Nothing Special   »   [go: up one dir, main page]

US10405928B2 - Acetabulum rim digitizer device and method - Google Patents

Acetabulum rim digitizer device and method Download PDF

Info

Publication number
US10405928B2
US10405928B2 US15/013,518 US201615013518A US10405928B2 US 10405928 B2 US10405928 B2 US 10405928B2 US 201615013518 A US201615013518 A US 201615013518A US 10405928 B2 US10405928 B2 US 10405928B2
Authority
US
United States
Prior art keywords
coordinate system
acetabulum
orientation
inertial sensor
sensor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/013,518
Other versions
US20160220315A1 (en
Inventor
Bruno Falardeau
Karine Duval
Laurence Moreau-Belanger
Francois Paradis
Di Li
Myriam Valin
Benoit Pelletier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orthosoft ULC
Original Assignee
Orthosoft ULC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orthosoft ULC filed Critical Orthosoft ULC
Priority to US15/013,518 priority Critical patent/US10405928B2/en
Assigned to ORTHOSOFT INC. reassignment ORTHOSOFT INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FALARDEAU, BRUNO, MOREAU-BELANGER, LAURENCE, VALIN, MYRIAM, DUVAL, KARINE, LI, DI, PARADIS, FRANCOIS, PELLETIER, BENOIT
Publication of US20160220315A1 publication Critical patent/US20160220315A1/en
Application granted granted Critical
Publication of US10405928B2 publication Critical patent/US10405928B2/en
Assigned to ORTHOSOFT ULC reassignment ORTHOSOFT ULC CONTINUANCE Assignors: ORTHOSOFT INC.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2048Tracking techniques using an accelerometer or inertia sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4609Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of acetabular cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4657Measuring instruments used for implanting artificial joints
    • A61F2002/4668Measuring instruments used for implanting artificial joints for measuring angles

Definitions

  • the present application relates to computer-assisted surgery using inertial sensors and more particularly to tools for determining a pelvic tilt for subsequent acetabular cup positioning procedures in hip surgery.
  • the acetabulum is reamed to subsequently receive therein an acetabular cup.
  • the acetabular cup is an implant that is received in the reamed acetabulum and serves as a receptacle for a femoral head or femoral head implant.
  • tools such as a reamer and a cup impactor are used in the procedure.
  • One of the challenges in such procedures is to provide an adequate orientation to the acetabular cup. Indeed, an inaccurate orientation may result in a loss of movements, improper gait, and/or premature wear of implant components.
  • the acetabular cup is typically positioned in the reamed acetabulum by way of an impactor.
  • the impactor has a stem at an end of which is the acetabular cup.
  • the stem is handled by an operator that impacts the free end so as to drive the acetabular cup into the acetabulum. It is however important that the operator hold the stem of the impactor in a precise three-dimensional orientation relative to the pelvis so as to ensure the adequate orientation of the acetabular cup, in terms of inclination and anteversion.
  • a computer-assisted surgery (CAS) system for tracking an orientation of a pelvis comprising: at least one instrument, the instrument having an acetabulum abutment end adapted to be received in an acetabulum, a rim abutment adapted to be abutted against a rim of the acetabulum, and an indicator representative of a physical orientation of the instrument; at least one inertial sensor unit connected to the at least one instrument, the inertial sensor unit producing readings representative of its orientation; a computer-assisted surgery processor unit operating a surgical assistance procedure and comprising a coordinate system module for setting a pelvic coordinate system from readings of the at least one inertial sensor unit when the at least one instrument has the acetabulum abutment end received in the acetabulum, the coordinate system module setting the pelvic coordinate system by obtaining a plurality of orientation values from the at least one inertial sensor unit when the rim abut
  • the at least one instrument has a pin guide thereon adapted to position a pin in the acetabulum in a desired location relative to the pelvic coordinate system.
  • the indicator is a light source emitting a light beam on the reference landmark.
  • a first of the orientation values obtained has the indicator aligned with a reference landmark.
  • said first of the orientation values is programmed from preoperative imaging as being representative of a patient orientation.
  • the tracking module tracks at least one tool supporting one of the inertial sensor unit relative to the pelvic coordinate system.
  • the tracking module calculates at least one of an anteversion and an inclination of the at least one tool relative to the pelvis.
  • a computer-assisted surgery (CAS) system for tracking an orientation of a pelvis comprising: at least one instrument, the instrument having an acetabulum abutment end adapted to be abutted against a rim of the acetabulum in a planned complementary abutment; at least one inertial sensor unit connected to the at least one instrument, the inertial sensor unit producing readings representative of its orientation; a computer-assisted surgery processor unit operating a surgical assistance procedure and comprising a coordinate system module for setting a pelvic coordinate system from readings of the at least one inertial sensor unit when the at least one instrument has the acetabulum abutment end abutted against a rim of the acetabulum in a planned complementary manner, the coordinate system module setting the pelvic coordinate system by defining an acetabular plane representative of the pelvic coordinate system based on the planned complementary abutment; and a tracking module for tracking an orientation of the at least
  • the at least one instrument has a pin guide thereon adapted to position a pin in the acetabulum in a desired location relative to the pelvic coordinate system.
  • the tracking module tracks at least one tool supporting one of the inertial sensor unit relative to the pelvic coordinate system.
  • the tracking module calculates at least one of an anteversion and an inclination of the at least one tool relative to the pelvis.
  • the acetabulum abutment end is a tripod having three abutment tabs adapted to be abutted in the planned complementary abutment.
  • the acetabulum abutment end is patient-specifically fabricated based on preoperative imaging of the patient.
  • the acetabulum abutment end has adjustable prongs connected to a remainder of the instrument by a lockable joints, for the acetabulum abutment end to be arranged for the planned complementary abutment based on preoperative imaging of the patient.
  • each said prong has a translational DOF joint and a rotational DOF joint.
  • a method for tracking an orientation of a pelvis in computer-assisted hip surgery comprising: obtaining an instrument having an inertial sensor unit, an acetabulum abutment end adapted to contact a rim of an acetabulum, and a rotation indicator; initializing an orientation of the instrument with the acetabulum abutment end against the rim of the acetabulum and with the rotation indicator aligned with a pelvic landmark; recording the orientation for at least the initial orientation; defining an acetabular plane representative of a pelvic coordinate system from the orientation; and producing orientation data relative to the pelvic coordinate system using inertial sensor units.
  • producing orientation data comprises producing anteversion and/or inclination angles of a tool with an inertial sensor unit relative to the pelvis.
  • recording the orientation comprises recording a plurality of orientation values each associated with a different contact location between the rim and the acetabulum abutment end.
  • initializing an orientation of the instrument with the acetabulum abutment end against the rim of the acetabulum and with the rotation indicator aligned with a pelvic landmark is based on preoperative imaging representative of a patient orientation.
  • FIG. 1 is a perspective view of an acetabulum rim digitizer device in accordance with the present disclosure, relative to a pelvis;
  • FIG. 2 is an enlarged perspective view of a tooling end of the acetabulum rim digitizer device of FIG. 1 ;
  • FIG. 3 is an enlarged elevation view of a tooling end of an acetabulum rim digitizer device with planar surface in accordance with another embodiment of the present disclosure
  • FIG. 4 is a perspective view of the acetabulum rim digitizer device of FIG. 3 ;
  • FIG. 5 is a perspective view of an acetabulum rim digitizer device with prongs in accordance with another embodiment of the present disclosure.
  • an acetabulum rim digitizer device or instrument is generally shown at 10 , relative to a pelvis P having an acetabulum A, the acetabulum having a rim R.
  • the device 10 and method related to the device 10 may be used to determine pelvic orientation data in various forms (e.g., pelvic tilt, anteversion/inclination of acetabulum, etc).
  • the device 10 may also be used to accurately navigate instruments used in hip arthroplasty or like procedures, including bone model and cadaver testing, such as an acetabular reamer, a cup impactor, an impactor guiding pin, using inertial sensors.
  • the device 10 has an elongated body 11 having a tooling end 12 and a handle end 14 . Although illustrated as having an axially offset portion, the body of the device 10 may also be fully straight or have any other appropriate shape.
  • the device 10 has a receptacle 16 for releasably receiving therein an inertial sensor unit 18 , in a known manner.
  • the inertial sensor unit 18 may be integral or embedded into the elongated body 11 .
  • the inertial sensor unit 18 may have a gyroscope set to track the orientation of the device 10 , by integrating the angular velocity data recorded by the sensor through a registration process.
  • the inertial sensor unit 18 may also comprise an accelerometer set used to calibrate an initial position of the device 10 , and to correct gyroscope drift when stable positions are recorded.
  • Other types of inertial sensors may be provided in the inertial sensor unit 18 to complement the data or as alternatives to the accelerometer and/or gyroscope, such as inclinometers, magnetometers, among other possible inertial sensors.
  • the inertial sensor unit 18 uses its inertial sensor readings to continually calculate the orientation and velocity of a body without the need for an external reference, i.e., no signal transmission from outside of the sensor assembly is necessary, the inertial sensor unit 18 is self-contained. This process is commonly known as dead reckoning and is documented and forms part of the common general knowledge. An initial orientation and velocity must be provided to the inertial sensor unit 18 , i.e., the X-Y-Z coordinate system of FIG. 1 , after which the orientation is tracked by integrating the angular rates of gyroscope readings at each time step.
  • Wth an accurate estimate of the orientation of the inertial sensor unit 18 with respect to the World frame of reference, gravitational effects can be removed and inertial forces acting on the accelerometers can be integrated to track changes in velocity and position. Since the inertial sensor unit 18 has no need for an external reference, it may be immune to environmental factors such as magnetic fields and operate under a wide range of conditions.
  • the inertial sensor unit 18 is part of a computer-assisted hip surgery system for navigating instruments, used to implement the method 10 , as will be detailed below.
  • the system comprises a computer-assisted surgery (CAS) processing unit 19 , that may be a stand-alone computer connected to the inertial sensor unit 18 , for instance by wireless communication. It is however pointed out that the CAS processing unit may be partially or entirely integrated into the inertial sensor unit 18 , also known as pod.
  • the inertial sensor unit 18 when incorporating the CAS processing unit, may thus be equipped with user interfaces to provide the navigation data, whether it be in the form of LED displays, screens, numerical displays, etc.
  • the computer-assisted surgery (CAS) processing unit 19 may have a coordinate system module 19 A and a tracking module 19 B, described in further detail hereinafter, and part of a surgical assistance procedure programmed into the CAS processing unit 19 .
  • a hemispherical base 20 is secured to the tooling end 12 .
  • the base 20 may be releasably connected to the body 11 (e.g., by screwing engagement) to enable the selection of a base 20 of appropriate dimension, based on the acetabulum being operated on.
  • the geometry of the base 20 may be known as quasi-hemispherical, frusto-spherical, etc. Indeed, as the base 20 is seated into the acetabulum during registration, it is expected that the base 20 is well seated in the acetabulum and does not shift position during the registration process.
  • pressure sensor(s) may be provided on or near the surface of the base 20 . The pressure sensor(s) provides signals that can be monitored to determine whether the base 20 is adequately applied against the surface of the acetabulum.
  • the device 10 may additional comprise a tab 22 , which is spaced apart from the base 20 and is designed to be seated on the acetabulum rim for each acquired points, as observed in FIGS. 1 and 2 .
  • the device 10 may further have a rotation indicator 24 , used to define a fixed rotation axis, not parallel to the rim plane normal, to build a full coordinate system for the acetabulum.
  • the rotation indicator 24 is a light source emitting a visible light beam, although other rotation indicators may be used such as a mechanical arm, a laser, a marking on the instrument, or any other visual indicator.
  • a pin guide 26 may also be provided as projecting laterally from the elongated body 11 , featuring a slot for guiding the insertion of a pin 28 in the pelvis, following the registration.
  • the rotation indicator 24 is in a known physical orientation in the coordinate system of the inertial sensor unit 18 .
  • the CAS processing unit is programmed with geometric data relating the body 11 (e.g., its axes) to the orientation of the components thereon, such as the base 20 , the tab 22 and the rotation indicator 24 .
  • This geometric data obtained pre-operatively, is used by the CAS processing unit (shown as 18 ) to perform the method and sequence described below.
  • the acetabulum rim digitizer device 10 may be used intra-operatively with the following intraoperative method:
  • the base 20 of the device 10 is seated into the acetabulum A.
  • the base 20 has been selected and installed to have a diameter complementary to that of the acetabulum A.
  • the rotation indicator 24 is used to give a predetermined orientation to the device 10 .
  • this rotation indicator 24 may be oriented to point, mark, touch a pre-operatively identifiable landmark.
  • the identifiable landmark may be lateral anterior-superior iliac spine (ASIS), the 12 o'clock feature of the acetabulum rim, the acetabulum notch, among other features.
  • Registration may be initiated, through the user interface of the CAS processing unit (e.g., button on the inertial sensor unit 18 is turned on).
  • the device 10 is manually rotated to position the tab 22 onto a different segment of the acetabulum rim R ( FIG. 2 ).
  • the inertial sensor unit 18 records the current orientation of the digitizer device 10 and provides feedback to the user, for confirmation.
  • steps 4-5 are repeated until a sufficient number of acetabulum rim positions are recorded by the inertial sensor unit 18 , for instance as indicated by the inertial sensor unit 18 or based on a predetermined number of measurements required.
  • the CAS processing unit (e.g., incorporating the inertial sensor unit 18 ) then records and provides data related to the acetabulum orientation or pelvic tilt, in any appropriate form (i.e., the pelvic coordinate system).
  • the CAS processing unit must be programmed in the following sequence:
  • the CAS processing unit sets the initial orientation of the acetabulum rim digitizer device 10 when the user initiates the initial recording. This initial position is recorded by assuming arbitrary yaw, roll and pitch are provided by the accelerometer set in the inertial sensor unit 18 . From this initial position, and knowing the orientation of the rotation indicator 24 relative to the rim digitizer device 10 , the rotation axis may be defined as: rotation!xtsInWorld
  • the gyroscope set in the inertial sensor unit 18 is used to track the orientation of the acetabulum rim digitizer device 10 .
  • the orientation of the device 10 is recorded at the various points of contact between the tab 22 and the acetabulum rim R.
  • the inclination data (roll & pitch) provided by the accelerometer set in the inertial sensor unit 18 may be used to correct drift in the gyroscope data (for instance, using Kalman or Complementary filters).
  • the collection of orientation data at various points provides the orientation of the rim digitizer device 10 in the World coordinate system: rimDigitizerInWorld
  • the position of the tab 22 may thus be calculated based on the orientation of the rim digitizer device 10 obtained.
  • Each of these positions is recorded in a coordinate system maintained by the CAS processing unit, and is representative of a point on the acetabulum rim R.
  • the origin of the coordinate system is located at the center of the hemispherical base 20 .
  • the rim points registered can be used to define an acetabular rim plane.
  • a plane is fitted through the rim points using an appropriate method such as Least Squares Fitting. This acetabular rim plane is therefore known: rimPlaneNormalInWorld
  • the pelvis coordinate system is created. Any standard definition may be used, for example the Lewinnek pelvic coordinate system.
  • the pre-operative planning data may be referenced to the acetabulum coordinate system, using the same landmarks and rotation features as used during the registration method.
  • the gravity axis of the World coordinate system may also be used to determine the pelvic tilt from the computed pelvisInWorld coordinate system.
  • the acetabular rim plane acquired with landmarks may be matched with a plane defined in pre-operative planning.
  • the CAS processing unit may instead match the rim landmarks with a surface defined in pre-operative planning. This surface can be a 3D surface representing the acetabulum rim contour.
  • the CAS processing unit can calculate using Least Squares Fitting the transformation on the acquired rim points which positions the points closest to the pre-planning contour of the acetabulum rim R.
  • the surface can also be a set of 2D contours, acquired using X-Rays images, combined with respective projective camera calibrations.
  • camera calibration could be performed as per F. CHERIET et al, Int. J. Patt. Recogn. Artif. Intell. 13, 761 (1999).
  • the CAS processing unit could compute by Least Squares Fitting the transformation on the acquired rim points for which a retro-projection of the points onto the X-Ray, as defined by the projective camera model, is closest to the defined 2D contour.
  • an ultrasound device may be fixed to the device 10 , for ultrasound readings to be obtained when the device 10 is seated into the acetabulum A.
  • the ultrasound readings may be used to create the rim surface, and thus replaces the tab 22 of the device 10 , alleviating the need for physical contact with the acetabulum rim R.
  • the pin 28 may be positioned to a desired orientation, using the orientation data.
  • the pin 28 may be driven into the pelvis so as to serve as an impactor guide.
  • the longitudinal axis of the pin 28 could thus be driven to an orientation parallel to a normal of the acetabulum rim plane.
  • the navigation of the device 10 for pin placement is done by providing anteversion and inclination values to the user.
  • a planar surface 30 may be used as an alternative to the tab 22 at the tooling end 12 of the elongated body 11 .
  • the base 20 may or may not be present, although the base 20 may provide some manipulation stability to aid in applying the planar surface 30 to the acetabular rim R.
  • the device 10 of FIGS. 3 and 4 could be used to acquire, in a single step, the planar surface as well as the rotation landmark.
  • the device 10 has a configuration that is planned to be in a unique complementary engagement with the rim of the acetabulum, for instance based on pre-operative imaging for instance by having patient specific contact surfaces being negatives of patient tissue for unique complementary engagement.
  • steps 4-6 of the method described above would not be necessary, provided suitable pre-planning is performed.
  • steps 2-4 of the sequence performed by the CAS processing unit are no longer required.
  • the inertial sensor unit 18 may not need a gyroscope set for the embodiment of FIGS. 3 and 4 .
  • three adjustable prongs 50 may be used as alternatives to the planar surface 30 , effectively forming a tripod.
  • the user is requested to position all of the prongs onto known landmarks (e.g., unique complementary engagement, based on pre-operative imaging).
  • the prongs 50 have abutment ends 51 , displaceable axially (e.g., along a longitudinal axis of the body 11 ) and in rotation (e.g., about an axis parallel to the longitudinal axis of the body 11 ).
  • the prongs 50 are each provided with a housing 52 enabling lockable translational DOF and rotational DOF.
  • the known landmarks against which the ends 51 of the prongs 50 are to be abutted are either defined by identifiable anatomical landmarks, or by for instance, constraining the rotation of the instrument by using a stopper in the acetabulum notch.
  • the pre-operative planning is be used to define the unique adjustments to the tripod to extend to the prongs 50 , and to identify the unique position of the device 10 when positioned into the acetabulum A with the predetermined abutment between the prongs 50 and the pelvis P.
  • a method used in combination with the device 10 of FIG. 5 would be as follows:
  • a coordinate system is created from these three landmarks, the relationship between this coordinate system and pelvis coordinate system would also be known from pre-operative planning.
  • the device 10 is then positioned in the manner shown in FIG. 5 onto the pre-identified landmarks, either visually or by using a mechanical feature to constrain rotation.
  • pelvisInWorld tripodInWorld ⁇ pelvisInTripod
  • the device 10 of any of the preceding figures is therefore used to provide a means for intra-operatively evaluating the tilt of the pelvis and obtain acetabular orientation data, whether the surgery is performed in supine or lateral decubitus.
  • the data provided by the CAS processing unit may be used, for instance, to reposition the pelvis onto the table, to guide the user in aligning a non-navigated instrument with a desired cup alignment or be used as an input for navigation of surgical instruments during total hip arthroplasty procedure.
  • cross-products of axes are discussed above, vectors representative of a direction of the axes may be used for the cross-products.
  • the CAS processor unit 19 may have a coordinate system module 19 A and a tracking module 19 B. Based on the embodiment the CAS processor unit 19 supports, the modules 19 A and 19 B may have different functions.
  • the coordinate system module 19 A sets a pelvic coordinate system from readings of the inertial sensor unit 18 when the at least one instrument 10 has the acetabulum abutment end received in the acetabulum.
  • the coordinate system module 19 A sets the pelvic coordinate system by obtaining a plurality of orientation values from the inertial sensor unit 18 when the rim abutment tab 22 is abutted against locations of the rim.
  • One of the orientation values has the indicator 24 aligned with a reference landmark.
  • the coordinate system module 19 A defines an acetabular plane representative of the pelvic coordinate system from the plurality of orientation values.
  • the tracking module 19 B then tracks an orientation of inertial sensor units relative to the pelvic coordinate system during movements thereof using the readings from the inertial sensor units.
  • the coordinate system module 19 A sets a pelvic coordinate system from readings of the inertial sensor unit 18 when the instrument 10 has the acetabulum abutment end abutted against a rim of the acetabulum in the planned complementary manner.
  • the coordinate system module 19 A sets the pelvic coordinate system by defining an acetabular plane representative of the pelvic coordinate system based on the planned complementary abutment.
  • the tracking module 19 B then tracks an orientation of inertial sensor units relative to the pelvic coordinate system during movements thereof using the readings from the inertial sensor units.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Robotics (AREA)
  • Medical Informatics (AREA)
  • Prostheses (AREA)
  • Surgical Instruments (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Transplantation (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Physical Education & Sports Medicine (AREA)

Abstract

A computer-assisted surgery (CAS) system for tracking an orientation of a pelvis comprises at least one instrument, the instrument having an acetabulum abutment end adapted to be received in an acetabulum, a rim abutment adapted to be abutted against a rim of the acetabulum, and an indicator representative of a physical orientation of the instrument. An inertial sensor unit is connected to the at least one instrument, the inertial sensor unit producing readings representative of its orientation. A computer-assisted surgery processor unit comprises a coordinate system module for setting a pelvic coordinate system from readings of the at least one inertial sensor unit when the at least one instrument has the acetabulum abutment end received in the acetabulum, the coordinate system module setting the pelvic coordinate system by obtaining a plurality of orientation values from the at least one inertial sensor unit when the rim abutment is abutted against locations of the rim, one of said orientation values having the indicator aligned with a reference landmark, the coordinate system module defining an acetabular plane representative of the pelvic coordinate system from the plurality of orientation values; and a tracking module for tracking an orientation of the at least one inertial sensor unit relative to the pelvic coordinate system during movements thereof using the readings from the inertial sensor unit. An interface outputs orientation data as a function of the pelvic coordinate system.

Description

FIELD OF THE APPLICATION
The present application relates to computer-assisted surgery using inertial sensors and more particularly to tools for determining a pelvic tilt for subsequent acetabular cup positioning procedures in hip surgery.
BACKGROUND OF THE ART
In hip arthroplasty, the acetabulum is reamed to subsequently receive therein an acetabular cup. The acetabular cup is an implant that is received in the reamed acetabulum and serves as a receptacle for a femoral head or femoral head implant. Accordingly, tools such as a reamer and a cup impactor are used in the procedure. One of the challenges in such procedures is to provide an adequate orientation to the acetabular cup. Indeed, an inaccurate orientation may result in a loss of movements, improper gait, and/or premature wear of implant components. For example, the acetabular cup is typically positioned in the reamed acetabulum by way of an impactor. The impactor has a stem at an end of which is the acetabular cup. The stem is handled by an operator that impacts the free end so as to drive the acetabular cup into the acetabulum. It is however important that the operator hold the stem of the impactor in a precise three-dimensional orientation relative to the pelvis so as to ensure the adequate orientation of the acetabular cup, in terms of inclination and anteversion.
For this purpose, computer-assisted surgery has been developed in order to help the operator in positioning and orienting the impactor to a desired orientation, notably by enabling the determination of the pelvic tilt, acetabular plane or like orientation data of the pelvis. Among the various tracking technologies used in computer-assisted surgery, optical navigation, C-arm validation and manual reference guides have been used. The optical navigation requires the use of a navigation system, which adds operative time. It also requires pinning a reference on the patient, which adds to the invasiveness of the procedure. It is also bound to line-of-sight constraints which hamper the normal surgical flow. C-arm validation requires the use of bulky equipment and the validation is not cost-effective. Moreover, it does not provide a quantitative assessment of the cup positioning once done, and is generally used post-operatively as opposed to intra-operatively. Finally, manual jigs, such as an A-frame, do not account for the position of the patient on the operative table. Accordingly, inertial sensors are used for their cost-effectiveness and the valuable information they provide.
SUMMARY OF THE APPLICATION
It is therefore an aim of the present invention to provide an acetabulum rim digitizer that addresses issues associated with the prior art.
Therefore, in accordance with a first embodiment of the present disclosure, there is provided a computer-assisted surgery (CAS) system for tracking an orientation of a pelvis comprising: at least one instrument, the instrument having an acetabulum abutment end adapted to be received in an acetabulum, a rim abutment adapted to be abutted against a rim of the acetabulum, and an indicator representative of a physical orientation of the instrument; at least one inertial sensor unit connected to the at least one instrument, the inertial sensor unit producing readings representative of its orientation; a computer-assisted surgery processor unit operating a surgical assistance procedure and comprising a coordinate system module for setting a pelvic coordinate system from readings of the at least one inertial sensor unit when the at least one instrument has the acetabulum abutment end received in the acetabulum, the coordinate system module setting the pelvic coordinate system by obtaining a plurality of orientation values from the at least one inertial sensor unit when the rim abutment is abutted against locations of the rim, one of said orientation values having the indicator aligned with a reference landmark, the coordinate system module defining an acetabular plane representative of the pelvic coordinate system from the plurality of orientation values; and a tracking module for tracking an orientation of the at least one inertial sensor unit relative to the pelvic coordinate system during movements thereof using the readings from the inertial sensor unit, and an interface for outputting orientation data as a function of the pelvic coordinate system.
Further in accordance with the first embodiment, the at least one instrument has a pin guide thereon adapted to position a pin in the acetabulum in a desired location relative to the pelvic coordinate system.
Still further in accordance with the first embodiment, the indicator is a light source emitting a light beam on the reference landmark.
Still further in accordance with the first embodiment, a first of the orientation values obtained has the indicator aligned with a reference landmark.
Still further in accordance with the first embodiment, said first of the orientation values is programmed from preoperative imaging as being representative of a patient orientation.
Still further in accordance with the first embodiment, the tracking module tracks at least one tool supporting one of the inertial sensor unit relative to the pelvic coordinate system.
Still further in accordance with the first embodiment, the tracking module calculates at least one of an anteversion and an inclination of the at least one tool relative to the pelvis.
In accordance with a second embodiment of the present disclosure, there is provided a computer-assisted surgery (CAS) system for tracking an orientation of a pelvis comprising: at least one instrument, the instrument having an acetabulum abutment end adapted to be abutted against a rim of the acetabulum in a planned complementary abutment; at least one inertial sensor unit connected to the at least one instrument, the inertial sensor unit producing readings representative of its orientation; a computer-assisted surgery processor unit operating a surgical assistance procedure and comprising a coordinate system module for setting a pelvic coordinate system from readings of the at least one inertial sensor unit when the at least one instrument has the acetabulum abutment end abutted against a rim of the acetabulum in a planned complementary manner, the coordinate system module setting the pelvic coordinate system by defining an acetabular plane representative of the pelvic coordinate system based on the planned complementary abutment; and a tracking module for tracking an orientation of the at least one inertial sensor unit relative to the pelvic coordinate system during movements thereof using the readings from the inertial sensor unit, and an interface for outputting orientation data as a function of the pelvic coordinate system.
Further in accordance with the second embodiment, the at least one instrument has a pin guide thereon adapted to position a pin in the acetabulum in a desired location relative to the pelvic coordinate system.
Still further in accordance with the second embodiment, the tracking module tracks at least one tool supporting one of the inertial sensor unit relative to the pelvic coordinate system.
Still further in accordance with the second embodiment, the tracking module calculates at least one of an anteversion and an inclination of the at least one tool relative to the pelvis.
Still further in accordance with the second embodiment, the acetabulum abutment end is a tripod having three abutment tabs adapted to be abutted in the planned complementary abutment.
Still further in accordance with the second embodiment, the acetabulum abutment end is patient-specifically fabricated based on preoperative imaging of the patient.
Still further in accordance with the second embodiment, the acetabulum abutment end has adjustable prongs connected to a remainder of the instrument by a lockable joints, for the acetabulum abutment end to be arranged for the planned complementary abutment based on preoperative imaging of the patient.
Still further in accordance with the second embodiment, each said prong has a translational DOF joint and a rotational DOF joint.
In accordance with a third embodiment of the present disclosure, there is provided a method for tracking an orientation of a pelvis in computer-assisted hip surgery comprising: obtaining an instrument having an inertial sensor unit, an acetabulum abutment end adapted to contact a rim of an acetabulum, and a rotation indicator; initializing an orientation of the instrument with the acetabulum abutment end against the rim of the acetabulum and with the rotation indicator aligned with a pelvic landmark; recording the orientation for at least the initial orientation; defining an acetabular plane representative of a pelvic coordinate system from the orientation; and producing orientation data relative to the pelvic coordinate system using inertial sensor units.
Further in accordance with the third embodiment, producing orientation data comprises producing anteversion and/or inclination angles of a tool with an inertial sensor unit relative to the pelvis.
Still further in accordance with the third embodiment, recording the orientation comprises recording a plurality of orientation values each associated with a different contact location between the rim and the acetabulum abutment end.
Still further in accordance with the third embodiment, guiding an installation of a pin whose orientation is known in the pelvic coordinate system.
Still further in accordance with the third embodiment, initializing an orientation of the instrument with the acetabulum abutment end against the rim of the acetabulum and with the rotation indicator aligned with a pelvic landmark is based on preoperative imaging representative of a patient orientation.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of an acetabulum rim digitizer device in accordance with the present disclosure, relative to a pelvis;
FIG. 2 is an enlarged perspective view of a tooling end of the acetabulum rim digitizer device of FIG. 1;
FIG. 3 is an enlarged elevation view of a tooling end of an acetabulum rim digitizer device with planar surface in accordance with another embodiment of the present disclosure;
FIG. 4 is a perspective view of the acetabulum rim digitizer device of FIG. 3; and
FIG. 5 is a perspective view of an acetabulum rim digitizer device with prongs in accordance with another embodiment of the present disclosure.
DESCRIPTION OF THE EXEMPLARY EMBODIMENTS
Referring to the drawings and more particularly to FIGS. 1 and 2, an acetabulum rim digitizer device or instrument is generally shown at 10, relative to a pelvis P having an acetabulum A, the acetabulum having a rim R. The device 10 and method related to the device 10 may be used to determine pelvic orientation data in various forms (e.g., pelvic tilt, anteversion/inclination of acetabulum, etc). The device 10 may also be used to accurately navigate instruments used in hip arthroplasty or like procedures, including bone model and cadaver testing, such as an acetabular reamer, a cup impactor, an impactor guiding pin, using inertial sensors.
The device 10 has an elongated body 11 having a tooling end 12 and a handle end 14. Although illustrated as having an axially offset portion, the body of the device 10 may also be fully straight or have any other appropriate shape.
The device 10 has a receptacle 16 for releasably receiving therein an inertial sensor unit 18, in a known manner. Alternatively, the inertial sensor unit 18 may be integral or embedded into the elongated body 11. The inertial sensor unit 18 may have a gyroscope set to track the orientation of the device 10, by integrating the angular velocity data recorded by the sensor through a registration process. The inertial sensor unit 18 may also comprise an accelerometer set used to calibrate an initial position of the device 10, and to correct gyroscope drift when stable positions are recorded. Other types of inertial sensors may be provided in the inertial sensor unit 18 to complement the data or as alternatives to the accelerometer and/or gyroscope, such as inclinometers, magnetometers, among other possible inertial sensors.
The inertial sensor unit 18 uses its inertial sensor readings to continually calculate the orientation and velocity of a body without the need for an external reference, i.e., no signal transmission from outside of the sensor assembly is necessary, the inertial sensor unit 18 is self-contained. This process is commonly known as dead reckoning and is documented and forms part of the common general knowledge. An initial orientation and velocity must be provided to the inertial sensor unit 18, i.e., the X-Y-Z coordinate system of FIG. 1, after which the orientation is tracked by integrating the angular rates of gyroscope readings at each time step. Wth an accurate estimate of the orientation of the inertial sensor unit 18 with respect to the World frame of reference, gravitational effects can be removed and inertial forces acting on the accelerometers can be integrated to track changes in velocity and position. Since the inertial sensor unit 18 has no need for an external reference, it may be immune to environmental factors such as magnetic fields and operate under a wide range of conditions.
The inertial sensor unit 18 is part of a computer-assisted hip surgery system for navigating instruments, used to implement the method 10, as will be detailed below. The system comprises a computer-assisted surgery (CAS) processing unit 19, that may be a stand-alone computer connected to the inertial sensor unit 18, for instance by wireless communication. It is however pointed out that the CAS processing unit may be partially or entirely integrated into the inertial sensor unit 18, also known as pod. The inertial sensor unit 18, when incorporating the CAS processing unit, may thus be equipped with user interfaces to provide the navigation data, whether it be in the form of LED displays, screens, numerical displays, etc. The computer-assisted surgery (CAS) processing unit 19 may have a coordinate system module 19A and a tracking module 19B, described in further detail hereinafter, and part of a surgical assistance procedure programmed into the CAS processing unit 19.
A hemispherical base 20 is secured to the tooling end 12. The base 20 may be releasably connected to the body 11 (e.g., by screwing engagement) to enable the selection of a base 20 of appropriate dimension, based on the acetabulum being operated on. The geometry of the base 20 may be known as quasi-hemispherical, frusto-spherical, etc. Indeed, as the base 20 is seated into the acetabulum during registration, it is expected that the base 20 is well seated in the acetabulum and does not shift position during the registration process. For this purpose, pressure sensor(s) may be provided on or near the surface of the base 20. The pressure sensor(s) provides signals that can be monitored to determine whether the base 20 is adequately applied against the surface of the acetabulum.
The device 10 may additional comprise a tab 22, which is spaced apart from the base 20 and is designed to be seated on the acetabulum rim for each acquired points, as observed in FIGS. 1 and 2. The device 10 may further have a rotation indicator 24, used to define a fixed rotation axis, not parallel to the rim plane normal, to build a full coordinate system for the acetabulum. In the illustrated embodiment, the rotation indicator 24 is a light source emitting a visible light beam, although other rotation indicators may be used such as a mechanical arm, a laser, a marking on the instrument, or any other visual indicator. A pin guide 26 may also be provided as projecting laterally from the elongated body 11, featuring a slot for guiding the insertion of a pin 28 in the pelvis, following the registration. The rotation indicator 24 is in a known physical orientation in the coordinate system of the inertial sensor unit 18.
The CAS processing unit is programmed with geometric data relating the body 11 (e.g., its axes) to the orientation of the components thereon, such as the base 20, the tab 22 and the rotation indicator 24. This geometric data, obtained pre-operatively, is used by the CAS processing unit (shown as 18) to perform the method and sequence described below.
Still referring to FIG. 1, the acetabulum rim digitizer device 10 may be used intra-operatively with the following intraoperative method:
1. Either prior to or following reaming of the acetabulum A, the base 20 of the device 10 is seated into the acetabulum A. The base 20 has been selected and installed to have a diameter complementary to that of the acetabulum A.
2. The rotation indicator 24 is used to give a predetermined orientation to the device 10. Depending on the embodiment, this rotation indicator 24 may be oriented to point, mark, touch a pre-operatively identifiable landmark. For example, in the case of the pelvis, the identifiable landmark may be lateral anterior-superior iliac spine (ASIS), the 12 o'clock feature of the acetabulum rim, the acetabulum notch, among other features.
3. Registration may be initiated, through the user interface of the CAS processing unit (e.g., button on the inertial sensor unit 18 is turned on).
4. Without unseating the base 20, for example as confirmed from the pressure sensor(s) in the base 20 or by having the operator applying suitable pressure on the device 10, the device 10 is manually rotated to position the tab 22 onto a different segment of the acetabulum rim R (FIG. 2).
5. Either through a user request or through a stability criterion, the inertial sensor unit 18 records the current orientation of the digitizer device 10 and provides feedback to the user, for confirmation.
6. The steps 4-5 are repeated until a sufficient number of acetabulum rim positions are recorded by the inertial sensor unit 18, for instance as indicated by the inertial sensor unit 18 or based on a predetermined number of measurements required.
7. The CAS processing unit (e.g., incorporating the inertial sensor unit 18) then records and provides data related to the acetabulum orientation or pelvic tilt, in any appropriate form (i.e., the pelvic coordinate system).
To perform the method described above, the CAS processing unit must be programmed in the following sequence:
1. The CAS processing unit sets the initial orientation of the acetabulum rim digitizer device 10 when the user initiates the initial recording. This initial position is recorded by assuming arbitrary yaw, roll and pitch are provided by the accelerometer set in the inertial sensor unit 18. From this initial position, and knowing the orientation of the rotation indicator 24 relative to the rim digitizer device 10, the rotation axis may be defined as:
rotation!xtsInWorld
2. After initialization of the registration, the gyroscope set in the inertial sensor unit 18 is used to track the orientation of the acetabulum rim digitizer device 10. The orientation of the device 10 is recorded at the various points of contact between the tab 22 and the acetabulum rim R. The inclination data (roll & pitch) provided by the accelerometer set in the inertial sensor unit 18 may be used to correct drift in the gyroscope data (for instance, using Kalman or Complementary filters). The collection of orientation data at various points provides the orientation of the rim digitizer device 10 in the World coordinate system:
rimDigitizerInWorld
3. At the various points of contact, with the stable orientation the position of the tab 22 may thus be calculated based on the orientation of the rim digitizer device 10 obtained. Each of these positions is recorded in a coordinate system maintained by the CAS processing unit, and is representative of a point on the acetabulum rim R. According to an embodiment, the origin of the coordinate system is located at the center of the hemispherical base 20. As such the position of each point on the rim can be identified as follow:
rimPointInWorld=rimDigitizerInWorld·tabInRimDigitizerCenter
4. When a sufficient number of points has been recorded, the rim points registered can be used to define an acetabular rim plane. According to an embodiment, a plane is fitted through the rim points using an appropriate method such as Least Squares Fitting. This acetabular rim plane is therefore known:
rimPlaneNormalInWorld
5. The acetabular rim plane is used to build an acetabulum coordinate system, as follows:
rimXAxis=rimPioneNormalInWorld
rimZAxis=rimTZxis·rotationAxisInWorld
rimTAxis=rimZAxis·rimXAxis
acetabulumInWorld=[rimXAxis rimYAxis rimZAxis]
6. Using pre-operative planning data (CT-Scan, two-dimensional X-Rays, 3-D modeling, etc . . . ), the pelvis coordinate system is created. Any standard definition may be used, for example the Lewinnek pelvic coordinate system. The pre-operative planning data may be referenced to the acetabulum coordinate system, using the same landmarks and rotation features as used during the registration method. Through data inferred from the pre-operative planning, the relationship between the acetabulum coordinate system and the pelvis coordinate system may be established. By inputting this relationship into the navigation system, the following relationship is obtained:
pelvisInWorld=acetabulumInWorld*pelvisInAcetabulum
7. The gravity axis of the World coordinate system may also be used to determine the pelvic tilt from the computed pelvisInWorld coordinate system.
In the embodiment described above, the acetabular rim plane acquired with landmarks may be matched with a plane defined in pre-operative planning. Alternatively, or additionally, the CAS processing unit may instead match the rim landmarks with a surface defined in pre-operative planning. This surface can be a 3D surface representing the acetabulum rim contour. The CAS processing unit can calculate using Least Squares Fitting the transformation on the acquired rim points which positions the points closest to the pre-planning contour of the acetabulum rim R.
The surface can also be a set of 2D contours, acquired using X-Rays images, combined with respective projective camera calibrations. In one embodiment, camera calibration could be performed as per F. CHERIET et al, Int. J. Patt. Recogn. Artif. Intell. 13, 761 (1999). DOI: 10.1142/S0218001499000434 TOWARDS THE SELF-CALIBRATION OF A MULTIVIEW RADIOGRAPHIC IMAGING SYSTEM FOR THE 3D RECONSTRUCTION OF THE HUMAN SPINE AND RIB CAGE. The CAS processing unit could compute by Least Squares Fitting the transformation on the acquired rim points for which a retro-projection of the points onto the X-Ray, as defined by the projective camera model, is closest to the defined 2D contour.
In another embodiment, an ultrasound device may be fixed to the device 10, for ultrasound readings to be obtained when the device 10 is seated into the acetabulum A. The ultrasound readings may be used to create the rim surface, and thus replaces the tab 22 of the device 10, alleviating the need for physical contact with the acetabulum rim R. As the base 20 is seated into the acetabulum A and the ultrasound device is held still relative to the acetabulum, it is possible to rebuild the acetabulum rim surface accurately in space when combining the ultrasound data with the orientation data provided from the inertial sensor unit 18. This information can be used to match the registered rim contour with the pre-operative planned contour.
Using the device 10, the pin 28 may be positioned to a desired orientation, using the orientation data. For example, the pin 28 may be driven into the pelvis so as to serve as an impactor guide. The longitudinal axis of the pin 28 could thus be driven to an orientation parallel to a normal of the acetabulum rim plane. In an embodiment, the navigation of the device 10 for pin placement is done by providing anteversion and inclination values to the user.
Referring to FIGS. 3 and 4, in yet another embodiment, a planar surface 30, or multiple coplanar features (three fixed tabs in FIG. 4), may be used as an alternative to the tab 22 at the tooling end 12 of the elongated body 11. The base 20 may or may not be present, although the base 20 may provide some manipulation stability to aid in applying the planar surface 30 to the acetabular rim R. The device 10 of FIGS. 3 and 4 could be used to acquire, in a single step, the planar surface as well as the rotation landmark. The device 10 has a configuration that is planned to be in a unique complementary engagement with the rim of the acetabulum, for instance based on pre-operative imaging for instance by having patient specific contact surfaces being negatives of patient tissue for unique complementary engagement. With the embodiment of FIGS. 3 and 4, steps 4-6 of the method described above would not be necessary, provided suitable pre-planning is performed. Similarly, steps 2-4 of the sequence performed by the CAS processing unit are no longer required. The inertial sensor unit 18 may not need a gyroscope set for the embodiment of FIGS. 3 and 4.
Referring to FIG. 5, in yet another embodiment, three adjustable prongs 50 may be used as alternatives to the planar surface 30, effectively forming a tripod. When used, the user is requested to position all of the prongs onto known landmarks (e.g., unique complementary engagement, based on pre-operative imaging). The prongs 50 have abutment ends 51, displaceable axially (e.g., along a longitudinal axis of the body 11) and in rotation (e.g., about an axis parallel to the longitudinal axis of the body 11). Hence, the prongs 50 are each provided with a housing 52 enabling lockable translational DOF and rotational DOF.
The known landmarks against which the ends 51 of the prongs 50 are to be abutted are either defined by identifiable anatomical landmarks, or by for instance, constraining the rotation of the instrument by using a stopper in the acetabulum notch.
For the embodiment of FIG. 5, the pre-operative planning is be used to define the unique adjustments to the tripod to extend to the prongs 50, and to identify the unique position of the device 10 when positioned into the acetabulum A with the predetermined abutment between the prongs 50 and the pelvis P.
As the position of the device 10 of FIG. 5 is unique with regards to the pelvis anatomy, a single reading of an inclinometer in the inertial sensor unit 18 would be sufficient to record the current pelvis tilt.
A method used in combination with the device 10 of FIG. 5 would be as follows:
1 During the pre-operative planning, identify three landmarks to be used.
2. A coordinate system is created from these three landmarks, the relationship between this coordinate system and pelvis coordinate system would also be known from pre-operative planning.
3. From the data computed from the pre-operative planning, the required adjustments on the tripod would be performed to set the position and/or orientation of each prong 50.
4. The device 10 is then positioned in the manner shown in FIG. 5 onto the pre-identified landmarks, either visually or by using a mechanical feature to constrain rotation.
5. When stable, the orientation data for the device 10 is recorded using the inertial sensor unit 18, and this data is used to calculate the pelvis tilt by using the known relationship between the device 10 and the pelvis P.
pelvisInWorld=tripodInWorld·pelvisInTripod
The device 10 of any of the preceding figures is therefore used to provide a means for intra-operatively evaluating the tilt of the pelvis and obtain acetabular orientation data, whether the surgery is performed in supine or lateral decubitus. The data provided by the CAS processing unit may be used, for instance, to reposition the pelvis onto the table, to guide the user in aligning a non-navigated instrument with a desired cup alignment or be used as an input for navigation of surgical instruments during total hip arthroplasty procedure. Although cross-products of axes are discussed above, vectors representative of a direction of the axes may be used for the cross-products.
As shown in FIG. 1, the CAS processor unit 19 may have a coordinate system module 19A and a tracking module 19B. Based on the embodiment the CAS processor unit 19 supports, the modules 19A and 19B may have different functions. For example, for the embodiment of FIGS. 1 and 2, the coordinate system module 19A sets a pelvic coordinate system from readings of the inertial sensor unit 18 when the at least one instrument 10 has the acetabulum abutment end received in the acetabulum. The coordinate system module 19A sets the pelvic coordinate system by obtaining a plurality of orientation values from the inertial sensor unit 18 when the rim abutment tab 22 is abutted against locations of the rim. One of the orientation values has the indicator 24 aligned with a reference landmark. Thus, the coordinate system module 19A defines an acetabular plane representative of the pelvic coordinate system from the plurality of orientation values. The tracking module 19B then tracks an orientation of inertial sensor units relative to the pelvic coordinate system during movements thereof using the readings from the inertial sensor units.
As another example, for the embodiment of FIGS. 3-5, the coordinate system module 19A sets a pelvic coordinate system from readings of the inertial sensor unit 18 when the instrument 10 has the acetabulum abutment end abutted against a rim of the acetabulum in the planned complementary manner. The coordinate system module 19A sets the pelvic coordinate system by defining an acetabular plane representative of the pelvic coordinate system based on the planned complementary abutment. The tracking module 19B then tracks an orientation of inertial sensor units relative to the pelvic coordinate system during movements thereof using the readings from the inertial sensor units.

Claims (13)

The invention claimed is:
1. A computer-assisted surgery (CAS) system for tracking an orientation of a pelvis comprising:
at least one instrument, the instrument having an acetabulum abutment end adapted to be received in an acetabulum, a rim abutment adapted to be abutted against a rim of the acetabulum, and an indicator representative of a physical orientation of the instrument;
at least one inertial sensor unit connected to the at least one instrument, the inertial sensor unit producing readings representative of its orientation;
a computer-assisted surgery processor unit operating a surgical assistance procedure and comprising
a coordinate system module for setting a pelvic coordinate system from readings of the at least one inertial sensor unit when the at least one instrument has the acetabulum abutment end received in the acetabulum, the coordinate system module setting the pelvic coordinate system by obtaining a plurality of orientation values from the at least one inertial sensor unit when the rim abutment is abutted against locations of the rim, one of said orientation values having the indicator aligned with a reference landmark, the coordinate system module defining an acetabular plane representative of the pelvic coordinate system from the plurality of orientation values; and
a tracking module for tracking an orientation of the at least one inertial sensor unit relative to the pelvic coordinate system during movements thereof using the readings from the inertial sensor unit, and
an interface for outputting orientation data as a function of the pelvic coordinate system.
2. The CAS system according to claim 1, wherein the at least one instrument has a pin guide thereon adapted to position a pin in the acetabulum in a desired location relative to the pelvic coordinate system.
3. The CAS system according to claim 1, wherein the indicator is a light source emitting a light beam on the reference landmark.
4. The CAS system according to claim 1, wherein a first of the orientation values obtained has the indicator aligned with the reference landmark.
5. The CAS system according to claim 4, wherein said first of the orientation values is programmed from preoperative imaging as being representative of a patient orientation.
6. The CAS system according to claim 1, wherein the tracking module tracks at least one tool supporting one of the at least one inertial sensor unit relative to the pelvic coordinate system.
7. The CAS system according to claim 6, wherein the tracking module calculates at least one of an anteversion and an inclination of the at least one tool relative to the pelvis.
8. A computer-assisted surgery (CAS) system for tracking an orientation of a pelvis comprising:
at least one instrument, the instrument having an acetabulum abutment end adapted to be abutted against a rim of an acetabulum in a planned complementary abutment, the acetabulum abutment end having a plurality of adjustable prongs connected to a remainder of the instrument by at least one lockable joint;
at least one inertial sensor unit connected to the at least one instrument, the inertial sensor unit producing readings representative of its orientation;
a computer-assisted surgery processor unit operating a surgical assistance procedure and comprising
a coordinate system module for setting a pelvic coordinate system from readings of the at least one inertial sensor unit when the at least one instrument has the acetabulum abutment end abutted against the rim of the acetabulum in the planned complementary manner in which the plurality of adjustable prongs are adjusted so as to be configured to abut the rim in said planned complementary manner, the coordinate system module setting the pelvic coordinate system by defining an acetabular plane representative of the pelvic coordinate system based on the planned complementary abutment; and
a tracking module for tracking an orientation of the at least one inertial sensor unit relative to the pelvic coordinate system during movements thereof using the readings from the inertial sensor unit, and
an interface for outputting orientation data as a function of the pelvic coordinate system.
9. The CAS system according to claim 8, wherein the at least one instrument has a pin guide thereon adapted to position a pin in the acetabulum in a desired location relative to the pelvic coordinate system.
10. The CAS system according to claim 8, wherein the tracking module tracks at least one tool supporting one of the inertial sensor unit relative to the pelvic coordinate system.
11. The CAS system according to claim 10, wherein the tracking module calculates at least one of an anteversion and an inclination of the at least one tool relative to the pelvis.
12. The CAS system according to claim 8, wherein each said prong of said plurality has a respective translational DOF joint and a respective rotational DOF joint.
13. The CAS system according to claim 8, wherein the prongs of said plurality are independently movable relative to one another.
US15/013,518 2015-02-02 2016-02-02 Acetabulum rim digitizer device and method Active 2037-06-04 US10405928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/013,518 US10405928B2 (en) 2015-02-02 2016-02-02 Acetabulum rim digitizer device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562110872P 2015-02-02 2015-02-02
US15/013,518 US10405928B2 (en) 2015-02-02 2016-02-02 Acetabulum rim digitizer device and method

Publications (2)

Publication Number Publication Date
US20160220315A1 US20160220315A1 (en) 2016-08-04
US10405928B2 true US10405928B2 (en) 2019-09-10

Family

ID=56552675

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/013,518 Active 2037-06-04 US10405928B2 (en) 2015-02-02 2016-02-02 Acetabulum rim digitizer device and method

Country Status (5)

Country Link
US (1) US10405928B2 (en)
EP (1) EP3253322B1 (en)
CN (1) CN107205783B (en)
CA (1) CA2974837A1 (en)
WO (1) WO2016123703A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180280037A1 (en) * 2017-03-31 2018-10-04 Tornier Positioning system for a bone resecting instrumentation and positioning kit

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7559931B2 (en) 2003-06-09 2009-07-14 OrthAlign, Inc. Surgical orientation system and method
EP2344078B1 (en) 2008-07-24 2018-04-18 OrthAlign, Inc. Systems for joint replacement
WO2010030809A1 (en) 2008-09-10 2010-03-18 Orthalign, Inc Hip surgery systems and methods
US10869771B2 (en) 2009-07-24 2020-12-22 OrthAlign, Inc. Systems and methods for joint replacement
US9649160B2 (en) 2012-08-14 2017-05-16 OrthAlign, Inc. Hip replacement navigation system and method
US10363149B2 (en) * 2015-02-20 2019-07-30 OrthAlign, Inc. Hip replacement navigation system and method
US11241248B2 (en) 2016-01-11 2022-02-08 Kambiz Behzadi Bone preparation apparatus and method
US11751807B2 (en) 2016-01-11 2023-09-12 Kambiz Behzadi Invasive sense measurement in prosthesis installation and bone preparation
US11298102B2 (en) 2016-01-11 2022-04-12 Kambiz Behzadi Quantitative assessment of prosthesis press-fit fixation
US11399946B2 (en) 2016-01-11 2022-08-02 Kambiz Behzadi Prosthesis installation and assembly
US11331069B2 (en) 2016-01-11 2022-05-17 Kambiz Behzadi Invasive sense measurement in prosthesis installation
US10849766B2 (en) 2016-01-11 2020-12-01 Kambiz Behzadi Implant evaluation in prosthesis installation
US11534314B2 (en) 2016-01-11 2022-12-27 Kambiz Behzadi Quantitative assessment of prosthesis press-fit fixation
US11234840B2 (en) 2016-01-11 2022-02-01 Kambiz Behzadi Bone preparation apparatus and method
US10426540B2 (en) 2016-01-11 2019-10-01 Kambiz Behzadi Prosthesis installation
US10251663B2 (en) 2016-01-11 2019-04-09 Kambiz Behzadi Bone preparation apparatus and method
US20170196707A1 (en) * 2016-01-11 2017-07-13 Kambiz Behzadi Surgical impaction centering apparatus and method
US11375975B2 (en) 2016-01-11 2022-07-05 Kambiz Behzadi Quantitative assessment of implant installation
US10463505B2 (en) 2016-01-11 2019-11-05 Kambiz Behzadi Bone preparation apparatus and method
US11026809B2 (en) 2016-01-11 2021-06-08 Kambiz Behzadi Prosthesis installation and assembly
US11291426B2 (en) 2016-01-11 2022-04-05 Kambiz Behzadi Quantitative assessment of implant bone preparation
US10441244B2 (en) 2016-01-11 2019-10-15 Kambiz Behzadi Invasive sense measurement in prosthesis installation
US11109802B2 (en) 2016-01-11 2021-09-07 Kambiz Behzadi Invasive sense measurement in prosthesis installation and bone preparation
US11458028B2 (en) 2016-01-11 2022-10-04 Kambiz Behzadi Prosthesis installation and assembly
US10786323B2 (en) * 2016-03-23 2020-09-29 Nanyang Technological University Handheld surgical instrument, surgical tool system, methods of forming and operating the same
EP3595550A4 (en) 2017-03-14 2020-12-30 OrthAlign, Inc. Soft tissue measurement&balancing systems and methods
JP2020511231A (en) 2017-03-14 2020-04-16 オースアライン・インコーポレイテッド Hip replacement navigation system and method
EP3621545B1 (en) 2017-05-10 2024-02-21 MAKO Surgical Corp. Robotic spine surgery system
US11033341B2 (en) 2017-05-10 2021-06-15 Mako Surgical Corp. Robotic spine surgery system and methods
KR20200015803A (en) * 2017-07-03 2020-02-12 스파인 얼라인, 엘엘씨 Alignment evaluation system and method during surgery
WO2019147948A1 (en) 2018-01-26 2019-08-01 Mako Surgical Corp. End effectors, systems, and methods for impacting prosthetics guided by surgical robots
CN108378961A (en) * 2018-04-19 2018-08-10 臧顺利 A kind of guider of direct insertion hip replacement
US11969336B2 (en) 2018-10-08 2024-04-30 Kambiz Behzadi Connective tissue grafting
US11103367B2 (en) 2019-02-15 2021-08-31 Encore Medical, L.P. Acetabular liner
CN112155734B (en) * 2020-09-29 2022-01-28 苏州微创畅行机器人有限公司 Readable storage medium, bone modeling and registering system and bone surgery system
CN115300041B (en) * 2022-08-10 2023-03-14 骨圣元化机器人(深圳)有限公司 Acetabular osteotomy orthopedic surgery positioning tool, system and computer equipment

Citations (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4841975A (en) 1987-04-15 1989-06-27 Cemax, Inc. Preoperative planning of bone cuts and joint replacement using radiant energy scan imaging
US5098383A (en) 1990-02-08 1992-03-24 Artifax Ltd. Device for orienting appliances, prostheses, and instrumentation in medical procedures and methods of making same
US5490854A (en) 1992-02-20 1996-02-13 Synvasive Technology, Inc. Surgical cutting block and method of use
US5768134A (en) 1994-04-19 1998-06-16 Materialise, Naamloze Vennootschap Method for making a perfected medical model on the basis of digital image information of a part of the body
US5871018A (en) 1995-12-26 1999-02-16 Delp; Scott L. Computer-assisted surgical method
US5916219A (en) 1997-02-10 1999-06-29 Matsuno; Shigeo Tibial plateau resection guide
US20030055502A1 (en) 2001-05-25 2003-03-20 Philipp Lang Methods and compositions for articular resurfacing
US20030216669A1 (en) 2001-05-25 2003-11-20 Imaging Therapeutics, Inc. Methods and compositions for articular repair
CA2501041A1 (en) 2002-10-07 2004-04-22 Conformis, Inc. Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
CA2505371A1 (en) 2002-11-07 2004-05-27 Conformis, Inc. Methods for determining meniscal size and shape and for devising treatment
CA2506849A1 (en) 2002-12-04 2004-06-17 Konstantinos Tsougarakis Fusion of multiple imaging planes for isotropic imaging in mri and quantitative image analysis using isotropic or near-isotropic imaging
US20040204760A1 (en) 2001-05-25 2004-10-14 Imaging Therapeutics, Inc. Patient selectable knee arthroplasty devices
US20040236424A1 (en) 2001-05-25 2004-11-25 Imaging Therapeutics, Inc. Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty
US20050021044A1 (en) 2003-06-09 2005-01-27 Vitruvian Orthopaedics, Llc Surgical orientation device and method
US20050234461A1 (en) 2001-05-25 2005-10-20 Burdulis Albert G Jr Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
US20050267584A1 (en) 2001-05-25 2005-12-01 Burdulis Albert G Jr Patient selectable knee joint arthroplasty devices
CN1728976A (en) 2002-10-07 2006-02-01 康复米斯公司 Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
US20060111722A1 (en) 2004-11-19 2006-05-25 Hacene Bouadi Surgical cutting tool
AU2006297137A1 (en) 2005-09-30 2007-04-12 Conformis Inc. Joint arthroplasty devices
US20070083266A1 (en) 2001-05-25 2007-04-12 Vertegen, Inc. Devices and methods for treating facet joints, uncovertebral joints, costovertebral joints and other joints
WO2007062103A1 (en) 2005-11-23 2007-05-31 Conformis, Inc. Implant grasper
AU2007202573A1 (en) 2001-05-25 2007-06-28 Conformis, Inc. Methods and compositions for articular resurfacing
US20070157783A1 (en) 2006-01-06 2007-07-12 Tung-Lung Chiang Paper cutter
CA2641241A1 (en) 2006-02-06 2007-08-16 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
AU2007226924A1 (en) 2006-03-21 2007-09-27 Conformis, Inc. Interpositional joint implant
US20070233141A1 (en) 2006-02-15 2007-10-04 Ilwhan Park Arthroplasty devices and related methods
US20070226986A1 (en) 2006-02-15 2007-10-04 Ilwhan Park Arthroplasty devices and related methods
US20070233269A1 (en) 2001-05-25 2007-10-04 Conformis, Inc. Interpositional Joint Implant
US20080114370A1 (en) 2006-06-09 2008-05-15 Biomet Manufacturing Corp. Patient-Specific Alignment Guide For Multiple Incisions
US20080147072A1 (en) 2006-12-18 2008-06-19 Ilwhan Park Arthroplasty devices and related methods
US20080161815A1 (en) 2006-02-27 2008-07-03 Biomet Manufacturing Corp. Patient Specific Knee Alignment Guide And Associated Method
US20080195216A1 (en) 2001-05-25 2008-08-14 Conformis, Inc. Implant Device and Method for Manufacture
WO2008112996A1 (en) 2007-03-14 2008-09-18 Conformis, Inc. Surgical tools for arthroplasty
US20080243127A1 (en) 2001-05-25 2008-10-02 Conformis, Inc. Surgical Tools for Arthroplasty
US20080255584A1 (en) 2005-04-09 2008-10-16 David Beverland Acetabular Cup Positioning
US20080275452A1 (en) 2001-05-25 2008-11-06 Conformis, Inc. Surgical Cutting Guide
US20080287954A1 (en) 2007-05-14 2008-11-20 Queen's University At Kingston Patient-specific surgical guidance tool and method of use
US20090024131A1 (en) 2006-02-27 2009-01-22 Biomet Manufacturing Corp. Patient specific guides
US7510557B1 (en) 2000-01-14 2009-03-31 Bonutti Research Inc. Cutting guide
US20090088763A1 (en) 2007-09-30 2009-04-02 Aram Luke J Customized Patient-Specific Bone Cutting Block with External Reference
US20090110498A1 (en) 2007-10-25 2009-04-30 Ilwhan Park Arthroplasty systems and devices, and related methods
US20090131941A1 (en) 2002-05-15 2009-05-21 Ilwhan Park Total joint arthroplasty system
US20090138020A1 (en) 2007-11-27 2009-05-28 Otismed Corporation Generating mri images usable for the creation of 3d bone models employed to make customized arthroplasty jigs
US20090157083A1 (en) 2007-12-18 2009-06-18 Ilwhan Park System and method for manufacturing arthroplasty jigs
US20090222103A1 (en) 2001-05-25 2009-09-03 Conformis, Inc. Articular Implants Providing Lower Adjacent Cartilage Wear
US20090222016A1 (en) 2008-02-29 2009-09-03 Otismed Corporation Total hip replacement surgical guide tool
US20090222014A1 (en) 2001-05-25 2009-09-03 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
US20090226068A1 (en) 2008-03-05 2009-09-10 Conformis, Inc. Implants for Altering Wear Patterns of Articular Surfaces
US20090228113A1 (en) 2008-03-05 2009-09-10 Comformis, Inc. Edge-Matched Articular Implant
WO2009111639A1 (en) 2008-03-05 2009-09-11 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US20090254093A1 (en) 2006-06-09 2009-10-08 Biomet Manufacturing Corp. Patient-Specific Alignment Guide
US20090270868A1 (en) 2008-04-29 2009-10-29 Otismed Corporation Generation of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices
US20090276045A1 (en) 2001-05-25 2009-11-05 Conformis, Inc. Devices and Methods for Treatment of Facet and Other Joints
US20100023015A1 (en) 2008-07-23 2010-01-28 Otismed Corporation System and method for manufacturing arthroplasty jigs having improved mating accuracy
US20100042105A1 (en) 2007-12-18 2010-02-18 Otismed Corporation Arthroplasty system and related methods
US20100049195A1 (en) 2007-12-18 2010-02-25 Otismed Corporation Arthroplasty system and related methods
US20100082035A1 (en) 2008-09-30 2010-04-01 Ryan Keefer Customized patient-specific acetabular orthopaedic surgical instrument and method of use and fabrication
US20100087829A1 (en) 2006-02-27 2010-04-08 Biomet Manufacturing Corp. Patient Specific Alignment Guide With Cutting Surface and Laser Indicator
US20100152782A1 (en) 2006-02-27 2010-06-17 Biomet Manufactring Corp. Patient Specific High Tibia Osteotomy
US20100152741A1 (en) 2008-12-16 2010-06-17 Otismed Corporation Unicompartmental customized arthroplasty cutting jigs and methods of making the same
US20100185202A1 (en) 2009-01-16 2010-07-22 Lester Mark B Customized patient-specific patella resectioning guide
US20100191244A1 (en) 2007-03-23 2010-07-29 Derrick White Surgical templates
US20100217270A1 (en) 2009-02-25 2010-08-26 Conformis, Inc. Integrated Production of Patient-Specific Implants and Instrumentation
US20100212138A1 (en) 2009-02-24 2010-08-26 Wright Medical Technology, Inc. Method For Forming A Patient Specific Surgical Guide Mount
WO2010099231A2 (en) 2009-02-24 2010-09-02 Conformis, Inc. Automated systems for manufacturing patient-specific orthopedic implants and instrumentation
WO2010099353A1 (en) 2009-02-25 2010-09-02 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US20100249796A1 (en) 2009-03-24 2010-09-30 Biomet Manufacturing Corp. Method and Apparatus for Aligning and Securing an Implant Relative to a Patient
US20100256479A1 (en) 2007-12-18 2010-10-07 Otismed Corporation Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
US20100262150A1 (en) 2009-04-13 2010-10-14 George John Lian Custom radiographically designed cutting guides and instruments for use in total ankle replacement surgery
WO2010121147A1 (en) 2009-04-16 2010-10-21 Conformis, Inc. Patient-specific joint arthroplasty devices for ligament repair
US20100286700A1 (en) 2009-05-07 2010-11-11 Smith & Nephew, Inc. Patient specific alignment guide for a proximal femur
CA2765499A1 (en) 2009-06-24 2010-12-29 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US20110015637A1 (en) 2009-07-17 2011-01-20 Materialise N.V. Surgical guiding tool, methods for manufacture and uses thereof
US20110015639A1 (en) 2006-02-27 2011-01-20 Biomet Manufacturing Corp. Femoral Acetabular Impingement Guide
US20110015636A1 (en) 2006-02-27 2011-01-20 Biomet Manufacturing Corp. Patient-Specific Elbow Guides and Associated Methods
US20110029091A1 (en) 2009-02-25 2011-02-03 Conformis, Inc. Patient-Adapted and Improved Orthopedic Implants, Designs, and Related Tools
US20110040168A1 (en) 2002-09-16 2011-02-17 Conformis Imatx, Inc. System and Method for Predicting Future Fractures
US20110054478A1 (en) 2006-02-27 2011-03-03 Biomet Manufacturing Corp. Patient-Specific Shoulder Guide
CA2771573A1 (en) 2009-08-26 2011-03-10 Conformis, Inc. Patient-specific orthopedic implants and models
US20110060341A1 (en) 2009-09-10 2011-03-10 Laurent Angibaud Alignment guides for use in computer assisted orthopedic surgery to prepare a bone element for an implant
US20110071533A1 (en) 2006-02-27 2011-03-24 Biomet Manufacturing Corp. Patient-Specific Orthopedic Instruments
US20110071802A1 (en) 2009-02-25 2011-03-24 Ray Bojarski Patient-adapted and improved articular implants, designs and related guide tools
US20110071645A1 (en) 2009-02-25 2011-03-24 Ray Bojarski Patient-adapted and improved articular implants, designs and related guide tools
US20110087332A1 (en) 2001-05-25 2011-04-14 Ray Bojarski Patient-adapted and improved articular implants, designs and related guide tools
US20110092977A1 (en) 2008-03-03 2011-04-21 Smith & Nephew, Inc. Low profile patient specific cutting blocks for a knee joint
US20110093108A1 (en) 2008-02-27 2011-04-21 Depuy International Ltd Customised surgical apparatus
US20110106093A1 (en) 2009-10-29 2011-05-05 Zimmer, Inc. Patient-specific mill guide
WO2011056995A2 (en) 2009-11-04 2011-05-12 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US20110144760A1 (en) 2004-01-05 2011-06-16 Conformis, Inc. Patient-Specific and Patient-Engineered Orthopedic Implants
WO2011075697A2 (en) 2009-12-18 2011-06-23 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US7967868B2 (en) 2007-04-17 2011-06-28 Biomet Manufacturing Corp. Patient-modified implant and associated method
US20110160867A1 (en) 2006-02-27 2011-06-30 Biomet Manufacturing Corp. Patient-specific tools and implants
US20110160736A1 (en) 2006-02-27 2011-06-30 Biomet Manufacturing Corp. Patient-specific femoral guide
US20110166578A1 (en) 2006-02-27 2011-07-07 Biomet Manufacturing Corp. Alignment guides with patient-specific anchoring elements
US20110172672A1 (en) 2006-02-27 2011-07-14 Biomet Manufacturing Corp. Instrument with transparent portion for use with patient-specific alignment guide
AU2011203237A1 (en) 2003-11-25 2011-07-21 Conformis, Inc. Patient selectable knee joint arthroplasty devices
US20110184419A1 (en) 2006-02-27 2011-07-28 Biomet Manufacturing Corp. Patient-specific acetabular guides and associated instruments
US20110196377A1 (en) 2009-08-13 2011-08-11 Zimmer, Inc. Virtual implant placement in the or
US20110213376A1 (en) 2010-02-26 2011-09-01 Biomet Sports Medicine, Llc Patient-Specific Osteotomy Devices and Methods
US20110218545A1 (en) 2010-03-04 2011-09-08 Biomet Manufacturing Corp. Patient-specific computed tomography guides
US20110214279A1 (en) 2007-12-18 2011-09-08 Otismed Corporation Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
US20110224674A1 (en) 2006-02-27 2011-09-15 Biomet Manufacturing Corp. Patient-specific acetabular alignment guides
US20110245835A1 (en) 2007-06-25 2011-10-06 Depuy Orthopadie Gmbh Surgical Instrument
US20110266265A1 (en) 2007-02-14 2011-11-03 Conformis, Inc. Implant Device and Method for Manufacture
US20110295378A1 (en) 2001-05-25 2011-12-01 Conformis, Inc. Patient-Adapted and Improved Orthopedic Implants, Designs and Related Tools
US8070752B2 (en) 2006-02-27 2011-12-06 Biomet Manufacturing Corp. Patient specific alignment guide and inter-operative adjustment
US20110313424A1 (en) 2010-06-18 2011-12-22 Howmedica Osteonics Corp. Patient-specific total hip arthroplasty
US8092465B2 (en) 2006-06-09 2012-01-10 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US20120010711A1 (en) 2010-06-11 2012-01-12 Antonyshyn Oleh Method of forming patient-specific implant
US20120041445A1 (en) 2010-08-12 2012-02-16 Roose Jeffrey R Customized patient-specific acetabular orthopaedic surgical instrument and method of use and fabrication
US20120041446A1 (en) 2006-02-06 2012-02-16 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools Incorporating Anatomical Relief
US8133234B2 (en) 2006-02-27 2012-03-13 Biomet Manufacturing Corp. Patient specific acetabular guide and method
US20120078254A1 (en) 2010-09-29 2012-03-29 Depuy Products, Inc. Customized patient-specific computer controlled cutting system and method
US20120078259A1 (en) 2010-09-29 2012-03-29 Biomet Manufacturing Corp. Patient-specific guide for partial acetabular socket replacement
US20120078258A1 (en) 2010-03-31 2012-03-29 Darrick Lo Shoulder arthroplasty instrumentation
US8160345B2 (en) 2008-04-30 2012-04-17 Otismed Corporation System and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US8175683B2 (en) 2003-12-30 2012-05-08 Depuy Products, Inc. System and method of designing and manufacturing customized instrumentation for accurate implantation of prosthesis by utilizing computed tomography data
US20120116203A1 (en) 2010-11-10 2012-05-10 Wilfried Vancraen Additive manufacturing flow for the production of patient-specific devices comprising unique patient-specific identifiers
US20120116562A1 (en) 2010-06-11 2012-05-10 Smith & Nephew, Inc. Systems and methods Utilizing Patient-Matched Instruments
US20120123423A1 (en) 2010-11-11 2012-05-17 Zimmer, Inc. Patient-specific instruments for total hip arthroplasty
US20120130687A1 (en) 2008-09-19 2012-05-24 Smith & Nephew, Inc. Tuning Implants For Increased Performance
US20120130382A1 (en) 2010-09-07 2012-05-24 The Cleveland Clinic Foundation Positioning apparatus and method for a prosthetic implant
US20120136402A1 (en) 2010-11-23 2012-05-31 Burroughs Brian R System and method for orienting orthopedic implants
US20120141034A1 (en) 2010-10-29 2012-06-07 The Cleveland Clinic Foundation System of preoperative planning and provision of patient-specific surgical aids
US20120172884A1 (en) 2009-06-17 2012-07-05 University Of Bern Methods and devices for patient-specific acetabular component alignment in total hip arthroplasty
US20120209394A1 (en) 1997-01-08 2012-08-16 Conformis, Inc. Patient-Adapted and Improved Articular Implants, Designs and Related Guide Tools
US20120209276A1 (en) 2009-08-13 2012-08-16 Biomet Manufacturing Corp. Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US20120226283A1 (en) 2006-02-27 2012-09-06 Biomet Manufacturing Corp. Patient-specific acetabular guides and associated instruments
US20120239045A1 (en) 2011-03-17 2012-09-20 Zimmer, Inc. Patient-specific instruments for total ankle arthroplasty
US20120245647A1 (en) 2009-11-17 2012-09-27 Manuela Kunz Patient-Specific Guide for Acetabular Cup Placement
US20120265208A1 (en) 2011-04-15 2012-10-18 Biomet Manufacturing Corp. Patient-specific numerically controlled instrument
US20120271366A1 (en) 2011-04-19 2012-10-25 Biomet Manufacturing Corp. Patient-specific fracture fixation instrumentation and method
US20120277751A1 (en) 2011-04-29 2012-11-01 Biomet Manufacturing Corp. Patient-specific convertible guides
US20120276509A1 (en) 2010-10-29 2012-11-01 The Cleveland Clinic Foundation System of preoperative planning and provision of patient-specific surgical aids
WO2013020026A1 (en) 2011-08-03 2013-02-07 Conformis, Inc. Automated design, selection, manufacturing and implantation of patient-adapted and improved articular implants, designs and related guide tools
WO2013025814A1 (en) 2011-08-15 2013-02-21 Conformis, Inc. Revision systems, tools and methods for revising joint arthroplasty implants
WO2013056036A1 (en) 2011-10-14 2013-04-18 Conformis, Inc. Methods and systems for identification, assessment, modeling, and repair of anatomical disparities in joint replacement
US20130184713A1 (en) 2011-12-23 2013-07-18 Conformis, Inc. Anatomical Alignment Systems and Methods
WO2013119865A1 (en) 2012-02-07 2013-08-15 Conformis Inc Joint arthroplasty devices, systems, and methods
WO2013119790A1 (en) 2012-02-07 2013-08-15 Conformis, Inc. Tibial implant devices, systems, and methods
US20130211531A1 (en) 2001-05-25 2013-08-15 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US20130211410A1 (en) 2012-02-07 2013-08-15 Conformis, Inc. Patella Resection Instrument Guide Having Optional Patient-Specific Features
WO2013131066A1 (en) 2012-03-02 2013-09-06 Conformis, Inc. Patient-adapted posterior stabilized knee implants, designs and related methods and tools
WO2013152341A1 (en) 2012-04-06 2013-10-10 Conformis, Inc. Advanced methods, techniques, devices, and systems for cruciate retaining knee implants
WO2013155501A1 (en) 2012-04-13 2013-10-17 Conformis, Inc. Patient adapted joint arthroplasty devices, surgical tools and methods of use
WO2013155500A1 (en) 2012-04-13 2013-10-17 Conformis, Inc. Devices and methods for additive manufacturing of implant components
US20130289570A1 (en) 2012-04-27 2013-10-31 Conformis, Inc. Tibial Template and Punch System, Tools and Methods for Preparing the Tibia
US20130296874A1 (en) 2012-04-18 2013-11-07 Conformis, Inc. Tibial guides, tools, and techniques for resecting the tibial plateau
US20130297031A1 (en) 2012-05-02 2013-11-07 Conformis, Inc. Patient specific instruments and related methods for joint replacement
US20130331850A1 (en) 2012-06-11 2013-12-12 Conformis, Inc. Devices, techniques and methods for assessing joint spacing, balancing soft tissues and obtaining desired kinematics for joint implant components
WO2014008444A1 (en) 2012-07-03 2014-01-09 Conformis, Inc. Devices, systems, and methods for impacting joint implant components
AU2014200073A1 (en) 2006-02-06 2014-01-23 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US20140031722A1 (en) * 2012-07-30 2014-01-30 Orthosoft, Inc. Pelvic digitizer device with inertial sensor unit and method
US20140052149A1 (en) 2012-08-14 2014-02-20 OrthAlign, Inc. Hip replacement navigation system and method
US20140052137A1 (en) * 2010-08-16 2014-02-20 Smith & Nephew. Inc. Patient-matched acetabular alignment tool
WO2014035991A1 (en) 2012-08-27 2014-03-06 Conformis, Inc. Methods, devices and techniques for improved placement and fixation of shoulder implant components
WO2014047514A1 (en) 2012-09-21 2014-03-27 Conformis, Inc. Methods and systems for optimizing design and manufacture of implant components using solid freeform fabrication
US20140364858A1 (en) 2013-06-11 2014-12-11 Orthosoft, Inc. Acetabular cup prosthesis positioning instrument and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8961526B2 (en) * 2010-11-23 2015-02-24 University Of Massachusetts System and method for orienting orthopedic implants
US9224439B2 (en) * 2012-06-29 2015-12-29 Freescale Semiconductor, Inc. Memory with word line access control

Patent Citations (483)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4841975A (en) 1987-04-15 1989-06-27 Cemax, Inc. Preoperative planning of bone cuts and joint replacement using radiant energy scan imaging
US5098383A (en) 1990-02-08 1992-03-24 Artifax Ltd. Device for orienting appliances, prostheses, and instrumentation in medical procedures and methods of making same
US5490854A (en) 1992-02-20 1996-02-13 Synvasive Technology, Inc. Surgical cutting block and method of use
US5768134A (en) 1994-04-19 1998-06-16 Materialise, Naamloze Vennootschap Method for making a perfected medical model on the basis of digital image information of a part of the body
US5871018A (en) 1995-12-26 1999-02-16 Delp; Scott L. Computer-assisted surgical method
US20120209394A1 (en) 1997-01-08 2012-08-16 Conformis, Inc. Patient-Adapted and Improved Articular Implants, Designs and Related Guide Tools
US5916219A (en) 1997-02-10 1999-06-29 Matsuno; Shigeo Tibial plateau resection guide
US7806896B1 (en) 2000-01-14 2010-10-05 Marctec, Llc Knee arthroplasty method
US7806897B1 (en) 2000-01-14 2010-10-05 Marctec, Llc Knee arthroplasty and preservation of the quadriceps mechanism
US20100228257A1 (en) 2000-01-14 2010-09-09 Bonutti Peter M Joint replacement component
US20120215226A1 (en) 2000-01-14 2012-08-23 Bonutti Peter M Methods for using a patient specific alignment device
US7510557B1 (en) 2000-01-14 2009-03-31 Bonutti Research Inc. Cutting guide
US20080275452A1 (en) 2001-05-25 2008-11-06 Conformis, Inc. Surgical Cutting Guide
US20080281426A1 (en) 2001-05-25 2008-11-13 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
US20100329530A1 (en) 2001-05-25 2010-12-30 Conformis, Inc. Patient Selectable Knee Joint Arthroplasty Devices
US20110066193A1 (en) 2001-05-25 2011-03-17 Conformis, Inc. Surgical Tools for Arthroplasty
US20040204760A1 (en) 2001-05-25 2004-10-14 Imaging Therapeutics, Inc. Patient selectable knee arthroplasty devices
US20100305574A1 (en) 2001-05-25 2010-12-02 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
US20100303324A1 (en) 2001-05-25 2010-12-02 Conformis, Inc. Methods and Compositions for Articular Repair
US20100305708A1 (en) 2001-05-25 2010-12-02 Conformis, Inc. Patient Selectable Knee Joint Arthroplasty Devices
US20100305907A1 (en) 2001-05-25 2010-12-02 Conformis, Inc. Patient Selectable Knee Arthroplasty Devices
US20100303313A1 (en) 2001-05-25 2010-12-02 Conformis, Inc. Methods and Compositions for Articular Repair
US20040236424A1 (en) 2001-05-25 2004-11-25 Imaging Therapeutics, Inc. Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty
US20100305573A1 (en) 2001-05-25 2010-12-02 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
US20100281678A1 (en) 2001-05-25 2010-11-11 Conformis, Inc. Surgical Tools Facilitating Increased Accuracy, Speed and Simplicity in Performing Joint Arthroplasty
US20100274534A1 (en) 2001-05-25 2010-10-28 Conformis, Inc. Automated Systems for Manufacturing Patient-Specific Orthopedic Implants and Instrumentation
US20140074441A1 (en) 2001-05-25 2014-03-13 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US20140066936A1 (en) 2001-05-25 2014-03-06 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US20140066935A1 (en) 2001-05-25 2014-03-06 Conformis, Inc. Joint Arthroplasty Devices and Surgical Tools
US20140058396A1 (en) 2001-05-25 2014-02-27 Conformis, Inc. Joint Arthroplasty Devices and Surgical Tools
US20140058397A1 (en) 2001-05-25 2014-02-27 Conformis, Inc. Joint Arthroplasty Devices and Surgical Tools
US8657827B2 (en) 2001-05-25 2014-02-25 Conformis, Inc. Surgical tools for arthroplasty
US20140039631A1 (en) 2001-05-25 2014-02-06 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US20110071581A1 (en) 2001-05-25 2011-03-24 Conformis, Inc. Surgical Tools for Arthroplasty
US20110087332A1 (en) 2001-05-25 2011-04-14 Ray Bojarski Patient-adapted and improved articular implants, designs and related guide tools
DE60239674D1 (en) 2001-05-25 2011-05-19 Conformis Inc METHOD AND COMPOSITIONS FOR REPAIRING THE SURFACE OF JOINTS
US20110029093A1 (en) 2001-05-25 2011-02-03 Ray Bojarski Patient-adapted and improved articular implants, designs and related guide tools
US20030055502A1 (en) 2001-05-25 2003-03-20 Philipp Lang Methods and compositions for articular resurfacing
US7981158B2 (en) 2001-05-25 2011-07-19 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US20030216669A1 (en) 2001-05-25 2003-11-20 Imaging Therapeutics, Inc. Methods and compositions for articular repair
US20050234461A1 (en) 2001-05-25 2005-10-20 Burdulis Albert G Jr Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
US20050267584A1 (en) 2001-05-25 2005-12-01 Burdulis Albert G Jr Patient selectable knee joint arthroplasty devices
US7468075B2 (en) 2001-05-25 2008-12-23 Conformis, Inc. Methods and compositions for articular repair
US8062302B2 (en) 2001-05-25 2011-11-22 Conformis, Inc. Surgical tools for arthroplasty
US8066708B2 (en) 2001-05-25 2011-11-29 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US20110295329A1 (en) 2001-05-25 2011-12-01 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
US8641716B2 (en) 2001-05-25 2014-02-04 Conformis, Inc. Joint arthroplasty devices and surgical tools
US20140031826A1 (en) 2001-05-25 2014-01-30 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
US20140029814A1 (en) 2001-05-25 2014-01-30 Conformis, Inc. Patient Selectable Knee Arthroplasty Devices
US20110295378A1 (en) 2001-05-25 2011-12-01 Conformis, Inc. Patient-Adapted and Improved Orthopedic Implants, Designs and Related Tools
US8083745B2 (en) 2001-05-25 2011-12-27 Conformis, Inc. Surgical tools for arthroplasty
US20100174376A1 (en) 2001-05-25 2010-07-08 Conformis, Inc. Joint Arthroplasty Devices Formed In Situ
US20140005792A1 (en) 2001-05-25 2014-01-02 Conformis, Inc. Methods and compositions for articular resurfacing
US8617172B2 (en) 2001-05-25 2013-12-31 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8617242B2 (en) 2001-05-25 2013-12-31 Conformis, Inc. Implant device and method for manufacture
US8585708B2 (en) 2001-05-25 2013-11-19 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US8568480B2 (en) 2001-05-25 2013-10-29 Conformis, Inc. Joint arthroplasty devices and surgical tools
AU2002310193B2 (en) 2001-05-25 2007-03-29 Conformis, Inc. Methods and compositions for articular resurfacing
US8568479B2 (en) 2001-05-25 2013-10-29 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8562611B2 (en) 2001-05-25 2013-10-22 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8562618B2 (en) 2001-05-25 2013-10-22 Conformis, Inc. Joint arthroplasty devices and surgical tools
US20070083266A1 (en) 2001-05-25 2007-04-12 Vertegen, Inc. Devices and methods for treating facet joints, uncovertebral joints, costovertebral joints and other joints
US20070100462A1 (en) 2001-05-25 2007-05-03 Conformis, Inc Joint Arthroplasty Devices
US8561278B2 (en) 2001-05-25 2013-10-22 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8556907B2 (en) 2001-05-25 2013-10-15 Conformis, Inc. Joint arthroplasty devices and surgical tools
AU2007202573A1 (en) 2001-05-25 2007-06-28 Conformis, Inc. Methods and compositions for articular resurfacing
US20070156171A1 (en) 2001-05-25 2007-07-05 Conformis, Inc. Implant Grasper
US8556971B2 (en) 2001-05-25 2013-10-15 Conformis, Inc. Joint arthroplasty devices formed in situ
US8556983B2 (en) 2001-05-25 2013-10-15 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US8556906B2 (en) 2001-05-25 2013-10-15 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8551102B2 (en) 2001-05-25 2013-10-08 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8551169B2 (en) 2001-05-25 2013-10-08 Conformis, Inc. Joint arthroplasty devices and surgical tools
US20070198022A1 (en) 2001-05-25 2007-08-23 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
US8551099B2 (en) 2001-05-25 2013-10-08 Conformis, Inc. Surgical tools for arthroplasty
US8551103B2 (en) 2001-05-25 2013-10-08 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8545569B2 (en) 2001-05-25 2013-10-01 Conformis, Inc. Patient selectable knee arthroplasty devices
US20130253522A1 (en) 2001-05-25 2013-09-26 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
US20130245803A1 (en) 2001-05-25 2013-09-19 Conformis, Inc. Implant device and method for manufacture
US8529630B2 (en) 2001-05-25 2013-09-10 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US20070233269A1 (en) 2001-05-25 2007-10-04 Conformis, Inc. Interpositional Joint Implant
US20070250169A1 (en) 2001-05-25 2007-10-25 Philipp Lang Joint arthroplasty devices formed in situ
US20130211531A1 (en) 2001-05-25 2013-08-15 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US20130211409A1 (en) 2001-05-25 2013-08-15 Conformis, Inc. Surgical Tools Facilitating Increased Accuracy, Speed and Simplicity in Performing Joint Arthroplasty
US20130197870A1 (en) 2001-05-25 2013-08-01 Conformis, Inc. Automated Systems for Manufacturing Patient-Specific Orthopedic Implants and Instrumentation
US8480754B2 (en) 2001-05-25 2013-07-09 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US8460304B2 (en) 2001-05-25 2013-06-11 Conformis, Inc. Joint arthroplasty devices and surgical tools
US20130123792A1 (en) 2001-05-25 2013-05-16 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
US8439926B2 (en) 2001-05-25 2013-05-14 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US20130110471A1 (en) 2001-05-25 2013-05-02 Conformis, Inc. Methods and Compositions for Articular Repair
US20130103363A1 (en) 2001-05-25 2013-04-25 Conformis, Inc. Methods and Compositions for Articular Repair
US20080195216A1 (en) 2001-05-25 2008-08-14 Conformis, Inc. Implant Device and Method for Manufacture
US20130096562A1 (en) 2001-05-25 2013-04-18 Conformis, Inc. Joint arthroplasty devices and surgical tools
US20130081247A1 (en) 2001-05-25 2013-04-04 Conformis, Inc. Joint arthroplasty devices and surgical tools
US20080243127A1 (en) 2001-05-25 2008-10-02 Conformis, Inc. Surgical Tools for Arthroplasty
US20130079876A1 (en) 2001-05-25 2013-03-28 Conformis, Inc. Joint arthroplasty devices and surgical tools
US20130079781A1 (en) 2001-05-25 2013-03-28 Conformis, Inc. Joint arthroplasty devices and surgical tools
US20100168754A1 (en) 2001-05-25 2010-07-01 Conformis, Inc. Joint Arthroplasty Devices and Surgical Tools
US20130030441A1 (en) 2001-05-25 2013-01-31 Conformis, Inc. Joint arthroplasty devices and surgical tools
US20080281328A1 (en) 2001-05-25 2008-11-13 Conformis, Inc. Surgical Tools for Arthroplasty
US20080281329A1 (en) 2001-05-25 2008-11-13 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
US8377129B2 (en) 2001-05-25 2013-02-19 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8366771B2 (en) 2001-05-25 2013-02-05 Conformis, Inc. Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
US20100160917A1 (en) 2001-05-25 2010-06-24 Conformis, Inc. Joint Arthroplasty Devices and Surgical Tools
US20120245699A1 (en) 2001-05-25 2012-09-27 Conformis, Inc. Joint arthroplasty devices
US8105330B2 (en) 2001-05-25 2012-01-31 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US20130024000A1 (en) 2001-05-25 2013-01-24 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
US7717956B2 (en) 2001-05-25 2010-05-18 Conformis, Inc. Joint arthroplasty devices formed in situ
US20130023884A1 (en) 2001-05-25 2013-01-24 Conformis, Inc. Joint arthroplasty devices and surgical tools
US20130018464A1 (en) 2001-05-25 2013-01-17 Conformis, Inc. Joint arthroplasty devices and surgical tools
US20130018380A1 (en) 2001-05-25 2013-01-17 Conformis, Inc. Joint arthroplasty devices and surgical tools
US20130018379A1 (en) 2001-05-25 2013-01-17 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8343218B2 (en) 2001-05-25 2013-01-01 Conformis, Inc. Methods and compositions for articular repair
US8337501B2 (en) 2001-05-25 2012-12-25 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US8337507B2 (en) 2001-05-25 2012-12-25 Conformis, Inc. Methods and compositions for articular repair
US20120296337A1 (en) 2001-05-25 2012-11-22 Conformis, Inc. Joint arthroplasty devices and surgical tools
US20120289966A1 (en) 2001-05-25 2012-11-15 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8122582B2 (en) 2001-05-25 2012-02-28 Conformis, Inc. Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
US20120071881A1 (en) 2001-05-25 2012-03-22 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US20120066892A1 (en) 2001-05-25 2012-03-22 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US7534263B2 (en) 2001-05-25 2009-05-19 Conformis, Inc. Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
US20130030419A1 (en) 2001-05-25 2013-01-31 Conformis, Inc. Joint arthroplasty devices and surgical tools
US20120071882A1 (en) 2001-05-25 2012-03-22 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US20120232670A1 (en) 2001-05-25 2012-09-13 Bojarski Raymond A Patient-adapted and improved orthopedic implants, designs and related tools
US20120232669A1 (en) 2001-05-25 2012-09-13 Bojarski Raymond A Patient-adapted and improved articular implants, designs and related guide tools
US20120232671A1 (en) 2001-05-25 2012-09-13 Bojarski Raymond A Patient-adapted and improved articular implants, designs and related guide tools
CN100502808C (en) 2001-05-25 2009-06-24 肯弗默斯股份有限公司 Compositions for articular resurfacing
US20090222103A1 (en) 2001-05-25 2009-09-03 Conformis, Inc. Articular Implants Providing Lower Adjacent Cartilage Wear
HK1059882A1 (en) 2001-05-25 2004-07-23 Conformis Inc Methods and compositions for articular resurfacing
US20090222014A1 (en) 2001-05-25 2009-09-03 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
EP1389980A2 (en) 2001-05-25 2004-02-25 Imaging Therapeutics Methods and compositions for articular resurfacing
US20120072185A1 (en) 2001-05-25 2012-03-22 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US20120197408A1 (en) 2001-05-25 2012-08-02 Conformis, Inc. Joint Arthroplasty Devices
US20120197260A1 (en) 2001-05-25 2012-08-02 Conformis, Inc. Joint arthroplasty devices and surgical tools
US8234097B2 (en) 2001-05-25 2012-07-31 Conformis, Inc. Automated systems for manufacturing patient-specific orthopedic implants and instrumentation
US20120191420A1 (en) 2001-05-25 2012-07-26 Bojarski Raymond A Patient-adapted and improved articular implants, designs and related guide tools
US20120191205A1 (en) 2001-05-25 2012-07-26 Bojarski Raymond A Patient-adapted and improved articular implants, designs and related guide tools
US20120151730A1 (en) 2001-05-25 2012-06-21 Conformis, Inc. Joint arthroplasty devices and surgical tools
US20120158001A1 (en) 2001-05-25 2012-06-21 Conformis, Inc. Surgical Tools Facilitating Increased Accuracy, Speed and Simplicity in Performing Joint Arthroplasty
US20090276045A1 (en) 2001-05-25 2009-11-05 Conformis, Inc. Devices and Methods for Treatment of Facet and Other Joints
US20120143197A1 (en) 2001-05-25 2012-06-07 Conformis, Inc. Surgical Tools for Arthroplasty
US7618451B2 (en) 2001-05-25 2009-11-17 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty
US20120101503A1 (en) 2001-05-25 2012-04-26 Conformis, Inc. Surgical Tools for Arthroplasty
US20090312805A1 (en) 2001-05-25 2009-12-17 Conformis, Inc. Methods and compositions for articular repair
US20120071883A1 (en) 2001-05-25 2012-03-22 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US20090306676A1 (en) 2001-05-25 2009-12-10 Conformis, Inc. Methods and compositions for articular repair
US20090307893A1 (en) 2001-05-25 2009-12-17 Conformis, Inc. Surgical Tools Facilitating Increased Accuracy, Speed and Simplicity in Performing Joint Arthroplasty
US20090131941A1 (en) 2002-05-15 2009-05-21 Ilwhan Park Total joint arthroplasty system
US20110040168A1 (en) 2002-09-16 2011-02-17 Conformis Imatx, Inc. System and Method for Predicting Future Fractures
US20110066245A1 (en) 2002-10-07 2011-03-17 Conformis, Inc. Minimally Invasive Joint Implant with 3-Dimensional Geometry Matching the Articular Surfaces
EP1555962A1 (en) 2002-10-07 2005-07-27 Conformis, Inc. Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
CN1728976A (en) 2002-10-07 2006-02-01 康复米斯公司 Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
HK1072710A1 (en) 2002-10-07 2005-09-09 Conformis Inc Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
CA2501041A1 (en) 2002-10-07 2004-04-22 Conformis, Inc. Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
DE60336002D1 (en) 2002-10-07 2011-03-24 Conformis Inc MINIMALLY INVASIVE JOINT IMPLANT WITH A THREE-DIMENSIONAL GEOMETRY TAILORED TO THE JOINTS
TWI231755B (en) 2002-10-07 2005-05-01 Conformis Inc An interpositional articular implant and the method for making the same
US20040133276A1 (en) 2002-10-07 2004-07-08 Imaging Therapeutics, Inc. Minimally invasive joint implant with 3-Dimensional geometry matching the articular surfaces
US7799077B2 (en) 2002-10-07 2010-09-21 Conformis, Inc. Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
US20040138754A1 (en) 2002-10-07 2004-07-15 Imaging Therapeutics, Inc. Minimally invasive joint implant with 3-Dimensional geometry matching the articular surfaces
EP1558181A1 (en) 2002-11-07 2005-08-03 Conformis, Inc. Methods for determing meniscal size and shape and for devising treatment
US20120093377A1 (en) 2002-11-07 2012-04-19 Conformis, Inc. Methods for determining meniscal size and shape and for devising treatment
CA2505371A1 (en) 2002-11-07 2004-05-27 Conformis, Inc. Methods for determining meniscal size and shape and for devising treatment
US8634617B2 (en) 2002-11-07 2014-01-21 Conformis, Inc. Methods for determining meniscal size and shape and for devising treatment
US8077950B2 (en) 2002-11-07 2011-12-13 Conformis, Inc. Methods for determining meniscal size and shape and for devising treatment
US20100303317A1 (en) 2002-11-07 2010-12-02 Conformis, Inc. Methods for Determining Meniscal Size and Shape and for Devising Treatment
US7796791B2 (en) 2002-11-07 2010-09-14 Conformis, Inc. Methods for determining meniscal size and shape and for devising treatment
US20040147927A1 (en) 2002-11-07 2004-07-29 Imaging Therapeutics, Inc. Methods for determining meniscal size and shape and for devising treatment
US20040153079A1 (en) 2002-11-07 2004-08-05 Imaging Therapeutics, Inc. Methods for determining meniscal size and shape and for devising treatment
WO2004049981A2 (en) 2002-11-27 2004-06-17 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty
EP1575460A2 (en) 2002-11-27 2005-09-21 Conformis, Inc. Patient selectable total and partial joint arthroplasty devices and surgical tools
JP2011224384A (en) 2002-11-27 2011-11-10 Conformis Inc Patient selectable joint arthroplasty device and surgical tool facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty
CN1729483A (en) 2002-11-27 2006-02-01 康复米斯公司 Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty
JP2006510403A (en) 2002-11-27 2006-03-30 コンフォーミス・インコーポレイテッド A patient-selectable arthroplasty device and surgical tool that facilitates increased accuracy, speed and simplicity in total or partial arthroplasty
KR20050084024A (en) 2002-11-27 2005-08-26 콘포미스 인코퍼레이티드 Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty
TWI330075B (en) 2002-11-27 2010-09-11 Conformis Inc Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty and methods of designing an articular implant and evaluating the fit of an articula
CA2505419A1 (en) 2002-11-27 2004-06-17 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty
CN102125448A (en) 2002-11-27 2011-07-20 康复米斯公司 Patient-specific surgical tools
EP2292189A2 (en) 2002-11-27 2011-03-09 Conformis, Inc. Patient selectable surgical tools
EP2292188A2 (en) 2002-11-27 2011-03-09 Conformis, Inc. Patient selectable surgical tools
JP2012187415A (en) 2002-11-27 2012-10-04 Conformis Inc Patient selectable joint arthroplasty device and surgical tool facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty
AU2010201200A1 (en) 2002-11-27 2010-04-15 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty
JP5053515B2 (en) 2002-11-27 2012-10-17 コンフォーミス・インコーポレイテッド A patient-selectable arthroplasty device and surgical tool that facilitates increased accuracy, speed and simplicity in total or partial arthroplasty
TW200509870A (en) 2002-11-27 2005-03-16 Conformis Inc Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty
JP2014000425A (en) 2002-11-27 2014-01-09 Conformis Inc Arthroplasty device and operation tool that facilitate increase in accuracy, speed and simplicity in overall or partial arthroplasty and that are selective by patient
EP1567985A2 (en) 2002-12-04 2005-08-31 Conformis, Inc. Fusion of multiple imaging planes for isotropic imaging in mri and quantitative image analysis using isotropic or near-isotropic imaging
US20040204644A1 (en) 2002-12-04 2004-10-14 Imaging Therapeutics, Inc. Fusion of multiple imaging planes for isotropic imaging in MRI and quantitative image analysis using isotropic or near-isotropic imaging
US20100054572A1 (en) 2002-12-04 2010-03-04 Conformis, Inc. Fusion of Multiple Imaging Planes for Isotropic Imaging in MRI and Quantitative Image Analysis using Isotropic or Near-isotropic Imaging
WO2004051301A2 (en) 2002-12-04 2004-06-17 Conformis, Inc. Fusion of multiple imaging planes for isotropic imaging in mri and quantitative image analysis using isotropic or near-isotropic imaging
CA2506849A1 (en) 2002-12-04 2004-06-17 Konstantinos Tsougarakis Fusion of multiple imaging planes for isotropic imaging in mri and quantitative image analysis using isotropic or near-isotropic imaging
US7634119B2 (en) 2002-12-04 2009-12-15 Conformis, Inc. Fusion of multiple imaging planes for isotropic imaging in MRI and quantitative image analysis using isotropic or near-isotropic imaging
KR20050072500A (en) 2002-12-04 2005-07-11 콘포미스 인코퍼레이티드 Fusion of multiple imaging planes for isotropic imaging in mri and quantitative image analysis using isotropic or near-isotropic imaging
US8094900B2 (en) 2002-12-04 2012-01-10 Conformis, Inc. Fusion of multiple imaging planes for isotropic imaging in MRI and quantitative image analysis using isotropic or near-isotropic imaging
CN1729484A (en) 2002-12-04 2006-02-01 康复米斯公司 Fusion of multiple imaging planes for isotropic imaging in MRI and quantitative image analysis using isotropic or near-isotropic imaging
US20120201440A1 (en) 2002-12-04 2012-08-09 Conformis, Inc. Fusion of Multiple Imaging Planes for Isotropic Imaging in MRI and Quantitative Image Analysis using Isotropic or Near-isotropic Imaging
US8638998B2 (en) 2002-12-04 2014-01-28 Conformis, Inc. Fusion of multiple imaging planes for isotropic imaging in MRI and quantitative image analysis using isotropic or near-isotropic imaging
US20050021044A1 (en) 2003-06-09 2005-01-27 Vitruvian Orthopaedics, Llc Surgical orientation device and method
AU2012216829A1 (en) 2003-11-25 2012-10-04 Conformis, Inc. Patient selectable knee joint arthroplasty devices
US20110213374A1 (en) 2003-11-25 2011-09-01 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
JP2012176318A (en) 2003-11-25 2012-09-13 Conformis Inc Prosthetic apparatus unique to each patient, system with the prosthetic apparatus, manufacturing method thereof, and joint repair system
US20120029520A1 (en) 2003-11-25 2012-02-02 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
WO2005051239A1 (en) 2003-11-25 2005-06-09 Conformis, Inc. Joint arthroplasty devices formed in situ
JP2007514470A (en) 2003-11-25 2007-06-07 コンフォーミス・インコーポレイテッド Knee arthroplasty device selectable for each patient
WO2005051240A1 (en) 2003-11-25 2005-06-09 Conformis, Inc. Patient selectable knee joint arthroplasty devices
AU2004293104A1 (en) 2003-11-25 2005-06-09 Conformis Inc Patient selectable knee joint arthroplasty devices
CA2546965A1 (en) 2003-11-25 2005-06-09 Conformis, Inc. Patient selectable knee joint arthroplasty devices
CA2546958A1 (en) 2003-11-25 2005-06-09 Conformis, Inc. Joint arthroplasty devices formed in situ
AU2004293091A1 (en) 2003-11-25 2005-06-09 Conformis, Inc. Joint arthroplasty devices formed in situ
CA2804883A1 (en) 2003-11-25 2005-06-09 Conformis, Inc. Patient selectable knee joint arthroplasty devices
US20110238073A1 (en) 2003-11-25 2011-09-29 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
US20110230888A1 (en) 2003-11-25 2011-09-22 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
US20110218584A1 (en) 2003-11-25 2011-09-08 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
US20110218539A1 (en) 2003-11-25 2011-09-08 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
US20110213427A1 (en) 2003-11-25 2011-09-01 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
EP2335654A1 (en) 2003-11-25 2011-06-22 Conformis, Inc. Patient selectable knee joint arthoplasty devices
US20110213373A1 (en) 2003-11-25 2011-09-01 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
US20110213428A1 (en) 2003-11-25 2011-09-01 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
US20110213368A1 (en) 2003-11-25 2011-09-01 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
JP5074036B2 (en) 2003-11-25 2012-11-14 コンフォーミス・インコーポレイテッド A graft specific to each patient for transplantation of the distal femur
US20110213431A1 (en) 2003-11-25 2011-09-01 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
CN1913844A (en) 2003-11-25 2007-02-14 康复米斯公司 Patient selectable knee joint arthroplasty devices
US20110213429A1 (en) 2003-11-25 2011-09-01 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
US20110213377A1 (en) 2003-11-25 2011-09-01 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
EP1686930A1 (en) 2003-11-25 2006-08-09 Conformis, Inc. Joint arthroplasty devices formed in situ
CN102805677A (en) 2003-11-25 2012-12-05 康复米斯公司 Patient selectable knee joint arthroplasty devices
US20110213430A1 (en) 2003-11-25 2011-09-01 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
DE602004032166D1 (en) 2003-11-25 2011-05-19 Conformis Inc SITU-SHAPED GELENKARTHROPLASTIE DEVICES
HK1087324A1 (en) 2003-11-25 2006-10-13 Conformis Inc Joint arthroplasty devices formed in situ
AU2011203237A1 (en) 2003-11-25 2011-07-21 Conformis, Inc. Patient selectable knee joint arthroplasty devices
EP1686931A1 (en) 2003-11-25 2006-08-09 Conformis, Inc. Patient selectable knee joint arthroplasty devices
US8175683B2 (en) 2003-12-30 2012-05-08 Depuy Products, Inc. System and method of designing and manufacturing customized instrumentation for accurate implantation of prosthesis by utilizing computed tomography data
US20110144760A1 (en) 2004-01-05 2011-06-16 Conformis, Inc. Patient-Specific and Patient-Engineered Orthopedic Implants
US20100234849A1 (en) 2004-11-19 2010-09-16 Conformis, Inc. Surgical Cutting Tool
US20060111722A1 (en) 2004-11-19 2006-05-25 Hacene Bouadi Surgical cutting tool
US8529568B2 (en) 2004-11-19 2013-09-10 Conformis, Inc. Surgical cutting tool
EP2324799A2 (en) 2004-11-24 2011-05-25 Conformis, Inc. Patient selectable knee joint arthroplasty devices
WO2006058057A2 (en) 2004-11-24 2006-06-01 Conformis, Inc. Patient selectable knee joint arthroplasty devices
AU2005309692A1 (en) 2004-11-24 2006-06-01 Conformis, Inc. Patient selectable knee joint arthroplasty devices
CA2590534A1 (en) 2004-11-24 2006-06-01 Conformis, Inc. Patient selectable knee joint arthroplasty devices
EP1814491A1 (en) 2004-11-24 2007-08-08 Conformis, Inc. Patient selectable knee joint arthroplasty devices
CN101442960A (en) 2004-11-24 2009-05-27 肯弗默斯股份有限公司 Patient selectable knee joint arthroplasty devices
JP5198069B2 (en) 2004-11-24 2013-05-15 コンフォーミス・インコーポレイテッド Patient-selectable knee arthroplasty device
HK1104776A1 (en) 2004-12-02 2008-01-25 Conformis Inc Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
DE602005027391D1 (en) 2004-12-02 2011-05-19 Conformis Inc SURGICAL TOOL FOR INCREASING ACCURACY, SPEED AND SIMPLICITY IN THE PERFORMANCE OF JOINT-BONE HYPASTIA
WO2006060795A1 (en) 2004-12-02 2006-06-08 Conformis, Inc. Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
EP1833387A1 (en) 2004-12-02 2007-09-19 Conformis, Inc. Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
EP2316357A1 (en) 2004-12-02 2011-05-04 Conformis, Inc. Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
JP5148284B2 (en) 2004-12-02 2013-02-20 コンフォーミス・インコーポレイテッド Surgical braces for achieving high precision, quick and easy artificial joint replacement
CA2588907A1 (en) 2004-12-02 2006-06-08 Conformis, Inc. Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
AU2005311558A1 (en) 2004-12-02 2006-06-08 Conformis, Inc. Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
CN101111197A (en) 2004-12-02 2008-01-23 肯弗默斯股份有限公司 Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
US20080255584A1 (en) 2005-04-09 2008-10-16 David Beverland Acetabular Cup Positioning
CA2623834A1 (en) 2005-09-30 2007-04-12 Conformis, Inc. Joint arthroplasty devices
WO2007041375A2 (en) 2005-09-30 2007-04-12 Conformis, Inc. Joint arthroplasty devices
JP2012091033A (en) 2005-09-30 2012-05-17 Conformis Inc Joint arthroplasty device
AU2006297137A1 (en) 2005-09-30 2007-04-12 Conformis Inc. Joint arthroplasty devices
EP1928359A2 (en) 2005-09-30 2008-06-11 Conformis, Inc. Joint arthroplasty devices
CN101384230A (en) 2005-11-21 2009-03-11 福特真公司 Devices and methods for treating facet joints, uncovertebral joints, costovertebral joints and other joints
EP1951136A1 (en) 2005-11-23 2008-08-06 Conformis, Inc. Implant grasper
WO2007062103A1 (en) 2005-11-23 2007-05-31 Conformis, Inc. Implant grasper
US20070157783A1 (en) 2006-01-06 2007-07-12 Tung-Lung Chiang Paper cutter
US7357057B2 (en) 2006-01-06 2008-04-15 Tung-Lung Chiang Paper cutter
EP2671522A2 (en) 2006-02-06 2013-12-11 ConforMIS, Inc. Patient selectable joint arthroplasty devices and surgical tools
US8500740B2 (en) 2006-02-06 2013-08-06 Conformis, Inc. Patient-specific joint arthroplasty devices for ligament repair
CN101420911A (en) 2006-02-06 2009-04-29 康复米斯公司 Selectable arthroplasty device of patient and surgical instrument
EP2671521A2 (en) 2006-02-06 2013-12-11 ConforMIS, Inc. Patient selectable joint arthroplasty devices and surgical tools
EP2649951A2 (en) 2006-02-06 2013-10-16 ConforMIS, Inc. Patient selectable joint arthroplasty devices and surgical tools
US20130317511A1 (en) 2006-02-06 2013-11-28 Conformis, Inc. Patient-specific joint arthroplasty devices for ligament repair
US8623026B2 (en) 2006-02-06 2014-01-07 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools incorporating anatomical relief
AU2014200073A1 (en) 2006-02-06 2014-01-23 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
CA2641241A1 (en) 2006-02-06 2007-08-16 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
AU2007212033A1 (en) 2006-02-06 2007-08-16 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
EP2671520A2 (en) 2006-02-06 2013-12-11 ConforMIS, Inc. Patient selectable joint arthroplasty devices and surgical tools
US20100298894A1 (en) 2006-02-06 2010-11-25 Conformis, Inc. Patient-Specific Joint Arthroplasty Devices for Ligament Repair
US20110313423A1 (en) 2006-02-06 2011-12-22 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
WO2007092841A2 (en) 2006-02-06 2007-08-16 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
EP1981409A2 (en) 2006-02-06 2008-10-22 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US20110319897A1 (en) 2006-02-06 2011-12-29 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
US20110319900A1 (en) 2006-02-06 2011-12-29 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools
CN102599960A (en) 2006-02-06 2012-07-25 康复米斯公司 Patient selectable joint arthroplasty devices and surgical tools
US20120041446A1 (en) 2006-02-06 2012-02-16 Conformis, Inc. Patient Selectable Joint Arthroplasty Devices and Surgical Tools Incorporating Anatomical Relief
TW200800123A (en) 2006-02-06 2008-01-01 Conformis Inc Patient selectable joint arthroplasty devices and surgical tools
EP2710967A2 (en) 2006-02-06 2014-03-26 ConforMIS, Inc. Patient selectable joint arthroplasty devices and surgical tools
US20070233141A1 (en) 2006-02-15 2007-10-04 Ilwhan Park Arthroplasty devices and related methods
US20070226986A1 (en) 2006-02-15 2007-10-04 Ilwhan Park Arthroplasty devices and related methods
US8070752B2 (en) 2006-02-27 2011-12-06 Biomet Manufacturing Corp. Patient specific alignment guide and inter-operative adjustment
US20110071533A1 (en) 2006-02-27 2011-03-24 Biomet Manufacturing Corp. Patient-Specific Orthopedic Instruments
US20120109138A1 (en) 2006-02-27 2012-05-03 Biomet Manufacturing Corp. Patient-specific acetabular guide and method
US20110172672A1 (en) 2006-02-27 2011-07-14 Biomet Manufacturing Corp. Instrument with transparent portion for use with patient-specific alignment guide
US20110166578A1 (en) 2006-02-27 2011-07-07 Biomet Manufacturing Corp. Alignment guides with patient-specific anchoring elements
US20110015639A1 (en) 2006-02-27 2011-01-20 Biomet Manufacturing Corp. Femoral Acetabular Impingement Guide
US20100087829A1 (en) 2006-02-27 2010-04-08 Biomet Manufacturing Corp. Patient Specific Alignment Guide With Cutting Surface and Laser Indicator
US8133234B2 (en) 2006-02-27 2012-03-13 Biomet Manufacturing Corp. Patient specific acetabular guide and method
US20110054478A1 (en) 2006-02-27 2011-03-03 Biomet Manufacturing Corp. Patient-Specific Shoulder Guide
US20110015636A1 (en) 2006-02-27 2011-01-20 Biomet Manufacturing Corp. Patient-Specific Elbow Guides and Associated Methods
US8241293B2 (en) 2006-02-27 2012-08-14 Biomet Manufacturing Corp. Patient specific high tibia osteotomy
US20110184419A1 (en) 2006-02-27 2011-07-28 Biomet Manufacturing Corp. Patient-specific acetabular guides and associated instruments
US20120226283A1 (en) 2006-02-27 2012-09-06 Biomet Manufacturing Corp. Patient-specific acetabular guides and associated instruments
US8282646B2 (en) 2006-02-27 2012-10-09 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US20090024131A1 (en) 2006-02-27 2009-01-22 Biomet Manufacturing Corp. Patient specific guides
US20100152782A1 (en) 2006-02-27 2010-06-17 Biomet Manufactring Corp. Patient Specific High Tibia Osteotomy
US20080161815A1 (en) 2006-02-27 2008-07-03 Biomet Manufacturing Corp. Patient Specific Knee Alignment Guide And Associated Method
US20110224674A1 (en) 2006-02-27 2011-09-15 Biomet Manufacturing Corp. Patient-specific acetabular alignment guides
US20110160867A1 (en) 2006-02-27 2011-06-30 Biomet Manufacturing Corp. Patient-specific tools and implants
US20110160736A1 (en) 2006-02-27 2011-06-30 Biomet Manufacturing Corp. Patient-specific femoral guide
EP1996121A2 (en) 2006-03-21 2008-12-03 Conformis, Inc. Interpositional joint implant
AU2007226924A1 (en) 2006-03-21 2007-09-27 Conformis, Inc. Interpositional joint implant
WO2007109641A2 (en) 2006-03-21 2007-09-27 Conformis, Inc. Interpositional joint implant
CA2646288A1 (en) 2006-03-21 2007-09-27 Conformis, Inc. Interpositional joint implant
US20080114370A1 (en) 2006-06-09 2008-05-15 Biomet Manufacturing Corp. Patient-Specific Alignment Guide For Multiple Incisions
US8092465B2 (en) 2006-06-09 2012-01-10 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US20120065640A1 (en) 2006-06-09 2012-03-15 Biomet Manufacturing Corp. Patient-specific knee alignment guide and associated method
US8298237B2 (en) 2006-06-09 2012-10-30 Biomet Manufacturing Corp. Patient-specific alignment guide for multiple incisions
US20090254093A1 (en) 2006-06-09 2009-10-08 Biomet Manufacturing Corp. Patient-Specific Alignment Guide
US20080147072A1 (en) 2006-12-18 2008-06-19 Ilwhan Park Arthroplasty devices and related methods
EP2114312A2 (en) 2007-02-14 2009-11-11 Conformis, Inc. Implant device and method for manufacture
WO2008101090A2 (en) 2007-02-14 2008-08-21 Conformis, Inc. Implant device and method for manufacture
EP2591756A1 (en) 2007-02-14 2013-05-15 Conformis, Inc. Implant device and method for manufacture
US20110266265A1 (en) 2007-02-14 2011-11-03 Conformis, Inc. Implant Device and Method for Manufacture
EP2124764A1 (en) 2007-03-14 2009-12-02 Conformis, Inc. Surgical tools for arthroplasty
WO2008112996A1 (en) 2007-03-14 2008-09-18 Conformis, Inc. Surgical tools for arthroplasty
US20100191244A1 (en) 2007-03-23 2010-07-29 Derrick White Surgical templates
US7967868B2 (en) 2007-04-17 2011-06-28 Biomet Manufacturing Corp. Patient-modified implant and associated method
US20080287954A1 (en) 2007-05-14 2008-11-20 Queen's University At Kingston Patient-specific surgical guidance tool and method of use
WO2008157412A2 (en) 2007-06-13 2008-12-24 Conformis, Inc. Surgical cutting guide
US20110245835A1 (en) 2007-06-25 2011-10-06 Depuy Orthopadie Gmbh Surgical Instrument
US20090088760A1 (en) 2007-09-30 2009-04-02 Aram Luke J Customized Patient-Specific Bone Cutting Instrumentation
US20090088761A1 (en) 2007-09-30 2009-04-02 Roose Jeffrey R Patient-Customizable Device and System for Performing an Orthopaedic Surgical Procedure
US20090088753A1 (en) 2007-09-30 2009-04-02 Aram Luke J Customized Patient-Specific Instrumentation for Use in Orthopaedic Surgical Procedures
US20090088754A1 (en) 2007-09-30 2009-04-02 Chris Aker Customized Patient-Specific Multi-Cutting Blocks
US20090131942A1 (en) 2007-09-30 2009-05-21 Chris Aker Femoral Tibial Customized Patient-Specific Orthopaedic Surgical Instrumentation
US20090088758A1 (en) 2007-09-30 2009-04-02 Travis Bennett Orthopaedic Bone Saw and Method of Use Thereof
US20090088759A1 (en) 2007-09-30 2009-04-02 Aram Luke J Customized Patient-Specific Instrumentation and Method for Performing a Bone Re-Cut
US20090093816A1 (en) 2007-09-30 2009-04-09 Roose Jeffrey R System and Method for Fabricating a Customized Patient-Specific Surgical Instrument
US20090088755A1 (en) 2007-09-30 2009-04-02 Chris Aker Customized Patient-Specific Instrumentation for Use in Orthopaedic Surgical Procedures
US20090088763A1 (en) 2007-09-30 2009-04-02 Aram Luke J Customized Patient-Specific Bone Cutting Block with External Reference
US20090099567A1 (en) 2007-09-30 2009-04-16 Eric Zajac Customized Patient-Specific Bone Cutting Blocks
US20090110498A1 (en) 2007-10-25 2009-04-30 Ilwhan Park Arthroplasty systems and devices, and related methods
US20090138020A1 (en) 2007-11-27 2009-05-28 Otismed Corporation Generating mri images usable for the creation of 3d bone models employed to make customized arthroplasty jigs
US20100042105A1 (en) 2007-12-18 2010-02-18 Otismed Corporation Arthroplasty system and related methods
US20100049195A1 (en) 2007-12-18 2010-02-25 Otismed Corporation Arthroplasty system and related methods
US8221430B2 (en) 2007-12-18 2012-07-17 Otismed Corporation System and method for manufacturing arthroplasty jigs
US20100256479A1 (en) 2007-12-18 2010-10-07 Otismed Corporation Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
US20090157083A1 (en) 2007-12-18 2009-06-18 Ilwhan Park System and method for manufacturing arthroplasty jigs
US20110214279A1 (en) 2007-12-18 2011-09-08 Otismed Corporation Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
US20110093108A1 (en) 2008-02-27 2011-04-21 Depuy International Ltd Customised surgical apparatus
US20090222016A1 (en) 2008-02-29 2009-09-03 Otismed Corporation Total hip replacement surgical guide tool
US20110092977A1 (en) 2008-03-03 2011-04-21 Smith & Nephew, Inc. Low profile patient specific cutting blocks for a knee joint
US20090226068A1 (en) 2008-03-05 2009-09-10 Conformis, Inc. Implants for Altering Wear Patterns of Articular Surfaces
WO2009111656A1 (en) 2008-03-05 2009-09-11 Conformis, Inc. Edge-matched articular implant
WO2009111639A1 (en) 2008-03-05 2009-09-11 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
EP2259753A1 (en) 2008-03-05 2010-12-15 Conformis, Inc. Edge-matched articular implant
CA2717760A1 (en) 2008-03-05 2009-09-11 Conformis, Inc. Edge-matched articular implant
US8682052B2 (en) 2008-03-05 2014-03-25 Conformis, Inc. Implants for altering wear patterns of articular surfaces
US20090228113A1 (en) 2008-03-05 2009-09-10 Comformis, Inc. Edge-Matched Articular Implant
EP2265199A1 (en) 2008-03-05 2010-12-29 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
CN102006841A (en) 2008-03-05 2011-04-06 肯弗默斯股份有限公司 Edge-matched articular implant
WO2009111626A2 (en) 2008-03-05 2009-09-11 Conformis, Inc. Implants for altering wear patterns of articular surfaces
AU2009221773A1 (en) 2008-03-05 2009-09-11 Conformis, Inc. Edge-matched articular implant
US20090270868A1 (en) 2008-04-29 2009-10-29 Otismed Corporation Generation of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices
US20120192401A1 (en) 2008-04-30 2012-08-02 Otismed Corporation System and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US8160345B2 (en) 2008-04-30 2012-04-17 Otismed Corporation System and method for image segmentation in generating computer models of a joint to undergo arthroplasty
JP2011519713A (en) 2008-05-12 2011-07-14 コンフォーミス・インコーポレイテッド Devices and methods for treatment of facet joints and other joints
EP2303193A1 (en) 2008-05-12 2011-04-06 Conformis, Inc. Devices and methods for treatment of facet and other joints
AU2009246474A1 (en) 2008-05-12 2009-11-19 Conformis, Inc. Devices and methods for treatment of facet and other joints
WO2009140294A1 (en) 2008-05-12 2009-11-19 Conformis, Inc. Devices and methods for treatment of facet and other joints
US20100023015A1 (en) 2008-07-23 2010-01-28 Otismed Corporation System and method for manufacturing arthroplasty jigs having improved mating accuracy
US20120130687A1 (en) 2008-09-19 2012-05-24 Smith & Nephew, Inc. Tuning Implants For Increased Performance
US20100082035A1 (en) 2008-09-30 2010-04-01 Ryan Keefer Customized patient-specific acetabular orthopaedic surgical instrument and method of use and fabrication
US20100152741A1 (en) 2008-12-16 2010-06-17 Otismed Corporation Unicompartmental customized arthroplasty cutting jigs and methods of making the same
US20100185202A1 (en) 2009-01-16 2010-07-22 Lester Mark B Customized patient-specific patella resectioning guide
EP2405865A2 (en) 2009-02-24 2012-01-18 Conformis, Inc. Automated systems for manufacturing patient-specific orthopedic implants and instrumentation
US20100217338A1 (en) 2009-02-24 2010-08-26 Wright Medical Technology, Inc. Patient Specific Surgical Guide Locator and Mount
US20120221008A1 (en) 2009-02-24 2012-08-30 Wright Medical Technology, Inc. Patient specific surgical guide locator and mount
US20100212138A1 (en) 2009-02-24 2010-08-26 Wright Medical Technology, Inc. Method For Forming A Patient Specific Surgical Guide Mount
WO2010099231A2 (en) 2009-02-24 2010-09-02 Conformis, Inc. Automated systems for manufacturing patient-specific orthopedic implants and instrumentation
US20110071802A1 (en) 2009-02-25 2011-03-24 Ray Bojarski Patient-adapted and improved articular implants, designs and related guide tools
CN102405032A (en) 2009-02-25 2012-04-04 康复米斯公司 Patient-adapted and improved orthopedic implants, designs and related tools
US20100217270A1 (en) 2009-02-25 2010-08-26 Conformis, Inc. Integrated Production of Patient-Specific Implants and Instrumentation
US20110029091A1 (en) 2009-02-25 2011-02-03 Conformis, Inc. Patient-Adapted and Improved Orthopedic Implants, Designs, and Related Tools
AU2010217903A1 (en) 2009-02-25 2011-09-15 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
EP2403434A1 (en) 2009-02-25 2012-01-11 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
SG173840A1 (en) 2009-02-25 2011-09-29 Conformis Inc Patient-adapted and improved orthopedic implants, designs and related tools
US20110071645A1 (en) 2009-02-25 2011-03-24 Ray Bojarski Patient-adapted and improved articular implants, designs and related guide tools
WO2010099353A1 (en) 2009-02-25 2010-09-02 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US20100249796A1 (en) 2009-03-24 2010-09-30 Biomet Manufacturing Corp. Method and Apparatus for Aligning and Securing an Implant Relative to a Patient
US20100262150A1 (en) 2009-04-13 2010-10-14 George John Lian Custom radiographically designed cutting guides and instruments for use in total ankle replacement surgery
WO2010121147A1 (en) 2009-04-16 2010-10-21 Conformis, Inc. Patient-specific joint arthroplasty devices for ligament repair
AU2010236263A1 (en) 2009-04-16 2011-11-10 Conformis, Inc. Patient-specific joint arthroplasty devices for ligament repair
SG175229A1 (en) 2009-04-16 2011-11-28 Conformis Inc Patient-specific joint arthroplasty devices for ligament repair
CN102448394A (en) 2009-04-16 2012-05-09 康复米斯公司 Patient-specific joint arthroplasty devices for ligament repair
EP2419035A1 (en) 2009-04-16 2012-02-22 ConforMIS, Inc. Patient-specific joint arthroplasty devices for ligament repair
JP2012523897A (en) 2009-04-16 2012-10-11 コンフォーミス・インコーポレイテッド Patient-specific joint replacement device for ligament repair
US20100286700A1 (en) 2009-05-07 2010-11-11 Smith & Nephew, Inc. Patient specific alignment guide for a proximal femur
US20120172884A1 (en) 2009-06-17 2012-07-05 University Of Bern Methods and devices for patient-specific acetabular component alignment in total hip arthroplasty
NZ597261A (en) 2009-06-24 2013-11-29 Conformis Inc Patient-adapted and improved orthopedic implants, designs and related tools
EP2445451A1 (en) 2009-06-24 2012-05-02 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
KR20120102576A (en) 2009-06-24 2012-09-18 콘포미스 인코퍼레이티드 Patient-adapted and improved orthopedic implants, designs and related tools
CA2765499A1 (en) 2009-06-24 2010-12-29 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
AU2010264466A1 (en) 2009-06-24 2012-02-02 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
JP2012531265A (en) 2009-06-24 2012-12-10 コンフォーミス・インコーポレイテッド Improved patient-friendly orthopedic implant, design and related tools
SG176833A1 (en) 2009-06-24 2012-01-30 Conformis Inc Patient-adapted and improved orthopedic implants, designs and related tools
GB2484042A (en) 2009-06-24 2012-03-28 Conformis Patient-adapted and improved orthpedic implants, designs and related tools
US20120165820A1 (en) 2009-07-17 2012-06-28 Karla De Smedt Surgical guiding tool, methods for manufacture and uses thereof
US20110015637A1 (en) 2009-07-17 2011-01-20 Materialise N.V. Surgical guiding tool, methods for manufacture and uses thereof
US20110196377A1 (en) 2009-08-13 2011-08-11 Zimmer, Inc. Virtual implant placement in the or
US20120209276A1 (en) 2009-08-13 2012-08-16 Biomet Manufacturing Corp. Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
CN102711670A (en) 2009-08-26 2012-10-03 康复米斯公司 Patient-specific orthopedic implants and models
EP2470126A1 (en) 2009-08-26 2012-07-04 Conformis, Inc. Patient-specific orthopedic implants and models
AU2010289706A1 (en) 2009-08-26 2012-03-29 Conformis, Inc. Patient-specific orthopedic implants and models
JP2013503007A (en) 2009-08-26 2013-01-31 コンフォーミス・インコーポレイテッド Patient-specific orthopedic implants and models
WO2011028624A1 (en) 2009-08-26 2011-03-10 Conformis, Inc. Patient-specific orthopedic implants and models
KR20120090997A (en) 2009-08-26 2012-08-17 콘포미스 인코퍼레이티드 Patient-specific orthopedic implants and models
SG178836A1 (en) 2009-08-26 2012-04-27 Conformis Inc Patient-specific orthopedic implants and models
CA2771573A1 (en) 2009-08-26 2011-03-10 Conformis, Inc. Patient-specific orthopedic implants and models
US20110060341A1 (en) 2009-09-10 2011-03-10 Laurent Angibaud Alignment guides for use in computer assisted orthopedic surgery to prepare a bone element for an implant
US20110106093A1 (en) 2009-10-29 2011-05-05 Zimmer, Inc. Patient-specific mill guide
CA2779283A1 (en) 2009-11-04 2011-05-12 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
CN102724934A (en) 2009-11-04 2012-10-10 康复米斯公司 Patient-adapted and improved orthopedic implants, designs and related tools
GB201213674D0 (en) 2009-11-04 2012-09-12 Conformis Patient-adapted and improved orthopedic implants, designs and related tools
GB2489884A (en) 2009-11-04 2012-10-10 Conformis Patient-adapted and improved orthopedic implants, designs and related tools
EP2496183A2 (en) 2009-11-04 2012-09-12 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
AU2010315099A1 (en) 2009-11-04 2012-05-31 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
WO2011056995A2 (en) 2009-11-04 2011-05-12 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US20120245647A1 (en) 2009-11-17 2012-09-27 Manuela Kunz Patient-Specific Guide for Acetabular Cup Placement
CA2782137A1 (en) 2009-12-11 2011-06-16 Conformis, Inc. Patient-specific and patient-engineered orthopedic implants
WO2011072235A2 (en) 2009-12-11 2011-06-16 Conformis, Inc. Patient-specific and patient-engineered orthopedic implants
AU2010327987A1 (en) 2009-12-11 2012-06-14 Conformis, Inc. Patient-specific and patient-engineered orthopedic implants
EP2509539A2 (en) 2009-12-11 2012-10-17 Conformis, Inc. Patient-specific and patient-engineered orthopedic implants
WO2011075697A2 (en) 2009-12-18 2011-06-23 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
MX2012007140A (en) 2009-12-18 2013-01-24 Conformis Inc Patient-adapted and improved orthopedic implants, designs and related tools.
EP2512381A2 (en) 2009-12-18 2012-10-24 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US20110213376A1 (en) 2010-02-26 2011-09-01 Biomet Sports Medicine, Llc Patient-Specific Osteotomy Devices and Methods
US20110218545A1 (en) 2010-03-04 2011-09-08 Biomet Manufacturing Corp. Patient-specific computed tomography guides
US20120078258A1 (en) 2010-03-31 2012-03-29 Darrick Lo Shoulder arthroplasty instrumentation
US20120116562A1 (en) 2010-06-11 2012-05-10 Smith & Nephew, Inc. Systems and methods Utilizing Patient-Matched Instruments
US20120010711A1 (en) 2010-06-11 2012-01-12 Antonyshyn Oleh Method of forming patient-specific implant
US20120123422A1 (en) 2010-06-11 2012-05-17 Aashiish Agnihotri Patient-Matched Instruments
US20110313424A1 (en) 2010-06-18 2011-12-22 Howmedica Osteonics Corp. Patient-specific total hip arthroplasty
US20120041445A1 (en) 2010-08-12 2012-02-16 Roose Jeffrey R Customized patient-specific acetabular orthopaedic surgical instrument and method of use and fabrication
US20140052137A1 (en) * 2010-08-16 2014-02-20 Smith & Nephew. Inc. Patient-matched acetabular alignment tool
US20120130382A1 (en) 2010-09-07 2012-05-24 The Cleveland Clinic Foundation Positioning apparatus and method for a prosthetic implant
US20120078254A1 (en) 2010-09-29 2012-03-29 Depuy Products, Inc. Customized patient-specific computer controlled cutting system and method
US20120078259A1 (en) 2010-09-29 2012-03-29 Biomet Manufacturing Corp. Patient-specific guide for partial acetabular socket replacement
US20120276509A1 (en) 2010-10-29 2012-11-01 The Cleveland Clinic Foundation System of preoperative planning and provision of patient-specific surgical aids
US20120141034A1 (en) 2010-10-29 2012-06-07 The Cleveland Clinic Foundation System of preoperative planning and provision of patient-specific surgical aids
US20120116203A1 (en) 2010-11-10 2012-05-10 Wilfried Vancraen Additive manufacturing flow for the production of patient-specific devices comprising unique patient-specific identifiers
US20120123423A1 (en) 2010-11-11 2012-05-17 Zimmer, Inc. Patient-specific instruments for total hip arthroplasty
US20120136402A1 (en) 2010-11-23 2012-05-31 Burroughs Brian R System and method for orienting orthopedic implants
SG193484A1 (en) 2011-02-15 2013-10-30 Conformis Inc Patent-adapted and improved articular implants, designs, surgical procedures and related guide tools
WO2012112701A2 (en) 2011-02-15 2012-08-23 Conformis, Inc. Patent-adapted and improved articular implants, designs, surgical procedures and related guide tools
CN103476363A (en) 2011-02-15 2013-12-25 康复米斯公司 Patient-adapted and improved articular implants, procedures and tools to address, assess, correct, modify and/or accommodate anatomical variation and/or asymmetry
WO2012112694A2 (en) 2011-02-15 2012-08-23 Conformis, Inc. Medeling, analyzing and using anatomical data for patient-adapted implants. designs, tools and surgical procedures
WO2012112702A2 (en) 2011-02-15 2012-08-23 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
WO2012112698A2 (en) 2011-02-15 2012-08-23 Conformis, Inc. Patient-adapted and improved articular implants, procedures and tools to address, assess, correct, modify and/or accommodate anatomical variation and/or asymmetry
AU2012217654A1 (en) 2011-02-15 2013-10-03 Conformis, Inc. Patient-adapted and improved articular implants, procedures and tools to address, assess, correct, modify and/or accommodate anatomical variation and/or asymmetry
US20120239045A1 (en) 2011-03-17 2012-09-20 Zimmer, Inc. Patient-specific instruments for total ankle arthroplasty
US20120265208A1 (en) 2011-04-15 2012-10-18 Biomet Manufacturing Corp. Patient-specific numerically controlled instrument
US20120271366A1 (en) 2011-04-19 2012-10-25 Biomet Manufacturing Corp. Patient-specific fracture fixation instrumentation and method
US20120277751A1 (en) 2011-04-29 2012-11-01 Biomet Manufacturing Corp. Patient-specific convertible guides
WO2013020026A1 (en) 2011-08-03 2013-02-07 Conformis, Inc. Automated design, selection, manufacturing and implantation of patient-adapted and improved articular implants, designs and related guide tools
AU2012289973A1 (en) 2011-08-03 2014-03-20 Conformis, Inc. Automated design, selection, manufacturing and implantation of patient-adapted and improved articular implants, designs and related guide tools
AU2012296556A1 (en) 2011-08-15 2014-03-20 Conformis, Inc. Revision systems, tools and methods for revising joint arthroplasty implants
WO2013025814A1 (en) 2011-08-15 2013-02-21 Conformis, Inc. Revision systems, tools and methods for revising joint arthroplasty implants
WO2013056036A1 (en) 2011-10-14 2013-04-18 Conformis, Inc. Methods and systems for identification, assessment, modeling, and repair of anatomical disparities in joint replacement
US20130184713A1 (en) 2011-12-23 2013-07-18 Conformis, Inc. Anatomical Alignment Systems and Methods
WO2013119790A1 (en) 2012-02-07 2013-08-15 Conformis, Inc. Tibial implant devices, systems, and methods
US20130211410A1 (en) 2012-02-07 2013-08-15 Conformis, Inc. Patella Resection Instrument Guide Having Optional Patient-Specific Features
WO2013119865A1 (en) 2012-02-07 2013-08-15 Conformis Inc Joint arthroplasty devices, systems, and methods
WO2013131066A1 (en) 2012-03-02 2013-09-06 Conformis, Inc. Patient-adapted posterior stabilized knee implants, designs and related methods and tools
WO2013152341A1 (en) 2012-04-06 2013-10-10 Conformis, Inc. Advanced methods, techniques, devices, and systems for cruciate retaining knee implants
WO2013155500A1 (en) 2012-04-13 2013-10-17 Conformis, Inc. Devices and methods for additive manufacturing of implant components
WO2013155501A1 (en) 2012-04-13 2013-10-17 Conformis, Inc. Patient adapted joint arthroplasty devices, surgical tools and methods of use
US20130296874A1 (en) 2012-04-18 2013-11-07 Conformis, Inc. Tibial guides, tools, and techniques for resecting the tibial plateau
US20130289570A1 (en) 2012-04-27 2013-10-31 Conformis, Inc. Tibial Template and Punch System, Tools and Methods for Preparing the Tibia
US20130297031A1 (en) 2012-05-02 2013-11-07 Conformis, Inc. Patient specific instruments and related methods for joint replacement
US20130331850A1 (en) 2012-06-11 2013-12-12 Conformis, Inc. Devices, techniques and methods for assessing joint spacing, balancing soft tissues and obtaining desired kinematics for joint implant components
WO2014008444A1 (en) 2012-07-03 2014-01-09 Conformis, Inc. Devices, systems, and methods for impacting joint implant components
US20140031722A1 (en) * 2012-07-30 2014-01-30 Orthosoft, Inc. Pelvic digitizer device with inertial sensor unit and method
US20140052149A1 (en) 2012-08-14 2014-02-20 OrthAlign, Inc. Hip replacement navigation system and method
US20170296274A1 (en) * 2012-08-14 2017-10-19 OrthAlign, Inc. Hip replacement navigation system and method
WO2014035991A1 (en) 2012-08-27 2014-03-06 Conformis, Inc. Methods, devices and techniques for improved placement and fixation of shoulder implant components
WO2014047514A1 (en) 2012-09-21 2014-03-27 Conformis, Inc. Methods and systems for optimizing design and manufacture of implant components using solid freeform fabrication
US20140086780A1 (en) 2012-09-21 2014-03-27 Conformis, Inc. Methods and systems for optimizing design and manufacture of implant components using solid freeform fabrication
US20140364858A1 (en) 2013-06-11 2014-12-11 Orthosoft, Inc. Acetabular cup prosthesis positioning instrument and method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hofmann et al, "Natural-Knee II System", Intermedics Orthopedics, Austin, TX, 1995.
Taylor et al, "Computer-Integrated Surgery, Technology and Clinical Applications", The MIT Press, Cambridge, MA, London, UK, pp. 451-463.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180280037A1 (en) * 2017-03-31 2018-10-04 Tornier Positioning system for a bone resecting instrumentation and positioning kit
US10857005B2 (en) * 2017-03-31 2020-12-08 Tornier Positioning system for a bone resecting instrumentation and positioning kit

Also Published As

Publication number Publication date
US20160220315A1 (en) 2016-08-04
CA2974837A1 (en) 2016-08-11
EP3253322B1 (en) 2020-03-11
EP3253322A1 (en) 2017-12-13
EP3253322A4 (en) 2019-01-16
CN107205783B (en) 2020-04-14
CN107205783A (en) 2017-09-26
WO2016123703A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
US10405928B2 (en) Acetabulum rim digitizer device and method
US11517382B2 (en) Method and device for cup implanting using inertial sensors
US11090170B2 (en) Acetabular cup prosthesis positioning instrument and method
US20210259854A1 (en) Instrument navigation in computer-assisted hip surgery
AU2021203699B2 (en) Systems, methods and devices for anatomical registration and surgical localization
US10092218B2 (en) Pelvic digitizer device with inertial sensor unit and method
KR20220129534A (en) Computer-Aided Surgical Navigation Systems and Methods for Implementing 3D Scanning
US10624764B2 (en) System and method for the registration of an anatomical feature
CA2949939C (en) System and method for the registration of an anatomical feature

Legal Events

Date Code Title Description
AS Assignment

Owner name: ORTHOSOFT INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FALARDEAU, BRUNO;DUVAL, KARINE;MOREAU-BELANGER, LAURENCE;AND OTHERS;SIGNING DATES FROM 20160205 TO 20160208;REEL/FRAME:037725/0272

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: ORTHOSOFT ULC, CANADA

Free format text: CONTINUANCE;ASSIGNOR:ORTHOSOFT INC.;REEL/FRAME:050791/0237

Effective date: 20170228

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4