TWI823273B - Electrostatic chuck and plasma reaction device - Google Patents
Electrostatic chuck and plasma reaction device Download PDFInfo
- Publication number
- TWI823273B TWI823273B TW111106955A TW111106955A TWI823273B TW I823273 B TWI823273 B TW I823273B TW 111106955 A TW111106955 A TW 111106955A TW 111106955 A TW111106955 A TW 111106955A TW I823273 B TWI823273 B TW I823273B
- Authority
- TW
- Taiwan
- Prior art keywords
- dielectric layer
- electrostatic chuck
- wafer
- resistivity
- base
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 38
- 239000001307 helium Substances 0.000 claims abstract description 24
- 229910052734 helium Inorganic materials 0.000 claims abstract description 24
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910010293 ceramic material Inorganic materials 0.000 claims abstract description 10
- 239000007789 gas Substances 0.000 claims description 26
- 230000003746 surface roughness Effects 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 6
- 239000002019 doping agent Substances 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 claims description 3
- 239000000853 adhesive Substances 0.000 claims description 2
- 230000001070 adhesive effect Effects 0.000 claims description 2
- 238000001179 sorption measurement Methods 0.000 abstract description 34
- 238000012545 processing Methods 0.000 abstract description 13
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 238000009826 distribution Methods 0.000 abstract description 4
- 238000003795 desorption Methods 0.000 abstract description 3
- 239000013618 particulate matter Substances 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 176
- 235000012431 wafers Nutrition 0.000 description 89
- 230000005684 electric field Effects 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 230000017525 heat dissipation Effects 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
- H01L21/6833—Details of electrostatic chucks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32715—Workpiece holder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32715—Workpiece holder
- H01J37/32724—Temperature
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本發明提供一種靜電吸盤,包含:基座;設置在基座上的第一介電層,其為具有第一電阻率的有摻雜陶瓷材質,第一介電層內設有產生靜電力的電極;第二介電層,設置在第一介電層上並覆蓋第一介電層,且第二介電層為具有第二電阻率的無摻雜陶瓷材質;第二電阻率大於第一電阻率。本發明還提供一種等離子體反應裝置。本發明的靜電吸盤吸附力強,吸附力分佈均勻,易解吸附,使用壽命長,顆粒物污染少,有效防止晶圓背面發生氦氣打火,提高了晶圓加工成品率和生產效率。The invention provides an electrostatic chuck, which includes: a base; a first dielectric layer disposed on the base, which is a doped ceramic material with a first resistivity, and an electrostatic chuck is provided in the first dielectric layer to generate electrostatic force Electrode; a second dielectric layer disposed on the first dielectric layer and covering the first dielectric layer, and the second dielectric layer is an undoped ceramic material with a second resistivity; the second resistivity is greater than the first dielectric layer Resistivity. The invention also provides a plasma reaction device. The electrostatic chuck of the present invention has strong adsorption force, uniform adsorption force distribution, easy desorption, long service life, and less particle pollution. It can effectively prevent helium sparking on the back of the wafer and improve the wafer processing yield and production efficiency.
Description
本發明涉及半導體的技術領域,特別涉及一種靜電吸盤及等離子體反應裝置。The invention relates to the technical field of semiconductors, and in particular to an electrostatic chuck and a plasma reaction device.
在半導體元件的製造過程中,為了在晶圓上進行沉積、蝕刻等製程,一般通過靜電吸盤(Electrostatic chuck,簡稱ESC)來產生靜電吸力,以實現在製程過程中支撐、固定待處理的晶圓。In the manufacturing process of semiconductor components, in order to perform processes such as deposition and etching on the wafer, an electrostatic chuck (ESC) is generally used to generate electrostatic suction to support and fix the wafer to be processed during the process. .
靜電吸盤包含基座和設置在基座頂部的介電層。根據介電層的不同,靜電吸盤主要分為CB(Coulomb 庫侖)型靜電吸盤和J-R(Johnsen-Rahbek)型靜電吸盤兩種類型。CB型靜電吸盤(簡稱為CB ESC)、J-R型靜電吸盤(簡稱為J-R ESC)是以靜電吸附為基本原理,通過對CB ESC、J-R ESC內的電極施加外部直流電壓後,產生對晶圓的靜電吸附力來固定晶圓。The electrostatic chuck includes a base and a dielectric layer disposed on top of the base. According to the different dielectric layers, electrostatic chucks are mainly divided into two types: CB (Coulomb) type electrostatic chuck and J-R (Johnsen-Rahbek) type electrostatic chuck. CB type electrostatic chuck (abbreviated as CB ESC) and J-R type electrostatic chuck (abbreviated as J-R ESC) are based on the basic principle of electrostatic adsorption. By applying an external DC voltage to the electrodes in CB ESC and J-R ESC, they generate a force on the wafer. Electrostatic adsorption force to fix the wafer.
CB ESC的靜電吸附力小,且需要在其電極上施加較高的直流電壓;然而當施加的直流電壓過高會易引起晶圓與CB ESC間氦氣打火的問題。CB ESC has a small electrostatic adsorption force and requires a high DC voltage to be applied to its electrode. However, when the applied DC voltage is too high, it can easily cause helium sparks between the wafer and CB ESC.
J-R ESC的漏電流大,停止對J-R ESC的電極施加外部直流電壓後,J-R ESC表面仍有較多殘餘電荷,使得晶圓解吸附難度高;且J-R ESC的粗糙表面易被侵蝕,容易造成顆粒物增多、使用老化、J-R ESC表面粗糙度變差,使用壽命較短的問題。同時也會造成放置在J-R ESC上的晶圓的溫度不均勻、影響晶圓的加工精度。The leakage current of J-R ESC is large. After the external DC voltage is stopped applying to the electrode of J-R ESC, there is still a lot of residual charge on the surface of J-R ESC, making it difficult to desorb the wafer. Moreover, the rough surface of J-R ESC is easily eroded and can easily cause particulate matter. Increased use, aging, deterioration of J-R ESC surface roughness, and shortened service life. At the same time, it will also cause uneven temperature of the wafer placed on the J-R ESC, affecting the processing accuracy of the wafer.
本發明的目的是提供一種靜電吸盤及等離子體反應裝置,通過將不同電阻率的介電層相結合,不僅能夠提高靜電吸盤的使用壽命,且無需施加較高的直流電壓,能夠防止晶圓背面發生氦氣打火,同時吸附力強,吸附力分佈均勻,並易於解吸附晶圓。The purpose of the present invention is to provide an electrostatic chuck and a plasma reaction device. By combining dielectric layers with different resistivities, it can not only improve the service life of the electrostatic chuck, but also eliminate the need to apply a higher DC voltage and prevent the back side of the wafer. Helium ignition occurs, while the adsorption force is strong, the adsorption force is evenly distributed, and it is easy to desorb the wafer.
為了達到上述目的,本發明提供一種靜電吸盤,包含: 基座; 設置在所述基座上的第一介電層;所述第一介電層為具有第一電阻率的有摻雜陶瓷材質,第一介電層內設有產生靜電力的電極; 設置在所述第一介電層上並覆蓋第一介電層的第二介電層;所述第二介電層為具有第二電阻率的無摻雜陶瓷材質;第二電阻率大於第一電阻率。 In order to achieve the above object, the present invention provides an electrostatic chuck, including: base; A first dielectric layer provided on the base; the first dielectric layer is a doped ceramic material with a first resistivity, and an electrode that generates electrostatic force is provided in the first dielectric layer; a second dielectric layer disposed on the first dielectric layer and covering the first dielectric layer; the second dielectric layer is an undoped ceramic material with a second resistivity; the second resistivity is greater than the second dielectric layer. -Resistivity.
較佳的,第一介電層為有摻雜的AL 2O 3,其摻雜物包含Si、C、Mg,MgO,TiO 2中的任一種或多種。 Preferably, the first dielectric layer is doped AL 2 O 3 , and its dopant includes any one or more of Si, C, Mg, MgO, and TiO 2 .
較佳的,第二介電層為無摻雜的AL 2O 3。 Preferably, the second dielectric layer is undoped AL 2 O 3 .
較佳的,第一介電層的電阻率為10 10~10 12Ω.cm。 Preferably, the resistivity of the first dielectric layer is 10 10 to 10 12 Ω.cm.
較佳的,第二介電層的電阻率大於10 14Ω.cm。 Preferably, the resistivity of the second dielectric layer is greater than 10 14 Ω.cm.
較佳的,所述第二介電層與晶圓接觸的表面設有多個均勻或非均勻分佈的凸起部;所述凸起部的高度範圍為2~3um。Preferably, the surface of the second dielectric layer in contact with the wafer is provided with a plurality of uniformly or non-uniformly distributed protrusions; the height of the protrusions ranges from 2 to 3um.
較佳的,在第一介電層、第二介電層之間還設有用於固定連接第一、第二介電層的黏接層。Preferably, an adhesive layer for fixedly connecting the first and second dielectric layers is further provided between the first dielectric layer and the second dielectric layer.
較佳的,第一介電層的厚度為0.2~2mm。Preferably, the thickness of the first dielectric layer is 0.2-2 mm.
較佳的,第二介電層的厚度為0.01~0.5mm。Preferably, the thickness of the second dielectric layer is 0.01-0.5 mm.
較佳的,第一介電層具有0.6~0.8um的表面粗糙度;第二介電層具有0.1~0.2um的表面粗糙度。Preferably, the first dielectric layer has a surface roughness of 0.6-0.8um; the second dielectric layer has a surface roughness of 0.1-0.2um.
較佳的,第一介電層的底部粘接基座的頂部,第二介電層的周邊向下延伸並完全覆蓋第一介電層的外側壁。Preferably, the bottom of the first dielectric layer is bonded to the top of the base, and the periphery of the second dielectric layer extends downward and completely covers the outer side wall of the first dielectric layer.
較佳的,第一介電層嵌入設置在基座的頂部,且第一介電層的頂面與基座的頂面平齊;第二介電層設置在基座上並完全覆蓋第一介電層。Preferably, the first dielectric layer is embedded and disposed on the top of the base, and the top surface of the first dielectric layer is flush with the top surface of the base; the second dielectric layer is disposed on the base and completely covers the first dielectric layer. dielectric layer.
較佳的,基座的外側壁設有耐等離子體腐蝕的鍍膜。Preferably, the outer wall of the base is provided with a coating that is resistant to plasma corrosion.
較佳的,基座中設置有多個冷卻管道,所述冷卻管道包含氦氣通道,通過所述氦氣通道將氦氣通至晶圓與第二介電層之間的間隙,且氦氣通道避讓所述凸起部。Preferably, a plurality of cooling pipes are provided in the base, the cooling pipes include helium gas channels, and helium gas is passed through the helium gas channels to the gap between the wafer and the second dielectric layer, and the helium gas The channel avoids the projection.
本發明還提供一種等離子體反應裝置,包括一等離子體反應腔,所述等離子體反應腔內底部設有如本發明所述的靜電吸盤,通過所述靜電吸盤吸附待加工的晶圓。The invention also provides a plasma reaction device, which includes a plasma reaction chamber. The bottom of the plasma reaction chamber is provided with an electrostatic chuck as described in the invention, and the wafer to be processed is adsorbed by the electrostatic chuck.
與習知技術相比,本發明的有益效果在於: 1)本發明的靜電吸盤吸附力強,吸附力分佈均勻,易解吸附晶圓,提高了晶圓加工的生產效率及晶圓成品率; 2)由於在第一介電層上覆蓋有無摻雜的第二介電層,減少了顆粒污染物的產生,使得靜電吸盤的吸附力和溫度分佈均勻,不僅進一步提高了晶圓加工的成品率,同時還提高了靜電吸盤的使用壽命、降低了靜電吸盤的維護和製造成本; 3)本發明中使用了有摻雜且低電阻率的第一介電層,通過第一介電層內的自由移動的電子,實現“抬高”靜電吸盤的電極位置;並且由於第二介電層內無需設置電極,使得第二介電層可以具有一個較小的厚度,因而僅需在靜電吸盤內的電極上施加很小的直流電壓,也能夠為晶圓提供足夠的吸附力; 4)本發明的靜電吸盤工作時僅需施加很小的直流電壓,因而能夠有效防止晶圓背面發生氦氣打火,實現了安全生產,並進一步提高了晶圓加工的成品率。 Compared with the conventional technology, the beneficial effects of the present invention are: 1) The electrostatic chuck of the present invention has strong adsorption force, uniform adsorption force distribution, and is easy to desorb wafers, thereby improving the production efficiency and wafer yield of wafer processing; 2) Since the first dielectric layer is covered with an undoped second dielectric layer, the generation of particulate pollutants is reduced, making the adsorption force and temperature distribution of the electrostatic chuck uniform, which not only further improves the yield of wafer processing , while also improving the service life of the electrostatic chuck and reducing the maintenance and manufacturing costs of the electrostatic chuck; 3) In the present invention, a doped and low-resistivity first dielectric layer is used to "raise" the electrode position of the electrostatic chuck through the freely moving electrons in the first dielectric layer; and due to the second dielectric There is no need to install electrodes in the electrical layer, so that the second dielectric layer can have a smaller thickness. Therefore, only a small DC voltage needs to be applied to the electrodes in the electrostatic chuck to provide sufficient adsorption force for the wafer; 4) The electrostatic chuck of the present invention only needs to apply a small DC voltage when working, so it can effectively prevent helium ignition on the back of the wafer, achieve safe production, and further improve the yield of wafer processing.
下面將結合本發明實施例中的附圖,對本發明實施例中的技術方案進行清楚、完整地描述,顯然,所描述的實施例僅僅是本發明一部分實施例,而不是全部的實施例。基於本發明中的實施例,所屬技術領域中具有通常知識者在沒有做出具進步性的改變前提下所獲得的所有其他實施例,都屬於本發明保護的範圍。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those with ordinary skill in the art without making any progressive changes shall fall within the scope of protection of the present invention.
實施例一Embodiment 1
圖1A示出本發明靜電吸盤所應用的等離子體反應裝置的結構示意圖,圖1A中的等離子體反應裝置為電容耦合等離子體(CCP)反應裝置,本發明的靜電吸盤同樣適用於電感耦合型等離子體反應裝置(ICP)。圖1A中的電容耦合等離子體反應裝置是一種由施加在基座上的射頻電源通過電容耦合的方式在反應腔內產生等離子體並用於蝕刻的設備。其包括真空反應腔100,真空反應腔包括由金屬材料製成的大致為圓柱形的反應腔側壁101,反應腔側壁101上設置一開口102用於容納晶圓進出。真空反應腔100內設置一氣體噴淋頭120和一與所述氣體噴淋頭120相對設置的基座110。所述氣體噴淋頭120與一氣體供應裝置125相連,用於向真空反應腔100輸送反應氣體,同時作為真空反應腔100的上電極。基座110作為真空反應腔100的下電極,所述上電極和所述下電極之間形成一反應區域。至少一射頻電源150通過匹配網路152施加到所述上電極或下電極之一,在所述上電極和所述下電極之間產生射頻電場,用以將反應氣體解離為等離子體,等離子體中含有大量的電子、離子、激發態的原子、分子和自由基等活性粒子,上述活性粒子可以和待處理晶圓的表面發生多種物理和化學反應,使得晶圓表面的形貌發生改變,即完成蝕刻過程。真空反應腔100的下方還設置一排氣泵140,用於將反應副產物排出真空反應腔100,維持真空反應腔100的真空環境。Figure 1A shows a schematic structural diagram of a plasma reaction device used in the electrostatic chuck of the present invention. The plasma reaction device in Figure 1A is a capacitively coupled plasma (CCP) reaction device. The electrostatic chuck of the present invention is also suitable for inductively coupled plasma. In vivo reaction device (ICP). The capacitively coupled plasma reaction device in Figure 1A is a device that generates plasma in a reaction chamber through capacitive coupling using a radio frequency power supply applied to a base and is used for etching. It includes a vacuum reaction chamber 100. The vacuum reaction chamber includes a generally cylindrical reaction chamber side wall 101 made of metal material. An opening 102 is provided on the reaction chamber side wall 101 to accommodate the entry and exit of the wafer. A gas shower head 120 and a
靜電吸盤通過靜電吸附作用來固定放置在其上的晶圓W,其優點在於吸附作用均勻分佈於晶圓表面,晶圓W不會發生翹曲變形,對晶圓W無傷害,吸附作用力持續穩定,可以保證晶圓W的加工精度。如圖1A、圖1B、圖2所示,本發明的靜電吸盤包含基座110、第一介電層111、電極113、第二介電層112。The electrostatic chuck uses electrostatic adsorption to fix the wafer W placed on it. Its advantage is that the adsorption effect is evenly distributed on the surface of the wafer. The wafer W will not warp and deform, and will not cause damage to the wafer W. The adsorption force is continuous. It is stable and can ensure the processing accuracy of wafer W. As shown in FIGS. 1A, 1B, and 2, the electrostatic chuck of the present invention includes a
如圖1A、圖1B、圖2所示,所述第一介電層111設置在基座110上(示例的,第一介電層111的底部通過粘接方式固定在基座110的頂部),其為具有第一電阻率的有摻雜陶瓷材質。在本發明的實施例中,第一介電層111為有摻雜的AL
2O
3,其摻雜物包含Si、C、Mg,MgO,TiO
2中的任一種或多種。第一介電層111可通過粉末噴塗、等離子CVD(化學氣相沉積)等方式加工而成,也可以是由陶瓷粉末注模燒結後機加工而成。第一介電層111的電阻率為10
10~10
12Ω.cm。作為本發明的一個較佳實施例,第一介電層111的電阻率為10
11Ω.cm。在本實施例中,如圖1B、圖2所示,第一介電層111的厚度為
d
1 =0.2~2mm。第一介電層111的表面粗糙度為0.6~0.8um。
As shown in Figure 1A, Figure 1B, and Figure 2, the first
如圖1A、圖1B、圖2所示,所述電極113設置在第一介電層111內,用於產生靜電力。以實現在製程過程中對待處理的晶圓W的吸附固定。As shown in FIG. 1A, FIG. 1B, and FIG. 2, the
如圖1A、圖1B、圖2所示,所述第二介電層112設置在第一介電層111上,且第二介電層112的周邊向下延伸(如圖2中虛圈所示)並完全覆蓋第一介電層111的外側壁。因此第一介電層111設置在由基座110和第二介電層112包圍形成的空間內。As shown in Figures 1A, 1B, and 2, the
由於無摻雜的AL
2O
3具有耐等離子體侵蝕的功能,因此通過第二介電層完全112覆蓋第一介電層111,能夠有效防止第一介電層111中的摻雜物被反應腔內的等離子體侵蝕,而產生顆粒污染物附著在晶圓W上。由於沒有產生顆粒污染物,本發明的靜電吸盤可以保證晶圓W的溫度均勻,並且對晶圓W的吸附力也分佈均勻。
Since undoped AL 2 O 3 is resistant to plasma erosion, completely covering the
在第一介電層111、第二介電層112之間還設有黏接層(圖中未示出),通過該黏接層實現固定連接第一介電層111和第二介電層112。An adhesive layer (not shown in the figure) is also provided between the
第二介電層112為具有第二電阻率的無摻雜陶瓷材質。第二介電層112的電阻率大於10
14Ω.cm,作為本發明的一個較佳實施例,第二介電層112的電阻率為10
17Ω.cm。由於第二介電層112的電阻率大於第一介電層111的電阻率,因此也稱第二介電層112具有高電阻率,第一介電層111具有低電阻率。在本發明的實施例中,第二介電層112為無摻雜的AL
2O
3,其可以是通過機加工而成。如圖1B、圖2所示,在本實施例中,第二介電層112的厚度為
d
2 =0.1~0.5mm。第二介電層112的表面粗糙度為0.1~0.2um。
The
本發明的靜電吸盤無需在電極113上施加過高的直流電壓,即可使第二介電層112對晶圓W產生足夠的吸附力,且有效防止晶圓W背面氦氣打火。並且,本發明的靜電吸盤漏電流小,因而非常容易解吸附晶圓W。The electrostatic chuck of the present invention can make the
以下為本發明的原理說明: 靜電吸附的原理是,當一個帶電物體靠近另一個不帶電物體時,由於靜電感應的作用,使不帶電物體在內部靠近帶電物體的一側會彙聚與帶電物體所帶電荷相反極性的電荷(而在另一側產生相同數量的與帶電物體所帶電荷同性的電荷),由於接觸的兩表面上異性電荷之間的互相吸引作用,會使兩物體產生吸引力,也即“靜電吸附”作用。 The following is a description of the principle of the present invention: The principle of electrostatic adsorption is that when a charged object is close to another uncharged object, due to the effect of electrostatic induction, the side of the uncharged object close to the charged object will accumulate charges of opposite polarity to the charge of the charged object (while on the side of the uncharged object close to the charged object) The other side generates the same number of charges (with the same charge as the charged object). Due to the mutual attraction between opposite charges on the two surfaces in contact, the two objects will generate an attraction, that is, "electrostatic adsorption".
普通的靜電吸盤通常包含:由導熱材料製成的基座,設置在基座上的介電層及設置在介電層內的電極。介電層的性質對靜電吸盤的吸附力、解吸附能力、使用壽命等具有重要的影響。Ordinary electrostatic chucks usually include: a base made of thermally conductive material, a dielectric layer disposed on the base, and electrodes disposed in the dielectric layer. The properties of the dielectric layer have an important impact on the adsorption force, desorption ability, and service life of the electrostatic chuck.
如圖3中的靜電吸盤採用了較高電阻率的介電層112′(電阻量級為10 9Ohm),在該介電層112′內設有電極113′,圖3未示出該靜電吸盤的基座。如圖3所示,該介電層112′大致為盤狀,其直徑略小於吸附在其上的晶圓W的直徑,以保證晶圓W完全覆蓋介電層112′,防止等離子體對介電層112′造成損傷。在產生靜電吸附力時,該晶圓W作為上端電極,該電極113′作為下端電極。由於介電層112′具有較高電阻率,因此介電層112′具有絕對絕緣性,其內極少有可自由移動的電子,只能產生極化電荷。外部的直流電壓(圖3中為正電壓)被施加在該下端電極上,如此在上端電極(晶圓W)與下端電極之間產生電勢差,通過該電勢差實現晶圓W被吸附在靜電吸盤上。 As shown in Figure 3, the electrostatic chuck uses a dielectric layer 112' with a higher resistivity (resistance magnitude is 10 9 Ohm), and an electrode 113' is provided in the dielectric layer 112'. Figure 3 does not show the electrostatic chuck. The base of the suction cup. As shown in Figure 3, the dielectric layer 112' is roughly disk-shaped, and its diameter is slightly smaller than the diameter of the wafer W adsorbed on it to ensure that the wafer W completely covers the dielectric layer 112' and prevent plasma from damaging the dielectric layer. The electrical layer 112' causes damage. When the electrostatic attraction force is generated, the wafer W serves as the upper electrode and the electrode 113' serves as the lower electrode. Since the dielectric layer 112' has a high resistivity, the dielectric layer 112' has absolute insulation. There are very few electrons that can move freely in the dielectric layer 112' and can only generate polarization charges. An external DC voltage (positive voltage in Figure 3) is applied to the lower electrode, thus generating a potential difference between the upper electrode (wafer W) and the lower electrode. Through this potential difference, the wafer W is adsorbed on the electrostatic chuck. .
該種靜電吸盤的吸附力 F chunk1 的計算公式如下所示: ; (1) The calculation formula for the adsorption force F chunk1 of this type of electrostatic chuck is as follows: ; (1)
其中,ɛ為該絕緣介電層的相對介電常數,ɛ 0為真空介電常數, V為施加在下端電極的直流電壓伏值, d為下端電極與晶圓底部之間的間距。 Among them, ɛ is the relative dielectric constant of the insulating dielectric layer, ɛ 0 is the vacuum dielectric constant, V is the DC voltage applied to the lower electrode, and d is the distance between the lower electrode and the bottom of the wafer.
根據公式(1)可以看出, F chunk1 與 d的二次方成反比。由於介電層112′內部需要設置電極113′,並且需要保證介電層112′的機械強度、平整度,導致介電層112′的加工難度大,且介電層112′不能太薄(通常該絕緣的介電層112′被設置為2mm)。介電層112′的厚度越大,靜電吸附力 F chunk1 越小,從而使得需要很高的直流電壓(2000伏左右)才能為晶圓W提供足夠的吸附力。 According to formula (1), it can be seen that F chunk1 is inversely proportional to the square of d . Since the electrode 113' needs to be provided inside the dielectric layer 112', and the mechanical strength and flatness of the dielectric layer 112' need to be ensured, the processing of the dielectric layer 112' is difficult, and the dielectric layer 112' cannot be too thin (usually The insulating dielectric layer 112' is set to 2mm). The greater the thickness of the dielectric layer 112', the smaller the electrostatic adsorption force F chunk1 , so that a very high DC voltage (about 2000 volts) is required to provide sufficient adsorption force for the wafer W.
在半導體加工中,晶圓W的散熱相當重要,若無法保證晶圓W的表面的均溫,則在晶圓W的加工過程中無法確保加工的均勻性,加工精度將受到極大的影響。通常通過提高晶圓W的背面的散熱性使局部的高溫可以立即散失,來保證晶圓W的表面均溫。該種方法依靠靜電吸盤對晶圓W導熱進行散熱,散熱效果主要依賴於靜電吸盤的材料。In semiconductor processing, the heat dissipation of the wafer W is very important. If the uniform temperature of the surface of the wafer W cannot be ensured, the processing uniformity cannot be ensured during the processing of the wafer W, and the processing accuracy will be greatly affected. Usually, the heat dissipation of the backside of the wafer W is improved so that the local high temperature can be dissipated immediately to ensure the uniform temperature of the surface of the wafer W. This method relies on the electrostatic chuck to conduct heat to the wafer W to dissipate heat, and the heat dissipation effect mainly depends on the material of the electrostatic chuck.
晶圓W的散熱的另一種方法是通過增加晶圓W的表面的氣體對流,使用氣體對流散熱的方法來均勻晶圓W的表面的溫度。在基座110內包含用於將導熱氣體(如氦氣)路由到基座、介電層112′的第一通道(圖3中未示出)。介電層112′還穿設有多個個連通所述第一通道的第二通道(圖3中未示出),用於將所述導熱氣體輸送到介電層112′的上表面與晶圓W的底面之間,促進晶圓W與介電層112′之間的熱傳遞。如圖1A、圖1B所示,基座110內部還設有冷卻液通道,用於對基座110的溫度進行控制。Another method of heat dissipation of the wafer W is to increase the gas convection on the surface of the wafer W, and use the gas convection heat dissipation method to even out the temperature of the surface of the wafer W. Contained within the
由於介電層112′需要保證有大約2mm的厚度,其內部的電極113′必須接入直流高壓,才能為晶圓提供足夠的吸附力,施加到電極113′上的高壓會帶來晶圓W的背面氦氣打火的風險。Since the dielectric layer 112' needs to have a thickness of about 2 mm, the electrode 113' inside it must be connected to a DC high voltage to provide sufficient adsorption force for the wafer. The high voltage applied to the electrode 113' will cause the wafer W to Risk of helium ignition on the back.
如圖4中的靜電吸盤採用了較低電阻率的介電層112′′(該介電層112′′的電阻量級為10 6Ohm)。圖4中未示出該靜電吸盤的基座。圖4介電層112′′內部設置有電極113′′。介電層112′′不是理想的絕緣介質,即在介電層112′′中有許多可以自由移動的電子,使得介電層112′′具有有限電阻。在對介電層112′′內的電極113′′施加電壓(圖4中為正電壓)後,介電層112′′內的可移動粒子受到電極113′′作用使得電子遷移聚集在介電層112′′的下表面,而帶正電粒子聚集在介電層112′′的上表面。也即圖4所示的靜電吸盤通過漏電流將正電荷傳導至靜電吸盤的上表面。 The electrostatic chuck in Figure 4 uses a dielectric layer 112'' with a lower resistivity (the resistance of the dielectric layer 112'' is on the order of 10 6 Ohm). The base of the electrostatic chuck is not shown in Figure 4 . In Figure 4, an electrode 113'' is provided inside the dielectric layer 112''. The dielectric layer 112'' is not an ideal insulating medium, that is, there are many electrons that can move freely in the dielectric layer 112'', so that the dielectric layer 112'' has finite resistance. After applying a voltage to the electrode 113'' in the dielectric layer 112'' (positive voltage in Figure 4), the movable particles in the dielectric layer 112'' are acted upon by the electrode 113'', causing electron migration to accumulate in the dielectric layer. The lower surface of layer 112'', while the positively charged particles accumulate on the upper surface of dielectric layer 112''. That is, the electrostatic chuck shown in Figure 4 conducts positive charges to the upper surface of the electrostatic chuck through leakage current.
如圖4所示,由於介電層112′′的上表面不是理想平面,其粗糙度不可忽略,在介電層112′′的上表面形成多個個“山峰”與“山谷”。由於“尖端效應”,帶正電粒子聚集在“山峰”處。所述“山峰”與晶圓W的背面的負電子之間形成微型電場。無數個微型電場產生的電場力就構成了靜電吸盤的吸附力。該微型電場的電場強度隨著施加在電極113′′的直流電壓的增大而增強。As shown in FIG. 4 , since the upper surface of the
微型電場的電場力 F chunk2 的計算公式如下所示: ; (2) 其中, 為真空介電常數, V gap 為所述“山峰”與晶圓W的背面之間的電勢差, d gap 為微型電場的“山峰”與晶圓W的背面之間的距離。基於晶圓W的實際面積S,通過對公式(2)進行求積分運算,即可得到圖4中靜電吸盤的吸附力 F chunk3 : 。 The calculation formula of the electric field force F chunk2 of the micro electric field is as follows: ; (2) Among them, is the vacuum dielectric constant, V gap is the potential difference between the “peak” and the back surface of the wafer W, and d gap is the distance between the “peak” of the micro electric field and the back surface of the wafer W. Based on the actual area S of the wafer W, by integrating formula (2), the adsorption force F chunk3 of the electrostatic chuck in Figure 4 can be obtained: .
由於 d gap 通常只有1~2um,因而只需要在電極113′′施加較小的直流電壓(700~1000V)就可以產生足夠的吸附力,因此圖4所示靜電吸盤的吸附力要遠大於圖3所示靜電吸盤的吸附力,半導體業內通常使用如圖4所示的靜電吸盤。 Since d gap is usually only 1~2um, it only needs to apply a small DC voltage (700~1000V) to the electrode 113'' to generate sufficient adsorption force. Therefore, the adsorption force of the electrostatic chuck shown in Figure 4 is much larger than that in Figure 4. 3 shows the adsorption force of the electrostatic chuck. The semiconductor industry usually uses the electrostatic chuck as shown in Figure 4.
但同時圖4的靜電吸盤也具有顯著的缺點: 1)在停止對該靜電吸盤的電極113′′施加直流電壓後,“山峰”的電荷仍較難釋放,因此帶來對晶圓W解吸附困難的問題; 2)當“山峰”的電荷聚集過多,會對晶圓W放電導致晶圓W損壞; 3)該靜電吸盤的吸附力還隨著溫度變化會產生較大變化,因而吸附力不夠穩定; 4)由於該靜電吸盤的介電層113′′有摻雜,摻雜物易被真空反應腔內的等離子體侵蝕,在使用中體現出靜電吸盤壽命短,易產生顆粒物污染,易導致晶圓W的溫度不均勻,吸附力分佈不均勻等一系列問題。 But at the same time, the electrostatic chuck in Figure 4 also has significant shortcomings: 1) After stopping the application of DC voltage to the electrode 113'' of the electrostatic chuck, the charge on the "peak" is still difficult to release, thus causing the problem of difficulty in desorbing the wafer W; 2) When the charge on the "peak" accumulates too much, it will discharge the wafer W and cause damage to the wafer W; 3) The adsorption force of this electrostatic chuck also changes greatly with temperature changes, so the adsorption force is not stable enough; 4) Since the dielectric layer 113'' of the electrostatic chuck is doped, the dopants are easily eroded by the plasma in the vacuum reaction chamber. During use, the electrostatic chuck has a short lifespan and is prone to particle pollution, which can easily lead to wafer failure. There are a series of problems such as uneven temperature of W and uneven distribution of adsorption force.
本發明中,通過採用具有不同電阻率的兩個介電層,克服了上述問題與不足。如圖2所示,本發明中由於第一介電層111的電阻率較低,因此其內部會有許多可以自由移動的電子。圖2中,對第一介電層111內的電極113施加的是正電壓。當對第一介電層111內的電極113施加正電壓時,上述自由移動的電子聚集在第一介電層111的下表面。帶正電粒子聚集在第一介電層111的上表面。第一介電層111的上表面的帶正電粒子與第二介電層112的下表面產生靜電感應,因此第二介電層112的下表面會產生負電荷的極化電荷,第二介電層112的上表面產生正電荷的極化電荷。由於靜電感應,晶圓W的背面聚集有負電荷,通過晶圓W的下表面與第二介電層112的上表面的異性電荷之間的互相吸引作用,會使第二介電層112對晶圓W產生吸引力。也就是說,相當於將電極113的位置“抬高”至第二介電層112內,而實際上並不需要在第二介電層112內設置電極113,便可以使第二介電層112通過其極化電荷吸附晶圓W。由於第二介電層112內部不需要設置電極113,因此可以使本發明的第二介電層112相比於圖3所示靜電吸盤的介電層
具有更小的厚度。即使該厚度可達0.01mm。根據公式(1),由於第二介電層112的厚度減小,本發明的靜電吸盤僅需較小的直流電壓(低於2000V),即可為晶圓W提供足夠的吸附力。當施加的直流電壓減小時,晶圓W的背面氦氣打火的隱患則自然被消除。
In the present invention, the above problems and deficiencies are overcome by using two dielectric layers with different resistivities. As shown in FIG. 2 , in the present invention, since the resistivity of the
由於本發明靜電吸盤的漏電流是由第一介電層111和第二介電層112的總電阻值決定的。第一介電層111的電阻在MOhm量級,第二介電層112的電阻在GOhm量級。因而通過將第一介電層111與第二介電層112相結合,與圖4所示的靜電吸盤相比,本發明的靜電吸盤可以顯著降低漏電流,對晶圓W解吸附更為容易。The leakage current of the electrostatic chuck of the present invention is determined by the total resistance value of the
在另一些實施例中,也可以對第一介電層111內的電極113施加負電壓。當施加負電壓時第一介電層111內的電子受到電極113作用遷移聚集在第一介電層111的上表面,而帶正電粒子聚集在第一介電層111的下表面。也即通過漏電流將負電荷傳導至第一介電層111的上表面。同時第二介電層112的下表面的極化電荷為正電荷,第二介電層112的上表面的極化電荷為負電荷。通過靜電感應,晶圓W的背面聚集有正電荷。如此在晶圓W與第二介電層112之間產生電勢差,用於吸附晶圓W。In other embodiments, a negative voltage may also be applied to the
如圖7所示,第二介電層112與晶圓W接觸的表面設有多個均勻分佈或非均勻分佈的凸起部1121;所述凸起部1121的高度範圍為2~3um。相比於完全通過平面與晶圓W接觸,第二介電層112通過多個凸起部1121減少與晶圓W的接觸面積,可以方便快速解吸附晶圓W。同時通過該凸起部1121使得晶圓W與第二介電層112之間形成一定的間隙。當導熱氣體(如氦氣)注入該間隙中,通過導熱氣體與晶圓W之間熱傳遞,可以帶走晶圓W的熱量。As shown in FIG. 7 , the surface of the
本發明的基座110中還設置有多個冷卻管道,所述冷卻管道包含氦氣通道114。如圖7所示,通過所述氦氣通道114將氦氣通至晶圓W與第二介電層112之間的所述間隙,且氦氣通道114避讓所述凸起部1121。A plurality of cooling ducts are also provided in the
實施例二Embodiment 2
如圖5所示,在本實施例中,第一介電層211嵌入設置在基座210的頂部,且第一介電層211的頂面與基座210的頂面平齊;第二介電層212設置在基座210上並完全覆蓋第一介電層211。第一介電層211位於第二介電層212與基座210包圍形成的空間內,防止第一介電層211中的摻雜物被等離子體侵蝕產生污染物。As shown in FIG. 5 , in this embodiment, the first dielectric layer 211 is embedded on the top of the base 210 , and the top surface of the first dielectric layer 211 is flush with the top surface of the base 210 ; the second dielectric layer 211 is embedded in the top surface of the base 210 . The electrical layer 212 is disposed on the base 210 and completely covers the first dielectric layer 211 . The first dielectric layer 211 is located in the space formed by the second dielectric layer 212 and the base 210 to prevent the dopants in the first dielectric layer 211 from being eroded by plasma and generating contaminants.
實施例三Embodiment 3
如圖6所示,在本實施例中,基座310的外側壁設有耐等離子體腐蝕的鍍膜314。通過該鍍膜314保護基座310不受真空反應腔內等離子體侵蝕,並進一步減少顆粒污染物的產生。有利於提高晶圓W加工的成品率。As shown in FIG. 6 , in this embodiment, a plasma corrosion-resistant coating 314 is provided on the outer wall of the base 310 . The coating 314 protects the base 310 from plasma erosion in the vacuum reaction chamber and further reduces the generation of particulate contaminants. It is beneficial to improve the yield rate of wafer W processing.
本發明還提供一種等離子體反應裝置,包括一等離子體反應腔,所述等離子體反應腔內底部設有如本發明(如上)所述的靜電吸盤,通過所述靜電吸盤吸附待加工的晶圓W。The present invention also provides a plasma reaction device, which includes a plasma reaction chamber. The bottom of the plasma reaction chamber is provided with an electrostatic chuck as described in the present invention (as above). The wafer W to be processed is adsorbed by the electrostatic chuck. .
本發明中,將高電阻率的無摻雜陶瓷材質的第二介電層112完全覆蓋低電阻率的有摻雜陶瓷材質的第一介電層111,並在第一介電層111中設置電極113,實現“抬高”電極113的位置,並且無需在第二介電層112內設置電極113即可使第二介電層112對晶圓W產生靜電吸附力。由於第二介電層112內不包含電極113,因而第二介電層112比習知技術中所使用的高電阻率材質介電層更薄,無需施加過高的直流電壓,即可使第二介電層112產生足夠的吸附力,且有效防止晶圓W背面氦氣打火。進一步,由於本發明的靜電吸盤相比習知技術採用高電阻率材質介電層的靜電吸盤漏電流更小,因而更容易解吸附晶圓W。In the present invention, the
因此,本發明的靜電吸盤同時具備易於解吸附、無需施加高直流電壓的優點,同時不易被等離子體侵蝕,具有更長的使用壽命,並能夠有效防止氦氣打火,極大地提高了生產效率,並提高了晶圓加工的成功率。Therefore, the electrostatic chuck of the present invention has the advantages of easy desorption and no need to apply high DC voltage, is not easily eroded by plasma, has a longer service life, and can effectively prevent helium ignition, greatly improving production efficiency. , and improve the success rate of wafer processing.
以上所述,僅為本發明的具體實施方式,但本發明的保護範圍並不局限於此,任何熟悉的所屬技術領域中具有通常知識者在本發明揭露的技術範圍內,可輕易想到各種等效的修改或替換,這些修改或替換都應涵蓋在本發明的保護範圍之內。因此,本發明的保護範圍應以申專利範圍的要求保護範圍為原則。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person with ordinary knowledge in the technical field can easily think of various etc. within the technical scope disclosed in the present invention. Effective modifications or substitutions shall be included in the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the claimed protection scope of the patent application.
100:真空反應腔 101:反應腔腔壁 102:開口 110,210,310:基座 111,211:第一介電層 112,311:第二介電層 1121:凸起部 113:電極 114:氦氣通道 120:氣體噴淋頭 125:氣體供應裝置 140:排氣泵 150:射頻電源 152:匹配網路 314:鍍膜 W:晶圓 100: Vacuum reaction chamber 101: Reaction chamber wall 102:Open your mouth 110,210,310: base 111,211: first dielectric layer 112,311: Second dielectric layer 1121:Protruding part 113:Electrode 114: Helium channel 120:Gas sprinkler head 125:Gas supply device 140:Exhaust pump 150:RF power supply 152: Matching network 314:Coating W:wafer
為了更清楚地說明本發明技術方案,下面將對描述中所需要使用的附圖作簡單地介紹,顯而易見地,下面描述中的附圖是本發明的一個實施例,對於所屬技術領域中具有通常知識者來講,在不付出具進步性的改變的前提下,還可以根據這些附圖獲得其他的附圖: 圖1A為實施例一中,本發明的靜電吸盤所應用的等離子體反應裝置示意圖; 圖1B、圖2為實施例一中,本發明的靜電吸盤結構示意圖; 圖3為僅使用高電阻率材質介電層的靜電吸盤工作原理示意圖; 圖4為僅使用低電阻率材質介電層的靜電吸盤工作原理示意圖; 圖5為實施例二中,本發明的靜電吸盤結構示意圖; 圖6為實施例三中,本發明的靜電吸盤結構示意圖;以及 圖7為通過氦氣通道將導熱氣體通至晶圓與第二介電層之間的間隙示意圖。 In order to explain the technical solution of the present invention more clearly, the drawings required for the description will be briefly introduced below. Obviously, the drawings in the following description are an embodiment of the present invention, and are generally used in the technical field. For those who know it, other drawings can be obtained based on these drawings without making any progressive changes: Figure 1A is a schematic diagram of a plasma reaction device used in the electrostatic chuck of the present invention in Embodiment 1; 1B and 2 are schematic structural diagrams of the electrostatic chuck of the present invention in Embodiment 1; Figure 3 is a schematic diagram of the working principle of an electrostatic chuck using only a dielectric layer of high resistivity material; Figure 4 is a schematic diagram of the working principle of an electrostatic chuck using only a dielectric layer of low resistivity material; Figure 5 is a schematic structural diagram of the electrostatic chuck of the present invention in Embodiment 2; Figure 6 is a schematic structural diagram of the electrostatic chuck of the present invention in Embodiment 3; and FIG. 7 is a schematic diagram of passing thermally conductive gas through a helium gas channel to the gap between the wafer and the second dielectric layer.
110:基座 110:Pedestal
111:第一介電層 111: First dielectric layer
112:第二介電層 112: Second dielectric layer
113:電極 113:Electrode
W:晶圓 W:wafer
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110341643.2 | 2021-03-30 | ||
CN202110341643.2A CN115148653A (en) | 2021-03-30 | 2021-03-30 | Electrostatic chuck and plasma reaction device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202306019A TW202306019A (en) | 2023-02-01 |
TWI823273B true TWI823273B (en) | 2023-11-21 |
Family
ID=83403984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111106955A TWI823273B (en) | 2021-03-30 | 2022-02-25 | Electrostatic chuck and plasma reaction device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115148653A (en) |
TW (1) | TWI823273B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116476193B (en) * | 2023-03-24 | 2024-01-05 | 上海数造机电科技股份有限公司 | Ceramic 3D printing construction platform, method and system based on electrostatic adsorption |
CN117153672B (en) * | 2023-11-01 | 2024-01-26 | 粤芯半导体技术股份有限公司 | Dielectric layer and manufacturing method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104241182A (en) * | 2013-06-08 | 2014-12-24 | 中微半导体设备(上海)有限公司 | Manufacturing method of electrostatic suction cup, electrostatic suction cup and plasma processing device |
TW202105564A (en) * | 2019-04-19 | 2021-02-01 | 美商摩根先進陶器股份有限公司 | High density corrosion resistant layer arrangement for electrostatic chucks |
US20210066108A1 (en) * | 2019-08-27 | 2021-03-04 | Taiwan Semiconductor Manufacturing Company Limited | Semiconductor chuck and method of making |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW502368B (en) * | 2001-11-06 | 2002-09-11 | Duratek Inc | Electrostatic chuck and method for manufacturing the same |
TWI236084B (en) * | 2003-03-20 | 2005-07-11 | Duratek Inc | Method for manufacturing an electrostatic chuck |
CN112117229A (en) * | 2019-06-20 | 2020-12-22 | 新光电气工业株式会社 | Electrostatic chuck and substrate fixing device |
-
2021
- 2021-03-30 CN CN202110341643.2A patent/CN115148653A/en active Pending
-
2022
- 2022-02-25 TW TW111106955A patent/TWI823273B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104241182A (en) * | 2013-06-08 | 2014-12-24 | 中微半导体设备(上海)有限公司 | Manufacturing method of electrostatic suction cup, electrostatic suction cup and plasma processing device |
TW202105564A (en) * | 2019-04-19 | 2021-02-01 | 美商摩根先進陶器股份有限公司 | High density corrosion resistant layer arrangement for electrostatic chucks |
US20210066108A1 (en) * | 2019-08-27 | 2021-03-04 | Taiwan Semiconductor Manufacturing Company Limited | Semiconductor chuck and method of making |
Also Published As
Publication number | Publication date |
---|---|
CN115148653A (en) | 2022-10-04 |
TW202306019A (en) | 2023-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110770891B (en) | Electrostatic chuck and method of manufacturing the same | |
KR100803253B1 (en) | Plasma chamber support member with coupling electrode | |
JP6173313B2 (en) | Electrostatic chuck with plasma-assisted dechuck on wafer backside | |
JP4354983B2 (en) | Substrate processing equipment | |
TWI413205B (en) | A substrate mounting table, a substrate processing apparatus, and a substrate mounting table | |
JP3292270B2 (en) | Electrostatic suction device | |
JP4082924B2 (en) | Electrostatic chuck holder and substrate processing apparatus | |
TWI823273B (en) | Electrostatic chuck and plasma reaction device | |
CN102683148B (en) | Plasma processing apparatus | |
JP2010118551A (en) | Electrostatic chuck and substrate processing apparatus | |
JP2009290087A (en) | Focus ring, and plasma processing apparatus | |
TWI717631B (en) | Plasma processing device | |
JP6277015B2 (en) | Plasma processing equipment | |
KR101744044B1 (en) | Plasma processing apparatus | |
US20210175054A1 (en) | Electrostatic chuck and substrate fixing device | |
TW201001530A (en) | Electrode structure and substrate processing apparatus | |
TW200410332A (en) | Method and device for plasma treatment | |
TWI755800B (en) | Semiconductor substrate supports with improved high temperature chucking | |
JP5654083B2 (en) | Electrostatic chuck and substrate processing apparatus | |
TW202014555A (en) | Coating material for processing chambers | |
JP2014022261A (en) | Part for plasma processing device, and plasma processing device | |
JP4355159B2 (en) | Electrostatic chuck holder and substrate processing apparatus | |
KR20100090559A (en) | Electrostatic chuck having aerosol coating layer and fabrication method thereof | |
JP4495687B2 (en) | Electrostatic chuck | |
TWI849454B (en) | Electrostatic chuck, manufacturing method, renovation method and plasma reaction device |