automated load balancing of receivers in a network |
US8116360B2 (en) | 2005-09-30 | 2012-02-14 | General Instrument Corporation | Method and apparatus for preventing loss of service from hardware failure in a network |
US20070076592A1 (en) | 2005-09-30 | 2007-04-05 | Thibeault Brian K | Non-invasive frequency rollback apparatus and method |
US20070076789A1 (en) | 2005-09-30 | 2007-04-05 | Thibeault Brian K | Method and apparatus for preventing loss of service from hardware failure in a network |
US20070076790A1 (en) | 2005-09-30 | 2007-04-05 | Thibeault Brian K | Method and apparatus for testing a network using a spare receiver |
US20070086328A1 (en) | 2005-10-14 | 2007-04-19 | Via Technologies Inc. | Method and circuit for frequency offset estimation in frequency domain in the orthogonal frequency division multiplexing baseband receiver for IEEE 802.11A/G wireless LAN standard |
US20070094691A1 (en) | 2005-10-24 | 2007-04-26 | Gazdzinski Robert F | Method and apparatus for on-demand content transmission and control over networks |
US20070097907A1 (en) | 2005-10-28 | 2007-05-03 | Broadcom Corporation | Optimizing packet queues for channel bonding over a plurality of downstream channels of a communications management system |
US20070177526A1 (en) | 2005-11-23 | 2007-08-02 | Pak Siripunkaw | Customer premise equipment device-specific access-limiting for a cable modem and a customer premise equipment device |
US20070133672A1 (en) | 2005-12-09 | 2007-06-14 | Electronics And Telecommunications Research Institute | Apparatus and method for stable DEF using selective FBF |
US20070143654A1 (en) | 2005-12-15 | 2007-06-21 | General Instrument Corporation | Method and apparatus for using long forward error correcting codes in a content distribution system |
US20070184835A1 (en) | 2006-02-09 | 2007-08-09 | Altair Semiconductor Ltd. | Scanning for network connections with variable scan rate |
US20070189770A1 (en) | 2006-02-13 | 2007-08-16 | Guy Sucharczuk | Point-to-multipoint high data rate delivery systems from optical node in HFC systems over existing and advanced coaxial network |
US20070206625A1 (en) | 2006-03-01 | 2007-09-06 | Junichi Maeda | Communication device, communication system, and communication method performing communication using a plurality of signals having different frequencies |
US20070206600A1 (en) | 2006-03-06 | 2007-09-06 | Texas Instruments Incorporated | Cable Modem Downstream Channel Bonding Re-sequencing Mechanism |
US7573884B2 (en) | 2006-03-06 | 2009-08-11 | Texas Instruments Incorporated | Cable modem downstream channel bonding re-sequencing mechanism |
US20070211618A1 (en) | 2006-03-13 | 2007-09-13 | Cooper Michael J | Method and apparatus for dynamically changing the preamble length of a burst communication |
US7672310B2 (en) | 2006-03-13 | 2010-03-02 | General Instrument Corporation | Method and apparatus for dynamically changing the preamble length of a burst communication |
US20070223920A1 (en) | 2006-03-24 | 2007-09-27 | General Instrument Corporation | Method and Apparatus for Determining the Dynamic Range of an Optical Link in an HFC Network |
US20070245177A1 (en) | 2006-03-24 | 2007-10-18 | General Instrument Corporation | Method and apparatus for determining the total power margin available for an hfc network |
US20070223512A1 (en) | 2006-03-24 | 2007-09-27 | General Instruments Corporation | Method and apparatus for configuring logical channels in a network |
US7778314B2 (en) | 2006-05-04 | 2010-08-17 | Texas Instruments Incorporated | Apparatus for and method of far-end crosstalk (FEXT) detection and estimation |
US7742697B2 (en) | 2006-09-05 | 2010-06-22 | General Instrument Corporation | Efficient use of trusted third parties for additional content-sharing security |
US20080056713A1 (en) | 2006-09-05 | 2008-03-06 | Cooper Michael J | Efficient Use of Trusted Third Parties for Additional Content-Sharing Security |
US7953144B2 (en) | 2006-09-25 | 2011-05-31 | Arris Group, Inc. | Method and system for detecting impulse noise in a broadband communication system |
US20080075157A1 (en) | 2006-09-25 | 2008-03-27 | Jim Allen | Method and system for detecting impulse noise in a broadband communication system |
US7792183B2 (en) | 2006-10-12 | 2010-09-07 | Acterna Llc | Digital quality index for QAM digital signals |
US7787557B2 (en) | 2006-10-16 | 2010-08-31 | Samsung Electronics Co., Ltd. | Apparatus for equalizing clipping noise signals of receiver systems and method thereof |
US20080101210A1 (en) | 2006-10-26 | 2008-05-01 | General Instrument Corporation | Method and Apparatus for Characterizing Modulation Schemes in an HFC Network |
US7876697B2 (en) | 2006-10-26 | 2011-01-25 | General Instrument Corporation | Method and apparatus for characterizing modulation schemes in an HFC network |
US20080140823A1 (en) | 2006-12-07 | 2008-06-12 | General Instrument Corporation | Method and Apparatus for Determining Micro-Reflections in a Network |
US8265559B2 (en) | 2007-01-30 | 2012-09-11 | General Instrument Corporation | Method and apparatus for determining modulation levels that are supported on a channel |
US20080200129A1 (en) | 2007-01-30 | 2008-08-21 | General Instrument Corporation | Method and apparatus for determining modulation levels that are supported on a channel |
US20080193137A1 (en) | 2007-02-08 | 2008-08-14 | General Instrument Corporation | Method and apparatus for extending broadband communication services over a wireless link while protecting the network from performance degradations caused by the wireless link |
US8037541B2 (en) | 2007-04-06 | 2011-10-11 | General Instrument Corporation | System, device and method for interoperability between different digital rights management systems |
US20080250508A1 (en) | 2007-04-06 | 2008-10-09 | General Instrument Corporation | System, Device and Method for Interoperability Between Different Digital Rights Management Systems |
US20080291840A1 (en) | 2007-05-22 | 2008-11-27 | General Instrument Corporation | Method and Apparatus for Selecting a Network Element for Testing a Network |
US20090031384A1 (en) | 2007-07-24 | 2009-01-29 | Brooks Paul D | Methods and apparatus for format selection for network optimization |
US20090103669A1 (en) | 2007-10-17 | 2009-04-23 | Broadcom Corporation | Adaptive equalization and interference cancellation with time-varying noise and/or interference |
US20090103557A1 (en) | 2007-10-19 | 2009-04-23 | Seung Eun Hong | Method and apparatus for allocating upstream channel resource in hybrid fiber coaxial network |
US20090249421A1 (en) | 2008-03-26 | 2009-10-01 | Xiaomei Liu | Distributing digital video content to multiple end-user devices |
WO2009146426A1 (en) | 2008-05-30 | 2009-12-03 | Arris Group, Inc. | Fast initialization of multi-mode devices |
US20100014425A1 (en) | 2008-07-18 | 2010-01-21 | Hon Hai Precision Industry Co., Ltd. | Method for balancing of modem load |
US8059546B2 (en) | 2008-09-05 | 2011-11-15 | Cisco Technology, Inc. | Traffic flow scheduling techniques implemented on bonded channels of a shared access cable network |
US20100083356A1 (en) | 2008-09-29 | 2010-04-01 | Andrew Steckley | System and method for intelligent automated remote management of electromechanical devices |
US20100095360A1 (en) | 2008-10-14 | 2010-04-15 | International Business Machines Corporation | Method and system for authentication |
US20100154017A1 (en) * | 2008-12-15 | 2010-06-17 | Cisco Technology, Inc. | Apparatus and methods for moving cable modems between upstream channels |
US20100158093A1 (en) | 2008-12-23 | 2010-06-24 | General Instrument Corporation | Methods and System for Determining a Dominant Impairment of an Impaired Communication Channel |
US8000254B2 (en) | 2008-12-23 | 2011-08-16 | General Instruments Corporation | Methods and system for determining a dominant impairment of an impaired communication channel |
US8081674B2 (en) | 2008-12-23 | 2011-12-20 | General Information Corporation | Methods and system for determining a dominant impairment of an impaired communication channel |
US20100157824A1 (en) | 2008-12-23 | 2010-06-24 | General Instrument Corporation | Methods and System for Determining a Dominant Impairment of an Impaired Communication Channel |
US20100223650A1 (en) | 2009-02-27 | 2010-09-02 | Cisco Technology, Inc. | Wideband fault correlation system |
US20110030019A1 (en) | 2009-07-28 | 2011-02-03 | General Instrument Corporation | Ip video delivery using flexible channel bonding |
US20110026577A1 (en) | 2009-08-03 | 2011-02-03 | Haim Primo | Equalization for OFDM Communication |
US20110069745A1 (en) | 2009-09-23 | 2011-03-24 | General Instrument Corporation | Using equalization coefficients of end devices in a cable television network to determine and diagnose impairments in upstream channels |
US20110080868A1 (en) | 2009-10-01 | 2011-04-07 | Qualcomm Incorporated | Energy efficient quality of service aware communication over multiple air-links |
US20110110415A1 (en) | 2009-11-11 | 2011-05-12 | General Instrument Corporation | Monitoring instability and resetting an equalizer |
US8284828B2 (en) | 2009-11-11 | 2012-10-09 | General Instrument Corporation | Monitoring instability and resetting an equalizer |
US20110243214A1 (en) | 2010-02-05 | 2011-10-06 | Comcast Cable Communications, Llc | Inducing response signatures in a communication network |
US20110194418A1 (en) | 2010-02-05 | 2011-08-11 | Comcast Cable Communications, Llc | Identification of a fault |
US20110197071A1 (en) | 2010-02-05 | 2011-08-11 | Comcast Cable Communications, Llc | Determining Response Signature Commonalities |
US20110194597A1 (en) | 2010-02-05 | 2011-08-11 | Comcast Cable Communications, Llc | Modulation analysis and distortion identification |
US8310926B1 (en) * | 2010-02-18 | 2012-11-13 | Cisco Technology, Inc. | Modem count based load balancing in a cable network |
US8788647B1 (en) | 2010-04-29 | 2014-07-22 | Arris Enterprises, Inc. | Load balancing for network devices |
US20120054312A1 (en) | 2010-08-24 | 2012-03-01 | Comcast Cable Communications, Llc | Dynamic bandwidth load balancing in a data distribution network |
US20120084416A1 (en) | 2010-09-30 | 2012-04-05 | General Instrument Corporation | Adaptive protocol/initialization technique selection |
US20120147751A1 (en) | 2010-12-08 | 2012-06-14 | General Instrument Corporation | System and method for ip video delivery using distributed flexible channel bonding |
US20130088961A1 (en) * | 2011-10-11 | 2013-04-11 | General Instrument Corporation | Apparatus and Method for Load Balancing in a Cable Network |
Non-Patent Citations (39)
Title |
---|
"A Simple Algorithm for Fault Localization Using Naming Convention and Micro-reflection Signature," Invention Disclosure 60193, Cable Television Laboratories, Inc., Jun. 2008, p. 2. |
"Data-Over-Cable Service Interface Specifications DOCSIS 3.0: MAC and Upper Layer Protocols Interface," CM-SP-MULPIv3.0-I16-110623, Cable Television Laboratories, Inc., Jun. 2011, section 8, pp. 242-266. |
"Data-Over-Cable Service Interface Specifications DOCSIS® 3.0-MAC and Upper Layer Protocols Interface Specification," CM-SP-MULPIv3.0-I17-111117, Cable Television Laboratories, Inc., Nov. 17, 2011, pp. 770. |
"DOCSIS Best Practices and Guidelines; Proactive Network Maintenance Using Pre-Equalization," CM-GL-PNMP-V01-100415, Cable Television Laboratories, Inc., pp. 123. |
"Pre-Equalization Based Pro-active Network Maintenance Process Model for CMs Transmitting on Multiple Upstream Channels," Invention Disclosure 60203, Cable Television Laboratories, Inc., May 2009, pp. 2. |
"Pre-Equalization based pro-active network maintenance process model," Invention Disclosure 60177, Cable Television Laboratories, Inc., Jun. 2008, pp. 2. |
"Proactive Network Maintenance Using Pre-Equalization," DOCSIS Best Practices and Guidelines, Cable Television Laboratories Inc., CM-GL-PNMP-V02-110623, Jun. 23, 2011, pp. 133. |
"Radio Frequency Interface Specification," Cable Television Laboratories, Inc., Data-Over-Cable Service Interface Specifications DOCSIS 2.0, CM-SP-RFIv2.0-I06-040804, pp. 524. |
"Data-Over-Cable Service Interface Specifications DOCSIS® 3.0—MAC and Upper Layer Protocols Interface Specification," CM-SP-MULPIv3.0-I17-111117, Cable Television Laboratories, Inc., Nov. 17, 2011, pp. 770. |
B. Volpe, "DOCSIS 3.0 Partial Service", The Volpe Firm, Dec. 7, 2011, retrieved from the Internet at <http://volpefirm.com/docsis-3-0-partial-service/? on Mar. 24, 2015. |
Campos, L. A., et al., "Pre-equalization based Pro-active Network Maintenance Methodology," Cable Television Laboratories, Inc., (presentation), 2012, pp. 32. |
Howald, R. L., et al., "Customized Broadband-Analysis Techniques For Blended Multiplexes," pp. 12. |
Howald, R. L., et al., "Customized Broadband—Analysis Techniques For Blended Multiplexes," pp. 12. |
Howald, R., "Access Networks Solutions: Introduction to S-CDMA," Presentation to Society of Cable Telecommunications Engineers (SCTE) South Florida Chapter, Motorola, Inc., 2009, pp. 15. |
Howald, R., "Upstream Snapshots & Indicators (2009)," Regional Samples, Presentation to Society of Cable Telecommunications Engineers (SCTE) South Florida Chapter, Jan. 2010, pp. 22. |
Howald, R., et al., "Characterizing and Aligning the HFC Return Path for Successful DOCSIS 3.0 Rollouts," Society of Cable Telecommunications Engineers (SCTE) Cable Tee Expo, Oct. 2009, pp. 66. |
Howald, R., et al., "Docsis 3.0 Upstream: Readiness & Qualification," pp. 17. |
Howald, R., et al., "The Grown-Up Potential of a Teenage Phy," pp. 65. |
Howald, R.,"DOCSIS 3.0 Upstream: Technology, RF Variables & Case Studies," Access Networks Solutions, 2009, presentation to Society of Cable Telecommunications Engineers (SCTE) South Florida Chapter, Jan. 2010, pp. 23. |
Hranac, R., "Linear Distortions, Part 1," Communication Technology, Jul. 1, 2005, accessed at www.cable360.net/print/ct/operations/testing/15131.html, pp. 6. |
Liu, X., and Bernstein, A., "Variable Bit Rate Video Services in DOCSIS 3.0 Networks," NCTA Technical Papers, 2008, pp. 12. |
Motorola., "White Paper: Expanding Bandwidth Using Advanced Spectrum Management," Sep. 25, 2003, pp. 12. |
Newton's Telecom Dictionary, Sep. 1995, Flatiron Publishing, 9th Edition, pp. 216 and 1023, definitions of "carrier to noise ratio" and "signal to noise ratio". |
Patrick, M., and Joyce, G., "Delivering Economical IP Video over DOCSIS by Bypassing the M-CMTS with DIBA," SCTE 2007 Emerging Technologies, Topic Subject: Service Velocity & Next Generation Architectures: How Do We Get There?, 2007, pp. 17. |
Popper, A., et al, "An Advanced Receiver with Interference Cancellation for Broadband Cable Networks," Juniper Networks, International Zurich Seminar on Broadband Communications Access 2002, pp. 23-1-23-6. |
Popper, A., et al, "Ingress Noise Cancellation for the Upstream Channel in Broadband Cable Access Systems," Juniper Networks, IEEE International Conference on Communications 2002, vol. 3, pp. 1808-1812. |
Qureshi, S. U. H., "Adaptive Equalization," IEEE, vol. 73, No. 9, Sep. 1985, pp. 1349-1387. |
Ramakrishnan, S., "Scaling the DOCSIS Network for IPTV," Cisco Systems, Inc., SCTE Conference on Emerging Technologies and the NCTA Cable Show, 2009, pp. 19. |
Shelke, Y. R., "Knowledge Based Topology Discovery and Geo-localization," Thesis, 2010, pp. 173. |
Thompson, R., et al., "256-QAM for Upstream HFC," Spring Technical Forum Proceedings, 2010, pp. 142-152. |
Thompson, R., et al., "256-QAM for Upstream HFD Part Two," SCTE Cable Tec Expo 2011, Technical Paper, pp. 22. |
Thompson, R., et al., "64-QAM, 6.4MHz Upstream Deployment Challenges," SCTE Canadian Summit, Toronto, Canada, Technical Paper, Mar. 2011, pp. 25. |
Thompson, R., et al., "Multiple Access Made Easy," SCTE Cable Tec Expo 2011, Technical Paper, pp. 23. |
Thompson, R., et al., "Optimizing Upstream Throughput Using Equalization Coefficient Analysis," National Cable & Telecommunications Association (NCTA) Technical Papers, Apr. 2009, pp. 35. |
Thompson, R., et al., "Practical Considerations for Migrating the Network Toward All-Digital," Society of Cable Telecommunications Engineers (SCTE) Cable-Tec Expo, Oct. 2009, pp. 22. |
Ulm, J., et al., "Flexible Channel Bonding for IP Video Delivery Disclosure," pp. 8. |
Volpe, B., and Miller, W., "Cable-Tec Expo 2011: Advanced Troubleshooting in a DOCSIS© 3.0 Plant," Nov. 14-17, 2011, pp. 17. |
Wolcott, L., "Modem Signal Usage and Fault Isolation," U.S. Appl. No. 61/301,835, filed Feb. 5, 2010. |
Zhao, F., et al., "Techniques for minimizing error propagation in decision feedback detectors for recording channels," IEEE Transactions on Magnetics, vol. 37, No. 1, Jan. 2001, pp. 12. |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11895182B1 (en) | 2023-01-23 | 2024-02-06 | Bank Of America Corporation | Systems, methods, and apparatuses for dynamically determining data center transmissions by implementing load balancers in an electronic network |
Also Published As
Publication number | Publication date |
---|---|
US20140185428A1 (en) | 2014-07-03 |
US9203639B2 (en) | 2015-12-01 |
CA2836755A1 (en) | 2014-06-27 |
CA2836755C (en) | 2017-01-31 |
US20160050154A1 (en) | 2016-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10027588B2 (en) | Dynamic load balancing under partial service conditions | |
EP2748984B1 (en) | Apparatus and method for load balancing in a cable network | |
US11546644B2 (en) | Bandwidth control method and apparatus, and device | |
CA2250474C (en) | Apparatus and method for spectrum management in a multipoint communication system | |
US9031409B2 (en) | System and method for avoiding upstream interference in RF-over-glass network | |
TWI389475B (en) | Dynamic load balancing of fibre channel traffic | |
US6757253B1 (en) | Spectrum management method for a cable data system | |
EP1935105B1 (en) | Non-invasive frequency rollback apparatus and method | |
US20120026871A1 (en) | System and Method of Communicating a Media Stream | |
US9210060B2 (en) | Flow control transmission | |
US9113181B2 (en) | Dynamic channel bonding partial service triggering | |
US20130041990A1 (en) | Method and apparatus for improving throughput of a modem | |
CN110855741B (en) | Service self-adaptive access method and device, storage medium and electronic device | |
US8310926B1 (en) | Modem count based load balancing in a cable network | |
EP3920598A1 (en) | Method and apparatus to manage usage of an access point | |
CN111133793B (en) | Traffic distribution over aggregated radio links | |
KR101393295B1 (en) | Solutions for upstream channel bonding | |
US11632328B2 (en) | Method and system for managing access congestion | |
KR20160035960A (en) | METHOD FOR LINE CONTROL OF ACCESS NETWORK BASED ON G.HN TECHNOLOGY AND G.hn ACCESS MULLTIPLEXER, G.hn NTEWORK TERMINAL AND ACCESS NETWORK SYSTEM USING THE SAME | |
EP4142249A1 (en) | System and method for managing distributed shaping in a computer network | |
US20240106696A1 (en) | Method and System to Mitigate Cable Plant Faults using Access CPE Device | |
KR20180078000A (en) | Apparatus for Multiplexing WAN Connections To Improve Cloud Quality Of Service |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ARRIS ENTERPRISES, INC., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ARRIS TECHNOLOGY, INC;REEL/FRAME:037328/0341 Effective date: 20151214 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATE Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:ARRIS ENTERPRISES LLC;REEL/FRAME:049820/0495 Effective date: 20190404 Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK Free format text: ABL SECURITY AGREEMENT;ASSIGNORS:COMMSCOPE, INC. OF NORTH CAROLINA;COMMSCOPE TECHNOLOGIES LLC;ARRIS ENTERPRISES LLC;AND OTHERS;REEL/FRAME:049892/0396 Effective date: 20190404 Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK Free format text: TERM LOAN SECURITY AGREEMENT;ASSIGNORS:COMMSCOPE, INC. OF NORTH CAROLINA;COMMSCOPE TECHNOLOGIES LLC;ARRIS ENTERPRISES LLC;AND OTHERS;REEL/FRAME:049905/0504 Effective date: 20190404 Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CONNECTICUT Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:ARRIS ENTERPRISES LLC;REEL/FRAME:049820/0495 Effective date: 20190404 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, DELAWARE Free format text: SECURITY INTEREST;ASSIGNORS:ARRIS SOLUTIONS, INC.;ARRIS ENTERPRISES LLC;COMMSCOPE TECHNOLOGIES LLC;AND OTHERS;REEL/FRAME:060752/0001 Effective date: 20211115 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: ARRIS ENTERPRISES, INC., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ARRIS TECHNOLOGY, INC.;REEL/FRAME:060791/0583 Effective date: 20151214 |