US10795417B2 - Display device having a planar surface portion and a curved surface portion - Google Patents
Display device having a planar surface portion and a curved surface portion Download PDFInfo
- Publication number
- US10795417B2 US10795417B2 US15/806,261 US201715806261A US10795417B2 US 10795417 B2 US10795417 B2 US 10795417B2 US 201715806261 A US201715806261 A US 201715806261A US 10795417 B2 US10795417 B2 US 10795417B2
- Authority
- US
- United States
- Prior art keywords
- surface portion
- touch sensor
- display panel
- disposed
- display device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 claims abstract description 17
- 230000003287 optical effect Effects 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 97
- 239000004065 semiconductor Substances 0.000 description 18
- 239000003990 capacitor Substances 0.000 description 16
- 239000000758 substrate Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000000945 filler Substances 0.000 description 7
- 239000011229 interlayer Substances 0.000 description 7
- 239000012044 organic layer Substances 0.000 description 7
- 238000005538 encapsulation Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 230000007257 malfunction Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910004205 SiNX Inorganic materials 0.000 description 5
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 5
- 239000002041 carbon nanotube Substances 0.000 description 5
- 229910021393 carbon nanotube Inorganic materials 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 239000004205 dimethyl polysiloxane Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 4
- -1 polydimethylsiloxane Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910017083 AlN Inorganic materials 0.000 description 1
- 229910017109 AlON Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- HRHKULZDDYWVBE-UHFFFAOYSA-N indium;oxozinc;tin Chemical compound [In].[Sn].[Zn]=O HRHKULZDDYWVBE-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
- G09F9/301—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1626—Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1637—Details related to the display arrangement, including those related to the mounting of the display in the housing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1637—Details related to the display arrangement, including those related to the mounting of the display in the housing
- G06F1/1641—Details related to the display arrangement, including those related to the mounting of the display in the housing the display being formed by a plurality of foldable display components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1637—Details related to the display arrangement, including those related to the mounting of the display in the housing
- G06F1/1643—Details related to the display arrangement, including those related to the mounting of the display in the housing the display being associated to a digitizer, e.g. laptops that can be used as penpads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1637—Details related to the display arrangement, including those related to the mounting of the display in the housing
- G06F1/1652—Details related to the display arrangement, including those related to the mounting of the display in the housing the display being flexible, e.g. mimicking a sheet of paper, or rollable
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1684—Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
- G06F1/169—Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being an integrated pointing device, e.g. trackball in the palm rest area, mini-joystick integrated between keyboard keys, touch pads or touch stripes
- G06F1/1692—Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being an integrated pointing device, e.g. trackball in the palm rest area, mini-joystick integrated between keyboard keys, touch pads or touch stripes the I/O peripheral being a secondary touch screen used as control interface, e.g. virtual buttons or sliders
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/40—OLEDs integrated with touch screens
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04102—Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04105—Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04106—Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04112—Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0414—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/042—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/043—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/045—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
Definitions
- Exemplary embodiments relate to a bent display device. More particularly, exemplary embodiments relate to a bent display device including a planar surface portion and a curved surface portion at an edge of the planar surface portion.
- Such a flexible display panel can be used in various fields since it can be used in a folded or curved form.
- Examples of display elements applicable to such flexible display panels may include organic light emitting diode (OLED) display elements, liquid crystal display (LCD) elements, and electrophoretic display (EPD) elements.
- OLED organic light emitting diode
- LCD liquid crystal display
- EPD electrophoretic display
- OLEDs can be manufactured into a thin film-like laminated structure, and thus, have excellent flexibility and are attracting attention as a display element for flexible display panels.
- the flexible display device refers to a display device capable of being bent and spread out
- the bent display device refers to a display device which maintains a bent shape.
- Such a bent display device enables an edge portion of the flexible display panel to be bent so that an image can be displayed on a side portion of the flexible display panel and disposes a touch sensor or the like on an edge portion of the flexible display panel so that a touch action may be performed at the side portion thereof.
- the bent display device may erroneously detect an unintended touch based on the user's grip state.
- Exemplary embodiments provide a bent display device capable of substantially preventing touch malfunctions occurring at a side portion of the banded display device.
- a bent display device includes: a display panel including a planar surface portion and a curved surface portion disposed at an edge of the planar surface portion; a window having a substantially same shape as a shape of the display panel and disposed on the display panel; a first touch sensor disposed to overlap the planar surface portion; and a second touch sensor disposed to overlap the curved surface portion.
- the first touch sensor and the second touch sensor detect a touch using different methods, respectively.
- the first touch sensor may be a capacitive touch sensor.
- the second touch sensor may include at least one of: a pressure sensitive touch sensor, an optical touch sensor and an ultrasonic touch sensor.
- the first touch sensor may have a substantially same shape as a shape of the planar surface portion on a plane.
- the second touch sensor may have a substantially same shape as a shape of the curved surface portion on a plane.
- the first touch sensor and the second touch sensor may include different driving units, respectively.
- the display panel may be an organic light emitting diode display panel.
- the first touch sensor may be disposed between the display panel and the window.
- the first touch sensor may be formed inside the display panel.
- the second touch sensor may be disposed between the display panel and the window.
- the second touch sensor may be disposed on a rear surface of the display panel.
- the second touch sensor may include: a first electrode and a second electrode disposed to oppose each other; and a filler between the first electrode and the second electrode.
- the filler may include at least one of silicon and polydimethylsiloxane (PDMS).
- PDMS polydimethylsiloxane
- the second touch sensor may include a control unit applying a voltage to the first electrode and the second electrode and sensing a capacitance between the first electrode and the second electrode.
- the second touch sensor may include: a sensor resistor having a resistance value that varies in accordance with a pressure applied by a contact; a filter resistor connected in series to the sensor resistor and having a constant resistance value; and a pressure sensing unit connected to a node between the sensor resistor and the filter resistor.
- the curved surface portion may include: a pixel area at which an image is displayed; and a transmissive area, between the pixel areas, through which a light is transmitted.
- the transmissive area may gradually increase from a boundary between the planar surface portion and the curved surface portion toward an edge of the display panel.
- the display panel may include: a first pixel disposed at the planar surface portion and displaying an image; and a second pixel disposed at the curved surface portion and displaying an image.
- the first pixel may have a larger area than an area of the second pixel.
- FIG. 1 is an exploded perspective view illustrating a bent display device according to an exemplary embodiment.
- FIG. 2 is a plan view illustrating a bent display device according to an exemplary embodiment.
- FIG. 3 is a cross-sectional view illustrating a bent display device according to an exemplary embodiment.
- FIGS. 4, 5 and 6 are cross-sectional views illustrating bent display devices according to alternative exemplary embodiments.
- FIG. 7 is an enlarged view illustrating a part of a display panel according to an exemplary embodiment.
- FIG. 8 is a cross-sectional view taken along line I-I′ of FIG. 7 .
- FIG. 9 is a plan view illustrating a first touch sensor according to an exemplary embodiment.
- FIG. 10 is a plan view illustrating a first touch sensor and a second touch sensor according to an exemplary embodiment.
- FIG. 11 is a cross-sectional view taken along line II-II′ of FIG. 10 .
- FIG. 12 is a circuit diagram illustrating a configuration of a second touch sensor according to an alternative exemplary embodiment.
- FIG. 13 is a plan view illustrating a bent display device according to an alternative exemplary embodiment.
- FIG. 14 is a cross-sectional view illustrating the bent display device according to an alternative exemplary embodiment.
- FIG. 15 is an enlarged view illustrating an area “A” of FIG. 13 .
- FIG. 16 is a cross-sectional view taken along line of FIG. 15 .
- FIG. 17 is a plan view schematically illustrating a part of a display panel according to an alternative exemplary embodiment.
- FIG. 18 is a plan view schematically illustrating a part of a display panel according to another alternative exemplary embodiment.
- an element or layer When an element or layer is referred to as being “on,”ed to,” or “coupled to” another element or layer, it may be directly on, connected to, or coupled to the other element or layer or intervening elements or layers may be present. When, however, an element or layer is referred to as being “directly on,” “directly connected to,” or “directly coupled to” another element or layer, there are no intervening elements or layers present.
- “at least one of X, Y, and Z” and “at least one selected from the group consisting of X, Y, and Z” may be construed as X only, Y only, Z only, or any combination of two or more of X, Y, and Z, such as, for instance, XYZ, XYY, YZ, and ZZ.
- Like numbers refer to like elements throughout.
- the term “and/or” includes any and all combinations of one or more of the associated listed items.
- first, second, etc. may be used herein to describe various elements, components, regions, layers, and/or sections, these elements, components, regions, layers, and/or sections should not be limited by these terms. These terms are used to distinguish one element, component, region, layer, and/or section from another element, component, region, layer, and/or section. Thus, a first element, component, region, layer, and/or section discussed below could be termed a second element, component, region, layer, and/or section without departing from the teachings of the present disclosure.
- Spatially relative terms such as “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for descriptive purposes, and, thereby, to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the drawings.
- Spatially relative terms are intended to encompass different orientations of an apparatus in use, operation, and/or manufacture in addition to the orientation depicted in the drawings. For example, if the apparatus in the drawings is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features.
- the exemplary term “below” can encompass both an orientation of above and below.
- the apparatus may be otherwise oriented (e.g., rotated 90 degrees or at other orientations), and, as such, the spatially relative descriptors used herein interpreted accordingly.
- “About” or “approximately” as used herein is inclusive of the stated value and means within an acceptable range of deviation for the particular value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the particular quantity (i.e., the limitations of the measurement system). For example, “about” may mean within one or more standard deviations, or within ⁇ 30%, 20%, 10%, 5% of the stated value.
- exemplary embodiments are described herein with reference to sectional illustrations that are schematic illustrations of idealized exemplary embodiments and/or intermediate structures. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, exemplary embodiments disclosed herein should not be construed as limited to the particular illustrated shapes of regions, but are to include deviations in shapes that result from, for instance, manufacturing. The regions illustrated in the drawings are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to be limiting.
- FIG. 1 is an exploded perspective view illustrating a bent display device according to an exemplary embodiment
- FIG. 2 is a plan view illustrating the bent display device according to an exemplary embodiment
- FIG. 3 is a cross-sectional view illustrating the bent display device according to an exemplary embodiment.
- the bent display device includes a display panel 100 , a first touch sensor 300 , a second touch sensor 400 , a window 500 , and the like.
- the display panel 100 may be a flexible display panel.
- the display panel 100 according to an exemplary embodiment may be a bent display panel including an edge portion having a bent shape.
- the display panel 100 may be formed to include an edge portion having a bent shape, or may be formed to have a planar shape and then the edge portion thereof may be bent by being coupled to the window 500 , a fixing frame (not illustrated), or the like.
- a planar portion at a central portion of the display panel 100 will be referred to as a planar surface portion 101
- a bent portion at an edge of the planar surface portion 101 will be referred to as a curved surface portion 102 .
- the display panel 100 according to an exemplary embodiment is depicted as including the curved surface portion 102 formed on opposite edges of the planar surface portion 101 , but exemplary embodiments are not limited thereto.
- the curved surface portion 102 may be formed only at one edge of the planar surface portion 101 .
- the planar surface portion 101 and the curved surface portion 102 are described as divided areas for convenience of explanation, but they may be actually one display area.
- the display panel 100 may include a plurality of pixels PX for displaying an image.
- the plurality of pixels PX may be disposed on the planar surface portion 101 and the curved surface portion 102 of the display panel 100 to display an image.
- the display panel 100 may include, for example, a flexible film such as a plastic film, and may be implemented by disposing an organic light emitting diode (“OLED”) and a pixel circuit on the flexible film. More detailed configurations of the display panel 100 will be described below.
- OLED organic light emitting diode
- the window 500 may be disposed on the display panel 100 .
- the window 500 according to an exemplary embodiment includes a transparent hard material, thus capable of transmitting a fully intact image of the display panel 100 and protecting the display panel 100 from external impact.
- the window 500 may include a flexible film material, such as a plastic film.
- the window 500 may have substantially the same shape as a shape of the display panel 100 .
- the window 500 may also include a planar surface portion 501 and a curved surface portion 502 respectively corresponding to the planar surface portion 101 and the curved surface portion 102 of the display panel 100 .
- the touch sensors 300 and 400 sensing a user's touch action may be disposed between the display panel 100 and the window 500 .
- the first touch sensor 300 is disposed between the planar surface portion 101 of the display panel 100 and the planar surface portion 501 of the window 500
- the second touch sensor 400 may be disposed between the curved surface portion 102 of the display panel 100 and the curved surface portions 502 of the window 500 .
- the first touch sensor 300 may be disposed to overlap the planar surface portion 101 of the display panel 100
- the second touch sensor 400 may be disposed to overlap the curved surface portion 102 of the display panel 100 .
- the first touch sensor 300 may have substantially the same shape as that of the planar surface portion 101 of the display panel 100 on a plane and the second touch sensor 400 may have substantially the same shape as a shape of the curved surface portion 102 of the display panel 100 on a plane.
- the first touch sensor 300 according to an exemplary embodiment is depicted as being disposed between the display panel 100 and the window 500 . However, exemplary embodiments are not limited thereto, and the first touch sensor 300 may be implemented directly in the display panel 100 .
- the first touch sensor 300 and the second touch sensor 400 may be driven independently. That is, the first touch sensor 300 and the second touch sensor 400 may be touch sensors which are driven separately in a same driving method, or may be touch sensors which have different driving methods.
- the first touch sensor 300 may be a capacitive touch sensor
- the second touch sensor 400 may be a pressure sensitive touch sensor, an optical touch sensor, an ultrasonic touch sensor, or the like.
- the first touch sensor 300 and the second touch sensor 400 are driven separately, touch malfunction that may occur at a side portion of the bent display device based on the user's grip state may be substantially prevented.
- the first touch sensor 300 may include a touch driving unit 350 (see FIG. 9 ) to be described below
- the second touch sensor 400 may include a control unit (not illustrated) to be described below.
- the touch driving unit and the control unit may be driven separately. More detailed configurations of the first touch sensor 300 and the second touch sensor 400 will be described below.
- FIGS. 4, 5 and 6 are cross-sectional views illustrating bent display devices according to alternative exemplary embodiments.
- the description of the bent display device according to an exemplary embodiment will be omitted from the description related to the bent display device according to an alternative exemplary embodiment.
- the bent display device may include a display panel 100 , a first touch sensor 300 , a second touch sensor 400 , a window 500 , and the like.
- the display panel 100 may include a planar surface portion 101 and a curved surface portion 102 at an edge of the planar surface portion 101 .
- the display panel 100 may include the curved surface portion 102 formed only at one edge of the planar surface portion 101 .
- the window 500 may include a curved surface portion 502 formed only at one edge of a planar surface portion 501 .
- the display panel 100 may include a curved portion 102 bent about 180 degrees to face a rear surface of the display panel 100 .
- the window 500 may include a curved surface 502 bent about 180 degrees.
- the curved surface portion 102 is depicted as being formed only at one edge of the planar surface portion 101 , but exemplary embodiments are not limited thereto.
- the curved surface portion 102 may be formed at opposite edges of the planar surface portion 101 .
- the display panel 100 may include curved surface portions 102 a and 102 b curved in different shapes at opposite edges of the planar surface portion 101 .
- the curved surface portions 102 a and 102 b at opposite edges of the planar surface portion 101 may be formed to have different degrees of bending.
- the window 500 may include curved surface portions 502 a and 502 b having different degrees of bending.
- FIG. 7 is an enlarged view illustrating a part of the display panel according to an exemplary embodiment
- FIG. 8 is a cross-sectional view taken along line I-I′ of FIG. 7 .
- the display panel 100 includes a plurality of pixels that include a switching thin film transistor (“TFT”) 10 , a driving TFT 20 , a capacitor 80 and an OLED 210 .
- the OLED 210 may be largely applied to flexible display devices since it may be deposited at a relatively low temperature and has relatively low power consumption, relatively high luminance, and the like.
- the term “pixel” refers to a smallest unit for displaying an image, and the display panel 100 displays an image using a plurality of pixels.
- each pixel is depicted in the drawings as including two TFTs and one capacitor, exemplary embodiments are not limited thereto.
- Each pixel may include three or more TFTs and two or more capacitors, and may further include additional wirings to have various structures.
- the display panel 100 includes a substrate 110 , a gate line 151 on the substrate 110 , a data line 171 , and a common power line 172 insulated from and intersecting the gate line 151 .
- each pixel may be defined by the gate line 151 , the data line 171 , and the common power line 172 as a boundary, but the pixel is not limited to the above-described definition.
- the pixels may be defined by a pixel defining layer or a black matrix.
- the substrate 110 may include a flexible material.
- An example of the flexible material may include a plastic material.
- the substrate 110 may include one selected from the group consisting of: kapton, polyethersulphone (PES), polycarbonate (PC), polyimide (PI), polyethyleneterephthalate (PET), polyethylene naphthalate (PEN), polyacrylate (PAR), fiber reinforced plastic (FRP), and the like.
- the substrate 110 may have a thickness ranging from about 5 ⁇ m to about 200 ⁇ m. In the case where the substrate 110 has a thickness of less than about 5 ⁇ m, it is difficult for the substrate 110 to stably support the OLED 210 . On the other hand, in the case where the substrate 110 has a thickness of about 200 ⁇ m or more, the flexible characteristics of the substrate 110 may be degraded.
- a buffer layer 120 is disposed on the substrate 110 .
- the buffer layer 120 is configured to prevent permeation of undesirable elements and to planarize a surface therebelow, and may include suitable materials for preventing permeation and/or planarizing.
- the buffer layer 120 may include one of the followings: a silicon nitride (SiN x ) layer, a silicon oxide (SiO 2 ) layer, and a silicon oxynitride (SiO x N y ) layer.
- the buffer layer 120 is not required, and may be omitted based on the kinds of the substrate 110 and process conditions thereof.
- a switching semiconductor layer 131 and a driving semiconductor layer 132 are disposed on the buffer layer 120 .
- the switching semiconductor layer 131 and the driving semiconductor layer 132 may include at least one of the followings: a polycrystalline silicon layer, an amorphous silicon layer, and an oxide semiconductor including, for example, indium gallium zinc oxide (IGZO) and indium zinc tin oxide (IZTO).
- IGZO indium gallium zinc oxide
- IZTO indium zinc tin oxide
- the driving semiconductor layer 132 includes a polycrystalline silicon layer
- the driving semiconductor layer 132 includes a channel area that is not doped with impurities and p+ doped source and drain areas that are formed on opposite sides of the channel area.
- p-type impurities such as boron B
- B 2 H 6 is typically used.
- impurities may vary depending on the kinds of TFTs.
- the driving TFT 20 uses a p-channel metal oxide semiconductor (PMOS) TFT including p-type impurities, but exemplary embodiments are not limited thereto.
- the driving TFT 20 may use an n-channel metal oxide semiconductor (NMOS) TFT or a complementary metal oxide semiconductor (CMOS) TFT.
- NMOS n-channel metal oxide semiconductor
- CMOS complementary metal oxide semiconductor
- a gate insulating layer 140 is disposed on the switching semiconductor layer 131 and the driving semiconductor layer 132 .
- the gate insulating layer 140 may include at least one of: tetraethylorthosilicate (TEOS), silicon nitride (SiN x ), and silicon oxide (SiO 2 ).
- TEOS tetraethylorthosilicate
- SiN x silicon nitride
- SiO 2 silicon oxide
- the gate insulating layer 140 may have a double-layer structure where a SiN x layer having a thickness of about 40 nm and a TEOS layer having a thickness of about 80 nm are sequentially stacked.
- a gate wiring including gate electrodes 152 and 155 is disposed on the gate insulating layer 140 .
- the gate wiring further includes the gate line 151 , a first capacitor plate 158 , and other lines.
- the gate electrodes 152 and 155 are disposed to overlap at least a portion of the semiconductor layers 131 and 132 , for example, a channel area thereof.
- the gate electrodes 152 and 155 serve to substantially prevent the channel area from being doped with impurities when source and drain areas of the semiconductor layers 131 and 132 are doped with impurities during the process of forming the semiconductor layers 131 and 132 .
- the gate electrodes 152 and 155 and the first capacitor plate 158 are disposed on a substantially same layer and include a substantially same metal material.
- the gate electrodes 152 and 155 and the first capacitor plate 158 may include at least one of molybdenum (Mo), chromium (Cr), and tungsten (W).
- the insulating interlayer 160 overlapping the gate electrodes 152 and 155 is disposed on the gate insulating layer 140 .
- the insulating interlayer 160 similar to the gate insulating layer 140 , may include or be formed of silicon nitride (SiN x ), silicon oxide (SiO x ), tetraethoxysilane (TEOS) or the like, but exemplary embodiments are not limited thereto.
- a data wiring including source electrodes 173 and 176 and drain electrodes 174 and 177 is disposed on the insulating interlayer 160 .
- the data wiring further includes the data line 171 , the common power line 172 , a second capacitor plate 178 , and other lines.
- the source electrodes 173 and 176 and the drain electrodes 174 and 177 are connected to a source area and a drain area of the semiconductor layers 131 and 132 , respectively, through a contact hole defined in the gate insulating layer 140 and the insulating interlayer 160 .
- the switching TFT 10 includes the switching semiconductor layer 131 , the switching gate electrode 152 , the switching source electrode 173 , and the switching drain electrode 174
- the driving TFT 20 includes the driving semiconductor layer 132 , the driving gate electrode 155 , the driving source electrode 176 , and the driving drain electrode 177 .
- Configurations of the TFTs 10 and 20 are not limited to the above exemplary embodiments, and thus may be modified into various structures that are known to and may be easily conceived by those skilled in the pertinent art.
- the capacitor 80 includes the first capacitor plate 158 and the second capacitor plate 178 , having the insulating interlayer 160 interposed therebetween.
- the switching TFT 10 may function as a switching element configured to select pixels to perform light emission.
- the switching gate electrode 152 is connected to the gate line 151 .
- the switching source electrode 173 is connected to the data line 171 .
- the switching drain electrode 174 is spaced apart from the switching source electrode 173 and is connected to the first capacitor plate 158 .
- the driving TFT 20 applies a driving power to a pixel electrode 211 , which allows a light emitting layer 212 of the OLED 210 in the selected pixel to emit light.
- the driving gate electrode 155 is connected to the first capacitor plate 158 .
- the driving source electrode 176 and the second capacitor plate 178 each are connected to the common power line 172 .
- the driving drain electrode 177 is connected to the pixel electrode 211 of the OLED 210 through a contact hole.
- the switching TFT 10 is driven by a gate voltage applied to the gate line 151 and serves to transmit a data voltage applied to the data line 171 to the driving TFT 20 .
- a voltage equivalent to a difference between a common voltage applied to the driving TFT 20 from the common power line 172 and the data voltage transmitted from the switching TFT 10 is stored in the capacitor 80 , and a current corresponding to the voltage stored in the capacitor 80 flows to the OLED 210 through the driving TFT 20 , such that the OLED 210 may emit light.
- a planarization layer 165 is disposed to cover the data wiring, e.g., the data line 171 , the common power line 172 , the source electrodes 173 and 176 , the drain electrodes 174 and 177 , and the second capacitor plate 178 , which are patterned into a substantially same layer on the insulating interlayer 160 .
- the planarization layer 165 serves to substantially eliminate a step difference and planarize a surface so as to increase luminance efficiency of the OLED 210 to be formed thereon.
- the planarization layer 165 may include at least one of the following materials: a polyacrylate resin, an epoxy resin, a phenolic resin, a polyamide resin, a polyimide resin, an unsaturated polyester resin, a polyphenylen ether resin, a polyphenylene sulfide resin, and benzocyclobutene (BCB).
- the pixel electrode 211 of the OLED 210 is disposed on the planarization layer 165 .
- the pixel electrode 211 is connected to the drain electrode 177 through a contact hole defined in the planarization layer 165 .
- a pixel defining layer 190 is disposed on the planarization layer 165 and exposes at least a portion of the pixel electrode 211 to define a pixel area.
- the pixel electrode 211 is disposed corresponding to the pixel area of the pixel defining layer 190 .
- the pixel defining layer 190 may include a resin, such as a polyacrylate resin and a polyimide resin.
- the light emitting layer 212 is disposed on the pixel electrode 211 and a common electrode 213 is disposed on the pixel defining layer 190 and the light emitting layer 212 .
- the light emitting layer 212 includes a low molecular organic material or a high molecular organic material. At least one of a hole injection layer and a hole transporting layer may further be disposed between the pixel electrode 211 and the light emitting layer 212 , and at least one of an electron transporting layer and an electron injection layer may further be disposed between the light emitting layer 212 and the common electrode 213 .
- the pixel electrode 211 and the common electrode 213 may be formed as a transmissive electrode, a transflective electrode, or a reflective electrode.
- Transparent conductive oxide may be used to form a transmissive electrode.
- TCO Transparent conductive oxide
- Such a TCO may include at least one selected from the group consisting of: indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), or indium oxide (In 2 O 3 )
- a metal e.g., magnesium (Mg), silver (Ag), gold (Au), calcium (Ca), lithium (Li), chromium (Cr), aluminum (Al), and copper (Cu), or an alloy thereof may be used to form a transflective electrode and a reflective electrode.
- an electrode is a transflective type or a reflective type depends on the thickness of the electrode.
- the transflective electrode has a thickness of about 200 nm or less and the reflective electrode has a thickness of about 300 nm or more. As the thickness of the transflective electrode decreases, light transmittance and resistance increase. On the contrary, as the thickness of the transflective electrode increases, light transmittance decreases.
- the transflective electrode and the reflective electrode may have a multilayer structure which includes a metal layer including a metal or a metal alloy, and a TCO layer stacked on the metal layer.
- a thin film encapsulation layer 250 is disposed on the common electrode 213 .
- the thin film encapsulation layer 250 includes one or more inorganic layers 251 and 253 and one or more organic layers 252 .
- the thin film encapsulation layer 250 may have a structure in which one or more inorganic layers 251 and 253 and one or more organic layers 252 are alternately stacked.
- an inorganic layer 251 is disposed at a lowermost portion. That is, the inorganic layer 251 is disposed to be most closely adjacent to the OLED 210 .
- the thin film encapsulation layer 250 is depicted as including two inorganic layers 251 and 253 and one organic layer 252 , but exemplary embodiments are not limited thereto.
- the inorganic layers 251 and 253 may include one or more inorganic materials selected from the group consisting of: Al 2 O 3 , TiO 2 , ZrO, SiN x , SiO 2 , AlON, AlN, SiON, Si 3 N 4 , ZnO, and Ta 2 O 5 .
- the inorganic layers 251 and 253 may be formed through methods such as a chemical vapor deposition (CVD) method or an atomic layer deposition (ALD) method.
- CVD chemical vapor deposition
- ALD atomic layer deposition
- exemplary embodiments are not limited thereto, and the inorganic layers 251 and 253 may be formed using various methods known to those skilled in the art.
- the organic layer 252 may include a polymer-based material.
- the polymer-based material may include, for example, an acrylic resin, an epoxy resin, polyimide, and polyethylene.
- the organic layer 252 may be formed through a thermal deposition process.
- the thermal deposition process for forming the organic layer 252 may be performed at a temperature range that may not damage the OLED 210 .
- exemplary embodiments are not limited thereto, and the organic layer 252 may be formed using various methods known to those skilled in the pertinent art.
- the inorganic layers 251 and 253 which have a high density of thin film may prevent or efficiently reduce permeation of, mostly, moisture or oxygen. Permeation of moisture and oxygen into the OLED 210 may be largely prevented by the inorganic layers 251 and 253 .
- the thin film encapsulation layer 250 may have a thickness of about 10 ⁇ m or less. Accordingly, the OLED display panel 100 may also have a significantly reduced thickness. By applying the thin film encapsulation layer 250 in such a manner, the OLED display panel 100 may have flexible characteristics.
- FIG. 9 is a plan view illustrating the first touch sensor 300 according to an exemplary embodiment.
- the first touch sensor 300 according to an exemplary embodiment may be a capacitive touch sensor.
- the first touch sensor 300 includes a touch substrate 310 , a plurality of first sensing electrodes 311 and a plurality of second sensing electrodes 312 on the touch substrate 310 , a first connection wiring 321 connecting the first sensing electrodes 311 , a second connection wiring 322 connecting the second sensing electrodes 312 , a touch driving unit 350 , and the like.
- the first sensing electrodes 311 may be connected to the touch driving unit 350 through a first routing wiring 351 and the second sensing electrodes 312 may be connected to the touch driving unit 350 through a second routing wiring 352 .
- the plurality of first sensing electrodes 311 and the plurality of second sensing electrodes 312 are depicted as being formed on the touch substrate 310 to be disposed on the display panel 100 , thus forming the first touch sensor 300 , but exemplary embodiments are not limited thereto.
- the touch substrate 310 may be omitted and the plurality of first sensing electrodes 311 , the plurality of second sensing electrodes 312 , and the like may be directly formed on the display panel 100 .
- the first sensing electrode 311 and the second sensing electrode 312 may be disposed so as not to overlap each other on a plane.
- the first sensing electrode 311 and the second sensing electrode 312 are depicted as having the shape of a rhombic surface electrode, but exemplary embodiments are not limited thereto.
- the first sensing electrode 311 and the second sensing electrode 312 may have a triangular shape, a quadrangular shape, or a mesh electrode shape.
- the first sensing electrode 311 and the second sensing electrode 312 may have a suitable size to detect a touch according to the size and purpose of the display panel 100 .
- an area of the first sensing electrode 311 and an area the second sensing electrode 312 may be in a range of about several square millimeters (mm 2 ) to about tens of several square millimeters.
- the first sensing electrode 311 and the second sensing electrode 312 may be formed on substantially the same layer, or may be insulated from each other by an insulating layer or the like.
- the first connection wiring 321 and the second connection wiring 322 may be insulated from and intersect each other on a plane.
- the first sensing electrode 311 , the second sensing electrode 312 , the first connection wiring 321 , and the second connection wiring 322 may include a metal or a TCO.
- a TCO may include at least one selected from the group consisting of: indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), carbon nanotube (CNT), and graphene.
- the touch driving unit 350 inputs a driving signal to the first sensing electrode 311 and may determine the presence or absence of the touch and identify touch coordinates using a capacitance variation or a voltage variation measured by the second sensing electrode 312 .
- FIG. 10 is a plan view illustrating the first touch sensor 300 and the second touch sensor 400 according to an exemplary embodiment
- FIG. 11 is a cross-sectional view taken along line II-II′ of FIG. 10 .
- the second touch sensor 400 may be disposed on the curved surface portion 102 of the display panel 100 .
- the second touch sensor 400 may have substantially the same shape as a shape of the curved surface portion 102 on a plane. As illustrated in FIG. 10 , in the case where the curved surface portion 102 has a stripe shape on a plane, the second touch sensor 400 may also have a stripe shape on a plane. In addition, in the case where the curved surface portion 102 has a rim shape on a plane along an edge of the planar surface portion 101 , the second touch sensor 400 may also have a rim shape on a plane.
- the second touch sensor 400 may include a first electrode 410 and a second electrode 420 opposing each other, a filler 430 between the first electrode 410 and the second electrode 420 , a control unit (not illustrated), and the like.
- the first electrode 410 and the second electrode 420 may include a metal or a TCO.
- a TCO may include at least one selected from the group consisting of: ITO, IZO, ZnO, CNT and graphene.
- the filler 430 may include a transparent and resilient material.
- the filler 430 may include at least one of silicon and polydimethylsiloxane (PDMS).
- PDMS polydimethylsiloxane
- the control unit may apply a voltage between the first electrode 410 and the second electrode 420 to sense a capacitance change between the first electrode 410 and the second electrode 420 .
- the capacitance between the first electrode 410 and the second electrode 420 is inversely proportional to a distance d between the first electrode 410 and the second electrode 420 or a thickness d of the filler 430 . That is, when the thickness of the filler 430 changes according to the touch pressure due to external touch, the capacitance between the first electrode 410 and the second electrode 420 changes, and the change of the capacitance is sensed to determine whether or not a touch occurred.
- the second touch sensor 400 operates separately from the first touch sensor 300 , the likelihood of a touch malfunction that may occur at the side portion of the bent display device based on the user's grip state may be substantially reduced.
- FIG. 12 is a circuit diagram illustrating a configuration of a second touch sensor according to an alternative exemplary embodiment.
- the second touch sensor 400 may include a sensor resistor Rs of which a resistance value varies in accordance with a pressure applied by contact, a filter resistor Rf connected in series to the sensor resistor Rs and having a constant resistance value, and a pressure sensing unit FSR connected to a node ND between the sensor resistor Rs and the filter resistor Rf.
- the sensor resistance Rs includes a piezoresistive material, and a resistance value thereof may change when pressure is applied.
- pressure resistance materials may include carbon nanotube (CNT) and graphene.
- the filter resistor Rf is connected in series to the sensor resistor Rs and may have a constant resistance value.
- a reference voltage Vcc may be applied to the sensor resistor Rs and the filter resistor Rf that are connected in series.
- the pressure sensing unit FSR is connected to the node ND between the sensor resistor Rs and the filter resistor Rf to sense a divided voltage Vd that is divided by the sensor resistor Rs and the filter resistor Rf. Accordingly, when a value of the divided voltage Vd is changed due to an external touch, it can be sensed and whether or not the touch occurred may be identified.
- FIG. 13 is a plan view illustrating a bent display device according to an alternative exemplary embodiment
- FIG. 14 is a cross-sectional view illustrating the bent display device according to an alternative exemplary embodiment
- FIG. 15 is an enlarged view illustrating an area “A” of FIG. 13 .
- bent display device The description of the bent display device according to an exemplary embodiment will be omitted from the description related to the bent display device according to an alternative exemplary embodiment.
- the bent display device may include a display panel 100 , a first touch sensor 300 , a second touch sensor 400 , a window 500 , and the like.
- the display panel 100 may include a planar surface portion 101 and a curved surface portion 102 at an edge of the planar surface portion 101 .
- the second touch sensor 400 according to an alternative exemplary may include a plurality of second touch sensors 400 disposed on a rear surface of the curved surface portion 102 of the display panel 100 .
- the second touch sensor 400 may be implemented directly in the display panel 100 .
- the second touch sensor 400 may be disposed among a plurality of pixels PX disposed at the curved surface portion 102 of the display panel 100 .
- the second touch sensor 400 may be an optical touch sensor or an ultrasonic touch sensor.
- the display panel 100 may include a plurality of pixels PX for displaying an image.
- the plurality of pixels PX may be disposed at the planar surface portion 101 and the curved surface portion 102 of the display panel 100 to display an image.
- the curved surface portion 102 of the display panel 100 may include a pixel area PA where a pixel PX or the like is disposed and an image is displayed and a transmissive area TA through which light is transmitted.
- Three pixel areas PA and one transmissive area TA are depicted as being arranged in one direction in the drawings, but exemplary embodiments are not limited thereto.
- the pixel area PA and the transmissive area TA may be arranged in various shapes and numbers.
- the transmissive area TA is depicted as having a quadrangular shape, but exemplary embodiments are not limited thereto, and the transmissive area TA may be provided in various other shapes, such as a polygonal shape and a circular shape.
- the transmissive area TA may have an opening OPN so that light or ultrasonic wave propagating through the transmissive area TA may pass therethrough.
- the openings OPN may be defined in such a manner that at least a part of an insulating layer and elements for light emission are removed.
- the opening OPN may be defined by removing an insulating interlayer 160 , a planarization layer 165 , and the like.
- exemplary embodiments are not limited thereto, and a buffer layer 120 and a gate insulating layer 140 may also be removed.
- a light emitted from an OLED 210 at the pixel area PA of the curved surface portion 102 is reflected by a user's finger or the like, and the reflected light may reach the second touch sensor 400 through the opening OPN of the transmissive area TA.
- the curved surface portion 102 of the display panel 100 may further include an ultrasonic wave generator (not illustrated). Ultrasonic wave generated from the ultrasonic wave generator (not illustrated) is reflected by a user's finger or the like, and the reflected ultrasonic wave may reach the second touch sensor 400 through the opening OPN of the transmissive area TA.
- the second touch sensor 400 may determine whether a touch occurred or not, using the sensed light or ultrasonic wave. In addition, the second touch sensor 400 may sense fingerprints using sensed light or ultrasonic wave.
- FIG. 17 is a plan view schematically illustrating a part of a display panel according to an alternative exemplary embodiment.
- the description of the bent display device according to an exemplary embodiment will be omitted from the description related to the bent display device according to an alternative exemplary embodiment.
- the display panel 100 may include a planar surface portion 101 and a curved surface portion 102 at an edge of the planar surface portion 101 .
- the display panel 100 may include a plurality of pixels PX 1 and PX 2 for displaying an image.
- the plurality of pixels PX 1 and PX 2 may be disposed at the planar surface portion 101 and the curved surface portion 102 of the display panel 100 to display an image.
- a pixel disposed at the planar surface portion 101 is referred to as a first pixel PX 1
- a pixel disposed at the curved surface portion 102 is referred to as a second pixel PX 2 .
- the curved surface portion 102 of the display panel 100 may further include a transmissive area TA through which light is transmitted.
- a resolution of the curved surface portion 102 may be less than a resolution of the planar surface portion 101 .
- the second pixel PX 2 may be formed to be smaller than the first pixel PX 1 to increase an area of the transmissive area TA.
- the display panel 100 may be configured so that an amount of transmitted light or ultrasonic wave is increased by forming the transmissive area TA at the curved surface portion 102 , and accordingly, the sensitivity of the second touch sensor (not illustrated) may be improved.
- FIG. 18 is a plan view schematically illustrating a part of a display panel according to another alternative exemplary embodiment.
- the description of the bent display device according to an alternative exemplary embodiment will be omitted from the description related to the bent display device according to an exemplary embodiment.
- the display panel 100 may include a planar surface portion 101 and a curved surface portion 102 at an edge of the planar surface portion 101 .
- the display panel 100 may include a plurality of pixels PX for displaying an image.
- the plurality of pixels PX may be disposed at the planar surface portion 101 and the curved surface portion 102 of the display panel 100 to display an image.
- the curved surface portion 102 of the display panel 100 may further include a transmissive area TA through which light is transmitted.
- An area of the transmissive area TA may gradually increase from a boundary between the planar surface portion 101 and the curved surface portion 102 toward an edge of the display panel 100 .
- W 1 denote a width of the transmissive area TA 1
- W 2 denote a width of the transmissive area TA 2
- W 3 denote a width of the transmissive area TA 3
- the width W 1 , the width W 2 and the width W 3 may satisfy the following Mathematical Formula 1.
- W1 ⁇ W2 ⁇ W3 [Mathematical Formula 1]
- the display panel 100 is configured so that the transmissive areas TA at the curved surface portion 102 increases toward the edge so as to increase an amount of transmitted light or ultrasonic wave, and accordingly, the sensitivity of the second touch sensor (not illustrated) may be improved.
- the bendable display device may distinguish between a touch sensor at the planar surface portion and a touch sensor at the curved surface portion to detect a touch in different manners, such that touch malfunctions occurring at a side surface of the bent display device may be substantially prevented.
- the bent display device includes a pressure sensitive touch sensor, an optical touch sensor, and an ultrasonic touch sensor on the curved surface portion to detect a touch in a separate manner from a touch sensor on the planar surface portion, such that the likelihood of touch malfunctions occurring at the side surface portion of the bent display device may be substantially reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Human Computer Interaction (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Electroluminescent Light Sources (AREA)
- Position Input By Displaying (AREA)
Abstract
Description
W1<W2<W3 [Mathematical Formula 1]
Claims (13)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0155739 | 2016-11-22 | ||
KR1020160155739A KR102645631B1 (en) | 2016-11-22 | 2016-11-22 | Bended display device |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180143669A1 US20180143669A1 (en) | 2018-05-24 |
US10795417B2 true US10795417B2 (en) | 2020-10-06 |
Family
ID=62147552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/806,261 Active US10795417B2 (en) | 2016-11-22 | 2017-11-07 | Display device having a planar surface portion and a curved surface portion |
Country Status (3)
Country | Link |
---|---|
US (1) | US10795417B2 (en) |
KR (1) | KR102645631B1 (en) |
CN (1) | CN108089744B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10877581B2 (en) | 2011-04-26 | 2020-12-29 | Sentons Inc. | Detecting touch input force |
US10908741B2 (en) | 2016-11-10 | 2021-02-02 | Sentons Inc. | Touch input detection along device sidewall |
US10969908B2 (en) | 2011-04-26 | 2021-04-06 | Sentons Inc. | Using multiple signals to detect touch input |
US11009411B2 (en) | 2017-08-14 | 2021-05-18 | Sentons Inc. | Increasing sensitivity of a sensor using an encoded signal |
US11016607B2 (en) | 2011-11-18 | 2021-05-25 | Sentons Inc. | Controlling audio volume using touch input force |
US11061510B2 (en) | 2017-02-27 | 2021-07-13 | Sentons Inc. | Detection of non-touch inputs using a signature |
US11209931B2 (en) | 2011-11-18 | 2021-12-28 | Sentons Inc. | Localized haptic feedback |
US11327599B2 (en) | 2011-04-26 | 2022-05-10 | Sentons Inc. | Identifying a contact type |
US11580829B2 (en) | 2017-08-14 | 2023-02-14 | Sentons Inc. | Dynamic feedback for haptics |
US11983345B2 (en) | 2019-03-26 | 2024-05-14 | Samsung Display Co., Ltd. | Electronic apparatus and method of driving the same |
US12051375B2 (en) | 2019-06-17 | 2024-07-30 | Samsung Display Co., Ltd. | Display device |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10067535B2 (en) * | 2012-09-28 | 2018-09-04 | Apple Inc. | Multiple-element light-bending structures for minimizing display borders |
CN106775167B (en) * | 2017-01-13 | 2020-12-18 | 京东方科技集团股份有限公司 | Touch substrate, preparation method thereof and display device |
US10365818B2 (en) * | 2017-09-20 | 2019-07-30 | Synaptics Incorporated | Force transfer element for edge force sensing |
KR102519800B1 (en) * | 2018-07-17 | 2023-04-10 | 삼성디스플레이 주식회사 | Electronic device |
KR102535004B1 (en) * | 2018-07-27 | 2023-05-22 | 삼성디스플레이 주식회사 | Display device including force sensor |
KR102555824B1 (en) | 2018-07-31 | 2023-07-14 | 삼성디스플레이 주식회사 | Display device |
KR102581974B1 (en) * | 2018-07-31 | 2023-09-22 | 삼성디스플레이 주식회사 | Force sensor and display device including the same |
KR102545479B1 (en) * | 2018-07-31 | 2023-06-20 | 삼성디스플레이 주식회사 | Display device |
KR102636883B1 (en) * | 2018-08-17 | 2024-02-15 | 삼성디스플레이 주식회사 | Display device |
KR102582263B1 (en) * | 2018-08-20 | 2023-09-25 | 삼성디스플레이 주식회사 | Display device and method for manufacturing the same |
KR102582316B1 (en) * | 2018-08-20 | 2023-09-25 | 삼성디스플레이 주식회사 | Display device |
CN109256039B (en) * | 2018-10-18 | 2020-06-16 | 武汉华星光电半导体显示技术有限公司 | Display panel and electronic device |
US10741009B2 (en) | 2018-12-04 | 2020-08-11 | Aristocrat Technologies Australia Pty Limited | Curved button deck display |
US10733830B2 (en) | 2018-12-18 | 2020-08-04 | Aristocrat Technologies Pty Limited | Gaming machine display having one or more curved edges |
USD923592S1 (en) * | 2018-12-18 | 2021-06-29 | Aristocrat Technologies Australia Pty Limited | Electronic gaming machine |
KR102689552B1 (en) | 2018-12-19 | 2024-07-29 | 삼성디스플레이 주식회사 | Electronic device |
KR102707432B1 (en) * | 2019-03-15 | 2024-09-19 | 삼성디스플레이 주식회사 | Display device |
KR20210000766A (en) * | 2019-06-25 | 2021-01-06 | 삼성디스플레이 주식회사 | Ultrasonic detection device and display device including the same |
CN112306273A (en) * | 2019-07-26 | 2021-02-02 | 北京小米移动软件有限公司 | Touch display screen and mobile terminal |
KR20210022818A (en) | 2019-08-20 | 2021-03-04 | 삼성디스플레이 주식회사 | Display device |
US11513554B1 (en) * | 2019-08-23 | 2022-11-29 | Apple Inc. | Electronic devices having displays with borders of image transport material |
KR20210028296A (en) | 2019-09-03 | 2021-03-12 | 삼성디스플레이 주식회사 | Display device |
KR20210050058A (en) | 2019-10-25 | 2021-05-07 | 삼성디스플레이 주식회사 | Display apparatus |
KR20210074447A (en) | 2019-12-11 | 2021-06-22 | 삼성디스플레이 주식회사 | Display apparatus |
KR20210078649A (en) | 2019-12-18 | 2021-06-29 | 삼성디스플레이 주식회사 | Display panel and display device including the same |
KR20210094189A (en) | 2020-01-20 | 2021-07-29 | 삼성디스플레이 주식회사 | Display panel and display apparatus comprising the same |
CN113391712B (en) * | 2020-03-11 | 2024-08-06 | 北京小米移动软件有限公司 | Pressure-sensitive touch screen and display device |
KR20220030383A (en) * | 2020-08-28 | 2022-03-11 | 삼성디스플레이 주식회사 | Display device and operating method thereof |
CN112578935A (en) * | 2020-12-07 | 2021-03-30 | 武汉华星光电半导体显示技术有限公司 | Display panel and display device thereof |
US11887397B2 (en) * | 2021-07-28 | 2024-01-30 | Qualcomm Incorporated | Ultrasonic fingerprint sensor technologies and methods for multi-surface displays |
US11993146B2 (en) * | 2021-08-31 | 2024-05-28 | Toyota Motor Engineering & Manufacturing North America, Inc. | Deformable user input systems |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5008497A (en) * | 1990-03-22 | 1991-04-16 | Asher David J | Touch controller |
US20020196238A1 (en) * | 2001-06-20 | 2002-12-26 | Hitachi, Ltd. | Touch responsive display unit and method |
US20040119676A1 (en) * | 2002-12-13 | 2004-06-24 | Mi-Sook Nam | Trans-reflective liquid crystal display device for improving color reproducibility and brightness and method for driving thereof |
US20040206190A1 (en) * | 2003-04-18 | 2004-10-21 | Alps Electric Co., Ltd. | Surface pressure distribution sensor |
US20060190836A1 (en) * | 2005-02-23 | 2006-08-24 | Wei Ling Su | Method and apparatus for data entry input |
US7489066B2 (en) | 2000-03-23 | 2009-02-10 | Sonavation, Inc. | Biometric sensing device with isolated piezo ceramic elements |
US20130321296A1 (en) | 2012-05-30 | 2013-12-05 | Lg Display Co., Ltd. | Display device with integrated touch screen and method for driving the same |
US8723813B2 (en) | 2008-07-23 | 2014-05-13 | Samsung Display Co., Ltd. | Flat panel display device |
KR20140073216A (en) | 2012-12-06 | 2014-06-16 | 삼성디스플레이 주식회사 | Display device and method of manufacturing display device |
US8781180B2 (en) | 2006-05-25 | 2014-07-15 | Qualcomm Incorporated | Biometric scanner with waveguide array |
US20140253477A1 (en) * | 2013-03-06 | 2014-09-11 | Lg Electronics Inc. | Mobile terminal |
US20150036065A1 (en) | 2013-08-05 | 2015-02-05 | Apple Inc. | Fingerprint Sensor in an Electronic Device |
US20150227172A1 (en) | 2014-02-12 | 2015-08-13 | Samsung Display Co., Ltd. | Display device and method of manufacturing a display device |
US20150310251A1 (en) | 2014-04-28 | 2015-10-29 | Qualcomm Incorporated | Display-integrated user-classification, security and fingerprint system |
US20150324056A1 (en) * | 2014-05-12 | 2015-11-12 | Japan Display Inc. | Portable electronic device |
US20150331508A1 (en) | 2014-05-16 | 2015-11-19 | Apple Inc. | Integrated silicon-oled display and touch sensor panel |
US20160004899A1 (en) | 2014-07-07 | 2016-01-07 | Goodix Technology Inc. | Integration of touch screen and fingerprint sensor assembly |
US20160062515A1 (en) | 2014-09-02 | 2016-03-03 | Samsung Electronics Co., Ltd. | Electronic device with bent display and method for controlling thereof |
US20160101610A1 (en) | 2014-10-14 | 2016-04-14 | Samsung Display Co., Ltd. | Manufacturing method of flexible display device |
US20160147375A1 (en) * | 2014-11-26 | 2016-05-26 | Samsung Display Co., Ltd. | Display device including touch sensor and driving method thereof |
US9435939B2 (en) * | 2012-08-02 | 2016-09-06 | Apple Inc. | Displays with coherent fiber bundles |
US20170357440A1 (en) * | 2016-06-08 | 2017-12-14 | Qualcomm Incorporated | Providing Virtual Buttons in a Handheld Device |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4316960B2 (en) * | 2003-08-22 | 2009-08-19 | 株式会社半導体エネルギー研究所 | apparatus |
JP5062667B2 (en) * | 2007-05-21 | 2012-10-31 | 株式会社ジャパンディスプレイウェスト | Transflective LCD panel |
JP5254581B2 (en) * | 2007-08-22 | 2013-08-07 | Hoya株式会社 | Photomask and photomask manufacturing method |
JP2011081578A (en) * | 2009-10-07 | 2011-04-21 | Hitachi Displays Ltd | Display device |
CN102937852B (en) * | 2012-10-19 | 2015-08-05 | 北京京东方光电科技有限公司 | A kind of capacitance type in-cell touch panel, its driving method and display device |
JP2014115321A (en) * | 2012-12-06 | 2014-06-26 | Nippon Electric Glass Co Ltd | Display device |
KR102061684B1 (en) * | 2013-04-29 | 2020-01-03 | 삼성디스플레이 주식회사 | Display panel |
KR102248464B1 (en) * | 2013-07-24 | 2021-05-07 | 삼성디스플레이 주식회사 | Foldable display apparatus and manufacturing method thereof |
KR102105462B1 (en) * | 2013-08-12 | 2020-04-28 | 엘지전자 주식회사 | Mobile terminal |
KR102076098B1 (en) * | 2013-11-25 | 2020-02-11 | 엘지디스플레이 주식회사 | Dispaly device |
KR102240828B1 (en) * | 2014-08-28 | 2021-04-15 | 엘지디스플레이 주식회사 | Touch panel and apparatus for driving thereof |
US9780157B2 (en) * | 2014-12-23 | 2017-10-03 | Lg Display Co., Ltd. | Flexible display device with gate-in-panel circuit |
-
2016
- 2016-11-22 KR KR1020160155739A patent/KR102645631B1/en active IP Right Grant
-
2017
- 2017-11-07 US US15/806,261 patent/US10795417B2/en active Active
- 2017-11-17 CN CN201711144906.0A patent/CN108089744B/en active Active
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5008497A (en) * | 1990-03-22 | 1991-04-16 | Asher David J | Touch controller |
US7489066B2 (en) | 2000-03-23 | 2009-02-10 | Sonavation, Inc. | Biometric sensing device with isolated piezo ceramic elements |
US20020196238A1 (en) * | 2001-06-20 | 2002-12-26 | Hitachi, Ltd. | Touch responsive display unit and method |
US20040119676A1 (en) * | 2002-12-13 | 2004-06-24 | Mi-Sook Nam | Trans-reflective liquid crystal display device for improving color reproducibility and brightness and method for driving thereof |
US20040206190A1 (en) * | 2003-04-18 | 2004-10-21 | Alps Electric Co., Ltd. | Surface pressure distribution sensor |
US20060190836A1 (en) * | 2005-02-23 | 2006-08-24 | Wei Ling Su | Method and apparatus for data entry input |
US8781180B2 (en) | 2006-05-25 | 2014-07-15 | Qualcomm Incorporated | Biometric scanner with waveguide array |
US8723813B2 (en) | 2008-07-23 | 2014-05-13 | Samsung Display Co., Ltd. | Flat panel display device |
US20130321296A1 (en) | 2012-05-30 | 2013-12-05 | Lg Display Co., Ltd. | Display device with integrated touch screen and method for driving the same |
US9435939B2 (en) * | 2012-08-02 | 2016-09-06 | Apple Inc. | Displays with coherent fiber bundles |
KR20140073216A (en) | 2012-12-06 | 2014-06-16 | 삼성디스플레이 주식회사 | Display device and method of manufacturing display device |
US20170097545A1 (en) | 2012-12-06 | 2017-04-06 | Samsung Display Co., Ltd. | Display device and method of manufacturing the same |
US20140253477A1 (en) * | 2013-03-06 | 2014-09-11 | Lg Electronics Inc. | Mobile terminal |
US20150036065A1 (en) | 2013-08-05 | 2015-02-05 | Apple Inc. | Fingerprint Sensor in an Electronic Device |
US20150227172A1 (en) | 2014-02-12 | 2015-08-13 | Samsung Display Co., Ltd. | Display device and method of manufacturing a display device |
KR20150094989A (en) | 2014-02-12 | 2015-08-20 | 삼성디스플레이 주식회사 | Display device and method of manufacturing a display device |
US20150310251A1 (en) | 2014-04-28 | 2015-10-29 | Qualcomm Incorporated | Display-integrated user-classification, security and fingerprint system |
US20150324056A1 (en) * | 2014-05-12 | 2015-11-12 | Japan Display Inc. | Portable electronic device |
US20150331508A1 (en) | 2014-05-16 | 2015-11-19 | Apple Inc. | Integrated silicon-oled display and touch sensor panel |
US20160004899A1 (en) | 2014-07-07 | 2016-01-07 | Goodix Technology Inc. | Integration of touch screen and fingerprint sensor assembly |
US20160062515A1 (en) | 2014-09-02 | 2016-03-03 | Samsung Electronics Co., Ltd. | Electronic device with bent display and method for controlling thereof |
KR20160028338A (en) | 2014-09-02 | 2016-03-11 | 삼성전자주식회사 | Potable terminal device comprisings bended display and method for controlling thereof |
US20160101610A1 (en) | 2014-10-14 | 2016-04-14 | Samsung Display Co., Ltd. | Manufacturing method of flexible display device |
KR20160044162A (en) | 2014-10-14 | 2016-04-25 | 삼성디스플레이 주식회사 | Manufacturing method of flexible display device |
US20160147375A1 (en) * | 2014-11-26 | 2016-05-26 | Samsung Display Co., Ltd. | Display device including touch sensor and driving method thereof |
US20170357440A1 (en) * | 2016-06-08 | 2017-12-14 | Qualcomm Incorporated | Providing Virtual Buttons in a Handheld Device |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10877581B2 (en) | 2011-04-26 | 2020-12-29 | Sentons Inc. | Detecting touch input force |
US11907464B2 (en) | 2011-04-26 | 2024-02-20 | Sentons Inc. | Identifying a contact type |
US10969908B2 (en) | 2011-04-26 | 2021-04-06 | Sentons Inc. | Using multiple signals to detect touch input |
US11327599B2 (en) | 2011-04-26 | 2022-05-10 | Sentons Inc. | Identifying a contact type |
US11016607B2 (en) | 2011-11-18 | 2021-05-25 | Sentons Inc. | Controlling audio volume using touch input force |
US11209931B2 (en) | 2011-11-18 | 2021-12-28 | Sentons Inc. | Localized haptic feedback |
US11829555B2 (en) | 2011-11-18 | 2023-11-28 | Sentons Inc. | Controlling audio volume using touch input force |
US10908741B2 (en) | 2016-11-10 | 2021-02-02 | Sentons Inc. | Touch input detection along device sidewall |
US11061510B2 (en) | 2017-02-27 | 2021-07-13 | Sentons Inc. | Detection of non-touch inputs using a signature |
US11262253B2 (en) * | 2017-08-14 | 2022-03-01 | Sentons Inc. | Touch input detection using a piezoresistive sensor |
US11009411B2 (en) | 2017-08-14 | 2021-05-18 | Sentons Inc. | Increasing sensitivity of a sensor using an encoded signal |
US11340124B2 (en) | 2017-08-14 | 2022-05-24 | Sentons Inc. | Piezoresistive sensor for detecting a physical disturbance |
US11435242B2 (en) | 2017-08-14 | 2022-09-06 | Sentons Inc. | Increasing sensitivity of a sensor using an encoded signal |
US11580829B2 (en) | 2017-08-14 | 2023-02-14 | Sentons Inc. | Dynamic feedback for haptics |
US11983345B2 (en) | 2019-03-26 | 2024-05-14 | Samsung Display Co., Ltd. | Electronic apparatus and method of driving the same |
US12051375B2 (en) | 2019-06-17 | 2024-07-30 | Samsung Display Co., Ltd. | Display device |
Also Published As
Publication number | Publication date |
---|---|
CN108089744A (en) | 2018-05-29 |
KR102645631B1 (en) | 2024-03-08 |
KR20180057796A (en) | 2018-05-31 |
US20180143669A1 (en) | 2018-05-24 |
CN108089744B (en) | 2023-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10795417B2 (en) | Display device having a planar surface portion and a curved surface portion | |
US10950824B2 (en) | Flexible display device | |
KR102547400B1 (en) | Foldable display device | |
CN111223897B (en) | Display device | |
US11662780B2 (en) | Foldable display device with support | |
US10903299B2 (en) | Display device including a flexible display panel | |
US11379066B2 (en) | Touch sensor including rounded corner and sensing electrode including rounded edge corresponding to rounded corner, and display device including the same | |
US11106882B2 (en) | Fingerprint sensing unit and display device including the same | |
US9582124B2 (en) | Touch screen panel, flat panel display apparatus integrated with the touch screen panel, and method of manufacturing the same | |
US9195333B2 (en) | Flat panel display device | |
KR102454065B1 (en) | Foldable display device | |
US10249692B2 (en) | Display device and method of manufacturing the same | |
US11775008B2 (en) | Foldable display device | |
US10944070B2 (en) | Display device having curved shape | |
US10877599B2 (en) | Touch sensing unit and display device including the same | |
KR20180076419A (en) | Bended display device and manufacturing method thereof | |
US11469393B2 (en) | Display device | |
US12045091B2 (en) | Display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SAMSUNG DISPLAY CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOK, SEUNGLYONG;KWAK, HEEJUNE;KIM, MUGYEOM;AND OTHERS;SIGNING DATES FROM 20170918 TO 20170920;REEL/FRAME:044058/0742 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |