TWM646121U - Auxiliary determination system for kidney dialysis vascular obstruction - Google Patents
Auxiliary determination system for kidney dialysis vascular obstruction Download PDFInfo
- Publication number
- TWM646121U TWM646121U TW112205035U TW112205035U TWM646121U TW M646121 U TWM646121 U TW M646121U TW 112205035 U TW112205035 U TW 112205035U TW 112205035 U TW112205035 U TW 112205035U TW M646121 U TWM646121 U TW M646121U
- Authority
- TW
- Taiwan
- Prior art keywords
- hemodialysis
- vascular access
- obstruction
- determination system
- renal dialysis
- Prior art date
Links
- 230000002792 vascular Effects 0.000 title claims abstract description 62
- 238000000502 dialysis Methods 0.000 title claims abstract description 60
- 210000003734 kidney Anatomy 0.000 title claims abstract description 9
- 238000001631 haemodialysis Methods 0.000 claims abstract description 95
- 230000000322 hemodialysis Effects 0.000 claims abstract description 95
- 238000013473 artificial intelligence Methods 0.000 claims abstract description 30
- 238000011282 treatment Methods 0.000 claims abstract description 21
- 230000017531 blood circulation Effects 0.000 claims description 14
- 238000012549 training Methods 0.000 claims description 11
- 230000009471 action Effects 0.000 claims description 10
- 238000004422 calculation algorithm Methods 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 8
- 239000008280 blood Substances 0.000 claims description 7
- 210000004369 blood Anatomy 0.000 claims description 7
- 230000035487 diastolic blood pressure Effects 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 230000035488 systolic blood pressure Effects 0.000 claims description 7
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 210000003462 vein Anatomy 0.000 claims description 5
- 238000013528 artificial neural network Methods 0.000 claims description 4
- 238000007637 random forest analysis Methods 0.000 claims description 4
- 210000004204 blood vessel Anatomy 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 4
- 210000001367 artery Anatomy 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 206010014418 Electrolyte imbalance Diseases 0.000 description 1
- 206010016717 Fistula Diseases 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 208000020832 chronic kidney disease Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 208000028208 end stage renal disease Diseases 0.000 description 1
- 201000000523 end stage renal failure Diseases 0.000 description 1
- 230000003890 fistula Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002559 palpation Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- External Artificial Organs (AREA)
Abstract
一種洗腎血管通路阻塞的輔助判定系統,適用於訊號連接至血液透析機。洗腎血管通路阻塞的輔助判定系統包括連線主機以及人工智慧模型。連線主機擷取由血液透析機接收洗腎血管通路進行多次血液透析治療的複數個血液透析資料。人工智慧模型連接連線主機。依據血液透析資料所訓練的人工智慧模型,當洗腎患者進行血液透析治療時,藉由人工智慧模型,以產生輔助判定,並可由顯示裝置顯示洗腎血管通路是否阻塞到需進行介入處理。An auxiliary determination system for renal dialysis vascular access obstruction, suitable for signal connection to a hemodialysis machine. The auxiliary determination system for renal dialysis vascular access obstruction includes a connected host and an artificial intelligence model. The connection host retrieves a plurality of hemodialysis data for multiple hemodialysis treatments received by the hemodialysis machine through the renal dialysis vascular access. The artificial intelligence model is connected to the host computer. Based on the artificial intelligence model trained on hemodialysis data, when a kidney dialysis patient undergoes hemodialysis treatment, the artificial intelligence model is used to generate auxiliary judgments, and the display device can display whether the kidney dialysis vascular access is blocked to the point that intervention is required.
Description
本揭露是有關於一種輔助判定系統,特別是指一種洗腎血管通路阻塞的輔助判定系統。 The present disclosure relates to an auxiliary determination system, particularly an auxiliary determination system for renal dialysis vascular access obstruction.
隨著醫療科技的進步及照護品質的提升,末期腎臟病病人透過接受血液透析治療延長生命。血液透析需建置血管通路,血管通路常見的併發症是瘻管阻塞。由此可知,洗腎血管通路的功能往往是決定血液透析的效果與品質,當病人在進行洗腎當下,血管通路是否須介入處理,特別是血管通路阻塞的黃金治療時間為48小時,病人體內毒素累積、電解質失衡。當阻塞嚴重血管通路不能使用,會有生命的危險。 With the advancement of medical technology and improvement in the quality of care, patients with end-stage renal disease are extending their lives by receiving hemodialysis treatment. Hemodialysis requires the establishment of vascular access, and a common complication of vascular access is fistula obstruction. It can be seen that the function of the vascular access for renal dialysis often determines the effect and quality of hemodialysis. When the patient is undergoing renal dialysis, whether the vascular access needs to be intervened, especially the golden treatment time for vascular access obstruction is 48 hours. Toxin accumulation, electrolyte imbalance. When the vascular access is severely blocked and cannot be used, life will be in danger.
現有技術偵測血管通路是否阻塞的方式,其一為病人例行自行檢測,另一為護理師於血液透析進行當下,透過觸診評估血管通路情況,然而這些偵測動作往往依靠人為經驗,且較為主觀,恐會有判斷失準的疑慮,進而讓有疑慮的病人失去搶救的黃金期。 The existing technology uses methods to detect whether the vascular access is blocked. One is for the patient to perform routine self-detection, and the other is for the nurse to assess the condition of the vascular access through palpation during hemodialysis. However, these detection actions often rely on human experience, and It is more subjective, and there may be doubts about inaccurate judgment, which will cause doubtful patients to lose the golden period of rescue.
此外,現有技術需額外增設的設備(如超音波裝置聽取血管通路部位的血流聲音轉換影像判別、或血流音擷取裝置擷取血流聲音轉換成頻譜來進行判斷)。如此不但增加設備成本,且增加操作人力。 In addition, the existing technology requires additional equipment (such as an ultrasound device to listen to the blood flow sound at the vascular access site and convert it into an image for judgment, or a blood flow sound acquisition device to capture the blood flow sound and convert it into a frequency spectrum for judgment). This not only increases equipment costs, but also increases operating manpower.
本揭露提供一種洗腎血管通路阻塞的輔助判定系統,可協助醫護人員判斷洗腎血管通路是否堵塞到需介入處理。 The present disclosure provides an auxiliary determination system for renal dialysis vascular access obstruction, which can assist medical staff in determining whether the renal dialysis vascular access is blocked enough to require intervention.
本揭露之一實施例提供一種洗腎血管通路阻塞的輔助判定系統,適用於訊號連接至血液透析機。洗腎血管通路阻塞的輔助判定系統包括連線主機以及人工智慧模型。連線主機擷取由血液透析機接收洗腎血管通路進行多次血液透析治療的複數個血液透析資料。人工智慧模型連接連線主機。依據血液透析資料所訓練的人工智慧模型,當洗腎患者進行血液透析治療時,藉由該人工智慧模型,以產生一輔助判定參考。 One embodiment of the present disclosure provides an auxiliary determination system for renal dialysis vascular access obstruction, which is suitable for signal connection to a hemodialysis machine. The auxiliary determination system for renal dialysis vascular access obstruction includes a connected host and an artificial intelligence model. The connection host retrieves a plurality of hemodialysis data for multiple hemodialysis treatments received by the hemodialysis machine through the renal dialysis vascular access. The artificial intelligence model is connected to the host computer. An artificial intelligence model trained based on hemodialysis data is used to generate an auxiliary judgment reference when a kidney dialysis patient undergoes hemodialysis treatment.
在一實施例中,上述洗腎血管通路阻塞的輔助判定系統更包括一顯示裝置,顯示裝置連接於連線主機。顯示裝置顯示輔助判定參考。 In one embodiment, the above-mentioned auxiliary determination system for renal dialysis vascular access obstruction further includes a display device, and the display device is connected to the connection host. The display device displays the auxiliary judgment reference.
在一實施例中,上述診斷參考結果為阻塞需介入處理或無需介入處理。 In one embodiment, the diagnostic reference result is that the obstruction requires interventional treatment or does not require interventional treatment.
在一實施例中,上述連線主機接收以一介入處理動作手段執行前的血液透析資料作為阻塞時的血液透析資料。 In one embodiment, the above-mentioned connected host receives the hemodialysis data before an interventional processing action means is executed as the hemodialysis data during obstruction.
在一實施例中,上述連線主機接收以一介入處理動作手段執行後的血液透析資料作為未阻塞的血液透析資料。 In one embodiment, the above-mentioned connected host receives the hemodialysis data executed by an interventional processing action means as unblocked hemodialysis data.
在一實施例中,上述血液透析資料包括一生理檢測值。 In one embodiment, the hemodialysis data includes a physiological detection value.
在一實施例中,上述生理檢測值包括一舒張壓值、一收縮壓值、一脈搏值、一呼吸值、一血液流量值以及一靜脈壓值。 In one embodiment, the physiological detection values include a diastolic blood pressure value, a systolic blood pressure value, a pulse value, a respiration value, a blood flow value and a venous pressure value.
在一實施例中,上述人工智慧模型包括一模型訓練資料集,模型訓練資料集包括多個阻塞時的血液透析資料與多個未阻塞的血液透析資料,阻塞時的血液透析資料與未阻塞的血液透析資料分別包括相對應的 一舒張壓值、一收縮壓值、一脈搏值、一呼吸值、一血液流量值以及一靜脈壓值。 In one embodiment, the above-mentioned artificial intelligence model includes a model training data set. The model training data set includes a plurality of hemodialysis data during obstruction and a plurality of non-blockage hemodialysis data. The hemodialysis data during obstruction and non-blockage Hemodialysis data includes corresponding A diastolic blood pressure value, a systolic blood pressure value, a pulse value, a respiration value, a blood flow value and a venous pressure value.
在一實施例中,上述阻塞時的血液透析資料的數量為三個。 In one embodiment, the number of hemodialysis data during obstruction is three.
在一實施例中,上述未阻塞的血液透析資料的數量為五個。 In one embodiment, the number of unblocked hemodialysis data is five.
在一實施例中,上述血液透析資料的數量為八個。 In one embodiment, the number of the hemodialysis data is eight.
在一實施例中,上述未阻塞的血液透析資料的數量大於阻塞時的血液透析資料的數量。 In one embodiment, the amount of unblocked hemodialysis data is greater than the amount of blocked hemodialysis data.
在一實施例中,上述連線主機以一類神經網路演算法修正人工智慧模型。 In one embodiment, the connected host uses a type of neural network algorithm to modify the artificial intelligence model.
在一實施例中,上述類神經網路演算法為一隨機森林演算法。 In one embodiment, the neural network-like algorithm is a random forest algorithm.
基於上述,在本揭露提出的洗腎血管通路阻塞的輔助判定系統中,本揭露只需利用血液透析機收集的這些血液透析資料與人工智慧模型,即可提供醫護人員輔助判定洗腎血管通路是否阻塞到需介入處理。無須利用額外外部的機台(如超音波裝置聽取洗腎血管通路的血流聲音、或擷取裝置擷取血流聲音轉換成頻譜)來進行判斷。 Based on the above, in the auxiliary determination system for renal dialysis vascular access obstruction proposed in this disclosure, this disclosure only needs to use the hemodialysis data collected by the hemodialysis machine and the artificial intelligence model to provide medical staff with the assistance to determine whether the renal dialysis vascular access is blocked. The blockage requires intervention. There is no need to use additional external equipment (such as an ultrasound device to listen to the blood flow sound of the dialysis vascular access, or an acquisition device to capture the blood flow sound and convert it into a frequency spectrum) to make a judgment.
為讓本揭露能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the present disclosure more obvious and understandable, embodiments are given below and described in detail with reference to the attached drawings.
50:血液透析機 50:Hemodialysis machine
60:洗腎血管通路 60: Renal dialysis vascular access
100:洗腎血管通路阻塞的輔助判定系統 100: Auxiliary determination system for renal dialysis vascular access obstruction
110:連線主機 110:Connect to the host
120:人工智慧模型 120:Artificial intelligence model
122:模型訓練資料集 122: Model training data set
130:顯示裝置 130:Display device
A:堵塞需介入處理 A: The blockage requires intervention.
B:無需介入處理 B: No need for intervention
BP1:由動脈來的血液 BP1: blood from arteries
BP2:送往靜脈的血液 BP2: blood sent to veins
BPS:血液透析資料 BPS: Hemodialysis information
G1:阻塞時的血液透析資料 G1: Hemodialysis data during obstruction
G2:未阻塞的血液透析資料 G2: Unobstructed hemodialysis data
TN:生理檢測值 TN: physiological test value
TN1:舒張壓值 TN1: diastolic blood pressure value
TN2:收縮壓值 TN2: systolic blood pressure value
TN3:脈搏值 TN3: pulse value
TN4:呼吸值 TN4: breathing value
TN5:血液流量值 TN5: blood flow value
TN6:靜脈壓值 TN6: venous pressure value
RS:輔助判定參考 RS: auxiliary judgment reference
第1圖為本揭露的洗腎血管通路阻塞的輔助判定系統一實施例的示意 圖。 Figure 1 is a schematic diagram of one embodiment of the disclosed auxiliary determination system for renal dialysis vascular access obstruction. Figure.
第2圖為本揭露的血液透析資料一實施例的示意圖。 Figure 2 is a schematic diagram of an embodiment of the hemodialysis data of the present disclosure.
第3圖為模型訓練資料集為阻塞時的血液透析資料與未阻塞的血液透析資料的示意圖。 Figure 3 is a schematic diagram of the model training data set being the hemodialysis data during obstruction and the hemodialysis data without obstruction.
下文列舉實施例並配合附圖來進行詳細地說明,但所提供的實施例並非用以限制本揭露所涵蓋的範圍。此外,附圖僅以說明為目的,並未依照原尺寸作圖。為了方便理解,在下述說明中相同的元件將以相同的符號標示來說明。 Embodiments are enumerated below and described in detail with reference to the drawings. However, the embodiments provided are not intended to limit the scope of the present disclosure. In addition, the drawings are for illustrative purposes only and are not drawn to original size. To facilitate understanding, the same elements will be identified with the same symbols in the following description.
關於本揭露中所提到「包括」、「包含」、「具有」等的用語均為開放性的用語,也就是指「包含但不限於」。 The terms "including", "including", "having", etc. mentioned in this disclosure are all open terms, which means "including but not limited to".
在各個實施例的說明中,當以「第一」、「第二」等的用語來說明元件時,僅用於將這些元件彼此區分,並不限制這些元件的順序或重要性。 In the description of various embodiments, when terms such as “first” and “second” are used to describe elements, they are only used to distinguish these elements from each other and do not limit the order or importance of these elements.
在各個實施例的說明中,所謂的「耦接」或「連接」,其可指二或多個元件相互直接作實體或電性接觸,或是相互間接作實體或電性接觸,而「耦接」或「連接」還可指二或多個元件相互操作或動作。 In the description of various embodiments, the so-called "coupling" or "connection" may refer to two or more elements making direct physical or electrical contact with each other, or indirectly making physical or electrical contact with each other, and "coupling" "Connect" or "connect" can also refer to the mutual operation or action of two or more components.
第1圖為本揭露的洗腎血管通路阻塞的輔助判定系統一實施例的示意圖。請參閱第1圖,本揭露的洗腎血管通路阻塞的輔助判定系統100適用於訊號連接至血液透析機50。血液透析機50連接病患之洗腎血管通路60,以進行血液透析治療。血液透析機50內有人工腎臟,洗腎血管通
路60中由動脈來的血液BP1流通人工腎臟後能排除毒物,接著排毒後的送往靜脈的血液BP2回到洗腎血管通路60內的靜脈。
Figure 1 is a schematic diagram of an auxiliary determination system for renal dialysis vascular access obstruction according to an embodiment of the present disclosure. Please refer to Figure 1 . The disclosed
在本實施例中,洗腎血管通路阻塞的輔助判定系統100包括連線主機110、人工智慧模型120以及一顯示裝置130。連線主機110連線於血液透析機50,例如可用物聯網(IOT)連接。連線主機110能接收血液透析機50中接收洗腎血管通路60進行多次血液透析治療HS的複數個血液透析資料BPS。血液透析資料BPS包括生理檢測值TN,如第2圖所示生理檢測值TN例如包括一舒張壓值TN1、一收縮壓值TN2、一脈搏值TN3、一呼吸值TN4、一血液流量值TN5以及一靜脈壓值TN6等資料。
In this embodiment, the
人工智慧模型120連接連線主機110,依據連線主機110長時間取得大量民眾的血液透析資料BPS,來訓練人工智慧模型120。連線主機110以一類神經網路演算法修正人工智慧模型。類神經網路演算法例如為隨機森林(random forest)演算法。
The
相較於人為判斷,本揭露經由機器學習,使得人工智慧模型120經訓練後的預測能力較為客觀,可供醫護人員輔助判斷。進一步,本揭露的連線主機110會持續記錄並收集血液透析資料BPS,並輸入更新人工智慧模型120,藉此可不斷更新人工智慧模型120。
Compared with human judgment, this disclosure uses machine learning to make the prediction ability of the
上述於機器學習過程中,血液透析資料BPS的數量例如為八個,亦即每8筆血液透析資料BPS透過隨機森林演算法訓練與更新人工智慧模型120,這些血液透析資料BPS被收集到人工智慧模型120中的模型訓練資料集122(如第3圖)進行訓練。
In the above machine learning process, the number of hemodialysis data BPS is, for example, eight, that is, every eight hemodialysis data BPS are trained and updated through the
請參考第3圖,模型訓練資料集122區分為阻塞時的血液透析
資料G1與未阻塞的血液透析資料G2。介入處理動作手段執行前的血液透析資料BPS作為阻塞時的血液透析資料G1。另一方面,介入處理動作手段執行後的血液透析資料BPS作為未阻塞的血液透析資料G2。每個阻塞時的血液透析資料G1與每個未阻塞的血液透析資料G2分別包括如第2圖所示相對應的舒張壓值TN1、收縮壓值TN2、脈搏值TN3、呼吸值TN4、血液流量值TN5以及靜脈壓值TN6等資料。
Please refer to Figure 3, the model
舉例而言,之前有病患因洗腎血管通路60有阻塞過,並經過血管通路介入手術,如在2023年5月5日執行血管通路介入手術之後,2023年5月6日之後五天的洗腎血管通路60是通暢狀態,作為未阻塞的血液透析資料G2,而2023年5月5日的前三天或者是前四次的洗腎血管通路60是阻塞狀態,作為阻塞時的血液透析資料G1。
For example, there were patients who had previously experienced obstruction of the renal dialysis
本揭露將介入處理動作手段執行之前的三筆血液透析資料BPS作為阻塞時的血液透析資料G1,介入處理動作手段執行之後的五筆血液透析資料BPS作為未阻塞的血液透析資料G2,藉由第1圖人工智慧模型120來輔助判斷洗腎血管通路60是否堵塞到需介入處理。
In this disclosure, the three hemodialysis data BPS before the execution of the interventional processing action means are regarded as the hemodialysis data G1 during obstruction, and the five hemodialysis data BPS after the execution of the interventional processing action means are regarded as the unobstructed hemodialysis data G2. Through the first The
顯示裝置130連接於連線主機110。如此一來,當病患再次進行血液透析治療時,連線主機110擷取由血液透析機50接收洗腎血管通路60取得血液透析資料BPS時。在洗腎結束時,擷取洗腎過程中5筆血液透析資料BPS,經由人工智慧模型120,以產生輔助判定參考RS,顯示裝置130顯示輔助判定參考RS,例如堵塞需介入處理A,或者是無需介入處理B的狀態,此輔助判定參考RS可提供醫護人員判斷洗腎血管通路60是否阻塞到需介入處理。
The
綜上所述,在本揭露提出的洗腎血管通路阻塞的輔助判定系統中,本揭露只需利用血液透析機收集的這些血液透析資料與人工智慧模型,即可提供醫護人員輔助判定洗腎血管通路是否阻塞到需介入處理。無須利用額外外部的機台(如超音波裝置聽取洗腎血管通路的血流聲音、或擷取裝置擷取血流聲音轉換成頻譜)來進行判斷。 In summary, in the auxiliary determination system for renal dialysis vascular access obstruction proposed in this disclosure, this disclosure only needs to use the hemodialysis data collected by the hemodialysis machine and the artificial intelligence model to provide medical staff with the auxiliary determination of renal dialysis vascular access obstruction. Is the passage blocked enough to require intervention? There is no need to use additional external equipment (such as an ultrasound device to listen to the blood flow sound of the dialysis vascular access, or an acquisition device to capture the blood flow sound and convert it into a frequency spectrum) to make a judgment.
本揭露產生的輔助判定參考可做為醫護人員做為判斷洗腎血管通路有是否堵塞到需介入處理的參考。 The auxiliary judgment reference generated by this disclosure can be used as a reference for medical staff to judge whether the renal dialysis vascular access is blocked to the extent that interventional treatment is required.
相較於人為判斷,本揭露經由機器學習,使得人工智慧模型經訓練後的預測能力較為客觀,可供醫護人員輔助判斷。 Compared with human judgment, this disclosure uses machine learning to make the prediction ability of the artificial intelligence model after training more objective, which can be used to assist medical staff in making judgments.
雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作些許之更動與潤飾,故本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 Although the disclosure has been disclosed above through embodiments, they are not intended to limit the disclosure. Anyone with ordinary knowledge in the technical field may make slight changes and modifications without departing from the spirit and scope of the disclosure. Therefore, The scope of protection of this disclosure shall be determined by the scope of the patent application attached.
50:血液透析機 50:Hemodialysis machine
60:洗腎血管通路 60: Renal dialysis vascular access
100:洗腎血管通路阻塞的輔助判定系統 100: Auxiliary determination system for renal dialysis vascular access obstruction
110:連線主機 110:Connect to the host
120:人工智慧模型 120:Artificial intelligence model
130:顯示裝置 130:Display device
A:堵塞需介入處理 A: The blockage requires intervention.
B:無需介入處理 B: No need for intervention
BP1:由動脈來的血液 BP1: blood from arteries
BP2:送往靜脈的血液 BP2: blood sent to veins
BPS:血液透析資料 BPS: Hemodialysis information
RS:輔助判定參考 RS: auxiliary judgment reference
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112205035U TWM646121U (en) | 2023-05-22 | 2023-05-22 | Auxiliary determination system for kidney dialysis vascular obstruction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112205035U TWM646121U (en) | 2023-05-22 | 2023-05-22 | Auxiliary determination system for kidney dialysis vascular obstruction |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM646121U true TWM646121U (en) | 2023-09-11 |
Family
ID=88926896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112205035U TWM646121U (en) | 2023-05-22 | 2023-05-22 | Auxiliary determination system for kidney dialysis vascular obstruction |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM646121U (en) |
-
2023
- 2023-05-22 TW TW112205035U patent/TWM646121U/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lok et al. | KDOQI clinical practice guideline for vascular access: 2019 update | |
US20210295741A1 (en) | Method for a simulation and evaluation system for medical treatment facilities | |
US7597666B2 (en) | Access pressure ratio device and testing method | |
US8348850B2 (en) | Method of monitoring dislodgement of venous needles in dialysis patients | |
Davidson et al. | Duplex ultrasound evaluation for dialysis access selection and maintenance: a practical guide | |
US20080114212A1 (en) | Detecting surgical phases and/or interventions | |
US8974394B2 (en) | Device and method for detecting irregular placement of an extracorporeal vascular access needle | |
Gardner et al. | Real time data acquisition: recommendations for the Medical Information Bus (MIB) | |
Du et al. | Residual stenosis estimation of arteriovenous grafts using a dual-channel phonoangiography with fractional-order features | |
Czarnik et al. | Real-time, ultrasound-guided infraclavicular axillary vein cannulation for renal replacement therapy in the critical care unit—A prospective intervention study | |
TWM646121U (en) | Auxiliary determination system for kidney dialysis vascular obstruction | |
US20230200642A1 (en) | Medical system, medical information processing apparatus, and medical method | |
Higuchi et al. | Paget–Schroetter syndrome accompanied by pulmonary thromboembolism: A case report | |
US20230165456A1 (en) | Medical system and medical method | |
WO2023006116A1 (en) | Monitoring device, and display method for target object | |
Stewart | The aim and philosophy of patient monitoring | |
Kłosiewicz et al. | Examination of a patient with left ventricular assist device in an emergency condition—proposal for adaptation of the ABCDE examination algorithm | |
CN212880869U (en) | Double-level respiratory function monitoring and intervention equipment | |
Patibandla | A Review on the Detection of the Post COVID-19 Symptoms for Long Term Diseased Patients using Machine Learning Algorithms | |
Krol et al. | The algorithm for detecting critical conditions during anesthesia | |
Chen | Optimizing Personalized Ventilatory Strategies in Acute Respiratory Distress Syndrome | |
Fowles et al. | Nursing care of the patient on extracorporeal membrane oxygenation | |
KRIŽMARIĆ et al. | Using neural networks for prediction of central venous pressure during open-heart surgery | |
정인석 | E-CPR: myth and truth | |
Jobbágy et al. | Home health monitoring |