TWI818350B - Analog switch circuit and control circuit and control method thereof - Google Patents
Analog switch circuit and control circuit and control method thereof Download PDFInfo
- Publication number
- TWI818350B TWI818350B TW110142062A TW110142062A TWI818350B TW I818350 B TWI818350 B TW I818350B TW 110142062 A TW110142062 A TW 110142062A TW 110142062 A TW110142062 A TW 110142062A TW I818350 B TWI818350 B TW I818350B
- Authority
- TW
- Taiwan
- Prior art keywords
- circuit
- gate
- voltage
- source
- switch
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 10
- 230000003321 amplification Effects 0.000 claims description 10
- 229910044991 metal oxide Inorganic materials 0.000 claims description 10
- 150000004706 metal oxides Chemical class 0.000 claims description 10
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 10
- 239000004065 semiconductor Substances 0.000 claims description 10
- 230000003362 replicative effect Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 25
- 238000004088 simulation Methods 0.000 description 8
- 230000001276 controlling effect Effects 0.000 description 4
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/687—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
Landscapes
- Electronic Switches (AREA)
- Electrophonic Musical Instruments (AREA)
- Selective Calling Equipment (AREA)
Abstract
Description
本發明係有關一種類比開關電路,特別是指一種可改善諧波失真的類比開關電路。本發明也有關於類比開關電路之控制方法。 The present invention relates to an analog switching circuit, and in particular to an analog switching circuit that can improve harmonic distortion. The present invention also relates to a control method for an analog switching circuit.
圖1顯示一種先前技術類比開關電路10之示意圖。類比開關電路10包含串聯於輸入訊號Vin與輸出訊號Vout間之第一開關Q1與第二開關Q2。其中,第一開關Q1與第二開關Q2具有通道電阻R0,且第一開關Q1與第二開關Q2操作而將輸入訊號Vin轉換為輸出訊號Vout時,具有通道電阻變化△R。其中,通道電阻變化△R相關於輸入訊號Vin與輸出訊號Vout的變化,以及周圍溫度的變化等。此外,類比開關電路10具有寄生電阻Rp。輸出訊號Vout施加於電連接至接地電位之負載電阻RL,其輸出訊號Vout可簡單表示成:
經由傅立葉展開,我們可以得到:
其中, in ,
當輸入訊號Vin為弦波時V in =sin(2πft),我們可以得到:
因此由此可知,△R/R L 越小,諧波失真的情況越和緩,而負載電阻RL越低則也會使得諧波失真的情況變得更為嚴重。所以,在低負載(低負載電阻RL)情況下,降低諧波失真就是一種具挑戰性的工作。 Therefore, it can be seen that the smaller △R / RL , the gentler the harmonic distortion, and the lower the load resistance RL, the more serious the harmonic distortion will be. Therefore, under low load (low load resistance RL) conditions, reducing harmonic distortion is a challenging task.
圖2A顯示一種由PMOS/NMOS元件組成的類比開關電路20之示意圖。圖2B顯示類比開關電路20之輸出訊號Vout的諧波失真的情況。在類比開關電路20中,由於PMOS與NMOS元件之閘極電壓皆為固定的電壓Vg,使得PMOS與NMOS元件之閘源電壓會隨著輸入訊號Vin變化而變化,根據PMOS/NMOS元件的特性,這也導致了類比開關電路20之通道電阻也跟著變化,而通道電阻的變化也直接造成了輸出訊號Vout之諧波失真的情況變得嚴重。類比開關電路20之諧波失真的情況如圖2B所示意。由圖2B可知,圖2A所示之PMOS/NMOS元件組成的類比開關電路20,僅可提供約-90dB左右的低諧波失真性能。 FIG. 2A shows a schematic diagram of an analog switching circuit 20 composed of PMOS/NMOS components. FIG. 2B shows the harmonic distortion of the output signal Vout of the analog switching circuit 20 . In the analog switch circuit 20, since the gate voltages of the PMOS and NMOS devices are both fixed voltages Vg, the gate source voltages of the PMOS and NMOS devices will change as the input signal Vin changes. According to the characteristics of the PMOS/NMOS devices, This also causes the channel resistance of the analog switch circuit 20 to change accordingly, and the change in the channel resistance directly causes the harmonic distortion of the output signal Vout to become serious. The harmonic distortion of the analog switching circuit 20 is shown in FIG. 2B. It can be seen from FIG. 2B that the analog switch circuit 20 composed of PMOS/NMOS components shown in FIG. 2A can only provide low harmonic distortion performance of about -90dB.
圖3A顯示先前技術的類比開關電路30之電路示意圖。圖3B顯示先前技術的類比開關電路30之電性模擬示意圖。圖3C顯示類比開關電 路30之輸出訊號Vout的諧波失真的情況。如圖3A所示,藉由提供固定的電壓Vgs作為類比開關電路30中的MOS元件之閘源極電壓,以使MOS元件之閘源極電壓不會隨著輸入電壓Vin變化而變化。但如圖3B所示,在閘源極電壓為固定的電壓Vgs的情況下,隨著輸入訊號Vin變化,通道電壓VRon、通道電阻Ron與負載電流ILoad仍然會有非常大的變化。這直接影響了諧波失真的性能,如圖3C所示,類比開關電路30雖然能夠提供相對於類比開關電路20與類比開關電路10較好的諧波失真性能(約達-110dB),但此種架構仍然無法滿足目前的應用需求。 FIG. 3A shows a circuit schematic diagram of the analog switch circuit 30 of the prior art. FIG. 3B shows an electrical simulation diagram of the analog switch circuit 30 of the prior art. Figure 3C shows the analog switching circuit The harmonic distortion of the output signal Vout of path 30. As shown in FIG. 3A , a fixed voltage Vgs is provided as the gate-source voltage of the MOS element in the analog switching circuit 30 so that the gate-source voltage of the MOS element does not change as the input voltage Vin changes. However, as shown in Figure 3B, when the gate-source voltage is a fixed voltage Vgs, as the input signal Vin changes, the channel voltage VRon, channel resistance Ron, and load current ILoad will still change greatly. This directly affects the performance of harmonic distortion. As shown in Figure 3C, although the analog switching circuit 30 can provide better harmonic distortion performance (about -110dB) than the analog switching circuit 20 and the analog switching circuit 10, this This architecture still cannot meet current application needs.
需說明的是,閘源極電壓係指閘極與源極間的電壓差,汲源極電壓係指汲極與源極間的電壓差,汲源極電流係指流經汲極與源極間的電流,下同。 It should be noted that the gate-source voltage refers to the voltage difference between the gate and the source, the drain-source voltage refers to the voltage difference between the drain and the source, and the drain-source current refers to the voltage flowing through the drain and source. The current between , the same below.
相較於前述的先前技術,本發明提出一種根據通道電壓變化而適應性回授調節閘源極電壓,以使通道電阻於通道電壓變化時仍維持於固定值之類比開關電路及其控制方法。 Compared with the aforementioned prior art, the present invention proposes an analog switching circuit and a control method thereof that adaptively adjust the gate-source voltage through feedback according to changes in channel voltage, so that the channel resistance remains at a fixed value when the channel voltage changes.
就其中一個觀點言,本發明提供了一種類比開關電路,包含:一開關單元,包括一第一開關,耦接於一輸入端與一輸出端之電流路徑上,用以根據一第一閘源極電壓,以將該輸入端之一輸入訊號轉換為該輸出端之一輸出訊號;以及一控制電路,包括:一感測電路,耦接於該輸入端與該輸出端之間,該感測電路用以根據該輸出訊號與該輸入訊號之一電壓差,而產生一感測訊號;以及一閘源極電壓調節電路,與該感測電路耦接,用以根據該感測訊號,產生並適應性調節該第一閘源極電壓,以使該開關單元之一導通電阻於該電壓差變化時仍維持於一固定值。 From one of the viewpoints, the present invention provides an analog switch circuit, including: a switch unit, including a first switch, coupled to a current path between an input terminal and an output terminal, for controlling the switching operation according to a first gate. a source voltage to convert an input signal of the input terminal into an output signal of the output terminal; and a control circuit including: a sensing circuit coupled between the input terminal and the output terminal, the sensor a sensing circuit for generating a sensing signal based on a voltage difference between the output signal and the input signal; and a gate-source voltage adjustment circuit coupled with the sensing circuit for generating a sensing signal based on the sensing signal The first gate-source voltage is adaptively adjusted so that the on-resistance of the switch unit remains at a fixed value when the voltage difference changes.
就另一個觀點言,本發明也提供了一種類比開關電路之控制電路,包含:一感測電路,耦接於一輸入端與一輸出端之間,用以根據該輸出端之一輸出訊號與該輸入端之一輸入訊號之一電壓差,而產生一感測訊號;以及一閘源極電壓調節電路,與該感測電路耦接,用以根據該感測訊號,產生並適應性調節一第一閘源極電壓,以操作該類比開關電路之一開關單元之一第一開關,而將該輸入訊號轉換為該輸出訊號,並使該開關單元之一導通電阻於該電壓差變化時仍維持於一固定值;其中,該第一開關耦接於該輸入端與該輸出端之電流路徑上。 From another point of view, the present invention also provides a control circuit for an analog switch circuit, including: a sensing circuit coupled between an input terminal and an output terminal for outputting a signal according to the output terminal. A voltage difference with an input signal at the input terminal generates a sensing signal; and a gate-source voltage adjustment circuit coupled with the sensing circuit for generating and adaptively adjusting according to the sensing signal A first gate source voltage is used to operate a first switch of a switching unit of the analog switching circuit, convert the input signal into the output signal, and cause an on-resistance of the switching unit to change when the voltage difference changes. Still maintained at a fixed value; wherein, the first switch is coupled to the current path between the input terminal and the output terminal.
就另一個觀點言,本發明也提供了一種類比開關電路之控制方法,包含:根據一第一閘源極電壓,而操作一類比開關電路之一第一開關,以將一輸入端之一輸入訊號轉換為一輸出端之一輸出訊號;根據該輸出訊號與該輸入訊號之一電壓差,而產生一感測訊號;以及根據該感測訊號,適應性調節該第一閘源極電壓,以使該開關單元之一導通電阻於該電壓差變化時仍維持於一固定值;其中,該第一開關耦接於該輸入端與該輸出端之電流路徑上。 From another point of view, the present invention also provides a control method for an analog switching circuit, including: operating a first switch of an analog switching circuit according to a first gate source voltage to switch one of the input terminals The input signal is converted into an output signal at an output terminal; a sensing signal is generated according to a voltage difference between the output signal and the input signal; and the first gate source voltage is adaptively adjusted according to the sensing signal, So that the on-resistance of the switch unit is maintained at a fixed value when the voltage difference changes; wherein, the first switch is coupled to the current path between the input terminal and the output terminal.
在一較佳實施例中,該控制電路更包含一分壓電路,耦接於該輸入端與該輸出端之間,用以提供該電壓差之一基源極分壓,使得該閘源極電壓調節電路更根據該基源極分壓適應性調節該第一閘源極電壓。 In a preferred embodiment, the control circuit further includes a voltage dividing circuit coupled between the input terminal and the output terminal for providing a base-source voltage division of the voltage difference, so that the gate source The gate voltage adjustment circuit further adaptively adjusts the first gate-source voltage according to the base-source voltage division.
在一較佳實施例中,該開關單元更包括一第二開關,該第一開關與該第二開關串聯耦接於該輸入端與該輸出端之間。 In a preferred embodiment, the switch unit further includes a second switch, and the first switch and the second switch are coupled in series between the input terminal and the output terminal.
在一較佳實施例中,其中該第一閘源極電壓與該電壓差之關係式如下:Vgs=Vgs1+K×Vdif In a preferred embodiment, the relationship between the first gate source voltage and the voltage difference is as follows: Vgs=Vgs1+K×Vdif
其中,Vgs為該第一閘源極電壓,Vgs1為一固定電壓,Vdif為該電壓差,K為一參數;其中該參數為大於1之實數。 Among them, Vgs is the first gate source voltage, Vgs1 is a fixed voltage, Vdif is the voltage difference, and K is a parameter; where the parameter is a real number greater than 1.
在一較佳實施例中,該閘源極電壓調節電路根據該感測訊號,更產生一第二閘源極電壓,以控制該第二開關,而使該導通電阻於該電壓差變化時仍維持於該固定值。 In a preferred embodiment, the gate-source voltage adjustment circuit further generates a second gate-source voltage according to the sensing signal to control the second switch, so that the on-resistance remains unchanged when the voltage difference changes. maintained at this fixed value.
在一較佳實施例中,該控制電路更包含一分壓電路,耦接於該輸入端與該輸出端之間,用以提供該電壓差之一基源極分壓,使得該閘源極電壓調節電路更根據該基源極分壓適應性調節該第一閘源極電壓。 In a preferred embodiment, the control circuit further includes a voltage dividing circuit coupled between the input terminal and the output terminal for providing a base-source voltage division of the voltage difference, so that the gate source The gate voltage adjustment circuit further adaptively adjusts the first gate-source voltage according to the base-source voltage division.
在一較佳實施例中,該感測電路包括:一放大電路,具有一第一輸入端與一第二輸入端,分別與該輸入端及該輸出端耦接,該放大電路以負回授控制而將該第一輸入端與該第二輸入端的電壓調節於相同的位準;一第一電阻,耦接於該第一輸入端與該輸入端之間;以及一第二電阻,耦接於該第二輸入端與該輸出端之間;其中該放大電路產生一放大電流,且該感測訊號正比於該放大電流。 In a preferred embodiment, the sensing circuit includes: an amplifying circuit having a first input terminal and a second input terminal respectively coupled to the input terminal and the output terminal, the amplifying circuit uses negative feedback Control to adjust the voltages of the first input terminal and the second input terminal to the same level; a first resistor, coupled between the first input terminal and the input terminal; and a second resistor, coupled Between the second input terminal and the output terminal; the amplification circuit generates an amplification current, and the sensing signal is proportional to the amplification current.
在一較佳實施例中,該感測電路更包括一電流鏡電路,用以複製放大該放大電流而產生該感測訊號。 In a preferred embodiment, the sensing circuit further includes a current mirror circuit for replicating and amplifying the amplified current to generate the sensing signal.
在一較佳實施例中,該放大電路包括一第一超級源極隨耦器(super source follower)。 In a preferred embodiment, the amplifier circuit includes a first super source follower.
在一較佳實施例中,該閘源極電壓調節電路包括一第一阻抗電路,耦接於該第一開關之一第一閘極與一第一源極之間,用以根據該感測訊號而適應性調節該第一閘源極電壓。 In a preferred embodiment, the gate-source voltage adjustment circuit includes a first impedance circuit coupled between a first gate of the first switch and a first source to adjust the voltage according to the sensing signal to adaptively adjust the first gate source voltage.
在一較佳實施例中,該閘源極電壓調節電路更包括:一第二超級源極隨耦器,耦接於該感測電路與該第一阻抗電路之間,用以根據相關於該感測訊號之一感測電流與一固定電流,而產生二加總電流;以及一第二 阻抗電路,與該第二超級源極隨耦器耦接;其中該二加總電流分別流經該第一阻抗電路與該第二阻抗電路,而適應性調節該第一閘源極電壓。 In a preferred embodiment, the gate-source voltage adjustment circuit further includes: a second super source follower, coupled between the sensing circuit and the first impedance circuit, for controlling the One of the sensing signals is a sensing current and a fixed current to generate a sum of two currents; and a second An impedance circuit is coupled to the second super source follower; wherein the two summed currents flow through the first impedance circuit and the second impedance circuit respectively to adaptively adjust the first gate source voltage.
在一較佳實施例中,該第一開關包括一第一金屬氧化半導體(metal oxide semiconductor,MOS)元件,且該電壓差相關於該第一MOS元件之源汲極電壓,該導通電阻相關於該第一MOS元件導通時之通道電阻;其中該感測訊號正比於該第一MOS元件導通時之源汲極電流;其中該閘源極電壓調節電路根據該電壓差變化而適應性調整該第一閘源極電壓,以維持該第一MOS元件導通時之通道電阻於該固定值。 In a preferred embodiment, the first switch includes a first metal oxide semiconductor (MOS) device, and the voltage difference is related to the source-drain voltage of the first MOS device, and the on-resistance is related to The channel resistance when the first MOS element is turned on; wherein the sensing signal is proportional to the source-drain current when the first MOS element is turned on; wherein the gate-source voltage adjustment circuit adaptively adjusts the third gate-source voltage adjustment circuit according to changes in the voltage difference. A gate source voltage is used to maintain the channel resistance at the fixed value when the first MOS element is turned on.
在一較佳實施例中,該第一開關包括一第一金屬氧化半導體(metal oxide semiconductor,MOS)元件,該第二開關包括另一MOS元件,且該電壓差相關於該第一MOS元件之源汲極電壓與該第二MOS元件之源汲極電壓的總和;其中,該導通電阻相關於該第一MOS元件導通時之通道電阻與該第二MOS元件導通時之通道電阻的總和;其中該感測訊號正比於該第一MOS元件導通時之源汲極電流;其中該閘源極電壓調節電路根據該電壓差變化而適應性調整該第一閘源極電壓,以維持該通道電阻的總和於該固定值。 In a preferred embodiment, the first switch includes a first metal oxide semiconductor (MOS) device, the second switch includes another MOS device, and the voltage difference is related to the voltage difference between the first MOS device and the first MOS device. The sum of the source-drain voltage and the source-drain voltage of the second MOS element; wherein, the on-resistance is related to the sum of the channel resistance when the first MOS element is turned on and the channel resistance when the second MOS element is turned on; where The sensing signal is proportional to the source-drain current when the first MOS element is turned on; wherein the gate-source voltage adjustment circuit adaptively adjusts the first gate-source voltage according to the voltage difference change to maintain the channel resistance. summed to this fixed value.
底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。 It will be easier to understand the purpose, technical content, characteristics and achieved effects of the present invention through detailed description of specific embodiments below.
10,20,40,50,60,70,80,90,100:類比開關電路 10,20,40,50,60,70,80,90,100: Analog switching circuit
41,81,101:開關單元 41,81,101: Switch unit
42,52,62,82,102:控制電路 42,52,62,82,102:Control circuit
43,63,83,103:感測電路 43,63,83,103: Sensing circuit
45,65,85,105:閘源極電壓調節電路 45,65,85,105: Gate-source voltage adjustment circuit
57,77,97,107:分壓電路 57,77,97,107: Voltage dividing circuit
631,1031:放大電路 631,1031: Amplification circuit
633,1033,1034:電流鏡電路 633,1033,1034: Current mirror circuit
651:調節訊號產生電路 651: Adjustment signal generation circuit
852:第二調節電路 852: Second adjustment circuit
1051:超級源極隨耦器 1051:Super source follower
1053:第一阻抗電路 1053: First impedance circuit
1055:第二阻抗電路 1055: Second impedance circuit
Ib:固定電流 Ib: fixed current
ILoad:負載電流 ILoad: load current
Isen:感測電流 Isen: sensing current
K,K1:參數 K, K1: parameters
M1,M2,M3,M6,M7,M8:開關元件 M1, M2, M3, M6, M7, M8: switching elements
M4,M5,M9,M10:電阻元件 M4, M5, M9, M10: Resistive elements
N1:第一輸入端 N1: first input terminal
N2:第二輸入端 N2: second input terminal
N3:第三輸入端 N3: The third input terminal
N4:第四輸入端 N4: The fourth input terminal
Q1:第一開關 Q1: First switch
Q2:第二開關 Q2: Second switch
Q11,Q12,Q21,Q22:開關 Q11, Q12, Q21, Q22: switch
R0:通道電阻 R0: channel resistance
R1:第一電阻 R1: first resistor
R2:第二電阻 R2: second resistor
R3,R4,Rbs,Rbs’,Rfod:電阻 R3, R4, Rbs, Rbs’, Rfod: resistance
RL:負載電阻 RL: load resistance
Ron:通道電阻 Ron: channel resistance
Rp:寄生電阻 Rp: parasitic resistance
Ssen:感測訊號 Ssen: sensing signal
T1:輸入端 T1: input terminal
T2:輸出端 T2: Output terminal
V1,V2,V3,V4:電壓 V1, V2, V3, V4: voltage
Vc1:固定電壓 Vc1: fixed voltage
Vdif:電壓差 Vdif: voltage difference
Vg,Vgs:電壓 Vg, Vgs: voltage
Vg1:第一閘極電壓 Vg1: first gate voltage
Vg2:第二閘極電壓 Vg2: second gate voltage
Vgs1:第一閘源極電壓 Vgs1: first gate source voltage
Vgs2:第二閘源極電壓 Vgs2: second gate source voltage
Vin:輸入訊號 Vin: input signal
Vout:輸出訊號 Vout: output signal
VRon:通道電壓 VRon: channel voltage
VS:電壓源 VS: voltage source
△R:通道電阻變化 △R: Channel resistance change
圖1顯示一種先前技術的類比開關電路10之示意圖。 FIG. 1 shows a schematic diagram of a prior art analog switching circuit 10 .
圖2A顯示一種先前技術由PMOS/NMOS元件組成的類比開關電路20之示意圖。 FIG. 2A shows a schematic diagram of a prior art analog switching circuit 20 composed of PMOS/NMOS components.
圖2B顯示類比開關電路20之輸出訊號Vout的諧波失真的情況。 FIG. 2B shows the harmonic distortion of the output signal Vout of the analog switching circuit 20 .
圖3A顯示先前技術的類比開關電路30之示意圖。 FIG. 3A shows a schematic diagram of a prior art analog switching circuit 30 .
圖3B顯示先前技術的類比開關電路30之電性模擬示意圖。 FIG. 3B shows an electrical simulation diagram of the analog switch circuit 30 of the prior art.
圖3C顯示先前技術的類比開關電路30之輸出訊號Vout的諧波失真的情況。 FIG. 3C shows the harmonic distortion of the output signal Vout of the analog switching circuit 30 of the prior art.
圖4A顯示根據本發明類比開關電路40之示意圖。 FIG. 4A shows a schematic diagram of an analog switching circuit 40 according to the present invention.
圖4B顯示根據本發明之類比開關電路之輸出訊號Vout的諧波失真的模擬結果。 FIG. 4B shows the simulation results of the harmonic distortion of the output signal Vout of the analog switching circuit according to the present invention.
圖5顯示根據本發明類比開關電路50之示意圖。 FIG. 5 shows a schematic diagram of an analog switching circuit 50 according to the present invention.
圖6顯示根據本發明類比開關電路60之一種較具體的實施例示意圖。 FIG. 6 shows a schematic diagram of a more specific embodiment of the analog switch circuit 60 according to the present invention.
圖7顯示根據本發明類比開關電路70之示意圖。 FIG. 7 shows a schematic diagram of an analog switching circuit 70 according to the present invention.
圖8顯示根據本發明類比開關電路80之示意圖。 FIG. 8 shows a schematic diagram of an analog switching circuit 80 according to the present invention.
圖9顯示根據本發明類比開關電路90之示意圖。 FIG. 9 shows a schematic diagram of an analog switching circuit 90 according to the present invention.
圖10顯示根據本發明類比開關電路100之示意圖。 FIG. 10 shows a schematic diagram of an analog switching circuit 100 according to the present invention.
圖11顯示根據本發明感測電路103之一種較具體的實施例示意圖。 FIG. 11 shows a schematic diagram of a more specific embodiment of the sensing circuit 103 according to the present invention.
圖12A-12E顯示根據本發明之類比開關電路之輸出訊號Vout的諧波失真的快速傅立葉變換(Fast Fourier Transform,FFT)模擬結果。 12A-12E show Fast Fourier Transform (FFT) simulation results of the harmonic distortion of the output signal Vout of the analog switching circuit according to the present invention.
本發明中的圖式均屬示意,主要意在表示各電路間之耦接關係,以及各訊號波形之間之關係,至於電路、訊號波形與頻率則並未依照比例繪製。 The diagrams in the present invention are schematic and are mainly intended to represent the coupling relationship between circuits and the relationship between signal waveforms. The circuits, signal waveforms and frequencies are not drawn to scale.
圖4A顯示根據本發明類比開關電路40之示意圖。圖4B顯示根據本發明之類比開關電路之輸出訊號Vout的諧波失真的模擬結果。類比開關電路40包含開關單元41以及控制電路42。其中,控制電路42包括:感測電路43以及閘源極電壓調節電路45。如圖4A所示,開關單元41用以根據第一閘源極電壓Vgs1,而操作其中之第一開關Q1,以將輸入端T1之輸入訊號Vin轉換為輸出端T2之輸出訊號Vout。感測電路43耦接於輸入端T1與輸出端T2之間,感測電路43用以根據輸入訊號Vin與輸出訊號Vout之電壓差,而產生感測訊號Ssen。閘源極電壓調節電路45與感測電路43耦接,用以根據感測訊號Ssen,適應性調節第一閘源極電壓Vgs1,以使開關單元41之導通電阻於電壓差變化時仍維持於固定值。 FIG. 4A shows a schematic diagram of an analog switching circuit 40 according to the present invention. FIG. 4B shows the simulation results of the harmonic distortion of the output signal Vout of the analog switching circuit according to the present invention. The analog switch circuit 40 includes a switch unit 41 and a control circuit 42 . The control circuit 42 includes a sensing circuit 43 and a gate-source voltage adjustment circuit 45 . As shown in FIG. 4A , the switch unit 41 is used to operate the first switch Q1 according to the first gate-source voltage Vgs1 to convert the input signal Vin of the input terminal T1 into the output signal Vout of the output terminal T2 . The sensing circuit 43 is coupled between the input terminal T1 and the output terminal T2. The sensing circuit 43 is used to generate the sensing signal Ssen according to the voltage difference between the input signal Vin and the output signal Vout. The gate-source voltage adjustment circuit 45 is coupled to the sensing circuit 43 for adaptively adjusting the first gate-source voltage Vgs1 according to the sensing signal Ssen, so that the on-resistance of the switching unit 41 is maintained at the value when the voltage difference changes. Fixed value.
在本實施例中,第一開關Q1例如為N型金屬氧化物半導體(metal oxide semiconductor,MOS)元件。其中,前述電壓差相關於該N型MOS元件之源汲極電壓,前述導通電阻相關於該N型MOS元件導通時之通道電阻。在一種實施方式中,前述電壓差等於該N型MOS元件之源汲極電壓,前述導通電阻等於該N型MOS元件導通時之通道電阻。其中,感測訊號Ssen正比於該MOS元件導通時之源汲極電流。其中,該閘源極電壓調節電路45根據前述電壓差變化,也就是該N型MOS元件之源汲極電壓的變化而適應性調整第一閘源極電壓Vgs1,以維持該N型MOS元件導通時之通道電阻於固定值。舉例而言,如圖4A所示,第一閘源極電壓Vgs1例如等於固定電壓Vc1加上參數K乘上感測訊號Ssen,其中參數K可以為固定的常數,也可以是可調節的變數,視使用者的需要或諧波失真的情況而設定或調整。 In this embodiment, the first switch Q1 is, for example, an N-type metal oxide semiconductor (MOS) device. Wherein, the aforementioned voltage difference is related to the source-drain voltage of the N-type MOS element, and the aforementioned on-resistance is related to the channel resistance when the N-type MOS element is turned on. In one embodiment, the voltage difference is equal to the source-drain voltage of the N-type MOS element, and the on-resistance is equal to the channel resistance of the N-type MOS element when it is turned on. Among them, the sensing signal Ssen is proportional to the source-drain current when the MOS element is turned on. Among them, the gate-source voltage adjustment circuit 45 adaptively adjusts the first gate-source voltage Vgs1 according to the aforementioned voltage difference change, that is, the change in the source-drain voltage of the N-type MOS element, so as to maintain the conduction of the N-type MOS element. When the channel resistance is at a fixed value. For example, as shown in Figure 4A, the first gate source voltage Vgs1 is equal to the fixed voltage Vc1 plus the parameter K multiplied by the sensing signal Ssen, where the parameter K can be a fixed constant or an adjustable variable. Set or adjust according to user needs or harmonic distortion conditions.
需說明的是,閘源極電壓調節電路45除了與感測電路43耦接,其輸出耦接於第一開關Q1中的MOS元件的閘極與源極之間。以N型MOS元件而言,在輸入訊號Vin的電壓位準減去輸出訊號Vout的電壓位準之電壓差為正的時候,如圖4A所示,閘源極電壓調節電路45耦接於MOS元件的閘極與輸出端T2之間;而當輸入訊號Vin的電壓位準減去輸出訊號Vout的電壓位準之電壓差為負的時候,閘源極電壓調節電路45則耦接於MOS元件的閘極與輸入端T1之間(未示出)。也可以用一個選擇開關耦接於閘源極電壓調節電路45的一個輸出端,與輸出端T2及輸入端T1之間,視輸入訊號Vin的電壓位準減去輸出訊號Vout的電壓位準之電壓差之正負而切換,以使閘源極電壓調節電路45的輸出,耦接於MOS元件的閘極與源極之間。 It should be noted that, in addition to being coupled to the sensing circuit 43 , the gate-source voltage adjustment circuit 45 has an output coupled between the gate and the source of the MOS element in the first switch Q1 . For N-type MOS devices, when the voltage difference between the voltage level of the input signal Vin minus the voltage level of the output signal Vout is positive, as shown in FIG. 4A , the gate-source voltage adjustment circuit 45 is coupled to the MOS between the gate of the component and the output terminal T2; and when the voltage difference between the voltage level of the input signal Vin minus the voltage level of the output signal Vout is negative, the gate-source voltage adjustment circuit 45 is coupled to the MOS component between the gate and input terminal T1 (not shown). A selection switch can also be coupled between an output terminal of the gate-source voltage adjustment circuit 45 and the output terminal T2 and the input terminal T1, depending on the voltage level of the input signal Vin minus the voltage level of the output signal Vout. The positive and negative voltage difference is switched, so that the output of the gate-source voltage adjustment circuit 45 is coupled between the gate and the source of the MOS device.
在應用MOS元件作為第一開關Q1的類比開關電路中,為了改善先前技術中,因為導通電阻,也就是MOS元件導通時的通道電阻,在輸入訊號與輸出訊號變化的情況下,通道電阻變化△R也跟著變化,導致諧波失真的情形,本發明藉由感測輸入端與輸出端的電壓差變化,回授調節MOS元件的閘源極電壓,來達成維持通道電阻不變的目標。本實施例透過改變其中的MOS元件的閘極與源極間的電壓(第一閘源極電壓Vgs1)來達成控制通道電阻的目標。如圖4A所示,本實施例透過輸入端T1與輸出端T2的電壓差變化,回授控制MOS元件的閘源極電壓(第一閘源極電壓Vgs1),來降低通道電阻的變化。其中閘極與源極間的電壓差(在本實施例中為第一閘源極電壓Vgs1)可以透過固定電壓Vc1與感測訊號Ssen而決定,以適應性調節閘極與源極間的電壓差(第一閘源極電壓Vgs1),進而達成目標。其中,感測訊號Ssen相關於輸出訊號Vin與輸入訊號Vout之電壓差,在本實施例中,感測訊號Ssen相關於MOS元件之汲極與源極間電壓變化。其模擬結果如圖4B 所示,根據本實施例的模擬結果,高階的諧波失真如正確補償皆可以被大幅的降低。 In an analog switch circuit using a MOS element as the first switch Q1, in order to improve the previous technology, because the on-resistance, that is, the channel resistance when the MOS element is turned on, when the input signal and the output signal change, the channel resistance changes △ R also changes accordingly, resulting in harmonic distortion. The present invention achieves the goal of maintaining the channel resistance unchanged by sensing the change in voltage difference between the input end and the output end, and feedback adjusting the gate-source voltage of the MOS element. This embodiment achieves the goal of controlling the channel resistance by changing the voltage between the gate and the source of the MOS device (the first gate-source voltage Vgs1). As shown in FIG. 4A , this embodiment uses feedback to control the gate-source voltage of the MOS device (the first gate-source voltage Vgs1 ) through the voltage difference between the input terminal T1 and the output terminal T2 to reduce changes in channel resistance. The voltage difference between the gate and the source (in this embodiment, the first gate-source voltage Vgs1) can be determined by the fixed voltage Vc1 and the sensing signal Ssen to adaptively adjust the voltage between the gate and the source. difference (the first gate source voltage Vgs1), thereby achieving the goal. The sensing signal Ssen is related to the voltage difference between the output signal Vin and the input signal Vout. In this embodiment, the sensing signal Ssen is related to the voltage change between the drain and the source of the MOS element. The simulation results are shown in Figure 4B As shown, according to the simulation results of this embodiment, high-order harmonic distortion can be greatly reduced if correctly compensated.
圖5顯示根據本發明類比開關電路50之示意圖。在本實施例中,類比開關電路50與圖4A所示之類比開關電路40不同之處,在於類比開關電路50中,控制電路52除了感測電路43以及閘源極電壓調節電路45之外,更包含分壓電路57。分壓電路57耦接於輸入端T1與輸出端T2之間,用以將輸出訊號Vin與輸入訊號Vout之電壓差進行分壓,以產生第一開關Q1的基源極分壓,使得閘源極電壓調節電路45更根據基源極分壓適應性調節第一閘源極電壓Vgs1。所述的基源極分壓,係指分壓電路57中,耦接於第一開關Q1中的MOS元件的基板極(bulk)與源極之間的電阻Rbs所提供的分壓。且如圖5所示,閘源極電壓調節電路45可耦接於基板極與閘極之間,如此一來,不管輸入訊號Vin的電壓位準減去輸出訊號Vout的電壓位準之電壓差為正或負,閘源極電壓調節電路45不需要改變電連接於輸入端T1或是輸出端T2,都可以適應性調節第一閘源極電壓Vgs1,以使開關單元41之導通電阻於電壓差變化時仍維持於固定值,進而改善諧波失真。 FIG. 5 shows a schematic diagram of an analog switching circuit 50 according to the present invention. In this embodiment, the difference between the analog switch circuit 50 and the analog switch circuit 40 shown in FIG. 4A is that in the analog switch circuit 50, the control circuit 52, in addition to the sensing circuit 43 and the gate-source voltage adjustment circuit 45, It also includes a voltage dividing circuit 57. The voltage dividing circuit 57 is coupled between the input terminal T1 and the output terminal T2 and is used to divide the voltage difference between the output signal Vin and the input signal Vout to generate a base-source voltage division of the first switch Q1 so that the gate The source voltage adjustment circuit 45 further adaptively adjusts the first gate source voltage Vgs1 according to the base-source voltage division. The base-source divided voltage refers to the divided voltage provided by the resistor Rbs between the bulk and the source of the MOS element in the first switch Q1 in the voltage dividing circuit 57 . As shown in FIG. 5 , the gate-source voltage adjustment circuit 45 can be coupled between the substrate and the gate. In this way, regardless of the voltage level of the input signal Vin minus the voltage level of the output signal Vout, the voltage difference Is positive or negative, the gate-source voltage adjustment circuit 45 does not need to change the electrical connection to the input terminal T1 or the output terminal T2, and can adaptively adjust the first gate-source voltage Vgs1 so that the on-resistance of the switch unit 41 is equal to the voltage When the difference changes, it remains at a fixed value, thereby improving harmonic distortion.
如圖5所示,在本實施例中,第一閘源極電壓Vgs1等於固定電壓Vc1加上參數K乘上感測訊號Ssen以及前述的基源極分壓:Vgs1=Vc1+(K×Ssen)+V3-Vout(本實施例中,基源極分壓為V3-Vout) As shown in Figure 5, in this embodiment, the first gate source voltage Vgs1 is equal to the fixed voltage Vc1 plus the parameter K multiplied by the sensing signal Ssen and the aforementioned base-source voltage division: Vgs1=Vc1+(K×Ssen) +V3-Vout (in this embodiment, the base-source voltage divider is V3-Vout)
考慮感測訊號Ssen等於輸入訊號Vin減輸出訊號Vout,並推導如下:Vgs1=Vc1+(K×Ssen)+V3-Vout Consider that the sensing signal Ssen is equal to the input signal Vin minus the output signal Vout, and is derived as follows: Vgs1=Vc1+(K×Ssen)+V3-Vout
Vgs1=Vc1+(K×Ssen)+D×(Vin-Vout) Vgs1=Vc1+(K×Ssen)+D×(Vin-Vout)
其中,D=Rbs/(Rbs+Rbs’),電阻Rbs’是第一開關Q1中的MOS元件的基板極與汲極之間的電阻Rbs’,也就是說,D為Rbs與整個分壓電阻串的比例。 Among them, D=Rbs/(Rbs+Rbs'), the resistance Rbs' is the resistance Rbs' between the substrate electrode and the drain electrode of the MOS element in the first switch Q1, that is to say, D is Rbs and the entire voltage dividing resistor String ratio.
其中,電壓V3為第一開關Q1的基板極電壓。 The voltage V3 is the substrate electrode voltage of the first switch Q1.
Vgs1=Vc1+K×(Vin-Vout)+D×(Vin-Vout)=Vc1+K'×(Vin-Vout)=Vc1+K'×Vdif Vgs1=Vc1+K×(Vin-Vout)+D×(Vin-Vout)=Vc1+K ' ×(Vin-Vout)=Vc1+K ' ×Vdif
其中K'=K+D where K' = K + D
Vdif=Vin-Vout Vdif=Vin-Vout
也就是說,在本實施例中,閘源極電壓調節電路45,根據輸出訊號Vin與輸入訊號Vout之電壓差所產生的感測訊號Ssen(在一種實施例中感測訊號Ssen等於輸入訊號Vin減輸出訊號Vout),以回授控制方式產生並適應性調節第一閘源極電壓Vgs1,以使開關單元41之導通電阻於電壓差變化時仍維持於固定值。 That is to say, in this embodiment, the gate-source voltage adjustment circuit 45 generates the sensing signal Ssen based on the voltage difference between the output signal Vin and the input signal Vout (in one embodiment, the sensing signal Ssen is equal to the input signal Vin minus the output signal Vout), a feedback control method is used to generate and adaptively adjust the first gate source voltage Vgs1, so that the on-resistance of the switch unit 41 remains at a fixed value when the voltage difference changes.
在一種實施例中,參數K為大於1之實數。參數K大於1的優點,是表示閘源極電壓調節電路45不受限於以電阻等被動元件所組成的分壓電路,以輸入電壓Vin與輸出電壓Vout間的電壓差Vdif的分壓來調節第一閘源極電壓Vgs1;根據本發明之實施例,可以藉由感測電壓差Vdif,主動回授控制調節第一閘源極電壓Vgs1,藉此更準確地維持開關單元41的導通電阻於固定值。 In one embodiment, parameter K is a real number greater than 1. The advantage of the parameter K being greater than 1 is that the gate-source voltage adjustment circuit 45 is not limited to a voltage dividing circuit composed of passive components such as resistors, and is divided by the voltage difference Vdif between the input voltage Vin and the output voltage Vout. Adjust the first gate source voltage Vgs1; according to the embodiment of the present invention, the first gate source voltage Vgs1 can be adjusted through active feedback control by sensing the voltage difference Vdif, thereby more accurately maintaining the on-resistance of the switching unit 41 at a fixed value.
圖6顯示根據本發明類比開關電路60之一種較具體的實施例示意圖。在本實施例中,類比開關電路60包含開關單元41以及控制電路62。其中,控制電路62包括:感測電路63以及閘源極電壓調節電路65。如圖6所 示,開關單元41用以根據第一閘源極電壓Vgs1,而操作其中之第一開關Q1,以將輸入端T1之輸入訊號Vin轉換為輸出端T2之輸出訊號Vout。感測電路63耦接於輸入端T1與輸出端T2之間,感測電路63用以根據輸入訊號Vin與輸出訊號Vout之電壓差Vdif,而產生感測訊號Ssen。如圖6所示,感測訊號Ssen例如為電流K1*Isen。閘源極電壓調節電路65與感測電路63耦接,用以根據感測訊號Ssen,適應性調節第一閘源極電壓Vgs1,以使開關單元41之導通電阻於電壓差Vdif變化時仍維持於固定值。如圖6所示,在一種實施例中,考慮參數K1的值為1,感測訊號Ssen例如為感測電流Isen,調節訊號產生電路651,接收感測電流Isen,並產生電流K*Isen流經電阻R3,進而產生電壓差K*Isen*R3。則Vgs1=Vc1+K*Isen*R3。 FIG. 6 shows a schematic diagram of a more specific embodiment of the analog switch circuit 60 according to the present invention. In this embodiment, the analog switch circuit 60 includes a switch unit 41 and a control circuit 62 . The control circuit 62 includes: a sensing circuit 63 and a gate-source voltage adjustment circuit 65 . As shown in Figure 6 As shown, the switch unit 41 is used to operate the first switch Q1 according to the first gate-source voltage Vgs1 to convert the input signal Vin of the input terminal T1 into the output signal Vout of the output terminal T2. The sensing circuit 63 is coupled between the input terminal T1 and the output terminal T2. The sensing circuit 63 is used to generate the sensing signal Ssen according to the voltage difference Vdif between the input signal Vin and the output signal Vout. As shown in FIG. 6 , the sensing signal Ssen is, for example, the current K1*Isen. The gate-source voltage adjustment circuit 65 is coupled to the sensing circuit 63 for adaptively adjusting the first gate-source voltage Vgs1 according to the sensing signal Ssen, so that the on-resistance of the switching unit 41 is maintained when the voltage difference Vdif changes. at a fixed value. As shown in FIG. 6 , in one embodiment, considering that the value of parameter K1 is 1, the sensing signal Ssen is, for example, the sensing current Isen. The adjustment signal generation circuit 651 receives the sensing current Isen and generates the current K*Isen flow. Through resistor R3, a voltage difference K*Isen*R3 is generated. Then Vgs1=Vc1+K*Isen*R3.
本實施例顯示感測電路63之一種較具體的實施例。如圖6所示,感測電路63包括放大電路631、電流鏡電路633、第一電阻R1以及第二電阻R2。放大電路631具有第一輸入端N1與第二輸入端N2,分別與輸入端T1及輸出端T2耦接。放大電路631以負回授控制而將第一輸入端N1與第二輸入端N2的電壓調節於相同的位準。第一電阻R1耦接於第一輸入端T1與輸入端N1之間。第二電阻R2,耦接於第二輸入端N2與輸出端T2之間。其中放大電路631產生感測電流Isen,且感測訊號Ssen正比於感測電流Isen。電流鏡電路633用以複製感測電流Isen而產生感測訊號。在本實施例中,電流鏡電路633根據感測電流Isen放大參數K1倍後,產生電流K1*Isen,用以作為感測訊號Ssen。其中,放大電路631中的放大器A1可以多種方式實施,其具體實施例將詳述於後。 This embodiment shows a more specific embodiment of the sensing circuit 63 . As shown in FIG. 6 , the sensing circuit 63 includes an amplifier circuit 631 , a current mirror circuit 633 , a first resistor R1 and a second resistor R2 . The amplifier circuit 631 has a first input terminal N1 and a second input terminal N2, which are coupled to the input terminal T1 and the output terminal T2 respectively. The amplifier circuit 631 uses negative feedback control to adjust the voltages of the first input terminal N1 and the second input terminal N2 to the same level. The first resistor R1 is coupled between the first input terminal T1 and the input terminal N1. The second resistor R2 is coupled between the second input terminal N2 and the output terminal T2. The amplifier circuit 631 generates the sensing current Isen, and the sensing signal Ssen is proportional to the sensing current Isen. The current mirror circuit 633 is used to copy the sensing current Isen to generate a sensing signal. In this embodiment, the current mirror circuit 633 amplifies the parameter K1 times according to the sensing current Isen, and generates the current K1*Isen, which is used as the sensing signal Ssen. Among them, the amplifier A1 in the amplifier circuit 631 can be implemented in various ways, and its specific embodiments will be described in detail later.
閘源極電壓調節電路65與感測電路63耦接,用以根據作為感測訊號Ssen的電流K1*Isen,適應性調節第一閘源極電壓Vgs1,以使開關單元41之導通電阻於電壓差Vdif變化時仍維持於固定值。 The gate source voltage adjustment circuit 65 is coupled to the sensing circuit 63 for adaptively adjusting the first gate source voltage Vgs1 according to the current K1*Isen as the sensing signal Ssen, so that the on-resistance of the switching unit 41 is equal to the voltage The difference Vdif remains at a fixed value when changing.
在本實施例中,閘源極電壓調節電路65包括調節訊號產生電路651、電壓源VS以及電阻R3。在本實施例中,調節訊號產生電路651根據電流K1*Isen產生電流K*Isen流經電阻R3,而產生電壓差K*Isen*R3。因此,第一閘源極電壓Vgs1等於固定電壓Vc1加上電壓差K*Isen*R3。而電流K*Isen相關於輸入訊號Vin與輸出訊號Vout之電壓差Vdif,因此調節訊號產生電路651可根據電壓差Vdif適應性調節第一閘源極電壓Vgs1,以使開關單元41之導通電阻於電壓差Vdif變化時仍維持於固定值。其中,電阻R3耦接於第一開關Q1中之閘極與源極之間,用以根據感測訊號而適應性調節第一閘源極電壓Vgs1。 In this embodiment, the gate-source voltage adjustment circuit 65 includes an adjustment signal generation circuit 651, a voltage source VS and a resistor R3. In this embodiment, the adjustment signal generating circuit 651 generates a current K*Isen flowing through the resistor R3 according to the current K1*Isen, thereby generating a voltage difference K*Isen*R3. Therefore, the first gate source voltage Vgs1 is equal to the fixed voltage Vc1 plus the voltage difference K*Isen*R3. The current K*Isen is related to the voltage difference Vdif between the input signal Vin and the output signal Vout. Therefore, the adjustment signal generation circuit 651 can adaptively adjust the first gate source voltage Vgs1 according to the voltage difference Vdif, so that the on-resistance of the switching unit 41 is within The voltage difference Vdif remains at a fixed value when changing. The resistor R3 is coupled between the gate and the source of the first switch Q1 to adaptively adjust the first gate-source voltage Vgs1 according to the sensing signal.
如圖6所示,兩電流源各自提供固定電流Ib,且兩固定電流Ib分別流經第一電阻R1與第二電阻R2。第一電阻R1兩端的電壓差為電壓V1;第二電阻R2兩端的電壓差為電壓V2。放大電路631以負回授控制而將其中的第一輸入端N1與第二輸入端N2的電壓調節於相同的位準,並考慮第一開關Q1的通道電阻Ron與流經第一開關Q1的輸出電流Iout,且考慮R1等於R2,放大電路631的負回授控制如下式:V1+Iout×Ron=V2 As shown in FIG. 6 , the two current sources each provide a fixed current Ib, and the two fixed currents Ib flow through the first resistor R1 and the second resistor R2 respectively. The voltage difference across the first resistor R1 is voltage V1; the voltage difference across the second resistor R2 is voltage V2. The amplifier circuit 631 uses negative feedback control to adjust the voltages of the first input terminal N1 and the second input terminal N2 to the same level, and considers the channel resistance Ron of the first switch Q1 and the voltage flowing through the first switch Q1. The output current Iout, and considering that R1 is equal to R2, the negative feedback control of the amplifier circuit 631 is as follows: V1+Iout×Ron=V2
Ib×R1+Iout×Ron=Isen×R2+Ib×R2 Ib×R1+Iout×Ron=Isen×R2+Ib×R2
Ib×R1+Iout×Ron=Isen×R1+Ib×R1 Ib×R1+Iout×Ron=Isen×R1+Ib×R1
因此,第一閘源極電壓Vgs如下式:
考慮R3等於R1,則第一閘源極電壓Vgs1如下式:
Vgs1=Vc1+K×Iout×Ron Vgs1=Vc1+K×Iout×Ron
Vgs1=Vc1+K×Vdif Vgs1=Vc1+K×Vdif
其結果顯示,本實施例之感測電路63透過負回授控制,將第一輸入端N1與第二輸入端N2的電壓調節於相同的位準,產生感測電流Isen;其中感測電流Isen相關於輸入訊號Vin與輸出訊號Vout的電壓差Vdif;閘源極電壓調節電路65再根據感測電流Isen,適應性調節第一閘源極電壓Vgs1,達到開關單元41之導通電阻於電壓差變化時仍維持於固定值的效果。 The results show that the sensing circuit 63 of this embodiment adjusts the voltages of the first input terminal N1 and the second input terminal N2 to the same level through negative feedback control to generate a sensing current Isen; where the sensing current Isen Correlated to the voltage difference Vdif between the input signal Vin and the output signal Vout; the gate-source voltage adjustment circuit 65 adaptively adjusts the first gate-source voltage Vgs1 according to the sensing current Isen, so that the on-resistance of the switching unit 41 changes with the voltage difference. The effect is still maintained at a fixed value.
在一種較佳的實施例中,如圖6所示,放大電路631包括超級源極隨耦器(super source follower)。在一種較佳的實施例中,參數K為大於1之實數。 In a preferred embodiment, as shown in FIG. 6 , the amplifying circuit 631 includes a super source follower. In a preferred embodiment, parameter K is a real number greater than 1.
圖7顯示根據本發明類比開關電路70之示意圖。在本實施例中,類比開關電路70與圖6所示之類比開關電路60不同之處,在於類比開關電路70中,控制電路62除了感測電路63以及閘源極電壓調節電路65之外,更包含分壓電路77。分壓電路77耦接於輸入端T1與輸出端T2之間,用以提供輸出訊號Vin與輸入訊號Vout之電壓差Vdif之第一開關Q1的基源極分壓,使得閘源極電壓調節電路65更根據基源極分壓適應性調節第一閘源極電壓Vgs1。此外,如圖7所示,閘源極電壓調節電路65可耦接於基板極與閘極之間,如此一來,不管輸入訊號Vin的電壓位準減去輸出訊號Vout的電壓位準之電壓差為正或負,閘源極電壓調節電路65不需要改變電連接於輸入端T1或是輸出端T2,都可以適應性調節第一閘源極電壓Vgs1,以使開關單元41之導通電阻於電壓差變化時仍維持於固定值,進而改善諧波失真。 FIG. 7 shows a schematic diagram of an analog switching circuit 70 according to the present invention. In this embodiment, the difference between the analog switch circuit 70 and the analog switch circuit 60 shown in FIG. 6 is that in the analog switch circuit 70, in addition to the sensing circuit 63 and the gate-source voltage adjustment circuit 65, the control circuit 62 also has It also includes a voltage dividing circuit 77. The voltage dividing circuit 77 is coupled between the input terminal T1 and the output terminal T2, and is used to provide base-source voltage division of the first switch Q1 by the voltage difference Vdif between the output signal Vin and the input signal Vout, so that the gate-source voltage is adjusted. The circuit 65 further adaptively adjusts the first gate-source voltage Vgs1 according to the base-source voltage division. In addition, as shown in FIG. 7 , the gate-source voltage adjustment circuit 65 can be coupled between the substrate and the gate. In this way, regardless of the voltage level of the input signal Vin minus the voltage level of the output signal Vout The difference is positive or negative, the gate-source voltage adjustment circuit 65 does not need to change the electrical connection to the input terminal T1 or the output terminal T2, and can adaptively adjust the first gate-source voltage Vgs1, so that the on-resistance of the switch unit 41 is within The voltage difference remains at a fixed value when changing, thereby improving harmonic distortion.
圖8顯示根據本發明類比開關電路80之示意圖。類比開關電路80包含開關單元81以及控制電路82。其中,控制電路82包括:感測電路83以及閘源極電壓調節電路85。如圖8所示,開關單元81用以根據第一閘源極 電壓Vgs1與第二閘源極電壓Vgs2,而對應操作其中之第一開關Q1與第二開關Q2,以將輸入端T1之輸入訊號Vin轉換為輸出端T2之輸出訊號Vout。感測電路83耦接於輸入端T1與輸出端T2之間,感測電路83用以根據輸出訊號Vin與輸入訊號Vout之電壓差,而產生感測訊號Ssen。閘源極電壓調節電路85與感測電路83耦接,用以根據感測訊號Ssen,適應性調節第一閘源極電壓Vgs1,以使開關單元81之導通電阻於電壓差變化時仍維持於固定值。 FIG. 8 shows a schematic diagram of an analog switching circuit 80 according to the present invention. The analog switch circuit 80 includes a switch unit 81 and a control circuit 82 . The control circuit 82 includes: a sensing circuit 83 and a gate-source voltage adjustment circuit 85 . As shown in Figure 8, the switch unit 81 is used to control the first gate source The voltage Vgs1 and the second gate-source voltage Vgs2 operate the first switch Q1 and the second switch Q2 correspondingly to convert the input signal Vin of the input terminal T1 into an output signal Vout of the output terminal T2. The sensing circuit 83 is coupled between the input terminal T1 and the output terminal T2. The sensing circuit 83 is used to generate the sensing signal Ssen according to the voltage difference between the output signal Vin and the input signal Vout. The gate-source voltage adjustment circuit 85 is coupled to the sensing circuit 83 and is used to adaptively adjust the first gate-source voltage Vgs1 according to the sensing signal Ssen, so that the on-resistance of the switching unit 81 remains constant when the voltage difference changes. Fixed value.
在本實施例中,類比開關電路80與圖4A所示之類比開關電路40不同之處,在於類比開關電路80中,開關單元81除了第一開關Q1,更包括第二開關Q2。第一開關Q1與第二開關Q2串聯耦接於輸入端T1與輸出端T2之間。 In this embodiment, the difference between the analog switch circuit 80 and the analog switch circuit 40 shown in FIG. 4A is that in the analog switch circuit 80 , the switch unit 81 further includes a second switch Q2 in addition to the first switch Q1. The first switch Q1 and the second switch Q2 are coupled in series between the input terminal T1 and the output terminal T2.
在一種實施例中,如圖8所示,閘源極電壓調節電路85可更包括第二調節電路852。第二調節電路852根據感測訊號Ssen(如圖8中虛線箭號所示意),產生第二閘源極電壓Vgs2,以控制第二開關Q2,而使導通電阻於電壓差變化時仍維持於固定值。在一種實施例中,第二閘源極電壓Vgs2為固定值。 In one embodiment, as shown in FIG. 8 , the gate-source voltage adjustment circuit 85 may further include a second adjustment circuit 852 . The second adjustment circuit 852 generates the second gate-source voltage Vgs2 according to the sensing signal Ssen (indicated by the dotted arrow in Figure 8) to control the second switch Q2, so that the on-resistance remains constant when the voltage difference changes. Fixed value. In one embodiment, the second gate source voltage Vgs2 is a fixed value.
在本實施例中,如圖8所示,第一開關Q1例如包括第一金屬氧化半導體(metal oxide semiconductor,MOS)元件,其例如為N型MOS元件;第二開關Q2包括第二MOS元件,其例如為N型MOS元件。其中,前述電壓差相關於第一MOS元件之源汲極電壓與第二MOS元件之源汲極電壓的總和;前述導通電阻相關於第一MOS元件導通時之通道電阻與第二MOS元件導通時之通道電阻的總和。 In this embodiment, as shown in FIG. 8 , the first switch Q1 includes, for example, a first metal oxide semiconductor (MOS) element, which is an N-type MOS element, for example; the second switch Q2 includes a second MOS element, It is an N-type MOS element, for example. Wherein, the aforementioned voltage difference is related to the sum of the source-drain voltage of the first MOS element and the source-drain voltage of the second MOS element; the aforementioned on-resistance is related to the channel resistance when the first MOS element is turned on and when the second MOS element is turned on. The sum of channel resistances.
在一種實施方式中,前述電壓差等於第一MOS元件之源汲極電壓與第二MOS元件之源汲極電壓的總和;前述導通電阻等於第一MOS元件導通時之通道電阻與第二MOS元件導通時之通道電阻的總和。其中,感 測訊號Ssen正比於第一MOS元件與第二MOS元件皆導通時之源汲極電流。其中,閘源極電壓調節電路85根據前述電壓差變化,也就是第一MOS元件之源汲極電壓與第二MOS元件之源汲極電壓的總和電壓的變化,而適應性調整第一閘源極電壓Vgs1,以維持導通電阻於固定值。舉例而言,如圖8所示,第一閘源極電壓Vgs1例如等於固定電壓Vc1加上參數K乘上感測訊號Ssen,其中參數K可以為固定的常數,也可以是可調節的變數,視使用者的需要或諧波失真的情況而設定或調整。 In one embodiment, the voltage difference is equal to the sum of the source-drain voltage of the first MOS element and the source-drain voltage of the second MOS element; the on-resistance is equal to the channel resistance of the first MOS element when it is turned on and the channel resistance of the second MOS element. The total channel resistance when turned on. Among them, feeling The measurement signal Ssen is proportional to the source-drain current when both the first MOS element and the second MOS element are turned on. Among them, the gate-source voltage adjustment circuit 85 adaptively adjusts the first gate source according to the aforementioned voltage difference change, that is, the change in the sum of the source-drain voltage of the first MOS element and the source-drain voltage of the second MOS element. pole voltage Vgs1 to maintain the on-resistance at a fixed value. For example, as shown in Figure 8, the first gate source voltage Vgs1 is equal to the fixed voltage Vc1 plus the parameter K multiplied by the sensing signal Ssen, where the parameter K can be a fixed constant or an adjustable variable. Set or adjust according to user needs or harmonic distortion conditions.
圖9顯示根據本發明類比開關電路90之示意圖。類比開關電路90包含開關單元81以及控制電路92。其中,控制電路92包括:感測電路83、閘源極電壓調節電路85以及分壓電路97。如圖9所示,開關單元81用以根據第一閘源極電壓Vgs1與第二閘源極電壓Vgs2,而對應操作其中之第一開關Q1與第二開關Q2,以將輸入端T1之輸入訊號Vin轉換為輸出端T2之輸出訊號Vout。感測電路83耦接於輸入端T1與輸出端T2之間,感測電路83用以根據輸出訊號Vin與輸入訊號Vout之電壓差,而產生感測訊號Ssen。閘源極電壓調節電路85與感測電路83耦接,用以根據感測訊號Ssen,適應性調節第一閘源極電壓Vgs1,以使開關單元81之導通電阻於電壓差變化時仍維持於固定值。分壓電路97耦接於輸入端T1與輸出端T2之間,用以將輸出訊號Vin與輸入訊號Vout之電壓差進行分壓,以產生第一開關Q1的基源極分壓,使得閘源極電壓調節電路85更根據基源極分壓適應性調節第一閘源極電壓Vgs1。在本實施例中,第二閘源極電壓Vgs2例如可為一定值。 FIG. 9 shows a schematic diagram of an analog switching circuit 90 according to the present invention. The analog switch circuit 90 includes a switch unit 81 and a control circuit 92 . Among them, the control circuit 92 includes: a sensing circuit 83, a gate-source voltage adjustment circuit 85 and a voltage dividing circuit 97. As shown in FIG. 9 , the switch unit 81 is used to operate the first switch Q1 and the second switch Q2 correspondingly according to the first gate source voltage Vgs1 and the second gate source voltage Vgs2 to switch the input of the input terminal T1 The signal Vin is converted into the output signal Vout of the output terminal T2. The sensing circuit 83 is coupled between the input terminal T1 and the output terminal T2. The sensing circuit 83 is used to generate the sensing signal Ssen according to the voltage difference between the output signal Vin and the input signal Vout. The gate-source voltage adjustment circuit 85 is coupled to the sensing circuit 83 and is used to adaptively adjust the first gate-source voltage Vgs1 according to the sensing signal Ssen, so that the on-resistance of the switching unit 81 remains constant when the voltage difference changes. Fixed value. The voltage dividing circuit 97 is coupled between the input terminal T1 and the output terminal T2, and is used to divide the voltage difference between the output signal Vin and the input signal Vout to generate a base-source voltage division of the first switch Q1, so that the gate The source voltage adjustment circuit 85 further adaptively adjusts the first gate source voltage Vgs1 according to the base-source voltage division. In this embodiment, the second gate source voltage Vgs2 may be a certain value, for example.
圖10顯示根據本發明類比開關電路100之示意圖。類比開關電路100包含開關單元101以及控制電路102。其中,控制電路102包括:感測電路103、閘源極電壓調節電路105以及分壓電路107。如圖10所示,開關單元101用以根據第一閘源極電壓Vgs1與第二閘源極電壓Vgs2,而對應操作其 中之第一開關Q1與第二開關Q2,以將輸入端T1之輸入訊號Vin轉換為輸出端T2之輸出訊號Vout。感測電路103耦接於輸入端T1與輸出端T2之間,感測電路103用以根據輸出訊號Vin與輸入訊號Vout之電壓差Vdif,而產生感測訊號Ssen。閘源極電壓調節電路105與感測電路103耦接,用以根據感測訊號Ssen,適應性調節第一閘源極電壓Vgs1,以使開關單元101之導通電阻於電壓差Vdif變化時仍維持於固定值。 FIG. 10 shows a schematic diagram of an analog switching circuit 100 according to the present invention. The analog switch circuit 100 includes a switch unit 101 and a control circuit 102 . Among them, the control circuit 102 includes: a sensing circuit 103, a gate-source voltage adjustment circuit 105 and a voltage dividing circuit 107. As shown in FIG. 10 , the switch unit 101 is used to operate its corresponding operation according to the first gate source voltage Vgs1 and the second gate source voltage Vgs2. The first switch Q1 and the second switch Q2 are used to convert the input signal Vin of the input terminal T1 into the output signal Vout of the output terminal T2. The sensing circuit 103 is coupled between the input terminal T1 and the output terminal T2. The sensing circuit 103 is used to generate the sensing signal Ssen according to the voltage difference Vdif between the output signal Vin and the input signal Vout. The gate-source voltage adjustment circuit 105 is coupled to the sensing circuit 103 for adaptively adjusting the first gate-source voltage Vgs1 according to the sensing signal Ssen, so that the on-resistance of the switching unit 101 is maintained when the voltage difference Vdif changes. at a fixed value.
需說明的是,圖10所示之第一閘極電壓Vg1為第一開關Q1(在本實施例中為N型MOS元件)之閘極與接地電位間的電壓差;第二閘極電壓Vg2為第二開關Q2(在本實施例中為N型MOS元件)之閘極與接地電位間的電壓差。如圖10所示,輸入電壓Vin與輸出電壓Vout為相對著於接地電位。 It should be noted that the first gate voltage Vg1 shown in Figure 10 is the voltage difference between the gate of the first switch Q1 (an N-type MOS element in this embodiment) and the ground potential; the second gate voltage Vg2 is the voltage difference between the gate of the second switch Q2 (an N-type MOS device in this embodiment) and the ground potential. As shown in Figure 10, the input voltage Vin and the output voltage Vout are relative to the ground potential.
在本實施例中,開關單元101包括第一開關Q1與第二開關Q2。第一開關Q1與第二開關Q2串聯耦接於輸入端T1與輸出端T2之間。如圖10所示,在一種實施例中,第二開關Q2係一N型MOS元件,由第二閘極電壓Vg2操作。第一開關Q1係一N型MOS元件,由第一閘極電壓Vg1操作。 In this embodiment, the switch unit 101 includes a first switch Q1 and a second switch Q2. The first switch Q1 and the second switch Q2 are coupled in series between the input terminal T1 and the output terminal T2. As shown in Figure 10, in one embodiment, the second switch Q2 is an N-type MOS device and is operated by the second gate voltage Vg2. The first switch Q1 is an N-type MOS component and is operated by the first gate voltage Vg1.
在一種實施例中,考慮Vin>Vout,則第一開關Q1與第二開關Q2的源極都在右邊,靠近輸出電壓Vout側。 In one embodiment, considering Vin>Vout, the sources of the first switch Q1 and the second switch Q2 are both on the right, close to the output voltage Vout side.
其中,第二開關Q2的閘源極電壓Vgs2為:Vgs2=2Ib×2Rfod+VR5 Among them, the gate-source voltage Vgs2 of the second switch Q2 is: Vgs2=2Ib×2Rfod+VR5
其中,第一開關Q1的閘源極電壓Vgs1為:Vgs1=(2Ib+Isen)×2Rfod+VR7 Among them, the gate-source voltage Vgs1 of the first switch Q1 is: Vgs1=(2Ib+Isen)×2Rfod+VR7
在R4~R7電阻值相等的情況下
其中,|Vds2|+|Vds1|=|Vout-Vin|,絕對值是同時考慮Vin<Vout與Vin>Vout的情況。 Among them, |Vds2|+|Vds1|=|Vout-Vin|, the absolute value is the case where Vin<Vout and Vin>Vout are considered at the same time.
其中,VR5為電阻R5兩端的電壓差;VR7為電阻R7兩端的電壓差;Vds1為第一開關Q1之汲源極電壓,Vds2為第二開關Q2之汲源極電壓。 Among them, VR5 is the voltage difference across the resistor R5; VR7 is the voltage difference across the resistor R7; Vds1 is the drain-source voltage of the first switch Q1, and Vds2 is the drain-source voltage of the second switch Q2.
第二閘源極電壓Vgs2是兩個電阻Rfod的電壓降加上第二開關Q2的基源極分壓(假設Vin>Vout,源極在右邊靠近輸出電壓Vout側,基源極分壓為電阻R5上的電壓降,且正端在基極;如果Vin<Vout,源極會在左邊靠近輸入電壓Vin側,基源極分壓為電阻R4上的電壓降,且正端在基極)。 The second gate source voltage Vgs2 is the voltage drop of the two resistors Rfod plus the base-source voltage division of the second switch Q2 (assuming Vin>Vout, the source is on the right side close to the output voltage Vout side, and the base-source voltage division is the resistor The voltage drop on R5, and the positive terminal is at the base; if Vin<Vout, the source will be on the left side close to the input voltage Vin, and the base-source voltage divider is the voltage drop on resistor R4, and the positive terminal is at the base).
第二開關Q2的閘源極電壓Vgs2為第二閘極電壓Vg2減輸入電壓Vin(當輸入電壓Vin<輸出電壓Vout時);或是第二閘極電壓Vg2減電壓V4(其中,電壓V4為電阻R5與R6間的接點之電壓)(當輸入電壓Vin>輸出電壓Vout時)。 The gate-source voltage Vgs2 of the second switch Q2 is the second gate voltage Vg2 minus the input voltage Vin (when the input voltage Vin < the output voltage Vout); or the second gate voltage Vg2 minus the voltage V4 (where the voltage V4 is The voltage of the contact point between resistors R5 and R6) (when the input voltage Vin>the output voltage Vout).
第一開關Q1的閘源極電壓Vgs1為第一閘極電壓Vg1減電壓V4(當輸入電壓Vin<輸出電壓Vout時);或是第一閘極電壓Vg1減輸出電壓Vout(當輸入電壓Vin>輸出電壓Vout時)。 The gate-source voltage Vgs1 of the first switch Q1 is the first gate voltage Vg1 minus the voltage V4 (when the input voltage Vin<the output voltage Vout); or the first gate voltage Vg1 minus the output voltage Vout (when the input voltage Vin> output voltage Vout).
但如果R4~R7都相等,就會如上面有絕對值的式子所示。 But if R4~R7 are all equal, it will be as shown in the above formula with absolute value.
如圖10所示,分壓電路107除了串聯於輸入端T1與輸出端T2間的四個電阻R4之外,更包括開關Q11、Q12、Q21與Q22,用以於開關Q1與Q2受控制為不導通時,同時關斷輸入訊號Vin經由分壓電阻R4~R7電連接至輸出訊號Vout的電流路徑。開關Q11耦接於第一開關Q1的源極與基極之間;開關Q12耦接於第一開關Q1的汲極與基極之間;開關Q21耦接於第二開關Q2的源極與基極之間;開關Q22耦接於第二開關Q2的汲極與基極之間。 開關Q11與Q12由第一閘極電壓Vg1控制;開關Q21與Q22由第二閘極電壓Vg2控制。開關Q11、Q12、Q21與Q22用以避免第一閘極電壓Vg1及第二閘極電壓Vg2切換至不導通開關Q1與Q2的位準時,輸入端T1之輸入訊號Vin經由四個電阻R4轉換為輸出端T2的輸出訊號Vout。 As shown in Figure 10, in addition to the four resistors R4 connected in series between the input terminal T1 and the output terminal T2, the voltage dividing circuit 107 also includes switches Q11, Q12, Q21 and Q22 for controlling the switches Q1 and Q2. When it is non-conductive, the current path of the input signal Vin electrically connected to the output signal Vout through the voltage dividing resistors R4~R7 is also turned off. The switch Q11 is coupled between the source and the base of the first switch Q1; the switch Q12 is coupled between the drain and the base of the first switch Q1; the switch Q21 is coupled between the source and the base of the second switch Q2. between the poles; the switch Q22 is coupled between the drain and the base of the second switch Q2. The switches Q11 and Q12 are controlled by the first gate voltage Vg1; the switches Q21 and Q22 are controlled by the second gate voltage Vg2. The switches Q11, Q12, Q21 and Q22 are used to prevent the first gate voltage Vg1 and the second gate voltage Vg2 from switching to the level of the non-conducting switches Q1 and Q2. The input signal Vin of the input terminal T1 is converted to The output signal Vout of the output terminal T2.
本實施例顯示閘源極電壓調節電路105一種較具體的實施例。如圖10所示,閘源極電壓調節電路105包括超級源極隨耦器1051、第一阻抗電路1053、第二阻抗電路1055。超級源極隨耦器1051耦接於感測電路103與第一阻抗電路1053之間,用以根據相關於感測訊號Ssen之感測電流Isen與固定電流Ib及2Ib,而產生兩個加總電流2Ib+Isen。第一阻抗電路1053耦接於第一開關Q1之閘極與源極之間,用以根據感測訊號Isen而適應性調節第一閘源極電壓Vgs1。第二阻抗電路1055與超級源極隨耦器1051耦接。其中,二加總電流2Ib+Isen分別流經第一阻抗電路1053與第二阻抗電路1055,而適應性調節第一閘源極電壓Vgs1。 This embodiment shows a more specific embodiment of the gate-source voltage adjustment circuit 105. As shown in FIG. 10 , the gate-source voltage adjustment circuit 105 includes a super source follower 1051 , a first impedance circuit 1053 , and a second impedance circuit 1055 . The super source follower 1051 is coupled between the sensing circuit 103 and the first impedance circuit 1053 for generating two sums according to the sensing current Isen and the fixed currents Ib and 2Ib related to the sensing signal Ssen. Current 2Ib+Isen. The first impedance circuit 1053 is coupled between the gate and the source of the first switch Q1 and is used to adaptively adjust the first gate-source voltage Vgs1 according to the sensing signal Isen. The second impedance circuit 1055 is coupled to the super source follower 1051 . Among them, the sum of two currents 2Ib+Isen flows through the first impedance circuit 1053 and the second impedance circuit 1055 respectively, and the first gate source voltage Vgs1 is adaptively adjusted.
本實施例中,超級源極隨耦器1051於圖10中之下側,閘極彼此耦接的兩個電晶體可對應於前述的圖6與圖7之放大電路內的放大器。 In this embodiment, the super source follower 1051 is on the lower side in FIG. 10 , and the two transistors whose gates are coupled to each other can correspond to the amplifiers in the amplifying circuits of FIGS. 6 and 7 .
圖11顯示根據本發明感測電路103之一種較具體的實施例示意圖。如圖11所示,在本實施例中,開關元件M1、M2、M3用以組成一超級源極隨耦器,以作為具有回授控制的放大電路1031(請參閱圖6之放大電路631)。其中,經由開關元件M3所提供的負回授路徑,開關元件M1的源極(第一輸入端N1)與開關元件M2的源極(第二輸入端N2)被調節於相同的電壓。電阻元件M4、M5例如為場氧化元件(field oxide device),用以作為電阻(請參閱圖6之第一電阻R1與第二電阻R2)。在本實施例中,通道電阻Ron用以示意開關單元之導通電阻。因此,放大電路1031根據流經通道電阻Ron的輸出電流Iout所產生的電壓差Vdif,產生感測電流Isen。 FIG. 11 shows a schematic diagram of a more specific embodiment of the sensing circuit 103 according to the present invention. As shown in Figure 11, in this embodiment, the switching elements M1, M2, and M3 are used to form a super source follower as an amplifier circuit 1031 with feedback control (please refer to the amplifier circuit 631 in Figure 6) . Among them, through the negative feedback path provided by the switching element M3, the source of the switching element M1 (the first input terminal N1) and the source of the switching element M2 (the second input terminal N2) are adjusted to the same voltage. The resistive elements M4 and M5 are, for example, field oxide devices, used as resistors (please refer to the first resistor R1 and the second resistor R2 in FIG. 6 ). In this embodiment, the channel resistance Ron is used to represent the on-resistance of the switch unit. Therefore, the amplifier circuit 1031 generates the sensing current Isen according to the voltage difference Vdif generated by the output current Iout flowing through the channel resistor Ron.
開關元件M6、M7、M8用以組成另一超級源極隨耦器,以作為具有回授控制的放大電路1032。其中,經由開關元件M8所提供的負回授路徑,開關元件M6的源極(第三輸入端N3)與開關元件M7的源極(第四輸入端N4)被調節於相同的電壓。電阻元件M9、M10例如為場氧化元件,用以作為電阻元件。放大電路1032用以於輸入訊號Vin小於輸出訊號Vout時,作為具有回授控制的放大電路;以使感測電路103不論輸入訊號Vin不小於或小於輸出訊號Vout時,皆可以操作。具體而言,當輸入訊號Vin不小於輸出訊號Vout時,由放大電路1031根據流經通道電阻Ron的輸出電流Iout所產生的電壓差Vdif,產生感測電流Isen。當輸入訊號Vin小於輸出訊號Vout時,由放大電路1032根據流經通道電阻Ron的輸出電流Iout所產生的電壓差Vdif,產生感測電流Isen。 The switching elements M6, M7, and M8 are used to form another super source follower as an amplifier circuit 1032 with feedback control. Among them, through the negative feedback path provided by the switching element M8, the source of the switching element M6 (the third input terminal N3) and the source of the switching element M7 (the fourth input terminal N4) are adjusted to the same voltage. The resistive elements M9 and M10 are, for example, field oxidation elements and are used as resistive elements. The amplifying circuit 1032 is used as an amplifying circuit with feedback control when the input signal Vin is smaller than the output signal Vout, so that the sensing circuit 103 can operate regardless of whether the input signal Vin is not smaller than or smaller than the output signal Vout. Specifically, when the input signal Vin is not less than the output signal Vout, the amplifying circuit 1031 generates the sensing current Isen according to the voltage difference Vdif generated by the output current Iout flowing through the channel resistor Ron. When the input signal Vin is smaller than the output signal Vout, the amplifying circuit 1032 generates a sensing current Isen according to the voltage difference Vdif generated by the output current Iout flowing through the channel resistor Ron.
除了放大電路1031、1032以及電阻元件M4、M5、M9、M10,感測電路103更包括電流鏡電路1033、1034。電流鏡電路1033、1034例如但不限於根據感測電流Isen放大1倍後,產生相同的感測電流Isen,用以作為感測訊號Ssen。當然,電流鏡電路1033、1034放大倍率不限於為1:1,亦可以為不為1之K倍。 In addition to the amplifying circuits 1031 and 1032 and the resistive elements M4, M5, M9, and M10, the sensing circuit 103 further includes current mirror circuits 1033 and 1034. For example, but not limited to, the current mirror circuits 1033 and 1034 amplify the sensing current Isen by one time and generate the same sensing current Isen as the sensing signal Ssen. Of course, the magnification ratio of the current mirror circuits 1033 and 1034 is not limited to 1:1, and may also be K times other than 1.
考慮電流鏡電路1033、1034的放大倍率為1,電阻元件M4、M5、M9、M10的電阻值皆為電阻Rfod,推導感測電流Isen如下:Rfod×2Ib+Ron|Iout|=Rfod×Isen+Rfod×2Ib Considering that the magnification of the current mirror circuits 1033 and 1034 is 1, and the resistance values of the resistor elements M4, M5, M9, and M10 are all resistors Rfod, the sensing current Isen is derived as follows: Rfod ×2 Ib + Ron | Iout |= Rfod × Isen + Rfod ×2 Ib
因此,用以示意感測訊號Ssen之感測電流Isen正比於通道電阻Ron的輸出電流Iout所產生的電壓差Vdif。 Therefore, the sensing current Isen used to represent the sensing signal Ssen is proportional to the voltage difference Vdif generated by the output current Iout of the channel resistor Ron.
圖12A-12E顯示根據本發明之類比開關電路之輸出訊號Vout的諧波失真的快速傅立葉變換(Fast Fourier Transform,FFT)模擬結果。如圖12A-12E所示,根據本發明之實施例的FFT之二階(含)以上的諧波失真,可以低於-110dB,優於先前技術。在圖12A-12E中,橫軸示意輸入訊號Vin與輸出訊號Vout的頻率。如圖12A-12E所示,根據本發明之實施例的FFT之二階(含)以上的諧波失真,在訊號頻率為1KHz、3KHz、5KHz、10KHz、0.1KHz,根據本發明之實施例的諧波失真皆可以低於-110dB。 12A-12E show Fast Fourier Transform (FFT) simulation results of the harmonic distortion of the output signal Vout of the analog switching circuit according to the present invention. As shown in Figures 12A-12E, the harmonic distortion above the second order (inclusive) of the FFT according to the embodiment of the present invention can be lower than -110dB, which is better than the prior art. In Figures 12A-12E, the horizontal axis represents the frequency of the input signal Vin and the output signal Vout. As shown in Figures 12A-12E, the harmonic distortion of the second order (inclusive) and above of the FFT according to the embodiment of the present invention is at the signal frequency of 1KHz, 3KHz, 5KHz, 10KHz, and 0.1KHz. The harmonic distortion according to the embodiment of the present invention is Wave distortion can be lower than -110dB.
以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。所說明之各個實施例,並不限於單獨應用,亦可以組合應用,舉例而言,兩個或以上之實施例可以組合運用,而一實施例中之部分組成亦可用以取代另一實施例中對應之組成部件。舉例而言,圖10所示的閘源極電壓調節電路105,也可以對應應用於圖4A、5、6、7、8、9所示之實施例中。此外,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,舉例而言,本發明所稱「根據某訊號進行處理或運算或產生某輸出結果」,不限於根據該訊號的本身,亦包含於必要時,將該訊號進行電壓電流轉換、電流電壓轉換、及/或比例轉換等,之後根據轉換後的訊號進行處理或運算產生某輸出結果。由此可知,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,其組合方式甚多,在此不一一列舉說明。因此,本發明的範圍應涵蓋上述及其他所有等效變化。 The present invention has been described above with reference to the preferred embodiments. However, the above description is only to make it easy for those familiar with the art to understand the content of the present invention, and is not intended to limit the scope of rights of the present invention. The various embodiments described are not limited to single application, but can also be used in combination. For example, two or more embodiments can be used in combination, and part of the components in one embodiment can also be used to replace those in another embodiment. Corresponding components. For example, the gate-source voltage adjustment circuit 105 shown in FIG. 10 can also be applied to the embodiments shown in FIGS. 4A, 5, 6, 7, 8, and 9. In addition, under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations. For example, the present invention refers to "processing or computing according to a certain signal or generating a certain output result", which is not limited to Depending on the signal itself, it also includes performing voltage-to-current conversion, current-to-voltage conversion, and/or ratio conversion on the signal when necessary, and then processing or calculating the converted signal to produce an output result. It can be seen from this that under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations. There are many combinations, and they are not listed here. Accordingly, the scope of the present invention is intended to cover the above and all other equivalent changes.
40:類比開關電路 40: Analog switching circuit
41:開關單元 41:Switch unit
42:控制電路 42:Control circuit
43:感測電路 43: Sensing circuit
45:閘源極電壓調節電路 45: Gate-source voltage adjustment circuit
K:參數 K: parameter
Q1:第一開關 Q1: First switch
Ssen:感測訊號 Ssen: sensing signal
T1:輸入端 T1: input terminal
T2:輸出端 T2: Output terminal
Vgs1:第一閘源極電壓 Vgs1: first gate source voltage
Vc1:固定電壓 Vc1: fixed voltage
Vin:輸入訊號 Vin: input signal
Vout:輸出訊號 Vout: output signal
Claims (29)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/685,237 US11664799B2 (en) | 2021-03-18 | 2022-03-02 | Analog switch circuit and control circuit and control method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163163019P | 2021-03-18 | 2021-03-18 | |
US63/163019 | 2021-03-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202239146A TW202239146A (en) | 2022-10-01 |
TWI818350B true TWI818350B (en) | 2023-10-11 |
Family
ID=83324690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110142062A TWI818350B (en) | 2021-03-18 | 2021-11-11 | Analog switch circuit and control circuit and control method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115118265A (en) |
TW (1) | TWI818350B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030016072A1 (en) * | 2001-07-18 | 2003-01-23 | Shankar Ramakrishnan | Mosfet-based analog switches |
US8502595B2 (en) * | 2011-03-23 | 2013-08-06 | Fairchild Semiconductor Corporation | Power down enabled analog switch |
-
2021
- 2021-11-11 TW TW110142062A patent/TWI818350B/en active
- 2021-11-19 CN CN202111374789.3A patent/CN115118265A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030016072A1 (en) * | 2001-07-18 | 2003-01-23 | Shankar Ramakrishnan | Mosfet-based analog switches |
US8502595B2 (en) * | 2011-03-23 | 2013-08-06 | Fairchild Semiconductor Corporation | Power down enabled analog switch |
Also Published As
Publication number | Publication date |
---|---|
CN115118265A (en) | 2022-09-27 |
TW202239146A (en) | 2022-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018129967A1 (en) | Low drop-out linear voltage regulator | |
US7636009B2 (en) | Bias current generating apparatus with adjustable temperature coefficient | |
TWI459173B (en) | Reference voltage generation circuit and reference voltage generation method | |
TWI476557B (en) | Low dropout (ldo) voltage regulator and method therefor | |
WO2019104467A1 (en) | Voltage regulator and power supply | |
CN101223488A (en) | Standard COMS low-noise high PSRR low drop-out regulator with new dynamic compensation | |
GB2558877A (en) | Voltage regulator | |
TW201702784A (en) | Voltage regulators | |
JP2008288900A (en) | Differential amplifier | |
WO2006125063A2 (en) | Increasing the linearity of a transconductance cell | |
CN113672016A (en) | Power supply suppression circuit, chip and communication terminal | |
CN108646847A (en) | A kind of temperature protection circuit and band-gap reference voltage circuit of bandgap voltage reference | |
CN116009641A (en) | Current mirror circuit, protection circuit, bias circuit and electronic equipment | |
CN107783588B (en) | Push-pull type quick response LDO circuit | |
TWI818350B (en) | Analog switch circuit and control circuit and control method thereof | |
CN101651452B (en) | RC integrating circuit | |
US9864387B2 (en) | Voltage regulator | |
US11163327B2 (en) | Digitally assisted low dropout (LDO) voltage regulator | |
US9231525B2 (en) | Compensating a two stage amplifier | |
CN108075739B (en) | Variable gain amplifier | |
CN117369579A (en) | Adjusting circuit, reference voltage generating circuit, chip system and electronic equipment | |
CN215117308U (en) | Current proportional amplification circuit | |
JP4479309B2 (en) | Reference current generation circuit and reference voltage generation circuit | |
US20100295528A1 (en) | Circuit for direct gate drive current reference source | |
TWI806936B (en) | Field-effect transistor arrangement and method for adjusting a drain current of a field-effect transistor |