TWM629671U - Immersion-cooled heat-dissipation structure - Google Patents
Immersion-cooled heat-dissipation structure Download PDFInfo
- Publication number
- TWM629671U TWM629671U TW110208739U TW110208739U TWM629671U TW M629671 U TWM629671 U TW M629671U TW 110208739 U TW110208739 U TW 110208739U TW 110208739 U TW110208739 U TW 110208739U TW M629671 U TWM629671 U TW M629671U
- Authority
- TW
- Taiwan
- Prior art keywords
- heat dissipation
- porous metal
- super
- thermal interface
- metal heat
- Prior art date
Links
Images
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本新型涉及一種散熱結構,具體來說是涉及一種浸沒式散熱結構。The new model relates to a heat dissipation structure, in particular to a submerged heat dissipation structure.
浸沒式冷卻技術是將發熱元件(如伺服器、磁碟陣列等)直接浸沒在不導電的冷卻液中,以透過冷卻液吸熱氣化帶走發熱元件運作所產生之熱能。然而,如何透過浸沒式冷卻技術更加有效地進行散熱一直是業界所需要解決的問題。Immersion cooling technology is to directly immerse heating elements (such as servers, disk arrays, etc.) in a non-conductive cooling liquid, so as to take away the heat energy generated by the operation of the heating element through the heat absorption and vaporization of the cooling liquid. However, how to dissipate heat more effectively through immersion cooling technology has always been a problem that the industry needs to solve.
有鑑於此,本新型創作人本於多年從事相關產品之開發與設計,有感上述缺失之可改善,乃特潛心研究並配合學理之運用,終於提出一種設計合理且有效改善上述缺失之本新型。In view of this, the creator of this new model has been engaged in the development and design of related products for many years, and feels that the above deficiencies can be improved. He has devoted himself to research and cooperated with the application of academic principles, and finally proposed a new model with a reasonable design and effectively improving the above deficiencies. .
本新型所要解決的技術問題在於,針對現有技術的不足提供一種浸沒式散熱結構。The technical problem to be solved by the present invention is to provide an immersed heat dissipation structure in view of the deficiencies of the prior art.
為了解決上述的技術問題,本新型提供一種浸沒式散熱結構,包括:多孔金屬散熱材,其孔隙率>8%、集成散熱器、以及熱界面材;其中,所述熱界面材位於所述多孔金屬散熱材與所述集成散熱器之間以形成熱連接,並且所述多孔金屬散熱材與所述熱界面材的連接面上形成有一超潤濕層,所述超潤濕層對水的潤濕角<10°。In order to solve the above-mentioned technical problems, the present invention provides an immersed heat dissipation structure, comprising: a porous metal heat dissipation material, the porosity of which is greater than 8%, an integrated heat sink, and a thermal interface material; wherein, the thermal interface material is located in the porous metal heat dissipation material. A thermal connection is formed between the metal heat dissipation material and the integrated heat sink, and a super-wetting layer is formed on the connecting surface of the porous metal heat-dissipating material and the thermal interface material. Wet angle <10°.
在一優選實施例中,所述多孔金屬散熱材是以銅粉末燒結所形成的一多孔銅散熱材。In a preferred embodiment, the porous metal heat dissipation material is a porous copper heat dissipation material formed by sintering copper powder.
在一優選實施例中,所述熱界面材為一親水性導熱膠。In a preferred embodiment, the thermal interface material is a hydrophilic thermally conductive adhesive.
在一優選實施例中,所述超潤濕層為一厚度<10um的薄膜層。In a preferred embodiment, the super-wetting layer is a thin film layer with a thickness <10um.
為了解決上述的技術問題,本新型另提供一種浸沒式散熱結構,包括:多孔金屬散熱材,其孔隙率>8%、集成散熱器、以及熱界面材;其中,所述熱界面材位於所述多孔金屬散熱材與所述集成散熱器之間以形成熱連接,並且所述多孔金屬散熱材與所述熱界面材的連接面上形成有一超疏水層,所述超疏水層對水的潤濕角>120°。In order to solve the above technical problems, the present invention further provides an immersion heat dissipation structure, comprising: a porous metal heat dissipation material with a porosity of >8%, an integrated heat sink, and a thermal interface material; wherein, the thermal interface material is located in the A thermal connection is formed between the porous metal heat dissipation material and the integrated heat sink, and a superhydrophobic layer is formed on the connecting surface of the porous metal heat dissipation material and the thermal interface material, and the superhydrophobic layer is wettable to water. Angle > 120°.
在一優選實施例中,所述多孔金屬散熱材是以銅粉末燒結所形成的一多孔銅散熱材。In a preferred embodiment, the porous metal heat dissipation material is a porous copper heat dissipation material formed by sintering copper powder.
在一優選實施例中,所述熱界面材為一非親水性導熱膠。In a preferred embodiment, the thermal interface material is a non-hydrophilic thermally conductive adhesive.
在一優選實施例中,所述超疏水層為一厚度<10um的薄膜層。In a preferred embodiment, the superhydrophobic layer is a thin film layer with a thickness of <10um.
本新型的有益效果至少在於,本新型提供的浸沒式散熱結構,其可以通過「多孔金屬散熱材,其孔隙率>8%」、「所述熱界面材位於所述多孔金屬散熱材與所述集成散熱器之間以形成熱連接」、「所述多孔金屬散熱材與所述熱界面材的連接面上形成有一超潤濕層,所述超潤濕層對水的潤濕角<10°」、或「所述多孔金屬散熱材與所述熱界面材的連接面上形成有一超疏水層,所述超疏水層對水的潤濕角>120°」的技術方案,使得本新型提供的浸沒式散熱結構的多孔金屬散熱材的區域的氣泡生成量能有效增加,並且熱界面材可以透過超潤濕層或超疏水層增加與多孔金屬散熱材的連接性,進而更加提升傳熱效率。The beneficial effect of the present invention is at least as follows: the immersion heat dissipation structure provided by the present invention can pass through "porous metal heat dissipation material, the porosity of which is greater than 8%", "the thermal interface material is located between the porous metal heat dissipation material and the A super-wetting layer is formed on the connecting surface of the porous metal heat-dissipating material and the thermal interface material, and the wetting angle of the super-wetting layer to water is <10° ", or "a super-hydrophobic layer is formed on the connecting surface of the porous metal heat-dissipating material and the thermal interface material, and the wetting angle of the super-hydrophobic layer to water is >120°", which makes the The amount of bubbles generated in the area of the porous metal heat dissipation material of the immersion heat dissipation structure can be effectively increased, and the thermal interface material can increase the connectivity with the porous metal heat dissipation material through the super-wetting layer or the super-hydrophobic layer, thereby further improving the heat transfer efficiency.
為使能更進一步瞭解本新型的特徵及技術內容,請參閱以下有關本新型的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本新型加以限制。For a further understanding of the features and technical content of the present invention, please refer to the following detailed descriptions and drawings of the present invention. However, the drawings provided are only for reference and description, and are not intended to limit the present invention.
以下是通過特定的具體實施例來說明本新型所公開有關的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本新型的優點與效果。本新型可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不背離本新型的構思下進行各種修改與變更。另外,本新型的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本新型的相關技術內容,但所公開的內容並非用以限制本新型的保護範圍。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。The following are specific specific examples to illustrate the related embodiments disclosed by the present invention, and those skilled in the art can understand the advantages and effects of the present invention from the content disclosed in this specification. The present invention can be implemented or applied through other different specific embodiments, and various details in this specification can also be modified and changed based on different viewpoints and applications without departing from the concept of the present invention. In addition, the drawings of the present invention are only for simple schematic illustration, and are not drawn according to the actual size, and are stated in advance. The following embodiments will further describe the related technical content of the present invention in detail, but the disclosed content is not intended to limit the protection scope of the present invention. In addition, the term "or", as used herein, should include any one or a combination of more of the associated listed items, as the case may be.
[第一實施例][First Embodiment]
請參閱圖1所示,其為本新型的第一實施例,本新型實施例提供一種浸沒式散熱結構。如圖1所示,根據本新型實施例所提供的浸沒式散熱結構,基本上從上到下依序可以為多孔金屬散熱材10、熱界面材(Thermal Interface Material,TIM) 20、以及集成散熱器(Integrated Heat Spreader,IHS) 30。Please refer to FIG. 1 , which is a first embodiment of the present invention, which provides an immersion heat dissipation structure. As shown in FIG. 1 , the immersion heat dissipation structure provided according to the novel embodiment can basically be a porous metal
本實施例的多孔金屬散熱材10可以是以銅粉末燒結所形成的多孔銅散熱材,且可以是浸沒於兩相冷卻液(如電子氟化液)中,使得兩相冷卻液在吸熱氣化形成的氣泡數量能大大增加,進而大幅強化了散熱效果。進一步說,本實施例的多孔金屬散熱材10的孔隙率是>8%,使得兩相冷卻液在吸熱氣化形成的氣泡數量能確實大大增加。The porous metal heat-dissipating
本實施例的集成散熱器30可用於接觸發熱元件,並且本實施例的熱界面材20位於多孔金屬散熱材10與集成散熱器30之間,用於提升集成散熱器30與多孔金屬散熱材10之間之熱連接,進而提升集成散熱器30至多孔金屬散熱材10的傳熱效率。The integrated
在本實施例中,熱界面材20為導熱膠,且為親水性導熱膠,例如以親水性環氧樹脂為基底的導熱膠。因此,為了增加集成散熱器30與多孔金屬散熱材10之間之熱連接,本實施例的多孔金屬散熱材10與熱界面材20的連接面上形成有一超潤濕層15,其可以是透過材料本身或表面微觀結構來改變材料表面潤濕性,並且本實施例的超潤濕層15對水的潤濕角(wetting angle)
θ1 <10°(例如圖2所示意),使得本實施例中的親水性的熱界面材20可以透過超高潤濕性的超潤濕層15增加與多孔金屬散熱材10的連接性,進而更加提升傳熱效率。
In this embodiment, the
進一步說,為了使親水性的熱界面材20得以透過超高潤濕性的超潤濕層15更加有效地增加與多孔金屬散熱材10的連接性與提升傳熱效率,本實施例的超潤濕層15為一厚度<10um的薄膜層。Further, in order to allow the hydrophilic
[第二實施例][Second Embodiment]
請參閱圖3所示,其為本新型的第二實施例,本實施例的浸沒式散熱結構與第一實施例大致相同,其差異說明如下。Please refer to FIG. 3 , which is a second embodiment of the new type. The immersion heat dissipation structure of this embodiment is substantially the same as that of the first embodiment, and the differences are explained as follows.
在本實施例中,熱界面材20為導熱膠,且為非親水性導熱膠,例如以非親水性矽油為基底的導熱膠。因此,為了增加集成散熱器30與多孔金屬散熱材10之間之熱連接,本實施例的多孔金屬散熱材10與熱界面材20的連接面上形成有一超疏水層17,其可以是透過材料本身或表面微觀結構來改變材料表面疏水性,並且本實施例的超疏水層17對水的潤濕角(wetting angle)
θ2 >120°(例如圖4所示意),使得本實施例中的非親水性的熱界面材20可以透過超高疏水性的超疏水層17增加與多孔金屬散熱材10的連接性,進而更加提升傳熱效率。
In this embodiment, the
進一步說,為了使非親水性的熱界面材20得以透過超高疏水性的超疏水層17更加有效地增加與多孔金屬散熱材10的連接性與提升傳熱效率,本實施例的超疏水層17為一厚度<10um的薄膜層。Furthermore, in order to allow the non-hydrophilic
綜合以上所述,本新型實施例提供的浸沒式散熱結構,其可以通過「多孔金屬散熱材10,其孔隙率>8%」、「所述熱界面材20位於所述多孔金屬散熱材10與所述集成散熱器30之間以形成熱連接」、「所述多孔金屬散熱材10與所述熱界面材20的連接面上形成有一超潤濕層15,所述超潤濕層15對水的潤濕角<10°」、或「所述多孔金屬散熱材10與所述熱界面材20的連接面上形成有一超疏水層17,所述超疏水層17對水的潤濕角>120°」的技術方案,使得本新型實施例提供的浸沒式散熱結構的多孔金屬散熱材10區域的氣泡生成量能有效增加,並且熱界面材20可以透過超潤濕層15或超疏水層17增加與多孔金屬散熱材10的連接性,進而更加提升傳熱效率。Based on the above, the immersion heat dissipation structure provided by the new embodiment can pass through "the porous metal
以上所公開的內容僅為本新型的優選可行實施例,並非因此侷限本新型的申請專利範圍,所以凡是運用本新型說明書及圖式內容所做的等效技術變化,均包含於本新型的申請專利範圍內。The contents disclosed above are only preferred and feasible embodiments of the present invention, and are not intended to limit the scope of the patent application of the present invention. Therefore, any equivalent technical changes made by using the contents of the description and drawings of the present invention are included in the application of the present invention. within the scope of the patent.
10:多孔金屬散熱材 15:超潤濕層 17:超疏水層 20:熱界面材 30:集成散熱器 θ1:潤濕角 θ2:潤濕角10: Porous metal heat sink 15: Super wetting layer 17: Super hydrophobic layer 20: Thermal interface material 30: Integrated heat sink θ 1: Wetting angle θ 2: Wetting angle
圖1為本新型第一實施例的浸沒式散熱結構側視示意圖。FIG. 1 is a schematic side view of the immersion heat dissipation structure according to the first embodiment of the novel.
圖2為本新型第一實施例的超潤濕層的潤濕角量測示意圖。FIG. 2 is a schematic diagram of the wetting angle measurement of the super-wetting layer of the first embodiment of the novel.
圖3為本新型第二實施例的浸沒式散熱結構側視示意圖。FIG. 3 is a schematic side view of the immersion heat dissipation structure according to the second embodiment of the novel.
圖4為本新型第二實施例的超疏水層的潤濕角量測示意圖。FIG. 4 is a schematic diagram of the wetting angle measurement of the superhydrophobic layer of the second embodiment of the novel.
10:多孔金屬散熱材 10: Porous metal heat sink
15:超潤濕層 15: Super wetting layer
20:熱界面材 20: Thermal interface material
30:集成散熱器 30: Integrated radiator
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110208739U TWM629671U (en) | 2021-07-26 | 2021-07-26 | Immersion-cooled heat-dissipation structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110208739U TWM629671U (en) | 2021-07-26 | 2021-07-26 | Immersion-cooled heat-dissipation structure |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM629671U true TWM629671U (en) | 2022-07-21 |
Family
ID=83437816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110208739U TWM629671U (en) | 2021-07-26 | 2021-07-26 | Immersion-cooled heat-dissipation structure |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM629671U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI804930B (en) * | 2021-07-26 | 2023-06-11 | 艾姆勒科技股份有限公司 | Immersion-cooled heat-dissipation structure |
-
2021
- 2021-07-26 TW TW110208739U patent/TWM629671U/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI804930B (en) * | 2021-07-26 | 2023-06-11 | 艾姆勒科技股份有限公司 | Immersion-cooled heat-dissipation structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104634148B (en) | A kind of nanostructured flat-plate heat pipe | |
TWM627557U (en) | Immersion-cooled porous heat-dissipation substrate structure | |
TWM629671U (en) | Immersion-cooled heat-dissipation structure | |
TWI804930B (en) | Immersion-cooled heat-dissipation structure | |
CN207424793U (en) | A kind of computer CPU dissipating cover | |
TWM629670U (en) | Two-phase immersion-cooled fin structure | |
TWI789894B (en) | Immersion-cooled heat-dissipation structure | |
TWI816524B (en) | Two-phase immersion-cooling heat-dissipation structure having skived fin with high porosity | |
TWI797871B (en) | Two-phase immersion-type heat-dissipation substrate structure | |
TWI823668B (en) | Two-phase immersion cooling compound heat-dissipating device | |
TWI809641B (en) | Immersion-cooling type heat-dissipation plate | |
TWI792475B (en) | Immersion-cooled heat-dissipation structure with macroscopic-scale fin structure and immersion-cooled heat-dissipation structure with fin structure | |
TWI797865B (en) | Two-phase immersion-cooled heat-dissipation structure | |
TW202411587A (en) | Two-phase immersion-cooling heat-dissipation composite structure having high-porosity solids and high-thermal-conductivity fins | |
TWI823696B (en) | Two-phase immersion-cooling heat-dissipation structure having skived fins | |
TWI792347B (en) | Two-phase immersion-cooled fin structure | |
TWI819807B (en) | Two-phase immersion-cooling heat-dissipation structure having fins for facilitating bubble generation | |
TWM631306U (en) | Immersion-cooled heat-dissipation structure with macroscopic-scale fin structure and immersion-cooled heat-dissipation structure with fin structure | |
TWI816444B (en) | Immersion-cooling heat-dissipation structure with high density fins | |
TWI833500B (en) | Two-phase immersion-cooling type heat-dissipation structure having skived fins with high surface roughness | |
TWI784746B (en) | Immersion-cooled porous heat-dissipation structure having macroscopic-scale fin structure | |
TWI822512B (en) | Two-phase immersion-cooling heat-dissipation structure with shortened evacuation route for vapor bubbles | |
TWI813026B (en) | Two-phase immersion-cooled heat-dissipation substrate | |
TWI779869B (en) | Immersion-cooled porous heat-dissipation structure | |
TWI833342B (en) | Two-phase immersion-cooling heat-dissipation structure having porous structure |