Nothing Special   »   [go: up one dir, main page]

TWM659352U - Motor status monitoring system - Google Patents

Motor status monitoring system Download PDF

Info

Publication number
TWM659352U
TWM659352U TW113204926U TW113204926U TWM659352U TW M659352 U TWM659352 U TW M659352U TW 113204926 U TW113204926 U TW 113204926U TW 113204926 U TW113204926 U TW 113204926U TW M659352 U TWM659352 U TW M659352U
Authority
TW
Taiwan
Prior art keywords
domain data
frequency domain
frequency
computing device
motor
Prior art date
Application number
TW113204926U
Other languages
Chinese (zh)
Inventor
曾源毅
王元綱
陳彥勳
林澤宇
周鴻翔
Original Assignee
華碩電腦股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華碩電腦股份有限公司 filed Critical 華碩電腦股份有限公司
Priority to TW113204926U priority Critical patent/TWM659352U/en
Publication of TWM659352U publication Critical patent/TWM659352U/en

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

A motor status monitoring system is provided, which includes a vibration sensor and a computing device. The vibration sensor is configured to sense a plurality of vibration signals on multiple axes of a motor device during operation. The computing device is configured to perform the following operations. The vibration signals from the vibration sensor are obtained. A time-domain to frequency-domain processing is performed based on the vibration signals on the axes to obtain frequency domain data for each axis. A data synthesis processing is performed on the frequency domain data to obtain synthesized frequency domain data, and a vibration spectrum characteristic of the motor device is obtained through performing peak detection processing to the frequency domain data and the synthesized frequency domain data.

Description

馬達狀態監控系統Motor Status Monitoring System

本新型創作是有關於一種馬達狀態監控系統。This novel creation is about a motor status monitoring system.

隨著近期變頻驅動電機的普及,馬達設備的運行頻率會隨負載變化而改變。基此,在馬達設備的運行頻率是可變化的情況下,馬達設備的振動頻譜的一倍頻率(又稱為基頻)不再是一個固定值,也增加識別轉動設備之振動頻率的難度。傳統方法需要將馬達轉速固定,並使用閃頻儀來確定馬達設備的基頻,但此操作受限於閃光頻閃儀的使用條件限制而於實際生產中難以實現。或者,測試人員可以讀取變頻器當前輸出頻率並記錄馬達設備的振動頻譜,但這需要現場操作,對於需要長期收集振動數據進行分析的情況並不適合。此外,對於變頻馬達設備來說,其振動量會低於定頻馬達設備。因此,當對變頻馬達設備進行振動量測時,容易受到轉速較高振動量較大的周遭設備的共振干擾,而對振動數據的分析結果帶來不良影響。With the recent popularity of variable frequency drive motors, the operating frequency of motor equipment will change with load changes. Therefore, when the operating frequency of motor equipment is variable, the frequency of the motor equipment's vibration spectrum (also known as the fundamental frequency) is no longer a fixed value, which also increases the difficulty of identifying the vibration frequency of rotating equipment. The traditional method requires fixing the motor speed and using a stroboscope to determine the fundamental frequency of the motor equipment, but this operation is difficult to achieve in actual production due to the limitations of the use conditions of the stroboscope. Alternatively, the tester can read the current output frequency of the inverter and record the vibration spectrum of the motor device, but this requires on-site operation and is not suitable for long-term collection of vibration data for analysis. In addition, for variable-frequency motor equipment, its vibration amount is lower than that of fixed-frequency motor equipment. Therefore, when measuring the vibration of variable-frequency motor equipment, it is easy to be disturbed by the resonance of surrounding equipment with higher speed and larger vibration, which will have a negative impact on the analysis results of the vibration data.

本新型創作提出一種馬達狀態監控系統,包括振動感測器與計算裝置。振動感測器經配置以感測馬達設備於運轉時多個軸向上的多個振動訊號。計算裝置經配置以執行下列操作。從振動感測器獲取馬達設備的多個振動訊號。根據多個軸向上的多個振動訊號進行時域轉頻域處理,以獲取對應至多個軸向的多個頻域資料。對多個頻域資料進行資料合成處理而獲取一合成頻域資料。透過對多個頻域資料與合成頻域資料進行峰值檢測處理,來獲取馬達設備的振動頻譜特徵。This novel invention proposes a motor state monitoring system, including a vibration sensor and a computing device. The vibration sensor is configured to sense multiple vibration signals in multiple axial directions when the motor device is running. The computing device is configured to perform the following operations. Multiple vibration signals of the motor device are obtained from the vibration sensor. Time domain to frequency domain processing is performed based on the multiple vibration signals in multiple axial directions to obtain multiple frequency domain data corresponding to the multiple axial directions. Data synthesis processing is performed on the multiple frequency domain data to obtain a synthetic frequency domain data. Vibration spectrum characteristics of the motor device are obtained by performing peak detection processing on the multiple frequency domain data and the synthetic frequency domain data.

基於上述,於本新型創作的實施例中,振動感測器用以量測馬達設備的振動資料,且上述振動資料包括對應至多個軸向的多個振動訊號。計算裝置可透過時域轉頻域處理將這些振動訊號轉換為多個軸向的頻域資料。之後,計算裝置可根據這些頻域資料與這些頻域資料的合成頻域資料的峰值檢測結果,來分析出馬達設備的振動頻譜特徵。基此,透過綜合考量不同軸向上之振動訊號的頻域資料,本新型創作可針對馬達設備獲取更為精準且可靠的振動頻譜特徵,以更準確地即時監控馬達狀態。Based on the above, in an embodiment of the present novel creation, a vibration sensor is used to measure vibration data of a motor device, and the vibration data includes multiple vibration signals corresponding to multiple axes. The computing device can convert these vibration signals into frequency domain data of multiple axes through time domain to frequency domain processing. Afterwards, the computing device can analyze the vibration spectrum characteristics of the motor device based on the peak detection results of these frequency domain data and the synthetic frequency domain data of these frequency domain data. Based on this, by comprehensively considering the frequency domain data of vibration signals in different axes, the present novel creation can obtain more accurate and reliable vibration spectrum characteristics for the motor device, so as to more accurately monitor the motor status in real time.

為讓本新型創作的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more clearly understood, an embodiment is given below and described in detail with reference to the accompanying drawings.

本新型創作的部份實施例接下來將會配合附圖來詳細描述,以下的描述所引用的元件符號,當不同附圖出現相同的元件符號將視為相同或相似的元件。這些實施例只是本新型創作的一部份,並未揭示所有本新型創作的可實施方式。更確切的說,這些實施例只是本新型創作的專利申請範圍中的裝置的範例。Some embodiments of the present invention will be described in detail below with reference to the accompanying drawings. When the same element symbols appear in different drawings, they will be regarded as the same or similar elements. These embodiments are only a part of the present invention and do not disclose all possible implementations of the present invention. More precisely, these embodiments are only examples of devices within the scope of the patent application of the present invention.

請參照圖1與圖2,馬達狀態監控系統10包括振動感測器100與計算裝置200。振動感測器100設置於馬達設備M1上,上述馬達設備M1可為泵浦或壓縮機等具有馬達的機械設備。於一些實施例中,振動感測器100可以符合ISO 10816-3規範的方式設置於馬達設備M1上。振動感測器100經配置以感測馬達設備M1於運轉時多個軸向上的多個振動訊號Sd,並將多個軸向上的多個振動訊號Sd提供給計算裝置200。1 and 2 , the motor state monitoring system 10 includes a vibration sensor 100 and a computing device 200. The vibration sensor 100 is disposed on the motor device M1, which may be a mechanical device having a motor such as a pump or a compressor. In some embodiments, the vibration sensor 100 may be disposed on the motor device M1 in a manner that complies with the ISO 10816-3 specification. The vibration sensor 100 is configured to sense multiple vibration signals Sd in multiple axial directions of the motor device M1 during operation, and provide the multiple vibration signals Sd in multiple axial directions to the computing device 200.

於一些實施例中,振動感測器100可為三軸加速度感測器。三軸加速度感測器可用以測量馬達設備M1在三個不同軸向上的振動狀態,亦即三個軸向上的加速度感測值。這三個軸向包括第一軸向、第二軸向與第三軸向,通常又可稱為X軸向、Y軸向和Z軸向。振動感測器100可將馬達設備M1在三個軸向上的三筆振動訊號Sd提供給計算裝置200。In some embodiments, the vibration sensor 100 may be a three-axis acceleration sensor. The three-axis acceleration sensor can be used to measure the vibration state of the motor device M1 in three different axes, that is, the acceleration sensing values in the three axes. These three axes include the first axis, the second axis and the third axis, which are usually referred to as the X axis, the Y axis and the Z axis. The vibration sensor 100 can provide three vibration signals Sd of the motor device M1 in the three axes to the computing device 200.

於一些實施例中,計算裝置200為具有運算能力的電子裝置,其例如可實現為電腦、伺服器、工業控制設備、單板計算機(Single Board Computer,SBC)或支持微控制器運算的感測設備等等,本案對此不限制。計算裝置200運行的作業系統可例如是Windows、Linux或Arduino,本案對此不限制。計算裝置200可包括收發器210、儲存裝置220,以及處理器230。In some embodiments, the computing device 200 is an electronic device with computing capabilities, which can be implemented as a computer, a server, an industrial control device, a single board computer (SBC), or a sensing device supporting microcontroller computing, etc., and the present case is not limited to this. The operating system running on the computing device 200 can be, for example, Windows, Linux, or Arduino, and the present case is not limited to this. The computing device 200 may include a transceiver 210, a storage device 220, and a processor 230.

收發器210可以無線或有線的方式傳送及接收資料。收發器210還可以執行例如低噪聲放大、阻抗匹配、混頻、向上或向下頻率轉換、濾波、放大以及類似的操作。計算裝置200可透過收發器210接收來自振動感測器100所發送的資料(例如振動訊號Sd)。The transceiver 210 can transmit and receive data wirelessly or wired. The transceiver 210 can also perform operations such as low noise amplification, impedance matching, mixing, up or down frequency conversion, filtering, amplification, and the like. The computing device 200 can receive data (such as the vibration signal Sd) sent from the vibration sensor 100 through the transceiver 210.

儲存裝置220用以儲存資料或供處理器230存取的軟體模組或指令,其可以例如是任意型式的固定式或可移動式隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟或其他類似裝置、積體電路或其組合。The storage device 220 is used to store data or software modules or instructions for access by the processor 230, and can be, for example, any type of fixed or removable random access memory (RAM), read-only memory (ROM), flash memory, hard disk or other similar device, integrated circuit or combination thereof.

處理器230電性連接收發器210與儲存裝置220,例如是一般用途處理器、特殊用途處理器、傳統的處理器、數位訊號處理器、微處理器(microprocessor)、一個或多個結合數位訊號處理器核心的微處理器、控制器、微控制器、特殊應用積體電路(Application Specific Integrated Circuit,ASIC)、現場可程式閘陣列電路(Field Programmable Gate Array,FPGA)、任何其他種類的積體電路、狀態機、基於進階精簡指令集機器(Advanced RISC Machine,ARM)的處理器以及類似品。The processor 230 is electrically connected to the transceiver 210 and the storage device 220, and may be, for example, a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor, a microprocessor, one or more microprocessors combined with a digital signal processor core, a controller, a microcontroller, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), any other type of integrated circuit, a state machine, an advanced RISC machine (ARM) based processor, and the like.

於一些實施例中,處理器230可存取並執行記錄在儲存裝置220中的軟體模組,以實現本新型創作實施例中的馬達狀態監控方法中的各項操作。上述軟體模組可廣泛地解釋為意謂指令、指令集、代碼、程式碼、程式、應用程式、軟體套件、執行緒、程序、功能等,而不管其是被稱作軟體、韌體、中間軟體、微碼、硬體描述語言亦或其他者。In some embodiments, the processor 230 can access and execute the software module recorded in the storage device 220 to implement various operations in the motor state monitoring method in the embodiment of the present invention. The above-mentioned software module can be broadly interpreted as meaning instructions, instruction sets, codes, program codes, programs, applications, software packages, threads, procedures, functions, etc., regardless of whether it is called software, firmware, middleware, microcode, hardware description language or others.

請參照圖1至圖3,本實施例的方式適用於上述實施例中的馬達狀態監控系統10,以下即搭配馬達狀態監控系統10中的各項元件說明本實施例的詳細步驟。Please refer to FIG. 1 to FIG. 3 , the method of this embodiment is applicable to the motor state monitoring system 10 in the above-mentioned embodiment. The following is a detailed description of the steps of this embodiment in conjunction with the various components in the motor state monitoring system 10.

於步驟S310,計算裝置200從振動感測器100獲取馬達設備M1的多個振動訊號Sd。於一些實施例中,當振動感測器100為三軸加速度感測器時,多個軸向上的多個振動訊號Sd可包括多個軸向上的多個加速度時域資料。In step S310, the computing device 200 obtains a plurality of vibration signals Sd of the motor device M1 from the vibration sensor 100. In some embodiments, when the vibration sensor 100 is a three-axis acceleration sensor, the plurality of vibration signals Sd in the plurality of axes may include a plurality of acceleration time domain data in the plurality of axes.

於一些實施例中,上述多個軸向包括第一軸向(即X軸向)、第二軸向(即Y軸向)與第三軸向(即Z軸向)。也就是說,多個振動訊號Sd可包括第一軸向的加速度時域資料、第二軸向的加速度時域資料,與第三軸向的加速度時域資料。In some embodiments, the plurality of axes include a first axis (ie, X axis), a second axis (ie, Y axis), and a third axis (ie, Z axis). That is, the plurality of vibration signals Sd may include acceleration time domain data of the first axis, acceleration time domain data of the second axis, and acceleration time domain data of the third axis.

於步驟S320,計算裝置200根據多個軸向上的多個振動訊號Sd進行時域轉頻域處理,以獲取對應至多個軸向的多個頻域資料。於一些實施例中,當多個振動訊號Sd包括多個軸向上的多個加速度時域資料,計算裝置200可對多個軸向上的多個加速度時域資料進行一積分處理,以獲取多個軸向上的多個速度時域資料。接著,計算裝置200對多個速度時域資料分別進行時域轉頻域處理,以獲取對應至多個軸向的多個頻域資料。In step S320, the computing device 200 performs time-domain to frequency-domain processing on the multiple vibration signals Sd in multiple axial directions to obtain multiple frequency-domain data corresponding to the multiple axial directions. In some embodiments, when the multiple vibration signals Sd include multiple acceleration time-domain data in multiple axial directions, the computing device 200 may perform an integration processing on the multiple acceleration time-domain data in multiple axial directions to obtain multiple velocity time-domain data in multiple axial directions. Then, the computing device 200 performs time-domain to frequency-domain processing on the multiple velocity time-domain data respectively to obtain multiple frequency-domain data corresponding to the multiple axial directions.

於一些實施例中,時域轉頻域處理包括快速傅立葉轉換(Fast Fourier Transform,FFT)處理。In some embodiments, the time-domain to frequency-domain processing includes Fast Fourier Transform (FFT) processing.

詳細來說,請參照圖4,其是依照本新型創作一實施例的獲取頻域資料的示意圖。計算裝置200可從振動感測器100獲取X軸向的加速度時域資料AX1、Y軸向的加速度時域資料AY1,與Z軸向的加速度時域資料AZ1。計算裝置200可對X軸向的加速度時域資料AX1進行積分處理41而產生X軸向的速度時域資料VX1。計算裝置200可對Y軸向的加速度時域資料AY1進行積分處理41而產生Y軸向的速度時域資料VY1。計算裝置200可對Z軸向的加速度時域資料AZ1進行積分處理41而產生Z軸向的速度時域資料VZ1。須說明的是,由於振動感測器100取得的振動訊號Sd為加速度資料,但加速度資料還包含有雜訊,故經由積分處理41後,則雜訊相對變小。For details, please refer to FIG. 4 , which is a schematic diagram of obtaining frequency domain data according to an embodiment of the present invention. The computing device 200 can obtain acceleration time domain data AX1 in the X-axis direction, acceleration time domain data AY1 in the Y-axis direction, and acceleration time domain data AZ1 in the Z-axis direction from the vibration sensor 100. The computing device 200 can perform integration processing 41 on the acceleration time domain data AX1 in the X-axis direction to generate velocity time domain data VX1 in the X-axis direction. The computing device 200 can perform integration processing 41 on the acceleration time domain data AY1 in the Y-axis direction to generate velocity time domain data VY1 in the Y-axis direction. The calculation device 200 can perform integration processing 41 on the acceleration time domain data AZ1 in the Z axis to generate the velocity time domain data VZ1 in the Z axis. It should be noted that since the vibration signal Sd obtained by the vibration sensor 100 is acceleration data, but the acceleration data also contains noise, the noise becomes relatively small after the integration processing 41.

之後,計算裝置200可對X軸向的速度時域資料VX1進行FFT處理42,而產生X軸向的頻域資料FX1。計算裝置200可對Y軸向的速度時域資料VY1進行FFT處理42,而產生Y軸向的頻域資料FY1。計算裝置200可對Z軸向的速度時域資料VZ1進行FFT處理42,而產生Z軸向的頻域資料FZ1。頻域資料FX1、FY1、FZ1分別顯示馬達設備M1在不同頻率下不同軸向上的振動幅值。之後,計算裝置200可基於不同軸向上的頻域資料FX1、FY1、FZ1來分析馬達設備M1的振動頻譜特徵。Afterwards, the computing device 200 may perform FFT processing 42 on the velocity time domain data VX1 in the X-axis direction to generate frequency domain data FX1 in the X-axis direction. The computing device 200 may perform FFT processing 42 on the velocity time domain data VY1 in the Y-axis direction to generate frequency domain data FY1 in the Y-axis direction. The computing device 200 may perform FFT processing 42 on the velocity time domain data VZ1 in the Z-axis direction to generate frequency domain data FZ1 in the Z-axis direction. The frequency domain data FX1, FY1, and FZ1 respectively display the vibration amplitudes of the motor device M1 in different axial directions at different frequencies. Afterwards, the computing device 200 can analyze the vibration spectrum characteristics of the motor device M1 based on the frequency domain data FX1, FY1, and FZ1 in different axial directions.

於步驟S330,計算裝置200對多個頻域資料進行資料合成處理而獲取一合成頻域資料。於一些實施例中,計算裝置200可對多個頻域資料進行平均處理而獲取合成頻域資料。以圖4為例,計算裝置200可對不同軸向上的頻域資料FX1、FY1、FZ1進行平均處理而獲取一合成頻域資料。詳細而言,計算裝置200可計算頻域資料FX1、FY1、FZ1中某一頻率所對應之三筆振幅的平均而獲取合成頻域資料中該頻率所對應的振幅。In step S330, the computing device 200 performs data synthesis processing on a plurality of frequency domain data to obtain a synthesized frequency domain data. In some embodiments, the computing device 200 may perform average processing on a plurality of frequency domain data to obtain the synthesized frequency domain data. Taking FIG. 4 as an example, the computing device 200 may perform average processing on the frequency domain data FX1, FY1, and FZ1 in different axial directions to obtain a synthesized frequency domain data. Specifically, the computing device 200 may calculate the average of three amplitudes corresponding to a certain frequency in the frequency domain data FX1, FY1, and FZ1 to obtain the amplitude corresponding to the frequency in the synthesized frequency domain data.

於步驟S340,計算裝置200透過對多個頻域資料與合成頻域資料進行峰值檢測處理,來獲取馬達設備M1的振動頻譜特徵。峰值檢測處理的峰值檢測演算法可例如為基於閾值的峰值檢測或梯度上升法等,其用以在頻域資料與合成頻域資料中尋找局部最大振幅。In step S340, the computing device 200 obtains the vibration spectrum characteristics of the motor device M1 by performing peak detection processing on the plurality of frequency domain data and the synthesized frequency domain data. The peak detection algorithm of the peak detection processing may be, for example, a threshold-based peak detection or a gradient ascent method, which is used to find the local maximum amplitude in the frequency domain data and the synthesized frequency domain data.

也就是說,計算裝置200可分別對不同軸向上的多個頻域資料與合成頻域資料分別進行峰值檢測處理,而獲取各個頻域資料的多個峰值與合成頻域資料的多個峰值。之後,計算裝置200可根據各個頻域資料的多個峰值與合成頻域資料的多個峰值,來識別馬達設備M1的振動頻譜特徵。於一些實施例中,馬達設備M1的振動頻譜特徵可包括一目標基頻與多個目標諧波頻率。That is, the computing device 200 can perform peak detection processing on multiple frequency domain data and synthesized frequency domain data in different axial directions respectively, and obtain multiple peaks of each frequency domain data and multiple peaks of the synthesized frequency domain data. Afterwards, the computing device 200 can identify the vibration spectrum characteristics of the motor device M1 according to the multiple peaks of each frequency domain data and the multiple peaks of the synthesized frequency domain data. In some embodiments, the vibration spectrum characteristics of the motor device M1 may include a target fundamental frequency and multiple target harmonic frequencies.

詳細來說,請參照圖5,其是依照本新型創作一實施例的決定目標基頻的流程圖。於步驟S341,計算裝置200對合成頻域資料進行峰值檢測處理,而獲取合成頻域資料於一預定頻率區間內的至少一第一候選基頻。上述預定頻率區間為馬達設備M1的基頻可能出現的頻率區間,其可依據實際應用來設置,本案對此不限制。也就是說,對合成頻域資料進行峰值檢測處理之後,計算裝置200可將預定頻率區間內的峰值所對應的頻率視為第一候選基頻。For details, please refer to FIG. 5 , which is a flow chart of determining a target baseband according to an embodiment of the present invention. In step S341, the computing device 200 performs peak detection processing on the synthesized frequency domain data, and obtains at least one first candidate baseband of the synthesized frequency domain data within a predetermined frequency range. The above-mentioned predetermined frequency range is a frequency range in which the baseband of the motor device M1 may appear, which can be set according to actual applications, and the present case is not limited to this. That is to say, after performing peak detection processing on the synthesized frequency domain data, the computing device 200 can regard the frequency corresponding to the peak value within the predetermined frequency range as the first candidate baseband.

於步驟S342,計算裝置200對各個頻域資料進行峰值檢測處理,而獲取各個頻域資料於預定頻率區間內的至少一第二候選基頻。同理,對不同軸向上的頻域資料分別進行峰值檢測處理之後,計算裝置200可將預定頻率區間內的峰值所對應的頻率視為第二候選基頻。In step S342, the computing device 200 performs peak detection processing on each frequency domain data to obtain at least one second candidate baseband of each frequency domain data within a predetermined frequency range. Similarly, after performing peak detection processing on frequency domain data in different axes, the computing device 200 may regard the frequency corresponding to the peak value within the predetermined frequency range as the second candidate baseband.

之後,計算裝置200可從多個候選基頻之中挑選出目標基頻。上述多個候選基頻可包括自合成頻域資料獲取的第一候選基頻與自各個頻域資料獲取的第二候選基頻。Afterwards, the computing device 200 may select a target baseband from a plurality of candidate basebands. The plurality of candidate basebands may include a first candidate baseband obtained from the synthesized frequency domain data and a second candidate baseband obtained from each frequency domain data.

舉例來說,請參照圖7A至圖7D。於圖7A中,計算裝置200可根據X軸向的振動訊號產生X軸向上的頻域資料71X。計算裝置200可對X軸向上的頻域資料71X進行峰值檢測處理,而獲取多個峰值。之後,計算裝置200可將預定頻率區間Fr1內的峰值P1、P2、P3所對應的頻率視為多個候選基頻(即第二候選基頻)。For example, please refer to FIG. 7A to FIG. 7D. In FIG. 7A, the computing device 200 can generate frequency domain data 71X in the X-axis direction according to the vibration signal in the X-axis direction. The computing device 200 can perform peak detection processing on the frequency domain data 71X in the X-axis direction to obtain multiple peaks. Afterwards, the computing device 200 can regard the frequencies corresponding to the peaks P1, P2, and P3 in the predetermined frequency interval Fr1 as multiple candidate basebands (i.e., second candidate basebands).

於圖7B中,計算裝置200可根據Y軸向的振動訊號產生Y軸向上的頻域資料71Y。計算裝置200可對Y軸向上的頻域資料71Y進行峰值檢測處理,而獲取多個峰值。之後,計算裝置200可將預定頻率區間Fr1內的峰值P4、P5所對應的頻率視為多個候選基頻(即第二候選基頻)。In FIG. 7B , the computing device 200 can generate frequency domain data 71Y in the Y-axis direction according to the vibration signal in the Y-axis direction. The computing device 200 can perform peak detection processing on the frequency domain data 71Y in the Y-axis direction to obtain multiple peaks. Afterwards, the computing device 200 can regard the frequencies corresponding to the peaks P4 and P5 in the predetermined frequency interval Fr1 as multiple candidate basebands (i.e., second candidate basebands).

於圖7C中,計算裝置200可根據Z軸向的振動訊號產生Z軸向上的頻域資料71Z。計算裝置200可對Z軸向上的頻域資料71Z進行峰值檢測處理,而獲取多個峰值。之後,計算裝置200可將預定頻率區間Fr1內的峰值P6、P7所對應的頻率視為多個候選基頻(即第二候選基頻)。In FIG. 7C , the computing device 200 can generate frequency domain data 71Z in the Z-axis direction according to the vibration signal in the Z-axis direction. The computing device 200 can perform peak detection processing on the frequency domain data 71Z in the Z-axis direction to obtain multiple peaks. Afterwards, the computing device 200 can regard the frequencies corresponding to the peaks P6 and P7 in the predetermined frequency interval Fr1 as multiple candidate basebands (i.e., second candidate basebands).

此外,於圖7D中,計算裝置200可對不同軸向上的頻域資料71X、71Y、71Z進行平均處理而獲取合成頻域資料71C。計算裝置200可對合成頻域資料71C進行峰值檢測處理,而獲取多個峰值。之後,計算裝置200可將預定頻率區間Fr1內的峰值P8、P9所對應的頻率視為多個候選基頻(即第一候選基頻)。In addition, in FIG. 7D , the computing device 200 may perform average processing on the frequency domain data 71X, 71Y, and 71Z in different axial directions to obtain the synthesized frequency domain data 71C. The computing device 200 may perform peak detection processing on the synthesized frequency domain data 71C to obtain multiple peaks. Thereafter, the computing device 200 may regard the frequencies corresponding to the peaks P8 and P9 in the predetermined frequency interval Fr1 as multiple candidate basebands (i.e., the first candidate baseband).

此外,於另一些實施例中,計算裝置200還可對峰值P1至P9所對應的頻率進行進一步篩選,而從峰值P1至P9所對應的頻率選出多個候選基頻。In addition, in some other embodiments, the computing device 200 may further filter the frequencies corresponding to the peaks P1 to P9, and select a plurality of candidate basebands from the frequencies corresponding to the peaks P1 to P9.

回到圖5,於步驟S343,計算裝置200根據多個頻域資料計算各個候選基頻的多個倍數頻率的累積振幅。以圖7A為例,計算裝置200可計算峰值P1所對應之候選基頻的二倍頻率、三倍頻率、四倍頻率、…、N倍頻率。假設峰值P1所對應之候選基頻為f1,則計算裝置200可計算二倍頻率為2 f1、三倍頻率為3 f1、四倍頻率為4 f1、…、N倍頻率為N f1。接著,基於頻域資料71X,計算裝置200可獲取這些倍數頻率(亦即二倍頻率2 f1、三倍頻率3 f1、四倍頻率4 f1、…、N倍頻率N f1)各自對應的多筆振幅,並將這些振幅加總而獲取累積振幅。依據相同的方式,計算裝置200可獲取峰值P1至P9所對應之每一個候選基頻的多個倍數頻率的累積振幅。 Returning to FIG. 5, in step S343, the computing device 200 calculates the cumulative amplitude of multiple frequencies of each candidate base frequency according to multiple frequency domain data. Taking FIG. 7A as an example, the computing device 200 can calculate the double frequency, triple frequency, quadruple frequency, ..., N times frequency of the candidate base frequency corresponding to the peak value P1. Assuming that the candidate base frequency corresponding to the peak value P1 is f1, the computing device 200 can calculate the double frequency as 2 f1, triple frequency is 3 f1, quadruple frequency is 4 f1, ..., N times the frequency is N f1. Then, based on the frequency domain data 71X, the computing device 200 can obtain these multiple frequencies (i.e., the double frequency 2 f1, triple frequency 3 f1, quadruple frequency 4 f1, ..., N times frequency N f1) and sum up the amplitudes to obtain the cumulative amplitude. In the same way, the calculation device 200 can obtain the cumulative amplitudes of multiple frequencies of each candidate fundamental frequency corresponding to the peaks P1 to P9.

於步驟S344,計算裝置200根據各個候選基頻對應的累積振幅決定目標基頻。於一些實施例中,計算裝置200可比較各個候選基頻對應的累積振幅,並將對應至最大累積振幅的候選基頻挑選作為目標基頻。由此可知,計算裝置200考量不同軸向上的頻域資料與其合成頻域資料來決定馬達設備M1之目標基頻,可有效提昇評估馬達基頻的準確度。In step S344, the computing device 200 determines the target baseband according to the accumulated amplitude corresponding to each candidate baseband. In some embodiments, the computing device 200 may compare the accumulated amplitude corresponding to each candidate baseband and select the candidate baseband corresponding to the maximum accumulated amplitude as the target baseband. It can be seen that the computing device 200 considers the frequency domain data in different axes and its synthesized frequency domain data to determine the target baseband of the motor device M1, which can effectively improve the accuracy of evaluating the motor baseband.

於一些實施例中,在決定馬達設備M1之目標基頻之後,計算裝置200可根據此目標基頻來決定多個目標諧波頻率。須注意的是,計算裝置200並非單純將目標基頻的倍數頻率作為多個目標諧波頻率,而是進一步綜合考慮不同軸向的多個候選諧波的累積振幅來決定多個目標諧波頻率。基此,這些目標諧波頻率可顯示出馬達設備M1的非線性行為。In some embodiments, after determining the target base frequency of the motor device M1, the computing device 200 may determine multiple target harmonic frequencies based on the target base frequency. It should be noted that the computing device 200 does not simply use multiple frequencies of the target base frequency as multiple target harmonic frequencies, but further comprehensively considers the cumulative amplitudes of multiple candidate harmonics in different axes to determine the multiple target harmonic frequencies. Based on this, these target harmonic frequencies can show the nonlinear behavior of the motor device M1.

詳細來說,請參照圖6,其是依照本新型創作一實施例的決定目標諧波頻率的流程圖。於步驟S345,計算裝置200計算目標基頻的多個倍數頻率。舉例而言,假設目標基頻為f2,則計算裝置200可計算多個倍數頻率,其分別為二倍頻率2 f2、三倍頻率3 f2、四倍頻率4 f2、…、N倍頻率N f2。 For details, please refer to FIG. 6 , which is a flow chart of determining the target harmonic frequency according to an embodiment of the present invention. In step S345, the computing device 200 calculates multiple frequencies of the target base frequency. For example, assuming that the target base frequency is f2, the computing device 200 can calculate multiple multiple frequencies, which are respectively double the frequency 2 f2, triple frequency 3 f2, quadruple frequency 4 f2, ..., N times frequency N f2.

於步驟S346,計算裝置200提取各個倍數頻率附近的多個候選諧波頻率。詳細來說,以圖7A為例,假設目標基頻為f2。基於頻域資料71X,計算裝置200可篩選出多個倍數頻率(例如二倍頻率2 f2、三倍頻率3 f2、四倍頻率4 f2、…、N倍頻率N f2)附近的峰值,並將這些峰值對應的頻率視為多個候選諧波頻率。同理,基於頻域資料71Y與71Z以及合成頻域資料71C,計算裝置200也可篩選多個倍數頻率(例如二倍頻率2 f2、三倍頻率3 f2、四倍頻率4 f2、…、N倍頻率N f2)附近的峰值,並將這些峰值對應的頻率視為多個候選諧波頻率。換言之,計算裝置200可將目標基頻的這些倍數頻率作為多個搜尋範圍的多個中心頻率,並尋找各個搜尋範圍內的多個峰值而獲取多個候選諧波頻率。這些搜尋範圍的頻率範圍可依據實際應用而設置。 In step S346, the computing device 200 extracts a plurality of candidate harmonic frequencies near each multiple frequency. Specifically, taking FIG. 7A as an example, assuming that the target base frequency is f2. Based on the frequency domain data 71X, the computing device 200 can select a plurality of multiple frequencies (e.g., double frequency 2 f2, triple frequency 3 f2, quadruple frequency 4 f2, ..., N times frequency N f2), and the frequencies corresponding to these peaks are regarded as multiple candidate harmonic frequencies. Similarly, based on the frequency domain data 71Y and 71Z and the synthesized frequency domain data 71C, the computing device 200 can also screen multiple multiple frequencies (for example, double frequency 2 f2, triple frequency 3 f2, quadruple frequency 4 f2, ..., N times frequency N f2), and the frequencies corresponding to these peaks are regarded as multiple candidate harmonic frequencies. In other words, the computing device 200 can use these multiple frequencies of the target base frequency as multiple center frequencies of multiple search ranges, and find multiple peaks in each search range to obtain multiple candidate harmonic frequencies. The frequency ranges of these search ranges can be set according to actual applications.

於步驟S347,計算裝置200根據多個頻域資料計算各個候選諧波頻率的累積振幅。也就是說,在獲取多個候選諧波頻率之後,計算裝置200可計算各個候選諧波頻率於各個頻域資料與合成頻域資料上的累計振幅。舉例來說,在獲取某一候選諧波頻率之後,計算裝置200可根據該候選諧波頻率獲取頻域資料71X的對應振幅A1、頻域資料71Y的對應振幅A2、頻域資料71Z的對應振幅A3,以及合成頻域資料71C的對應振幅A4。計算裝置200可將上述多個振幅相加(亦即A1+A2+A3+A4)來獲取該候選諧波頻率的累計振幅。In step S347, the computing device 200 calculates the cumulative amplitude of each candidate harmonic frequency according to the plurality of frequency domain data. That is, after obtaining the plurality of candidate harmonic frequencies, the computing device 200 can calculate the cumulative amplitude of each candidate harmonic frequency on each frequency domain data and the synthesized frequency domain data. For example, after obtaining a certain candidate harmonic frequency, the computing device 200 can obtain the corresponding amplitude A1 of the frequency domain data 71X, the corresponding amplitude A2 of the frequency domain data 71Y, the corresponding amplitude A3 of the frequency domain data 71Z, and the corresponding amplitude A4 of the synthesized frequency domain data 71C according to the candidate harmonic frequency. The computing device 200 may add the above-mentioned multiple amplitudes (ie, A1+A2+A3+A4) to obtain the cumulative amplitude of the candidate harmonic frequency.

於步驟S348,計算裝置200根據各個候選諧波頻率的累積振幅決定多個目標諧波頻率。於一些實施例中,計算裝置200可比較同一倍數頻率附近的各個候選諧波頻率的累積振幅,並將對應至最大累積振幅的候選諧波頻率挑選作為目標諧波頻率。舉例而言,計算裝置200可根據目標基頻的二倍頻率找到多個候選諧波頻率。接著,計算裝置200可從此二倍頻率附近的多個候選諧波頻率之中挑選出目標諧波頻率。依據相同的方式,計算裝置200可獲取相對於不同倍數頻率的多個目標諧波頻率。最終,計算裝置200可決定馬達設備M1的目標基頻與多個諧波頻率,並根據目標基頻與多個諧波頻率來推測馬達設備M1的運作狀態。In step S348, the computing device 200 determines a plurality of target harmonic frequencies according to the cumulative amplitudes of the candidate harmonic frequencies. In some embodiments, the computing device 200 may compare the cumulative amplitudes of the candidate harmonic frequencies near the same multiple frequency, and select the candidate harmonic frequency corresponding to the maximum cumulative amplitude as the target harmonic frequency. For example, the computing device 200 may find a plurality of candidate harmonic frequencies according to the double frequency of the target base frequency. Then, the computing device 200 may select the target harmonic frequency from the plurality of candidate harmonic frequencies near the double frequency. In the same manner, the computing device 200 can obtain multiple target harmonic frequencies corresponding to different multiple frequencies. Finally, the computing device 200 can determine the target base frequency and the multiple harmonic frequencies of the motor device M1, and estimate the operating state of the motor device M1 based on the target base frequency and the multiple harmonic frequencies.

於一些實施例中,計算裝置200可根據目標基頻計算馬達設備M1的轉速。進一步來說,根據馬達設備M1的規格資料,馬達設備M1之額定馬達轉速(單位:轉/分)是已知的。將馬達設備M1之額定馬達轉速除以60可獲取預定轉頻(單位:Hz)。此預定轉頻可用來決定用以估測目標基頻的預定頻率區間。假設根據前述實施例之計算方式,計算裝置200得出馬達設備M1的目標基頻為24 Hz,則計算裝置200可推算實際轉速等於24乘以60,即1440轉/分。In some embodiments, the computing device 200 may calculate the rotational speed of the motor device M1 according to the target base frequency. Further, according to the specification data of the motor device M1, the rated motor rotational speed (unit: rpm) of the motor device M1 is known. The rated motor rotational speed of the motor device M1 is divided by 60 to obtain a predetermined rotational frequency (unit: Hz). This predetermined rotational frequency can be used to determine a predetermined frequency range for estimating the target base frequency. Assuming that according to the calculation method of the aforementioned embodiment, the computing device 200 derives that the target base frequency of the motor device M1 is 24 Hz, the computing device 200 can infer that the actual rotational speed is equal to 24 times 60, that is, 1440 rpm.

於一些實施例中,計算裝置200於決定目標基頻與多個目標諧波頻率的過程中,還可結合共振點掃頻排查與操作參數調整,以精確地避開其他設備引起的共振點,來降低共振干擾的不良影響。於一些實施例中,計算裝置200可對振動感測器100提供的振動訊號進行資料預處理,像是數據清洗或其他濾雜訊處理,以排除誤導信息來提昇頻率特徵的預估準確度與可靠度。In some embodiments, the computing device 200 can combine resonance point scanning and operation parameter adjustment in the process of determining the target baseband and multiple target harmonic frequencies to accurately avoid the resonance points caused by other devices to reduce the adverse effects of resonance interference. In some embodiments, the computing device 200 can perform data pre-processing on the vibration signal provided by the vibration sensor 100, such as data cleaning or other noise filtering processing, to eliminate misleading information to improve the estimation accuracy and reliability of frequency characteristics.

綜上所述,於本新型創作的實施例中,振動感測器用以感測馬達設備的振動資料,且上述振動資料包括對應至多個軸向的多個振動訊號。計算裝置可透過時域轉頻域處理將這些振動訊號轉換為多個軸向的頻域資料。之後,計算裝置可根據這些頻域資料與這些頻域資料的合成頻域資料的峰值檢測結果,來分析出馬達設備的振動頻譜特徵。基此,透過分析不同軸向上的頻域資料,本新型創作可使得馬達設備的振動頻譜特徵的預估準確度有效提昇,並可以非侵入性方式來即時地監測的馬達設備的運作狀態,更無須干擾馬達設備的生產流程。因此,可有效預防馬達設備的故障、減少馬達設備的停機時間,與延長馬達設備的使用者壽命。In summary, in the embodiment of the present invention, the vibration sensor is used to sense the vibration data of the motor device, and the vibration data includes multiple vibration signals corresponding to multiple axes. The computing device can convert these vibration signals into frequency domain data of multiple axes through time domain to frequency domain processing. Afterwards, the computing device can analyze the vibration spectrum characteristics of the motor device based on the peak detection results of these frequency domain data and the synthesized frequency domain data of these frequency domain data. Based on this, by analyzing the frequency domain data in different axes, this new invention can effectively improve the estimation accuracy of the vibration spectrum characteristics of the motor equipment, and can monitor the operation status of the motor equipment in real time in a non-invasive way without interfering with the production process of the motor equipment. Therefore, it can effectively prevent the failure of the motor equipment, reduce the downtime of the motor equipment, and extend the user life of the motor equipment.

雖然本新型創作已以實施例揭露如上,然其並非用以限定本新型創作,任何所屬技術領域中具有通常知識者,在不脫離本新型創作的精神和範圍內,當可作些許的更動與潤飾,故本新型創作的保護範圍當視後附的申請專利範圍所界定者為準。Although the novel creation has been disclosed as above by way of embodiments, they are not intended to limit the novel creation. Any person with ordinary knowledge in the relevant technical field may make slight changes and modifications without departing from the spirit and scope of the novel creation. Therefore, the protection scope of the novel creation shall be subject to the scope defined in the attached patent application.

10:馬達狀態監控系統 100:振動感測器 200:計算裝置 220:儲存裝置 230:處理器 210:收發器 Sd:振動訊號 41:積分處理 42:FFT處理 AX1, AY1, AZ1:加速度時域資料 VX1, VY1, VZ1:速度時域資料 FX1, FY1, FZ1, 71X, 71Y, 71Z:頻域資料 71C:合成頻域資料 P1~P9:峰值 Fr1:預定頻率區間 S310~S340, S341~S348:步驟 10: Motor status monitoring system 100: Vibration sensor 200: Calculation device 220: Storage device 230: Processor 210: Transceiver Sd: Vibration signal 41: Integration processing 42: FFT processing AX1, AY1, AZ1: Acceleration time domain data VX1, VY1, VZ1: Velocity time domain data FX1, FY1, FZ1, 71X, 71Y, 71Z: Frequency domain data 71C: Synthesized frequency domain data P1~P9: Peak value Fr1: Predetermined frequency range S310~S340, S341~S348: Steps

圖1是依照本新型創作一實施例的馬達狀態監控系統的方塊圖。 圖2是依照本新型創作一實施例的馬達狀態監控系統的示意圖。 圖3是依照本新型創作一實施例的馬達狀態監控方法的流程圖。 圖4是依照本新型創作一實施例的獲取頻域資料的示意圖。 圖5是依照本新型創作一實施例的決定目標基頻的流程圖。 圖6是依照本新型創作一實施例的決定目標諧波頻率的流程圖。 圖7A至圖7C是依照本新型創作一實施例的頻域資料的範例示意圖。 圖7D是依照本新型創作一實施例的合成頻域資料的範例示意圖。 FIG. 1 is a block diagram of a motor state monitoring system according to an embodiment of the present invention. FIG. 2 is a schematic diagram of a motor state monitoring system according to an embodiment of the present invention. FIG. 3 is a flow chart of a motor state monitoring method according to an embodiment of the present invention. FIG. 4 is a schematic diagram of obtaining frequency domain data according to an embodiment of the present invention. FIG. 5 is a flow chart of determining a target baseband according to an embodiment of the present invention. FIG. 6 is a flow chart of determining a target harmonic frequency according to an embodiment of the present invention. FIG. 7A to FIG. 7C are example schematic diagrams of frequency domain data according to an embodiment of the present invention. FIG. 7D is an example schematic diagram of synthesized frequency domain data according to an embodiment of the present invention.

10:馬達狀態監控系統 10: Motor status monitoring system

100:振動感測器 100: Vibration sensor

200:計算裝置 200: Computing device

220:儲存裝置 220: Storage device

230:處理器 230: Processor

210:收發器 210: Transceiver

Claims (10)

一種馬達狀態監控系統,包括: 一振動感測器,經配置以感測一馬達設備於運轉時多個軸向上的多個振動訊號;以及 一計算裝置,經配置以: 從所述振動感測器獲取所述馬達設備的所述多個振動訊號; 根據所述多個軸向上的所述多個振動訊號進行一時域轉頻域處理,以獲取對應至所述多個軸向的多個頻域資料; 對所述多個頻域資料進行資料合成處理而獲取一合成頻域資料;以及 透過對所述多個頻域資料與所述合成頻域資料進行峰值檢測處理,來獲取所述馬達設備的振動頻譜特徵。 A motor state monitoring system comprises: A vibration sensor configured to sense multiple vibration signals of a motor device in multiple axial directions when the motor device is running; and A computing device configured to: Obtain the multiple vibration signals of the motor device from the vibration sensor; Perform a time domain to frequency domain conversion process on the multiple vibration signals in the multiple axial directions to obtain multiple frequency domain data corresponding to the multiple axial directions; Perform data synthesis processing on the multiple frequency domain data to obtain a synthesized frequency domain data; and Obtain the vibration spectrum characteristics of the motor device by performing peak detection processing on the multiple frequency domain data and the synthesized frequency domain data. 如請求項1所述的馬達狀態監控系統,其中所述振動感測器包括一加速度感測器,而所述多個軸向上的所述多個振動訊號包括所述多個軸向上的多個加速度時域資料。A motor state monitoring system as described in claim 1, wherein the vibration sensor includes an acceleration sensor, and the multiple vibration signals in the multiple axial directions include multiple acceleration time domain data in the multiple axial directions. 如請求項2所述的馬達狀態監控系統,其中所述計算裝置對所述多個軸向上的所述多個加速度時域資料進行一積分處理,以獲取所述多個軸向上的多個速度時域資料, 其中所述計算裝置對所述多個速度時域資料分別進行所述時域轉頻域處理,以獲取對應至所述多個軸向的所述多個頻域資料。 A motor state monitoring system as described in claim 2, wherein the computing device performs an integration process on the multiple acceleration time domain data in the multiple axial directions to obtain multiple velocity time domain data in the multiple axial directions, wherein the computing device performs the time domain to frequency domain process on the multiple velocity time domain data respectively to obtain the multiple frequency domain data corresponding to the multiple axial directions. 如請求項1所述的馬達狀態監控系統,其中所述時域轉頻域處理包括快速傅立葉轉換處理,且所述計算裝置對所述多個頻域資料進行平均處理而獲取所述合成頻域資料。A motor state monitoring system as described in claim 1, wherein the time domain to frequency domain processing includes fast Fourier transform processing, and the computing device performs average processing on the multiple frequency domain data to obtain the synthetic frequency domain data. 如請求項1所述的馬達狀態監控系統,其中所述多個軸向包括第一軸向、第二軸向與第三軸向。A motor status monitoring system as described in claim 1, wherein the multiple axes include a first axis, a second axis and a third axis. 如請求項1所述的馬達狀態監控系統,其中所述馬達設備的所述振動頻譜特徵包括一目標基頻與多個目標諧波頻率。A motor status monitoring system as described in claim 1, wherein the vibration spectrum characteristics of the motor device include a target fundamental frequency and a plurality of target harmonic frequencies. 如請求項6所述的馬達狀態監控系統,其中所述計算裝置從多個候選基頻之中挑選出所述目標基頻,所述多個候選基頻包括第一候選基頻與第二候選基頻, 所述計算裝置對所述合成頻域資料進行所述峰值檢測處理,而獲取所述合成頻域資料於一預定頻率區間內的所述第一候選基頻, 所述計算裝置對各所述多個頻域資料進行所述峰值檢測處理,而獲取各所述多個頻域資料於所述預定頻率區間內的所述第二候選基頻。 The motor state monitoring system as described in claim 6, wherein the computing device selects the target baseband from a plurality of candidate basebands, the plurality of candidate basebands including a first candidate baseband and a second candidate baseband, The computing device performs the peak detection processing on the synthesized frequency domain data to obtain the first candidate baseband of the synthesized frequency domain data within a predetermined frequency range, The computing device performs the peak detection processing on each of the plurality of frequency domain data to obtain the second candidate baseband of each of the plurality of frequency domain data within the predetermined frequency range. 如請求項7所述的馬達狀態監控系統,其中所述計算裝置根據所述多個頻域資料計算各所述多個候選基頻的多個倍數頻率的累積振幅,並根據各所述多個候選基頻對應的所述累積振幅決定所述目標基頻。A motor state monitoring system as described in claim 7, wherein the calculation device calculates the cumulative amplitude of multiple multiple frequencies of each of the multiple candidate basebands based on the multiple frequency domain data, and determines the target baseband based on the cumulative amplitude corresponding to each of the multiple candidate basebands. 如請求項6所述的馬達狀態監控系統,其中所述計算裝置計算所述目標基頻的多個倍數頻率,提取各所述多個倍數頻率附近的多個候選諧波頻率,根據所述多個頻域資料計算各所述多個候選諧波頻率的累積振幅,並根據各所述多個候選諧波頻率的累積振幅決定所述多個目標諧波頻率。A motor state monitoring system as described in claim 6, wherein the computing device calculates multiple multiple frequencies of the target base frequency, extracts multiple candidate harmonic frequencies near each of the multiple multiple frequencies, calculates the cumulative amplitude of each of the multiple candidate harmonic frequencies based on the multiple frequency domain data, and determines the multiple target harmonic frequencies based on the cumulative amplitude of each of the multiple candidate harmonic frequencies. 如請求項6所述的馬達狀態監控系統,其中所述計算裝置根據所述目標基頻計算所述馬達設備的轉速。A motor state monitoring system as described in claim 6, wherein the calculation device calculates the rotational speed of the motor device based on the target base frequency.
TW113204926U 2024-05-15 2024-05-15 Motor status monitoring system TWM659352U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW113204926U TWM659352U (en) 2024-05-15 2024-05-15 Motor status monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW113204926U TWM659352U (en) 2024-05-15 2024-05-15 Motor status monitoring system

Publications (1)

Publication Number Publication Date
TWM659352U true TWM659352U (en) 2024-08-11

Family

ID=93261233

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113204926U TWM659352U (en) 2024-05-15 2024-05-15 Motor status monitoring system

Country Status (1)

Country Link
TW (1) TWM659352U (en)

Similar Documents

Publication Publication Date Title
US7509862B2 (en) System and method for providing vibration detection in turbomachinery
CN110320038B (en) Abnormality diagnosis method and abnormality diagnosis device for rolling bearing
JP5738711B2 (en) Rotating machine state monitoring device, rotating machine state monitoring method, and rotating machine state monitoring program
US8121813B2 (en) System and method for clearance estimation between two objects
JP5740208B2 (en) Bearing diagnosis method and system
EP1921455B1 (en) A revolution indicator and a program for the revolution indicator
JP2013221877A (en) Abnormality inspection method and abnormality inspection device
JP6430234B2 (en) Vibration analysis apparatus and program for rotating machine
JP6511573B1 (en) Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program
JP2015114294A (en) Inspection apparatus of acoustic device and inspection method of acoustic device and inspection program of acoustic device
Minervini et al. A multisensor induction motors diagnostics method for bearing cyclic fault
CN106092534B (en) Blade modal damps measuring method
JPH07324974A (en) Apparatus for diagnosing vibration of rotary machine
JP7201413B2 (en) Analyzer and analysis program
JP2008032454A (en) Apparatus and method for detecting vibration phase
TWM659352U (en) Motor status monitoring system
CN110346592A (en) The determination of RPM from rumble spectrum figure
JP2023522909A (en) Speed estimation of rotating machinery
JP2014222150A (en) Electric component monitoring apparatus and electric component monitoring method
JP2020144111A (en) Abnormality detection device, rotary machine, abnormality detection method and program
TWI787875B (en) Analysis device for abnormality diagnosis, analysis method for abnormality diagnosis, and storage medium storing programs for abnormality diagnosis
JP7530137B1 (en) Vibration detection device, abnormality detection assistance system, and vibration detection method
WO2022190730A1 (en) Abnormality detection device and method
CN111684213A (en) Robot fault diagnosis method, system and storage device
CN116952524B (en) High-speed wind tunnel dynamic derivative test monitoring method, electronic equipment and storage medium