Nothing Special   »   [go: up one dir, main page]

TWI810541B - 靶向ox40及fap之雙特異性抗原結合分子 - Google Patents

靶向ox40及fap之雙特異性抗原結合分子 Download PDF

Info

Publication number
TWI810541B
TWI810541B TW110111809A TW110111809A TWI810541B TW I810541 B TWI810541 B TW I810541B TW 110111809 A TW110111809 A TW 110111809A TW 110111809 A TW110111809 A TW 110111809A TW I810541 B TWI810541 B TW I810541B
Authority
TW
Taiwan
Prior art keywords
seq
amino acid
acid sequence
heavy chain
cdr
Prior art date
Application number
TW110111809A
Other languages
English (en)
Other versions
TW202144437A (zh
Inventor
瑪麗亞 亞曼
喬俊 彼得 貝秋
亞歷山大 布喬茲克
卡瑞娜 坎翠爾
哈洛德 杜爾
珍妮 菲葛爾
俊 沙賓 因霍夫
克里斯俊 克萊
湯瑪斯 克雷夫特
伯格 依斯特雷 馬爾
艾克哈得 摩斯納
羅琳 波斯
佩特拉 魯傑
喬翰尼斯 山姆
羅蘭 史塔克
迪崔奇 托渥克
帕洛 尤瑪那
喬治 賽隆卡
Original Assignee
瑞士商赫孚孟拉羅股份公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞士商赫孚孟拉羅股份公司 filed Critical 瑞士商赫孚孟拉羅股份公司
Publication of TW202144437A publication Critical patent/TW202144437A/zh
Application granted granted Critical
Publication of TWI810541B publication Critical patent/TWI810541B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2878Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • C07K16/4283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/35Valency
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/522CH1 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/64Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising a combination of variable region and constant region components
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/66Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising a swap of domains, e.g. CH3-CH2, VH-CL or VL-CH1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本發明係關於新穎雙特異性抗原結合分子,其包含至少兩個能夠特異性結合至OX40之抗原結合結構域以及能夠特異性結合至纖維母細胞活化蛋白(FAP)之特定抗原結合結構域,且關於產生該等分子之方法及其使用方法。

Description

靶向OX40及FAP之雙特異性抗原結合分子
本發明係關於新的雙特異性抗原結合分子,其包含至少兩個能夠特異性結合至OX40之抗原結合結構域以及能夠特異性結合至纖維母細胞活化蛋白(FAP)之抗原結合結構域,及Fc結構域、特定而言包含一或多個降低與Fc受體結合及/或效應功能之胺基酸取代之Fc結構域。本發明之其他態樣為該等分子之產生方法及其使用方法。
儘管有若干種新劑為患者提供存活益處,但癌症仍為全世界範圍內之主要死亡原因之一。儘管在治療選擇方面已取得進展,但患有晚期癌症之患者的預後仍然較差。許多癌症適應症的預後較差,且由於腫瘤復發率高或發生遠端轉移,大多數晚期實體腫瘤之管理仍具有挑戰性。患有晚期實體腫瘤之患者明顯受益於檢查點抑制劑(CPI)療法。即使在治療中斷後,其仍可延長患者亞組之總體存活期,此有可能係經由產生記憶免疫反應引起。儘管此療法已改變許多癌症類型之治療前景,但不幸的是,60%-80%的患有轉移性疾病之患者不能自此類型之癌症免疫療法中獲得長期益處。因此,在醫學上迫切需要不斷地開發新的且最佳之療法,其可加至現有的治療中以延長癌症患者之存活期,而不會引起不可接受之毒性。
某些腫瘤中之免疫抑制微環境具有較高的共抑制信號,例如PD-L1,但缺乏OX40配位體之充分表現。OX40 (CD134;TNFRSF4)係腫瘤壞死因子(TNF)受體超家族之成員,其在與T細胞受體(TCR)接合後由T細胞瞬時表現。OX40接合雙向地調節T細胞與OX40L+ 抗原呈現細胞(例如B細胞、樹突細胞(DC)、單核球)之相互作用。在TCR接合之情形中,OX40主要向CD4+ 效應T細胞提供共刺激信號,且亦向CD8+ 效應T細胞提供共刺激信號,從而使得增殖、存活期及效應功能(例如細胞介素分泌)增強。相反,OX40信號傳導引起調控性T細胞之功能抑制及損失。OX40促效作用使TGF-  效應抵消(例如阻礙FoxP3誘導)並減少IL-10分泌。在鼠類腫瘤模型中,促效劑抗OX40抗體與OX40接合可促進抗腫瘤T‑細胞反應、腫瘤縮小及可再現之遠位效應。OX40促效劑之單藥療法功效通常較低,但在與免疫原性治療(化學療法、輻射及疫苗接種)、檢查點抑制劑(PD-1、CTLA-4)及其他共刺激性促效劑(諸如4-1BB、ICOS或GITR)組合時達成較強的抗腫瘤功效。
纖維母細胞活化蛋白-α (FAP)係一種絲胺酸蛋白酶,其在> 90%的人類上皮惡性病之癌症相關基質細胞之細胞表面上、在位於淋巴結之T細胞啟動區中的網狀纖維母細胞上高度表現,且可在正常組織中之活化纖維母細胞上發現。FAP在各種癌症適應症中之高盛行率使得其可用作應在腫瘤環境內累積之藥物的靶向部分。
在腫瘤微環境中特異性地恢復OX40共刺激之一種方式係雙特異性抗體,其包含至少一個針對腫瘤基質中的纖維母細胞活化蛋白(FAP)之抗原結合結構域及至少一個針對OX40之抗原結合結構域。舉例而言,此等雙特異性抗體已描述於WO 2017/055398 A2及WO 2017/060144 A1中。藉由細胞表面FAP交聯並表面固定此等雙特異性分子將產生針對OX40陽性T細胞之高促效性基質,在此情況下,其支持NFκB介導之效應功能且可替代OX40配位體之連接。眾多人類腫瘤適應症有報導高FAP表現,無論是在腫瘤細胞自身上,還是在免疫抑制性癌症相關纖維母細胞(CAF)上。因此,業內需要改良的靶向FAP之OX40雙特異性抗體,其具有優良的藥理學性質,諸如更佳之儲放期限、較低之免疫原性,且具有較少之非特異性相互作用,諸如過敏性反應或不受控之細胞介素釋放。
本發明係關於具有改良性質之能夠特異性結合至OX40及纖維母細胞活化蛋白(FAP)之新的雙特異性抗原結合分子,其中經由在腫瘤基質細胞上表現之FAP且潛在地亦經由在次級淋巴樣組織中中間表現之FAP進行交聯來提供OX40共刺激。因此,本發明之抗原結合分子不僅能夠在期望位點有效地觸發OX40,而且亦極具選擇性,同時克服對FcγR交聯之需要,藉此降低副作用。該等新的雙特異性抗原結合分子之特徵在於包含與Fc結構域之C末端融合之新的FAP抗原結合結構域及改良之藥物動力學性質。
本發明之雙特異性抗原結合分子將至少兩個能夠特異性結合至共刺激性TNF受體家族成員OX40之抗原結合結構域與一個靶向纖維母細胞活化蛋白(FAP)之抗原結合結構域組合,該FAP包含新的鼠類抗人類FAP純系212及其人類化變異體。該等雙特異性抗原結合分子係OX40促效劑且係有利的,此乃因由於該等分子能夠以高親和力結合至FAP,故將較佳地使靠近表現FAP之腫瘤部位之共刺激性OX40受體活化。該等分子進一步經設計以具有有利的藥物動力學特徵,以使治療方案最佳化,從而得到增強之安全性與功效平衡。
在一態樣中,本發明提供雙特異性抗原結合分子,其包含 (a)至少兩個能夠特異性結合至OX40之抗原結合結構域, (b)能夠特異性結合至纖維母細胞活化蛋白(FAP)之抗原結合結構域,其包含:重鏈可變區(VH FAP),該VH FAP包含 (i) CDR-H1,其包含SEQ ID NO:3之胺基酸序列,(ii) CDR-H2,其包含選自由SEQ ID NO:4、SEQ ID NO:11及SEQ ID NO:12組成之群之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:5之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含(iv) CDR-L1,其包含選自由SEQ ID NO:6、SEQ ID NO:13及SEQ ID NO:14組成之群之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:7之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:8之胺基酸序列;及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區。
在一態樣中,Fc區包含一或多個降低抗體與Fc受體之結合親和力及/或效應功能之胺基酸取代。
在另一態樣中,提供雙特異性抗原結合分子,其中能夠特異性結合至FAP之抗原結合結構域包含:重鏈可變區(VH FAP),該VH FAP包含與SEQ ID NO:9之胺基酸序列至少約90%一致之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含與SEQ ID NO:10之胺基酸序列至少約90%一致之胺基酸序列。在一態樣中,能夠特異性結合至FAP之抗原結合結構域包含:重鏈可變區(VH FAP),該VH FAP包含SEQ ID NO:9之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含SEQ ID NO:10之胺基酸序列。
在另一態樣中,能夠特異性結合至FAP之抗原結合結構域包含:重鏈可變區(VH FAP),該VH FAP包含選自由SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19及SEQ ID NO:20組成之群之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含選自由SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23、SEQ ID NO:24、SEQ ID NO:25及SEQ ID NO:26組成之群之胺基酸序列。在一態樣中,能夠特異性結合至FAP之抗原結合結構域包含(a)包含SEQ ID NO:15之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:21之胺基酸序列之輕鏈可變區(VL FAP),(b)包含SEQ ID NO:16之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:21之胺基酸序列之輕鏈可變區(VL FAP),(c)包含SEQ ID NO:16之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:22之胺基酸序列之輕鏈可變區(VL FAP),或(d)包含SEQ ID NO:19之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:25之胺基酸序列之輕鏈可變區(VL FAP)。特定而言,能夠特異性結合至FAP之抗原結合結構域包含(a)包含SEQ ID NO:15之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:21之胺基酸序列之輕鏈可變區(VL FAP)。
在一態樣中,能夠特異性結合至OX40之抗原結合結構域結合至包含SEQ ID NO:1之胺基酸序列或由其組成之多肽。
在另一態樣中,提供雙特異性抗原結合分子,其中能夠特異性結合至OX40之抗原結合結構域(各自)包含 (a)重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:27之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:28之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:29之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:30之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:31之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:32之胺基酸序列,或 (b)重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:35之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:36之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:37之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:38之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:39之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:40之胺基酸序列,或 (c)重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:43之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:44之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:45之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:46之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:47之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:48之胺基酸序列,或 (d)重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:51之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:52之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:53之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:54之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:55之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:56之胺基酸序列。
在一態樣中,能夠特異性結合至OX40之抗原結合結構域(各自)包含重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:27之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:28之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:29之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:30之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:31之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:32之胺基酸序列。在另一態樣中,能夠特異性結合至OX40之抗原結合結構域包含:重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:35之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:36之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:37之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:38之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:39之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:40之胺基酸序列。在另一態樣中,能夠特異性結合至OX40之抗原結合結構域包含:重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:43之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:44之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:45之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:46之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:47之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:48之胺基酸序列。在又一態樣中,能夠特異性結合至OX40之抗原結合結構域包含:重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:51之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:52之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:53之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:54之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:55之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:56之胺基酸序列。
在一態樣中,提供如前文所定義之雙特異性抗原結合分子,其中能夠特異性結合至OX40之抗原結合結構域(各自)包含 (i)包含SEQ ID NO:33之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40),或 (ii)包含SEQ ID NO:41之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:42之胺基酸序列之輕鏈可變區(VL OX40),或 (iii)包含SEQ ID NO:49之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:50之胺基酸序列之輕鏈可變區(VL OX40),或 (iv)包含SEQ ID NO:57之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:58之胺基酸序列之輕鏈可變區(VL OX40)。
在一態樣中,提供如前文所定義之雙特異性抗原結合分子,其中能夠特異性結合至OX40之抗原結合結構域(各自)包含有包含SEQ ID NO:33之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40)。在另一態樣中,提供如前文所定義之雙特異性抗原結合分子,其中能夠特異性結合至OX40之抗原結合結構域包含有包含SEQ ID NO:41之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:42之胺基酸序列之輕鏈可變區(VL OX40)。在另一態樣中,提供如前文所定義之雙特異性抗原結合分子,其中能夠特異性結合至OX40之抗原結合結構域包含有包含SEQ ID NO:49之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:50之胺基酸序列之輕鏈可變區(VL OX40)。在又一態樣中,提供如前文所定義之雙特異性抗原結合分子,其中能夠特異性結合至OX40之抗原結合結構域包含有包含SEQ ID NO:57之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:58之胺基酸序列之輕鏈可變區(VL OX40)。
在特定態樣中,提供如前文所定義之雙特異性抗原結合分子,其中能夠特異性結合至OX40之抗原結合結構域(各自)包含有包含SEQ ID NO:41之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:42之胺基酸序列之輕鏈可變區(VL OX40)。
在另一態樣中,提供如前文所定義之雙特異性抗原結合分子,能夠特異性結合至OX40之抗原結合結構域包含 (i)包含SEQ ID NO:59之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40),或 (ii)包含SEQ ID NO:60之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40),或 (iii)包含SEQ ID NO:61之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40)。
在一態樣中,提供如前文所定義之雙特異性抗原結合分子,其中能夠特異性結合至OX40之抗原結合結構域包含有包含SEQ ID NO:59之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40)。在一態樣中,能夠特異性結合至OX40之抗原結合結構域包含有包含SEQ ID NO:60之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40)。在另一態樣中,能夠特異性結合至OX40之抗原結合結構域包含有包含SEQ ID NO:61之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40)。
在另一態樣中,雙特異性抗原結合分子為人類化或嵌合抗體,特定而言為人類化抗體。在另一態樣中,雙特異性抗原結合分子包含IgG Fc區,特定而言IgG1 Fc區或IgG4 Fc區。特定而言,Fc區包含一或多個降低抗體與Fc受體之結合親和力及/或效應功能之胺基酸取代。在一個特定態樣中,提供雙特異性抗原結合分子,其中Fc區為具有胺基酸突變L234A、L235A及P329G (根據Kabat EU索引進行編號)之人類IgG1亞類Fc區。
在另一態樣中,提供如前文所定義之雙特異性抗原結合分子,其中根據隆凸-孔洞方法,Fc區之第一亞單元包含隆凸且Fc區之第二亞單元包含孔洞。特定而言,提供雙特異性抗原結合分子,其中Fc區之第一亞單元包含胺基酸取代S354C及T366W (根據Kabat Eu索引進行編號)且Fc區之第二亞單元包含胺基酸取代Y349C、T366S及Y407V (根據Kabat EU索引進行編號)。在又一態樣中,Fc區為鼠類起源,且Fc區之第一亞單元包含胺基酸取代K392D及K409D (根據Kabat EU索引進行編號)且Fc區之第二亞單元包含胺基酸取代E356K及D399K (根據Kabat EU索引進行編號)。更特定而言,提供雙特異性抗原結合分子,其中Fc區之第一亞單元包含胺基酸取代S354C及T366W (根據Kabat EU索引進行編號)且Fc區之第二亞單元包含胺基酸取代Y349C、T366S及Y407V (根據Kabat EU索引進行編號)。
在另一態樣中,提供雙特異性抗原結合分子,其中該雙特異性抗原結合分子包含 (a)至少兩個能夠特異性結合至OX40之Fab片段,其各自連結至Fc區之一個亞單元之N末端,及 (b)一個能夠特異性結合至FAP之交叉Fab片段,其與Fc區之一個亞單元之C末端融合,及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區。
因此,提供雙特異性抗原結合分子,其提供對OX40之二價結合及對FAP之單價結合(2+1格式)。特定而言,該雙特異性抗原結合分子包含一個能夠特異性結合至FAP之交叉Fab片段,其中該能夠特異性結合至FAP之交叉fab片段之VH-Cκ鏈與Fc區之一個亞單元之C末端融合。在一個特定態樣中,能夠特異性結合至FAP之交叉fab片段的VH-Cκ鏈與Fc區中包含胺基酸取代S354C及T366W (根據Kabat EU索引進行編號)之第一亞單元之C末端融合,亦即與隆凸鏈融合。
在一態樣中,提供雙特異性抗原結合分子,其中該雙特異性抗原結合分子由以下組成: (aa)能夠特異性結合至OX40之第一Fab片段, (ab)能夠特異性結合至OX40之第二Fab片段, (b)能夠特異性結合至FAP之交叉Fab片段,其與Fc區之一個亞單元之C末端融合,及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區,其中該第一Fab片段(aa)在VH-CH1鏈之C末端與該第一亞單元之N末端融合且該第二Fab片段(ab)在VH-CH1鏈之C末端與該第二亞單元之N末端融合。 因此,提供雙特異性抗原結合分子,其提供對OX40之二價結合及對FAP之單價結合(2+1格式)。
在另一態樣中,提供雙特異性抗原結合分子,其中該雙特異性抗原結合分子由以下組成: (aa)能夠特異性結合至OX40之第一Fab片段, (ab)能夠特異性結合至OX40之第二Fab片段, (ac)能夠特異性結合至OX40之第三Fab片段, (b)能夠特異性結合至FAP之交叉Fab片段,其與Fc區之一個亞單元之C末端融合,及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區,其中該第二Fab片段(ab)在VH-CH1鏈之C末端與該第一Fab片段(aa)之VH-CH1鏈之N末端融合,該第一Fab片段(aa)之VH-CH1鏈又在其C末端與該第一亞單元之N末端融合,且該第三Fab片段(ac)在Fab重鏈之C末端與該第二亞單元之N末端融合。
因此,提供雙特異性抗原結合分子,其提供對OX40之三價結合及對FAP之單價結合(3+1格式)。
在一態樣中,提供雙特異性抗原結合分子,其中該雙特異性抗原結合分子由以下組成: (aa)能夠特異性結合至OX40之第一Fab片段, (ab)能夠特異性結合至OX40之第二Fab片段, (ac)能夠特異性結合至OX40之第三Fab片段, (b)能夠特異性結合至FAP之交叉Fab片段,其與Fc區之一個亞單元之C末端融合,及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區,其中該第二Fab片段(ab)在VH-CH1鏈之C末端與該第一Fab片段(aa)之VH-CH1鏈之N末端融合,該第一Fab片段(aa)之VH-CH1鏈又在其C末端與Fc區中包含胺基酸取代Y349C、T366S及Y407V (根據Kabat EU索引進行編號)之第二亞單元之N末端融合,且該第三Fab片段(ac)在Fab重鏈之C末端與包含胺基酸取代S354C及T366W (根據Kabat EU索引進行編號)之第一亞單元之N末端融合。特定而言,能夠特異性結合至FAP之交叉fab片段的VH-Cκ鏈與Fc區中包含胺基酸取代S354C及T366W (根據Kabat EU索引進行編號)之第一亞單元之C末端融合。
在一態樣中,提供雙特異性抗原結合分子,其包含(a)兩條重鏈,一條重鏈包含能夠特異性結合至OX40之Fab片段的兩條視情況藉由肽連接體彼此連結之VH-CH1鏈以及Fc區亞單元,且一條重鏈包含能夠特異性結合至OX40之Fab片段的一條VH-CH1鏈以及Fc區亞單元,(b)三條輕鏈,每一輕鏈包含能夠特異性結合至OX40之Fab片段的VL及Cκ結構域,及(c)能夠特異性結合至FAP之包含VL-CH1輕鏈及VH-Cκ鏈之交叉Fab片段,其中該VH-Cκ鏈視情況藉由肽連接體連結至(a)中之該兩條重鏈中之一者的C末端。
在一態樣中,提供雙特異性抗原結合分子,其中該雙特異性抗原結合分子由以下組成: (aa)能夠特異性結合至OX40之第一Fab片段, (ab)能夠特異性結合至OX40之第二Fab片段, (ac)能夠特異性結合至OX40之第三Fab片段, (ad)能夠特異性結合至OX40之第四Fab片段, (b)能夠特異性結合至FAP之交叉Fab片段,其與Fc區之一個亞單元之C末端融合,及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區,其中該第二Fab片段(ab)在VH-CH1鏈之C末端與該第一Fab片段(aa)之VH-CH1鏈之N末端融合,該第一Fab片段(aa)之VH-CH1鏈又在其C末端與該第一亞單元之N末端融合,且該第四Fab片段(ad)在VH-CH1鏈之C末端與該第三Fab片段(ac)之VH-CH1鏈之N末端融合,該第三Fab片段(ac)之VH-CH1鏈又在其C末端與該第二亞單元之N末端融合。
因此,提供雙特異性抗原結合分子,其提供對OX40之四價結合及對FAP之單價結合(4+1格式)。在一個特定態樣中,能夠特異性結合至FAP之交叉fab片段的VH-Cκ鏈與Fc區中包含胺基酸取代S354C及T366W (根據Kabat EU索引進行編號)之第一亞單元之C末端融合。
在一態樣中,提供雙特異性抗原結合分子,其中該兩條重鏈各自包含能夠特異性結合至OX40之Fab片段的兩條視情況藉由肽連接體彼此融合之VH-CH1鏈。因此,在一態樣中,本發明提供雙特異性抗原結合分子,其包含(a)兩條重鏈,每一重鏈包含能夠特異性結合至OX40之Fab片段的兩條視情況藉由肽連接體彼此連結之VH-CH1鏈以及Fc區亞單元,(b)四條輕鏈,每一輕鏈包含能夠特異性結合至OX40之Fab片段的VL及Cκ結構域,及(c)能夠特異性結合至FAP之包含VL-CH1輕鏈及VH-Cκ鏈之交叉Fab片段,其中該VH-Cκ鏈視情況藉由肽連接體連結至(a)中之該兩條重鏈中之一者的C末端。
根據本發明之另一態樣,提供經分離核酸,其編碼如前文所闡述之雙特異性抗原結合分子。本發明進一步提供載體、特定而言表現載體,其包含本發明之經分離核酸,以及宿主細胞,其包含本發明之經分離核酸或表現載體。在一些態樣中,宿主細胞為真核細胞、特定而言哺乳動物細胞。在另一態樣中,提供產生如前文所闡述之雙特異性抗原結合分子之方法,其包括在適於表現該雙特異性抗原結合分子之條件下培養如上文所闡述之宿主細胞並分離該雙特異性抗原結合分子。本發明亦涵蓋特異性地結合至OX40及由本發明之方法所產生的FAP之雙特異性抗原結合分子。
本發明進一步提供醫藥組合物,其包含如前文所闡述之雙特異性抗原結合分子以及醫藥學上可接受之載劑。在一態樣中,醫藥組合物包含額外治療劑。
本發明亦涵蓋如前文所闡述之雙特異性抗原結合分子或抗體,或包含該雙特異性抗原結合分子之醫藥組合物,其用作藥劑。
在一態樣中,提供如前文所闡述之雙特異性抗原結合分子或本發明之醫藥組合物,其用於 (i)誘導免疫刺激, (ii)刺激腫瘤特異性T細胞反應, (iii)引起腫瘤細胞之凋亡, (iv)治療癌症, (v)延遲癌症之進展, (vi)延長患有癌症之患者的存活期, (vii)治療感染。
在具體態樣中,提供如前文所闡述之雙特異性抗原結合分子或本發明之醫藥組合物,其用於治療癌症。在另一具體態樣中,本發明提供如前文所闡述之用於治療癌症之雙特異性抗原結合分子,其中該雙特異性抗原結合分子用於與化學治療劑、輻射及/或其他用於癌症免疫療法之劑組合投與。在一態樣中,提供用於治療癌症之雙特異性促效性CD28抗原結合分子或醫藥組合物,其中該雙特異性促效性CD28抗原結合分子用於與T細胞活化性抗CD3雙特異性抗體(例如抗CEA/抗CD3雙特異性抗體)組合投與。在另一態樣中,如本文所闡述之雙特異性抗原結合分子用於治療癌症,其中該雙特異性抗原結合分子用於與阻斷PD-L1/PD-1相互作用之劑(諸如PD-L1抗體,例如阿替珠單抗(atezolizumab),或PD-1抗體,例如尼沃魯單抗(nivolumab)或派姆單抗(pembrolizumab))組合投與。在另一態樣中,提供如前文所闡述之雙特異性抗原結合分子或本發明之醫藥組合物,其用於上調或延長細胞毒性T細胞活性。
在另一態樣中,本發明提供抑制個體中之腫瘤細胞生長之方法,其包括向該個體投與有效量的如前文所闡述之雙特異性抗原結合分子或本發明之醫藥組合物,以抑制該等腫瘤細胞之生長。在另一態樣中,本發明提供治療或延遲個體癌症之方法,其包括向該個體投與有效量的如前文所闡述之雙特異性抗原結合分子或本發明之醫藥組合物。
亦提供如前文所闡述之雙特異性抗原結合分子之用途,其用於製造用以治療有需要個體之疾病之藥劑,特定而言用於製造用以治療癌症之藥劑,以及治療個體疾病之方法,其包括向該個體投與治療有效量的包含本發明之呈醫藥學上可接受形式之雙特異性抗原結合分子之組合物。在具體態樣中,疾病係癌症。在上述態樣中之任一者中,個體係哺乳動物、特定而言人類。
定義
除非另有定義,否則本文所用之技術及科學術語具有與本發明所屬技術中通常所用之含義相同的含義。出於詮釋本說明書之目的,將應用以下定義,且若適當,以單數使用之術語亦將包括複數且反之亦然。
如本文所用,術語「抗原結合分子 」在其最廣泛意義上係指特異性地結合抗原決定子之分子。抗原結合分子之實例係抗體、抗體片段及支架抗原結合蛋白。
如本文所用,術語「能夠特異性結合至靶細胞抗原之抗原結合結構域 」或「能夠特異性結合至靶細胞抗原之部分」係指特異性地結合至抗原決定子之多肽分子。在一態樣中,抗原結合結構域能夠經由其靶細胞抗原來活化信號傳導。在特定態樣中,抗原結合結構域能夠將其所連接之實體(例如OX40促效性抗體)引導至靶位點,例如引導至特定類型之帶有抗原決定子之腫瘤細胞或腫瘤基質。能夠特異性結合至靶細胞抗原之抗原結合結構域包括如本文所進一步定義之抗體及其片段。另外,能夠特異性結合至靶細胞抗原之抗原結合結構域包括如本文所進一步定義之支架抗原結合蛋白,例如基於所設計重複序列蛋白或所設計重複結構域之結合結構域(例如,參見WO 2002/020565)。特定而言,能夠特異性結合至靶細胞抗原之抗原結合結構域係能夠特異性結合至纖維母細胞活化蛋白(FAP)之抗原結合結構域。
關於抗體或其片段,術語「能夠特異性結合至靶細胞抗原之抗原結合結構域」係指包含特異性地結合至部分或全部抗原且與其互補之區域之分子部分。舉例而言,可例如藉由一或多個抗體可變結構域(亦稱為抗體可變區)來提供能夠特異性結合抗原之抗原結合結構域。特定而言,能夠特異性結合抗原之抗原結合結構域包含抗體輕鏈可變區(VL)及抗體重鏈可變區(VH)。在一個特定態樣中,「能夠特異性結合至靶細胞抗原之抗原結合結構域」係Fab片段或交叉Fab片段。
術語「抗體 」在本文中係以最廣泛意義使用且涵蓋各種抗體結構,包括(但不限於)單株抗體、多株抗體、單特異性及多特異性抗體(例如雙特異性抗體)及抗體片段,只要其展現期望抗原結合活性即可。
如本文所用之術語「單株抗體 」係指自實質上同源抗體之群體獲得的抗體,亦即,構成該群體之個別抗體相同及/或結合相同抗原決定基,可能的變異體抗體除外,例如含有天然突變或在產生單株抗體製劑期間產生,此等變異體通常以極少量存在。與通常包括針對不同決定子(抗原決定基)之不同抗體之多株抗體製劑相比,單株抗體製劑之每一單株抗體針對抗原上之單一決定子。
如本文所用之術語「單特異性 」抗體表示具有一或多個結合位點之抗體,每一結合位點結合至相同抗原之相同抗原決定基。術語「雙特異性 」意指,抗原結合分子能夠特異性地結合至至少兩種不同的抗原決定子。通常,雙特異性抗原結合分子包含兩個抗原結合位點,每一抗原結合位點對不同的抗原決定子具有特異性。在某些實施例中,雙特異性抗原結合分子能夠同時結合兩種抗原決定子、特定而言在兩種不同細胞上表現之兩種抗原決定子。如本文所闡述之雙特異性抗原結合分子亦可形成多特異性抗體之一部分。
如本申請案中所用之術語「 」表示在對一種獨特抗原決定子具有特異性之抗原結合分子中存在指定數目的對一種獨特抗原決定子具有特異性之結合位點。因此,術語「二價」、「三價」、「四價」及「六價」表示在抗原結合分子中分別存在對某一抗原決定子具有特異性之兩個結合位點、三個結合位點、四個結合位點及六個結合位點。在本發明之特定態樣中,本發明之雙特異性抗原結合分子對於某一抗原決定子可為單價,此意味著其對於該抗原決定子僅具有一個結合位點,或其對於某一抗原決定子可為二價或四價,此意味著其對於該抗原決定子分別具有兩個結合位點或四個結合位點。
術語「全長抗體」、「完整抗體」及「全抗體」在本文中可互換使用,以指具有實質上類似於天然抗體結構之結構的抗體。「天然抗體 」係指具有不同結構之天然免疫球蛋白分子。舉例而言,天然IgG類抗體為約150,000道耳頓(dalton)之異四聚體糖蛋白,其由二硫鍵鍵結之兩條輕鏈及兩條重鏈構成。自N末端至C末端,每一重鏈具有可變區(VH),亦稱為可變重鏈結構域或重鏈可變結構域,之後為三個恆定結構域(CH1、CH2及CH3),亦稱為重鏈恆定區。類似地,自N末端至C末端,每一輕鏈具有可變區(VL),亦稱為可變輕鏈結構域或輕鏈可變結構域,之後為輕鏈恆定結構域(CL),亦稱為輕鏈恆定區。可將抗體之重鏈指派為五種類型中之一者,稱為α (IgA)、δ (IgD)、ε (IgE)、γ (IgG)或μ (IgM),可將其中之一些進一步分成亞類,例如γ1 (IgG1)、γ2 (IgG2)、γ3 (IgG3)、γ4 (IgG4)、α1 (IgA1)及α2 (IgA2)。基於抗體恆定結構域之胺基酸序列,可將其輕鏈指派為兩種類型中之一者,稱為卡帕(kappa, κ)及拉姆達(lambda, λ)。
抗體片段 」係指除完整抗體以外之分子,其包含完整抗體之一部分,該部分結合完整抗體所結合之抗原。抗體片段之實例包括(但不限於) Fv、Fab、Fab'、Fab’-SH、F(ab')2 ;二價抗體、三價抗體、四價抗體、交叉Fab片段;線性抗體;單鏈抗體分子(例如scFv);及單一結構域抗體。關於某些抗體片段之綜述,參見Hudson等人,Nat Med 9, 129-134 (2003)。關於scFv片段之綜述,例如參見Plückthun, The Pharmacology of Monoclonal Antibodies,第113卷,Rosenburg及Moore編輯,Springer-Verlag, New York,第269-315頁(1994);亦參見WO 93/16185;及美國專利第5,571,894號及第5,587,458號。關於包含補救受體結合抗原決定基殘基且具有延長的活體內半衰期之Fab及F(ab')2片段之論述,參見美國專利第5,869,046號。二價抗體係具有兩個抗原結合位點的可為二價或雙特異性之抗體片段,例如參見EP 404,097;WO 1993/01161;Hudson等人,Nat Med 9, 129-134 (2003);及Hollinger等人,Proc Natl Acad Sci USA 90, 6444-6448 (1993)。三價抗體及四價抗體亦闡述於Hudson等人,Nat Med 9, 129-134 (2003)中。單一結構域抗體係包含抗體中重鏈可變結構域之全部或一部分或輕鏈可變結構域之全部或一部分的抗體片段。在某些實施例中,單一結構域抗體係人類單一結構域抗體(Domantis, Inc., Waltham, MA;例如,參見美國專利第6,248,516 B1號)。如本文所闡述,可藉由各種技術來製備抗體片段,包括(但不限於)蛋白水解消化完整抗體,以及藉由重組宿主細胞(例如大腸桿菌(E. coli)或噬菌體)來產生。
木瓜酶消化完整抗體產生兩個相同的抗原結合片段(稱為「Fab」片段),其各自含有重鏈及輕鏈可變結構域,以及輕鏈之恆定結構域及重鏈之第一恆定結構域(CH1)。因此,如本文所用,術語「Fab 片段 」係指包含以下之抗體片段:輕鏈片段(包含輕鏈(CL)之VL結構域及恆定結構域)以及重鏈之VH結構域及第一恆定結構域(CH1)。Fab’片段與Fab片段的不同之處在於在重鏈CH1結構域之羧基末端添加幾個殘基,該等殘基包括一或多個來自抗體鉸鏈區之半胱胺酸。Fab’-SH係恆定結構域之半胱胺酸殘基帶有游離硫醇基之Fab’片段。胃蛋白酶處理產生具有兩個抗原組合位點之F(ab')2 片段(兩個Fab片段)以及Fc區之一部分。根據本發明,術語「Fab片段」亦包括如下文所定義之「交叉Fab片段(cross-Fab fragment或crossover Fab fragment)」。
術語「交叉 Fab 片段 (cross-Fab fragment)」或「xFab片段」或「交叉Fab片段(crossover Fab fragment)」係指Fab片段,其中重鏈及輕鏈之可變區或恆定區發生交換。交叉Fab分子可能具有兩種不同的鏈組合物,且包含在本發明之雙特異性抗體中:一方面,Fab重鏈及輕鏈之可變區發生交換,亦即交叉Fab分子包含由輕鏈可變區(VL)及重鏈恆定區(CH1)構成之肽鏈以及由重鏈可變區(VH)及輕鏈恆定區(CL)構成之肽鏈。此交叉Fab分子亦稱為交叉Fab(VLVH) 。另一方面,當Fab重鏈及輕鏈之恆定區發生交換時,交叉Fab分子包含由重鏈可變區(VH)及輕鏈恆定區(CL)構成之肽鏈以及由輕鏈可變區(VL)及重鏈恆定區(CH1)構成之肽鏈。此交叉Fab分子亦稱為交叉Fab(CLCH1)
「單鏈Fab片段」或「scFab 」係由抗體重鏈可變結構域(VH)、抗體恆定結構域1 (CH1)、抗體輕鏈可變結構域(VL)、抗體輕鏈恆定結構域(CL)及連接體組成之多肽,其中該等抗體結構域及該連接體在N末端至C末端方向上具有以下順序中之一者:a) VH-CH1-連接體-VL-CL、b) VL-CL-連接體-VH-CH1、c) VH-CL-連接體-VL-CH1或d) VL-CH1-連接體-VH-CL;且其中該連接體係具有至少30個胺基酸、較佳介於32與50個胺基酸之間的多肽。該等單鏈Fab片段經由CL結構域與CH1結構域之間的天然二硫鍵來穩定。另外,該等單鏈Fab分子可進一步藉由插入半胱胺酸殘基(例如根據Kabat編號,在可變重鏈中之位置44及可變輕鏈中之位置100)以生成鏈間二硫鍵來穩定。
「交叉單鏈Fab片段」或「x-scFab 」係由抗體重鏈可變結構域(VH)、抗體恆定結構域1 (CH1)、抗體輕鏈可變結構域(VL)、抗體輕鏈恆定結構域(CL)及連接體組成之多肽,其中該等抗體結構域及該連接體在N末端至C末端方向上具有以下順序中之一者:a) VH-CL-連接體-VL-CH1及b) VL-CH1-連接體-VH-CL;其中VH及VL一起形成特異性地結合至抗原之抗原結合位點且其中該連接體係具有至少30個胺基酸之多肽。另外,該等x-scFab分子可藉由插入半胱胺酸殘基(例如根據Kabat編號,在可變重鏈中之位置44及可變輕鏈中之位置100)以生成鏈間二硫鍵來進一步穩定。
單鏈可變片段 (scFv) 」係抗體中重鏈(VH )及輕鏈(VL )之可變區之融合蛋白,其經具有10至約25個胺基酸之短連接體肽連結。該連接體通常富含甘胺酸以獲得撓性,以及絲胺酸或蘇胺酸以獲得溶解性,且可將VH 之N末端與VL 之C末端連結,或反之亦然。儘管去除恆定區並引入連接體,但此蛋白質仍保留原始抗體之特異性。scFv抗體(例如)闡述於Houston, J.S., Methods in Enzymol. 203 (1991) 46-96)中。另外,抗體片段包含具有VH結構域特性(亦即能夠與VL結構域一起組裝)或VL結構域特性(亦即能夠與VH結構域一起組裝)之單鏈多肽,該等組裝可形成功能性抗原結合位點且藉此提供全長抗體之抗原結合性質。
支架抗原結合蛋白 」為此項技術中所已知,例如,已使用纖連蛋白及經設計之錨蛋白重複序列蛋白(DARPin)作為抗原結合結構域之替代支架,例如參見Gebauer及Skerra,Engineered protein scaffolds as next-generation antibody therapeutics.Curr Opin Chem Biol 13:245-255 (2009),及Stumpp等人,Darpins: A new generation of protein therapeutics.Drug Discovery Today 13: 695-701 (2008)。在本發明之一態樣中,支架抗原結合蛋白選自由以下組成之群:CTLA-4 (厄維體(Evibody))、脂質運載蛋白(Lipocalin) (抗運載蛋白(Anticalin))、蛋白質A源性分子(諸如蛋白質A之Z結構域,親和體(Affibody))、A結構域(高親和性多聚物(Avimer)/大抗體(Maxibody))、血清轉鐵蛋白(穿體(trans -body));經設計之錨蛋白重複序列蛋白(DARPin)、抗體輕鏈或重鏈之可變結構域(單一結構域抗體,sdAb)、抗體重鏈之可變結構域(奈米抗體,VH)、VNAR 片段、纖連蛋白(阿德奈汀(AdNectin))、C型凝集素結構域(四連接素(Tetranectin));新抗原受體β-內醯胺酶之可變結構域(VNAR 片段)、人類γ-晶體蛋白或泛素(親和素分子);人類蛋白酶抑制劑之庫尼茲(kunitz)型結構域、微體(諸如來自打結素(knottin)家族之蛋白質)、肽適配體及纖連蛋白(阿德奈汀)。CTLA-4 (細胞毒性T淋巴球相關之抗原4)係主要在CD4+ T細胞上表現之CD28家族受體。其細胞外結構域具有可變結構域樣Ig摺疊。對應於抗體CDR之環可經異源序列取代以賦予不同的結合性質。經工程改造以具有不同結合特異性之CTLA-4分子亦稱為厄維體(例如US7166697B1)。厄維體與抗體(例如結構域抗體)之經分離可變區具有大致相同之大小。關於其他細節,參見Journal of Immunological Methods 248 (1-2), 31-45 (2001)。脂質運載蛋白係轉運小疏水性分子(諸如類固醇、後膽色素(bilin)、類視色素及脂質)之細胞外蛋白質家族。其具有剛性β-摺疊二級結構,其中在錐形結構之開口端具有多個環,該等環可經工程改造以結合至不同的靶抗原。抗運載蛋白之大小介於160個與180個胺基酸之間,且係源自脂質運載蛋白。關於其他細節,參見Biochim Biophys Acta 1482: 337-350 (2000)、US7250297B1及US20070224633。親和體係源自金黃色葡萄球菌(Staphylococcus aureus)之蛋白質A之支架,其可經工程改造以結合至抗原。該結構域由具有大約58個胺基酸之三螺旋束組成。已藉由表面殘基之隨機化來生成文庫。關於其他細節,參見Protein Eng. Des. Sel.2004, 17, 455-462及EP 1641818A1。高親和性多聚物係源自A結構域支架家族之多結構域蛋白質。具有大約35個胺基酸之天然結構域採用所定義之二硫鍵鍵結結構。多樣性係藉由對A結構域家族所展現之自然變異進行改組而生成的。關於其他細節,參見Nature Biotechnology 23(12), 1556 - 1561 (2005)及Expert Opinion on Investigational Drugs 16(6), 909-917 (2007年6月)。轉鐵蛋白係單體血清轉運糖蛋白。可藉由在許可性表面環中插入肽序列對轉鐵蛋白進行工程改造以結合不同的靶抗原。經工程改造之轉鐵蛋白支架之實例包括穿體。關於其他細節,參見J. Biol. Chem 274, 24066-24073 (1999)。經設計之錨蛋白重複序列蛋白(DARPin)源自錨蛋白,其係介導整合膜蛋白連接至細胞骨架之蛋白質家族。單一錨蛋白重複序列係由兩個α-螺旋及一個β-轉角組成的33殘基基元。可藉由對每一重複序列之第一α-螺旋及β-轉角中之殘基進行隨機化使其經工程改造以結合不同的靶抗原。其結合界面可藉由增加模組數目而增大(親和力成熟方法)。關於其他細節,參見J. Mol. Biol. 332, 489-503 (2003), PNAS 100(4), 1700-1705 (2003)及J. Mol. Biol. 369, 1015-1028 (2007)以及US20040132028A1。單一結構域抗體係由單一單體可變抗體結構域組成之抗體片段。第一單一結構域源自來自駱駝科動物之抗體重鏈之可變結構域(奈米抗體或VH H片段)。此外,術語單一結構域抗體包括自主人類重鏈可變結構域(VH)或源自鯊魚之VNAR 片段。纖連蛋白係可經工程改造以結合至抗原之支架。阿德奈汀由人類III型纖連蛋白(FN3)之15個重複單元之第10結構域的天然胺基酸序列之骨架組成。位於貝他三明治(beta.-sandwich)一端處之三個環可經工程改造以使阿德奈汀能夠特異性地識別所關注之治療靶標。關於其他細節,參見Protein Eng. Des. Sel.18, 435- 444 (2005)、US20080139791、WO2005056764及US6818418B1。肽適配體係組合性識別分子,其由恆定支架蛋白組成,該蛋白通常為硫氧還蛋白(TrxA),其含有插入在活性位點之限制性可變肽環。關於其他細節,參見Expert Opin. Biol. Ther. 5, 783-797 (2005)。微體源自長度為25至50個胺基酸之天然微量蛋白,其含有3至4個半胱胺酸橋,微量蛋白之實例包括KalataBI及芋螺毒素(conotoxin)以及打結素。微量蛋白具有可經工程改造以包括最多25個胺基酸而不影響微量蛋白之總體摺疊之環。關於經工程改造之打結素結構域之其他細節,參見WO2008098796。
結合至相同抗原決定基之抗原結合分子 」(作為參照分子)係指在競爭分析中將參照分子與其抗原之結合阻斷50%或更高之抗原結合分子,且反之,參照分子在競爭分析中將該抗原結合分子與其抗原之結合阻斷50%或更高。「不結合至相同抗原決定基抗原結合分子 」(作為參照分子)係指在競爭分析中不會將參照分子與其抗原之結合阻斷50%或更高之抗原結合分子,且反之,參照分子在競爭分析中不會將該抗原結合分子與其抗原之結合阻斷50%或更高。
術語「抗原結合結構域 」或「抗原結合位點」係指包含特異性地結合至部分或全部抗原且與其互補之區域的抗原結合分子部分。在抗原較大之情形下,抗原結合分子可僅結合至該抗原之特定部分,該部分稱為抗原決定基。抗原結合結構域可由(例如)一或多個可變結構域(亦稱為可變區)來提供。較佳地,抗原結合結構域包含抗體輕鏈可變區(VL)及抗體重鏈可變區(VH)。
如本文所用,術語「抗原決定子 」與「抗原」及「抗原決定基」同義,且係指多肽大分子上抗原結合部分結合形成抗原結合部分-抗原複合物之位點(例如胺基酸之鄰接延伸段或由非鄰接胺基酸之不同區域構成的構象構形)。有用之抗原決定子可發現於(例如)腫瘤細胞表面上、病毒感染細胞表面上、其他患病細胞表面上、免疫細胞表面上、游離於血清中及/或位於細胞外基質(ECM)中。除非另有指示,否則可用作本文抗原之蛋白質可為來自任何脊椎動物來源之任何天然形式之蛋白質,該脊椎動物來源包括哺乳動物,諸如靈長類動物(例如人類)及齧齒類動物(例如小鼠及大鼠)。在特定實施例中,抗原係人類蛋白質。在本文中提及具體蛋白質之情形下,該術語涵蓋「全長」、未處理之蛋白質以及自細胞中加工產生的任何形式之蛋白質。該術語亦涵蓋蛋白質之天然變異體,例如剪接變異體或等位基因變異體。
特異性結合 」意指該結合對抗原具有選擇性且可區別於不需要或非特異之相互作用。抗原結合分子與特定抗原結合之能力可經由酶聯免疫吸附分析(ELISA)或熟習此項技術者熟知之其他技術(例如表面電漿子共振(SPR)技術(在BIAcore儀器上分析) (Liljeblad等人,Glyco J 17, 323-329 (2000))及傳統結合分析(Heeley, Endocr Res 28, 217-229 (2002)))來量測。在一個實施例中,如(例如)藉由SPR所量測,抗原結合分子與無關蛋白質之結合程度小於抗原結合分子與抗原之結合的約10%。在某些實施例中,結合至抗原之分子具有≤ 1 μM、≤ 100 nM、≤ 10 nM、≤ 1 nM、≤ 0.1 nM、≤ 0.01 nM或≤ 0.001 nM (例如10-8 M或更小,例如10-8 M至10-13 M,例如10-9 M至10-13 M)之解離常數(Kd)。
親和力 」或「結合親和力」係指分子(例如抗體)之單一結合位點與其結合搭配物(例如抗原)之間的非共價相互作用之總和強度。除非另有指示,否則如本文所用,「結合親和力」係指固有結合親和力,其反映結合對之成員(例如抗體與抗原)之間的1:1相互作用。分子X對其搭配物Y之親和力通常可由解離常數(Kd)表示,其係解離速率常數與締合速率常數(分別為k解離及k締合)之比率。因此,等效親和力可包含不同的速率常數,只要速率常數之比率保持相同即可。可藉由此項技術中已知之常用方法(包括本文所闡述之彼等方法)來量測親和力。量測親和力之特定方法係表面電漿子共振(SPR)。
親和力成熟 」抗體係指在一或多個超變區(HVR)中具有一或多個改變之抗體,與不具有此等改變之親代抗體相比,此等改變使得抗體對抗原之親和力改良。
如本文所用之「靶細胞抗原 」係指呈現在靶細胞、特定而言腫瘤中之靶細胞(諸如癌細胞或腫瘤基質細胞)之表面上之抗原決定子。因此,靶細胞抗原係腫瘤相關抗原。特定而言,腫瘤靶細胞抗原係纖維母細胞活化蛋白(FAP)。
除非另有指示,否則術語「纖維母細胞活化蛋白 (FAP) 」(亦稱為脯胺醯內肽酶FAP或Seprase (EC 3.4.21))係指來自任何脊椎動物來源之任何天然FAP,該脊椎動物來源包括哺乳動物,諸如靈長類動物(例如人類)、非人類靈長類動物(例如食蟹猴)及齧齒類動物(例如小鼠及大鼠)。該術語涵蓋「全長」、未處理之FAP以及自細胞中加工產生的任何形式之FAP。該術語亦涵蓋FAP之天然變異體,例如剪接變異體或等位基因變異體。在一個實施例中,本發明之抗原結合分子能夠特異性結合至人類、小鼠及/或食蟹猴FAP。人類FAP之胺基酸序列示於UniProt (www.uniprot.org)登錄號Q12884 (第149版,SEQ ID NO:2)或NCBI (www.ncbi.nlm.nih.gov/) RefSeq NP_004451.2中。人類FAP之細胞外結構域(ECD)自胺基酸位置26延伸至位置760。帶His標籤之人類FAP ECD之胺基酸序列示於SEQ ID NO: 62中。小鼠FAP之胺基酸序列示於UniProt登錄號P97321 (第126版,SEQ ID NO:63)或NCBI RefSeq NP_032012.1中。小鼠FAP之細胞外結構域(ECD)自胺基酸位置26延伸至位置761。SEQ ID NO:64顯示帶His標籤之小鼠FAP ECD之胺基酸。SEQ ID NO:65顯示帶His標籤之食蟹猴FAP ECD之胺基酸。較佳地,本發明之抗FAP結合分子結合至FAP之細胞外結構域。
術語「可變區 」或「可變結構域」係指抗體重鏈或輕鏈中參與抗原結合分子與抗原之結合之結構域。天然抗體之重鏈及輕鏈之可變結構域(分別為VH及VL)通常具有類似結構,其中每一結構域包含四個保守框架區(FR)及三個超變區(HVR)。例如,參見Kindt等人,Kuby Immunology,第6版,W.H. Freeman and Co.,第91頁(2007)。單一VH或VL結構域可足以賦予抗原結合特異性。
如本文所用之術語「超變區」或「HVR」係指抗體可變結構域中在序列上超變且決定抗原結合特異性之每一區,例如「互補決定區 」(「CDR」)。通常,抗體包含6個CDR:3個在VH中(CDR-H1、CDR-H2、CDR-H3),且3個在VL中(CDR-L1、CDR-L2、CDR-L3)。  本文中之例示性CDR包括: (a)超變環,其出現在胺基酸殘基26-32 (L1)、50-52 (L2)、91-96 (L3)、26-32 (H1)、53-55 (H2)及96-101 (H3)處(Chothia及Lesk,J. Mol. Biol. 196:901-917 (1987)); (b) CDR,其出現在胺基酸殘基24-34 (L1)、50-56 (L2)、89-97 (L3)、31-35b (H1)、50-65 (H2)及95-102 (H3)處(Kabat等人,Sequences of Proteins of Immunological Interest ,第5版,Public Health Service, National Institutes of Health, Bethesda, MD (1991));及 (c)抗原觸點,其出現在胺基酸殘基27c-36 (L1)、46-55 (L2)、89-96 (L3)、30-35b (H1)、47-58 (H2)及93-101 (H3)處(MacCallum等人,J. Mol. Biol. 262: 732-745 (1996))。
除非另有指示,否則CDR係根據Kabat等人,上文文獻來確定。熟習此項技術者將理解,CDR名稱亦可根據Chothia,上文文獻、McCallum,上文文獻或任何其他科學上接受之命名系統來確定。
框架 」或「FR」係指除互補決定區(CDR)以外之可變結構域殘基。可變結構域之FR通常由四個FR結構域組成:FR1、FR2、FR3及FR4。因此,CDR及FR序列通常出現在VH (或VL)中之以下序列中:FR1-CDR-H1(CDR-L1)-FR2-CDR-H2(CDR-L2)-FR3- CDR-H3(CDR-L3)-FR4。
術語「嵌合 」抗體係指重鏈及/或輕鏈之一部分源自特定來源或物種,而重鏈及/或輕鏈之其餘部分源自不同來源或物種之抗體。
抗體之「類別 」係指其重鏈所具有之恆定結構域或恆定區之類型。存在五大類抗體:IgA、IgD、IgE、IgG及IgM,且該等類別中之若干種可進一步分成亞類(同型),例如IgG1 、IgG2 、IgG3 、IgG4 、IgA1 及IgA2 。對應於不同類別之免疫球蛋白之重鏈恆定結構域分別稱為α、δ、ε、γ、及μ。
人類化 」抗體係指包含來自非人類CDR之胺基酸殘基及來自人類FR之胺基酸殘基的嵌合抗體。在某些實施例中,人類化抗體將包含實質上全部之至少一個、且通常兩個可變結構域,其中全部或實質上全部之CDR對應於非人類抗體之彼等CDR,且全部或實質上全部之FR對應於人類抗體之彼等FR。人類化抗體視情況可包含源自人類抗體之抗體恆定區之至少一部分。抗體之「人類化形式 」(例如非人類抗體)係指已經歷人類化之抗體。本發明所涵蓋之「人類化抗體」之其他形式係如下之彼等形式:其中恆定區已相對於原始抗體之恆定區另外經修飾或改變,以生成根據本發明的尤其關於C1q結合及/或Fc受體(FcR)結合之性質。
術語「CH1 結構域 」表示大約自EU位置118延伸至EU位置215 (根據Kabat之EU編號系統)之抗體重鏈多肽部分。在一態樣中,CH1結構域具有如下胺基酸序列:ASTKGPSVFP LAPSSKSTSG GTAALGCLVK DYFPEPVTVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT VPSSSLGTQT YICNVNHKPS NTKVDKKV (SEQ ID NO: 166)。通常,隨後為具有EPKSC (SEQ ID NO:163)之胺基酸序列之區段,以將CH1結構域連接至鉸鏈區。本發明人發現,不與鉸鏈區融合之CH1結構域可導致與人體中預先存在之抗體(ADA)發生反應,若存在變異體EPKSCD (SEQ ID NO:164)或EPKSCS (SEQ ID NO:165),則該等ADA不存在。例如,可在交叉fab片段中發現具有游離C末端之CH1結構域。
術語「鉸鏈區 」表示抗體重鏈多肽之部分,其在野生型抗體重鏈中將CH1結構域與CH2結構域接合,例如根據Kabat之EU編號系統自約位置216至約位置230,或根據Kabat之EU編號系統自約位置226至約位置230。其他IgG亞類之鉸鏈區可藉由與IgG1亞類序列之鉸鏈區半胱胺酸殘基對齊來確定。鉸鏈區通常為由具有相同胺基酸序列之兩個多肽組成之二聚體分子。鉸鏈區通常包含多達25個胺基酸殘基且為撓性的,此容許相關之靶標結合位點獨立地移動。可將鉸鏈區細分成三個結構域:上部、中部及下部鉸鏈結構域(例如,參見Roux等人,J. Immunol. 161 (1998) 4083)。在一態樣中,鉸鏈區具有胺基酸序列DKTHTCPXCP (SEQ ID NO: 160),其中X為S或P。在一態樣中,鉸鏈區具有胺基酸序列HTCPXCP (SEQ ID NO: 161),其中X為S或P。在一態樣中,鉸鏈區具有胺基酸序列CPXCP (SEQ ID NO: 162),其中X為S或P。
術語「Fc結構域」或「Fc 」在本文中用於定義抗體重鏈中含有恆定區之至少一部分的C末端區域。該術語包括天然序列Fc區及變異體Fc區。IgG Fc區包含IgG CH2及IgG CH3結構域。人類IgG Fc區之「CH2結構域」通常自約位置231處之胺基酸殘基延伸至約位置340處之胺基酸殘基。(根據Kabat之EU編號系統)。在一態樣中,CH2結構域具有如下胺基酸序列:APELLGGPSV FLFPPKPKDT LMISRTPEVT CVWDVSHEDP EVKFNWYVDG VEVHNAKTKP REEQESTYRW SVLTVLHQDW LNGKEYKCKV SNKALPAPIE KTISKAK (SEQ ID NO: 153)。CH2結構域之獨特之處在於其並不與另一結構域緊密配對。而是,兩個N連接之具支鏈碳水化合物鏈插入在完整天然Fc區之兩個CH2結構域之間。據推測,碳水化合物可取代結構域-結構域配對且幫助穩定CH2結構域。Burton, Mol. Immunol. 22 (1985) 161-206。在一個實施例中,碳水化合物鏈連接至CH2結構域。本文中之CH2結構域可為天然序列CH2結構域或變異體CH2結構域。「CH3結構域」包含Fc區中位於CH2結構域C末端之殘基延伸段(亦即根據IgG之Kabat之EU編號系統,自約位置341處之胺基酸殘基至約位置447處之胺基酸殘基)。在一態樣中,CH3結構域具有如下胺基酸序列:GQPREPQVYT LPPSRDELTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTTPPVLDS DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPG (SEQ ID NO: 154)。本文中之CH3區可為天然序列CH3結構域或變異體CH3結構域(例如在其一條鏈中引入「突起」(「隆凸」)且在其另一條鏈中相應地引入「空腔」(「孔洞」)之CH3結構域;參見美國專利第5,821,333號,其以引用的方式明確地併入本文中)。此等變異體CH3結構域可用於促進如本文所闡述之兩個不相同抗體重鏈之異二聚化。在一個實施例中,人類IgG重鏈Fc區自Cys226或自Pro230延伸至重鏈之羧基末端。然而,可能存在或可能不存在Fc區之C末端離胺酸(Lys447)。除非本文中另有指定,否則Fc區或恆定區中胺基酸殘基之編號係根據如Kabat等人,Sequences of Proteins of Immunological Interest,第5版,Public Health Service, National Institutes of Health, Bethesda, MD, 1991中所闡述之EU編號系統(亦稱為EU索引)。
術語「野生型 Fc 結構域 」表示與在自然界中所發現的Fc結構域之胺基酸序列一致之胺基酸序列。野生型人類Fc結構域包括天然人類IgG1 Fc區(非A及A同種異型)、天然人類IgG2 Fc區、天然人類IgG3 Fc區及天然人類IgG4 Fc區以及其天然變異體。野生型Fc區以SEQ ID NO: 155 (IgG1,高加索人(caucasian)同種異型)、SEQ ID NO: 156 (IgG1,非裔美國人同種異型)、SEQ ID NO: 157 (IgG2)、SEQ ID NO:158 (IgG3)及SEQ ID NO:159 (IgG4)表示。術語「變異體 ( 人類 ) Fc 結構域 」表示因至少一個「胺基酸突變」而與「野生型」(人類) Fc結構域胺基酸序列有所不同之胺基酸序列。在一態樣中,變異體Fc區與天然Fc區相比具有至少一個胺基酸突變,例如約1至約10個胺基酸突變,且在一態樣中,在天然Fc區中具有約1至約5個胺基酸突變。在一態樣中,(變異體) Fc區與野生型Fc區具有至少約95%同源性。
隆凸 - 孔洞 」技術闡述於(例如) US 5,731,168;US 7,695,936;Ridgway等人,Prot Eng 9, 617-621 (1996)及Carter, J Immunol Meth 248, 7-15 (2001)中。通常,該方法涉及在第一多肽之界面處引入突起(「隆凸」)且在第二多肽之界面處引入相應空腔(「孔洞」),使得該突起可定位於該空腔中以促進異二聚體形成並阻礙同二聚體形成。藉由用較大側鏈(例如酪胺酸或色胺酸)替代來自第一多肽之界面的小胺基酸側鏈來構築突起。藉由用較小胺基酸側鏈(例如丙胺酸或蘇胺酸)替代大的胺基酸側鏈在第二多肽之界面中產生大小與突起相同或類似之補償性空腔。可(例如)藉由位點特異性誘變改變編碼多肽之核酸或藉由肽合成來產生突起及空腔。在具體實施例中,隆凸修飾包含Fc結構域之兩個亞單元中之一者中的胺基酸取代T366W,且孔洞修飾包含Fc結構域之兩個亞單元中之另一者中的胺基酸取代T366S、L368A及Y407V。在另一具體實施例中,Fc結構域中包含隆凸修飾之亞單元另外包含胺基酸取代S354C,且Fc結構域中包含孔洞修飾之亞單元另外包含胺基酸取代Y349C。引入該兩個半胱胺酸殘基使得在Fc區之兩個亞單元之間形成二硫橋,由此進一步穩定二聚體(Carter, J Immunol Methods 248, 7-15 (2001))。
「等效於免疫球蛋白之Fc區之區域」意欲包括免疫球蛋白之Fc區之天然等位基因變異體,以及具有產生取代、添加或缺失但不會實質上降低免疫球蛋白介導效應功能(諸如抗體依賴性細胞毒性)之能力的改變之變異體。舉例而言,可自免疫球蛋白之Fc區之N末端或C末端缺失一或多個胺基酸,此並不實質性損失生物學功能。可根據此項技術中已知之一般規則來選擇此等變異體,以便對活性具有最小效應(例如,參見Bowie, J. U.等人,Science 247:1306-10 (1990))。
術語「效應功能 」係指可歸因於抗體Fc區之彼等生物學活性,其隨抗體同型而變化。抗體效應功能之實例包括:C1q結合及補體依賴性細胞毒性(CDC)、Fc受體結合、抗體依賴性細胞介導之細胞毒性(ADCC)、抗體依賴性細胞吞噬作用(ADCP)、細胞介素分泌、免疫複合物介導之抗原呈現細胞之抗原攝取、細胞表面受體(例如B細胞受體)之下調及B細胞活化。
Fc受體結合依賴性效應功能可藉由抗體Fc區與Fc受體(FcR) (其為造血細胞上之特殊細胞表面受體)之相互作用來介導。Fc受體屬於免疫球蛋白超家族,且已顯示介導以下兩者:藉由免疫複合物之吞噬作用去除抗體包覆之病原體,及經由抗體依賴性細胞介導之細胞毒性(ADCC)溶解包覆有相應抗體之紅血球及各種其他細胞靶標(例如腫瘤細胞) (例如,參見Van de Winkel, J.G.及Anderson, C.L., J. Leukoc.Biol. 49 (1991) 511-524)。根據對免疫球蛋白同型之特異性來定義FcR:IgG抗體之Fc受體稱為FcγR。Fc受體結合闡述於(例如) Ravetch, J.V.及Kinet, J.P., Annu. Rev. Immunol. 9 (1991) 457-492;Capel, P.J.等人,Immunomethods 4 (1994) 25-34;de Haas, M.等人,J. Lab. Clin. Med. 126 (1995) 330-341;及Gessner, J.E.等人,Ann. Hematol.76 (1998) 231-248中。
IgG抗體Fc區受體(FcγR)之交聯觸發眾多種效應功能,包括吞噬作用、抗體依賴性細胞毒性及發炎性介質釋放以及免疫複合物清除及抗體產生之調控。在人類中,已表徵以下三類FcγR: - FcγRI (CD64),其以高親和力結合單體IgG且表現於巨噬細胞、單核球、嗜中性球及嗜酸性球上。IgG Fc區中在胺基酸殘基E233-G236、P238、D265、N297、A327及P329 (根據Kabat之EU索引編號)中之至少一者處之修飾降低與FcγRI之結合。將位置233-236之IgG2殘基取代成IgG1及IgG4殘基可使與FcγRI之結合降低10³倍並消除人類單核球對抗體敏化紅血球之反應(Armour, K.L.等人,Eur. J. Immunol. 29 (1999) 2613-2624)。 - FcγRII (CD32),其以中低親和力結合複合IgG且廣泛表現。可將此受體分成兩個亞型,亦即FcγRIIA及FcγRIIB。FcγRIIA發現於許多涉及殺死之細胞上(例如巨噬細胞、單核球、嗜中性球),且似乎能夠使殺死過程活化。FcγRIIB似乎在抑制性過程中起作用,且發現於B細胞、巨噬細胞以及肥大細胞及嗜酸性球上。在B細胞上,其似乎起抑制進一步之免疫球蛋白產生及至(例如) IgE類別之同型切換之作用。在巨噬細胞上,FcγRIIB用於抑制如經由FcγRIIA介導之吞噬作用。在嗜酸性球及肥大細胞上,B形式可經由使IgE與其單獨受體結合而有助於抑制該等細胞之活化。例如,對於包含在胺基酸殘基E233-G236、P238、D265、N297、A327、P329、D270、Q295、A327、R292及K414 (根據Kabat之EU索引編號)中之至少一者處具有突變之IgG Fc區的抗體,已發現對FcγRIIA之結合降低。 - FcγRIII (CD16),其以中低親和力結合IgG且以兩種類型存在。FcγRIIIA發現於NK細胞、巨噬細胞、嗜酸性球以及一些單核球及T細胞上,且介導ADCC。FcγRIIIB在嗜中性球上高度表現。例如,對於包含在胺基酸殘基E233-G236、P238、D265、N297、A327、P329、D270、Q295、A327、S239、E269、E293、Y296、V303、A327、K338及D376 (根據Kabat之EU索引編號)中之至少一者處具有突變之IgG Fc區的抗體,已發現與FcγRIIIA之結合降低。
在人類IgG1上定位針對Fc受體之結合位點、上文所提及之突變位點及量測與FcγRI及FcγRIIA之結合的方法闡述於Shields, R.L.等人,J. Biol. Chem. 276 (2001) 6591-6604中。
術語「ADCC 」或「抗體依賴性細胞毒性」係由Fc受體結合所介導之功能,且係指如本文所報導之抗體在效應細胞存在下對靶細胞之溶解。藉由量測抗體與Fcγ受體表現細胞(諸如重組表現FcγRI及/或FcγRIIA之細胞或NK細胞(基本上表現FcγRIIIA))之結合來研究抗體誘導介導ADCC之初始步驟之能力。特定而言,量測與NK細胞上之FcγR之結合。
活化性 Fc 受體 」係Fc受體,其在由抗體之Fc區接合後引發信號傳導事件,該等事件刺激帶有受體之細胞執行效應功能。活化性Fc受體包括FcγRIIIa (CD16a)、FcγRI (CD64)、FcγRIIa (CD32)及FcαRI (CD89)。特定活化性Fc受體係人類FcγRIIIa (參見UniProt登錄號P08637,第141版)。
除非另有指示,否則如本文所用之術語「OX40 」係指來自任何脊椎動物來源之任何天然OX40,該脊椎動物來源包括哺乳動物,諸如靈長類動物(例如人類)及齧齒類動物(例如小鼠及大鼠)。該術語涵蓋「全長」、未處理之OX40以及自細胞中加工產生的任何形式之OX40。該術語亦涵蓋OX40之天然變異體,例如剪接變異體或等位基因變異體。例示性人類OX40之胺基酸序列示於SEQ ID NO: 1中(Uniprot P43489,第112版),且例示性鼠類OX40之胺基酸序列示於SEQ ID NO: 66中(Uniprot P47741,第101版)。
如本文所用之術語「OX40 促效劑 」包括對OX40/OX40L相互作用具有促效作用之任一部分。如此上下文中所用之OX40較佳係指人類OX40,因此OX40促效劑較佳係人類OX40之促效劑。通常,該部分將為促效性OX40抗體或抗體片段、特定而言Fab片段。
術語「 OX40 抗體 」、「抗OX40」、「OX40抗體」及「特異性地結合至OX40之抗體」係指能夠以足夠親和力結合OX40,從而使得該抗體可用作靶向OX40之診斷劑及/或治療劑之抗體。在一態樣中,如(例如)藉由流式細胞術(FACS)所量測,抗OX40抗體與不相關非OX40蛋白之結合程度小於該抗體與OX40之結合的約10%。在某些實施例中,結合至OX40之抗體之解離常數(KD )為≤ 1μM、≤ 100 nM、≤ 10 nM、≤ 1 nM、≤ 0.1 nM、≤ 0.01 nM或≤ 0.001 nM (例如10-6 M或更小、例如10-68 M至10-13 M、例如10-8 M至10-10 M)。
術語「肽連接體 」係指包含一或多個胺基酸、通常約2至20個胺基酸之肽。肽連接體為此項技術中所已知或闡述於本文中。適宜非免疫原性連接體肽係(例如) (G4 S)n 、(SG4 )n 或G4 (SG4 )n 肽連接體,其中「n」通常為介於1與10之間、通常介於2與4之間的數值,特定而言為2,亦即,該等肽選自由組成之群:GGGGS (SEQ ID NO:67)、GGGGSGGGGS (SEQ ID NO:68)、SGGGGSGGGG (SEQ ID NO:69)及GGGGSGGGGSGGGG (SEQ ID NO:70),但亦包括序列GSPGSSSSGS (SEQ ID NO:71)、(G4S)3 (SEQ ID NO:72)、(G4S)4 (SEQ ID NO:73)、GSGSGSGS (SEQ ID NO:74)、GSGSGNGS (SEQ ID NO:75)、GGSGSGSG (SEQ ID NO:76)、GGSGSG (SEQ ID NO:77)、GGSG (SEQ ID NO:78)、GGSGNGSG (SEQ ID NO:79)、GGNGSGSG (SEQ ID NO:80)及GGNGSG (SEQ ID NO:81)。尤為受關注之肽連接體為(G4S) (SEQ ID NO:67)、(G4 S)2 或GGGGSGGGGS (SEQ ID NO:68)、(G4S)3 (SEQ ID NO:72)及(G4S)4 (SEQ ID NO:73)。
如本申請案中所用之術語「胺基酸 」表示天然羧基α-胺基酸之群,其包含丙胺酸(三字母代碼:ala,單字母代碼:A)、精胺酸(arg, R)、天冬醯胺(asn, N)、天冬胺酸(asp, D)、半胱胺酸(cys, C)、麩醯胺酸(gln, Q)、麩胺酸(glu, E)、甘胺酸(gly, G)、組胺酸(his, H)、異白胺酸(ile, I)、白胺酸(leu, L)、離胺酸(lys, K)、甲硫胺酸(met, M)、苯丙胺酸(phe, F)、脯胺酸(pro, P)、絲胺酸(ser, S)、蘇胺酸(thr, T)、色胺酸(trp, W)、酪胺酸(tyr, Y)及纈胺酸(val, V)。
融合 」或「連結 」意指組分(例如抗體重鏈及Fab片段)藉由肽鍵直接連接或經由一或多個肽連接體連接。
關於參照多肽(蛋白質)序列之「胺基酸序列一致性百分比 (%) 」係定義為在對齊序列並引入空位(視需要)以達成最大序列一致性百分比後,且不將任何保守取代視為序列一致性之一部分,候選序列中與參照多肽序列中之胺基酸殘基一致之胺基酸殘基之百分比。出於確定胺基酸序列一致性百分比之目的,對齊可以熟習此項技術者所熟知之各種方式來達成,例如使用可公開獲得之電腦軟體,諸如BLAST、BLAST-2、ALIGN、SAWI或Megalign (DNASTAR)軟體。熟習此項技術者可確定用於對齊序列之適當參數,包括在所比較序列之全長範圍內達成最大對齊所需要之任何演算法。然而,出於本文之目的,使用序列比較電腦程式ALIGN-2生成胺基酸序列一致性%之值。ALIGN-2序列比較電腦程式由Genentech, Inc.編寫,且原始碼已與使用者文件一起提交至美國版權局(U.S. Copyright Office),Washington D.C., 20559,在此其以美國版權註冊號TXU510087註冊。ALIGN-2程式可自Genentech, Inc., South San Francisco, California公開獲得,或可自原始碼進行編譯。ALIGN-2程式應經編譯用於UNIX操作系統(包括數位UNIX第4.0D版)中。所有序列比較參數均由ALIGN-2程式設定且不會改變。在採用ALIGN-2以進行胺基酸序列比較之情形下,如下計算給定胺基酸序列A相對於(to)、與(with)或對(against)給定胺基酸序列B之胺基酸序列一致性% (或者其可表述為相對於、與或對給定胺基酸序列B具有或包含一定胺基酸序列一致性%之給定胺基酸序列A): 100×分數X/Y 其中X係在A與B之程式對齊中由序列對齊程式ALIGN-2評定為一致性匹配之胺基酸殘基數,且其中Y係B中胺基酸殘基之總數。應瞭解,倘若胺基酸序列A之長度不等於胺基酸序列B之長度,則A相對於B之胺基酸序列一致性%將不等於B相對於A之胺基酸序列一致性%。除非另有明確說明,否則本文所用之所有胺基酸序列一致性%之值均係如緊接前述段落中所闡述使用ALIGN-2電腦程式獲得。
在某些實施例中,考慮本文所提供之雙特異性抗原結合分子之胺基酸序列變異體 。舉例而言,可能期望改良含有TNF配位體三聚體之抗原結合分子的結合親和力及/或其他生物學性質。可藉由在編碼含有TNF配位體三聚體之抗原結合分子之核苷酸序列中引入適當修飾或藉由肽合成來製備該等分子之胺基酸序列變異體。此等修飾包括(例如)抗體胺基酸序列內殘基之缺失及/或插入及/或取代。可實施缺失、插入及取代之任一組合以獲得最終構築體,條件為最終構築體具有期望特性(例如抗原結合)。用於取代誘變之所關注位點包括HVR及框架(FR)。保守取代提供於標題為「較佳取代」之表B中,且在下文中參照胺基酸側鏈類別(1)至(6)進一步予以闡述。可將胺基酸取代引入至所關注分子中,且針對期望活性對產物進行篩選,該期望活性係(例如)保留/改良之抗原結合、降低之免疫原性或經改良之ADCC或CDC。 表A
原始殘基 例示性取代 較佳取代
Ala (A) Val;Leu;Ile Val
Arg (R) Lys;Gln;Asn Lys
Asn (N) Gln;His;Asp, Lys;Arg Gln
Asp (D) Glu;Asn Glu
Cys (C) Ser;Ala Ser
Gln (Q) Asn;Glu Asn
Glu (E) Asp;Gln Asp
Gly (G) Ala Ala
His (H) Asn;Gln;Lys;Arg Arg
Ile (I) Leu;Val;Met;Ala;Phe;正白胺酸 Leu
Leu (L) 正白胺酸;Ile;Val;Met;Ala;Phe Ile
Lys (K) Arg;Gln;Asn Arg
Met (M) Leu;Phe;Ile Leu
Phe (F) Trp;Leu;Val;Ile;Ala;Tyr Tyr
Pro (P) Ala Ala
Ser (S) Thr Thr
Thr (T) Val;Ser Ser
Trp (W) Tyr;Phe Tyr
Tyr (Y) Trp;Phe;Thr;Ser Phe
Val (V) Ile;Leu;Met;Phe;Ala;正白胺酸 Leu
可根據常見側鏈性質對胺基酸進行分組: (1)疏水性:正白胺酸、Met、Ala、Val、Leu、Ile; (2)中性親水性:Cys、Ser、Thr、Asn、Gln; (3)酸性:Asp、Glu; (4)鹼性:His、Lys、Arg; (5)影響鏈取向之殘基:Gly、Pro; (6)芳香族:Trp、Tyr、Phe。
非保守性取代使得需要將該等類別中之一者之成員交換為另一類別。
術語「胺基酸序列變異體 」包括在親代抗原結合分子(例如人類化或人類抗體)之一或多個超變區殘基處存在胺基酸取代之實質性變異體。通常,選擇用於進一步研究之所得變異體相對於親代抗原結合分子在某些生物學性質(例如增加之親和力、降低之免疫原性)方面具有改變(例如改良)及/或將實質上保留親代抗原結合分子之某些生物學性質。例示性取代變異體係親和力成熟抗體,其可便捷地(例如)使用基於噬菌體展示之親和力成熟技術(諸如本文所闡述之彼等技術)生成。簡言之,使一或多個HVR殘基突變,且使變異體抗原結合分子展示在噬菌體上並篩選特定生物學活性(例如結合親和力)。在某些實施例中,取代、插入或缺失可發生在一或多個HVR內,只要此等改變不會實質上降低抗原結合分子結合抗原之能力即可。舉例而言,可對HVR作出不會實質上降低結合親和力之保守改變(例如,如本文所提供之保守取代)。用於鑑別抗體中可靶向誘變之殘基或區域之有用方法稱為「丙胺酸掃描誘變」,如Cunningham及Wells (1989)Science , 244:1081-1085中所闡述。在此方法中,已鑑別出殘基或靶標殘基群(例如帶電殘基,諸如Arg、Asp、His、Lys及Glu),且由中性或帶負電之胺基酸(例如丙胺酸或多丙胺酸)替代,以確定抗體與抗原之相互作用是否受到影響。可在對初始取代展示功能敏感性之胺基酸位置引入其他取代。或者或另外,使用抗原-抗原結合分子複合物之晶體結構來鑑別抗體與抗原之間的接觸點。可靶向此等接觸殘基及相鄰殘基作為取代候選物或將其消除。可篩選變異體以確定其是否含有期望性質。
胺基酸序列插入包括胺基末端及/或羧基末端融合物(長度在一個殘基至含有上百或更多殘基之多肽範圍內),以及單個或多個胺基酸殘基之序列內插入。末端插入之實例包括具有N末端甲硫胺醯基殘基之本發明之雙特異性抗原結合分子。分子之其他插入變異體包括與多肽之N末端或C末端之融合物,此延長雙特異性抗原結合分子之血清半衰期。
在某些實施例中,改變本文所提供之雙特異性抗原結合分子,以增加或降低抗體之糖基化程度。可藉由改變胺基酸序列,使得產生或去除一或多個糖基化位點來便捷地獲得分子之糖基化變異體。倘若抗原結合分子包含Fc區,則可改變與其連接之碳水化合物。由哺乳動物細胞產生的天然抗體通常包含具支鏈、二分枝寡醣,其通常藉由N鍵聯連接至Fc區之CH2結構域之Asn297。例如,參見Wright等人,TIBTECH 15:26-32 (1997)。寡醣可包括各種碳水化合物,例如甘露糖、N-乙醯基葡糖胺(GlcNAc)、半乳糖及唾液酸以及連接至二分枝寡醣結構之「主幹」中的GlcNAc之岩藻糖。在一些實施例中,可對含有TNF家族配位體三聚體之抗原結合分子中的寡醣進行修飾,以產生具有某些改良性質之變異體。在一態樣中,提供本發明之雙特異性抗原結合分子或抗體之變異體,該等變異體具有缺少(直接或間接地)連接至Fc區的岩藻糖之碳水化合物結構。此等岩藻糖基化變異體可具有改良之ADCC功能,例如參見美國專利公開案第US 2003/0157108號(Presta, L.)或第US 2004/0093621號(Kyowa Hakko Kogyo Co., Ltd)。在另一態樣中,提供具有二等分寡醣的本發明之雙特異性抗原結合分子或抗體之變異體,例如,其中連接至Fc區之二分枝寡醣由GlcNAc二等分。此等變異體之岩藻糖基化可降低及/或ADCC功能可改良,例如參見WO 2003/011878 (Jean-Mairet等人);美國專利第6,602,684號(Umana等人);及US 2005/0123546 (Umana等人)。亦提供在連接至Fc區之寡醣中具有至少一個半乳糖殘基之變異體。此等抗體變異體可具有改良之CDC功能,且闡述於(例如) WO 1997/30087 (Patel等人);WO 1998/58964 (Raju, S.);及WO 1999/22764 (Raju, S.)中。
在某些態樣中,可期望產生本發明之雙特異性抗原結合分子的經半胱胺酸工程改造之變異體,例如「硫基MAb」,其中該分子之一或多個殘基經半胱胺酸殘基取代。在特定態樣中,經取代殘基在分子之可及位點處出現。藉由用半胱胺酸取代彼等殘基,反應性硫醇基團由此定位於抗體之可及位點處且可用於使抗體與其他部分(諸如藥物部分或連接體-藥物部分)結合,以產生免疫結合物。在某些態樣中,以下殘基中之任一或多者可經半胱胺酸取代:輕鏈之V205 (Kabat編號);重鏈之A118 (EU編號);及重鏈Fc區之S400 (EU編號)。經半胱胺酸工程改造之抗原結合分子可如(例如)美國專利第7,521,541號中所闡述來生成。
術語「核酸」或「多核苷酸 」包括包含核苷酸聚合物之任何化合物及/或物質。每一核苷酸由以下構成:鹼基、具體而言嘌呤鹼基或嘧啶鹼基(亦即胞嘧啶(C)、鳥嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T)或尿嘧啶(U))、糖(亦即去氧核糖或核糖)及磷酸酯基。通常,核酸分子由鹼基序列來描述,其中該等鹼基表示核酸分子之一級結構(線性結構)。鹼基序列通常自5’至3’來表示。在本文中,術語核酸分子涵蓋去氧核糖核酸(DNA),包括(例如)互補DNA (cDNA)及基因體DNA;核糖核酸(RNA),特定而言信使RNA (mRNA);DNA或RNA之合成形式;及包含該等分子中之兩者或更多者之混合聚合物。核酸分子可為線性或環狀的。另外,術語核酸分子包括有義股及反義股兩者,以及單股及雙股形式。此外,本文所闡述之核酸分子可含有天然或非天然核苷酸。非天然核苷酸之實例包括具有衍生糖或磷酸酯主鏈鍵聯或經化學修飾殘基之經修飾之核苷酸鹼基。核酸分子亦涵蓋適宜作為載體在活體外及/或活體內(例如在宿主或患者中)直接表現本發明抗體之DNA及RNA分子。此等DNA (例如cDNA)或RNA (例如mRNA)載體可不經修飾或經修飾。舉例而言,mRNA可經化學修飾以增強RNA載體之穩定性及/或所編碼分子之表現,使得可將mRNA注射至個體中以在活體內生成抗體(例如,參見Stadler等人,Nature Medicine 2017,2017年6月12日網上公佈,doi:10.1038/nm.4356或EP 2 101 823 B1)。
經分離 」核酸係指已自其自然環境中之組分分離之核酸分子。  經分離核酸包括含於細胞中之核酸分子,該等細胞通常含有該核酸分子,但該核酸分子係存在於染色體外或存在於與其天然染色體位置不同之染色體位置處。
編碼雙特異性抗原結合分子或抗體之經分離核酸 」係指編碼雙特異性抗原結合分子或抗體之重鏈及輕鏈(或其片段)之一或多種核酸分子,包括單一載體或單獨載體中之此(等)核酸分子,以及存在于宿主細胞中之一或多個位置處之此(等)核酸分子。
對於具有與本發明之參照核苷酸序列至少(例如) 95% 「一致」之核苷酸序列的核酸或多核苷酸而言,預期多核苷酸之核苷酸序列與參照序列一致,只是多核苷酸序列以參照核苷酸序列之每100個核苷酸計可能包括最多5個點突變。換言之,為獲得具有與參照核苷酸序列至少95%一致的核苷酸序列之多核苷酸,可使參照序列中最多5%之核苷酸缺失或經另一核苷酸取代,或可將最多為參照序列中總核苷酸之5%數量之核苷酸插入至參照序列中。參照序列之該等改變可發生在參照核苷酸序列之5’或3’末端位置或在彼等末端位置之間的任何位置,其個別地散佈在參照序列中的各殘基之間或在參照序列內呈一或多個鄰接基團形式。作為實際情況,可使用已知之電腦程式(諸如上文針對多肽所論述之程式(例如ALIGN-2))按慣例確定任一特定多核苷酸序列是否與本發明之核苷酸序列至少80%、85%、90%、95%、96%、97%、98%或99%一致。
術語「表現盒 」係指重組或合成生成之多核苷酸,其具有一系列允許轉錄靶細胞中之特定核酸之指定核酸元件。可將重組表現盒併入至質體、染色體、粒線體DNA、質體DNA、病毒或核酸片段中。通常,表現載體之重組表現盒部分包括欲轉錄之核酸序列及啟動子等序列。在某些實施例中,本發明之表現盒包含編碼本發明之雙特異性抗原結合分子或其片段之多核苷酸序列。
術語「載體 」或「表現載體」與「表現構築體」同義,且係指用於引入可操作地締合於靶細胞中之特定基因並引導其表現之DNA分子。該術語包括呈自我複製核酸結構之載體以及併入至引入其的宿主細胞基因體中之載體。本發明之表現載體包含表現盒。表現載體容許轉錄大量穩定mRNA。在表現載體位於靶細胞內部後,細胞轉錄及/或轉譯機構即產生由基因編碼之核糖核酸分子或蛋白質。在一個實施例中,本發明之表現載體包含表現盒,該表現盒包含編碼本發明之雙特異性抗原結合分子或其片段之多核苷酸序列。
術語「宿主細胞 」、「宿主細胞株」及「宿主細胞培養物」可互換使用,且係指向其中引入外源核酸之細胞,包括此等細胞之子代。宿主細胞包括「轉型體」及「經轉型細胞」,其包括原代經轉型細胞及源自其之子代,而與傳代次數無關。子代之核酸含量可能與親代細胞並不完全一致,而是可含有突變。本文包括與在原始經轉型細胞中篩選或選擇者具有相同功能或生物學活性之突變體子代。
宿主細胞係任何類型的可用於生成本發明之雙特異性抗原結合分子之細胞系統。宿主細胞包括經培養細胞,例如哺乳動物經培養細胞,諸如CHO細胞、BHK細胞、NS0細胞、SP2/0細胞、YO骨髓瘤細胞、P3X63小鼠骨髓瘤細胞、PER細胞、PER.C6細胞或雜交瘤細胞、酵母細胞、昆蟲細胞及植物細胞(僅舉幾個例子),且亦包括基因轉殖動物、基因轉殖植物或經培養之植物或動物組織中所包含之細胞。
劑之「有效量 」係指在投與該劑之細胞或組織中產生生理學變化所需之量。
劑(例如醫藥組合物)之「治療有效量 」係指在所需劑量下且在所需時間段內有效達成期望治療或預防結果之量。舉例而言,治療有效量之劑消除、降低、延遲、最小化或防止疾病之不良效應。
個體 (individual) 」或「個體(subject)」係哺乳動物。哺乳動物包括(但不限於)家養動物(例如牛、綿羊、貓、狗及馬)、靈長類動物(例如人類及非人類靈長類動物,諸如猴子)、兔及齧齒類動物(例如小鼠及大鼠)。特定而言,個體(individual或subject)係人類。
術語「醫藥組合物 」或「醫藥調配物」係指如下製劑:其所呈之形式允許其中所含活性成分之生物學活性有效,且不含對將投與該醫藥組合物之個體具有不可接受之毒性的其他組分。
醫藥學上可接受之載劑 」係指醫藥組合物或調配物中除活性成分以外之成分,其對個體無毒。醫藥學上可接受之載劑包括(但不限於)緩衝劑、賦形劑、穩定劑或防腐劑。
術語「包裝插頁 」用於指通常包括在治療產品之商業包裝內之說明書,其含有關於適應症、用法、劑量、投與、組合療法、禁忌及/或關於使用此等治療產品之警告的資訊。
如本文所用,「治療 (treatment )」(及其文法變化形式,諸如「治療(treat或treating)」)係指嘗試改變所治療個體之自然病程之臨床干預,且可出於預防或在臨床病理學病程期間實施。治療之期望效應包括(但不限於)預防疾病發生或復發、減輕症狀、減弱疾病之任何直接或間接病理結果、預防轉移、降低疾病進展速率、改善或緩和疾病狀態及緩解或改良預後。在一些實施例中,本發明之分子用於延遲疾病發展或減緩疾病進展。
如本文所用之術語「癌症 」係指增殖性疾病,諸如淋巴瘤、淋巴球性白血病、肺癌、非小細胞肺(NSCL)癌、細支氣管肺泡細胞肺癌、骨癌、胰臟癌、皮膚癌、頭頸癌、表皮或眼內黑色素瘤、子宮癌、卵巢癌、直腸癌、肛區癌、胃癌(stomach cancer)、胃癌(gastric cancer)、結腸癌、乳癌、子宮癌、輸卵管癌、子宮內膜癌、子宮頸癌、陰道癌、外陰癌、霍奇金氏病(Hodgkin's Disease)、食管癌、小腸癌、內分泌系統癌症、甲狀腺癌、副甲狀腺癌、腎上腺癌、軟組織肉瘤、尿道癌、陰莖癌、前列腺癌、膀胱癌、腎臟或輸尿管癌、腎細胞癌、腎盂癌、間皮瘤、肝細胞癌、膽管癌、中樞神經系統(CNS)贅瘤、脊軸腫瘤、腦幹膠質瘤、多形性神經膠母細胞瘤、星細胞瘤、神經鞘瘤、室管膜瘤、髓母細胞瘤、腦脊髓膜瘤、鱗狀細胞癌、垂體腺瘤及尤恩氏肉瘤(Ewings sarcoma),包括上述癌症中任一者之難治性形式或上述癌症中之一或多者之組合。
如本文所用之術語「化學治療劑 」係指可用於治療癌症之化合物。在一態樣中,化學治療劑係抗代謝物。在一態樣中,抗代謝物選自由以下組成之群:胺基喋呤(Aminopterin)、胺甲喋呤(Methotrexate)、培美曲塞(Pemetrexed)、雷替曲塞(Raltitrexed)、克拉屈濱(Cladribine)、氯法拉濱(Clofarabine)、氟達拉濱(Fludarabine)、巰基嘌呤(Mercaptopurine)、噴司他汀(Pentostatin)、硫鳥嘌呤、卡培他濱(Capecitabine)、阿糖胞苷(Cytarabine)、氟尿嘧啶、氟尿苷(Floxuridine)及吉西他濱(Gemcitabine)。在一個特定態樣中,抗代謝物係卡培他濱或吉西他濱。在另一態樣中,抗代謝物係氟尿嘧啶。在一態樣中,化學治療劑係影響微管形成之劑。在一態樣中,影響微管形成之劑選自由以下組成之群:太平洋紫杉醇(paclitaxel)、多西他賽(docetaxel)、長春新鹼(vincristine)、長春鹼(vinblastine)、長春地辛(vindesine)、長春瑞濱(vinorelbin)、剋癌易(taxotere)、依託泊苷(etoposide)及替尼泊苷(teniposide)。在另一態樣中,化學治療劑係烷基化劑,諸如環磷醯胺。在一態樣中,化學治療劑係細胞毒性抗生素,諸如拓撲異構酶II抑制劑。在一態樣中,拓撲異構酶II抑制劑係多柔比星(doxorubicin)。 本發明之雙特異性抗體
本發明提供新穎雙特異性抗原結合分子,其包含新的抗FAP抗體(純系212)。包含此新的抗FAP抗體之雙特異性抗原結合分子具有諸如以下等尤其有利之性質:可產生性、穩定性、結合親和力、生物學活性、靶向效率、內化減少、優良藥物動力學(PK)性質(諸如改良之清除率)、毒性降低、可給予患者之劑量範圍擴大且由此功效可能增強。另外,端視於所包括之OX40抗體,已以有利的格式製備雙特異性抗原結合分子。例示性雙特異性抗原結合分子
在一態樣中,本發明提供雙特異性抗原結合分子,其特徵在於與OX40之靶向促效性結合。特定而言,該雙特異性抗原結合分子係靶向FAP之OX40促效劑。在另一特定態樣中,本發明之雙特異性抗原結合分子包含由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區,該Fc區包含降低效應功能之突變。使用包含降低或消除效應功能之突變的Fc區將防止經由Fc受體交聯所引起之非特異性促效作用且將防止OX40+ 細胞之ADCC。如本文所闡述之雙特異性抗原結合分子具有優於能夠特異性結合至OX40之習用抗體之優點,此乃因該等分子選擇性地在靶細胞處(通常靠近腫瘤,亦即在腫瘤基質中)誘導免疫反應。
因此,該等雙特異性抗原結合分子之特徵在於與OX40之FAP靶向促效性結合。在FAP表現細胞存在下,雙特異性抗原結合分子能夠誘導人類OX40陽性NFκB報導細胞中之NFκB活化。
在一態樣中,本發明提供雙特異性抗原結合分子,其包含 (a)至少兩個能夠特異性結合至OX40之抗原結合結構域, (b)能夠特異性結合至纖維母細胞活化蛋白(FAP)之抗原結合結構域,其包含:重鏈可變區(VH FAP),該VH FAP包含 (i) CDR-H1,其包含SEQ ID NO:3之胺基酸序列,(ii) CDR-H2,其包含選自由SEQ ID NO:4、SEQ ID NO:11及SEQ ID NO:12組成之群之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:5之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含(iv) CDR-L1,其包含選自由SEQ ID NO:6、SEQ ID NO:13及SEQ ID NO:14組成之群之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:7之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:8之胺基酸序列;及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區。
在一態樣中,能夠特異性結合至纖維母細胞活化蛋白(FAP)之抗原結合結構域包含:重鏈可變區(VH FAP),該VH FAP包含 (i) CDR-H1,其包含SEQ ID NO:3之胺基酸序列,(ii) CDR-H2,其包含選自由SEQ ID NO:4組成之群之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:5之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含(iv) CDR-L1,其包含選自由SEQ ID NO:6組成之群之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:7之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:8之胺基酸序列。
在一態樣中,Fc區包含一或多個降低抗體與Fc受體之結合親和力及/或效應功能之胺基酸取代。
在另一態樣中,提供雙特異性抗原結合分子,其中能夠特異性結合至FAP之抗原結合結構域包含:重鏈可變區(VH FAP),該VH FAP包含與SEQ ID NO:9之胺基酸序列至少約90%一致之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含與SEQ ID NO:10之胺基酸序列至少約90%一致之胺基酸序列。在一態樣中,能夠特異性結合至FAP之抗原結合結構域包含:重鏈可變區(VH FAP),該VH FAP包含SEQ ID NO:9之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含SEQ ID NO:10之胺基酸序列。
在另一態樣中,能夠特異性結合至FAP之抗原結合結構域包含:重鏈可變區(VH FAP),該VH FAP包含選自由 SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19及SEQ ID NO:20組成之群之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含選自由SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23、SEQ ID NO:24、SEQ ID NO:25及SEQ ID NO:26組成之群之胺基酸序列。在一態樣中,能夠特異性結合至FAP之抗原結合結構域包含(a)包含SEQ ID NO:15之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:21之胺基酸序列之輕鏈可變區(VL FAP),(b)包含SEQ ID NO:16之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:21之胺基酸序列之輕鏈可變區(VL FAP),(c)包含SEQ ID NO:16之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:22之胺基酸序列之輕鏈可變區(VL FAP),或(d)包含SEQ ID NO:19之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:25之胺基酸序列之輕鏈可變區(VL FAP)。特定而言,能夠特異性結合至FAP之抗原結合結構域包含(a)包含SEQ ID NO:15之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:21之胺基酸序列之輕鏈可變區(VL FAP)。
在一態樣中,能夠特異性結合至OX40之抗原結合結構域結合至包含SEQ ID NO:1之胺基酸序列或由其組成之多肽。
在另一態樣中,提供雙特異性抗原結合分子,其中能夠特異性結合至OX40之抗原結合結構域包含 (a)重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:27之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:28之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:29之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:30之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:31之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:32之胺基酸序列,或 (b)重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:35之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:36之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:37之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:38之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:39之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:40之胺基酸序列,或 (c)重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:43之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:44之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:45之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:46之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:47之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:48之胺基酸序列,或 (d)重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:51之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:52之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:53之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:54之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:55之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:56之胺基酸序列。
在一態樣中,能夠特異性結合至OX40之抗原結合結構域包含:重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:27之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:28之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:29之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:30之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:31之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:32之胺基酸序列。在另一態樣中,能夠特異性結合至OX40之抗原結合結構域包含:重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:35之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:36之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:37之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:38之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:39之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:40之胺基酸序列。在另一態樣中,能夠特異性結合至OX40之抗原結合結構域包含:重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:43之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:44之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:45之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:46之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:47之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:48之胺基酸序列。在又一態樣中,能夠特異性結合至OX40之抗原結合結構域包含:重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:51之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:52之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:53之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:54之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:55之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:56之胺基酸序列。在一個特定態樣中,能夠特異性結合至OX40之抗原結合結構域包含:重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:35之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:36之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:37之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:38之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:39之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:40之胺基酸序列。
在一態樣中,提供如前文所定義之雙特異性抗原結合分子,其中能夠特異性結合至OX40之抗原結合結構域包含 (i)包含SEQ ID NO:33之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40),或 (ii)包含SEQ ID NO:41之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:42之胺基酸序列之輕鏈可變區(VL OX40),或 (iii)包含SEQ ID NO:49之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:50之胺基酸序列之輕鏈可變區(VL OX40),或 (iv)包含SEQ ID NO:57之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:58之胺基酸序列之輕鏈可變區(VL OX40)。
在一態樣中,提供如前文所定義之雙特異性抗原結合分子,其中能夠特異性結合至OX40之抗原結合結構域包含有包含SEQ ID NO:33之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40)。在另一態樣中,提供如前文所定義之雙特異性抗原結合分子,其中能夠特異性結合至OX40之抗原結合結構域包含有包含SEQ ID NO:41之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:42之胺基酸序列之輕鏈可變區(VL OX40)。在另一態樣中,提供如前文所定義之雙特異性抗原結合分子,其中能夠特異性結合至OX40之抗原結合結構域包含有包含SEQ ID NO:49之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:50之胺基酸序列之輕鏈可變區(VL OX40)。在又一態樣中,提供如前文所定義之雙特異性抗原結合分子,其中能夠特異性結合至OX40之抗原結合結構域包含有包含SEQ ID NO:57之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:58之胺基酸序列之輕鏈可變區(VL OX40)。在一個特定態樣中,能夠特異性結合至OX40之抗原結合結構域(各自)包含有包含SEQ ID NO:41之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:42之胺基酸序列之輕鏈可變區(VL OX40)。
在另一態樣中,提供如前文所定義之雙特異性抗原結合分子,能夠特異性結合至OX40之抗原結合結構域包含 (i)包含SEQ ID NO:59之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40),或 (ii)包含SEQ ID NO:60之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40),或 (iii)包含SEQ ID NO:61之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40)。
在一態樣中,提供如前文所定義之雙特異性抗原結合分子,其中能夠特異性結合至OX40之抗原結合結構域包含有包含SEQ ID NO:59之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40)。在一態樣中,能夠特異性結合至OX40之抗原結合結構域包含有包含SEQ ID NO:60之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40)。在另一態樣中,能夠特異性結合至OX40之抗原結合結構域包含有包含SEQ ID NO:61之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40)。在一個特定態樣中,能夠特異性結合至OX40之抗原結合結構域(各自)包含有包含SEQ ID NO:60之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40)。 OX40 FAP 結合之雙特異性抗原結合分子
在另一態樣中,提供雙特異性抗原結合分子,其包含 (a)至少兩個能夠特異性結合至OX40之抗原結合結構域,其包含:重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:27之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:28之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:29之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:30之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:31之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:32之胺基酸序列, (b)能夠特異性結合至纖維母細胞活化蛋白(FAP)之抗原結合結構域,其包含:重鏈可變區(VH FAP),該VH FAP包含 (i) CDR-H1,其包含SEQ ID NO:3之胺基酸序列,(ii) CDR-H2,其包含選自由SEQ ID NO:4、SEQ ID NO:11及SEQ ID NO:12組成之群之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:5之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含(iv) CDR-L1,其包含選自由SEQ ID NO:6、SEQ ID NO:13及SEQ ID NO:14組成之群之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:7之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:8之胺基酸序列;及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區。
在另一態樣中,提供雙特異性抗原結合分子,其包含 (a)至少兩個能夠特異性結合至OX40之抗原結合結構域,其包含:重鏈可變區(VH OX40),該VH OX40包含選自由SEQ ID NO:33、SEQ ID NO:59、SEQ ID NO:60及SEQ ID NO:61組成之群之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含選自由SEQ ID NO:34組成之群之胺基酸序列, (b)至少一個能夠特異性結合至FAP之抗原結合結構域,其包含:重鏈可變區(VH FAP),該VH FAP包含選自由SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19及SEQ ID NO:20組成之群之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含選自由SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23、SEQ ID NO:24、SEQ ID NO:25及SEQ ID NO:26組成之群之胺基酸序列;及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區。
在特定態樣中,提供雙特異性抗原結合分子,其包含 (a)至少兩個能夠特異性結合至OX40之抗原結合結構域,其包含:重鏈可變區(VH OX40),該VH OX40包含選自由SEQ ID NO:59、SEQ ID NO:60及SEQ ID NO:61組成之群之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含選自由SEQ ID NO:34組成之群之胺基酸序列, (b)至少一個能夠特異性結合至FAP之抗原結合結構域,其包含:重鏈可變區(VH FAP),該VH FAP包含選自由SEQ ID NO:15組成之群之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含選自由SEQ ID NO:21組成之群之胺基酸序列;及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區。
在另一態樣中,提供雙特異性抗原結合分子,其包含 (a)至少兩個能夠特異性結合至OX40之抗原結合結構域,其包含:重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:35之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:36之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:37之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:38之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:39之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:40之胺基酸序列, (b)能夠特異性結合至纖維母細胞活化蛋白(FAP)之抗原結合結構域,其包含:重鏈可變區(VH FAP),該VH FAP包含 (i) CDR-H1,其包含SEQ ID NO:3之胺基酸序列,(ii) CDR-H2,其包含選自由SEQ ID NO:4、SEQ ID NO:11及SEQ ID NO:12組成之群之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:5之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含(iv) CDR-L1,其包含選自由SEQ ID NO:6、SEQ ID NO:13及SEQ ID NO:14組成之群之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:7之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:8之胺基酸序列;及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區。
在另一態樣中,提供雙特異性抗原結合分子,其包含 (a)至少兩個能夠特異性結合至OX40之抗原結合結構域,其包含:重鏈可變區(VH OX40),該VH OX40包含選自由SEQ ID NO:41組成之群之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含選自由SEQ ID NO:42組成之群之胺基酸序列, (b)至少一個能夠特異性結合至FAP之抗原結合結構域,其包含:重鏈可變區(VH FAP),該VH FAP包含選自由SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19及SEQ ID NO:20組成之群之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含選自由SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23、SEQ ID NO:24、SEQ ID NO:25及SEQ ID NO:26組成之群之胺基酸序列;及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區。
在特定態樣中,提供雙特異性抗原結合分子,其包含 (a)至少兩個能夠特異性結合至OX40之抗原結合結構域,其包含:重鏈可變區(VH OX40),該VH OX40包含選自由SEQ ID NO:41組成之群之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含選自由SEQ ID NO:42組成之群之胺基酸序列, (b)至少一個能夠特異性結合至FAP之抗原結合結構域,其包含:重鏈可變區(VH FAP),該VH FAP包含選自由SEQ ID NO:15組成之群之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含選自由SEQ ID NO:21組成之群之胺基酸序列;及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區。
在另一態樣中,提供雙特異性抗原結合分子,其包含 (a)至少兩個能夠特異性結合至OX40之抗原結合結構域,其包含:重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:43之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:44之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:45之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:46之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:47之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:48之胺基酸序列, (b)能夠特異性結合至纖維母細胞活化蛋白(FAP)之抗原結合結構域,其包含:重鏈可變區(VH FAP),該VH FAP包含 (i) CDR-H1,其包含SEQ ID NO:3之胺基酸序列,(ii) CDR-H2,其包含選自由SEQ ID NO:4、SEQ ID NO:11及SEQ ID NO:12組成之群之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:5之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含(iv) CDR-L1,其包含選自由SEQ ID NO:6、SEQ ID NO:13及SEQ ID NO:14組成之群之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:7之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:8之胺基酸序列;及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區。
在另一態樣中,提供雙特異性抗原結合分子,其包含 (a)至少兩個能夠特異性結合至OX40之抗原結合結構域,其包含:重鏈可變區(VH OX40),該VH OX40包含選自由SEQ ID NO:49組成之群之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含選自由SEQ ID NO:50組成之群之胺基酸序列, (b)至少一個能夠特異性結合至FAP之抗原結合結構域,其包含:重鏈可變區(VH FAP),該VH FAP包含選自由SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19及SEQ ID NO:20組成之群之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含選自由SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23、SEQ ID NO:24、SEQ ID NO:25及SEQ ID NO:26組成之群之胺基酸序列;及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區。
在特定態樣中,提供雙特異性抗原結合分子,其包含 (a)至少兩個能夠特異性結合至OX40之抗原結合結構域,其包含:重鏈可變區(VH OX40),該VH OX40包含選自由SEQ ID NO:49組成之群之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含選自由SEQ ID NO:50組成之群之胺基酸序列, (b)至少一個能夠特異性結合至FAP之抗原結合結構域,其包含:重鏈可變區(VH FAP),該VH FAP包含選自由SEQ ID NO:15組成之群之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含選自由SEQ ID NO:21組成之群之胺基酸序列;及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區。
在又一態樣中,提供雙特異性抗原結合分子,其包含 (a)至少兩個能夠特異性結合至OX40之抗原結合結構域,其包含:重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:51之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:52之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:53之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:54之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:55之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:56之胺基酸序列, (b)能夠特異性結合至纖維母細胞活化蛋白(FAP)之抗原結合結構域,其包含:重鏈可變區(VH FAP),該VH FAP包含 (i) CDR-H1,其包含SEQ ID NO:3之胺基酸序列,(ii) CDR-H2,其包含選自由SEQ ID NO:4、SEQ ID NO:11及SEQ ID NO:12組成之群之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:5之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含(iv) CDR-L1,其包含選自由SEQ ID NO:6、SEQ ID NO:13及SEQ ID NO:14組成之群之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:7之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:8之胺基酸序列;及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區。
在另一態樣中,提供雙特異性抗原結合分子,其包含 (a)至少兩個能夠特異性結合至OX40之抗原結合結構域,其包含:重鏈可變區(VH OX40),該VH OX40包含選自由SEQ ID NO:57組成之群之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含選自由SEQ ID NO:58組成之群之胺基酸序列, (b)至少一個能夠特異性結合至FAP之抗原結合結構域,其包含:重鏈可變區(VH FAP),該VH FAP包含選自由SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19及SEQ ID NO:20組成之群之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含選自由SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23、SEQ ID NO:24、SEQ ID NO:25及SEQ ID NO:26組成之群之胺基酸序列;及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區。
在特定態樣中,提供雙特異性抗原結合分子,其包含 (a)至少兩個能夠特異性結合至OX40之抗原結合結構域,其包含:重鏈可變區(VH OX40),該VH OX40包含選自由SEQ ID NO:57組成之群之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含選自由SEQ ID NO:58組成之群之胺基酸序列, (b)至少一個能夠特異性結合至FAP之抗原結合結構域,其包含:重鏈可變區(VH FAP),該VH FAP包含選自由SEQ ID NO:15組成之群之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含選自由SEQ ID NO:21組成之群之胺基酸序列;及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區。對於結合至 OX40 為二價且對於結合至 FAP 為單價之雙特異性抗原結合分子 (2+1 格式 )
在另一態樣中,本發明提供雙特異性抗原結合分子,其包含 (a)兩個能夠特異性結合至OX40之Fab片段, (b)一個能夠特異性結合至FAP之交叉Fab片段,其包含:重鏈可變區(VH FAP),該VH FAP包含(i) CDR-H1,其包含SEQ ID NO:3之胺基酸序列,(ii) CDR-H2,其包含選自由SEQ ID NO:4、SEQ ID NO:11及SEQ ID NO:12組成之群之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:5之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含(iv) CDR-L1,其包含選自由SEQ ID NO:6、SEQ ID NO:13及SEQ ID NO:14組成之群之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:7之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:8之胺基酸序列;及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc結構域。
因此,提供雙特異性抗原結合分子,其中該雙特異性抗原結合分子二價結合至OX40且單價結合至FAP。
在一態樣中,提供雙特異性抗原結合分子,其包含 (a)兩條重鏈,每一重鏈包含能夠特異性結合至OX40之Fab片段的VH及CH1結構域以及Fc區亞單元, (b)兩條輕鏈,每一輕鏈包含能夠特異性結合至OX40之Fab片段的VL及CL結構域,及 (c)能夠特異性結合至FAP之交叉fab片段,其包含VL-CH1鏈及VH-CL鏈,其中該VH-CL鏈連結至(a)中之該兩條重鏈中之一者的C末端。 在一態樣中,VH-CL (VH-Cκ)鏈連結至Fc隆凸重鏈之C末端。在一態樣中,VH-Cκ鏈連結至包含胺基酸取代S354C及T366W (根據Kabat EU索引進行編號)之Fc隆凸重鏈之C末端。
在另一態樣中,提供雙特異性抗原結合分子,其包含 (a)兩條重鏈,每一重鏈包含能夠特異性結合至OX40之Fab片段的VH及CH1結構域以及Fc區亞單元, (b)兩條輕鏈,每一輕鏈包含能夠特異性結合至OX40之Fab片段的VL及CL結構域,及 (c)能夠特異性結合至FAP之交叉fab片段,其包含VL-CH1鏈及VH-CL鏈,其中該VL-CH1鏈連結至(a)中之該兩條重鏈中之一者的C末端。
在一態樣中,VL-CH1鏈連結至Fc隆凸重鏈之C末端。在一態樣中,VL-CH1鏈連結至包含胺基酸取代S354C及T366W (根據Kabat EU索引進行編號)之Fc隆凸重鏈之C末端。
在一態樣中,本發明提供雙特異性抗原結合分子,其包含 (a)兩條輕鏈,其各自包含與SEQ ID NO:87之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:88之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:91之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:90之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列,或 (b)兩條輕鏈,其各自包含與SEQ ID NO:87之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:94之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:91之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:90之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列,或 (c)兩條輕鏈,其各自包含與SEQ ID NO:87之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:96之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:91之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:90之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列。在一態樣中,本發明提供雙特異性抗原結合分子,其包含(a)兩條輕鏈,其各自包含SEQ ID NO:87之胺基酸序列;一條輕鏈,其包含SEQ ID NO:88之胺基酸序列;第一重鏈,其包含SEQ ID NO:91之胺基酸序列;及第二重鏈,其包含SEQ ID NO:90之胺基酸序列,或(b)兩條輕鏈,其各自包含SEQ ID NO:87之胺基酸序列;一條輕鏈,其包含SEQ ID NO:94之胺基酸序列;第一重鏈,其包含SEQ ID NO:91之胺基酸序列;及第二重鏈,其包含SEQ ID NO:90之胺基酸序列,或(c)兩條輕鏈,其各自包含SEQ ID NO:87之胺基酸序列;一條輕鏈,其包含SEQ ID NO:96之胺基酸序列;第一重鏈,其包含SEQ ID NO:91之胺基酸序列;及第二重鏈,其包含SEQ ID NO:90之胺基酸序列。
在另一態樣中,本發明提供雙特異性抗原結合分子,其包含 (a)兩條輕鏈,其各自包含與SEQ ID NO:93之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:88之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:97之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:98之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列,或 (b)兩條輕鏈,其各自包含與SEQ ID NO:93之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:94之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:97之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:98之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列,或 (c)兩條輕鏈,其各自包含與SEQ ID NO:93之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:96之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:97之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:98之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列。在一態樣中,本發明提供雙特異性抗原結合分子,其包含(a)兩條輕鏈,其各自包含SEQ ID NO:93之胺基酸序列;一條輕鏈,其包含SEQ ID NO:88之胺基酸序列;第一重鏈,其包含SEQ ID NO:97之胺基酸序列;及第二重鏈,其包含SEQ ID NO:98之胺基酸序列,或(b)兩條輕鏈,其各自包含SEQ ID NO:93之胺基酸序列;一條輕鏈,其包含SEQ ID NO:94之胺基酸序列;第一重鏈,其包含SEQ ID NO:97之胺基酸序列;及第二重鏈,其包含SEQ ID NO:98之胺基酸序列,或(c)兩條輕鏈,其各自包含SEQ ID NO:93之胺基酸序列;一條輕鏈,其包含SEQ ID NO:96之胺基酸序列;第一重鏈,其包含SEQ ID NO:97之胺基酸序列;及第二重鏈,其包含SEQ ID NO:98之胺基酸序列。
在另一態樣中,本發明提供雙特異性抗原結合分子,其包含 (a)兩條輕鏈,其各自包含與SEQ ID NO:100之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:88之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:99之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:102之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列,或 (b)兩條輕鏈,其各自包含與SEQ ID NO:100之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:94之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:99之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:102之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列,或 (c)兩條輕鏈,其各自包含與SEQ ID NO:100之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:96之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:99之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:102之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列。在一態樣中,本發明提供雙特異性抗原結合分子,其包含(a)兩條輕鏈,其各自包含SEQ ID NO:100之胺基酸序列;一條輕鏈,其包含SEQ ID NO:88之胺基酸序列;第一重鏈,其包含SEQ ID NO:99之胺基酸序列;及第二重鏈,其包含SEQ ID NO:102之胺基酸序列,或(b)兩條輕鏈,其各自包含SEQ ID NO:100之胺基酸序列;一條輕鏈,其包含SEQ ID NO:94之胺基酸序列;第一重鏈,其包含SEQ ID NO:99之胺基酸序列;及第二重鏈,其包含SEQ ID NO:102之胺基酸序列,或(c)兩條輕鏈,其各自包含SEQ ID NO:100之胺基酸序列;一條輕鏈,其包含SEQ ID NO:96之胺基酸序列;第一重鏈,其包含SEQ ID NO:99之胺基酸序列;及第二重鏈,其包含SEQ ID NO:102之胺基酸序列。
在另一態樣中,本發明提供雙特異性抗原結合分子,其包含 (a)兩條輕鏈,其各自包含與SEQ ID NO:104之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:88之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:103之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:106之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列,或 (b)兩條輕鏈,其各自包含與SEQ ID NO:104之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:94之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:103之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:106之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列,或 (c)兩條輕鏈,其各自包含與SEQ ID NO:104之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:96之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:103之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:106之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列。在一態樣中,本發明提供雙特異性抗原結合分子,其包含(a)兩條輕鏈,其各自包含SEQ ID NO:104之胺基酸序列;一條輕鏈,其包含SEQ ID NO:88之胺基酸序列;第一重鏈,其包含SEQ ID NO:103之胺基酸序列;及第二重鏈,其包含SEQ ID NO:106之胺基酸序列,或(b)兩條輕鏈,其各自包含SEQ ID NO:104之胺基酸序列;一條輕鏈,其包含SEQ ID NO:94之胺基酸序列;第一重鏈,其包含SEQ ID NO:103之胺基酸序列;及第二重鏈,其包含SEQ ID NO:106之胺基酸序列,或(c)兩條輕鏈,其各自包含SEQ ID NO:104之胺基酸序列;一條輕鏈,其包含SEQ ID NO:96之胺基酸序列;第一重鏈,其包含SEQ ID NO:103之胺基酸序列;及第二重鏈,其包含SEQ ID NO:106之胺基酸序列。對於結合至 OX40 為三價且對於結合至 FAP 為單價之雙特異性抗原結合分子 (3+1 格式 )
在另一態樣中,提供雙特異性抗原結合分子,其中該雙特異性抗原結合分子包含 (aa)能夠特異性結合至OX40之第一Fab片段, (ab)能夠特異性結合至OX40之第二Fab片段, (ac)能夠特異性結合至OX40之第三Fab片段, (b)能夠特異性結合至FAP之交叉Fab片段,其與Fc區之一個亞單元之C末端融合,及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區,其中該第二Fab片段(ab)在VH-CH1鏈之C末端與該第一Fab片段(aa)之VH-CH1鏈之N末端融合,該第一Fab片段(aa)之VH-CH1鏈又在其C末端與該第一亞單元之N末端融合,且該第三Fab片段(ac)在Fab重鏈之C末端與該第二亞單元之N末端融合。
在一態樣中,雙特異性抗原結合分子由以下組成: (aa)能夠特異性結合至OX40之第一Fab片段, (ab)能夠特異性結合至OX40之第二Fab片段, (ac)能夠特異性結合至OX40之第三Fab片段, (b)能夠特異性結合至FAP之交叉Fab片段,其與Fc區之一個亞單元之C末端融合,及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區,其中該第二Fab片段(ab)在VH-CH1鏈之C末端與該第一Fab片段(aa)之VH-CH1鏈之N末端融合,該第一Fab片段(aa)之VH-CH1鏈又在其C末端與該第一亞單元之N末端融合,且該第三Fab片段(ac)在Fab重鏈之C末端與該第二亞單元之N末端融合。
在另一態樣中,提供雙特異性抗原結合分子,其包含 (a)一條重鏈,其包含能夠特異性結合至OX40之第一Fab片段之VH-CH1鏈(該VH-CH1鏈在其N末端視情況經由肽連接體與能夠特異性結合至OX40之第二Fab片段之VH-CH1鏈融合)及Fc區亞單元, (b)一條重鏈,其包含能夠特異性結合至OX40之Fab片段之VH-CH1結構域、Fc區亞單元及能夠特異性結合至FAP之Fab片段之VH-CL鏈(該VH-CL鏈視情況經由肽連接體與該Fc區亞單元之C末端融合), (c)三條輕鏈,每一輕鏈包含能夠特異性結合至OX40之Fab片段之VL及CL結構域,及 (d)一條輕鏈,其包含能夠特異性結合至FAP之Fab片段之VL及CH1結構域。
在另一態樣中,提供雙特異性抗原結合分子,其包含 (a)一條重鏈,其包含能夠特異性結合至OX40之第一Fab片段之VH-CH1鏈(該VH-CH1鏈在其N末端視情況經由肽連接體與能夠特異性結合至OX40之第二Fab片段之VH-CH1鏈融合)、Fc區亞單元及能夠特異性結合至FAP之Fab片段之VH-CL鏈(該VH-CL鏈視情況經由肽連接體與該Fc區亞單元之C末端融合), (b)一條重鏈,其包含能夠特異性結合至OX40之Fab片段之VH-CH1結構域以及Fc區亞單元, (c)三條輕鏈,每一輕鏈包含能夠特異性結合至OX40之Fab片段之VL及CL結構域,及 (d)一條輕鏈,其包含能夠特異性結合至FAP之Fab片段之VL及CH1結構域。
在另一態樣中,提供雙特異性抗原結合分子,其包含 (a)一條重鏈,其包含能夠特異性結合至OX40之第一Fab片段之VH-CH1鏈(該VH-CH1鏈在其N末端視情況經由肽連接體與能夠特異性結合至OX40之第二Fab片段之VH-CH1鏈融合)及Fc區亞單元, (b)一條重鏈,其包含能夠特異性結合至OX40之Fab片段之VH-CH1結構域、Fc區亞單元及能夠特異性結合至FAP之Fab片段之VL-CH1鏈(該VL-CH1鏈視情況經由肽連接體與該Fc區亞單元之C末端融合), (c)三條輕鏈,每一輕鏈包含能夠特異性結合至OX40之Fab片段之VL及CL結構域,及 (d)一條輕鏈,其包含能夠特異性結合至FAP之Fab片段之VH及CL結構域。
在另一態樣中,提供雙特異性抗原結合分子,其包含 (a)一條重鏈,其包含能夠特異性結合至OX40之第一Fab片段之VH-CH1鏈(該VH-CH1鏈在其N末端視情況經由肽連接體與能夠特異性結合至OX40之第二Fab片段之VH-CH1鏈融合)、Fc區亞單元及能夠特異性結合至FAP之Fab片段之VL-CH1鏈(該VL-CH1鏈視情況經由肽連接體與該Fc區亞單元之C末端融合), (b)一條重鏈,其包含能夠特異性結合至OX40之Fab片段之VH-CH1結構域以及Fc區亞單元, (c)三條輕鏈,每一輕鏈包含能夠特異性結合至OX40之Fab片段之VL及CL結構域,及 (d)一條輕鏈,其包含能夠特異性結合至FAP之Fab片段之VH及CL結構域。
在一個特定態樣中,肽連接體選自GGGGS (SEQ ID NO:67)、GGGGSGGGGS (SEQ ID NO:68)、SGGGGSGGGG (SEQ ID NO:69)、GGGGSGGGGSGGGG (SEQ ID NO:70)、GSPGSSSSGS (SEQ ID NO:71)、(G4S)3 (SEQ ID NO:72)、(G4S)4 (SEQ ID NO:73)、GSGSGSGS (SEQ ID NO:74)、GSGSGNGS (SEQ ID NO:75)、GGSGSGSG (SEQ ID NO:76)、GGSGSG (SEQ ID NO:77)、GGSG (SEQ ID NO:78)、GGSGNGSG (SEQ ID NO:79)、GGNGSGSG (SEQ ID NO:80)及GGNGSG (SEQ ID NO:81)。尤為受關注之肽連接體為(G4S) (SEQ ID NO:67)、(G4 S)2 或GGGGSGGGGS (SEQ ID NO:68)、(G4S)3 (SEQ ID NO:72)及(G4S)4 (SEQ ID NO:73)。
在一態樣中,提供雙特異性抗原結合分子,其包含 (a)第一重鏈,其包含與SEQ ID NO:86之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第二重鏈,其包含與SEQ ID NO:90之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;三條輕鏈,其各自包含與SEQ ID NO:87之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及一條輕鏈,其包含與SEQ ID NO:88之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列,或 (b)第一重鏈,其包含與SEQ ID NO:86之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第二重鏈,其包含與SEQ ID NO:90之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;三條輕鏈,其各自包含與SEQ ID NO:87之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及一條輕鏈,其包含與SEQ ID NO:94之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列,或 (c)第一重鏈,其包含與SEQ ID NO:86之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第二重鏈,其包含與SEQ ID NO:90之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;三條輕鏈,其各自包含與SEQ ID NO:87之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及一條輕鏈,其包含與SEQ ID NO:96之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列。在一態樣中,提供雙特異性抗原結合分子,其包含(a)第一重鏈,其包含SEQ ID NO:86之胺基酸序列;第二重鏈,其包含SEQ ID NO:90之胺基酸序列;三條輕鏈,其各自包含SEQ ID NO:87之胺基酸序列;及一條輕鏈,其包含SEQ ID NO:88之胺基酸序列,或(b)第一重鏈,其包含SEQ ID NO:86之胺基酸序列;第二重鏈,其包含SEQ ID NO:90之胺基酸序列;三條輕鏈,其各自包含SEQ ID NO:87之胺基酸序列;及一條輕鏈,其包含SEQ ID NO:94之胺基酸序列,或(c)第一重鏈,其包含SEQ ID NO:86之胺基酸序列;第二重鏈,其包含SEQ ID NO:90之胺基酸序列;三條輕鏈,其各自包含SEQ ID NO:87之胺基酸序列;及一條輕鏈,其包含SEQ ID NO:96之胺基酸序列。
在一態樣中,提供雙特異性抗原結合分子,其包含 (a)第一重鏈,其包含與SEQ ID NO:97之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第二重鏈,其包含與SEQ ID NO:95之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;三條輕鏈,其各自包含與SEQ ID NO:93之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及一條輕鏈,其包含與SEQ ID NO:88之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列,或 (b)第一重鏈,其包含與SEQ ID NO:97之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第二重鏈,其包含與SEQ ID NO:95之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;三條輕鏈,其各自包含與SEQ ID NO:93之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及一條輕鏈,其包含與SEQ ID NO:94之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列,或 (c)第一重鏈,其包含與SEQ ID NO:97之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第二重鏈,其包含與SEQ ID NO:95之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;三條輕鏈,其各自包含與SEQ ID NO:93之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及一條輕鏈,其包含與SEQ ID NO:96之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列。在一態樣中,提供雙特異性抗原結合分子,其包含(a)第一重鏈,其包含SEQ ID NO:97之胺基酸序列;第二重鏈,其包含SEQ ID NO:95之胺基酸序列;三條輕鏈,其各自包含SEQ ID NO:93之胺基酸序列;及一條輕鏈,其包含SEQ ID NO:88之胺基酸序列,或(b)第一重鏈,其包含SEQ ID NO:97之胺基酸序列;第二重鏈,其包含SEQ ID NO:95之胺基酸序列;三條輕鏈,其各自包含SEQ ID NO:93之胺基酸序列;及一條輕鏈,其包含SEQ ID NO:94之胺基酸序列,或(c)第一重鏈,其包含SEQ ID NO:97之胺基酸序列;第二重鏈,其包含SEQ ID NO:95之胺基酸序列;三條輕鏈,其各自包含SEQ ID NO:93之胺基酸序列;及一條輕鏈,其包含SEQ ID NO:96之胺基酸序列。
在另一態樣中,提供雙特異性抗原結合分子,其包含 (a)第一重鏈,其包含與SEQ ID NO:99之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第二重鏈,其包含與SEQ ID NO:101之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;三條輕鏈,其各自包含與SEQ ID NO:100之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及一條輕鏈,其包含與SEQ ID NO:88之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列,或 (b)第一重鏈,其包含與SEQ ID NO:99之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第二重鏈,其包含與SEQ ID NO:101之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;三條輕鏈,其各自包含與SEQ ID NO:100之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及一條輕鏈,其包含與SEQ ID NO:94之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列,或 (c)第一重鏈,其包含與SEQ ID NO:99之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第二重鏈,其包含與SEQ ID NO:101之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;三條輕鏈,其各自包含與SEQ ID NO:100之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及一條輕鏈,其包含與SEQ ID NO:96之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列。在一態樣中,提供雙特異性抗原結合分子,其包含(a)第一重鏈,其包含SEQ ID NO:99之胺基酸序列;第二重鏈,其包含SEQ ID NO:101之胺基酸序列;三條輕鏈,其各自包含SEQ ID NO:100之胺基酸序列;及一條輕鏈,其包含SEQ ID NO:88之胺基酸序列,或(b)第一重鏈,其包含SEQ ID NO:99之胺基酸序列;第二重鏈,其包含SEQ ID NO:101之胺基酸序列;三條輕鏈,其各自包含SEQ ID NO:100之胺基酸序列;及一條輕鏈,其包含SEQ ID NO:94之胺基酸序列,或(c)第一重鏈,其包含SEQ ID NO:99之胺基酸序列;第二重鏈,其包含SEQ ID NO:101之胺基酸序列;三條輕鏈,其各自包含SEQ ID NO:100之胺基酸序列;及一條輕鏈,其包含SEQ ID NO:96之胺基酸序列。
在另一態樣中,提供雙特異性抗原結合分子,其包含 (a)第一重鏈,其包含與SEQ ID NO:103之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第二重鏈,其包含與SEQ ID NO:105之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;三條輕鏈,其各自包含與SEQ ID NO:104之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及一條輕鏈,其包含與SEQ ID NO:88之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列,或 (b)第一重鏈,其包含與SEQ ID NO:103之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第二重鏈,其包含與SEQ ID NO:105之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;三條輕鏈,其各自包含與SEQ ID NO:104之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及一條輕鏈,其包含與SEQ ID NO:94之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列,或 (c)第一重鏈,其包含與SEQ ID NO:103之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第二重鏈,其包含與SEQ ID NO:105之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;三條輕鏈,其各自包含與SEQ ID NO:104之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及一條輕鏈,其包含與SEQ ID NO:96之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列。在一態樣中,提供雙特異性抗原結合分子,其包含(a)第一重鏈,其包含SEQ ID NO:103之胺基酸序列;第二重鏈,其包含SEQ ID NO:105之胺基酸序列;三條輕鏈,其各自包含SEQ ID NO:104之胺基酸序列;及一條輕鏈,其包含SEQ ID NO:88之胺基酸序列,或(b)第一重鏈,其包含SEQ ID NO:103之胺基酸序列;第二重鏈,其包含SEQ ID NO:105之胺基酸序列;三條輕鏈,其各自包含SEQ ID NO:104之胺基酸序列;及一條輕鏈,其包含SEQ ID NO:94之胺基酸序列,或(c)第一重鏈,其包含SEQ ID NO:103之胺基酸序列;第二重鏈,其包含SEQ ID NO:105之胺基酸序列;三條輕鏈,其各自包含SEQ ID NO:104之胺基酸序列;及一條輕鏈,其包含SEQ ID NO:96之胺基酸序列。對於結合至 OX40 為四價且對於結合至靶細胞抗原為單價之雙特異性抗原結合分子 (4+1 格式 )
在另一態樣中,本發明提供雙特異性抗原結合分子,其包含 (a)四個能夠特異性結合至OX40之抗原結合結構域, (b)一個能夠特異性結合至FAP之抗原結合結構域,其包含(i) CDR-H1,其包含SEQ ID NO:3之胺基酸序列,(ii) CDR-H2,其包含選自由SEQ ID NO:4、SEQ ID NO:11及SEQ ID NO:12組成之群之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:5之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含(iv) CDR-L1,其包含選自由SEQ ID NO:6、SEQ ID NO:13及SEQ ID NO:14組成之群之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:7之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:8之胺基酸序列;及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc結構域。
因此,提供雙特異性抗原結合分子,其中該雙特異性抗原結合分子四價結合至OX40且單價結合至FAP。
在一態樣中,提供雙特異性抗原結合分子,其中四個能夠特異性結合至OX40之抗原結合結構域係Fab片段,且其中之每兩者視情況經由肽連接體彼此融合於重鏈處。在特定態樣中,抗原結合分子包含兩條各自包含VHCH1-肽連接體-VHCH1片段之重鏈。在特定態樣中,肽連接體具有SEQ ID NO:68之胺基酸序列。
在一態樣中,雙特異性抗原結合分子由以下組成: (aa)能夠特異性結合至OX40之第一Fab片段, (ab)能夠特異性結合至OX40之第二Fab片段, (ac)能夠特異性結合至OX40之第三Fab片段, (ad)能夠特異性結合至OX40之第四Fab片段, (b)能夠特異性結合至FAP之交叉Fab片段,其與Fc區之一個亞單元之C末端融合,及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區,其中該第二Fab片段(ab)在VH-CH1鏈之C末端與該第一Fab片段(aa)之VH-CH1鏈之N末端融合,該第一Fab片段(aa)之VH-CH1鏈又在其C末端與該第一亞單元之N末端融合,且該第四Fab片段(ad)在VH-CH1鏈之C末端與該第三Fab片段(ac)之VH-CH1鏈之N末端融合,該第三Fab片段(ac)之VH-CH1鏈又在其C末端與該第二亞單元之N末端融合。
在一態樣中,提供抗原結合分子,其由以下組成: (a)四條輕鏈,每一輕鏈包含能夠特異性結合至OX40之Fab片段之VL及CL結構域, (b)兩條重鏈,其中每一重鏈包含能夠特異性結合至OX40之Fab片段的VH-CH1結構域(該結構域與能夠特異性結合至OX40之第二Fab片段的VH-CH1結構域之N末端融合)及Fc區亞單元,及 (c)能夠特異性結合至FAP之交叉fab片段,其中VH-CL結構域經由肽連接體連結至該等重鏈中之一者之C末端。
在一態樣中,提供雙特異性抗原結合分子,其包含 (a)四條輕鏈,其各自包含與SEQ ID NO:87之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:88之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:86之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:89之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列, (b)四條輕鏈,其各自包含與SEQ ID NO:87之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:94之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:86之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:89之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列, (c)四條輕鏈,其各自包含與SEQ ID NO:87之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:96之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:86之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:89之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列。在一態樣中,提供雙特異性抗原結合分子,其包含(a)四條輕鏈,其各自包含SEQ ID NO:87之胺基酸序列;一條輕鏈,其包含SEQ ID NO:88之胺基酸序列;第一重鏈,其包含SEQ ID NO:86之胺基酸序列;及第二重鏈,其包含SEQ ID NO:89之胺基酸序列,(b)四條輕鏈,其各自包含SEQ ID NO:87之胺基酸序列;一條輕鏈,其包含SEQ ID NO:94之胺基酸序列;第一重鏈,其包含SEQ ID NO:86之胺基酸序列;及第二重鏈,其包含SEQ ID NO:89之胺基酸序列,或(c)四條輕鏈,其各自包含SEQ ID NO:87之胺基酸序列;一條輕鏈,其包含SEQ ID NO:96之胺基酸序列;第一重鏈,其包含SEQ ID NO:86之胺基酸序列;及第二重鏈,其包含SEQ ID NO:89之胺基酸序列。
在另一態樣中,提供雙特異性抗原結合分子,其包含 (a)四條輕鏈,其各自包含與SEQ ID NO:93之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:88之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:92之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:95之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列, (b)四條輕鏈,其各自包含與SEQ ID NO:93之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:94之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:92之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:95之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列,或 (c)四條輕鏈,其各自包含與SEQ ID NO:93之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:96之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:92之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:95之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列。在一態樣中,提供雙特異性抗原結合分子,其包含(a)四條輕鏈,其各自包含SEQ ID NO:93之胺基酸序列;一條輕鏈,其包含SEQ ID NO:88之胺基酸序列;第一重鏈,其包含SEQ ID NO:92之胺基酸序列;及第二重鏈,其包含SEQ ID NO:95之胺基酸序列,(b)四條輕鏈,其各自包含SEQ ID NO:93之胺基酸序列;一條輕鏈,其包含SEQ ID NO:94之胺基酸序列;第一重鏈,其包含SEQ ID NO:92之胺基酸序列;及第二重鏈,其包含SEQ ID NO:95之胺基酸序列,或(c)四條輕鏈,其各自包含SEQ ID NO:93之胺基酸序列;一條輕鏈,其包含SEQ ID NO:96之胺基酸序列;第一重鏈,其包含SEQ ID NO:92之胺基酸序列;及第二重鏈,其包含SEQ ID NO:95之胺基酸序列。
在另一態樣中,提供雙特異性抗原結合分子,其包含 (a)四條輕鏈,其各自包含與SEQ ID NO:87之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:88之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:107之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:108之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列, (b)四條輕鏈,其各自包含與SEQ ID NO:87之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:94之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:107之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:108之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列,或 (c)四條輕鏈,其各自包含與SEQ ID NO:87之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:96之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:107之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:108之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列。在另一態樣中,提供雙特異性抗原結合分子,其包含(a)四條輕鏈,其各自包含SEQ ID NO:87之胺基酸序列;一條輕鏈,其包含SEQ ID NO:88之胺基酸序列;第一重鏈,其包含SEQ ID NO:107之胺基酸序列;及第二重鏈,其包含SEQ ID NO:108之胺基酸序列,或(b)四條輕鏈,其各自包含SEQ ID NO:87之胺基酸序列;一條輕鏈,其包含SEQ ID NO:94之胺基酸序列;第一重鏈,其包含SEQ ID NO:107之胺基酸序列;及第二重鏈,其包含SEQ ID NO:108之胺基酸序列,或(c)四條輕鏈,其各自包含SEQ ID NO:87之胺基酸序列;一條輕鏈,其包含SEQ ID NO:96之胺基酸序列;第一重鏈,其包含SEQ ID NO:107之胺基酸序列;及第二重鏈,其包含SEQ ID NO:108之胺基酸序列。
在另一態樣中,提供雙特異性抗原結合分子,其包含 (a)四條輕鏈,其各自包含與SEQ ID NO:87之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:88之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:109之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:110之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列,或 (b)四條輕鏈,其各自包含與SEQ ID NO:87之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:94之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:109之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:110之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列, (c)四條輕鏈,其各自包含與SEQ ID NO:87之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:96之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:109之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:110之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列。在一態樣中,提供雙特異性抗原結合分子,其包含(a)四條輕鏈,其各自包含SEQ ID NO:87之胺基酸序列;一條輕鏈,其包含SEQ ID NO:88之胺基酸序列;第一重鏈,其包含SEQ ID NO:109之胺基酸序列;及第二重鏈,其包含SEQ ID NO:110之胺基酸序列,或(b)四條輕鏈,其各自包含SEQ ID NO:87之胺基酸序列;一條輕鏈,其包含SEQ ID NO:94之胺基酸序列;第一重鏈,其包含SEQ ID NO:109之胺基酸序列;及第二重鏈,其包含SEQ ID NO:110之胺基酸序列,或(c)四條輕鏈,其各自包含SEQ ID NO:87之胺基酸序列;一條輕鏈,其包含SEQ ID NO:96之胺基酸序列;第一重鏈,其包含SEQ ID NO:109之胺基酸序列;及第二重鏈,其包含SEQ ID NO:110之胺基酸序列。
在另一態樣中,提供雙特異性抗原結合分子,其包含 (a)四條輕鏈,其各自包含與SEQ ID NO:87之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:88之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:111之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:112之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列, (b)四條輕鏈,其各自包含與SEQ ID NO:87之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:94之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:111之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:112之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列, (c)四條輕鏈,其各自包含與SEQ ID NO:87之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;一條輕鏈,其包含與SEQ ID NO:96之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;第一重鏈,其包含與SEQ ID NO:111之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列;及第二重鏈,其包含與SEQ ID NO:112之序列至少約90%、95%、96%、97%、98%、99%或100%一致之胺基酸序列。在另一態樣中,提供雙特異性抗原結合分子,其包含(a)四條輕鏈,其各自包含SEQ ID NO:87之胺基酸序列;一條輕鏈,其包含SEQ ID NO:88之胺基酸序列;第一重鏈,其包含SEQ ID NO:111之胺基酸序列;及第二重鏈,其包含SEQ ID NO:112之胺基酸序列,或(b)四條輕鏈,其各自包含SEQ ID NO:87之胺基酸序列;一條輕鏈,其包含SEQ ID NO:94之胺基酸序列;第一重鏈,其包含SEQ ID NO:111之胺基酸序列;及第二重鏈,其包含SEQ ID NO:112之胺基酸序列,或(c)四條輕鏈,其各自包含SEQ ID NO:87之胺基酸序列;一條輕鏈,其包含SEQ ID NO:96之胺基酸序列;第一重鏈,其包含SEQ ID NO:111之胺基酸序列;及第二重鏈,其包含SEQ ID NO:112之胺基酸序列。降低 Fc 受體結合及 / 或效應功能之 Fc 結構域修飾
本發明之雙特異性抗原結合分子進一步包含Fc結構域,其由能夠穩定締合之第一亞單元及第二亞單元構成。
在某些態樣中,可將一或多種胺基酸修飾引入至本文所提供抗體之Fc區中,藉此生成Fc區變異體。該Fc區變異體可包含在一或多個胺基酸位置處包含胺基酸修飾(例如取代)之人類Fc區序列(例如人類IgG1、IgG2、IgG3或IgG4 Fc區)。
Fc結構域賦予本發明之雙特異性抗體有利的藥物動力學性質,包括長血清半衰期(其有助於在靶標組織中良好累積)及有利的組織-血液分佈比率。然而,其同時可導致本發明之雙特異性抗體不期望地靶向表現Fc受體之細胞,而非靶向較佳之抗原攜帶細胞。因此,在特定實施例中,與天然IgG Fc結構域、特定而言IgG1 Fc結構域或IgG4 Fc結構域相比,本發明之雙特異性抗體之Fc結構域展現降低的與Fc受體之結合親和力及/或降低之效應功能。更特定而言,Fc結構域係IgG1 Fc結構域。
在一個此態樣中,Fc結構域(或包含該Fc結構域之雙特異性抗原結合分子)與天然IgG1 Fc結構域(或包含天然IgG1 Fc結構域的本發明之雙特異性抗原結合分子)相比展現小於50%、較佳小於20%、更佳小於10%且最佳小於5%的與Fc受體之結合親和力,及/或與天然IgG1 Fc結構域(或包含天然IgG1 Fc結構域的本發明之雙特異性抗原結合分子)相比展現小於50%、較佳小於20%、更佳小於10%且最佳小於5%之效應功能。在一態樣中,Fc結構域(或包含該Fc結構域的本發明之雙特異性抗原結合分子)並不實質上結合至Fc受體及/或誘導效應功能。在特定態樣中,Fc受體係Fcγ受體。在一態樣中,Fc受體係人類Fc受體。在一態樣中,Fc受體係活化性Fc受體。在具體態樣中,Fc受體係活化性人類Fcγ受體、更具體而言人類FcγRIIIa、FcγRI或FcγRIIa、最具體而言人類FcγRIIIa。在一態樣中,Fc受體係抑制性Fc受體。在具體態樣中,Fc受體係抑制性人類Fcγ受體、更具體而言人類FcγRIIB。在一態樣中,效應功能係CDC、ADCC、ADCP及細胞介素分泌中之一或多者。在特定態樣中,效應功能係ADCC。在一態樣中,與天然IgG1 Fc結構域相比,Fc結構域展現實質上類似的與新生Fc受體(FcRn)之結合親和力。在Fc結構域(或包含該Fc結構域的本發明之雙特異性抗原結合分子)展現大於約70%、特定而言大於約80%、更特定而言大於約90%之天然IgG1 Fc結構域(或包含天然IgG1 Fc結構域的本發明之雙特異性抗原結合分子)與FcRn之結合親和力時,達成實質上類似的與FcRn之結合。
在特定態樣中,與未經工程改造之Fc結構域相比,Fc結構域經工程改造以具有降低的與Fc受體之結合親和力及/或降低的效應功能。在特定態樣中,本發明之雙特異性抗原結合分子之Fc結構域包含一或多個胺基酸突變,該(等)胺基酸突變降低Fc結構域對Fc受體之結合親和力及/或效應功能。通常,相同的一或多個胺基酸突變存在於Fc結構域之兩個亞單元中之每一者中。在一態樣中,胺基酸突變降低Fc結構域對Fc受體之結合親和力。在另一態樣中,胺基酸突變使Fc結構域對Fc受體之結合親和力降低至少2倍、至少5倍或至少10倍。在一態樣中,與包含未經工程改造之Fc結構域的本發明之雙特異性抗體相比,包含經工程改造之Fc結構域的本發明之雙特異性抗原結合分子展現小於20%、特定而言小於10%、更特定而言小於5%的對Fc受體之結合親和力。在特定態樣中,Fc受體係Fcγ受體。在其他態樣中,Fc受體係人類Fc受體。在一態樣中,Fc受體係抑制性Fc受體。在具體態樣中,Fc受體係抑制性人類Fcγ受體、更具體而言人類FcγRIIB。在一些態樣中,Fc受體係活化性Fc受體。在具體態樣中,Fc受體係活化性人類Fcγ受體、更具體而言人類FcγRIIIa、FcγRI或FcγRIIa、最具體而言人類FcγRIIIa。較佳地,與該等受體中之每一者之結合降低。在一些態樣中,對補體組分之結合親和力、具體而言對C1q之結合親和力亦降低。在一態樣中,對新生Fc受體(FcRn)之結合親和力並不降低。在Fc結構域(或包含該Fc結構域的本發明之雙特異性抗原結合分子)展現大於約70%的未經工程改造形式之Fc結構域(或包含該未經工程改造形式之Fc結構域的本發明之雙特異性抗原結合分子)與FcRn之結合親和力時,達成實質上類似的與FcRn之結合,亦即保留Fc結構域對該受體之結合親和力。Fc結構域或包含該Fc結構域的本發明之雙特異性抗原結合分子可展現大於約80%且甚至大於約90%之此親和力。在某些實施例中,與未經工程改造之Fc結構域相比,本發明之雙特異性抗原結合分子之Fc結構域經工程改造以具有降低的效應功能。降低的效應功能可包括(但不限於)以下中之一或多者:降低的補體依賴性細胞毒性(CDC)、降低的抗體依賴性細胞介導之細胞毒性(ADCC)、降低的抗體依賴性細胞吞噬作用(ADCP)、降低的細胞介素分泌、降低的免疫複合物介導之抗原呈現細胞之抗原攝取、降低的與NK細胞之結合、降低的與巨噬細胞之結合、降低的與單核球之結合、降低的與多形核細胞之結合、降低的誘導凋亡之直接信號傳導、降低的樹突細胞成熟或降低的T細胞啟動。
效應功能降低之抗體包括Fc區殘基238、265、269、270、297、327及329中之一或多者經取代之彼等抗體(美國專利第6,737,056號)。此等Fc突變體包括在胺基酸位置265、269、270、297及327中之兩者或更多者處具有取代之Fc突變體,包括在殘基265及297處取代為丙胺酸之所謂的「DANA」Fc突變體(美國專利第7,332,581號)。闡述與FcR之結合改良或減弱之某些抗體變異體。(例如美國專利第6,737,056號;WO 2004/056312,及Shields, R.L.等人,J. Biol. Chem. 276 (2001) 6591-6604)。
在一態樣中,Fc結構域包含在E233、L234、L235、N297、P331及P329之位置處之胺基酸取代。在一些態樣中,Fc結構域包含胺基酸取代L234A及L235A (「LALA」)。在一個此實施例中,Fc結構域係IgG1 Fc結構域、特定而言人類IgG1 Fc結構域。在一態樣中,Fc結構域包含在位置P329處之胺基酸取代。在更具體態樣中,胺基酸取代係P329A或P329G、特定而言P329G。在一個實施例中,Fc結構域包含在位置P329處之胺基酸取代及選自由以下組成之群之另一胺基酸取代:E233P、L234A、L235A、L235E、N297A、N297D或P331S。在更特定實施例中,Fc結構域包含胺基酸突變L234A、L235A及P329G (「P329G LALA」)。如PCT專利申請案第WO 2012/130831 A1號中所闡述,胺基酸取代之「P329G LALA」組合幾乎完全消除人類IgG1 Fc結構域之Fcγ受體結合。該文件亦闡述製備此等突變體Fc結構域之方法及測定其性質(諸如Fc受體結合或效應功能)之方法。此抗體係具有突變L234A及L235A或具有突變L234A、L235A及P329G之IgG1 (根據Kabat等人之EU索引進行編號,Kabat等人,Sequences of Proteins of Immunological Interest,第5版,Public Health Service, National Institutes of Health, Bethesda, MD, 1991)。
在一態樣中,Fc結構域係IgG4 Fc結構域。在更具體實施例中,Fc結構域係包含在位置S228處之胺基酸取代(Kabat編號)、特定而言胺基酸取代S228P之IgG4 Fc結構域。在更具體實施例中,Fc結構域係包含胺基酸取代L235E及S228P以及P329G之IgG4 Fc結構域。此胺基酸取代減少IgG4抗體之活體內Fab臂交換(參見Stubenrauch等人,Drug Metabolism and Disposition 38, 84-91 (2010))。
具有延長的半衰期及改良的與新生Fc受體(FcRn,其負責將母體IgG轉移至胎兒中,Guyer, R.L.等人,J. Immunol. 117 (1976) 587-593及Kim, J.K.等人,J. Immunol. 24 (1994) 2429-2434)之結合之抗體闡述於US 2005/0014934中。彼等抗體包含其中具有一或多個取代之Fc區,該(等)取代改良Fc區與FcRn之結合。此等Fc變異體包括在以下Fc區殘基之一或多者處具有取代之彼等變異體:238、256、265、272、286、303、305、307、311、312、317、340、356、360、362、376、378、380、382、413、424或434,例如取代Fc區殘基434 (美國專利第7,371,826號)。關於Fc區變異體之其他實例,亦參見Duncan, A.R.及Winter, G., Nature 322 (1988) 738-740;US 5,648,260;US 5,624,821;及WO 94/29351。
可(例如)藉由ELISA或藉由表面電漿子共振(SPR)使用標準儀器(諸如BIAcore儀器(GE Healthcare))容易地測定與Fc受體之結合,且可藉由重組表現獲得諸如等Fc受體。適宜之此結合分析闡述於本文中。或者,可使用已知表現特定Fc受體之細胞株(諸如表現FcγIIIa受體之人類NK細胞)來評估Fc結構域或包含Fc結構域之細胞活化性雙特異性抗原結合分子對Fc受體之結合親和力。可藉由此項技術中已知之方法來量測Fc結構域或包含Fc結構域的本發明之雙特異性抗原結合分子之效應功能。量測ADCC之適宜分析闡述於本文中。評價所關注分子之ADCC活性之活體外分析之其他實例闡述於美國專利第5,500,362號;Hellstrom等人,Proc Natl Acad Sci USA 83, 7059-7063 (1986)及Hellstrom等人,Proc Natl Acad Sci USA 82, 1499-1502 (1985);美國專利第5,821,337號;Bruggemann等人,J Exp Med 166, 1351-1361 (1987)中。或者,可採用非放射性分析方法(例如,參見用於流式細胞術之ACTI™非放射性細胞毒性分析(CellTechnology, Inc. Mountain View, CA);及CytoTox 96® 非放射性細胞毒性分析(Promega, Madison, WI))。可用於此等分析之效應細胞包括外周血單核細胞(PBMC)及天然殺手(NK)細胞。或者或另外,可在活體內評價所關注分子之ADCC活性,例如在動物模型中評價,諸如Clynes等人,Proc Natl Acad Sci USA 95, 652-656 (1998)中所揭示之動物模型。
以下部分闡述包含降低Fc受體結合及/或效應功能之Fc結構域修飾的本發明之雙特異性抗原結合分子之較佳態樣。在一態樣中,本發明係關於雙特異性抗原結合分子,其包含(a)至少兩個能夠特異性結合至OX40之抗原結合結構域,(b)能夠特異性結合至FAP之抗原結合結構域,及(c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc結構域,其中該Fc結構域包含一或多個降低抗體對Fc受體、特定而言對Fcγ受體之結合親和力之胺基酸取代。在另一態樣中,本發明係關於雙特異性抗原結合分子,其包含(a)至少兩個能夠特異性結合至OX40之抗原結合結構域,(b)能夠特異性結合至FAP之抗原結合結構域,及(c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc結構域,其中該Fc結構域包含一或多個降低效應功能之胺基酸取代。在特定態樣中,Fc結構域係具有胺基酸突變L234A、L235A及P329G (根據Kabat EU索引進行編號)之人類IgG1亞類Fc結構域。促進異二聚化之 Fc 結構域修飾
本發明之雙特異性抗原結合分子包含不同的抗原結合位點,該等位點與Fc結構域之兩個亞單元中之一者或另一者融合,由此Fc結構域之兩個亞單元可包含於兩條不一致的多肽鏈中。該等多肽之重組共表現及後續二聚化產生該兩種多肽之若干可能組合。為改良本發明之雙特異性抗原結合分子在重組產生中之產率及純度,因此在本發明之雙特異性抗原結合分子之Fc結構域中引入促進期望多肽締合之修飾將為有利的。
因此,在特定態樣中,本發明係關於雙特異性抗原結合分子,其包含(a)至少兩個能夠特異性結合至OX40之抗原結合結構域,(b)能夠特異性結合至FAP之抗原結合結構域,及(c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc結構域,其中該Fc結構域包含促進該Fc結構域之第一亞單元及第二亞單元之締合之修飾。人類IgG Fc結構域之兩個亞單元之間的最廣泛蛋白質-蛋白質相互作用之位點係在Fc結構域之CH3結構域中。因此,在一態樣中,該修飾係在Fc結構域之CH3結構域中。
在具體態樣中,該修飾係所謂的「隆凸-孔洞」修飾,其在Fc結構域之兩個亞單元中之一者中包含「隆凸」修飾,且在Fc結構域之兩個亞單元中之另一者中包含「孔洞」修飾。因此,本發明係關於雙特異性抗原結合分子,其包含(a)至少兩個能夠特異性結合至OX40之抗原結合結構域,(b)能夠特異性結合至FAP之抗原結合結構域,及(c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc結構域,其中根據隆凸-孔洞方法,該Fc結構域之第一亞單元包含隆凸且該Fc結構域之第二亞單元包含孔洞。在特定態樣中,Fc結構域之第一亞單元包含胺基酸取代S354C及T366W (EU編號),且Fc結構域之第二亞單元包含胺基酸取代Y349C、T366S及Y407V (根據Kabat EU索引進行編號)。
隆凸-孔洞技術闡述於(例如) US 5,731,168;US 7,695,936;Ridgway等人,Prot Eng 9, 617-621 (1996)及Carter, J Immunol Meth 248, 7-15 (2001)中。通常,該方法涉及在第一多肽之界面處引入突起(「隆凸」)且在第二多肽之界面處引入相應空腔(「孔洞」),使得該突起可定位於該空腔中以促進異二聚體形成並阻礙同二聚體形成。藉由用較大側鏈(例如酪胺酸或色胺酸)替代來自第一多肽之界面的小胺基酸側鏈來構築突起。藉由用較小胺基酸側鏈(例如丙胺酸或蘇胺酸)替代大的胺基酸側鏈在第二多肽之界面中產生大小與突起相同或類似之補償性空腔。
因此,在一態樣中,在本發明之雙特異性抗原結合分子之Fc結構域之第一亞單元之CH3結構域中,胺基酸殘基經具有較大側鏈體積之胺基酸殘基替代,藉此在第一亞單元之CH3結構域內生成突起,該突起可定位於第二亞單元之CH3結構域內之空腔中,且在Fc結構域之第二亞單元之CH3結構域中,胺基酸殘基經具有較小側鏈體積之胺基酸殘基替代,藉此在第二亞單元之CH3結構域內生成空腔,第一亞單元之CH3結構域內之突起可定位在該空腔內。可(例如)藉由位點特異性誘變改變編碼多肽之核酸或藉由肽合成來產生突起及空腔。在具體態樣中,在Fc結構域之第一亞單元之CH3結構域中,位置366處之蘇胺酸殘基經色胺酸殘基替代(T366W),且在Fc結構域之第二亞單元之CH3結構域中,位置407處之酪胺酸殘基經纈胺酸殘基替代(Y407V)。在一態樣中,在Fc結構域之第二亞單元中,位置366處之蘇胺酸殘基另外經絲胺酸殘基替代(T366S)且位置368處之白胺酸殘基經丙胺酸殘基替代(L368A)。
在又一態樣中,在Fc結構域之第一亞單元中,位置354處之絲胺酸殘基另外經半胱胺酸殘基替代(S354C),且在Fc結構域之第二亞單元中,位置349處之酪胺酸殘基另外經半胱胺酸殘基替代(Y349C)。引入該兩個半胱胺酸殘基使得在Fc結構域之兩個亞單元之間形成二硫橋,此進一步穩定二聚體(Carter (2001), J Immunol Methods 248, 7-15)。在特定態樣中,Fc結構域之第一亞單元包含胺基酸取代S354C及T366W (EU編號),且Fc結構域之第二亞單元包含胺基酸取代Y349C、T366S及Y407V (根據Kabat EU索引進行編號)。
在替代態樣中,如(例如) PCT公開案WO 2009/089004中所闡述,促進Fc結構域之第一亞單元及第二亞單元締合之修飾包含介導靜電牽引效應之修飾。通常,此方法涉及用帶電胺基酸殘基替代兩個Fc結構域亞單元界面處之一或多個胺基酸殘基,使得同二聚體之形成變得靜電不利,但異二聚化靜電有利。
如本文所報導之雙特異性抗體之重鏈之C末端可為以胺基酸殘基PGK終止之完整C末端。重鏈之C末端可為縮短之C末端,其中已去除一或兩個C末端胺基酸殘基。在一個較佳態樣中,重鏈之C末端係以PG終止之縮短之C末端。在如本文所報導之所有態樣之一個態樣中,包含有包括如本文所指定的C末端CH3結構域之重鏈之雙特異性抗體包含C末端甘胺酸-離胺酸二肽(G446及K447,根據Kabat EU索引進行編號)。在如本文所報導之所有態樣之一個態樣中,包含有包括如本文所指定的C末端CH3結構域之重鏈之雙特異性抗體包含C末端甘胺酸殘基(G446,根據Kabat EU索引進行編號)。Fab 結構域中之修飾
在一態樣中,本發明係關於雙特異性抗原結合分子,其包含(a)至少兩個能夠特異性結合至OX40之Fab片段,(b)能夠特異性結合至FAP之Fab片段,及(c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc結構域,其中在一個Fab片段中,可變結構域VH及VL或恆定結構域CH1及CL中之任一者發生交換。根據Crossmab技術來製備雙特異性抗體。
在一個結合臂中具有結構域替代/交換之多特異性抗體(CrossMab VH-VL或CrossMab CH-CL)詳細地闡述於WO2009/080252及Schaefer, W.等人,PNAS, 108 (2011) 11187-1191中。其明顯地減少因針對第一抗原之輕鏈與針對第二抗原之錯誤重鏈的錯配而產生之副產物(與不利用此結構域交換之方法相比)。
在一態樣中,本發明係關於雙特異性抗原結合分子,其包含(a)至少兩個能夠特異性結合至OX40之Fab片段,(b)能夠特異性結合至FAP之Fab片段,及(c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc結構域,其中在一個Fab片段中,恆定結構域CL及CH1彼此替代,使得CH1結構域為輕鏈之一部分且CL結構域為重鏈之一部分。更特定而言,在能夠特異性結合至靶細胞抗原之第二Fab片段中,恆定結構域CL及CH1彼此替代,使得CH1結構域為輕鏈之一部分且CL結構域為重鏈之一部分。
在特定態樣中,本發明係關於雙特異性抗原結合分子,其包含(a)至少兩個能夠特異性結合至OX40之Fab片段,(b)能夠特異性結合至FAP之Fab片段,其中在能夠特異性結合至FAP之Fab片段中,恆定結構域CL及CH1彼此替代,使得CH1結構域為輕鏈之一部分且CL (Cκ)結構域為重鏈之一部分。
因此,在一態樣中,本發明包含雙特異性抗原結合分子,其包含(a)抗體之兩條輕鏈及兩條重鏈,其包含兩個能夠特異性結合至OX40之Fab片段以及Fc區,及(b)能夠特異性結合至FAP之交叉Fab片段,其與Fc區之一個亞單元之C末端融合。
在另一態樣中,且為進一步改良正確配對,包含(a)至少兩個能夠特異性結合至OX40之Fab片段、(b)能夠特異性結合至FAP之交叉Fab片段及(c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc結構域之雙特異性抗原結合分子可含有不同的帶電胺基酸取代(所謂的「帶電殘基」)。該等修飾引入交叉或非交叉之CH1及CL結構域中。在特定態樣中,本發明係關於雙特異性抗原結合分子,其中在一個CL結構域中,位置123處(EU編號)之胺基酸已由精胺酸(R)替代及/或其中位置124處(EU編號)之胺基酸已由離胺酸(K)取代,且其中在一個CH1結構域中,位置147處(EU編號)及/或位置213處(EU編號)之胺基酸已由麩胺酸(E)取代。本發明之例示性抗體
在一態樣中,本發明提供特異性地結合至FAP之新的抗體及抗體片段。該等抗體與已知之FAP抗體4B9或28H1相比結合至不同的抗原決定基,此使得其尤其適於併入至可與其他FAP靶向分子組合使用之雙特異性抗原結合分子中。該等新抗體之特徵進一步在於,其能以較高量產生且具有高效價,其顯示高熱穩定性(如藉由聚集溫度Tagg 所量測),或推測其具有優良PK性質且如藉由Biacore分析所量測其以高親和力結合至人類FAP。
在一態樣中,提供特異性地結合至FAP之抗體(純系212),其中該抗體包含重鏈可變區(VH FAP),該VH FAP包含(i) CDR-H1,其包含SEQ ID NO:3之胺基酸序列,(ii) CDR-H2,其包含選自由SEQ ID NO:4、SEQ ID NO:11及SEQ ID NO:12組成之群之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:5之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含(iv) CDR-L1,其包含選自由SEQ ID NO:6、SEQ ID NO:13及SEQ ID NO:14組成之群之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:7之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:8之胺基酸序列。
在一態樣中,提供特異性地結合至FAP之人類化抗體,其中該抗體包含重鏈可變區(VH FAP),該VH FAP包含(i) CDR-H1,其包含SEQ ID NO:3之胺基酸序列,(ii) CDR-H2,其包含選自由SEQ ID NO:4、SEQ ID NO:11及SEQ ID NO:12組成之群之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:5之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含(iv) CDR-L1,其包含選自由SEQ ID NO:6、SEQ ID NO:13及SEQ ID NO:14組成之群之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:7之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:8之胺基酸序列。
在另一態樣中,提供與特異性地結合至FAP之抗體競爭結合之抗體,其中該抗體包含重鏈可變區(VH FAP)中之任一者,該等VH FAP包含選自由SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19及SEQ ID NO:20組成之群之胺基酸序列;以及輕鏈可變區(VL FAP)中之任一者,該等VL FAP包含選自由SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23、SEQ ID NO:24、SEQ ID NO:25及SEQ ID NO:26組成之群之胺基酸序列。
在一態樣中,提供與特異性地結合至FAP之抗體競爭結合之抗體,其中該抗體包含有包含SEQ ID NO:15之胺基酸序列之重鏈可變區VH及包含SEQ ID NO:21之胺基酸序列之輕鏈可變區VL。
在另一態樣中,提供特異性地結合至FAP之抗體,其中該抗體包含 (a)包含SEQ ID NO:15之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:21之胺基酸序列之輕鏈可變區(VL FAP), (b)包含SEQ ID NO:16之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:21之胺基酸序列之輕鏈可變區(VL FAP), (c)包含SEQ ID NO:16之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:22之胺基酸序列之輕鏈可變區(VL FAP),或 (d)包含SEQ ID NO:19之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:25之胺基酸序列之輕鏈可變區(VL FAP)。
在另一態樣中,提供特異性地結合至FAP之抗體,其包含有包含SEQ ID NO:15之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:21之胺基酸序列之輕鏈可變區(VL FAP)。
在另一態樣中,本發明提供特異性地結合至OX40之新的抗體及抗體片段。該等抗體係OX40抗體49B4之變異體,且與49B4相比具有較少之正電荷區片(positive charge patch)。該等新抗體與49B4相比理應具有改良之PK性質,且如藉由Biacore分析所量測,其以高親和力結合至人類OX40。
因此,提供特異性地結合至OX40之人類化抗體,其中該抗體包含 (a)包含SEQ ID NO:59之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40), (b)包含SEQ ID NO:60之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40), (c)包含SEQ ID NO:61之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40)。 多核苷酸
本發明進一步提供編碼如本文所闡述之雙特異性抗原結合分子或其片段之經分離核酸或編碼如本文所闡述之抗體之經分離核酸。
編碼本發明之雙特異性抗原結合分子之經分離多核苷酸可作為編碼整個抗原結合分子之單一多核苷酸表現或作為多個(例如兩個或更多個)共表現之多核苷酸表現。由共表現之多核苷酸編碼之多肽可經由(例如)二硫鍵或其他方式進行締合以形成功能性抗原結合分子。舉例而言,免疫球蛋白之輕鏈部分可由來自該免疫球蛋白之重鏈部分之單獨多核苷酸編碼。在共表現時,重鏈多肽將與輕鏈多肽締合以形成免疫球蛋白。
在一些態樣中,經分離之多核苷酸編碼如本文所闡述之本發明雙特異性分子中所包含之多肽。
在一態樣中,本發明係關於經分離之多核苷酸,其編碼包含以下各項之雙特異性抗原結合分子:(a)至少兩個能夠特異性結合至OX40之抗原結合結構域;(b)能夠特異性結合至FAP之抗原結合結構域,其包含:重鏈可變區(VH FAP),該VH FAP包含(i) CDR-H1,其包含SEQ ID NO:3之胺基酸序列,(ii) CDR-H2,其包含選自由SEQ ID NO:4、SEQ ID NO:11及SEQ ID NO:12組成之群之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:5之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含(iv) CDR-L1,其包含選自由SEQ ID NO:6、SEQ ID NO:13及SEQ ID NO:14組成之群之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:7之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:8之胺基酸序列;及(c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc結構域。
在某些實施例中,多核苷酸或核酸係DNA。在其他實施例中,本發明之多核苷酸係RNA,例如呈信使RNA (mRNA)之形式。本發明之RNA可為單股或雙股。 重組方法
本發明之雙特異性抗原結合分子可(例如)藉由重組產生來獲得。對於重組產生而言,提供一或多種編碼雙特異性抗原結合分子或其多肽片段之多核苷酸。將該一或多種編碼雙特異性抗原結合分子之多核苷酸分離並插入至一或多個載體中以供在宿主細胞中進一步選殖及/或表現。此多核苷酸可使用習用程序容易地分離並測序。在本發明之一態樣中,提供包含本發明之多核苷酸中之一或多者之載體、較佳地表現載體。可使用熟習此項技術者所熟知之方法來構築含有雙特異性抗原結合分子(片段)之編碼序列以及適當轉錄/轉譯控制信號之表現載體。該等方法包括活體外重組DNA技術、合成技術及活體內重組/遺傳重組。例如,參見以下文獻中所闡述之技術:Maniatis等人,MOLECULAR CLONING: A LABORATORY MANUAL, Cold Spring Harbor Laboratory, N.Y.(1989);及Ausubel等人,CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, Greene Publishing Associates and Wiley Interscience, N.Y.(1989)。表現載體可為質體、病毒之一部分,或可為核酸片段。表現載體包括表現盒,在該表現盒中,編碼雙特異性抗原結合分子或其多肽片段之多核苷酸(亦即編碼區)經選殖與啟動子及/或其他轉錄或轉譯控制元件可操作地締合。如本文所用,「編碼區」係由轉譯成胺基酸之密碼子組成之核酸部分。儘管「終止密碼子」(TAG、TGA或TAA)並不轉譯成胺基酸,但若存在,其可視為編碼區之一部分,而任何側接序列(例如啟動子、核糖體結合位點、轉錄終止子、內含子、5'及3'非轉譯區及諸如此類)不為編碼區之一部分。兩個或更多個編碼區可存在於單一多核苷酸構築體中(例如位於單一載體上),或存在於單獨的多核苷酸構築體中(例如位於單獨的(不同的)載體上)。此外,任何載體均可含有單一編碼區,或可包含兩個或更多個編碼區,例如本發明之載體可編碼一或多種多肽,該一或多種多肽以後轉譯或共轉譯方式經由蛋白水解裂解分離成最終蛋白質。另外,本發明之載體、多核苷酸或核酸可編碼異源性編碼區,該等異源性編碼區融合或並不融合至編碼本發明之雙特異性抗原結合分子或其多肽片段或其變異體或衍生物之多核苷酸。異源性編碼區包括(但不限於)專門元件或基元,諸如分泌性信號肽或異源性功能結構域。可操作締合係如下情形:基因產物(例如多肽)之編碼區與一或多個調控序列之締合方式使得該基因產物之表現處於該(等)調控序列之影響或控制下。兩個DNA片段(諸如多肽編碼區及與其締合之啟動子)在以下情形下為「可操作地締合」:誘導啟動子功能引起編碼期望基因產物之mRNA之轉錄,且兩個DNA片段之間的鍵聯性質不干擾表現調控序列引導基因產物表現之能力或干擾DNA模板轉錄之能力。因此,若啟動子能夠實現編碼多肽之核酸之轉錄,則啟動子區將與該核酸可操作地締合。啟動子可為僅在預定細胞中引導DNA之實質性轉錄之細胞特異性啟動子。除啟動子以外,其他轉錄控制元件(例如增強子、操作子、抑制子及轉錄終止信號)亦可與多核苷酸可操作地締合以引導細胞特異性轉錄。
本文中揭示適宜啟動子及其他轉錄控制區。熟習此項技術者已知多種轉錄控制區。該等轉錄控制區包括(但不限於)在脊椎動物細胞中起作用之轉錄控制區,諸如(但不限於)來自以下之啟動子及增強子區段:巨細胞病毒(例如立即早期啟動子,與內含子-A連結)、猿猴病毒40 (例如早期啟動子)及反轉錄病毒(諸如勞斯肉瘤病毒(Rous sarcoma virus))。其他轉錄控制區包括源自脊椎動物基因之彼等轉錄控制區(諸如肌動蛋白、熱休克蛋白、牛生長激素及兔â-珠蛋白)以及能夠控制真核細胞中之基因表現之其他序列。其他適宜轉錄控制區包括組織特異性啟動子及增強子以及誘導型啟動子(例如四環素(tetracyclin)誘導型啟動子)。類似地,熟習此項技術者已知多種轉譯控制元件。該等轉譯控制元件包括(但不限於)核糖體結合位點、轉譯起始及終止密碼子以及源自病毒系統之元件(特定而言內部核糖體進入位點或IRES,亦稱為CITE序列)。表現盒亦可包括其他特徵,諸如複製起點及/或染色體整合元件(諸如反轉錄病毒長末端重複序列(LTR)或腺相關病毒(AAV)末端反向重複序列(ITR))。
本發明之多核苷酸及核酸編碼區可與其他編碼區締合,該等其他編碼區編碼分泌肽或信號肽,其引導由本發明之多核苷酸所編碼的多肽之分泌。舉例而言,若期望雙特異性抗原結合分子或其多肽片段之分泌,則可將編碼信號序列之DNA置於編碼本發明之雙特異性抗原結合分子或其多肽片段之核酸的上游。根據信號假說,由哺乳動物細胞分泌之蛋白質具有信號肽或分泌性前導序列,一旦生長中之蛋白鏈開始穿過粗糙內質網輸出,則該信號肽或分泌性前導序列即自成熟蛋白質裂解。熟習此項技術者應瞭解,由脊椎動物細胞分泌之多肽通常具有與多肽之N末端融合之信號肽,該信號肽自轉譯之多肽裂解以產生分泌或「成熟」形式之多肽。在某些實施例中,使用天然信號肽(例如免疫球蛋白重鏈或輕鏈信號肽),或使用該序列之功能性衍生物,該衍生物保留引導與其可操作地締合之多肽分泌之能力。或者,可使用異源性哺乳動物信號肽或其功能性衍生物。舉例而言,野生型前導序列可經人類組織纖維蛋白溶酶原活化劑(TPA)或小鼠β-葡萄糖醛酸苷酶之前導序列取代。
可在編碼本發明之雙特異性抗原結合分子或其多肽片段之多核苷酸內部或末端處納入編碼短蛋白質序列之DNA,該短蛋白質序列可用於促進後續純化(例如組胺酸標籤)或有助於標記融合蛋白。
在本發明之另一態樣中,提供包含本發明之一或多種多核苷酸之宿主細胞。在某些態樣中,提供包含本發明之一或多種載體之宿主細胞。該等多核苷酸及載體可單獨地或組合地併入分別與多核苷酸及載體相關的本文所闡述特徵中之任一者。在一態樣中,宿主細胞包含有包含多核苷酸之載體(例如已經其轉型或經其轉染),該多核苷酸編碼本發明之雙特異性抗原結合分子(之一部分)。如本文所用,術語「宿主細胞」係指可經工程改造以生成本發明之融合蛋白或其片段之任何類型之細胞系統。適於複製抗原結合分子並支持其表現之宿主細胞為此項技術中所熟知。此等細胞可視需要經特定表現載體轉染或轉導,且可使大量含有載體之細胞生長以供接種大規模發酵罐,從而獲得足量用於臨床應用之抗原結合分子。適宜宿主細胞包括原核微生物(諸如大腸桿菌)或各種真核細胞(諸如中國倉鼠卵巢細胞(CHO)、昆蟲細胞或諸如此類)。舉例而言,可在細菌中產生多肽,特定而言在不需要糖基化時。在表現後,多肽可自細菌細胞漿液在可溶性部分中分離且可進行進一步純化。除原核生物以外,真核微生物(諸如絲狀真菌或酵母)亦係多肽編碼載體之適宜選殖或表現宿主,包括其糖基化路徑已經「人類化」,從而產生具有部分或完全人類糖基化模式之多肽之真菌及酵母菌株。參見Gerngross, Nat Biotech 22, 1409-1414 (2004),及Li等人,Nat Biotech 24, 210-215 (2006)。
用於表現(糖基化)多肽之適宜宿主細胞亦源自多細胞生物體(無脊椎動物及脊椎動物)。無脊椎動物細胞之實例包括植物及昆蟲細胞。已鑑別出多種桿狀病毒株,其可與昆蟲細胞聯合使用,特定而言用於轉染草地貪夜蛾(Spodoptera frugiperda)細胞。亦可利用植物細胞培養物作為宿主。例如,參見美國專利第5,959,177號、第6,040,498號、第6,420,548號、第7,125,978號及第6,417,429號(闡述用於在基因轉殖植物中產生抗體之PLANTIBODIESTM 技術)。亦可使用脊椎動物細胞作為宿主。舉例而言,適於在懸浮液中生長之哺乳動物細胞株可為有用的。有用哺乳動物宿主細胞株之其他實例為經SV40轉型之猴腎CV1細胞株(COS-7)、人類胚腎細胞株(293或293T細胞,如(例如) Graham等人,J Gen Virol 36, 59 (1977)中所闡述)、幼倉鼠腎細胞(BHK)、小鼠支持細胞(TM4細胞,如(例如) Mather, Biol Reprod 23, 243-251 (1980)中所闡述)、猴腎細胞(CV1)、非洲綠猴腎細胞(VERO-76)、人類子宮頸癌細胞(HELA)、犬腎細胞(MDCK)、布法羅大鼠(buffalo rat)肝細胞(BRL 3A)、人類肺細胞(W138)、人類肝細胞(Hep G2)、小鼠乳房腫瘤細胞(MMT 060562)、TRI細胞(如(例如) Mather等人,Annals N.Y.Acad Sci 383, 44-68 (1982)中所闡述)、MRC 5細胞及FS4細胞。其他有用哺乳動物宿主細胞株包括中國倉鼠卵巢(CHO)細胞,包括dhfr- CHO細胞(Urlaub等人,Proc Natl Acad Sci USA 77, 4216 (1980));及骨髓瘤細胞株,諸如YO、NS0、P3X63及Sp2/0。關於適於蛋白質產生之某些哺乳動物宿主細胞株之綜述,例如參見Yazaki及Wu,Methods in Molecular Biology,第248卷(B.K.C. Lo編輯,Humana Press, Totowa, NJ),第255-268頁(2003)。宿主細胞包括經培養細胞(僅舉幾個為例,例如哺乳動物培養細胞、酵母細胞、昆蟲細胞、細菌細胞及植物細胞),且亦包括包含在基因轉殖動物、基因轉殖植物或經培養植物或動物組織內之細胞。在一個實施例中,宿主細胞為真核細胞,較佳為哺乳動物細胞,諸如中國倉鼠卵巢(CHO)細胞、人類胚胎腎(HEK)細胞或淋巴樣細胞(例如Y0、NS0、Sp20細胞)。此項技術中已知在該等系統中表現外源基因之標準技術。表現包含免疫球蛋白之重鏈或輕鏈之多肽的細胞可經工程改造以亦表現免疫球蛋白鏈中之另一者,使得所表現之產物為具有重鏈及輕鏈二者之免疫球蛋白。
在一態樣中,提供產生本發明之雙特異性抗原結合分子或其多肽片段之方法,其中該方法包括在適於表現本發明之雙特異性抗原結合分子或其多肽片段之條件下培養如本文所提供之宿主細胞,該宿主細胞包含編碼本發明之雙特異性抗原結合分子或其多肽片段之多核苷酸,以及自該宿主細胞(或宿主細胞培養基)回收本發明之雙特異性抗原結合分子或其多肽片段。
如本文所闡述製備之本發明之雙特異性分子可藉由此項技術已知之技術來純化,諸如高效液相層析、離子交換層析、凝膠電泳、親和層析、粒徑篩析層析及諸如此類。用於純化特定蛋白質之實際條件將部分地取決於諸如淨電荷、疏水性、親水性等因素,且將為熟習此項技術者所明瞭。對於親和層析純化而言,可使用雙特異性抗原結合分子所結合之抗體、配位體、受體或抗原。舉例而言,對於本發明之融合蛋白之親和層析純化而言,可使用具有蛋白質A或蛋白質G之基質。可基本上如實例中所闡述使用連續蛋白質A或G親和層析及粒徑篩析層析來分離抗原結合分子。雙特異性抗原結合分子或其片段之純度可藉由多種熟知之分析方法中之任一者來測定,包括凝膠電泳、高壓液相層析及諸如此類。舉例而言,如藉由還原及非還原性SDS-PAGE所展示,如實例中所闡述表現之雙特異性抗原結合分子已顯示為完整的且經適當組裝。分析
可藉由此項技術中已知之各種分析來表徵本文所提供之抗原結合分子之結合性質及/或生物學活性。特定而言,藉由實例中更詳細闡述之分析來進行表徵。1. 結合分析
舉例而言,可藉由使用表現人類纖維母細胞活化蛋白(FAP)之鼠類纖維母細胞細胞株及流式細胞術(FACS)分析來評估本文所提供之雙特異性抗原結合分子與相應靶標表現細胞之結合。可藉由使用如實例3.1中所闡述之活化人類PBMC來測定本文所提供之雙特異性抗原結合分子與OX40之結合。2. 活性分析
對本發明之雙特異性抗原結合分子之生物學活性進行測試。生物學活性可包括雙特異性抗原結合分子之功效及特異性。藉由顯示在結合靶抗原時經由OX40受體達成促效性信號傳導之分析來展示功效及特異性。此外,如實例4.1中所闡述,經由人類OX40陽性NFκB報導細胞中誘導之NFκB活化來量測OX40信號傳導之刺激。 醫藥組合物、調配物及投與途徑
在另一態樣中,本發明提供醫藥組合物,其包含本文所提供之任一雙特異性抗原結合分子,例如以用於下文治療方法中之任一者中。在一態樣中,醫藥組合物包含本文所提供之任一雙特異性抗原結合分子及至少一種醫藥學上可接受之賦形劑。在另一態樣中,醫藥組合物包含本文所提供之任一雙特異性抗原結合分子及至少一種(例如)如下文所闡述之額外治療劑。
本發明之醫藥組合物包含治療有效量的一或多種溶解或分散於醫藥學上可接受之載劑中之雙特異性抗原結合分子。片語「醫藥學或藥理學上可接受」係指如下分子實體及組合物:其在視需要投與給諸如人類等動物時,在所採用之劑量及濃度下通常對接受者無毒,亦即不會產生不良、過敏或其他不適反應。熟習此項技術者根據本揭示案將知曉含有至少一種本發明之雙特異性抗原結合分子及視情況額外活性成分之醫藥組合物之製備,如Remington's Pharmaceutical Sciences,第18版,Mack Printing Company,1990所例示,其以引用的方式併入本文中。特定而言,組合物為凍乾調配物或水溶液。如本文所用,「醫藥學上可接受之賦形劑」包括如熟習此項技術者已知之任何及所有溶劑、緩衝劑、分散介質、包衣、表面活性劑、抗氧化劑、防腐劑(例如抗細菌劑、抗真菌劑)、等滲劑、鹽、穩定劑及其組合。
非經腸組合物包括經設計用於藉由注射投與之彼等組合物,例如皮下、皮內、病灶內、靜脈內、動脈內、肌內、鞘內或腹膜內注射。對於注射而言,可將本發明之雙特異性抗原結合分子調配於水溶液、較佳地生理學上相容之緩衝液(諸如漢克氏溶液(Hank's solution)、林格氏溶液(Ringer's solution)或生理鹽水緩衝液)中。溶液可含有諸如懸浮劑、穩定劑及/或分散劑等調配劑。或者,雙特異性抗原結合分子可呈粉末形式,以在使用之前用適宜媒劑(例如無菌無熱原水)進行構造。藉由以所需量將本發明之抗原結合分子與(視需要)下文所列舉之各種其他成分一起併入適當溶劑中來製備無菌可注射溶液。無菌性可(例如)藉由經由無菌過濾膜進行過濾容易地實現。通常,藉由將各種經滅菌之活性成分併入至含有基本分散介質及/或其他成分之無菌媒劑中來製備分散液。在用於製備無菌可注射溶液、懸浮液或乳液之無菌粉末之情形中,較佳製備方法為真空乾燥或冷凍乾燥技術,其自先前經無菌過濾之液體介質中產生活性成分加任何其他期望成分之粉末。液體介質視需要應經適當緩衝,且在注射之前首先用足量鹽水或葡萄糖使液體稀釋劑呈等滲性。組合物在製造及儲存條件下必須穩定,且進行防腐以抵抗諸如細菌及真菌等微生物之污染作用。應瞭解,內毒素污染應最低限度地保持在安全水準,例如小於0.5 ng/mg蛋白質。醫藥學上可接受之適宜賦形劑包括(但不限於):緩衝劑,諸如磷酸鹽、檸檬酸鹽及其他有機酸;抗氧化劑,包括抗壞血酸及甲硫胺酸;防腐劑(諸如十八烷基二甲基苄基氯化銨;氯化六羥季銨;苯扎氯銨(benzalkonium chloride);苄索氯銨寧(benzethonium chloride);苯酚;丁醇或苄醇;對羥基苯甲酸烷基酯,諸如對羥基苯甲酸甲酯或對羥基苯甲酸丙酯;兒茶酚;間苯二酚;環己醇;3-戊醇;及間甲酚);低分子量(少於約10個殘基)多肽;蛋白質,諸如血清白蛋白、明膠或免疫球蛋白;親水性聚合物,諸如聚乙烯基吡咯啶酮;胺基酸,諸如甘胺酸、麩醯胺酸、天冬醯胺、組胺酸、精胺酸或離胺酸;單醣、二醣及其他碳水化合物,包括葡萄糖、甘露糖或糊精;螯合劑,諸如EDTA;糖,諸如蔗糖、甘露醇、海藻糖或山梨醇;成鹽相對離子,諸如鈉;金屬錯合物(諸如Zn-蛋白質錯合物);及/或非離子表面活性劑,諸如聚乙二醇(PEG)。水性注射懸浮液可含有增加懸浮液黏性之化合物,諸如羧甲基纖維素鈉、山梨醇、聚葡萄糖或諸如此類。視情況,懸浮液亦可含有適宜穩定劑或增加化合物溶解度之劑以容許製備高度濃縮之溶液。另外,可將活性化合物之懸浮液製備為適當之油性注射懸浮液。適宜之親脂性溶劑或媒劑包括脂肪油(諸如芝麻油)或合成脂肪酸酯(諸如油酸乙酯或甘油三酯)或脂質體。
活性成分可分別裝入(例如)藉由凝聚技術或藉由界面聚合製備之微膠囊(例如,羥甲基纖維素或明膠微膠囊及聚-(甲基丙烯酸甲酯)微膠囊)中、膠體藥物遞送系統(例如,脂質體、白蛋白微球體、微乳液、奈米粒子及奈米膠囊)或粗滴乳液中。此等技術揭示於Remington's Pharmaceutical Sciences (第18版,Mack Printing Company,1990)中。可製備持續釋放型製劑。持續釋放型製劑之適宜實例包括含有多肽之固體疏水性聚合物之半滲透基質,該等基質呈成型物品之形式,例如膜,或微膠囊。在特定實施例中,可藉由在組合物中使用延遲吸收之劑(諸如單硬脂酸鋁、明膠或其組合)來延長可注射組合物之吸收。
本文之例示性醫藥學上可接受之賦形劑進一步包括間質性藥物分散劑,諸如可溶性中性活性玻尿酸酶糖蛋白(sHASEGP),例如人類可溶性PH-20玻尿酸酶糖蛋白,諸如rHuPH20 (HYLENEX®, Baxter International, Inc.)。某些例示性sHASEGP及使用方法(包括rHuPH20)闡述於美國專利公開案第2005/0260186號及第2006/0104968號中。在一態樣中,將sHASEGP與一或多種額外糖胺聚糖酶(諸如軟骨素酶)組合。
例示性凍乾抗體調配物闡述於美國專利第6,267,958號中。水性抗體調配物包括美國專利第6,171,586號及WO2006/044908中所闡述之彼等調配物,後一些調配物包括組胺酸-乙酸鹽緩衝液。
除先前所闡述之組合物以外,亦可將抗原結合分子調配為儲積製劑。此等長效調配物可藉由植入(例如皮下或肌內)或藉由肌內注射來投與。因此,舉例而言,可利用適宜聚合或疏水性材料(例如調配為可接受油中之乳液)或離子交換樹脂來調配融合蛋白,或調配為難溶性衍生物,例如調配為難溶性鹽。
包含本發明之雙特異性抗原結合分子之醫藥組合物可藉助習用混合、溶解、乳化、囊封、包埋或凍乾製程來製造。醫藥組合物可以習用方式使用一或多種有利於將蛋白質處理成可在醫藥上使用之製劑的生理學上可接受之載劑、稀釋劑、賦形劑或輔助劑加以調配。適當調配物端視於所選投與途徑而定。
可將雙特異性抗原結合分子調配成呈游離酸或鹼、中性或鹽形式之組合物。醫藥學上可接受之鹽係實質上保留游離酸或鹼之生物學活性之鹽。該等鹽包括酸加成鹽,例如與蛋白質性組合物之游離胺基形成之彼等鹽,或與無機酸(諸如鹽酸或磷酸)或有機酸(諸如乙酸、草酸、酒石酸或苦杏仁酸)形成之彼等鹽。與游離羧基形成之鹽亦可源自諸如氫氧化鈉、氫氧化鉀、氫氧化銨、氫氧化鈣或氫氧化鐵等無機鹼或諸如異丙胺、三甲胺、組胺酸或普魯卡因(procaine)等有機鹼。醫藥鹽往往較相應游離鹼形式更易溶於水性及其他質子溶劑中。
本文之組合物亦可視需要含有一種以上用於所治療特定適應症之活性成分,較佳為補充活性不會對彼此產生不利影響之彼等活性成分。此等活性成分適於以對預期目的有效之量以組合形式存在。
欲用於活體內投與之調配物通常為無菌的。無菌性可(例如)藉由經由無菌過濾膜進行過濾容易地實現。 治療方法及組合物
本文所提供之任一雙特異性抗原結合分子均可用於治療方法中。為用於治療方法中,本發明之雙特異性抗原結合分子可以與良好醫學實踐一致之方式經調配、投用及投與。在此背景中需考慮之因素包括所治療之特定病症、所治療之特定哺乳動物、個別患者之臨床狀況、病因、劑之遞送部位、投與方法、投與時間安排及從業醫師所已知之其他因素。
在一態樣中,提供用作藥劑之本發明之雙特異性抗原結合分子。
在其他態樣中,提供用於以下目的之本發明之雙特異性抗原結合分子:(i)誘導免疫刺激,(ii)刺激腫瘤特異性T細胞反應,(iii)引起腫瘤細胞之凋亡,(iv)治療癌症,(v)延遲癌症之進展,(vi)延長患有癌症之患者的存活期,(vii)治療感染。在特定態樣中,提供用於治療疾病、特定而言用於治療癌症之本發明之雙特異性抗原結合分子。
在某些態樣中,提供用於治療方法中之本發明之雙特異性抗原結合分子。在一態樣中,本發明提供如本文所闡述之雙特異性抗原結合分子,其用於治療有需要個體之疾病。在某些態樣中,本發明提供用於治療患有疾病之個體的方法中之雙特異性抗原結合分子,該方法包括向該個體投與治療有效量之雙特異性抗原結合分子。在某些態樣中,欲治療之疾病係癌症。需要治療之個體(subject)、患者或「個體(individual)」通常為哺乳動物、更具體而言為人類。
在一態樣中,提供用於以下目的之方法:i)誘導免疫刺激,(ii)刺激腫瘤特異性T細胞反應,(iii)引起腫瘤細胞之凋亡,(iv)治療癌症,(v)延遲癌症之進展,(vi)延長患有癌症之患者的存活期,或(vii)治療感染,其中該方法包括向有需要之個體投與治療有效量的本發明之雙特異性抗原結合分子。
在另一態樣中,本發明提供本發明之雙特異性抗原結合分子之用途,其用於製造或製備用以治療有需要個體之疾病之藥劑。在一態樣中,該藥劑用於治療疾病之方法中,該方法包括向患有疾病之個體投與治療有效量之該藥劑。在某些態樣中,欲治療之疾病係增殖性病症、特定而言癌症。癌症之實例包括(但不限於)膀胱癌、腦癌、頭頸癌、胰臟癌、肺癌、乳癌、卵巢癌、子宮癌、子宮頸癌、子宮內膜癌、食管癌、結腸癌、結腸直腸癌、直腸癌、胃癌、前列腺癌、血癌、皮膚癌、鱗狀細胞癌、骨癌及腎癌。癌症之其他實例包括癌、淋巴瘤(例如霍奇金氏淋巴瘤及非霍奇金氏淋巴瘤)、母細胞瘤、肉瘤及白血病。可使用本發明之雙特異性抗原結合分子或抗體治療之其他細胞增殖病症包括(但不限於)位於以下部位中之贅瘤:腹部、骨、乳房、消化系統、肝、胰臟、腹膜、內分泌腺(腎上腺、副甲狀腺、垂體、睪丸、卵巢、胸腺、甲狀腺)、眼睛、頭部及頸部、神經系統(中樞及外周)、淋巴系統、骨盆、皮膚、軟組織、脾、胸部區域及泌尿生殖系統。亦包括癌前疾患或病灶及癌症轉移。在某些實施例中,癌症選自由以下組成之群:腎細胞癌、皮膚癌、肺癌、結腸直腸癌、乳癌、腦癌、頭頸癌。熟習此項技術者容易地認識到,在許多情形下,本發明之雙特異性抗原結合分子或抗體可能不會提供治癒,但可提供一定益處。在一些態樣中,具有一定益處之生理學變化亦視為治療有益的。因此,在一些態樣中,將提供生理學變化之本發明之雙特異性抗原結合分子或抗體之量視為「有效量」或「治療有效量」。
為預防或治療疾病,本發明之雙特異性抗原結合分子之適當劑量(在單獨使用或與一或多種其他額外治療劑組合使用時)將取決於欲治療疾病之類型、投與途徑、患者之體重、具體分子、疾病之嚴重程度及病程、投與本發明之雙特異性抗原結合分子用於預防還是治療目的、先前或同時之治療干預、患者之臨床史及對雙特異性抗原結合分子之反應以及主治醫師之決定。在任一情形下,負責投與之從業者將確定組合物中活性成分之濃度及用於個別個體之適當劑量。本文考慮各種投藥時間表,包括(但不限於)在各個時間點單次或多次投與、濃注投與及脈衝輸注。
本發明之雙特異性抗原結合分子適於一次性或經一系列治療投與給患者。端視於疾病之類型及嚴重程度而定,不論是例如藉由一或多次分開投與還是藉由連續輸注,約1 µg/kg至15 mg/kg (例如0.1 mg/kg - 10 mg/kg)之雙特異性抗原結合分子可為投與給患者之初始候選劑量。端視於以上所提及之因素而定,一個典型日劑量之範圍可為約1 µg/kg至100 mg/kg或更多。對於經若干天或更長時間重複投與而言,端視於疾患而定,治療通常將持續至對疾病症狀之期望抑制出現為止。本發明之雙特異性抗原結合分子之一個例示性劑量將在約0.005 mg/kg至約10 mg/kg範圍內。在其他實例中,每次投與之劑量亦可包含約1 μg/kg體重、約5 μg/kg體重、約10 μg/kg體重、約50 μg/kg體重、約100 μg/kg體重、約200 μg/kg體重、約350 μg/kg體重、約500 μg/kg體重、約1 mg/kg體重、約5 mg/kg體重、約10 mg/kg體重、約50 mg/kg體重、約100 mg/kg體重、約200 mg/kg體重、約350 mg/kg體重、約500 mg/kg體重至約1000 mg/kg體重或更多,及其中可推導出之任何範圍。在來自本文所列示數值之可推導範圍之實例中,基於上述數值,可投與約0.1 mg/kg體重至約20 mg/kg體重、約5 μg/kg體重至約1 mg/kg體重等之範圍。因此,可向患者投與一或多個約0.5 mg/kg、2.0 mg/kg、5.0 mg/kg或10 mg/kg (或其任何組合)之劑量。此等劑量可間歇性地投與,例如每週或每三週投與(例如使得患者接受約2個至約20個或例如約6個劑量之融合蛋白)。在特定態樣中,將每三週投與雙特異性抗原結合分子。可在開始時投與較高之負荷劑量,之後投與一或多個較低之劑量。然而,可使用其他劑量方案。此療法之進展可容易地藉由習用技術及分析來監測。
本發明之雙特異性抗原結合分子通常將以有效達成預期目的之量來使用。為用於治療或預防疾病狀況,本發明之雙特異性抗原結合分子或其醫藥組合物係以治療有效量投與或應用。治療有效量之確定為熟習此項技術者所熟知,尤其可根據本文所提供之詳細揭示內容確定。對於全身投與而言,可首先自活體外分析(諸如細胞培養分析)來估計治療有效劑量。隨後可在動物模型中調定劑量,以達成包括如在細胞培養中測定之IC50 在內的循環濃度範圍。此資訊可用於更準確地確定人類可用之劑量。亦可使用此項技術中熟知之技術,自活體內資料(例如動物模型)來估計初始劑量。熟習此項技術者可容易地基於動物資料來最佳化對人類之投與。
可個別地調整劑量量及間隔以提供足以維持治療效應的本發明之雙特異性抗原結合分子之血漿水準。用於藉由注射投與之常用患者劑量係在約0.1 mg/kg/天至50 mg/kg/天、通常約0.1 mg/kg/天至1 mg/kg/天範圍內。可藉由每天投與多個劑量來達成治療有效之血漿水準。可(例如)藉由HPLC來量測血漿中之水準。在局部投與或選擇性攝取之情形下,本發明之雙特異性抗原結合分子或抗體之有效局部濃度可能與血漿濃度不相關。熟習此項技術者無需過多實驗即能夠最佳化治療有效之局部劑量。
本文所闡述之本發明之雙特異性抗原結合分子之治療有效劑量通常將提供治療益處而不會引起實質性毒性。可藉由標準醫藥程序在細胞培養物或實驗動物中測定融合蛋白之毒性及治療功效。可使用細胞培養分析及動物研究來測定LD50 (對50%之群體致死之劑量)及ED50 (對50%之群體治療有效之劑量)。毒性與治療效應之間的劑量比率即為治療指數,其可表述為比率LD50 /ED50 。展現較大治療指數之雙特異性抗原結合分子較佳。在一態樣中,本發明之雙特異性抗原結合分子或抗體展現高治療指數。自細胞培養分析及動物研究獲得的資料可用於調定適用於人類之劑量範圍。劑量較佳地處於包括ED50在內之循環濃度範圍內,毒性極低或沒有毒性。劑量可端視於諸如以下等各種因素在此範圍內變化:所採用之劑型、所用投與途徑、個體之疾患及諸如此類。實際調配物、投與途徑及劑量可由個別醫師根據患者之疾患來選擇(例如,參見Fingl等人,1975,The Pharmacological Basis of Therapeutics,第1章,第1頁,其係以全文引用的方式併入本文中)。
利用本發明之融合蛋白治療之患者的主治醫師將知曉因毒性、器官功能障礙及諸如此類而終止、間斷或調整投與之方式及時間。與之相反,若臨床反應不夠(排除毒性),則主治醫師亦將知曉將治療調整至更高水準。在所關注病症之管控中,所投與劑量之數量級將隨欲治療疾患之嚴重程度、投與途徑及諸如此類而變化。舉例而言,疾患之嚴重程度可部分地藉由標準預後評估方法來評估。此外,劑量及(可能)劑量頻率亦將根據個別患者之年齡、體重及反應而變化。 其他劑及治療
在療法中,本發明之雙特異性抗原結合分子可與一或多種其他劑組合投與。舉例而言,本發明之雙特異性抗原結合分子可與至少一種額外治療劑共投與。術語「治療劑」涵蓋可投與以供治療需要此治療之個體的症狀或疾病之任何劑。此額外治療劑可包含適用於所治療之特定適應症之任何活性成分,較佳為補充活性不會對彼此產生不利影響之彼等活性成分。在某些態樣中,額外治療劑係另一抗癌劑,例如微管破壞劑、抗代謝物、拓撲異構酶抑制劑、DNA嵌入劑、烷基化劑、激素療法、激酶抑制劑、受體拮抗劑、腫瘤細胞凋亡活化劑或抗血管生成劑。在某些態樣中,額外治療劑係免疫調節劑、細胞生長抑制劑、細胞黏附抑制劑、細胞毒性劑或細胞生長抑制劑、細胞凋亡活化劑或增加細胞對凋亡誘導劑之敏感性之劑。
因此,提供用於治療癌症之本發明之雙特異性抗原結合分子或包含其之醫藥組合物,其中該雙特異性抗原結合分子與化學治療劑、輻射及/或其他用於癌症免疫療法之劑組合投與。
此等其他劑適於以對預期目的有效之量以組合形式存在。此等其他劑之有效量取決於所用融合蛋白之量、病症或治療之類型以及上文所論述之其他因素。本發明之雙特異性抗原結合分子或抗體通常以相同劑量及如本文所闡述之投與途徑來使用,或以本文所闡述劑量之約1%至99%來使用,或以憑經驗/臨床確定為適當之任何劑量及任何途徑來使用。其他用於癌症免疫療法之劑亦可包括疫苗、類鐸受體(TLR)劑及溶瘤病毒。
上述此等組合療法涵蓋組合投與(其中兩種或更多種治療劑包括在同一或分開的組合物中),及分開投與,在該情形中,可在投與額外治療劑及/或佐劑之前、與其同時及/或在其之後投與本發明之雙特異性抗原結合分子或抗體。
在另一態樣中,提供用於治療癌症之如前文所闡述之雙特異性抗原結合分子,其中該雙特異性抗原結合分子與另一免疫調節劑組合投與。
術語「免疫調節劑」係指影響免疫系統之任何物質,包括單株抗體。本發明之分子可視為免疫調節劑。免疫調節劑可用作用於治療癌症之抗贅瘤劑。在一態樣中,免疫調節劑包括(但不限於)抗CTLA4抗體(例如伊匹單抗(ipilimumab))、抗PD1抗體(例如尼沃魯單抗或派姆單抗)、PD-L1抗體(例如阿替珠單抗、阿維魯單抗(avelumab)或德瓦魯單抗(durvalumab))、ICOS抗體、4-1BB抗體及GITR抗體。在另一態樣中,提供用於治療癌症之如前文所闡述之雙特異性抗原結合分子,其中該雙特異性抗原結合分子與阻斷PD-L1/PD-1相互作用之劑組合投與。在一態樣中,該阻斷PD-L1/PD-1相互作用之劑係抗PD-L1抗體或抗PD1抗體。更特定而言,該阻斷PD-L1/PD-1相互作用之劑係抗PD-L1抗體、特定而言選自由阿替珠單抗、德瓦魯單抗、派姆單抗及尼沃魯單抗組成之群之抗PD-L1抗體。在一個具體態樣中,該阻斷PD-L1/PD-1相互作用之劑係阿替珠單抗(MPDL3280A、RG7446)。在另一態樣中,該阻斷PD-L1/PD-1相互作用之劑係抗PD-L1抗體,該抗體包含SEQ ID NO:149之重鏈可變結構域VH(PDL-1)及SEQ ID NO:150之輕鏈可變結構域VL(PDL-1)。在另一態樣中,該阻斷PD-L1/PD-1相互作用之劑係抗PD-L1抗體,該抗體包含SEQ ID NO:151之重鏈可變結構域VH(PDL-1)及SEQ ID NO:152之輕鏈可變結構域VL(PDL-1)。在另一態樣中,該阻斷PD-L1/PD-1相互作用之劑係抗PD1抗體、特定而言選自派姆單抗或尼沃魯單抗之抗PD1抗體。此等其他劑適於以對預期目的有效之量以組合形式存在。此等其他劑之有效量取決於所用雙特異性抗原結合分子之量、病症或治療之類型以及上文所論述之其他因素。如前文所闡述之雙特異性抗原結合分子通常以相同劑量及如本文所闡述之投與途徑來使用,或以本文所闡述劑量之約1%至99%來使用,或以憑經驗/臨床確定為適當之任何劑量及任何途徑來使用。
在一態樣中,提供用於治療癌症之雙特異性促效性OX40抗原結合分子或醫藥組合物,其中該雙特異性促效性OX40抗原結合分子用於與T細胞活化性抗CD3雙特異性抗體組合投與。在一態樣中,對腫瘤相關抗原具有特異性之T細胞活化性抗CD3雙特異性抗體係抗CEA/抗CD3雙特異性抗體。
在特定態樣中,組合中使用之抗CD3雙特異性抗體包含第一抗原結合結構域,該第一抗原結合結構域包含:重鏈可變區(VH CD3),該VH CD3包含SEQ ID NO:117之CDR-H1序列、SEQ ID NO:118之CDR-H2序列及SEQ ID NO:119之CDR-H3序列;及/或輕鏈可變區(VL CD3),該VL CD3包含SEQ ID NO:120之CDR-L1序列、SEQ ID NO:121之CDR-L2序列及SEQ ID NO:122之CDR-L3序列。更特定而言,抗CD3雙特異性抗體包含第一抗原結合結構域,該第一抗原結合結構域包含與SEQ ID NO:123之胺基酸序列至少90%、95%、96%、97%、98%或99%一致之重鏈可變區(VH CD3)及/或與SEQ ID NO:124之胺基酸序列至少90%、95%、96%、97%、98%或99%一致之輕鏈可變區(VL CD3)。在另一態樣中,抗CD3雙特異性抗體包含有包含SEQ ID NO:123之胺基酸序列之重鏈可變區(VH CD3)及/或包含SEQ ID NO:124之胺基酸序列之輕鏈可變區(VL CD3)。
在另一態樣中,組合中使用之抗CD3雙特異性抗體包含第一抗原結合結構域,該第一抗原結合結構域包含:重鏈可變區(VH CD3),該VH CD3包含SEQ ID NO:125之CDR-H1序列、SEQ ID NO:126之CDR-H2序列及SEQ ID NO:127之CDR-H3序列;及/或輕鏈可變區(VL CD3),該VL CD3包含SEQ ID NO:128之CDR-L1序列、SEQ ID NO:129之CDR-L2序列及SEQ ID NO:130之CDR-L3序列。更特定而言,抗CD3雙特異性抗體包含第一抗原結合結構域,該第一抗原結合結構域包含與SEQ ID NO:131之胺基酸序列至少90%、95%、96%、97%、98%或99%一致之重鏈可變區(VH CD3)及/或與SEQ ID NO:132之胺基酸序列至少90%、95%、96%、97%、98%或99%一致之輕鏈可變區(VL CD3)。在另一態樣中,抗CD20/抗CD3雙特異性抗體包含有包含SEQ ID NO:131之胺基酸序列之重鏈可變區(VH CD3)及/或包含SEQ ID NO:132之胺基酸序列之輕鏈可變區(VL CD3)。
在另一態樣中,組合中使用之抗CD3雙特異性抗體包含第一抗原結合結構域,該第一抗原結合結構域包含:重鏈可變區(VH CD3),該VH CD3包含SEQ ID NO:133之CDR-H1序列、SEQ ID NO:134之CDR-H2序列及SEQ ID NO:135之CDR-H3序列;及/或輕鏈可變區(VL CD3),該VL CD3包含SEQ ID NO:136之CDR-L1序列、SEQ ID NO:137之CDR-L2序列及SEQ ID NO:138之CDR-L3序列。更特定而言,抗CD3雙特異性抗體包含第一抗原結合結構域,該第一抗原結合結構域包含與SEQ ID NO:139之胺基酸序列至少90%、95%、96%、97%、98%或99%一致之重鏈可變區(VH CD3)及/或與SEQ ID NO:140之胺基酸序列至少90%、95%、96%、97%、98%或99%一致之輕鏈可變區(VL CD3)。在另一態樣中,抗CD20/抗CD3雙特異性抗體包含有包含SEQ ID NO:139之胺基酸序列之重鏈可變區(VH CD3)及/或包含SEQ ID NO:140之胺基酸序列之輕鏈可變區(VL CD3)。
在一個特定態樣中,抗CEA/抗CD3雙特異性抗體包含與SEQ ID NO: 141之序列至少95%、96%、97%、98%或99%一致之多肽、與SEQ ID NO: 142之序列至少95%、96%、97%、98%或99%一致之多肽、與SEQ ID NO: 143之序列至少95%、96%、97%、98%或99%一致之多肽及與SEQ ID NO: 144之序列至少95%、96%、97%、98%或99%一致之多肽。在另一特定實施例中,雙特異性抗體包含SEQ ID NO: 141之多肽序列、SEQ ID NO: 142之多肽序列、SEQ ID NO: 143之多肽序列及SEQ ID NO: 144之多肽序列(CEA TCB)。
在另一特定態樣中,抗CEA/抗CD3雙特異性抗體包含與SEQ ID NO:145之序列至少95%、96%、97%、98%或99%一致之多肽、與SEQ ID NO:146之序列至少95%、96%、97%、98%或99%一致之多肽、與SEQ ID NO:147之序列至少95%、96%、97%、98%或99%一致之多肽及與SEQ ID NO:148之序列至少95%、96%、97%、98%或99%一致之多肽。在另一特定實施例中,雙特異性抗體包含SEQ ID NO:145之多肽序列、SEQ ID NO:146之多肽序列、SEQ ID NO:147之多肽序列及SEQ ID NO:148之多肽序列(CEACAM5 TCB)。
特定雙特異性抗體進一步闡述於PCT公開案第WO 2014/131712 A1號中。在另一態樣中,抗CEA/抗CD3雙特異性抗體亦可包含雙特異性T細胞銜接體(BiTE®)。在另一態樣中,抗CEA/抗CD3雙特異性抗體係如WO 2007/071426或WO 2014/131712中所闡述之雙特異性抗體。
上述此等組合療法涵蓋組合投與(其中兩種或更多種治療劑包括在同一或分開的組合物中),及分開投與,在該情形中,可在投與額外治療劑及/或佐劑之前、與其同時及/或在其之後投與雙特異性抗原結合分子。 製品
在本發明之另一態樣中,提供製品,該製品含有可用於治療、預防及/或診斷上文所闡述病症之材料。該製品包含容器及位於該容器上或與該容器相連之標籤或包裝插頁。適宜容器包括(例如)瓶子、小瓶、注射器、IV溶液袋等。該等容器可自諸如玻璃或塑膠等多種材料形成。容器容納有自身或與另一組合物組合時有效用於治療、預防及/或診斷疾患之組合物,且可具有無菌輸液埠(例如容器可為靜脈內溶液袋或具有能由皮下注射針刺穿之塞子的小瓶)。組合物中之至少一種活性劑係本發明之雙特異性抗原結合分子。
標籤或包裝插頁指示組合物用於治療選定疾患。此外,製品可包含(a)含有組合物之第一容器,其中該組合物包含本發明之雙特異性抗原結合分子;及(b)含有組合物之第二容器,其中該組合物包含另一細胞毒性劑或其他治療劑。本發明之此實施例中之製品可進一步包含指示組合物可用於治療特定疾患之包裝插頁。
或者或另外,製品可進一步包含第二(或第三)容器,該容器包含醫藥學上可接受之緩衝劑,諸如抑菌性注射用水(BWFI)、磷酸鹽緩衝鹽水、林格氏溶液及右旋糖溶液。其可進一步包括自商業及使用者角度來看期望之其他材料,包括其他緩衝劑、稀釋劑、過濾器、針及注射器。 表B (序列):
SEQ ID NO: 名稱 序列
1 hu OX40 Uniprot編號P43489,aa 29-214 LH CVGDTYPSND RCCHECRPGN GMVSRCSRSQ NTVCRPCGPGFYNDVVSSKPCKPCTWCNLRSGSERKQLCTATQDTVCRCRAGTQPLDSYKPGVDCAPCPPGHFSPGDNQACKPWTNCTLAGKHTLQPASNSSDAICEDRDPPATQPQETQGPPARPITVQPTEAWPRTSQGPSTRPVEVPGGRAVAAILGLGLVLGLLGPLAILLALYLLRRDQRLPPDAHKPPGGGSFRTPIQEEQADAHSTLAKI
2 hu FAP Uniprot編號Q12884,第168版 MKTWVKIVFGVATSAVLALLVMCIVLRPSRVHNSEENTMRALTLKDILNGTFSYKTFFPNWISGQEYLHQSADNNIVLYNIETGQSYTILSNRTMKSVNASNYGLSPDRQFVYLESDYSKLWRYSYTATYYIYDLSNGEFVRGNELPRPIQYLCWSPVGSKLAYVYQNNIYLKQRPGDPPFQITFNGRENKIFNGIPDWVYEEEMLATKYALWWSPNGKFLAYAEFNDTDIPVIAYSYYGDEQYPRTINIPYPKAGAKNPVVRIFIIDTTYPAYVGPQEVPVPAMIASSDYYFSWLTWVTDERVCLQWLKRVQNVSVLSICDFREDWQTWDCPKTQEHIEESRTGWAGGFFVSTPVFSYDAISYYKIFSDKDGYKHIHYIKDTVENAIQITSGKWEAINIFRVTQDSLFYSSNEFEEYPGRRNIYRISIGSYPPSKKCVTCHLRKERCQYYTASFSDYAKYYALVCYGPGIPISTLHDGRTDQEIKILEENKELENALKNIQLPKEEIKKLEVDEITLWYKMILPPQFDRSKKYPLLIQVYGGPCSQSVRSVFAVNWISYLASKEGMVIALVDGRGTAFQGDKLLYAVYRKLGVYEVEDQITAVRKFIEMGFIDEKRIAIWGWSYGGYVSSLALASGTGLFKCGIAVAPVSSWEYYASVYTERFMGLPTKDDNLEHYKNSTVMARAEYFRNVDYLLIHGTADDNVHFQNSAQIAKALVNAQVDFQAMWYSDQNHGLSGLSTNHLYTHMTHFLKQCFSLSD
3 FAP (212) CDR-H1 DYNMD
4 FAP (212) CDR-H2 DIYPNTGGTIYNQKFKG
5 FAP (212) CDR-H3 FRGIHYAMDY
6 FAP (212) CDR-L1 RASESVDNYGLSFIN
7 FAP (212) CDR-L2 GTSNRGS
8 FAP (212) CDR-L3 QQSNEVPYT
9 FAP (212) VH EVLLQQSGPELVKPGASVKIACKASGYTLTDYNMD WVRQSHGKSLEWIGDIYPNTGGTIYNQKFKG KATLTIDKSSSTAYMDLRSLTSEDTAVYYCTRFRGIHYAMDY WGQGTSVTVSS
10 FAP (212) VL DIVLTQSPVSLAVSLGQRATISCRASESVDNYGLSFIN WFQQKPGQPPKLLIYGTSNRGS GVPARFSGSGSGTDFSLNIHPMEEDDTAMYFCQQSNEVPYT FGGGTNLEIK
11 FAP (VH1G3a) CDR-H2 DIYPNTGGTIYAQKFQG
12 FAP (VH2G3a) CDR-H2 DIYPNTGGTIYADSVKG
13 FAP (VL1G3a) CDR-L1 RASESVDNYGLSFLA
14 FAP (VL2G3a) CDR-L1 RASESIDNYGLSFLN
15 FAP (VH1G1a) 參見表10
16 FAP (VH1G2a) 參見表10
17 FAP (VH1G3a) 參見表10
18 FAP (VH2G1a) 參見表10
19 FAP (VH2G2a) 參見表10
20 FAP (VH2G3a) 參見表10
21 FAP (VL1G1a) 參見表10
22 FAP (VL1G2a) 參見表10
23 FAP (VL1G3a) 參見表10
24 FAP (VL2G1a) 參見表10
25 FAP (VL2G2a) 參見表10
26 FAP (VL2G3a) 參見表10
27 OX40 (49B4)  CDR-H1 SYAIS
28 OX40 (49B4)  CDR-H2 GIIPIFGTANYAQKFQG
29 OX40 (49B4)  CDR-H3 EYYRGPYDY
30 OX40 (49B4)  CDR-L1 RASQSISSWLA
31 OX40 (49B4)  CDR-L2 DASSLES
32 OX40 (49B4)  CDR-L3 QQYSSQPYT
33 OX40 (49B4) VH QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSS
34 OX40 (49B4) VL DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYSSQPYTFGQGTKVEIK
35 OX40 (CLC563)  CDR-H1 SYAMS
36 OX40 (CLC563)  CDR-H2 AISGSGGSTYYADSVKG
37 OX40 (CLC563)  CDR-H3 DVGAFDY
38 OX40 (CLC563)  CDR-L1 RASQSVSSSYLA
39 OX40 (CLC563)  CDR-L2 GASSRAT
40 OX40 (CLC563)  CDR-L3 QQYGSSPLT
41 OX40 (CLC563) VH EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSS
42 OX40 (CLC563) VL EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTFGQGTKVEIK
43 OX40 (MOXR0916)  CDR-H1 DSYMS
44 OX40 (MOXR0916)  CDR-H2 DMYPDNGDSSYNQKFRE
45 OX40 (MOXR0916)  CDR-H3 APRWYFSV
46 OX40 (MOXR0916)  CDR-L1 RASQDISNYLN
47 OX40 (MOXR0916)  CDR-L2 YTSRLRS
48 OX40 (MOXR0916)  CDR-L3 QQGHTLPPT
49 OX40 (MOXR0916) VH EVQLVQSGAEVKKPGASVKVSCKASGYTFTDSYMSWVRQAPGQGLEWIGDMYPDNGDSSYNQKFRERVTITRDTSTSTAYLELSSLRSEDTAVYYCVLAPRWYFSVWGQGTLVTVSS
50 OX40 (MOXR0916) VL DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLRSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPPTFGQGTKVEIK
51 OX40 (8H9)  CDR-H1 SYAIS
52 OX40 (8H9)  CDR-H2 GIIPIFGTANYAQKFQG
53 OX40 (8H9)  CDR-H3 EYGWMDY
54 OX40 (8H9)  CDR-L1 RASQSISSWLA
55 OX40 (8H9)  CDR-L2 DASSLES
56 OX40 (8H9)  CDR-L3 QQYLTYSRFT
57 OX40 (8H9) VH QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYGWMDYWGQGTTVTVSS
58 OX40 (8H9) VL DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYLTYSRFTFGQGTKVEIK
59 OX40 (49B4_K73E) VH QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADE STSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSS
60 OX40 (49B4_K23T_K73E) VH QVQLVQSGAEVKKPGSSVKVSCT ASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADE STSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSS
61 OX40 (49B4_K23E_K73E) VH QVQLVQSGAEVKKPGSSVKVSCE ASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADE STSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSS
62 hu FAP胞外結構域+聚-lys-標籤+his6 -標籤 RPSRVHNSEENTMRALTLKDILNGTFSYKTFFPNWISGQEYLHQSADNNIVLYNIETGQSYTILSNRTMKSVNASNYGLSPDRQFVYLESDYSKLWRYSYTATYYIYDLSNGEFVRGNELPRPIQYLCWSPVGSKLAYVYQNNIYLKQRPGDPPFQITFNGRENKIFNGIPDWVYEEEMLATKYALWWSPNGKFLAYAEFNDTDIPVIAYSYYGDEQYPRTINIPYPKAGAKNPVVRIFIIDTTYPAYVGPQEVPVPAMIASSDYYFSWLTWVTDERVCLQWLKRVQNVSVLSICDFREDWQTWDCPKTQEHIEESRTGWAGGFFVSTPVFSYDAISYYKIFSDKDGYKHIHYIKDTVENAIQITSGKWEAINIFRVTQDSLFYSSNEFEEYPGRRNIYRISIGSYPPSKKCVTCHLRKERCQYYTASFSDYAKYYALVCYGPGIPISTLHDGRTDQEIKILEENKELENALKNIQLPKEEIKKLEVDEITLWYKMILPPQFDRSKKYPLLIQVYGGPCSQSVRSVFAVNWISYLASKEGMVIALVDGRGTAFQGDKLLYAVYRKLGVYEVEDQITAVRKFIEMGFIDEKRIAIWGWSYGGYVSSLALASGTGLFKCGIAVAPVSSWEYYASVYTERFMGLPTKDDNLEHYKNSTVMARAEYFRNVDYLLIHGTADDNVHFQNSAQIAKALVNAQVDFQAMWYSDQNHGLSGLSTNHLYTHMTHFLKQCFSLSDGKKKKKKGHHHHHH
63 鼠類FAP Uniprot編號P97321
64 鼠類FAP胞外結構域+聚-lys-標籤+his6 -標籤 RPSRVYKPEGNTKRALTLKDILNGTFSYKTYFPNWISEQEYLHQSEDDNIVFYNIETRESYIILSNSTMKSVNATDYGLSPDRQFVYLESDYSKLWRYSYTATYYIYDLQNGEFVRGYELPRPIQYLCWSPVGSKLAYVYQNNIYLKQRPGDPPFQITYTGRENRIFNGIPDWVYEEEMLATKYALWWSPDGKFLAYVEFNDSDIPIIAYSYYGDGQYPRTINIPYPKAGAKNPVVRVFIVDTTYPHHVGPMEVPVPEMIASSDYYFSWLTWVSSERVCLQWLKRVQNVSVLSICDFREDWHAWECPKNQEHVEESRTGWAGGFFVSTPAFSQDATSYYKIFSDKDGYKHIHYIKDTVENAIQITSGKWEAIYIFRVTQDSLFYSSNEFEGYPGRRNIYRISIGNSPPSKKCVTCHLRKERCQYYTASFSYKAKYYALVCYGPGLPISTLHDGRTDQEIQVLEENKELENSLRNIQLPKVEIKKLKDGGLTFWYKMILPPQFDRSKKYPLLIQVYGGPCSQSVKSVFAVNWITYLASKEGIVIALVDGRGTAFQGDKFLHAVYRKLGVYEVEDQLTAVRKFIEMGFIDEERIAIWGWSYGGYVSSLALASGTGLFKCGIAVAPVSSWEYYASIYSERFMGLPTKDDNLEHYKNSTVMARAEYFRNVDYLLIHGTADDNVHFQNSAQIAKALVNAQVDFQAMWYSDQNHGILSGRSQNHLYTHMTHFLKQCFSLSDGKKKKKKGHHHHHH
65 食蟹猴FAP胞外結構域+聚-lys-標籤+his6 -標籤 RPPRVHNSEENTMRALTLKDILNGTFSYKTFFPNWISGQEYLHQSADNNIVLYNIETGQSYTILSNRTMKSVNASNYGLSPDRQFVYLESDYSKLWRYSYTATYYIYDLSNGEFVRGNELPRPIQYLCWSPVGSKLAYVYQNNIYLKQRPGDPPFQITFNGRENKIFNGIPDWVYEEEMLATKYALWWSPNGKFLAYAEFNDTDIPVIAYSYYGDEQYPRTINIPYPKAGAKNPFVRIFIIDTTYPAYVGPQEVPVPAMIASSDYYFSWLTWVTDERVCLQWLKRVQNVSVLSICDFREDWQTWDCPKTQEHIEESRTGWAGGFFVSTPVFSYDAISYYKIFSDKDGYKHIHYIKDTVENAIQITSGKWEAINIFRVTQDSLFYSSNEFEDYPGRRNIYRISIGSYPPSKKCVTCHLRKERCQYYTASFSDYAKYYALVCYGPGIPISTLHDGRTDQEIKILEENKELENALKNIQLPKEEIKKLEVDEITLWYKMILPPQFDRSKKYPLLIQVYGGPCSQSVRSVFAVNWISYLASKEGMVIALVDGRGTAFQGDKLLYAVYRKLGVYEVEDQITAVRKFIEMGFIDEKRIAIWGWSYGGYVSSLALASGTGLFKCGIAVAPVSSWEYYASVYTERFMGLPTKDDNLEHYKNSTVMARAEYFRNVDYLLIHGTADDNVHFQNSAQIAKALVNAQVDFQAMWYSDQNHGLSGLSTNHLYTHMTHFLKQCFSLSDGKKKKKKGHHHHHH
66 鼠類OX40 Uniprot編號P47741,第143版 MYVWVQQPTALLLLALTLGVTARRLNCVKHTYPSGHKCCRECQPGHGMVSRCDHTRDTLCHPCETGFYNEAVNYDTCKQCTQCNHRSGSELKQNCTPTQDTVCRCRPGTQPRQDSGYKLGVDCVPCPPGHFSPGNNQACKPWTNCTLSGKQTRHPASDSLDAVCEDRSLLATLLWETQRPTFRPTTVQSTTVWPRTSELPSPPTLVTPEGPAFAVLLGLGLGLLAPLTVLLALYLLRKAWRLPNTPKPCWGNSFRTPIQEEHTDAHFTLAKI
67 肽連接體(G4S) GGGGS
68 肽連接體(G4S)2 GGGGSGGGGS
69 肽連接體(SG4)2 SGGGGSGGGG
70 肽連接體G4(SG4)2 GGGGSGGGGSGGGG
71 肽連接體 GSPGSSSSGS
72 (G4S)3 肽連接體 GGGGSGGGGSGGGGS
73 (G4S)4 肽連接體 GGGGSGGGGSGGGGSGGGGS
74 肽連接體 GSGSGSGS
75 肽連接體 GSGSGNGS
76 肽連接體 GGSGSGSG
77 肽連接體 GGSGSG
78 肽連接體 GGSG
79 肽連接體 GGSGNGSG
80 肽連接體 GGNGSGSG
81 肽連接體 GGNGSG
82 Fc隆凸鏈 DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
83 Fc孔洞鏈 DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
84 受體框架IGHJ6*01/02 YYYYYGMDVWGQGTTVTVSS
85 受體框架IGKJ4*01/02 LTFGGGTKVEIK
86 OX40(49B4) VHCH1- OX40(49B4) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL 參見表13
87 OX40(49B4)輕鏈 參見表13
88 FAP(1G1a) VLCH1-輕鏈 參見表13
89 OX40(49B4) VHCH1-OX40(49B4) VHCH1-Fc孔洞_PGLALA 參見表13
90 OX40(49B4) VHCH1- Fc孔洞_PGLALA 參見表13
91 OX40(49B4) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL 參見表13
92 OX40(CLC563) VHCH1- OX40(CLC563) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL 參見表13
93 OX40(CLC563)輕鏈 參見表13
94 FAP(1G1a) VLCH1-輕鏈(EPKSCD) 參見表13
95 OX40(CLC563) VHCH1-OX40(CLC563) VHCH1-Fc孔洞_PGLALA 參見表13
96 FAP(1G1a) VLCH1-輕鏈(EPKSCS) 參見表13
97 OX40(CLC563) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL 參見表13
98 OX40(CLC563) VHCH1 Fc孔洞_PGLALA 參見表13
99 OX40(MOXR0916) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL 參見表13
100 OX40(MOXR0916)輕鏈 參見表13
101 OX40(MOXR0916) VHCH1- OX40(MOXR0916) VHCH1- Fc孔洞_PGLALA- 參見表13
102 OX40(MOXR0916) VHCH1- Fc孔洞_PGLALA 參見表13
103 OX40(8H9) VHCH1- Fc隆凸_PGLALA-FAP(1G1a) VHCL 參見表13
104 OX40(8H9)輕鏈 參見表13
105 OX40(8H9) VHCH1- OX40(8H9) VHCH1- Fc孔洞_PGLALA 參見表13
106 OX40(8H9) VHCH1- Fc孔洞_PGLALA 參見表13
107 OX40(49B4_K73E) VHCH1- OX40(49B4_K73E) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL 參見表15
108 OX40(49B4_K73E) VHCH1-OX40(49B4_K73E) VHCH1-Fc孔洞_PGLALA 參見表15
109 OX40(49B4_K23T_K73E) VHCH1- OX40(49B4_K23T_K73E) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL 參見表15
110 OX40(49B4_K23T_K73E) VHCH1-OX40(49B4_K23T_K73E) VHCH1-Fc孔洞_PGLALA 參見表15
111 OX40(49B4_K23E_K73E) VHCH1- OX40(49B4_K23E_K73E) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL 參見表15
112 OX40(49B4_K23E_K73E) VHCH1-OX40(49B4_K23E_K73E) VHCH1-Fc孔洞_PGLALA 參見表15
113 OX40(49B4) VHCH1- OX40(49B4) VHCH1- Fc孔洞_PGLALA - FAP(4B9) VL QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDGGGGSGGGGSQVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVTSSYLAWYQQKPGQAPRLLINVGSRRATGIPDRFSGSGSGTDFTLTISRLEP EDFAVYYCQQGIMLPPTFGQGTKVEIK
114 OX40(49B4) VHCH1- OX40(49B4) VHCH1- Fc隆凸_PGLALA - FAP(4B9) VH QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDGGGGSGGGGSQVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAIIGSGASTYYADSVKGRFTISRDNSKNTLYL QMNSLRAEDTAVYYCAKGWFGGFNYWGQGTLVTVSS
115 OX40 (49B4) VLCκ DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYSSQPYTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
116 OX40(49B4) VHCH1- OX40(49B4) VHCH1- IgG1 Fc _PGLALA QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDGGGGSGGGGSQVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVS WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP
117 CD3 CDR-H1 TYAMN
118 CD3 CDR-H2 RIRSKYNNYATYYADSVKG
119 CD3 CDR-H2 HGNFGNSYVSWFAY
120 CD3 CDR-L1 GSSTGAVTTSNYAN
121 CD3 CDR-L2 GTNKRAP
122 CD3 CDR-L3 ALWYSNLWV
123 CD3 VH EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMNWVRQAPGKGLEWVSRIRSKYNNYATYYADSVKGRFTISRDDSKNTLYLQMNSLRAEDTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSS
124 CD3 VL QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYANWVQEKPGQAFRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEYYCALWYSNLWVFGGGTKLTVL
125 CD3 (Cl22) CDR-H1 SYAMN
126 CD3 (Cl22) CDR-H2 RIRSKYNNYATYYADSVKG
127 CD3 (Cl22) CDR-H3 HTTFPSSYVSYYGY
128 CD3 (Cl22) CDR-L1 GSSTGAVTTSNYAN
129 CD3 (Cl22) CDR-L2 GTNKRAP
130 CD3 (Cl22) CDR-L3 ALWYSNLWV
131 CD3 (Cl22) VH EVQLLESGGGLVQPGGSLRLSCAASGFQFSSYAMNWVRQAPGKGLEWVSRIRSKYNNYATYYADSVKGRFTISRDDSKNTLYLQMNSLRAEDTAVYYCVRHTTFPSSYVSYYGYWGQGTLVTVSS
132 CD3 (Cl22) VL QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYANWVQEKPGQAFRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEYYCALWYSNLWVFGGGTKLTVL
133 CD3 (V9) CDR-H1 GYSFTGYTMN
134 CD3 (V9) CDR-H2 LINPYKGVSTYNQKFKD
135 CD3 (V9) CDR-H3 SGYYGDSDWYFDV
136 CD3 (V9) CDR-L1 RASQDIRNYLN
137 CD3 (V9) CDR-L2 YTSRLES
138 CD3 (V9) CDR-L3 QQGNTLPWT
139 CD3 (V9) VH EVQLVESGGGLVQPGGSLRLSCAASGYSFTGYTMNWVRQAPGKGLEWVALINPYKGVSTYNQKFKDRFTISVDKSKNTAYLQMNSLRAEDTAVYYCARSGYYGDSDWYFDVWGQGTLVTVSS
140 CD3 (V9) VL DIQMTQSPSSLSASVGDRVTITCRASQDIRNYLNWYQQKPGKAPKLLIYYTSRLESGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCQQGNTLPWTFGQGTKVEIK
141 輕鏈「CEA2F1 」 (CEA TCB) DIQMTQSPSSLSASVGDRVTITCKASAAVGTYVA WYQQKPGKAPKLLIYSASYRKR GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCHQYYTYPLFT FGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
142 輕鏈人類化CD3CH2527 (交叉fab,VL-CH1) (CEA TCB) QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYAN WVQEKPGQAFRGLIGGTNKRAP GTPARFSGSLLGGKAALTLSGAQPEDEAEYYCALWYSNLWV FGGGTKLTVLSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC
143 CEACH1A1A 98/99 —人類化CD3CH2527 (交叉fab VH-Ck)—Fc(隆凸) P329GLALA (CEA TCB) QVQLVQSGAEVKKPGASVKVSCKASGYTFTEFGMN WVRQAPGQGLEWMGWINTKTGEATYVEEFKG RVTFTTDTSTSTAYMELRSLRSDDTAVYYCARWDFAYYVEAMDY WGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMN WVRQAPGKGLEWVSRIRSKYNNYATYYADSVKG RFTISRDDSKNTLYLQMNSLRAEDTAVYYCVRHGNFGNSYVSWFAY WGQGTLVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP
144 CEACH1A1A 98/99 (VH-CH1)—Fc(孔洞) P329GLALA (CEA TCB) QVQLVQSGAEVKKPGASVKVSCKASGYTFTEFGMNWVRQAPGQGLEWMGWINTKTGEATYVEEFKGRVTFTTDTSTSTAYMELRSLRSDDTAVYYCARWDFAYYVEAMDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP
145 CD3 VH-CL (CEACAM5 TCB) EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMNWVRQAPGKGLEWVSRIRSKYNNYATYYADSVKGRFTISRDDSKNTLYLQMNSLRAEDTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
146 人類化CEA VH-CH1(EE)-Fc (孔洞,P329G LALA) (CEACAM5 TCB) QVQLVQSGAEVKKPGSSVKVSCKASGFNIKDTYMHWVRQAPGQGLEWMGRIDPANGNSKYVPKFQGRVTITADTSTSTAYMELSSLRSEDTAVYYCAPFGYYVSDYAMAYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP
147 人類化CEA VH-CH1(EE)-CD3 VL-CH1-Fc (隆凸,P329G LALA) (CEACAM5 TCB) QVQLVQSGAEVKKPGSSVKVSCKASGFNIKDTYMHWVRQAPGQGLEWMGRIDPANGNSKYVPKFQGRVTITADTSTSTAYMELSSLRSEDTAVYYCAPFGYYVSDYAMAYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDGGGGSGGGGSQAVVTQEPSLTVSPGGTVTLTCGSSTGAVTTSNYANWVQEKPGQAFRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEYYCALWYSNLWVFGGGTKLTVLSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP
148 人類化CEA VL-CL(RK) (CEACAM5 TCB) EIVLTQSPATLSLSPGERATLSCRAGESVDIFGVGFLHWYQQKPGQAPRLLIYRASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQTNEDPYTFGQGTKLEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
149 VH (PD-L1) EVQLVESGGGLVQPGGSLRLSCAASGFTFSDSWIHWVRQAPGKGLEWVAWISPYGGSTYYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARRHWPGGFDYWGQGTLVTVSS
150 VL (PD-L1) DIQMTQSPSSLSASVGDRVTITCRASQDVSTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYLYHPATFGQGTKVEIK
151 VH (PD-L1) EVQLVESGGGLVQPGGSLRLSCAASGFTFSRYWMSWVRQAPGKGLEWVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAREGGWFGELAFDYWGQGTLVTVSS
152 VL (PD-L1) EIVLTQSPGTLSLSPGERATLSCRASQRVSSSYLAWYQQKPGQAPRLLIYDASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSLPWTFGQGTKVEIK
153 CH2結構域 APELLGGPSVFLFPPKPKDTLMISRTPEVTCVWDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQESTYRWSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK
154 CH3結構域 GQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSP
155 Fc IgG1,高加索人同種異型 ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
156 Fc IgG1,非裔美國人同種異型 ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
157 Fc IgG2 ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDISVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
158 Fc IgG3 ASTKGPSVFPLAPCSRSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYTCNVNHKPSNTKVDKRVELKTPLGDTTHTCPRCPEPKSCDTPPPCPRCPEPKSCDTPPPCPRCPEPKSCDTPPPCPRCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFKWYVDGVEVHNAKTKPREEQYNSTFRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESSGQPENNYNTTPPMLDSDGSFFLYSKLTVDKSRWQQGNIFSCSVMHEALHNRFTQKSLSLSPGK
159 Fc IgG4 ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK
160 全長鉸鏈 DKTHTCPXCP,其中X為S或P
161 中等鉸鏈 HTCPXCP,其中X為S或P
162 短鉸鏈 CPXCP,其中X為S或P
163 CH1連結子C末端 EPKSC
164 CH1連結子C末端D變異體 EPKSCD
165 CH1連結子C末端S變異體 EPKSCS
166 CH1結構域 ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV
以下編號段落(paragraph、para)闡述本發明之態樣: 1. 一種雙特異性抗原結合分子,其包含 (a)至少兩個能夠特異性結合至OX40之抗原結合結構域, (b)能夠特異性結合至纖維母細胞活化蛋白(FAP)之抗原結合結構域,其包含:重鏈可變區(VH FAP),該VH FAP包含 (i) CDR-H1,其包含SEQ ID NO:3之胺基酸序列,(ii) CDR-H2,其包含選自由SEQ ID NO:4、SEQ ID NO:11及SEQ ID NO:12組成之群之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:5之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含(iv) CDR-L1,其包含選自由SEQ ID NO:6、SEQ ID NO:13及SEQ ID NO:14組成之群之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:7之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:8之胺基酸序列;及 (c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區。 2. 如段落1之雙特異性抗原結合分子,其中該Fc區包含一或多個降低抗體與Fc受體之結合親和力及/或效應功能之胺基酸取代。 3. 如段落1或2之雙特異性抗原結合分子,其中該能夠特異性結合至FAP之抗原結合結構域包含:重鏈可變區(VH FAP),該VH FAP包含與SEQ ID NO:9之胺基酸序列至少約90%一致之胺基酸序列;以及輕鏈可變區(VL FAP),該VL FAP包含與SEQ ID NO:10之胺基酸序列至少約90%一致之胺基酸序列。 4. 如段落1至3中任一段落之雙特異性抗原結合分子,其中該能夠特異性結合至FAP之抗原結合結構域包含 重鏈可變區(VH FAP),其包含選自由SEQ ID NO:15、SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19及SEQ ID NO:20組成之群之胺基酸序列,及 輕鏈可變區(VL FAP),其包含選自由SEQ ID NO:21、SEQ ID NO:22、SEQ ID NO:23、SEQ ID NO:24、SEQ ID NO:25及SEQ ID NO:26組成之群之胺基酸序列。 5. 如段落1至4中任一段落之雙特異性抗原結合分子,其中該能夠特異性結合至FAP之抗原結合結構域包含 (a) 包含SEQ ID NO:15之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:21之胺基酸序列之輕鏈可變區(VL FAP),或 (b) 包含SEQ ID NO:16之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:21之胺基酸序列之輕鏈可變區(VL FAP),或 (c) 包含SEQ ID NO:16之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:22之胺基酸序列之輕鏈可變區(VL FAP),或 (d) 包含SEQ ID NO:19之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:25之胺基酸序列之輕鏈可變區(VL FAP)。 6. 如段落1至4中任一段落之雙特異性抗原結合分子,其中該能夠特異性結合至FAP之抗原結合結構域包含有包含SEQ ID NO:15之胺基酸序列之重鏈可變區(VH FAP)及包含SEQ ID NO:21之胺基酸序列之輕鏈可變區(VL FAP)。 7. 如段落1至6中任一段落之雙特異性抗原結合分子,其中該能夠特異性結合至OX40之抗原結合結構域包含 (i) 重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:27之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:28之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:29之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:30之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:31之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:32之胺基酸序列,或 (ii) 重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:35之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:36之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:37之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:38之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:39之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:40之胺基酸序列,或 (iii) 重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:43之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:44之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:45之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:46之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:47之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:48之胺基酸序列,或 (iv) 重鏈可變區(VH OX40),該VH OX40包含(i) CDR-H1,其包含SEQ ID NO:51之胺基酸序列,(ii) CDR-H2,其包含SEQ ID NO:52之胺基酸序列,及(iii) CDR-H3,其包含SEQ ID NO:53之胺基酸序列;以及輕鏈可變區(VL OX40),該VL OX40包含(iv) CDR-L1,其包含SEQ ID NO:54之胺基酸序列,(v) CDR-L2,其包含SEQ ID NO:55之胺基酸序列,及(vi) CDR-L3,其包含SEQ ID NO:56之胺基酸序列。 8. 如段落1至7中任一段落之雙特異性抗原結合分子,其中該能夠特異性結合至OX40之抗原結合結構域包含 (i) 包含SEQ ID NO:33之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40),或 (ii) 包含SEQ ID NO:41之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:42之胺基酸序列之輕鏈可變區(VL OX40),或 (iii) 包含SEQ ID NO:49之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:50之胺基酸序列之輕鏈可變區(VL OX40),或 (iv) 包含SEQ ID NO:57之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:58之胺基酸序列之輕鏈可變區(VL OX40)。 9. 如段落1至7中任一段落之雙特異性抗原結合分子,其中該能夠特異性結合至OX40之抗原結合結構域包含 (i) 包含SEQ ID NO:59之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40),或 (ii) 包含SEQ ID NO:60之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40),或 (iii) 包含SEQ ID NO:61之胺基酸序列之重鏈可變區(VH OX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VL OX40)。 10. 如段落1至9中任一段落之雙特異性抗原結合分子,其中該Fc區為IgG,特定而言為IgG1 Fc區或IgG4 Fc區。 11. 如段落1至10中任一段落之雙特異性抗原結合分子,其中該Fc區為具有胺基酸突變L234A、L235A及P329G (根據Kabat EU索引進行編號)之人類IgG1亞類Fc區。 12. 如段落1至15中任一段落之雙特異性抗原結合分子,其中該雙特異性抗原結合分子包含 (a) 至少兩個能夠特異性結合至OX40之Fab片段,其各自連結至該Fc區之一個亞單元之N末端,及 (b) 一個能夠特異性結合至FAP之交叉Fab片段,其與該Fc區之一個亞單元之C末端融合,及 (c) 該由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區。 13. 如段落12之雙特異性抗原結合分子,其中該能夠特異性結合至FAP之交叉fab片段之VH-Cκ鏈與該Fc區之一個亞單元之C末端融合。 14. 如段落1至13中任一段落之雙特異性抗原結合分子,其由以下組成: (aa) 能夠特異性結合至OX40之第一Fab片段, (ab) 能夠特異性結合至OX40之第二Fab片段, (b) 能夠特異性結合至FAP之交叉Fab片段,其與該Fc區之一個亞單元之C末端融合,及 (c) 該由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區,其中該第一Fab片段(ai)在VH-CH1鏈之C末端與該第一亞單元之N末端融合且該第二Fab片段(aii) 在VH-CH1鏈之C末端與該第二亞單元之N末端融合。 15. 如段落1至13中任一段落之雙特異性抗原結合分子,其由以下組成: (aa) 能夠特異性結合至OX40之第一Fab片段, (ab) 能夠特異性結合至OX40之第二Fab片段, (ac) 能夠特異性結合至OX40之第三Fab片段, (b) 能夠特異性結合至FAP之交叉Fab片段,其與該Fc區之一個亞單元之C末端融合,及 (c) 該由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區,其中該第二Fab片段(ab)在VH-CH1鏈之C末端與該第一Fab片段(aa)之VH-CH1鏈之N末端融合,該第一Fab片段(aa)之VH-CH1鏈又在其C末端與該第一亞單元之N末端融合,且該第三Fab片段(ac)在Fab重鏈之C末端與該第二亞單元之N末端融合。 16. 如段落1至13中任一段落之雙特異性抗原結合分子,其由以下組成: (aa) 能夠特異性結合至OX40之第一Fab片段, (ab) 能夠特異性結合至OX40之第二Fab片段, (ac) 能夠特異性結合至OX40之第三Fab片段, (ad) 能夠特異性結合至OX40之第四Fab片段, (b) 能夠特異性結合至FAP之交叉Fab片段,其與該Fc區之一個亞單元之C末端融合,及 (c) 該由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區,其中該第二Fab片段(ab)在VH-CH1鏈之C末端與該第一Fab片段(aa)之VH-CH1鏈之N末端融合,該第一Fab片段(aa)之VH-CH1鏈又在其C末端與該第一亞單元之N末端融合,且該第四Fab片段(ad)在VH-CH1鏈之C末端與該第三Fab片段(ac)之VH-CH1鏈之N末端融合,該第三Fab片段(ac)之VH-CH1鏈又在其C末端與該第二亞單元之N末端融合。 17. 一種經分離核酸,其編碼如段落1至16中任一段落之雙特異性抗原結合分子。 18. 一種表現載體,其包含如段落17之經分離核酸。 19. 一種宿主細胞,其包含如段落17之經分離核酸或如段落18之表現載體。 20. 一種產生雙特異性抗原結合分子之方法,其包括在適於表現該雙特異性抗原結合分子之條件下培養如段落19之宿主細胞並分離該雙特異性抗原結合分子。 21. 一種醫藥組合物,其包含如段落1至16中任一段落之雙特異性抗原結合分子以及醫藥學上可接受之載劑。 22. 如段落21之醫藥組合物,其進一步包含額外治療劑。 23. 如段落1至16中任一段落之雙特異性抗原結合分子或如段落21之醫藥組合物,其用作藥劑。 24. 如段落1至16中任一段落之雙特異性抗原結合分子或如段落21之醫藥組合物,其用於 (i) 誘導免疫刺激, (ii) 刺激腫瘤特異性T細胞反應, (iii) 引起腫瘤細胞之凋亡, (iv) 治療癌症, (v) 延遲癌症之進展, (vi) 延長患有癌症之患者的存活期, (vii) 治療感染。 25. 如段落1至16中任一段落之雙特異性抗原結合分子或如段落21之醫藥組合物,其用於治療癌症。 26. 如段落1至16中任一段落之雙特異性抗原結合分子或如段落21之醫藥組合物,其用於治療癌症,其中該雙特異性抗原結合分子或醫藥組合物用於與化學治療劑、輻射及/或其他用於癌症免疫療法之劑組合投與。 27. 一種如段落1至16中任一段落之雙特異性抗原結合分子或如段落21之醫藥組合物之用途,其用於製造用以治療癌症之藥劑。 28. 一種治療患有癌症之個體之方法,其包括向該個體投與有效量的如段落1至16中任一段落之雙特異性抗原結合分子或如段落21之醫藥組合物。 實例
以下為本發明之方法及組合物之實例。應理解,鑑於上文所提供之一般說明,可實踐各個其他實施例。重組 DNA 技術
如以下文獻中所闡述,使用標準方法來操縱DNA:Sambrook等人,Molecular cloning: A laboratory manual; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989。根據製造商之說明書使用分子生物學試劑。以下文獻中給出關於人類免疫球蛋白輕鏈及重鏈之核苷酸序列之一般資訊:Kabat, E.A.等人(1991) Sequences of Proteins of Immunological Interest,第5版,NIH出版號91-3242。DNA 測序
藉由雙股測序來測定DNA序列。基因合成
期望基因區段係藉由PCR使用適當模板來生成,或由Geneart AG (Regensburg, Germany)藉由自動基因合成自合成寡核苷酸及PCR產物來合成。在無法獲得確切基因序列之情形下,基於來自最近同系物之序列來設計寡核苷酸引物,且自來源於適當組織之RNA藉由RT-PCR來分離基因。將側接有單一限制內核酸酶裂解位點之基因區段選殖至標準選殖/測序載體中。自轉型細菌純化質體DNA且藉由UV光譜法測定濃度。亞選殖基因片段之DNA序列係藉由DNA測序來確認。利用適宜限制位點來設計基因區段,以容許亞選殖至各別表現載體中。所有構築體均經設計具有編碼前導肽之5’端DNA序列,該前導肽靶向在真核細胞中分泌之蛋白質。蛋白質純化
參照標準方案,自經過濾之細胞培養上清液純化蛋白質。簡言之,將抗體施加至蛋白質A Sepharose管柱(GE healthcare)並用PBS洗滌。在pH 3.0下達成對抗體之溶析,之後立即使樣品中和。藉由離子交換層析(Poros XS),利用平衡緩衝液(20 mM His, pH 5.5, 1,47 mS/cm)及溶析緩衝液(20 mM His、500 mM NaCl,pH 5.5,49.1 mS/cm) (梯度:至100%溶析緩衝液,60 CV)將聚集蛋白質與單體抗體分離。在一些情形中,隨後在PBS中或在20 mM組胺酸、140 mM NaCl pH 6.0中實施粒徑篩析層析(Superdex 200, GE Healthcare)。將單體抗體部分合併,使用(例如) MILLIPORE Amicon Ultra (30 MWCO)離心濃縮機濃縮(若需要),冷凍並儲存在-20℃或-80℃下。提供部分樣品用於(例如)藉由 SDS-PAGE、粒徑篩析層析(SEC)或質譜法進行後續蛋白質分析及分析表徵。SDS-PAGE
根據製造商之說明書使用NuPAGE® Pre-Cast凝膠系統(Invitrogen)。特定而言,使用10%或4-12% NuPAGE® Novex® Bis-TRIS Pre-Cast凝膠(pH 6.4)及NuPAGE® MES (還原凝膠,含有NuPAGE®抗氧化劑運行緩衝液添加劑)或MOPS (非還原凝膠)運行緩衝液。CE-SDS
藉由CE-SDS,使用微流體Labchip技術(Caliper Life Science, USA)來分析雙特異性抗體及對照抗體之純度、抗體完整性及分子量。根據製造商之說明書,使用HT蛋白質表現試劑套組製備5 µl蛋白質溶液以用於CE-SDS分析,且在LabChip GXII系統上使用HT蛋白質表現晶片進行分析。使用LabChip GX軟體第3.0.618.0版對資料進行分析。分析型粒徑篩析層析
使用BioSuite 250 5µm.7.8×300分析型粒徑篩析管柱(Tosoh),在200 mM K-Phosophat 250 mM KCl pH 6.2運行緩衝液中於25℃下分析分子之聚集體含量。質譜法
此部分闡述對具有VH/VL或CH/CL交換之多特異性抗體(CrossMab)之表徵,且重點在於其正確組裝。藉由對去糖基化之完整CrossMab及去糖基化/FabALACTICA或替代地去糖基化/GingisKHAN消化之CrossMab實施電噴霧電離質譜(ESI-MS)來分析預期一級結構。
利用N-糖苷酶F,在磷酸鹽或Tris緩衝液中,使CrossMab以1 mg/ml之蛋白質濃度在37℃下去糖基化長達17 h。利用100 µg去糖基化CrossMab,在由供應商供應之緩衝液中實施FabALACTICA或GingisKHAN (Genovis AB; Sweden)消化。  在質譜法之前,在Sephadex G25管柱(GE Healthcare)上經由HPLC使樣品脫鹽。在配備有TriVersa NanoMate源(Advion)之maXis 4G UHR-QTOF MS系統(Bruker Daltonik)上經由ESI-MS測定總質量。 實例1 針對纖維母細胞活化蛋白(FAP)之新抗體之生成 1.1  小鼠之免疫
使用Balb/c及NMRI小鼠進行免疫。根據附錄A「動物收容與照護指南(Guidelines for accommodation and care of animals)」將動物圈養在AAALACi認證之動物設施中。所有動物免疫方案及實驗均由上巴伐利亞政府(Government of Upper Bavaria)批准(許可號55.2-1-54-2531-19-10),且係根據德國動物福利法案以及歐洲議會及理事會指令2010/63來實施。6-8週齡之Balb/c及NMRI小鼠(n=5)接受四輪免疫,其係利用重組產生的與His標籤共價連接之人類纖維母細胞活化蛋白α之細胞外結構域(胺基酸27-759;登錄號NP_004451)(SEQ ID NO:62)來實施。在每次免疫之前,利用氧氣及異氟烷之氣體混合物使小鼠麻醉。對於第一次免疫,將30 µg蛋白質溶解於PBS (pH 7.4)中,與等體積之CFA (BD Difco,編號263810)混合且腹膜內(i.p.)投與。在第6週,皮下(s.c.)投與另一10 µg於Abisco佐劑中乳化之蛋白質。在第10週,i.p.投與第三個劑量之5 µg蛋白質而無佐劑。最後,在使用雜交瘤技術製備用於抗體開發之脾細胞前三天,使小鼠經受50 µg蛋白質之靜脈內(i.v.)加強免疫。藉由ELISA測試血清之抗原特異性總IgG抗體產生。在最後一次免疫後三天,使小鼠安樂死且無菌分離脾臟並準備用於生成雜交瘤。將小鼠淋巴球分離,且使用基於PEG之標準方案與小鼠骨髓瘤細胞株融合以生成雜交瘤。將所得雜交瘤細胞以大約104 個平鋪於平底96孔微量滴定板中,之後在選擇性培養基中培育約兩週,且接著篩選抗原特異性抗體之產生。一旦出現大量雜交瘤生長,則重新平鋪抗體分泌性雜交瘤。藉由ELISA篩選雜交瘤上清液與重組人類纖維母細胞活化蛋白α (huFAP)之特異性結合,之後使用Biacore量測來評估與重組huFAP之動力學結合參數。
雜交瘤之培養:在37℃及5% CO2 下,於補充有2 mM L-麩醯胺酸(GIBCO -目錄號35050-038)、1 mM丙酮酸鈉(GIBCO -目錄號11360-039)、1× NEAA (GIBCO -目錄號11140-035)、10% FCS (PAA -目錄號A15-649)、1× Pen Strep (Roche -目錄號1074440)、1× Nutridoma CS (Roche -目錄號1363743)、50 µM巰基乙醇(GIBCO -目錄號31350-010)及50 U/ml IL 6小鼠(Roche -目錄號1 444 581)之RPMI 1640 (PAN -目錄號(Catalogue No.、Cat. No.) PO4-17500)中培養所生成之muMAb雜交瘤。 1.2  抗huFAP純系之格式依賴性結合
為確定當抗FAP純系在C末端與Fc結構域融合時,其結合性質是否沒有丟失,製備包含Fc隆凸鏈及Fc孔洞鏈且其中VH結構域融合至Fc隆凸鏈之C末端且VL結構域融合至Fc孔洞鏈之C末端的構築體(C末端VH/VL融合物)及包含Fc隆凸鏈及Fc孔洞鏈且其中整個Fab以其VH結構域融合至Fc隆凸鏈之C末端的構築體(C末端Fab融合物)。Fc隆凸鏈具有SEQ ID NO:82之胺基酸序列,且Fc孔洞鏈具有SEQ ID NO:83之胺基酸序列。
與抗體相比,該等構築體對生物素化重組人類FAP及生物素化重組食蟹猴FAP之親和力示於下表3中。 表3:如藉由Biacore所量測之對人類FAP及食蟹猴FAP之親和力
對人類FAP之親和力 KD [nM] 對食蟹猴FAP之親和力 KD [nM]
純系 游離Fab C末端Fab融合物 C末端VH/VL融合物 IgG C末端Fab融合物 C末端VH/VL融合物
209 0.31 1.52 42.40 0.33 1.60 50.00
210 0.07 0.17 3.95 0.12 0.20 3.44
211 0.28 1.20 10.90 0.32 1.30 11.40
212 0.12 0.62 5.72 0.14 0.64 6.19
214 0.06 0.19 2.49 0.09 0.21 2.77
亦已如前文所闡述測定該等構築體對FAP轉染之HEK細胞之細胞結合。EC50 值示於表4中。所有抗FAP抗體之C末端融合構築體均能夠結合至人類及食蟹猴FAP,然而,整個Fab以其VH結構域融合至Fc隆凸鏈之C末端的構築體優於VH結構域融合至Fc隆凸鏈之C末端且VL結構域融合至Fc孔洞鏈之C末端的彼等構築體。 表4:與huFAP表現細胞之細胞結合
與人類FAP之細胞結合 EC50 [µg/ml] 與食蟹猴FAP之細胞結合 EC50 [µg/ml]
純系 IgG C末端Fab融合物 C末端VH/VL融合物 IgG C末端Fab融合物 C末端VH/VL融合物
209 0,15 1.2 5.7 0.4 1.1 7.9
210 0,13 1.8 9.0 0.4 1.3 7.1
211 0,20 3.7 9.3 0.3 2.9 6.7
212 0,12 2.8 8.8 0.3 2.3 11.1
214 0,09 1.7 9.4 0.3 1.3 3.6
1.3  抗huFAP抗體相對於FAP純系4B9及28H1之競爭性細胞結合
測試所得純系與FAP純系4B9相比之結合行為。FAP純系4B9及28H1之生成及製備闡述於WO 2012/020006 A2中,其係以引用的方式併入本文中。為確定鼠類FAP純系是否與純系4B9及28H1識別不同的抗原決定基,實施與在經轉染之HEK細胞上表現的人類FAP之競爭結合。
簡言之,利用細胞解離緩衝液收穫靶細胞,用FACS緩衝液(PBS + 2% FCS + 5 mM EDTA + 0.25%疊氮化鈉)洗滌且接種至96-U形底板中(1×105個細胞/孔)。將未經標記之一級抗人類FAP抗體(mu IgG1)添加至細胞中(最終濃度60 µg/ml至0.2 µg/ml;1:3稀釋度)且在4℃下培育20 min,之後添加AlexaFluor647標記之抗FAP抗體4B9或28H1 (終濃度20 µg/ml)。在4℃下培育30 min後,洗滌細胞,固定並使用Miltenyi MACSQuant量測AF647標記之純系4B9及28H1之螢光信號強度。
鑑別出10種不與抗FAP抗體4B9或28H1競爭結合之雜交瘤源性鼠類抗體(命名為純系209、210、211、212、213、214、215、216、217及218)。 1.4  抗huFAP鼠類抗體之靶標結合特異性
纖維母細胞活化蛋白(FAP、FAP-α、seprase)係II型跨膜絲胺酸蛋白酶,屬於脯胺醯寡肽酶家族。此家族包含優先在脯胺酸殘基後裂解肽之絲胺酸蛋白酶。此家族在人類蛋白質體中表現之其他重要成員為脯胺醯寡肽酶(PREP)及二肽基肽酶(DPP)。DPP-IV係FAP最接近之同系物。與FAP相反,DPP-IV普遍表現且在諸如T細胞共刺激、趨化介素生物學、葡萄糖代謝及腫瘤形成等各種生物學過程中起作用,且因此,期望之抗人類FAP抗體不應結合至人類DPP-IV。
使用人類FAP或人類DPPIV轉染之HEK細胞,藉由流式細胞術測定與人類FAP及人類DPP-IV之結合。簡言之,利用細胞解離緩衝液收穫靶細胞,用FACS緩衝液(PBS + 2% FCS + 5 mM EDTA + 0.25%疊氮化鈉)洗滌且接種至96-U形底板中(1×105 個細胞/孔)。將未經標記之一級抗體添加至細胞中(最終濃度10 µg/ml)且在4℃下培育30 min。洗滌後,使細胞與山羊抗小鼠IgG-PE F(ab')2 (Serotec)一起於黑暗中在4℃下培育30 min。之後,洗滌細胞,固定並使用BD FACS Canto™ II進行量測。對於該10種雜交瘤源性抗人類FAP抗體中之任一者,均未偵測到與人類DPP-IV之非特異性結合。 1.5  生成呈huIgG1_LALA_PG格式之抗huFAP抗體
利用標準測序方法測定新的抗huFAP抗體之DNA序列。基於VH及VL結構域,根據WO 2012/130831 A1中所闡述之方法,使新的抗FAP抗體表現為具有效應子沈默Fc (P329G;L234、L235A)之huIgG1抗體,以消除與Fcγ受體之結合。詳細而言,藉由用編碼不同肽鏈之表現載體瞬時轉染懸浮生長之HEK293-F細胞來表現抗體。根據細胞供應商之說明書,使用Maxiprep (Qiagen, Germany)抗體載體製劑、基於F17之培養基(Invitrogen, USA)、PEIpro (Polyscience Europe GmbH)及於無血清FreeStyle 293表現培養基(Invitrogen)中1-2百萬個活細胞/ml之初始細胞密度來實施對HEK293-F細胞(Invitrogen, USA)之轉染。在搖瓶或攪拌式發酵罐中培養7天後,藉由以14000 g離心30分鐘且經由0.22 µm過濾器過濾來收穫細胞培養上清液。
藉由親和層析使用MabSelectSure-SepharoseTM (GE Healthcare, Sweden)層析自細胞培養上清液中純化抗體。簡言之,將經無菌過濾之細胞培養上清液捕獲在經PBS緩衝液(10 mM Na2 HPO4 、1 mM KH2 PO4 、137 mM NaCl及2.7 mM KCl,pH 7.4)平衡之MabSelect SuRe樹脂上,用平衡緩衝液洗滌並用25 mM檸檬酸鹽(pH 3.0)溶析。在用1 M Tris pH 9.0中和後,藉由於20 mM組胺酸、140 mM NaCl (pH 6.0)中進行粒徑篩析層析(Superdex 200, GE Healthcare)使聚集蛋白質與單體抗體種類分離。將單體蛋白質部分合併,使用(例如) MILLIPORE Amicon Ultra (30KD MWCO)離心濃縮機濃縮(若需要)並儲存在-80℃下。使用樣品等分試樣,藉由(例如) CE-SDS、粒徑篩析層析、質譜法及內毒素測定進行後續分析表徵。 1.6  抗huFAP抗體之細胞結合
使用人類FAP轉染之HEK細胞,藉由流式細胞術測定具有人類IgG1 P329G LALA Fc之抗FAP抗體與人類FAP之結合。簡言之,利用細胞解離緩衝液收穫靶細胞,用FACS緩衝液(PBS + 2% FCS + 5 mM EDTA + 0.25%疊氮化鈉)洗滌且接種至96-U形底板中(1×105個細胞/孔)。將未經標記之一級抗體添加至細胞中(最終濃度10 µg/ml至0.64 ng/ml;1:5稀釋度)且在4℃下培育30 min。洗滌後,使細胞與PE結合之AffiPure F(ab)2 片段Fcγ特異性山羊抗人類IgG (Jackson Immunoresearch)一起於黑暗中在4℃下培育30 min。之後,洗滌細胞,固定並使用BD FACS LSR FortessaTM 進行量測。
所有抗FAP抗體均顯示出與先前所見類似的與人類FAP之結合。所選結合劑之EC50 值示於下表1中。 表1:抗FAP抗體與huFAP表現細胞之細胞結合
樣品ID 純系 EC50 [µg/ml] 與FAP轉染之HEK細胞之細胞結合
   4B9 0.089
P1AD9427 209 0.145
P1AD9436 210 0.125
P1AD9437 211 0.198
P1AD9438 212 0.118
P1AD9440 214 0.086
1.7  抗huFAP抗體之細胞內化
使用人類FAP轉染之HEK細胞作為靶標,測定對FAP結合劑之內化。簡言之,利用細胞解離緩衝液收穫靶細胞,用冷的FACS緩衝液(PBS + 2% FCS + 5 mM EDTA + 0.25%疊氮化鈉)洗滌且以1.5 × 106 個細胞/ml重新懸浮於冷的FACS緩衝液中。將細胞分配在15 ml管中(每一管在2 ml中含有3×106 個細胞)。將2 ml抗人類FAP抗體溶液添加至細胞中(最終濃度20 µg/ml)且在4℃下培育45 min。之後,洗滌細胞,重新懸浮於冷的FACS緩衝液中,且將時間點「0」之細胞立即接種至96-U形底板中(1.5×105 個細胞/孔)並保持在4℃下,而將所有其他細胞離心,重新懸浮於含有10% FCS及1% Glutamax之溫熱的RPMI1640培養基中(1.5×106 個細胞/ml)並在加濕培育器(5% CO2 )中移至37℃。在每一所指示之時間點後,將100 µl/管之細胞懸浮液轉移至板,用冷的FACS緩衝液立即冷卻且儲存在冰箱中直至已收集到所有時間點。在收集到所有時間點後,用冷的FACS緩衝液洗滌細胞且使其與PE標記之二級抗體一起在4℃下培育30 min。之後,洗滌細胞,固定並使用BD FACS Canto™ II進行量測。
由經標記之二級抗體引起的信號隨時間推移保持幾乎恆定,此意味著隨時間推移未觀察到抗體損失,所測試之抗hu FAP抗體均未內化。 1.8  抗huFAP抗體之結合動力學
為評估人類FAP結合動力學,根據製造商之說明書,將生物素化人類FAP固定在S系列Biacore捕獲晶片(GE Healthcare 28-9202-34)上,產生大約20個共振單位(RU)之表面密度。作為運行及稀釋緩衝液,使用HBS-P+ (10 mM HEPES、150 mM NaCl pH 7.4、0.05%表面活性劑P20)。相繼注射抗huFAP Fab之稀釋系列各120s (3.7 - 300 nM,1:3稀釋度),在30 µl/min之流速下監測解離達1800s (單循環動力學)。藉由注射6 M胍-HCl、0.25 M NaOH達120s使表面再生。藉由減去空白注射且藉由減去自不含捕獲的人類FAP之對照流動槽獲得的反應來校正本體折射率差異。在Biacore評估軟體內使用1:1 Langmuir結合模型實施曲線擬合。親和力資料示於下表2中。 表2:如藉由Biacore所量測之抗FAP Fab對人類FAP之親和力
樣品ID 純系 ka (1/Ms) kd (1/s) KD
4B9_Fab 1.82E+06 7.80E-04 430 pM
P1AD9427_Fab 209 3.50E+06 1.77E-03 510 pM
P1AD9436_Fab 210 1.87E+06 < E-06 < 10 pM
P1AD9437_Fab 211 8.13E+05 4.61E-05 60 pM
P1AD9438_Fab 212 1.06E+06 < E-06 < 10 pM
P1AD9440_Fab 214 1.99E+06 < E-06 < 10 pM
1.9  如藉由Biacore所測定之抗人類FAP純系之競爭性結合
在Biacore T200儀器上使用基於表面電漿子共振(SPR)之分析實施抗原決定基分倉(epitope binning)。藉由經固定之抗His抗體捕獲FAP抗原。在第一步中,注射FAP結合劑直至飽和為止。隨後注射第二FAP結合劑。分析設計示意性地示於圖3C中。在添加第二抗體後結合信號之增加指示其結合至與第一抗體不同之抗原決定基。沒有額外之結合指示第一及第二抗體識別相同的抗原決定基區。
藉由胺偶合(GE Healthcare套組BR-1000-50)將濃度為20 µg/ml之抗His抗體(GE Healthcare套組28-9950-56)固定至CM5感測器晶片(GE Healthcare BR-1005-30)之表面。注射時間為600秒,流速為10 µl/min,以在兩個流動槽上產生12000個反應單位(RU),一個流動槽用作參照且一個流動槽用作活性流動槽。運行緩衝液為HBS-N (GE Healthcare BR-1006-70)。對於量測,使用PBS-P+ (GE Healthcare 28-9950-84)作為運行及稀釋緩衝液。將流動槽溫度設為25℃,樣品區室設為12℃。對於整個運行,將流速設為10 µl/min。
在活性流動槽上以20 µg/ml之濃度捕獲帶His標籤之FAP抗原達180秒。相繼注射第一及第二抗體(FAP結合劑),在兩個流動槽上以10 µg/ml之濃度各注射120秒。在每一循環後,利用10 mM甘胺酸pH 1.5使表面再生60秒(GE Healthcare BR-1003-54)。
結果示於下表5中: 表5:抗FAP抗體相對於4B9之競爭性結合
   4B9 209 210 211 212 214
4B9 競爭性結合 同時結合 同時結合 同時結合 同時結合 同時結合
209 同時結合 競爭性結合 同時結合 同時結合 同時結合 同時結合
210 同時結合 同時結合 競爭性結合 競爭性結合 競爭性結合 競爭性結合
211 同時結合 同時結合 競爭性結合 競爭性結合 競爭性結合 競爭性結合
212 同時結合 同時結合 競爭性結合 競爭性結合 競爭性結合 競爭性結合
214 同時結合 同時結合 競爭性結合 競爭性結合 競爭性結合 競爭性結合
因此,鑑別出三個抗原決定基倉。該等抗FAP抗體均不與抗體4B9競爭結合(抗原決定基倉1)。抗體210、211、212及214彼此競爭結合,且因此形成一組(抗原決定基倉3),而抗體209不與該等抗體中之任何其他者競爭結合(抗原決定基倉2)。 1.9 抗FAP抗體之熱穩定性評估
以1 mg/mL之濃度於20 mM組胺酸/組胺酸氯化物、140 mM NaCl (pH 6.0)中製備樣品,藉由離心穿過0.4 µm過濾板轉移至光學384孔板中並用石蠟油覆蓋。藉由動態光散射在DynaPro讀板儀(Wyatt)上重複量測流體動力學半徑,同時將樣品以0.05℃/min之速率自25℃加熱至80℃。或者,將樣品轉移至10 µL微型比色皿陣列中,且利用Optim1000儀器(Avacta Inc.)記錄在用266 nm雷射激發時之靜態光散射資料以及螢光資料,同時將其以0.1℃/min之速率自25℃加熱至90℃。聚集起始溫度(Tagg )定義為流體動力學半徑(DLS)或散射光強度(Optim1000)開始增加時之溫度。熔融溫度定義為顯示螢光強度對波長之圖中之拐點。所選抗FAP抗體之聚集起始溫度示於表6中。 表6:抗FAP抗體之聚集起始溫度
   4B9 209 210 212 214
Tagg (℃) 60 66 61 67 61
選擇抗FAP純系212進行人類化,此乃因其以與抗體4B9相當之高親和力結合至人類FAP且顯示出有利於開發之性質。其序列之電腦模擬分析指示僅一個預測之降解熱點(位置401處之Trp)。鼠類純系212之序列示於表7中。 表7:鼠類抗FAP純系212之可變結構域之胺基酸序列
描述 序列 Seq ID No
FAP(212) VH EVLLQQSGPELVKPGASVKIACKASGYTLTDYNMD WVRQSHGKSLEWIGDIYPNTGGTIYNQKFKG KATLTIDKSSSTAYMDLRSLTSEDTAVYYCTRFRGIHYAMDY WGQGTSVTVSS 9
FAP(212) VL DIVLTQSPVSLAVSLGQRATISCRASESVDNYGLSFIN WFQQKPGQPPKLLIYGTSNRGS GVPARFSGSGSGTDFSLNIHPMEEDDTAMYFCQQSNEVPYT FGGGTNLEIK 10
1.10 抗FAP純系212之人類化 1.10.1 方法
藉由在BLASTp資料庫中查詢針對鼠類輸入序列(裁剪成可變部分)之人類V區及J區序列來鑑別適宜人類受體框架。選擇人類受體框架之選擇性準則為序列同源性、相同或相似之CDR長度及人類生殖系之估計頻率,以及VH-VL結構域界面處某些胺基酸之保守性。在生殖系鑑別步驟後,將鼠類輸入序列之CDR移植至人類受體框架區上。評定該等初始CDR移植物與親代抗體之間的每一胺基酸差異對各別可變區之結構完整性之可能影響,且在認為適當時引入朝向親代序列之「回復突變」。結構評價基於親代抗體及人類化變異體二者之Fv區同源性模型,該等模型係利用使用Biovia Discovery Studio Environment第17R2版執行的內部抗體結構同源性建模方案所產生。在一些人類化變異體中,包括「正向突變」,亦即如下胺基酸交換:將出現在親代結合劑之給定CDR位置處之原始胺基酸變成在人類受體生殖系之等同位置處發現的胺基酸。目的在於增加人類化變異體(在框架區以外)之總體人類特徵,以進一步降低免疫原性風險。
使用內部開發之電腦模擬工具來預測成對VH及VL人類化變異體之VH-VL結構域取向(參見WO 2016/062734)。將結果與所預測之親代結合劑之VH-VL結構域取向進行比較,以選擇在幾何學上與原始抗體接近之框架組合。基本原理為偵測VH-VL界面區中可導致兩個結構域之配對發生破壞性變化、進而可對結合性質具有有害效應之可能的胺基酸交換。 1.10.2 受體框架及其改變形式之選擇
選擇以下受體框架: 8 :受體框架
   鼠類V區生殖系 移植變異體 人類受體V區生殖系之選擇 在移植後與人類V區生殖系之一致性(BLASTp):
FAP (212) VH IGHV1-18*01 VH1 IGHV1-46*01 87.8%
VH2 IGHV3-23*03 82.7%
FAP (212) VL IGKV3-2*01 VL1 IGKV3-11*01 85.1%
VL2 IGKV1-39*01 82.8%
CDR3後框架區係改自人類IGHJ生殖系IGHJ6*01/02 (YYYYYGMDVWGQGTTVTVSS ,SEQ ID NO:84)及人類IGKJ生殖系IGKJ4*01/02 (LTFGGGTKVEIK ,SEQ ID NO:85)。與受體框架相關之部分以粗體腳本來指示。
基於結構考慮因素,在位置H43 (Q>K)、H44 (G>S)、H48 (M>I)、H71 (R>I)、H73 (T>K)、H93 (A>T) [VH1]、H49 (S>G)、H71 (R>I)、H73 (N>K)、H78 (L>A)、H93 (A>T)、H94 (K>R) [VH2]、L36 (Y>F)、L43 (A>P)、L87 (Y>F) [VL1]及L36 (Y>F)、L42 (K>Q)、L43 (A>P)、L85 (T>M)、L87 (Y>F) [VL2]處引入自人類受體框架至親代結合劑中之胺基酸之回復突變。
此外,將位置H60 (N>A)、H64 (K>Q) [VH1]、H60 (N>A)、H61 (Q>D)、H62 (K>S)、H63 (F>V) [VH2]、L33 (I>L)、L34 (N>A) [VL1]及L27b (V>I)、L33 (I>L) [VL2]鑑別為有希望之正向突變候選者。所有位置均係以Kabat EU編號方案給出。 9 :變異體列表
變異體名稱 回復/ 正向突變 與人類V 區生殖系之一致性(BLASTp)
VH1G1a bM48I、bR71I、bA93T 84.7%
VH1G2a bQ43K、bG44S、bM48I、bR71I、bT73K、bA93T 81.6%
VH1G3a bM48I、fN60A、fK64Q、bR71I、bA93T 86.7%
VH2G1a bS49G、bA93T、bK94R 79.6%
VH2G2a bS49G、bR71I、bN73K、bL78A、bA93T、bK94R 76.5%
VH2G3a bS49G、fN60A、fQ61D、fK62S、fF63V、bA93T、bK94R 83.7%
VL1G1a bY36F、bY87F 83%
VL1G2a bY36F、bA43P、bY87F 81.9%
VL1G3a fI33L、fN34A、bY36F、bY87F 85.1%
VL2G1a bY36F、bY87F 80.8%
VL2G2a bY36F、bK42Q、bA43P、bT85M、bY87F 77.8%
VL2G3a fV27bI、fI33L、bY36F、bY87F 82.8%
注意:回復突變以b作為前綴,正向突變以f作為前綴,例如,bM48I係指在位置48處(Kabat)自甲硫胺酸至異白胺酸之回復突變(人類生殖系胺基酸回復至親代抗體胺基酸)。
基於受體框架之人類化FAP抗體之所得VH及VL結構域可參見下表10。 表10:人類化FAP抗體之VH及VL結構域之胺基酸序列
描述 序列 Seq ID No
VH1G1a QVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMD WVRQAPGQGLEWIGDIYPNTGGTIYNQKFKG RVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDY WGQGTTVTVSS 15
VH1G2a QVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMD WVRQAPGKSLEWIGDIYPNTGGTIYNQKFKG RVTMTIDKSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDY WGQGTTVTVSS 16
VH1G3a QVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMD WVRQAPGQGLEWIGDIYPNTGGTIYAQKFQG RVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDY WGQGTTVTVSS 17
VH2G1a EVQLLESGGGLVQPGGSLRLSCAASGYTLTDYNMD WVRQAPGKGLEWVGDIYPNTGGTIYNQKFKG RFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRFRGIHYAMDY WGQGTTVTVSS 18
VH2G2a EVQLLESGGGLVQPGGSLRLSCAASGYTLTDYNMD WVRQAPGKGLEWVGDIYPNTGGTIYNQKFKG RFTISIDKSKNTAYLQMNSLRAEDTAVYYCTRFRGIHYAMDY WGQGTTVTVSS 19
VH2G3a EVQLLESGGGLVQPGGSLRLSCAASGYTLTDYNMD WVRQAPGKGLEWVGDIYPNTGGTIYADSVKG RFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRFRGIHYAMDY WGQGTTVTVSS 20
VL1G1a EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFIN WFQQKPGQAPRLLIYGTSNRGS GIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYT FGGGTKVEIK 21
VL1G2a EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFIN WFQQKPGQPPRLLIYGTSNRGS GIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYT FGGGTKVEIK 22
VL1G3a EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFLA WFQQKPGQAPRLLIYGTSNRGS GIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYT FGGGTKVEIK 23
VL2G1a DIQMTQSPSSLSASVGDRVTITCRASESVDNYGLSFIN WFQQKPGKAPKLLIYGTSNRGS GVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQSNEVPYT FGGGTKVEIK 24
VL2G2a DIQMTQSPSSLSASVGDRVTITCRASESVDNYGLSFIN WFQQKPGQPPKLLIYGTSNRGS GVPSRFSGSGSGTDFTLTISSLQPEDFAMYFCQQSNEVPYT FGGGTKVEIK 25
VL2G3a DIQMTQSPSSLSASVGDRVTITCRASESIDNYGLSFLN WFQQKPGKAPKLLIYGTSNRGS GVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQSNEVPYT FGGGTKVEIK 26
1.10.3 新的人類化抗FAP Fab
基於VH及VL之新的人類化變異體,表現新的抗FAP Fab。 表11:以Fab形式表現之VH/VL組合之命名
   VL1G1a VL1G2a VL1G3a VL2G1a VL2G2a VL2G3a
VH1G1a P1AE1689               
VH1G2a P1AE1690 P1AE1693            
VH1G3a                  
VH2G1a                  
VH2G2a             P1AE1702   
VH2G3a                  
與抗FAP抗體4B9相比,分析新的基於純系212之人類化抗FAP變異體之親和力。此外,計算人類化變異體之人類性並量測其聚集起始溫度。 表12:如藉由Biacore所量測的純系212之人類化變異體之親和力
樣品ID ka (1/Ms) kd (1/s) KD (pM) T 1/2 (min) 與hu V生殖系之一致性 Tagg [℃]
P1AE1689 _Fab 4.43E+05 4.21E-05 95 274 83/84,7 72,7
P1AE1690 _Fab 5.51E+05 6.30E-05 114 183 83/81,7 75,4
P1AE1693 _Fab 5.30E+05 7.18E-05 135 161 81,9/81,7 75,4
P1AE1702 _Fab 5.02E+05 1.07E-04 213 108 77,8/76,5 71,6
4B9_Fab 7.47E+05 2.08E-04 279 55    60
抗體P1AE1689在下文中稱為FAP抗體1G1a。 1.11 FcRn/肝素結合及電腦模擬電荷分佈
在電腦模擬模型中計算PBS (pH 7.4)中抗體4B9及1G1a之電荷分佈。根據該模型,4B9具有較大之陽性區片,其有時與肝素結合增加相關。另一方面,1G1a顯示較大之負電荷區片,其可能指示弱的肝素相互作用。
該等預測藉由使用FcRn親和管柱及pH梯度以及肝素親和管柱及pH梯度對兩種抗體進行層析得以確認。WO 2015/140126揭示基於在FcRn親和層析管柱上所測定之滯留時間預測抗體之活體內半衰期之方法,而肝素結合與同細胞表面結構之非特異性相互作用相關。 實例2 靶向OX40及纖維母細胞活化蛋白(FAP)之雙特異性抗原結合分子之生成及產生 2.1 靶向OX40及纖維母細胞活化蛋白(FAP)之雙特異性抗原結合分子之生成
將編碼抗OX40抗體(如WO 2017/055398 A2中所闡述之純系49B4、8H9及CLC563,或如WO 2015/153513 A1中所闡述之MOXR0916)以及抗FAP抗體1G1a之可變重鏈及輕鏈結構域之cDNA與人類IgG1之相應恆定重鏈或輕鏈框內選殖至適宜表現質體中。藉由由MPSV核心啟動子及CMV增強子元件組成之嵌合MPSV啟動子來驅動重鏈及輕鏈之表現。表現盒亦在cDNA之3’端含有合成聚A信號。另外,質體載體含有複製起點(EBV OriP)以用於質體之游離維持。
以2+1、3+1及4+1格式製備雙特異性OX40-FAP抗體,其由兩個、三個或四個OX40結合部分與一個位於Fc之C末端的FAP結合臂組合組成( 1A 至圖 1c )。該等雙特異性OX40-FAP抗體包括如實例1中所闡述之抗FAP純系212 (1G1a)。為生成2+1、3+1及4+1抗原結合分子,使用隆凸-孔洞技術來達成異二聚化。將S354C/T366W突變引入第一重鏈HC1 (Fc隆凸重鏈)中,且將Y349C/T366S/L368A/Y407V突變引入第二重鏈HC2 (Fc孔洞重鏈)中。在2+1、3+1及4+1抗原結合分子中,如WO 2010/145792 Al中所闡述之CrossMab技術確保正確輕鏈配對。與雙特異性格式無關,在所有情形中,根據WO 2012/130831 A1中所闡述之方法,使用效應子沈默Fc結構域(P329G;L234A、L235A)來消除與Fcγ受體之結合。雙特異性分子之序列示於下 13 中。
所有基因均在由MPSV核心啟動子與CMV啟動子增強子片段組合組成之嵌合MPSV啟動子之控制下瞬時表現。表現載體亦含有用於在含有EBNA (艾伯斯坦-巴爾病毒(Epstein Barr Virus)核抗原)之宿主細胞中游離型複製之oriP區。 表13:雙特異性抗原結合分子之胺基酸序列
分子 序列 Seq ID No
P1AE6838 OX40 (49B4) × FAP (1G1a) (4+1)
OX40(49B4) VHCH1- OX40(49B4) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGQVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 86
OX40(49B4)輕鏈 DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYSSQPYTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 87
FAP(1G1a) VLCH1-輕鏈 EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC 88
OX40(49B4) VHCH1-OX40(49B4) VHCH1-Fc孔洞_PGLALA QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGQVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 89
P1AE8786 OX40(49B4) × FAP (1G1a) (3+1)
OX40(49B4) VHCH1- OX40(49B4) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGQVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 86
OX40(49B4)輕鏈 DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYSSQPYTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 87
FAP(1G1a) VLCH1-輕鏈 EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC 88
OX40(49B4) VHCH1- Fc孔洞_PGLALA QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 90
P1AE6840 OX40(49B4) × FAP (1G1a) (2+1)
OX40(49B4) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 91
OX40(49B4)輕鏈 DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYSSQPYTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 87
FAP(1G1a) VLCH1-輕鏈 EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC 88
OX40(49B4) VHCH1- Fc孔洞_PGLALA QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 90
P1AF7205 OX40 (CLC563) × FAP (1G1a_EPKSCD) (4+1) C末端交叉fab融合物
OX40(CLC563) VHCH1- OX40(CLC563) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 92
OX40(CLC563)輕鏈 EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 93
FAP(1G1a) VLCH1-輕鏈(EPKSCD) EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD 94
OX40(CLC563) VHCH1-OX40(CLC563) VHCH1-Fc孔洞_PGLALA EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 95
P1AF7217 OX40 (CLC563) × FAP (1G1a_EPKSCS) (4+1) C末端交叉fab融合物
OX40(CLC563) VHCH1- OX40(CLC563) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 92
OX40(CLC563)輕鏈 EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 93
FAP(1G1a) VLCH1-輕鏈(EPKSCS) EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCS 96
OX40(CLC563) VHCH1-OX40(CLC563) VHCH1-Fc孔洞_PGLALA EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 95
P1AE8874 OX40 (CLC563) × FAP (1G1a) (3+1) C末端交叉fab融合物
OX40(CLC563) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 97
OX40(CLC563)輕鏈 EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 93
FAP(1G1a) VLCH1-輕鏈 EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC 88
OX40(CLC563) VHCH1-OX40(CLC563) VHCH1-Fc孔洞_PGLALA EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 95
P1AF6454 OX40 (CLC563) × FAP (1G1a_EPKSCD) (3+1) C末端交叉fab融合物
OX40(CLC563) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 97
OX40(CLC563)輕鏈 EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 93
FAP(1G1a) VLCH1-輕鏈(EPKSCD) EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD 94
OX40(CLC563) VHCH1-OX40(CLC563) VHCH1-Fc孔洞_PGLALA EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 95
P1AF6455 OX40 (CLC563) × FAP (1G1a_EPKSCS) (3+1) C末端交叉fab融合物
OX40(CLC563) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 97
OX40(CLC563)輕鏈 EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 93
FAP(1G1a) VLCH1-輕鏈(EPKSCS) EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCS 96
OX40(CLC563) VHCH1-OX40(CLC563) VHCH1-Fc孔洞_PGLALA EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 95
P1AE8871 OX40 (CLC563) × FAP (1G1a) (2+1) C末端交叉fab融合物
OX40(CLC563) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 97
OX40(CLC563)輕鏈 EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 93
FAP(1G1a) VLCH1-輕鏈 EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC 88
OX40(CLC563) VHCH1 Fc孔洞_PGLALA EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALDVGAFDYWGQGALVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 98
P1AE8875 OX40 (MOXR0916) × FAP (1G1a) (3+1) C末端交叉fab融合物
OX40(MOXR0916) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL EVQLVQSGAEVKKPGASVKVSCKASGYTFTDSYMSWVRQAPGQGLEWIGDMYPDNGDSSYNQKFRERVTITRDTSTSTAYLELSSLRSEDTAVYYCVLAPRWYFSVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 99
OX40(MOXR0916)輕鏈 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLRSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPPTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 100
FAP(1G1a) VLCH1-輕鏈 EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC 88
OX40(MOXR0916) VHCH1- OX40(MOXR0916) VHCH1- Fc孔洞_PGLALA- EVQLVQSGAEVKKPGASVKVSCKASGYTFTDSYMSWVRQAPGQGLEWIGDMYPDNGDSSYNQKFRERVTITRDTSTSTAYLELSSLRSEDTAVYYCVLAPRWYFSVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGEVQLVQSGAEVKKPGASVKVSCKASGYTFTDSYMSWVRQAPGQGLEWIGDMYPDNGDSSYNQKFRERVTITRDTSTSTAYLELSSLRSEDTAVYYCVLAPRWYFSVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 101
P1AF4845 OX40 (MOXR0916) × FAP (1G1a_EPKSCD) (3+1) C末端交叉fab融合物
OX40(MOXR0916) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL EVQLVQSGAEVKKPGASVKVSCKASGYTFTDSYMSWVRQAPGQGLEWIGDMYPDNGDSSYNQKFRERVTITRDTSTSTAYLELSSLRSEDTAVYYCVLAPRWYFSVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 99
OX40(MOXR0916)輕鏈 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLRSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPPTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 100
FAP(1G1a) VLCH1-輕鏈(EPKSCD) EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD 94
OX40(MOXR0916) VHCH1- OX40(MOXR0916) VHCH1- Fc孔洞_PGLALA- EVQLVQSGAEVKKPGASVKVSCKASGYTFTDSYMSWVRQAPGQGLEWIGDMYPDNGDSSYNQKFRERVTITRDTSTSTAYLELSSLRSEDTAVYYCVLAPRWYFSVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGEVQLVQSGAEVKKPGASVKVSCKASGYTFTDSYMSWVRQAPGQGLEWIGDMYPDNGDSSYNQKFRERVTITRDTSTSTAYLELSSLRSEDTAVYYCVLAPRWYFSVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 101
P1AF4851 OX40 (MOXR0916) × FAP (1G1a_EPKSCS) (3+1) C末端交叉fab融合物
OX40(MOXR0916) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL EVQLVQSGAEVKKPGASVKVSCKASGYTFTDSYMSWVRQAPGQGLEWIGDMYPDNGDSSYNQKFRERVTITRDTSTSTAYLELSSLRSEDTAVYYCVLAPRWYFSVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 99
OX40(MOXR0916)輕鏈 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLRSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPPTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 100
FAP(1G1a) VLCH1-輕鏈(EPKSCS) EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCS 96
OX40(MOXR0916) VHCH1- OX40(MOXR0916) VHCH1- Fc孔洞_PGLALA- EVQLVQSGAEVKKPGASVKVSCKASGYTFTDSYMSWVRQAPGQGLEWIGDMYPDNGDSSYNQKFRERVTITRDTSTSTAYLELSSLRSEDTAVYYCVLAPRWYFSVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGEVQLVQSGAEVKKPGASVKVSCKASGYTFTDSYMSWVRQAPGQGLEWIGDMYPDNGDSSYNQKFRERVTITRDTSTSTAYLELSSLRSEDTAVYYCVLAPRWYFSVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 101
P1AE8872 OX40 (MOXR0916) × FAP (1G1a) (2+1) C末端交叉fab融合物
OX40(MOXR0916) VHCH1- Fc隆凸_PGLALA-FAP(1G1a) VHCL EVQLVQSGAEVKKPGASVKVSCKASGYTFTDSYMSWVRQAPGQGLEWIGDMYPDNGDSSYNQKFRERVTITRDTSTSTAYLELSSLRSEDTAVYYCVLAPRWYFSVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 99
OX40(MOXR0916)輕鏈 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLRSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPPTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 100
FAP(1G1a) VLCH1-輕鏈 EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC 88
OX40(MOXR0916) VHCH1- Fc孔洞_PGLALA EVQLVQSGAEVKKPGASVKVSCKASGYTFTDSYMSWVRQAPGQGLEWIGDMYPDNGDSSYNQKFRERVTITRDTSTSTAYLELSSLRSEDTAVYYCVLAPRWYFSVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 102
P1AF4852 OX40 (MOXR0916) × FAP (1G1a_EPKSCD) (2+1) C末端交叉fab融合物
OX40(MOXR0916) VHCH1- Fc隆凸_PGLALA-FAP(1G1a) VHCL EVQLVQSGAEVKKPGASVKVSCKASGYTFTDSYMSWVRQAPGQGLEWIGDMYPDNGDSSYNQKFRERVTITRDTSTSTAYLELSSLRSEDTAVYYCVLAPRWYFSVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 99
OX40(MOXR0916)輕鏈 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLRSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPPTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 100
FAP(1G1a) VLCH1-輕鏈(EPKSCD) EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD 94
OX40(MOXR0916) VHCH1- Fc孔洞_PGLALA EVQLVQSGAEVKKPGASVKVSCKASGYTFTDSYMSWVRQAPGQGLEWIGDMYPDNGDSSYNQKFRERVTITRDTSTSTAYLELSSLRSEDTAVYYCVLAPRWYFSVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 102
P1AF4858 OX40 (MOXR0916) × FAP (1G1a_EPKSCS) (2+1) C末端交叉fab融合物
OX40(MOXR0916) VHCH1- Fc隆凸_PGLALA-FAP(1G1a) VHCL EVQLVQSGAEVKKPGASVKVSCKASGYTFTDSYMSWVRQAPGQGLEWIGDMYPDNGDSSYNQKFRERVTITRDTSTSTAYLELSSLRSEDTAVYYCVLAPRWYFSVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 99
OX40(MOXR0916)輕鏈 DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLRSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPPTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 100
FAP(1G1a) VLCH1-輕鏈(EPKSCS) EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCS 96
OX40(MOXR0916) VHCH1- Fc孔洞_PGLALA EVQLVQSGAEVKKPGASVKVSCKASGYTFTDSYMSWVRQAPGQGLEWIGDMYPDNGDSSYNQKFRERVTITRDTSTSTAYLELSSLRSEDTAVYYCVLAPRWYFSVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 102
P1AE8873 OX40 (8H9) × FAP (1G1a) (3+1) C末端交叉fab融合物
OX40(8H9) VHCH1- Fc隆凸_PGLALA-FAP(1G1a) VHCL QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYGWMDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 103
OX40(8H9)輕鏈 DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYLTYSRFTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 104
FAP(1G1a) VLCH1-輕鏈 EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC 88
OX40(8H9) VHCH1- OX40(8H9) VHCH1- Fc孔洞_PGLALA QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYGWMDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGQVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYGWMDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 105
P1AE8870 OX40 (8H9) × FAP (1G1a) (2+1) C末端交叉fab融合物
OX40(8H9) VHCH1- Fc隆凸_PGLALA-FAP(1G1a) VHCL QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYGWMDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 103
OX40(8H9)輕鏈 DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYLTYSRFTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 104
FAP(1G1a) VLCH1-輕鏈 EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC 88
OX40(8H9) VHCH1- Fc孔洞_PGLALA QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCAREYGWMDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 106
為進行比較,製備以下分子: 分子P1AD4525或OX40 (49B4) × FAP (4B9) (4+1)雙特異性分子包含四個OX40 (49B4)結合Fab片段與一個FAP (4B9)結合部分之組合作為VH及VL結構域,其中該VH結構域融合在Fc隆凸鏈之C末端且該VL結構域融合在Fc孔洞鏈之C末端(對於OX40為四價且對於FAP為單價)。該分子包含有一條包含SEQ ID NO:113之胺基酸序列之重鏈、一條包含SEQ ID NO:114之胺基酸序列之重鏈及四條各自包含SEQ ID NO:115之胺基酸序列之輕鏈。分子P1AD3690係包含四個OX40 (49B4)結合Fab片段之非靶向OX40促效劑。此分子包含有兩條包含SEQ ID NO:116之胺基酸序列之重鏈及四條各自包含SEQ ID NO:115之胺基酸序列之輕鏈。該等分子之生成及產生闡述於WO 2017/060144 A1中。 2.2 靶向FAP及OX40之雙特異性抗原結合分子之產生
藉由使用聚乙烯亞胺(PEI)用哺乳動物表現載體共轉染懸浮生長之HEK293-EBNA細胞或使用eviFECT (Evitria AG, Switzerland)用哺乳動物表現載體共轉染懸浮生長之CHO K1細胞來產生該等分子。用相應的表現載體轉染細胞。
藉由用編碼4種不同肽鏈之表現載體瞬時轉染懸浮生長之HEK細胞來表現抗體構築體。根據細胞供應商之說明書,使用Maxiprep (Macherey-Nagel)抗體載體製劑、Expi293F™表現培養基(Gibco )、ExpiFectamine™ 293試劑(Gibco )及於Opti-MEM® 1×減血清培養基(Gibco®)中2-3百萬個活細胞/ml之初始細胞密度實施對Expi293F™細胞(Gibco )之轉染。在轉染後當天(第1天,轉染後18-22小時),將ExpiFectamine™ 293轉染增強劑1及ExpiFectamine™ 293轉染增強劑2添加至轉染培養物中。使轉染培養物在37℃下於8% CO2 之潮濕氣氛中振盪培育。在搖瓶或攪拌式發酵罐培養7天後,藉由以3000-5000 g離心20-30分鐘且經由0.22 μm過濾器過濾來收穫細胞培養上清液。
對於CHO K1細胞中之產生,使CHO K1細胞在eviGrow培養基(一種化學性界定之無動物組分、無血清培養基)(Evitria AG, Switzerland)中生長,且用eviFect (Evitria AG, Switzerland)轉染。轉染後,使細胞在37℃及5% CO2 下於eviMake (一種化學性界定之無動物組分、無血清培養基) (Evitria AG, Switzerland)中保持7天。7天後,收集培養上清液,以供藉由在Rotanta 460 RC中以最大速度離心45 min進行純化。將溶液無菌過濾(0.22 μm過濾器)且保持在4℃下。藉由蛋白質A-HPLC或蛋白質A-生物層干涉術(BLI)來測定培養基中分子之濃度。
藉由親和層析使用MabSelectSure-Sepharose™ (GE Healthcare, Sweden)層析自細胞培養上清液純化抗體。簡言之,將經無菌過濾之細胞培養上清液捕獲在經PBS緩衝液(10 mM Na2 HPO4 、1 mM KH2 PO4 、137 mM NaCl及2.7 mM KCl,pH 7.4)平衡之MabSelect SuRe樹脂上,用平衡緩衝液洗滌並用100 mM乙酸鈉(pH 3.0)溶析。在用1 M Tris pH 9.0中和後,藉由離子交換層析(Poros XS),利用平衡緩衝液(20 mM His, pH 5.5, 1,47 mS/cm)及溶析緩衝液(20 mM His, 500 mM NaCl, pH 5.5, 49.1 mS/cm) (梯度:至100%溶析緩衝液,60 CV)將聚集蛋白質與單體抗體種類分離。在一些情形中,隨後在20 mM組胺酸、140 mM NaCl (pH 6.0)中實施粒徑篩析層析(Superdex 200, GE Healthcare)。將單體蛋白質部分合併,且使用(例如) MILLIPORE Amicon Ultra (30KD MWCO)離心濃縮機濃縮(若需要)。將經純化之蛋白質儲存在-80℃下。使用Nanodrop分光光度計實施蛋白質量化,且藉由變性及還原條件下之CE-SDS以及分析型SEC進行分析。使用樣品等分試樣,藉由(例如) CE-SDS、粒徑篩析層析、質譜法及內毒素測定進行後續分析表徵。
藉由CE-SDS分析,在存在及不存在還原劑之情形下分析最終純化步驟後之雙特異性抗原結合分子之純度及分子量。根據製造商之說明書使用Caliper LabChip GXII系統(Caliper Lifescience)。
使用TSKgel G3000 SW XL分析型粒徑篩析管柱(Tosoh)在25℃下於25 mM磷酸鉀、125 mM氯化鈉、200 mM L-精胺酸單鹽酸鹽、0.02% (w/v) NaN3 (pH 6.7)運行緩衝液中來分析雙特異性抗原結合分子之聚集體含量。 表14:雙特異性OX40抗原結合分子之產量及品質
分子 單體[%] CE-SDS (非還原) [%] 產量[mg/l]
P1AE6838 OX40(49B4) × FAP(1G1a) 4+1 99 94 44
P1AE8786 OX40(49B4) × FAP(1G1a) 3+1 99 93 21
P1AE6840 OX40(49B4) × FAP(1G1a) 2+1 98 98 3.7
P1AF7205 OX40(CLC563) × FAP(1G1a_EPKSCD) 4+1 99 96 25
P1AF7217 OX40(CLC563) × FAP(1G1a_EPKSCS) 4+1 99 98 32
P1AE8874 OX40(CLC563) × FAP(1G1a) 3+1 99 100 35
P1AF6454 OX40(CLC563) × FAP(1G1a_EPKSCD) 3+1 98 98 122
P1AF6455 OX40(CLC563) × FAP(1G1a_EPKSCS) 3+1 100 100 19
P1AE8871 OX40(CLC563) × FAP(1G1a) 2+1 96 98 90
P1AE8875 OX40(MOXR0916) × FAP(1G1a) 3+1 98 97 9
P1AF4845 OX40(MOXR0916) × FAP(1G1a_EPKSCD) 3+1 86 100 0.2
P1AF4851 OX40(MOXR0916) × FAP(1G1a_EPKSCS) 3+1 99 100 0.5
P1AE8872 OX40(MOXR0916) × FAP(1G1a) 2+1 95 98 2.4
P1AF4852 OX40(MOXR0916) × FAP(1G1a_EPKSCD) 2+1 95 100 2.7
P1AF4858 OX40(MOXR0916) × FAP(1G1a_EPKSCS) 2+1 98 99 4.6
P1AE8873 OX40(8H9) × FAP(1G1a) 3+1 100 100 13
P1AE8870 OX40(8H9) × FAP(1G1a) 2+1 98 98 13
2.3 靶向OX40及纖維母細胞活化蛋白(FAP)之其他雙特異性抗原結合分子之生成-電荷區片變異體
類似於實例2.1,已製備4+1雙特異性格式之不同變異體,其由四個OX40結合部分與一個位於Fc結構域C末端之FAP結合交叉fab組合組成。在所有該等構築體中,抗OX40抗體之可變重鏈及輕鏈結構域對應於如WO 2017/055398 A2中所闡述之OX40純系49B4。FAP抗體1G1a之生成及製備闡述於實例1中。為生成4+1抗原結合分子,使用隆凸-孔洞技術來達成異二聚化。將S354C/T366W突變引入第一重鏈HC1 (Fc隆凸重鏈)中,且將Y349C/T366S/L368A/Y407V突變引入第二重鏈HC2 (Fc孔洞重鏈)中。此外,如WO 2010/145792 A1中所闡述之CrossMab技術確保正確輕鏈配對。與雙特異性格式無關,在所有情形中,已根據WO 2012/130831 Al中所闡述之方法,使用效應子沈默Fc (P329G;L234A、L235A)來消除與Fcγ受體之結合。雙特異性抗原結合分子之胺基酸序列示於表15中。
所有基因均在由MPSV核心啟動子與CMV啟動子增強子片段組合組成之嵌合MPSV啟動子之控制下瞬時表現。表現載體亦含有用於在含有EBNA (艾伯斯坦-巴爾病毒核抗原)之宿主細胞中游離型複製之oriP區。 表15:雙特異性抗原結合分子之胺基酸序列
分子 序列 Seq ID No  
P1AE9167 OX40 (49B4_K73E) × FAP (1G1a) (4+1)
OX40(49B4_K73E) VHCH1- OX40(49B4_K73E) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGQVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 107  
OX40(49B4_K73E)輕鏈 DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYSSQPYTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 87  
FAP(1G1a) VLCH1-輕鏈 EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC 88  
OX40(49B4_K73E) VHCH1-OX40(49B4_K73E) VHCH1-Fc孔洞_PGLALA QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGQVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 108  
P1AE9169 OX40 (49B4_K23T_K73E) × FAP (1G1a) (4+1)  
OX40(49B4_K23T_K73E) VHCH1- OX40(49B4_K23T_K73E) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL QVQLVQSGAEVKKPGSSVKVSCTASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGQVQLVQSGAEVKKPGSSVKVSCTASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 109  
OX40(49B4_K23T_K73E)輕鏈 DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYSSQPYTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 87  
FAP(1G1a) VLCH1-輕鏈 EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC 88  
OX40(49B4_K23T_K73E) VHCH1-OX40(49B4_K23T_K73E) VHCH1-Fc孔洞_PGLALA QVQLVQSGAEVKKPGSSVKVSCTASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGQVQLVQSGAEVKKPGSSVKVSCTASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 110  
P1AE9176 OX40 (49B4_K23E_K73E) × FAP (1G1a) (4+1)  
OX40(49B4_K23E_K73E) VHCH1- OX40(49B4_K23E_K73E) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL QVQLVQSGAEVKKPGSSVKVSCEASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGQVQLVQSGAEVKKPGSSVKVSCEASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 111  
OX40(49B4_K23E_K73E)輕鏈 DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYSSQPYTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 87  
FAP(1G1a) VLCH1-輕鏈 EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC 88  
OX40(49B4_K23E_K73E) VHCH1-OX40(49B4_K23E_K73E) VHCH1-Fc孔洞_PGLALA QVQLVQSGAEVKKPGSSVKVSCEASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGQVQLVQSGAEVKKPGSSVKVSCEASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 112  
P1AF6456 OX40 (49B4_K23E_K73E) × FAP (1G1a_EPKSCD) (4+1)  
OX40(49B4_K23E_K73E) VHCH1- OX40(49B4_K23E_K73E) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL QVQLVQSGAEVKKPGSSVKVSCEASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGQVQLVQSGAEVKKPGSSVKVSCEASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 111  
OX40(49B4_K23E_K73E)輕鏈 DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYSSQPYTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 87  
FAP(1G1a) VLCH1-輕鏈(EPKSCD) EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD 94  
OX40(49B4_K23E_K73E) VHCH1-OX40(49B4_K23E_K73E) VHCH1-Fc孔洞_PGLALA QVQLVQSGAEVKKPGSSVKVSCEASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGQVQLVQSGAEVKKPGSSVKVSCEASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 112  
P1AF6457 OX40 (49B4_K23E_K73E) × FAP (1G1a_EPKSCS) (4+1)  
OX40(49B4_K23E_K73E) VHCH1- OX40(49B4_K23E_K73E) VHCH1- Fc隆凸_PGLALA- FAP(1G1a) VHCL QVQLVQSGAEVKKPGSSVKVSCEASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGQVQLVQSGAEVKKPGSSVKVSCEASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPCRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSGGSGGQVQLVQSGAEVKKPGASVKVSCKASGYTLTDYNMDWVRQAPGQGLEWIGDIYPNTGGTIYNQKFKGRVTMTIDTSTSTVYMELSSLRSEDTAVYYCTRFRGIHYAMDYWGQGTTVTVSSASVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 111  
OX40(49B4_K23E_K73E)輕鏈 DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYSSQPYTFGQGTKVEIKRTVAAPSVFIFPPSDRKLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 87  
FAP(1G1a) VLCH1-輕鏈(EPKSCS) EIVLTQSPATLSLSPGERATLSCRASESVDNYGLSFINWFQQKPGQAPRLLIYGTSNRGSGIPARFSGSGSGTDFTLTISSLEPEDFAVYFCQQSNEVPYTFGGGTKVEIKSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCS 96  
OX40(49B4_K23E_K73E) VHCH1-OX40(49B4_K23E_K73E) VHCH1-Fc孔洞_PGLALA QVQLVQSGAEVKKPGSSVKVSCEASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCGGGGSGGSGGQVQLVQSGAEVKKPGSSVKVSCEASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAREYYRGPYDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVEDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDEKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVCTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG 112  
2.4 靶向FAP及OX40之雙特異性抗原結合分子之產生(電荷區片變異體)
藉由用編碼4種不同肽鏈之表現載體瞬時轉染懸浮生長之HEK細胞來表現抗體。根據細胞供應商之說明書,使用MaxiPREP (Qiagen)抗體載體製劑、FreestyleTM F17培養基(Invitrogen, USA)、PEIpro®轉染試劑(Polyscience Europe GmbH)及於無血清FreeStyle 293表現培養基(Invitrogen)中1-2百萬個活細胞/ml之初始細胞密度來實施對HEK293-F細胞(Invitrogen)之轉染。在搖瓶或攪拌式發酵罐中培養7天後,藉由以14000×g離心30分鐘且經由0.22  m過濾器過濾來收穫細胞培養上清液。
藉由親和層析使用MabSelectSure-Sepharose™ (GE Healthcare, Sweden)層析自細胞培養上清液純化抗體。簡言之,將經無菌過濾之細胞培養上清液捕獲在經PBS緩衝液(10 mM Na2 HPO4 、1 mM KH2 PO4 、137 mM NaCl及2.7 mM KCl,pH 7.4)平衡之MabSelectSure樹脂上,用平衡緩衝液洗滌並用25 mM檸檬酸鹽(pH 3.0)溶析。在用1 M Tris緩衝液pH 9.0中和後,藉由於20 mM組胺酸、140 mM NaCl (pH 6.0)中進行粒徑篩析層析(Superdex 200, GE Healthcare)使聚集蛋白質與單體抗體種類分離。將單體蛋白質部分合併,使用(例如) MILLIPORE Amicon Ultra (30KD MWCO)離心濃縮機濃縮(若需要)並儲存在-80℃下。使用樣品等分試樣,藉由(例如) CE-SDS、粒徑篩析層析、質譜法及內毒素測定進行後續分析表徵。 表16:雙特異性OX40抗原結合分子之產量及品質
分子 單體[%] CE-SDS (非還原) [%] 產量[mg/l]
P1AE9167 OX40(49B4_K73E) × FAP(1G1a) 4+1 99 92 2.7
P1AE9169 OX40(49B4_K23T_K73E) × FAP(1G1a) 4+1 95 98 6.7
P1AE9176 OX40(49B4_K23E_K73E) × FAP(1G1a) 4+1 99 99 32
P1AF6456 OX40(49B4_K23E_K73E) × FAP(1G1a_EPKSCD) 4+1 93 94 2.6
P1AF6457 OX40(49B4_K23E_K73E) × FAP(1G1a_EPKSCS) 4+1 98 96 0.9
實例3 靶向OX40及FAP之雙特異性抗原結合分子之表徵 3.1 FAP靶向之抗OX40雙特異性抗原結合分子與原初人類PBMC及活化人類PBMC之結合
藉由聚蔗糖密度梯度離心分離人類PBMC。自蘇黎世獻血中心( Zürich blood donation center)獲得膚色血球層。為分離新鮮外周血單核細胞(PBMC),用相同體積之DPBS (Gibco by Life Technologies,目錄號14190 326)稀釋膚色血球層。向50 mL聚丙烯離心管(TPP,目錄號91050)中供應15 mL Histopaque 1077 (SIGMA Life Science,目錄號10771,聚蔗糖及泛影酸鈉,調整至1.077 g/mL之密度),且使膚色血球層溶液分層在Histopaque 1077上方。使管在室溫及低加速度下以400 × g無間斷地離心30 min。之後,自界面收集PBMC,用DPBS洗滌三次且冷凍用於後續使用。使PBMC解凍,洗滌且重新懸浮於AIM-V培養基(ThermoFischer,目錄號12055091)中。PBMC在未受刺激之情形下使用(在靜息人類PBMC上結合),或刺激其以在T細胞之細胞表面上接受強的人類Ox40表現(在活化之人類PBMC上結合)。因此,於經[2  g/mL]抗人類CD3 (純系OKT3)及[2  g/mL]抗人類CD28 (純系CD28.2)預包覆2小時之6孔組織培養板中,使解凍之PBMC於Aim-V培養基中在37℃/5% CO2 下培養三天。
為進行偵測,將OX40原初人類PBMC及活化之人類PBMC混合。為能夠區分原初人類PBMC與活化之人類PBMC,在結合分析之前使用eFluor670細胞增殖染料(eBioscience,目錄號65-0840-85)標記原初細胞。接著將1 × 105 個eFluor670標記之原初人類PBMC與未經標記之活化人類PBMC之1:1混合物添加至圓底96孔板(TPP,目錄號92097)之每一孔中,且實施結合分析。
首先將細胞用DPBS中之Zombie Aqua可固定活力染料(Biolegend,目錄號423102)染色10 min,之後於黑暗中在4℃下於50 µL/孔含有滴定之抗OX40雙特異性抗體構築體之FACS緩衝液中培育90分鐘。在用過量的FACS緩衝液洗滌三次後,於黑暗中在4℃下使細胞於25 µL/孔含有螢光標記之抗人類CD4 (純系OKT-4,小鼠IgG2b,BioLegend,目錄號317434)、抗人類CD8 (純系RPA-T8,小鼠IgG1k,BioLegend,目錄號301042)及異硫氰酸螢光黃(FITC)結合之AffiniPure抗人類IgG Fcγ片段特異性山羊IgG F(ab`)2片段(Jackson ImmunoResearch,目錄號109-096-098)之混合物的FACS緩衝液中染色30分鐘。最後使樣品重新懸浮於20 µL/孔FACS緩衝液中,且在同一天使用iQue細胞篩選器及ForeCyt軟體(Sartorius)獲取。
2A2C 中可見,四價格式(4+1)之雙特異性OX40 (49B4) × FAP抗原結合分子較三價(3+1)或二價(2+1)格式更佳地結合至OX40 (49B4純系之親合力)。隨著OX40在T細胞上之天然盛行,雙特異性格式與活化CD4 T細胞之結合強於CD8 T細胞,且不與靶標陰性細胞結合(靜息CD4及CD8 T細胞,圖2B及2D)。如 3A3C 中所示,包含純系8H9之雙特異性抗原結合分子以亞奈莫耳親和力結合至OX40陽性細胞且強度與三價及二價抗體相當。隨著OX40在T細胞上之天然盛行,構築體與活化CD4 T細胞之結合強於CD8 T細胞,且不與靶標陰性細胞結合(靜息CD4及CD8 T細胞,圖3B及3D)。在 4A4C 中,已顯示,包含純系MOX0916之雙特異性抗體以亞奈莫耳親和力結合至OX40陽性細胞,其強度與三價或二價抗體相當。隨著OX40在T細胞上之天然盛行,構築體與活化CD4 T細胞之結合強於CD8 T細胞,且不與靶標陰性細胞結合(靜息CD4及CD8 T細胞,參見圖4B及4D)。如 5A 5C 中所示,包含純系CLC-563之雙特異性抗體以奈莫耳親和力結合至OX40陽性細胞,其強度與三價及二價抗體相當。隨著OX40在T細胞上之天然盛行,構築體與活化CD4 T細胞之結合強於CD8 T細胞,且不與靶標陰性細胞結合(靜息CD4及CD8 T細胞,參見圖5B及5D)。
6A6C 中,已顯示,與親代抗體49B4相比,包含基於49B4胺基酸變異體之純系之所有雙特異性抗原結合分子均顯示與OX40陽性細胞之結合略有改良。隨著OX40在T細胞上之天然盛行,構築體與活化CD4 T細胞之結合強於CD8 T細胞,且不與靶標陰性細胞結合(靜息CD4及CD8 T細胞,參見圖6B及6D)。
在另一實驗中,測試靶向OX40及FAP之雙特異性抗原結合分子與不同的C末端變異體之結合。使用解凍、洗滌且重新懸浮於含有(10% (v/v)胎牛血清(FCS,SIGMA,目錄號F4135)之RPMI培養基(Gibco,目錄號72400-021)中之PBMC。刺激PBMC以在T細胞之細胞表面上接受強的人類Ox40表現(在活化之人類PBMC上結合)。因此,於經[2  g/mL]抗人類CD3 (純系OKT3)及[2  g/mL]抗人類CD28 (純系CD28.2)預包覆2小時之6孔組織培養板中,使解凍之PBMC於含有10% FCS之RPMI培養基中在37℃/5% CO2 下培養三天。為進行偵測,將2 × 105 個活化之人類PBMC添加至圓底96孔板(TPP,目錄號92097)之每一孔中,且實施結合分析。首先將細胞用DPBS中之LIVE/DEAD™可固定Aqua死細胞染色劑(Molecular probes,目錄號L34957)染色20 min,在一個洗滌步驟(200 µL 4℃ FACS緩衝液)後,於50 µL/孔含有滴定之抗OX40雙特異性抗原結合分子之FACS緩衝液中於黑暗中在4℃下培育90分鐘。在用過量的FACS緩衝液洗滌一次後,於黑暗中在4℃下使細胞於50 µL/孔含有螢光標記之抗人類CD4 (純系A161A1,BioLegend,目錄號357406)、抗人類CD8 (純系SK1,BioLegend,目錄號344742)及藻紅素(PE)結合之AffiniPure抗人類IgG Fcγ片段特異性山羊IgG F(ab`)2片段(Jackson ImmunoResearch,目錄號109-116-098)之混合物的FACS緩衝液中染色30分鐘。最後使樣品重新懸浮於100 µL/孔FACS緩衝液中,且在同一天使用BD Fortessa運行之FACS Diva軟體獲取。
34A34F 中可見,所測試之所有雙特異性FAP-OX40雙特異性抗體均結合至活化CD4 T細胞。隨著OX40在T細胞上之天然盛行,雙特異性格式與活化CD4 T細胞之結合強於CD8 T細胞( 34A 34C 34E34B 34D34F )。對於所測試之所有化合物,D及S變異體均顯示出相當之結合性質(比較每一圖中之空心對實心符號)。 3.2 與表現人類FAP之腫瘤細胞之結合
使用表現人類纖維母細胞活化蛋白(huFAP)之NIH/3T3-huFAP純系19細胞來測試與細胞表面FAP之結合。藉由用表現載體pETR4921轉染小鼠胚胎纖維母細胞NIH/3T3細胞株(ATCC CRL-1658)以在1.5μg/mL嘌呤黴素選擇下表現huFAP來產生此細胞株。使用表現NucLight Red螢光蛋白之A549 NucLight™ Red細胞(Essen Bioscience,目錄號4491)測試與OX40陰性FAP陰性腫瘤細胞結合之缺乏,該NucLight Red螢光蛋白受限於細胞核,以容許與未經標記之人類FAP陽性NIH/3T3-huFAP純系19細胞分開。遵循標準Essen方案,在存在8 µg/ml聚凝胺之情形下,用Essen CellPlayer NucLight Red慢病毒(Essen Bioscience,目錄號4476;EF1α,嘌呤黴素)以3 (TU/細胞)之MOI轉導親代A549 (ATCC CCL-185)。此得到≥70%之轉導效率。或者,使用人類子宮頸腺癌細胞株HeLa細胞株(ATCC,CCL2)測試與OX40陰性FAP陰性腫瘤細胞結合之缺乏。使用無酶細胞解離緩衝液進行剝離,以保存胰蛋白酶敏感性表面蛋白質。
將5 × 104 個未經標記之NIH/3T3-huFAP純系19細胞及A549 NucLight™ Red細胞於FACS緩衝液中之混合物添加至圓底96孔板(TPP,目錄號92097)之每一孔中,且實施結合分析。首先將細胞用DPBS中之Zombie Aqua可固定活力染料(Biolegend,目錄號423102)染色10 min,之後於黑暗中在4℃下於50 µL/孔含有滴定之抗OX40雙特異性抗體構築體之FACS緩衝液中培育75分鐘。之後,將細胞用200 µL 4℃ FACS緩衝液洗滌三次且藉由短暫渦旋重新懸浮。將細胞用25 µL/孔含有異硫氰酸螢光黃(FITC)結合之AffiniPure抗人類IgG Fcγ片段特異性山羊IgG F(ab`)2片段(Jackson ImmunoResearch,目錄號109-096-098)之4℃冷的二級抗體溶液進一步染色,且於黑暗中在4℃下培育30分鐘。最後使樣品重新懸浮於20 µL/孔FACS緩衝液中,且在同一天使用iQue細胞篩選器及ForeCyt軟體(Sartorius)獲取。
2E 3E 4E 5E6E 中可見,共有FAP (1G1a)抗原結合結構域之所有雙特異性抗原結合分子與人類FAP陽性纖維母細胞(NIH/3T3-huFAP-純系19)之結合均相當。僅在圖3E中顯示,當純系8H9併入在雙特異性抗原結合分子中時,儘管共有相同的FAP (1G1a)抗原結合結構域,與人類FAP陽性纖維母細胞(NIH/3T3-huFAP-純系19)之結合略有增強。未觀察到與靶標陰性細胞之結合(A549-NLR細胞,圖2F、3F、4F、5F及6F)。
在另一實驗中,將2 × 105 個NIH/3T3-huFAP純系19細胞及HeLa細胞於FACS緩衝液中之混合物添加至圓底96孔板(TPP,目錄號92097)之每一孔中,且實施結合分析。首先將細胞用DPBS中之LIVE/DEAD™可固定Aqua死細胞染色劑(Molecular probes,目錄號L34957)染色20 min,在一個洗滌步驟(200 µL 4℃ FACS緩衝液)後,於50 µL/孔含有滴定之抗OX40雙特異性抗體構築體之FACS緩衝液中於黑暗中在4℃下培育75分鐘。之後,將細胞在4℃下用200 µL FACS緩衝液洗滌一次且藉由短暫渦旋重新懸浮。將細胞用50 µL/孔含有藻紅素(PE)結合之AffiniPure抗人類IgG Fcγ片段特異性山羊IgG F(ab`)2片段(Jackson ImmunoResearch,目錄號109-116-098)之4℃冷的二級抗體溶液進一步染色,且於黑暗中在4℃下培育30分鐘。最後使樣品重新懸浮於100 µL/孔FACS緩衝液中,且在同一天使用BD Fortessa運行之FACS Diva軟體獲取。
所有共有FAP (1G1a)抗原結合結構域但包含C末端S或D變異體之雙特異性抗原結合分子與人類FAP陽性纖維母細胞(NIH/3T3-huFAP-純系19)之結合均相當,此意味著變異體對與FAP之結合無影響(參見下表17中之資料)。當靶向陰性細胞(HeLa細胞)時,未觀察到結合。 3.3 對雙特異性抗原結合分子之細胞結合性質之彙總
為評估FAP靶向之OX40抗體之結合性質,使人類FAP陰性腫瘤細胞(A549- NLR或HeLa)、FAP陽性纖維母細胞(NIH/3T3-huFAP-純系19)、OX40陽性活化PBMC (活化CD4及CD8 T細胞)以及OX40陰性靜息PBMC (靜息CD4及CD8 T細胞)與測試抗體之指示連續稀釋液一起培育,接著藉由針對人類Fcγ之螢光標記之2級抗體進行偵測。
所有FAP靶向之OX40抗原結合分子均有效地結合至表現人類FAP之靶細胞且不與靶標陰性細胞結合。此有望在患者中轉化為直接腫瘤靶向及分子富集。隨著OX40在T細胞上之天然盛行,所有構築體與活化CD4 T細胞之結合均強於CD8 T細胞。包含純系49B4之雙特異性抗原結合分子以四價格式(4+1)較以三價(3+1)或二價(2+1)格式更佳地結合至OX40 (純系之親合力;參見圖2A及2C)。與四價格式之親代抗體相比,所有基於49B4胺基酸變異體之雙特異性抗原結合分子均顯示與OX40陽性細胞之結合略有改良(參見圖6A及6C)。純系8H9 (圖3A及3C)及MOX0916 (圖4A及4C)以亞奈莫耳親和力結合,而純系CLC-563 (圖5A及5C)以奈莫耳親和力結合至OX40陽性細胞,其強度與三價及二價格式相當。對於所測試之所有C末端變異體,D及S變異體均顯示相當之結合性質。所有雙特異性抗原結合分子之FAP結合均在相當之奈莫耳範圍內。
與活化之人類CD4 T細胞及FAP陽性腫瘤細胞結合之EC50 值彙總於表17中。 表17:FAP靶向之OX40抗原結合分子與細胞表面人類FAP及人類Ox40結合之EC50 值(在CD4+ T細胞上)
分子ID 抗Ox40純系 格式 Ox40 FAP
EC50 [nM]
P1AE6838 49B4 4+1 0.03 2.63
P1AE9167 49B4 AA變異體K73E 4+1 0.11 2.51
P1AE9169 49B4 AA變異體K23T_K73E 4+1 0.12 2.47
P1AE9176 49B4 AA變異體K23E_ K73E 4+1 0.20 2.97
P1AE8786 49B4 3+1 17.08 2.91
P1AE6840 49B4 2+1 73.57 2.26
P1AE8873 8H9 3+1 0.11 1.01
P1AE8870 8H9 2+1 0.17 0.95
P1AE8875 MOX0916 3+1 0.69 2.70
P1AE8872 MOX0916 2+1 0.90 1.78
P1AE8874 CLC-563 3+1 3.62 2.52
P1AE8871 CLC-563 2+1 3.19 2.51
P1AF6455 CLC-563, S變異體 3+1 1.47 1.71
P1AF6454 CLC-563, D變異體 3+1 1.64 1.22
P1AF7217 CLC-563, S變異體 4+1 1.46 1.33
P1AF7205 CLC-563, D變異體 4+1 2.11 1.04
P1AF6457 49B4 AA變異體K23E_ K73E, S變異體 4+1 0.05 0.69
P1AF6456 49B4 AA變異體K23E_ K73E, D變異體 4+1 0.07 0.36
3.4 靶向OX40及FAP之雙特異性抗原結合分子之生物物理學及生物化學表徵 3.4.1 熱穩定性之測定
藉由動態光散射(DLS)且藉由使用Optim 2儀器(Avacta Analytical, UK)施加溫度斜坡監測溫度依賴性內在蛋白螢光來監測實例2中所製備的FAP靶向之OX40抗原結合分子之熱穩定性。將10 µg蛋白質濃度為1 mg/ml之經過濾之蛋白質樣品一式兩份施加至Optim 2儀器。使溫度以0.1°C/min自25℃斜升至85℃,收集350 nm/330 nm下之螢光強度比率及266 nm下之散射強度。結果示於表18中。實例2中所產生的所有測試FAP-Ox40分子之聚集溫度(Tagg )均優於如WO 2017/060144 A1中所闡述之先前所闡述OX40 (49B4) × FAP (4B9) (4+1)雙特異性分子(分子P1AD4524)。 3.4.2 疏水性相互作用層析(HIC)
藉由將20 μg樣品注射至經25 mM磷酸鈉、1.5 M硫酸銨(pH 7.0)平衡之HIC-Ether-5PW (Tosoh)管柱上來測定表觀疏水性。在60分鐘內利用0至100%緩衝液B (25 mM磷酸鈉,pH 7.0)之線性梯度實施溶析。將滯留時間與疏水性已知之蛋白質標準品進行比較。對於含有純系8H9以及純系49B4之帶電區片變異體之FAP × OX40雙特異性抗原結合分子,獲得高HIC滯留時間。已顯示增加之非特異性相互作用與高HIC滯留時間相關。 3.4.3 FcRn親和層析
如所闡述,使FcRn表現、純化及生物素化(Schlothauer等人,MAbs 2013, 5(4), 576-86)。為進行偶合,將所製備之受體添加至鏈黴抗生物素蛋白-sepharose(GE Healthcare)中。將所得FcRn-sepharose基質裝填於管柱外殼中。利用20 mM 2-(N-嗎啉)-乙磺酸(MES)及140 mM NaCl (pH 5.5) (溶析液A)以0.5 ml/min流速使管柱平衡。以1:1之體積比用溶析液A稀釋30 μg抗體樣品,且施加至FcRn管柱。用5個管柱體積之溶析液A洗滌管柱,之後用35個管柱體積之20%至100% 20 mM Tris/HCl及140 mM NaCl (pH 8.8) (溶析液B)之線性梯度進行溶析。利用管柱溫箱在25℃下實施分析。藉由連續量測280 nm下之吸光度來監測溶析曲線。將滯留時間與親和力已知之蛋白質標準品進行比較。 3.4.4 肝素親和層析
藉由將30-50 μg樣品注射至經50 mM Tris (pH 7.4)平衡之TSKgel肝素-5PW (Tosoh)管柱上來測定肝素親和力。在37分鐘內利用0至100%緩衝液B (50 mM Tris, 1 M NaCl, pH 7.4 mM)之線性梯度實施溶析。將滯留時間與親和力已知之蛋白質標準品進行比較。 表18:所測試之FAP × OX40雙特異性抗體之生物物理學及生物化學性質
樣品 熱穩定性DLS Tagg 表觀疏水性 FcRn親和力 肝素親和力
P1AE8870 OX40 (8H9) × FAP (1G1a) 2+1 57.6 0.83 1.81 0.62
P1AE8872 OX40 (MOXR0916) × FAP (1G1a) 2+1 67.5 0.31 0.15 0.58
P1AE8873 OX40 (8H9) × FAP (1G1a) 3+1 56.9 0.89 2.02 0.65
P1AE8874 OX40 (CLC563) × FAP (1G1a) 3+1 66.2 0.15 -0.14 0.51
P1AE8875 OX40 (MOXR0916) × FAP (1G1a) 3+1 67.4 0.32 -0.22 0.6
P1AE9176 OX40 (49B4_K26E_K73E) × FAP (1G1a) 4+1 62 0.61 -0.48 0.5
P1AF7217 OX40 (CLC563) × FAP (1G1a_EPKSCS) 4+1 66 0.14 -0.3 0.5
P1AF7205 OX40 (CLC563) × FAP (1G1a_EPKSCD) 4+1 67 0.14 -0.3 0.5
P1AF6455 OX40 (CLC563) × FAP (1G1a_EPKSCS) 3+1 67 0.14 -0.1 0.5
P1AF6454 OX40 (CLC563) × FAP (1G1a_EPKSCD) 3+1 66 0.14 -0.1 0.5
P1AF6457 OX40 (49B4_K23E_K73E) × FAP (1G1a_EPKSCS) 4+1 62 0.61 -0.5 0.5
P1AF6456 OX40 (49B4_K23E_K73E) × FAP (1G1a_EPKSCD) 4+1 62 0.61 -0.5 0.5
P1AD4524 OX40 (49B4) × FAP (4B9) (4+1) 48 0.56 0 0.68
3.5 在應激後藉由表面電漿子共振(SPR)表徵結合效能
使用Biacore T200儀器 (GE Healthcare),藉由表面電漿子共振量化由在37℃、pH 7.4下及在40℃、pH 6下培育分子14天所引起的結合效能之降低。使用在-80℃及pH 6下儲存之樣品作為參照。參照樣品及在40℃下受應激之樣品係在20 mM組胺酸緩衝液、140 mM NaCl (pH 6.0)中,且在37℃下受應激之樣品係在PBS緩衝液(pH 7.4)中,所有樣品之濃度均為1.0 mg/ml。在應激期(14天)後,將PBS緩衝液中之樣品透析回至20 mM組胺酸緩衝液、140 mM NaCl (pH 6.0)中以供進一步分析。
所有SPR實驗均係在25℃下利用HBS-P+緩衝液(10 mM HEPES、150 mM NaCl pH 7.4、0.05%表面活性劑P20)作為運行及稀釋緩衝液來實施。將生物素化之人類OX40及FAP以及生物素化之抗hu IgG (Capture Select,Thermo Scientific,編號7103262100)固定在S系列感測器晶片SA (GE Healthcare,編號29104992)上,產生至少1000個共振單位(RU)之表面密度。以5 μl/min之流速注射濃度為2 μg/ml之FAP-OX40雙特異性抗體達30 s,且監測解離120 s。藉由注射10 mM甘胺酸緩衝液(pH 1.5)達60 s使表面再生。藉由減去空白注射且藉由減去自空白對照流動槽獲得的反應來校正本體折射率差異。為進行評估,取注射結束後5秒之結合反應。
為使結合信號正規化,將OX40及FAP結合除以抗hu IgG反應(在經固定之抗hu IgG抗體上捕獲FAP × OX40雙特異性抗體時獲得的信號(RU))。藉由將每一溫度應激樣品與相應非應激樣品進行對比來計算相對結合活性。如表19中所示,與如WO 2017/060144 A1中所闡述之先前所闡述之FAP-OX40雙特異性抗體相比,實例2中所製備的所有FAP × OX40雙特異性抗體在應激時均顯示與OX40及FAP之結合改良。 表19:在pH 6/40℃或pH 7.4/37℃下培育2週後,FAP-OX40雙特異性抗體對人類Ox40及FAP之結合活性
樣品 結合活性[%]
在pH 6.0/40℃下2週 在pH 7.4/37°C下2週
FAP Ox40 FAP Ox40
P1AE8870 OX40 (8H9) × FAP (1G1a) 2+1 > 90 > 90 > 90 > 90
P1AE8872 OX40 (MOXR0916) × FAP (1G1a) 2+1 > 90 > 90 > 90 > 90
P1AE8873 OX40 (8H9) × FAP (1G1a) 3+1 > 90 > 90 > 90 > 90
P1AE8874 OX40 (CLC563) × FAP (1G1a) 3+1 > 90 > 90 > 90 > 90
P1AE8875 OX40 (MOXR0916) × FAP (1G1a) 3+1 > 90 > 90 > 90 > 90
P1AE9176 OX40 (49B4_K26E_K73E) × FAP (1G1a) 4+1 > 90 > 90 > 90 > 90
P1AF7217 OX40 (CLC563) × FAP (1G1a_EPKSCS) 4+1 98 100 94 100
P1AF7205 OX40 (CLC563) × FAP (1G1a_EPKSCD) 4+1 98 100 94 100
P1AF6455 OX40 (CLC563) × FAP (1G1a_EPKSCS) 3+1 98 100 96 100
P1AF6454 OX40 (CLC563) × FAP (1G1a_EPKSCD) 3+1 99 100 95 99
P1AF6457 OX40 (49B4_K23E_K73E) ×  FAP (1G1a_EPKSCS) 4+1 99 99 99 99
P1AF6456 OX40 (49B4_K23E_K73E) × FAP (1G1a_EPKSCD) 4+1 99 100 99 100
P1AD4524 OX40 (49B4) × FAP (4B9) (4+1) 約90 > 90 約90 > 90
實例4 FAP靶向之抗人類OX40抗原結合分子之功能性質 4.1 表現人類OX40及報導基因NFĸB-螢光素酶之HeLa細胞
OX40與其配位體之促效性結合經由活化核因子κ B (NFκB)而誘導下游信號傳導(A. D. Weinberg等人,J. Leukoc.Biol. 2004, 75(6), 962-972)。生成重組報導細胞株HeLa_hOx40_NFkB_Luc1,以在其表面上表現人類OX40。另外,其含有報導質體,該質體含有處於NFκB敏感性增強子區段控制下之螢光素酶基因。OX40觸發誘導NFκB之劑量依賴性活化,其易位至細胞核,在此處其結合在報導質體之NFκB敏感性增強子上,以增加螢光素酶蛋白之表現。螢光素酶催化螢光素氧化,從而產生發光之氧化螢光素。此可藉由光度計來量化。
因此,對各種FAP靶向之OX40抗原結合分子在HeLa_hOx40_NFkB_Luc1報導細胞中誘導NFκB活化之能力進行分析以作為生物活性之量度。
吾人測試呈二價、三價及四價FAP靶向交叉Fab格式之所選FAP靶向之OX40抗原結合分子單獨及在藉由二級抗體或FAP+ 纖維母細胞細胞株將構築體超交聯之情形下之NFκB活化能力。使用表現人類纖維母細胞活化蛋白(huFAP)之NIH/3T3-huFAP純系19來測試細胞表面FAP對FAP結合抗體之交聯。藉由用表現載體pETR4921轉染小鼠胚胎纖維母細胞NIH/3T3細胞株(ATCC CRL-1658)以在1.5μg/mL嘌呤黴素選擇下表現huFAP來產生此細胞株。
使黏附型HeLa_hOX40_NFkB_Luc1細胞以0.2 × 105 個細胞/孔之細胞密度培養隔夜,且利用含有滴定之抗OX40抗原結合分子之分析培養基刺激6小時。為測試由二級抗體所產生的超交聯之效應,以1:2比率(一級抗體對二級抗體)添加25  L/孔含有二級抗體抗人類IgG Fcγ片段特異性山羊IgG F(ab`)2片段(Jackson ImmunoResearch, 109-006-098)之培養基。為測試由細胞表面FAP結合所產生的超交聯之效應,使25  L/孔含有FAP+ 腫瘤細胞(NIH/3T3-huFAP純系19)之培養基以3:1比率共培養(每孔中FAP+ 腫瘤細胞為報導細胞之三倍)。
培育後,吸出分析上清液且將板用DPBS洗滌兩次。根據製造商說明書,使用螢光素酶1000分析系統及報導基因溶解緩衝液(均來自Promega,目錄號E4550及目錄號E3971)對光發射進行量化。簡言之,藉由每孔添加30  L 1×溶解緩衝液使細胞在乾冰上溶解30分鐘。使細胞在37℃下解凍20分鐘,之後向每孔中添加100  L所提供之螢光素酶分析試劑。立即利用Spark10M Tecan微板讀數儀使用500 ms積分時間對光發射進行量化,而不用任何濾波器收集所有波長。藉由HeLa_hOx40_NFkB_Luc1細胞之基礎發光校正所發射之相對光單位(URL),且使用Prism7 (GraphPad Software, USA)針對一級抗體濃度對數進行作圖。使用內置S形劑量反應擬合曲線。
7A7C 中顯示包含OX40純系49B4的呈4+1、3+1及2+1格式之雙特異性抗原結合分子之NFκB活化,該等雙特異性抗原結合分子與表現人類FAP之NIH/3T3纖維母細胞交聯、與2:1比率之二級抗體交聯或沒有進一步交聯。 8A8C 顯示包含OX40純系8H9的呈3+1及2+1格式之雙特異性抗原結合分子之NFκB活化。 9A9C 顯示包含OX40純系MOXR0916的呈3+1及2+1格式之雙特異性抗原結合分子之NFκB活化,且 10A10C 中顯示包含OX40純系CLC563的呈3+1及2+1格式之雙特異性抗原結合分子之NFκB活化。 11A11C 展示包含OX40純系49B4之胺基酸變異體的呈4+1格式之雙特異性抗原結合分子之NFκB活化。
因此,吾人測試呈二價、三價及四價FAP靶向交叉Fab格式之所選雙特異性OX40抗原結合分子單獨及在藉由二級抗體或FAP+ 纖維母細胞細胞株將分子超交聯之情形下之NFκB活化能力。使用表現人類纖維母細胞活化蛋白(huFAP)之NIH/3T3-huFAP純系19來測試細胞表面FAP對FAP結合抗體之交聯。所有OX40抗原結合分子均誘導劑量依賴性NKκB活化。由於在不存在構築體之進一步外部交聯之情形下已組裝三聚體核心OX40受體信號傳導單元,故以四價及三價使用OX40抗體誘導一定之NFκB活化。具有二價格式(2+1)之OX40抗原結合分子相應地顯示較少之生物活性(49B4:圖7;8H9:圖8;MOXR0916:圖9;CLC-563:圖10)。表現人類FAP之纖維母細胞經由FAP結合部分或二級交聯抗體經由OX40抗原結合分子之Fc區所引起的額外交聯進一步增加所有抗原結合分子之NFκB活化。對於低奈莫耳二價OX40抗體(49B4、CLC-563)而言,較高之OX40價在生物活性方面亦產生親合力增益(4+1 > 3+1 > 2+1),而對於亞奈莫耳二價OX40結合劑(8H9、MOXR0916)而言,未觀察到3+1相對於2+1格式之益處。呈4+1格式之49B4之所有胺基酸變異體誘導劑量依賴性NKκB活化之程度均與呈4+1格式之親代抗體類似(圖11)。
沒有進一步交聯及具有由細胞表面人類FAP (NIH/3T3 huFAP純系19)所產生之交聯的NFκB誘導劑量反應曲線之EC50 值彙總於表20中。 表20:在存在或不存在細胞表面人類FAP+ 纖維母細胞之情形下,呈FAP靶向格式之OX40抗原結合分子活化NFκB之劑量反應之EC50
分子ID 抗Ox40純系 格式 具有hu FAP 沒有hu FAP AUC 具有hu FAP 沒有hu FAP
EC50 [nM] 比較對象 AUC%
P1AD3690 49B4 4+0 0.18 0.23 49B4 4+0  -  -
P1AE6838 49B4 4+1 0.04 0.38 225 89
P1AE9167 49B4 AA變異體K73E 4+1 0.04 0.57 214 75
P1AE9169 49B4 AA變異體K23T_K73E 4+1 0.04 0.39 221 84
P1AE9176 49B4 AA變異體K23E_ K73E 4+1 0.04 0.45 206 78
P1AE8786 49B4 3+1 0.20 0.83 49B4 4+1 100 29
P1AE6840 49B4 2+1 0.12 - 77 17
P1AE8873 8H9 3+1 0.14 0.44 8H9  3+1 - -
P1AE8870 8H9 2+1 0.21 - 75 76
P1AE8875 MOXR0916 3+1 0.31 3.94 MOXR0916 3+1 - -
P1AE8872 MOXR0916 2+1 0.19 - 73 無曲線
P1AE8874 CLC563 3+1 0.24 0.79 CLC563 3+1 - -
P1AE8871 CLC563 2+1 0.21 - 63 27
在另一實驗中,使黏附型HeLa_hOX40_NFkB_Luc1細胞以0.3 × 105 個細胞/孔之細胞密度培養隔夜,且利用含有滴定之抗OX40抗原結合分子之分析培養基刺激6小時。為測試由細胞表面FAP結合所產生的超交聯之效應,使25 μL/孔含有FAP+ 腫瘤細胞(NIH/3T3-huFAP純系19)之培養基以3:1比率共培養(每孔中FAP+ 腫瘤細胞為報導細胞之三倍)。
培育後,吸出分析上清液且將板用DPBS洗滌兩次。根據製造商說明書,使用螢光素酶1000分析系統及報導基因溶解緩衝液(均來自Promega,目錄號E4550及目錄號E3971)對光發射進行量化。簡言之,藉由每孔添加30 μL 1×溶解緩衝液使細胞在乾冰上溶解30分鐘。使細胞在37℃下解凍20分鐘,之後向每孔中添加100 μL所提供之螢光素酶分析試劑。立即利用Spark10M Tecan微板讀數儀使用500 ms積分時間對光發射進行量化,而不用任何濾波器收集所有波長。藉由HeLa_hOx40_NFkB_Luc1細胞之基礎發光校正所發射之相對光單位(URL),且使用Prism7 (GraphPad Software, USA)針對一級抗體濃度對數進行作圖。使用內置S形劑量反應擬合曲線。
因此,吾人測試包含純系OX40(49B4_K23E_K73E)或OX40(CLC563)的呈3+1及4+1格式作為D及S變異體之所選雙特異性OX40抗原結合分子單獨及在藉由FAP+ 纖維母細胞細胞株將分子超交聯之情形下之NFκB活化能力。結果示於 35A35F 中。所有OX40抗原結合分子均誘導劑量依賴性NKκB活化。由於在不存在構築體之進一步外部交聯之情形下已組裝三聚體核心OX40受體信號傳導單元,故以四價及三價使用OX40抗體誘導一定之NFκB活化( 35B 35D35F) 。表現人類FAP之纖維母細胞經由FAP結合部分之額外交聯進一步增加所有抗原結合分子之NFκB活化( 35A 35C35E) D及S變異體之生物活性具有相當之強度。
沒有進一步交聯及具有由細胞表面人類FAP (NIH/3T3 huFAP純系19)所產生之交聯的NFκB誘導劑量反應曲線之EC50 值彙總於表21中。 表21:在存在或不存在細胞表面人類FAP+ 纖維母細胞之情形下,呈FAP靶向格式之OX40抗原結合分子(D及S變異體)活化NFκB之劑量反應之EC50
分子ID 抗Ox40純系 變異體 格式 具有hu FAP 沒有hu FAP
EC50 [nM]
P1AF6455 CLC-563 S 3+1 0.2 0.8
P1AF6454 CLC-563 D 3+1 0.2 1.9
P1AF7217 CLC-563 S 4+1 0.18 0.7
P1AF7205 CLC-563 D 4+1 0.2 0.5
P1AF6457 49B4 AA變異體K23E_ K73E S 4+1 0.02 0.06
P1AF6456 49B4 AA變異體K23E_ K73E D 4+1 0.03 0.08
4.2 OX40介導之次最佳TCR之共刺激觸發靜息人類PBMC及由細胞表面FAP所產生的超交聯
如實例4.1中所示,添加FAP+ 腫瘤細胞因提供OX40受體之強寡聚化而可強烈地增加人類OX40陽性報導細胞株中由FAP靶向之OX40抗原結合分子誘導之NFκB活性。同樣地,吾人在原代T細胞分析中測試所有構築體在NIH/3T3-huFAP純系19細胞存在下拯救靜息人類PBMC細胞之次最佳TCR刺激之能力。
人類PBMC製劑含有(1)靜息OX40陰性CD4+ 及CD8+ T細胞及(2)在細胞表面上具有各種Fc- γ受體分子之抗原呈現細胞(例如B細胞及單核球)。人類IgG1同型之抗人類CD3抗體可以其Fc部分結合至本發明之Fc-γ受體分子,且介導靜息OX40陰性CD4及CD8 T細胞上延長之TCR活化。接著,該等細胞在若干小時內開始表現OX40。針對OX40之功能促效性化合物可經由存在於活化CD8+ 及CD4+ T細胞上之OX40受體發出信號,並支持TCR介導之刺激。
在經輻照之FAP+ NIH/3T3-huFAP純系19細胞及滴定之雙特異性OX40抗原結合分子存在下,利用次最佳濃度之抗CD3抗體將靜息人類PBMC刺激四天。藉由流式細胞術,經由監測總細胞計數(CD4+ 或CD8+ T細胞)並用針對T細胞活化標記物(CD4+ T細胞上之CD25表現)之螢光標記抗體共染色,分析對T細胞存活期及增殖之效應。使用細胞解離緩衝液(Invitrogen,目錄號13151-014),在37℃下收穫小鼠胚胎纖維母細胞NIH/3T3-huFAP純系19細胞達10分鐘。將細胞用DPBS洗滌一次。在x射線輻照器中,使用4500雷德之劑量輻照NIH/3T3-huFAP純系19細胞,以防止腫瘤細胞株隨後生長超過人類PBMC。於無菌96孔圓底黏附組織培養板(TPP,目錄號92097)中,使經輻照之細胞以0.2 × 105 個細胞/孔之密度於T細胞培養基中在37℃/5% CO2 下培養隔夜。
藉由聚蔗糖密度離心使人類PBMC自新鮮血液分離。將細胞以0.6 × 105 個細胞/孔之密度添加至每一孔中。以指示濃度添加最終濃度為[10 nM]之抗人類CD3抗體(純系V9,人類IgG1),及FAP靶向之OX40抗原結合分子。在分析之前,使細胞在37℃/5% CO2 下培育四天。
首先將細胞用DPBS中之Zombie Aqua可固定活力染料(Biolegend,目錄號423102)染色10 min,之後在4℃下用螢光染料結合之抗體抗人類CD4 (純系RPA-T4,BioLegend,目錄號300532)、CD8 (純系RPa-T8,BioLegend,目錄號3010441)及CD25 (純系M-A251,BioLegend,目錄號356112)表面染色20 min。將細胞團粒用FACS緩衝液洗滌兩次。最後使樣品重新懸浮於20 µL/孔FACS緩衝液中,且在同一天使用iQue細胞篩選器及ForeCyt軟體(Sartorius)獲取。表22彙總在次最佳TCR刺激原代人類PBMC後,呈FAP靶向格式之雙特異性OX40抗原結合分子對CD4+ T細胞上CD25上調之劑量反應之EC50 值。 表22:在次最佳TCR刺激原代人類PBMC後,對CD4+ T細胞上CD25上調之劑量反應之EC50
分子ID 抗Ox40純系 格式 EC50 [nM] AUC,與參照化合物相比
[%] +/- SEM
P1AD3690 49B4 4+0 無曲線擬合    13 5
P1AE6838 49B4 4+1 0.02/0,003    107 31
P1AE9167 49B4 AA變異體K73E 4+1 0.001    137 9
P1AE9169 49B4 AA變異體K23T_K73E 4+1 0.001    128 10
P1AE9176 49B4 AA變異體K23E_ K73E 4+1 0.001    128 10
P1AE8786 49B4 3+1 0.04    97 16
P1AE6840 49B4 2+1 0.09    59 22
P1AE8873 8H9 3+1 0.01    134 31
P1AE8870 8H9 2+1 0.01    113 32
P1AE8875 MOX0916 3+1 0.02    100 18
P1AE8872 MOX0916 2+1 0.01    106 22
P1AE8874 CLC-563 3+1 0.04    100 0
P1AE8871 CLC-563 2+1 0.06    99 15
1217 中所示,利用非靶向之抗OX40 (49B4) 4+0格式進行共刺激幾乎不拯救次最佳TCR刺激之CD4及CD8 T細胞。FAP靶向之四價、三價及二價OX40抗原結合分子在NIH/3T3-huFAP純系19細胞存在下之超交聯強烈地促進人類CD4 T細胞之存活期並誘導所測試之所有OX40純系在該等細胞中之活化表型增強(49B4: 1213 ;8H9: 14 ;CLC563: 16 ;MOXR0916: 15 )。呈4+1格式之49B4之所有胺基酸變異體均支持T細胞活化,其程度至少與呈4+1格式之親代抗體類似,甚至略有改良( 17 )。
各種抗原結合分子之生物活性(如根據CD4+ T細胞上之CD25上調來量測)曲線下之正規化面積示於 18 中。OX40支持之T細胞活化之主要增強係藉由FAP介導之超交聯來達成,且由此達成OX40抗原結合分子之細胞表面固定(比較圖18及表19中49B4 4+0對4+1抗原結合分子之正規化AUC)。OX40價之增加仍增加靶向之OX40促效劑抗原結合分子之促效性能力,但程度低於FAP交聯(比較圖18及表19中4+1對3+1對2+1格式之正規化AUC)。對於親合力純系49B4,觀察到較高價之促效力增加最強,其中四價之正規化AUC為二價格式中之一者之雙倍。此指示,當為靶向之OX40促效劑選擇高親和力及較小親合力驅動之OX40純系時,二價及三價分子可在活體外原代T細胞分析中維持與四價49B4相似之活性。
最佳T細胞共刺激之分子設計要求似乎與OX40受體下游之純NFκB活化略有不同。第一種需要對多種OX40促效性抗體進行強表面固定,此無法由OX40抗體之抗體固有價完全補償。後者需要藉由抗體固有多價OX40接合進行高度之OX40受體寡聚化,此無法藉由促效劑之表面固定完全補償。
此可能反映對調節原代T細胞(稱為T細胞突觸)內之磷酸化及去磷酸化事件之反應進行空間限制以獲得最佳TCR接合之需要。全功能T細胞突觸組裝各種信號傳導組分(例如經由脂質筏)以達成全功能性。突觸組分之橫向移動性減少對此有利,FAP靶向之OX40抗原結合分子對OX40之細胞表面固定亦可能如此。
在測試C末端S及D變異體之另一實驗中,根據製造商之說明書,將人類PBMC用CFSE增殖套組(Thermo Fisher,目錄號C34554)以0.2 [µM] CFSE之最終濃度在室溫下標記10分鐘。將細胞以0.6 × 105個細胞/孔之密度添加至每一孔中之T細胞培養基中。以指示濃度添加最終濃度為[10 nM]之抗人類CD3抗體(純系V9,人類IgG1),及FAP靶向之OX40抗原結合分子,二者均於T細胞培養基中製備。在分析之前,使細胞在37℃/5% CO2 下培育四天。
首先將細胞用DPBS中之LIVE/DEAD™可固定Aqua死細胞染色劑(Molecular probes,目錄號L34957)染色20 min,之後為一個洗滌步驟(200 µL 4℃ FACS緩衝液)。此後,在4℃下用螢光染料結合之抗體抗人類CD4 (純系OKT4,BioLegend,目錄號317440)、CD8 (純系SK-1,BioLegend,目錄號344714)及CD25 (純系BC96,BioLegend,目錄號302626)表面染色30 min。將細胞團粒用dPBS洗滌兩次。最後使樣品重新懸浮於100 µL/孔FACS緩衝液中,且在同一天使用BD Fortessa運行之FACS Diva軟體獲取。表23彙總在次最佳TCR刺激原代人類PBMC後,呈FAP靶向格式之雙特異性OX40抗原結合分子對CD4+ T細胞上CD25上調之劑量反應之EC50 值。 表23:在次最佳TCR刺激原代人類PBMC後,對CD4+ T細胞上CD25上調之劑量反應之EC50
分子ID 抗Ox40純系 變異體 格式 EC50 [nM]
P1AF6455 CLC-563 S 3+1 0.003
P1AF6454 CLC-563 D 3+1 0.001
P1AF7217 CLC-563 S 4+1 0.002
P1AF7205 CLC-563 D 4+1 0.001
P1AF6457 49B4 AA變異體K23E_ K73E S 4+1 0.001
P1AF6456 49B4 AA變異體K23E_ K73E D 4+1 0.001
36A36F 中所示,利用非靶向之四價抗OX40 (49B4) (4+0格式)進行共刺激僅在高於[1nM]之濃度下拯救次最佳TCR刺激之CD4及CD8 T細胞。FAP靶向之四價及三價OX40抗原結合分子在NIH/3T3-huFAP純系19細胞存在下之超交聯強烈地促進在人類CD4 ( 36A 36C36E )及CD8 ( 36B 36D36F )中之增殖並誘導活化表型增強。CLC563構築體之S變異體之性能較D變異體略差,但不為統計學上顯著的( 36A36D )。呈4+1格式之49B4之所有胺基酸變異體均支持T細胞活化,其程度至少與呈4+1格式之親代抗體類似,甚至略有改良。此處,在S與D變異體之間未觀察到差異( 36E36F )。 4.3 OX40介導之共刺激增加CECAM5 TCB重定向PBMC的溶解CEA+腫瘤細胞之細胞介素之分泌
一種臨床上利用之募集患者自身免疫系統以對抗癌症之方式為T細胞雙特異性抗體(TCB)。該等分子包含對T細胞上之T細胞受體(TCR)具有特異性之促效性抗CD3單元,及對獨特的癌症抗原具有特異性之靶向部分。TCB使多株T細胞重定向,以溶解在細胞表面上表現各別靶抗原之癌細胞。在不存在此靶抗原之情形下,不會發生T細胞活化。此實例中所用之TCB為靶向癌胚抗原(CEA)之CEACAM5 TCB,且詳細地闡述於WO 2016/079076 A1中。端視於此主要刺激之強度及持續時間而定,觸發TCR增加共刺激性分子之表現,例如腫瘤壞死因子受體(TNFR)超家族之成員OX40。此受體與其各別配位體之伴隨促效性連接進而促進標誌性T細胞效應功能,如某些促發炎性細胞介素(GM-CSF、IFN-γ、IL-2、TNF-α)之增殖、存活期及分泌(M. Croft等人,Immunol. Rev. 2009, 229(1), 173-191;I. Gramaglia等人,J. Immunol. 1998, 161(12), 6510-6517;S. M. Jensen等人,Seminars in Oncology 2010, 37(5), 524-532)。需要此共刺激來提高T細胞對抗腫瘤細胞之全部潛力、尤其是在弱腫瘤抗原引發之情況下,且在首次攻擊後維持抗腫瘤反應以容許形成保護性記憶。在某些具有強免疫抑制或耗竭表型之患者中,僅多株但腫瘤特異性T細胞募集(信號1)與腫瘤限制性陽性共刺激(信號2)之恢復相組合才可有助於足夠的抗腫瘤功效及延長之適應性免疫保護。此可持續地驅動腫瘤微環境朝向免疫活化更高且免疫抑制更少之狀態。OX40之FAP依賴性共刺激亦可有助於在較低之腫瘤內濃度下進行TCB介導之腫瘤細胞殺死,此將使全身性暴露及相關之副作用減少。另外,由於較低之TCB濃度仍可有效,因此治療間隔可能延長。
使用天然表現CEA抗原之MKN45 NucLight Red (NLR)細胞作為靶細胞。遵循製造商之說明書,在存在8 µg/mL聚凝胺之情形下,用Essen CellPlayer NucLight Red慢病毒試劑(Essenbioscience,目錄號4476;EF1α,嘌呤黴素)以5 (TU/細胞)之MOI轉導MKN-45 (DSMZ; ACC409)以穩定表現受限於細胞核之NucLight Red螢光蛋白。此使得能夠易於與非螢光效應T細胞或纖維母細胞分離並藉由高通量生命螢光顯微鏡術監測腫瘤細胞生長。
由表現人類纖維母細胞活化蛋白(huFAP)之NIH/3T3-huFAP純系19提供細胞表面FAP對FAP結合抗體之交聯(參見實例3.2)。藉由聚蔗糖密度離心使人類PBMC自新鮮血液分離(參見實例3.1)。
將MKN45 NucLight Red (NLR)細胞以0.1 × 105 個細胞/孔之密度添加至每一孔中之T細胞培養基中。使NIH/3T3-huFAP純系19在4600雷德下預輻照,且接著以0.1 × 105 個細胞/孔之密度添加在每一孔中之T細胞培養基中。將人類PBMC以0.5 × 105 個細胞/孔之密度添加至每一孔中之T細胞培養基中。以指示濃度添加最終濃度為2nM之CEACAM5 TCB,及FAP靶向之OX40抗原結合分子之滴定稀釋液,二者均於T細胞培養基中製備。在分析之前,使細胞在37℃/5% CO2 下培育三天。樣品以一式三份運行。
72小時後,收集上清液,以供使用Bio-Plex Pro人類細胞介素8-Plex分析目錄號BIO-RAD M50000007A根據製造商之說明書對所選細胞介素進行後續分析。對於在各別測試濃度下之每一所測試之化合物,將一式三份樣品合併成等份,且分析混合物之細胞介素含量。計算各別細胞介素(GM-CSF、IL-2、TNF-α、IFN-γ)與僅TCB對照樣品中之濃度相比之倍數增加且對FAP-OX40抗體濃度進行作圖。使用GraphPAD Prism計算劑量-反應曲線,計算AUC及EC50 值並報告於表24中。GM-CSF及TNF-α之劑量反應曲線繪示於 37A37F 中,且IFN-γ及IL-2之劑量反應曲線繪示於 38A38F 中。以FAP-OX40抗原結合分子OX40(CLC563) × FAP(1G1a_EPKSCD) 3+1 (在圖中稱為3+1 CLC563/H212 -D)之AUC對每一細胞介素之AUC作正規化,且在 39 中繪製每一化合物之盒須圖。 表24:在FAP-OX40共刺激原代人類PBMC後,增加的TCB介導之細胞介素分泌之劑量反應之EC50
分子ID 抗Ox40純系 變異體 格式 EC50 [nM]
P1AF6455 CLC-563 S 3+1 0.058
P1AF6454 CLC-563 D 3+1 0.144
P1AF7217 CLC-563 S 4+1 0.058
P1AF7205 CLC-563 D 4+1 0.034
P1AF6457 49B4 AA變異體K23E_ K73E S 4+1 0.022
P1AF6456 49B4 AA變異體K23E_ K73E D 4+1 0.017
37A37F 38A38F 中所示,利用非靶向之抗OX40 (49B4) 4+0格式進行共刺激不增強由CEACAM5 TCB介導之腫瘤細胞溶解誘導的PBMC之細胞介素分泌。FAP靶向之四價及三價OX40抗原結合分子在NIH/3T3-huFAP純系19細胞存在下之超交聯強烈地促進GM-CSF之分泌( 37A37C37E )及TNF-α之分泌( 37B 37D 37F ),以及IFN-γ之分泌( 38A 38C38E )及IL-2之分泌( 38B 38D38F )。所測試之所有構築體之S變異體之性能均較D變異體略差,但不為統計學上顯著的( 39 )。呈4+1格式之49B4之胺基酸變異體對T細胞活化之支持強於呈4+1格式之親代純系。此處,CLC563作為四價較作為三價FAP靶向之OX40促效劑顯示更強之促效潛力( 39 )。 4.4 OX40介導之共刺激降低TGFβ誘導之FoxP3表現
CD4+Foxp3+ T調控細胞(Treg)在免疫穩態及外周耐受中起關鍵作用(Sakaguchi S, Yamaguchi T, Nomura T, Ono M, Cell 2008, 133(5), 775-87)。其發育、譜系穩定性及抑制功能依賴於轉錄因子FoxP3之表現,該轉錄因子係Treg身份(identity)之「主要」調控因子(Hori S, Nomura T, Sakaguchi S, Science 2003, 299(5609), 1057-61)。除其胸腺起源以外,CD4+FoxP3+ Treg細胞亦可在外周中自活化後之原初CD4+ T細胞誘導,其通常稱為誘導型Treg (iTreg)或外周Treg (pTreg) (Curotto de Lafaille MA, Lafaille J, Immunity 2009, 30(5), 626-35)。活體外誘導iTreg之最佳表徵條件為轉型生長因子β (TGF-β)與CD28共刺激之組合。此細胞介素強效地誘導重新FoxP3表現,其使活化之習用T細胞程式化轉化成iTreg (Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM, J Exp. Med. 2003, 198(12), 1875-86)。已闡述OX40信號傳導抑制FoxP3表現及Treg誘導(Zhang X, Xiao X, Lan P等人,Cell Rep.2018, 24(3), 607-618)。實例4.1至4.3中顯示,所有FAP-OX40雙特異性抗原結合分子均能夠誘導NFκB並促進TCR刺激,從而使得活化表型增強且細胞介素分泌增加。同樣,吾人在原代T細胞分析中測試所有構築體抑制TGF-β介導之FoxP3誘導之能力。
在利用針對CD28及CD3之抗體活化T細胞期間,在TGFβ存在下培養含有原初CD4 T細胞之人類PBMC製劑。FoxP3誘導以及OX40表現在若干小時內發生。當提供由FAP產生的交聯時(此處FAP抗原包覆至珠粒),針對OX40之功能促效性化合物(例如包含OX40純系OX40(49B4_K23E_K73E)或OX40(CLC563)的呈3+1及4+1格式作為D及S變異體之雙特異性抗原結合分子)可經由存在於活化CD4+ T細胞上之OX40受體發出信號。此干擾Treg誘導,其可藉由FoxP3表現減少看出。
將無菌96孔圓底黏附組織培養板(TPP,目錄號92097)用dPBS中之抗人類CD3抗體(eBioscience,目錄號16-0037-85)以3 µg/mL之濃度在37℃/5% CO2 下預包覆2小時。根據製造商之說明書,在室溫下用dPBS中之生物素化之人類FAP抗原(Roche, P1AD8986;1 µg珠粒0.01 µg蛋白質)將Dynabeads® M-280鏈黴抗生物素蛋白(ThermoFisher,目錄號11205D)包覆30分鐘,之後於含有0.1% (w/v) BSA之dPBS中在4℃下長期儲存。藉由聚蔗糖密度離心使人類PBMC自新鮮血液分離。根據製造商之說明書,在室溫下將細胞用CFSE增殖套組(Thermo Fisher,目錄號C34554)以0.4 µM CFSE之最終濃度標記10分鐘。接著將細胞以1 × 105 個細胞/孔之密度添加至預包覆板之每一孔中之無血清X-Vivo15培養基(Lonza,目錄號BE02-054Q)中。添加重組人類TGF-β (2 ng/mL, R&D Systems,目錄號240-B-010)、單株抗人類CD28 (1 µg/mL, eBioscience,目錄號16-0289-85)及FAP包覆之珠粒(2 × 105 個細胞/孔)。以指示濃度添加FAP靶向之OX40抗原結合分子之滴定稀釋液。在分析之前,使細胞在37℃/5% CO2 下培育三天。
首先將細胞用DPBS中之LIVE/DEAD™可固定Aqua死細胞染色劑(Molecular probes,目錄號L34957)染色10 min,之後為一個洗滌步驟(200 µL 4℃ FACS緩衝液)。此後,在4℃下用螢光染料結合之抗體抗人類CD4 (純系RPA-T4,BioLegend,目錄號300532)、CD8 (純系RPA-T8,BioLegend,目錄號301042)及CD25 (純系BC96,BioLegend,目錄號302610)表面染色30 min。將細胞團粒用FACS緩衝液洗滌兩次,之後根據製造商之說明書,於黑暗中在室溫下使細胞於FoxP3固定/滲透化工作溶液(FoxP3染色套組,eBioscience,目錄號00-5521)中固定並滲透化處理60分鐘。在用1× Perm緩衝溶液(FoxP3染色套組,eBioscience,目錄號00-5521)洗滌兩次後,於黑暗中在室溫下將細胞用1× Perm緩衝液中之針對FoxP3的螢光染料結合之抗體(純系29D6,BioLegend,目錄號20108)染色40分鐘 。將細胞團粒用1× Perm緩衝液洗滌兩次且最後重新懸浮於100 µL/孔FACS緩衝液中,且在同一天使用BD Fortessa運行之FACS Diva軟體獲取。對活的CD4+ CD25+Treg單態細胞設門,且報告αFoxP3抗體之MFI。藉由不含OX40雙特異性抗體之樣品(由此僅存在TGBβ)之MFI校正每一濃度之FoxP3 MFI。
40A40C 顯示,FAP-OX40雙特異性抗原結合分子以劑量依賴性方式抑制在TGFβ存在下活化之靜息CD4 T細胞上之FoxP3誘導。每一FAP-OX40雙特異性抗體之D及S變異體均顯示相似之生物活性性質。在表25中,彙總CD4+ CD25+Treg細胞上FoxP3抑制(FoxP3 MFI)之FAP-OX40促效劑劑量反應之EC50 值。 表25:FAP-OX40抑制TGF 暴露之靜息CD4 T細胞上的FoxP3誘導之EC50
分子ID 抗Ox40純系 變異體 格式 EC50 [nM]
P1AF6455 CLC-563 S 3+1 0.25
P1AF6454 CLC-563 D 3+1 0.11
P1AF7217 CLC-563 S 4+1 0.01
P1AF7205 CLC-563 D 4+1 0.02
P1AF6457 49B4 AA變異體K23E_ K73E S 4+1 0.01
P1AF6456 49B4 AA變異體K23E_ K73E D 4+1 0.02
結果彙總
為評估靶向之OX40抗原結合分子之結合性質,使人類FAP陰性腫瘤細胞(A549- NLR)、FAP陽性纖維母細胞(NIH/3T3-huFAP-純系19)、OX40陽性活化PBMC (活化CD4及CD8 T細胞)以及OX40陰性靜息PBMC (靜息CD4及CD8 T細胞)與測試抗體之指示連續稀釋液一起培育,接著藉由針對人類Fcγ之螢光標記之2級抗體進行偵測。所有FAP靶向之OX40抗原結合分子均有效地結合至表現人類FAP之靶細胞且不與靶標陰性細胞結合。所有構築體之FAP結合均在相當之奈莫耳範圍內。此有望在患者中轉化為直接腫瘤靶向及分子富集。隨著OX40在T細胞上之天然盛行,所有FAP靶向之OX40抗原結合分子與活化CD4 T細胞之結合均強於CD8 T細胞。含有親合力結合劑OX40 (49B4)之抗原結合分子以四價格式(4+1)較以三價或二價格式更佳地結合至OX40 (EC50 偏移> 1000倍)。純系49B4之突變胺基酸變異體顯示相當之行為。所有其他評估之OX40純系之三價格式(3+1)與二價格式(2+1)相比均未顯示親合力增益。純系8H9及MOXR0916以亞奈莫耳親和力結合,而純系CLC-563以奈莫耳親和力結合至OX40陽性T細胞。
四價及三價OX40抗原結合分子誘導人類OX40陽性NFκB報導細胞(HeLa_hOx40_NFkB_Luc1報導細胞)中之NFκB活化。此係由於在不存在構築體之進一步外部交聯之情形下已組裝三聚體核心OX40受體信號傳導單元。二價格式本身相應地顯示較低之生物活性。表現人類FAP之纖維母細胞經由FAP結合部分或二級交聯抗體經由OX40抗原結合分子之Fc區所引起的對雙特異性OX40促效劑之額外交聯進一步增加所有抗原結合分子之NFκB活化。對於低奈莫耳二價OX40純系(49B4、CLC-563)而言,較高之OX40價在生物活性方面亦產生親合力增益(4+1 > 3+1 > 2+1),而對於亞奈莫耳二價OX40純系(8H9、MOXR0916)而言,未觀察到3+1相對於2+1格式之益處。呈4+1格式之49B4之所有胺基酸變異體誘導劑量依賴性NKκB活化之程度均與呈4+1格式之親代抗體類似。即使在坪濃度及最佳交聯條件下,二價及三價OX40抗原結合分子亦未達到四價4+1格式之NFκB活化水準。
除在NFκB報導子分析中以外,利用非靶向之抗OX40 (49B4) 4+0格式進行共刺激幾乎不拯救次最佳TCR刺激之CD4及CD8 T細胞。然而,FAP靶向之四價、三價及二價OX40抗原結合分子在NIH/3T3-huFAP純系19細胞存在下之超交聯強烈地促進人類CD4 T細胞之存活期並誘導所測試之所有OX40純系在該等細胞中之活化表型增強。49B4之所有胺基酸變異體與呈相同格式之親代抗體具有同等的生物活性。
OX40支持之T細胞活化之主要增強係藉由FAP介導之超交聯來達成,且由此達成OX40之細胞表面固定。OX40價之增加仍增加FAP靶向之OX40促效劑之促效性能力,但程度較低。為靶向之OX40促效劑選擇較高親和力及較小親合力驅動之OX40純系容許達到與已利用二價及三價OX40抗原結合分子獲得的四價OX40促效劑相似之生物活性。與T細胞活化相比,在達成最佳OX40受體刺激之分子設計要求方面之此差異可能反映對調節原代T細胞(稱為T細胞突觸)內之磷酸化及去磷酸化事件之反應進行空間限制以獲得最佳TCR接合之需要。全功能T細胞突觸組裝各種信號傳導組分(例如經由脂質筏)以達成全功能性。突觸組分之橫向移動性減少對此有利,FAP靶向之OX40促效劑對OX40之細胞表面固定亦可能如此。 實例5 PK性質之工程化 5.1 參照化合物之背景及性質
在食蟹猴中之單一靜脈內劑量huFcRn及單一靜脈內劑量PK研究中探究如WO 2017/060144 A1中所闡述之雙特異性抗原結合分子OX40 (49B4) × FAP (4B9) (4+1) (分子P1AD4524),且觀察到非典型之高清除率(>10-12 mL/min/kg),如表26中所示。活體內方案及生物分析性分析闡述於實例6中。
Hu FcRn小鼠攜帶人類FcRn而非小鼠FcRn,且因此視為較野生型小鼠(C57/Bl6)更能預測在人類中之清除率。實際上,野生型小鼠中之清除率(11.0 mL/天/kg)相應地低於huFcRn小鼠(33.0 mL/天/kg),此與通常之假設一致,即食蟹猴中之清除率可能對人類更具預測性,例如野生型小鼠在異速轉型後之清除率。在構築體血漿濃度-時間曲線中沒有跡象指示靶標介導之處置(TMDD) ( 19 ,對於猴子極其類似),此乃因在猴子中,據顯示,增加劑量之清除率類似(參見表26)。 表26:P1AD4524之單劑量PK參數
清除率[mL/天/kg] 
劑量 小鼠     猴子
[mg/kg] C57/Bl6 Hu FcRn FcRn KO Cynom.(M/F)
5 11.9 33.0 190 30.7/25,7
25 -- -- -- 29.5/19,7
100 -- -- -- 34.3/31,1
另外,表26顯示在FcRn剔除小鼠中之清除率,其相應地高於常用人類抗體之預期值(觀察到野生型人類抗體通常為約60-80 mL/天/kg),但由於缺乏FcRn拯救機制,FcRn KO小鼠中之清除率始終較高。 5.2 表面電荷區片探究
IgG抗體之藥物動力學依賴於FcRn結合,然而,已發現,抗體之可變結構域對抗原結合分子之清除率亦具有影響。因此,已發現,具有較低等電點(pI)之抗體具有較長之半衰期(Igawa等人,Protein Engineering, Design & Selection 2010.23, 385-392)。Zhang等人,Anal. Chem. 2011, 83, 8501-8508已闡述如何使抗體上之正電荷區片顯露之方法。抗體構築體之非特異性清除通常與所謂的電荷區片相關,該等區片亦即抗體構築體表面上之區域,其主要顯示正電荷且由此結合至細胞膜之帶負電之糖萼,之後內化並降解而無需經由FcRn拯救。 5.2.1 FAP純系之表面電荷區片探究
所觀察到之活體內結果、尤其FcRn剔除(KO)小鼠中之高清除率指出分子P1AD4524之非特異性清除率較高,該分子為具有四重OX40 (49B4) Fab片段及單一FAP (4B9)抗原結合結構域之抗原結合分子,其格式為單一結構域VH及VL各自分別地連結至Fc區之C末端。
因此,藉由分子P1AD4524之等電位表面模擬來探究其表面是否將顯示此等正電荷區片。類似於實例1.11,FAP(4B9)抗原結合結構域顯示具有顯著大小之此一正電荷區片(圖20),其可造成不期望之高P1AD4524清除率。
此外,與P1AD4524中所用類似之VH/VL片段亦與如由Holland等人,J. Clin. Immunol. 2013, 33, 1192-1203公佈之不相關分子一起包括在研究中。此VH/VL片段視為與免疫學發現及潛在之非特異性結合性質相關。因此,對於本發明之抗原結合分子,實施用攜帶FAP結合劑之Fab片段替代VH/VL片段。
接著在HuFcRn小鼠中測試與P1AD4524類似但不具有FAP (4B9)抗原結合結構域之抗原結合分子P1AE6836 (4+0分子),以檢查FAP (4B9)抗原結合結構域及VH/VL片段上電荷區片之省略是否將相應地降低清除率。
結果示於圖21及表27中。VH/VL片段上FAP (4B9)抗體正電荷區片之省略以約7 mL/天/kg降低清除率,但清除率仍為約26 mL/天/kg,且因此高於不超過10-12 mL/天/kg之期望範圍。 表27:P1AD4524之單劑量PK參數
   清除率[mL/天/kg]
劑量 huFcRn小鼠  
[mg/kg] P1AD4524 P1AE6836
5 33.0 25.7
因此,需要對抗原結合分子進行進一步改變以降低分子之清除率。 5.2.2 OX40 (49B4)純系之表面電荷區片探究
由於FAP (4B9)純系上正電荷區片之消除不足以在HuFcRn小鼠中達到至少低於12 mL/天/kg之清除率,因此亦探究OX40 (49B4)純系之潛在電荷區片,且其Fab區之模擬等電位表面示於圖22A至22C中。OX40 (49B4)純系上之正電荷區片可能小於4B9 FAP結合劑上之正電荷區片,但由於其在抗原結合分子中因其4+1價而出現四次,故其可能與P1AE4524之高清除率相關。
因此,決定亦探究其他OX40抗體並嘗試減少P1AE4524中之正電荷區片。 5.3 OX40純系之變化及對活體外PK參數之效應 5.3.1 替代性FAP及OX40純系之表面電荷區片探究
除49B4結合劑之兩種序列變異體以外,亦有三種不同的替代性OX40純系可用並對其進行測試,以避免此等電荷區片。Fab區之模擬等電位表面區域示於圖23A至23C (純系8H9)、圖24A至24C (純系CLC563)及圖25A至25C (純系MOXR0916)中。替代性FAP純系1G1a之Fab區之等電位表面區域示於圖26中错误 ! 未找到引用源。
由於存在電荷區片,按清除率可能增加之順序,極粗略之排序大概為CLC563 < 8H9 < MOXRO916,但此需要測試並藉由獨立的藥物動力學資料予以確認,此乃因對等電位表面之目視檢查不為定量的。隨後藉由額外活體外資料對該三種不同的結合劑進行探究,且在選擇時亦需慮及所得構築體之生物活性,以在藥理學生物活性與清除率之間達到平衡。
VH/VL片段上之FAP純系4B9在連結至抗原結合分子C末端之交叉Fab片段中由FAP純系1G1a替代。如 20D20F 中所示,此FAP純系未顯示明顯之正電荷區片。 5.3.2 ARC活體外分析結果
利用可獲得純系之每一潛在抗原結合分子實施新的huFcRn小鼠PK研究係不可行的。因此,藉由活體外分析實施預選,其探究在中性pH (pH 7.4,與FcRn之結合較低)及在pH 6.0 (與FcRn之結合較強)下加載至上皮細胞之化合物之回收率差異。為藉由FcRn獲得更佳拯救,該兩個pH值之間的回收率偏移應較高(野生型抗體> 10)且在pH 7.4下之值應較低(對於正常人類野生型抗體< 0.10- 0.20),否則存在非特異性結合,預期隨後清除。該分析始終以野生型抗體及不與FcRn結合之抗體作對照,以在每一實驗中具有內部對照。
於下表28中將活體外ARC分析之結果製成表格。 表28:各種抗原結合分子之ARC活體外分析結果
      第1次及第2次實驗 第3次實驗
分子ID 偏移 pH 6.0 pH 7.4 回收率 偏移 pH 6.0 pH 7.4 回收率
野生型IgG 2+0 10 >10 1.17 0.86 0.12 <0.06 未回收 未回收    29    1.77    0.06    未回收
非結合劑 2+0 1.5 1.0 0.18 0.06 0.12 0.06 未回收 未回收    1.0    0.06    0.06    未回收
P1AD4524 4+1 (VH/VL) 2.3 1.4 1.97 0.74 0.84 0.54 未回收 未回收    4.6    0.92    0.20    83%
P1AE6838 4+1 (交叉Fab) 2.0 0.40 0.20 83% 2.7 0.64 0.24 100%
P1AE8786 3+1 3.0 0.36 0.12 75%            
P1AE6840 2+1 11 0.67 0.06 60%            
P1AE9167 4+1             3.3 0.40 0.12 100%
P1AE9176 4+1             2.9 0.40 0.14 78%
P1AE9169 4+1             2.3 0.40 0.20 100%
P1AE8873 3+1 5.2 2.31 0.44               
P1AE8870 2+1 10 2.11 0.21 100% 24 6.99 0.28 88%
P1AE8874 3+1 1.7 0.32 0.20 83% 4.2 0.50 0.12 100%
P1AE8871 2+1 2.8 0.34 0.12 75%            
P1AE8875 3+1 1.1 0.18 0.16 80%            
P1AE8872 2+1 6.7 0.40 0.06 100% 29 1.72 0.06 100%
自表28中顯而易見,在ARC分析中,價(存在於抗原結合分子中之OX40結合劑數目)對pH偏移具有顯著影響。在相同的同系物系列中,較高之價(4+1對3+1及3+1對2+1)導致較低之偏移及據推測較高之清除率。
2+1 8H9構築體獲得最高之pH偏移值,4+1化合物始終具有最低之pH偏移,此表明FcRn拯救較低且清除率較高。
pH7.4下之值提示非特異性結合較高,且原始化合物P1AD4524在pH 7.4下的確顯示最高值。因此,ARC分析之結果與FcRn KO小鼠中P1AD4524之高清除率及所觀察到之電荷區片一致。類似地,根據該等活體外結果,3+1 8H9構築體亦可能具有高非特異性清除率。
與含有OX40 (49B4)胺基酸變異體之4+1抗原結合分子中電荷區片之至少部分去除一致,化合物P1AE9167、P1AE9176及在較小程度上P1AE9169在pH 7.4下具有較低之值,此表明非特異性結合較低,且為正電荷區片對非特異性抗體清除率之負面影響增加進一步證據。
更通常,可自ARC分析之結果得出如下結論:去除電荷區片可降低非特異性清除率且較高之價使得清除率較高,此可能與Pyzik等人,Front. Immunol. 2019, 10:1540, doi: 10.3389/fimmu.2019.01540所公佈之近期觀察結果一致。 5.3.3 在huFcRn中活體內探究所選抗原結合分子
基於活體外ARC分析及生物活性資料,選擇三種化合物在huFcRn小鼠中進行活體內研究:P1AE8870 (OX40 (8H9) × FAP (1G1a) 2+1)、P1AE8873 (OX40 (8H9) × FAP (1G1a) 3+1)及P1AE9176 (OX40 (49B4_K23E_K73E) × FAP (1G1a) 4+1)。結果示於表29中。ARC分析之結果與huFcRn小鼠中之活體內結果具有良好相關性。 表29:三種所選抗原結合分子對原始化合物P1AD5424之HuFcRn小鼠PK結果之結果
分子ID hu FcRn小鼠 CL [mL/天/kg] hu FcRn KO小鼠 CL [mL/天/kg] ARC評分 ARC比率
P1AD4524 34 190 0.80 1.9
P1AE9176 21 31 0.14 2.9
P1AE8873 18 85 0.44 5.3
P1AE8870 9.5 59 0.21 10
野生型抗體之大致常見情況 <5-10 60-80 <0.1-0.2 >10-15
基於該等活體外及動物活體內結果,可得出如下結論:去除FAP抗體上之電荷區片以約7 mL/天/kg降低huFcRn小鼠中之清除率,且OX40抗體之較高價(例如4+1對2+1)與huFcRn小鼠中之較高清除率相關,該小鼠可為人類患者之良好替代物。 5.4 呈4+1及3+1格式之所選抗原結合分子的PK性質之比較 5.4.1 所選抗原結合分子之背景及性質
與各別3+1構築體(3× CLC563)相比,在活體外分析中,OX40 (CLC563) × FAP (1G1a)雙特異性抗原結合分子之4+1變異體(4× CLC563)往往顯示改良之活性性質。因此,比較該兩種變異體之藥物動力學(PK)性質令人關注。
在人類FcRn小鼠(Hu FcRn)及FcRn KO小鼠之單一靜脈內劑量PK研究中探究雙特異性抗原結合分子OX40 (CLC563) × FAP (1G1a) 3+1 (分子P1AF6454,S變異體),且與原始4+1構築體P1AD4524相比,觀察到相應地改良之較低清除率(目標:對於HuFcRn小鼠,<10-12 mL/天/kg),如表29中所示。活體外及活體內方案以及生物分析性分析闡述於實例6.5中。
Hu FcRn小鼠攜帶人類FcRn而非小鼠FcRn,且因此視為較野生型小鼠(C57/Bl6)更能預測在人類中之清除率。沒有跡象指示靶標介導之處置(TMDD),如例如在構築體血漿濃度-時間曲線中低於某一濃度臨限值之更快清除( 41)
另外,表30顯示在FcRn剔除小鼠中之清除率,其相應地高於常用人類抗體之預期值(觀察到野生型人類抗體通常為約60-80 mL/天/kg),但由於缺乏FcRn拯救機制,FcRn KO小鼠中之清除率始終較高。 表30:P1AF6455 / P1AF6454 (3+1)對P1AD4524 (4+1)之單劑量PK參數
      huFcRn小鼠 FcRn KO小鼠
分子ID 抗Ox40純系 CL [ml/天/kg] CL [ml/天/kg]
P1AD4524 4+1 49B4 34 190
P1AF6455 3+1 CLC563 (S) -- 28
P1AF6454 3+1 CLC563 (D) 6.1 --
5.4.2 自3+1至4+1之價變化及對活體外PK參數之效應
利用可獲得純系之每一潛在抗原結合分子實施新的huFcRn小鼠PK研究係不可行的。因此,藉由兩個活體外分析(ARC分析及LUCA分析)實施預選。ARC分析已闡述於實例5.3.2中。
LUCA分析利用與所關注之抗體構築體共價連接之染料在活體外程序期間的螢光強度之pH依賴性差異。接著使具有連接染料之構築體與表現人類FcRn之人類原代肝臟內皮細胞一起培育。若經標記之構築體由內皮細胞中之FcRn充分再循環,則內皮細胞中之螢光保持較低,但若經標記之構築體未充分再循環且在晚期胞內體中處理並在溶酶體中降解,則螢光增加,此乃因在該等晚期胞內體及溶酶體中,pH降低。LUCA值愈高,則活體內清除率愈高。
於下表31中將活體外ARC及LUCA分析之結果製成表格。 表31:各種抗原結合分子之ARC及LUCA活體外分析之結果
pH 7.4
分子ID 價及抗OX40純系 ARC評分 ARC比率 LUCA
P1AF6455 3+1 CLC563 (D) 0.40 1.6 2.1
P1AF6454 3+1 CLC563 (S) 0.34 1.8 --
P1AF7205 4+1 CLC563 (D) 0.38 1.3 2.7
P1AF7217 4+1 CLC563 (S) 0.36 1.1 2.7
自表31中顯而易見,價(存在於抗原結合分子中之OX40結合劑數目)對ARC分析之結果具有細微影響,此顯示與4+1構築體相比,3+1變異體之ARC比率更高,亦即若存在非特異性攝取(pH7.4 ARC評分相當,此處確實為此情形),則理論上預期3+1構築體之活體內清除率更低。
與ARC分析結果相反,LUCA分析提示4+1構築體具有微小優點,此乃因此處LUCA值應與移交至晚期胞內體之構築體部分相關,此指示較高之LUCA值具有較高之清除率。
總體而言,活體外分析中之差異往往相當細微,因此在hu FcRn及FcRn KO小鼠中實施構築體之活體內研究,此乃因根據Pyzig等人,Front. Immunol. 2019, 10, 1540 (doi: 10.3389/fimmu.2019.01540),如藉由ARC分析中之差異(儘管中等)所指示,較高之價可能與較高之清除率相關。 5.4.3 在hu FcRn及FcRn KO小鼠活體內探究所選抗原結合分子
基於活體外ARC分析及生物活性資料,選擇以下化合物在huFcRn小鼠中進行活體內研究:P1AE6455 (OX40(CLC563) × FAP(1G1a) 3+1,呈C末端S變異體)、P1AF7217 (OX40(CLC563) × FAP(1G1a) 4+1,呈C末端S變異體)及P1AF7205 (呈4+1構築體之各別C末端D變異體)。結果示於表32中。對於FcRn KO小鼠中之活體內研究,將P1AE6455替代為P1AE6454 (OX40(CLC563) × FAP(1G1a) 3+1,呈C末端D變異體)。huFcRn小鼠中之活體內結果與ARC分析之結果具有良好等級次序相關性。 表32:三種所選抗原結合分子對P1AD5424之HuFcRn小鼠PK結果之結果
分子ID hu FcRn小鼠CL [mL/天/kg] hu FcRn KO小鼠 CL [mL/天/kg] pH7.4 ARC評分 ARC比率 pH 6/7.4
P1AE6454 3+1D 變異體 -- 28 0.34 1.8
P1AE6455 3+1S 變異體 6.1 -- 0.40 1.6
P1AE7217 4+1S 變異體 30 49 0.36 1.1
P1AE7205 4+1D 變異體 23 51 0.38 1.3
野生型抗體之大致常見情況 <5(-10) 60-80 <0.1-0.2 >10-15
基於該等活體外及動物活體內結果,可得出如下結論:較高之價(4+1)導致體積更大的4+1構築體之清除率高於3+1構築體,此與較高之ARC比率值一致。HuFcRn清除率值相應地高於<10-12 mL/天/kg之目標值,且因此4+1構築體由於清除率高而較3+1構築體欠佳。 實例6 PK活體外及活體內分析之方法描述 6.1 偵測OX40 (49B4)純系之可能PK不利因素及抗體工程化以改良抗體之方法
簡言之,生成OX40結合劑之可變區之等電位表面區域且評價大的帶正電荷之區片,其可為高非特異性清除率之原因。鑑別出一個由三個帶正電荷之胺基酸組成的帶正電荷之區片,其中兩個突變為帶負電荷之胺基酸。該等胺基酸位於框架中而不位於CDR中,且因此預測保持抗體與其靶標結合之能力。該方法之細節可參見專利申請案WO 2018/197533。
使用MoFvAb軟體第9版(MoFvAb係抗體Fv區之建模工具,由Roche內部構建),使用OX40純系49B4之可變結構域VH之胺基酸序列產生同源性模型。藉由使用自同源性模型開始,之後使酸性及鹼性側鏈pH質子化之電腦模擬計算方法,吾人使用如在軟體套件Discovery Studio (供應商:Dassault Systems)中執行之軟體CHARMM及Delphi計算3D電荷分佈。藉由目視檢查所得三維電荷分佈,鑑別出帶正電荷之區片,其可為高非特異性清除率之原因。其由VH中之三個胺基酸構成,其中兩個在框架中而非在CDR中。選擇框架殘基並避免CDR增加保持靶標結合親和力之機率。隨後,選擇該兩個框架殘基(K23及K73)以突變成(例如)攜帶負電荷之麩胺酸,其應降低非特異性清除率。 6.2 用於測定活體外pH依賴性攝取及回收之ARC分析
確立基於細胞之FcRn胞吞轉送作用分析作為篩選分析及排序工具,其可有助於預測治療性抗原結合分子(IgG分子)之清除率且有助於選擇先導候選物。
使人類FcRn轉染之馬丁達比犬腎(MDCK)細胞在Transwell®聚碳酸酯過濾器上作為單層培養,以在37℃下評價pH 6.0或pH 7.4下之IgG再循環及胞吞轉送作用。 26 顯示圖解說明transwell系統之方案。該分析係以「脈衝-追蹤」形式進行。首先,使細胞在pH 6.0或pH 7.4下與IgG分子一起培育(脈衝)。隨後洗滌兩個區室以去除未加載之IgG分子,且接著用pH 7.4替代緩衝液以進行「追蹤」。2小時後量測IgG分子自細胞之釋放(追蹤),且藉由IgG ELISA進行量化,其中計算每一條件之平均量(以ng計)。對頂端及基底外側區室二者進行取樣以分別代表再循環及胞吞轉送作用。在pH 7.4下,IgG僅經由流體相胞飲攝取。此研究揭示IgG例如由於其物理化學性質及隨後與細胞表面之相互作用而經歷非特異性攝取之敏感性。
在兩個pH值下計算最終ARC評分: 6.0 = ng IgG再循環pH 6.0 + ng IgG胞吞轉送pH 6.0 7.4 = ng IgG再循環pH 7.4 + ng IgG胞吞轉送pH 7.4
方程式1兩個pH值之ARC評分公式。 6.3 分析血清樣品中之分析物濃度以用於huFcRn小鼠研究
對於huFcRn及FcRn KO小鼠研究,藉由針對小鼠血清之探究性ELISA分析來測定小鼠血清中分析物之濃度,該分析使用對人類抗體(Cκ及CH1區)具有特異性之捕獲及偵測試劑。量化限值為69 ng/mL。Stubenrauch等人,Journal of Pharmaceutical and Biomedical Analysis 2013, 72, 208-215闡述對食蟹猴血清之分析,且使其適用於小鼠血漿。 6.4 分析血清中之抗藥物抗體以用於huFcRn小鼠研究
對於huFcRn及FcRn KO小鼠研究,藉由探究性ELISA分析量測小鼠血清中針對藥物之抗藥物抗體,該分析使用抗人類IgG Fab片段(Cκ及CH1區)作為小鼠血清中之捕獲試劑且抗小鼠IgG抗體作為偵測試劑。Stubenrauch等人,Journal of Pharmaceutical and Biomedical Analysis 52 (2010) 249-254闡述對食蟹猴血清之分析,且使其適用於小鼠血漿。 6.5 活體內研究:Hu FcRn小鼠及FcRn KO小鼠PK研究
以緩慢濃註形式向四隻雄性huFcRn Tg32 +/+小鼠靜脈內投與測試化合物(5 mg/kg),且在投藥後0.0833 h、7 h、24 h、48 h、72 h、168 h、336 h、408 h及504 h,藉由微量取樣收集20微升K3 EDTA血液。藉由離心製備血漿並冷凍儲存,直至在乾冰上運送,以藉由部分6.3及6.4中所闡述之通用分析來分析人類抗體之濃度及抗藥物抗體之出現。
此外,以緩慢濃註形式向三隻雄性FcRn Ko小鼠靜脈內投與測試化合物(5 mg/kg),且在投藥後0.167小時、2小時、7小時、24小時、30小時、48小時、72小時及96小時,藉由微量取樣收集20微升K3 EDTA血液。藉由離心製備血漿並冷凍儲存,直至在乾冰上運送,以藉由部分6.3及6.4中所闡述之通用分析來分析人類抗體之濃度及抗藥物抗體之出現。藉由已確立之非區室程序實施藥物動力學評估。 6.6 用於估計抗體之非特異性清除率之LUCA分析
建立活體外分析,以供預測治療性抗原結合分子在原代人類肝臟內皮細胞中之非特異性清除率。藉由用pH敏感性染料標記抗原結合分子來獲取資料,該pH敏感性染料在溶酶體(酸性pH 5.5)中累積時展現高螢光,且在細胞外(中性pH 7.4)保留時展現低螢光。使人類或動物內皮細胞與經標記之抗體一起培育2小時及4小時,且使用流式細胞儀記錄螢光讀出。使用幾何平均強度進行線性回歸分析。當以標準抗體作正規化時,所提取之斜率形成所謂的相對LUCA速率。
為測試在LUCA分析中所偵測到之清除率是否僅由諸如胞飲等非特異性攝取機制介導,對分析進行修改以亦測試潛在靶標介導(或脫靶介導)之藥物處置(TMDD)。因此,使細胞與等效未經標記之抗體對應體一起預培育,以使促成清除之靶標飽和。為監測效應,將不同濃度之未經標記抗體在經標記抗體之前以及與其一起施加至細胞。若分子展現潛在TMDD,則相對LUCA速率將隨未經標記抗體之濃度增加而降低。
抗體標記: 根據製造商說明書,使用SiteClick™抗體疊氮基修飾套組(Thermo Fisher Scientific)標記抗體。簡言之,藉由β-半乳糖苷酶去除Fc區之N連接之半乳糖殘基,且經由β-1,4-半乳糖基轉移酶(GalT)由含疊氮化物之半乳糖(GalNaz)替代。此疊氮化物修飾使得能夠進行sDIBO修飾染料之無銅結合。pH敏感性胺反應性染料(523 nm)係購自Promega,且偶合至磺基DBCO PEG4胺。以2倍之莫耳染料過量標記抗體。使用MWCO為50 kD之Amicon® Ultra-2離心過濾器 (EMD Millipore,編號UFC200324)去除過量染料,且使抗體於20 mM組胺酸緩衝液(pH 5.5)中重新緩衝。利用Nanodrop光譜儀在280 nm及532 nm下測定經標記抗體之濃度[1]以及染料對抗體比率(DAR) [2]。 CAB = [A280nm - [A280nm * CF染料]] / εmAb                      [1] DAR = [A532nm * MWmAb] / [cmAb * ε染料]                        [2] ε染料= 47225 CF染料= 0.36
細胞維持及製備: 冷凍保存之人類肝臟源性內皮細胞(HLEC-P2)係購自Lonza (Lonza,編號HLECP2)。使細胞維持在補充有EGMTM -2 MV微血管內皮細胞生長培養基SingleQuotsTM (Lonza,編號CC-4176)之EBMTM -2內皮細胞生長基礎培養基-2 (Lonza,編號CC-3156)中。在抗體處理前五天,將細胞平鋪至膠原I包覆之100 mm培養皿(Corning® BioCoat™,編號354450)上,且在處理前兩天,於膠原I包覆之96孔板(Corning® BioCoat™,編號354407)中以4×104 個細胞/孔之細胞密度繼代培養,以容許黏附48小時。24小時後更換培養基,且使細胞保持在37℃及5% CO2 下。
在實驗當天,將細胞用200 µl預溫熱之培養基洗滌兩次,且隨後於培養基中與400 nM經標記抗體或作為陰性對照之20 mM組胺酸緩衝液(pH 5.5)一起培育。若測試潛在TMDD,則使細胞與未經標記之對應體(0 µM、0.2 µM、0.6 µM、1.2 µM、3 µM、6,2 µM)一起在37℃下預培育30 min,之後添加經標記抗體。2小時及4小時後,去除抗體溶液且將細胞用200 µl冰冷的DPBS (不含Mg及Ca)洗滌一次並藉由在37℃下施加100 µl胰蛋白酶(含有EDTA)達2.5分鐘分離。藉由添加100 µl FACS緩衝液(20% FCS,1 mM EDTA於DPBS中)使胰蛋白酶不活化。
品質控制: 生物物理學結合性質係影響清除機制之關鍵決定因素。因此,評價抗體之結合親和力在標記過程期間是否發生變化係重要的。先前已顯示,肝素層析及新生Fc受體結合預測活體外抗體清除(Kraft等人,mAbs 2020)。在本文中,此方法用於解釋由點擊標記引入之潛在異常結合性質。為確認不存在未結合之染料並驗證以光譜儀所量測之濃度,對經標記抗體實施粒徑篩析層析。使用BioSuite Diol (OH)管柱(Waters, 186002165),利用磷酸二氫鉀緩衝液(pH 6.2)作為移動相,以0.5 ml/min之流速分離樣品。使用偵測器在280 nm及532 nm下量化並分析經標記抗體。提取280 nm及532 nm下之曲線下面積(AUC)以計算濃度。計算所有抗體之AUC之幾何平均值,且鑑別每一抗體與此幾何平均值之偏差。對於在此分析中可靠之抗體,預期與幾何平均值之差異低於15%。
流式細胞術及藥物動力學分析: 使用配備有在488 nm下激發之雷射及在585 nm / 540 nm下收集發射光之濾波器之MACSQuant® Analyzer 10 (Miltenyi Biotec)獲取內化抗體之平均螢光強度(MFI,更具體而言幾何平均值(geometric mean、geo-mean))。對於兩個時間點(2小時及4小時),使用完全相同之條件、增益及門控。使用FloJo_V10軟體實施資料提取。自所有幾何平均值減去陰性對照值,之後以DAR作正規化。使用GraphPad Prism將每一抗體之正規化幾何平均值繪製為線性回歸曲線,以提取斜率(120 min及240 min之幾何平均MFI/min)。選擇兩種標準抗體以使斜率正規化:將莫維珠單抗(Motavizumab)-YTE (G.J.Robbie等人,Antimicrob. Agent Chemother. 2013, 57(12), 6147)設為0,且將CD20-CD3 TCB (Hutchings等人,Blood 2019, 134, 2871)設為1。使用TIBCO Spotfire軟體,針對已公佈之活體內人類、食蟹猴及hFcRn Tg32 +/+小鼠清除率值繪製最終斜率。
活體內 藥物動力學資料: 人類及食蟹猴清除率值係自FDA、EMA及NCBI所發佈之研究綜述或與臨床藥理學家之個人交流彙編而成。若可獲得若干個清除率值,則使用描述分子之非特異性清除率之劑量線性清除率。在線性藥物動力學之情形下,藉由標準非區室方法測定參數。根據以下公式計算清除率: 清除率=劑量/濃度-時間曲線下面積
在非線性藥物動力學之情形下,經由以下替代性方法測定清除率之線性分數:任一清除率值均在高劑量水準下IV投與後估計,在高劑量水準下,額外非線性清除路徑幾乎飽和。或者,建立包含線性及非線性可飽和清除率項之PK模型。在該等情形中,使用模型確定之線性清除分數進行關聯。
自如下內部實施之研究獲得鼠類清除率: 小鼠:使用小鼠FcRn α-鏈基因缺陷、但人類FcRn α-鏈基因半合子基因轉殖之B6.Cg-Fcgrt tm1Dcr Tg(FCGRT)276Dcr小鼠(muFcRn-/- huFcRn tg +/-,品系276)用於藥物動力學研究。在特定無病原體條件下進行小鼠飼養。小鼠係自Jackson Laboratory (Bar Harbor, ME, USA)獲得(雌性,4-10週齡,投藥時體重17-22 g)。所有動物實驗均由德國上巴伐利亞政府批准(許可號55.2-1-54-2532.2-28-10),且根據歐盟實驗動物照護及使用規範(European Union Normative for Care and Use of Experimental Animals)在AAALAC認證之動物設施中實施。將動物圈養在標準籠中,且在整個研究期期間自由獲取食物及水。 藥物動力學研究:經由側尾靜脈,以5 mg/kg之劑量水準i.v.注射單劑量之抗體。將小鼠分成3組,每組6隻小鼠,總計覆蓋9個血清收集時間點(投藥後0.08小時、2小時、8小時、24小時、48小時、168小時、336小時、504小時及672小時)。使每一小鼠經受兩次眼眶後出血,其係在Isoflurane™  (CP-Pharma GmbH, Burgdorf, Germany)之輕度麻醉下實施;在安樂死時收集第三個血液樣品。將血液收集至血清管中(Microvette 500Z-Gel, Sarstedt, Nümbrecht, Germany)。培育2 h後,使樣品以9.300 g離心3 min以獲得血清。離心後,在-20℃下冷凍儲存血清樣品直至分析。 人類抗體血清條件之測定:藉由特異性酶聯免疫分析測定鼠類血清中優特克單抗(Ustekinumab)、巴列津單抗(Briakinumab)、mAb 8及mAb 9抗體之濃度。分別使用對抗體具有特異性之生物素化介白素12及地高辛(digoxigenin)標記之抗人類-Fc小鼠單株抗體(Roche Diagnostics, Penzberg, Germany)進行捕獲及偵測。將鏈黴抗生物素蛋白包覆之微量滴定板(Roche Diagnostics, Penzberg, Germany)用在分析緩衝液(Roche Diagnostics, Penzberg, Germany)中稀釋之生物素化捕獲抗體包覆1 h。洗滌後,添加各種稀釋度之血清樣品,之後為1 h之另一培育步驟。重複洗滌後,藉由隨後與偵測抗體一起培育,之後與結合至辣根過氧化物酶(HRP;Roche Diagnostics, Penzberg, Germany)之抗地高辛抗體一起培育來偵測結合之人類抗體。使用ABTS (2,2次偶氮基-二[3-乙基苯并噻唑啉磺酸];Roche Diagnostics, Germany)作為HRP受質以形成有色反應產物。使用Tecan sunrise讀板儀(Männedorf, Switzerland),在405 nm下讀取所得反應產物之吸光度,參照波長為490 nm。所有血清樣品、陽性及陰性對照樣品均以一式兩份分析且針對參照標準品進行校準。 PK分析:使用WinNonlin™ 1.1.1 (Pharsight, CA, USA),藉由非區室分析計算藥物動力學參數。簡言之,由於抗體呈非線性減少,故藉由對數梯形法計算曲線下面積(AUC0-inf)值,並使用表觀終末速率常數λz外推至無窮大,自在最後一個時間點所觀察到之濃度外推。血漿清除率計算為劑量率(D)除以AUC0-inf。表觀終末半衰期(T1/2)係自方程式T1/2 = ln2/λz得出。 實例7 先前存在之抗藥物抗體反應性之評估及改良 7.1 先前存在之抗藥物抗體(ADA)反應性之評估
為評估先前存在之IgG干擾之根本原因,在人類個體血漿樣品中實施探究性ELISA以偵測抗藥物抗體(ADA)。其使用針對藥物Fc結構域中之胺基酸突變L234A、L235A及P329G (「PGLALA修飾」)之生物素化抗PGLALA抗體作為捕獲試劑及地高辛標記之Fcγ受體I (CD64)作為偵測試劑,該偵測試劑與作為ADA-藥物複合物之一部分的不具有PGLALA修飾之人類IgG結合。為比較先前存在之IgG對不同藥物分子之干擾,在同一組原初人類個體血漿樣品上實施此分析。
在第一步中,將2 µg/mL生物素化抗PGLALA抗體包覆至經鏈黴抗生物素蛋白包覆之微量滴定板。與此同時,使原初人類個體血漿樣品(BioIVT)與含有6.7×10-9 mol/L各別藥物分子之緩衝液一起在室溫下預培育30分鐘,以容許形成藥物-抗藥物抗體複合物。在培育樣品及洗滌步驟後,可利用0.5 µg/mL地高辛標記之Fcγ受體I (CD64)偵測作為免疫複合物之一部分且結合至表面的不具有PGLALA修飾之人類IgG。洗滌後,添加多株抗地高辛-辣根過氧化物酶(HRP)結合物(50 mU/mL)並培育。在另一洗滌步驟且將ABTS (2,2'-次偶氮基雙[3-乙基苯并噻唑磷-6-磺酸]-二銨鹽)受質溶液添加至微量滴定板中後,抗體酶結合物之HRP催化呈色反應。ELISA讀數儀量測405 nm波長下之吸收。(Wessels等人,Bioanalysis 2017, 9(11), 849-859)。 7.2 先前存在之抗藥物抗體(ADA)反應性之改良
在原初人類血漿樣品中探究如WO 2017/060144 A1中所闡述之雙特異性抗原結合分子OX40 (49B4) × FAP (4B9) (4+1) (分子P1AA1119)之先前存在之IgG干擾。如 27A 中所示,觀察到高信號具有高發生率。Holland等人,J. Clin. Immunol. 2013, 33, 1192-1203公佈,與另一分子類型中之P1AA1119中所包括者類似之VH/VL片段已顯示出對人類抗VH自體抗體之反應性。因此,對由攜帶FAP結合劑之Fab片段替代VH/VL片段是否可導致本發明之抗原結合分子之ADA反應性減少存在質疑。
產生與P1AA1119類似、但具有攜帶FAP結合劑之Fab片段之抗原結合分子P1AE6836,且如 27A 27C 中所示,在同一組原初人類血漿樣品中研究先前存在之IgG反應性。P1AE6836仍顯示先前存在之IgG干擾,與P1AA1119相比信號減少,且在不同的個別人類樣品中,指示針對攜帶FAP結合劑之Fab片段的先前存在之抗藥物抗體類型不同( 27B )。類似但包含人類化FAP純系1G1a之分子(P1AE6838, 27C )證實包含FAP 4B9純系之分子(P1AE6836)所獲得之結果,指示FAP純系不為先前存在之IgG反應性之根本原因。
28 中可見,所有共有FAP (1G1a)抗原結合結構域但具有不同的抗OX40純系(49B4、8H9、MOX0916及CLC-563)之雙特異性抗原結合分子均顯示相同的先前存在之IgG干擾,此指示OX40純系不為先前存在之IgG反應性之根本原因。
29A 中,利用對照分子測試人類個體血漿樣品之亞組,該等對照分子包含OX40(49B4)純系(P1AD3690) (4+0)、包含四個OX40(49B4) Fab片段之非靶向分子、包含人類化FAP(1G1a) Fab片段之FAP(1G1a)分子(P1AE1689)及生殖系對照抗體(P1AD5108、DP47)。該等分子不引起先前存在之IgG反應性,且因此顯示低背景信號。 29B 顯示,OX40之所有價(2+1、3+1及4+1)均產生先前存在之IgG干擾,其中信號高度存在2+1>3+1>4+1之略微增加趨勢,此推測係由於空間位阻所致。
文獻(Kim等人,MABS 2016, 8, 1536-1547)表明,與侵襲性疾病相關之若干蛋白酶能夠在鉸鏈區裂解抗體,由此生成抗鉸鏈抗體之新抗原決定基。因此,吾人產生在Fab片段之CH1結構域中具有不同C末端胺基酸之分子,該Fab片段與Fc結構域之C末端融合且由此具有「游離」鉸鏈樣區。而原始雙特異性抗體具有EPKSC (SEQ ID NO:163)之C末端胺基酸序列,產生具有EPKSCD (SEQ ID NO:164)及EPKSCS (SEQ ID NO:165)之C末端胺基酸序列之變異體。
為評估抗原結合分子OX40 (49B4) × FAP (1G1a) (3+1)之C末端延伸變異體,測試同一組人類個體血清樣品( 30A ),且減去其個別背景信號( 30C )。藉由在沒有藥物分子之情形下實施分析來量測個別背景信號( 30B )。
在分子OX40 (MOXR0916) × FAP (1G1a) (3+1) (P1AF4845)中,在上部鉸鏈區之此位置生成天然天冬胺酸鹽對C末端之延伸( 31B )。與具有游離C末端之分子P1AE8786相比,此修飾使得先前存在之IgG反應性降低( 31A )。為完全消除先前存在之IgG反應性,生成具有C末端絲胺酸之變異體。此絲胺酸並不天然位於上部鉸鏈區之此位置。如 31C 中所示,分子P1AF4851之絲胺酸對C末端之延伸使得先前存在之IgG反應性之完全消除。
32A 32C 顯示呈2+1格式之各別分子集,且對如下等先前結果予以證實:與具有游離C末端EPKSC之分子OX40 (49B4) × FAP (1G1a) (2+1) (P1AE6840, 32A )相比,天冬胺酸鹽之C末端延伸(具有EPKSCD末端之分子OX40 (MOXR0916) × FAP (1G1a) (2+1),P1AF4852, 32B )降低與血漿中之先前存在抗體之反應性,而C末端絲胺酸(具有EPKSCS末端之分子OX40 (MOXR0916) × FAP (1G1a) (2+1),P1AF4858, 32C )消除與血漿中之先前存在抗體之反應性。
33 中可見,三種其他分子實例加強如下發現:額外C末端絲胺酸完全消除先前存在之ADA反應性( 33B 33D33F ),而C末端天冬胺酸鹽降低不期望之干擾( 33A 33C33E) 。 實例8 在活體外24小時人類全血分析中評估FAP靶向之抗OX40雙特異性抗原結合分子之細胞介素釋放風險
為評估在人類中第一次投藥時與細胞介素釋放相關之潛在安全性風險,對來自10名健康供體之新鮮未經稀釋的人類全血樣品進行FAP × OX40雙特異性介導之細胞介素分泌之活體外非GLP測試。使血液樣品與濃度為0.1、1、10及50 g /mL之FAP × OX40雙特異性分子一起培育24小時,且量測血漿中細胞介素之隨後釋放。使用Erbitux® (一種抗EGFR IgG1 mAb)作為陰性比較物,且使用Lemtrada® (一種人類化抗CD52 IgG1,已知在超過90%之接受者中誘導首次輸註反應(IRR))作為陽性比較物。 8.1 材料及方法 8.1.1.測試分子
測試以下FAP靶向之抗OX40雙特異性抗原結合分子: C1:OX40(CLC563) × FAP(1G1a_EPKSCD) 3+1 (P1AF6454),濃度c = 5.8 mg/ml,20 mM His/HisCl,140 mM NaCl,pH 6.0,以-80℃接收,且在解凍後儲存在4℃下, C2:OX40(CLC563) × FAP(1G1a_EPKSCS) 3+1 (P1AF6455),c = 2.0 mg/ml,20 mM His/HisCl,140 mM NaCl,pH 6.0,以-80℃接收,且在解凍後儲存在4℃下, C3:OX40(49B4) × FAP (4B9) 4 +1 (P1AD4524、RO7194691),c= 10.0 mg/ml,20 mM His/HisCl,140 mM NaCl,pH 6.0,以-80℃接收,且在解凍後儲存在4℃下, C4:OX40(CLC563) × FAP(1G1a_EPKSCS) 4+1 (P1AF7217),c = 9.73 mg/ml,20 mM His/HisCl,140 mM NaCl,pH 6.0,以-80℃接收,且在解凍後儲存在4℃下, C5:OX40(CLC563) × FAP(1G1a_EPKSCD) 4+1 (P1AF7205),c = 10.28 mg/ml,20 mM His/HisCl,140 mM NaCl,pH 6.0,以-80℃接收,且在解凍後儲存在4℃下, C6:OX40(49B4_K23E_K73E) × FAP(1G1a_EPKSCS) 4+1 (P1AF6457),c = 10.40 mg/ml,20 mM His/HisCl,140 mM NaCl,pH 6.0,以-80℃接收,且在解凍後儲存在4℃下,及 C7:OX40(49B4_K23E_K73E) × FAP(1G1a_EPKSCD) 4+1 (P1AF6456),c = 10.17 mg/ml,20 mM His/HisCl,140 mM NaCl,pH 6.0,以-80℃接收,且在解凍後儲存在4℃下。 表33:所測試之FAP靶向之抗OX40雙特異性抗原結合分子
分子ID 抗Ox40純系 變異體 格式 圖中之分子名稱
P1AF6454 CLC-563 D 3+1 C1
P1AF6455 CLC-563 S 3+1 C2
P1AD4524 49B4 - 4+1 C3
P1AF7217 CLC-563 S 4+1 C4
P1AF7205 CLC-563 D 4+1 C5
P1AF6457 49B4 AA變異體K23E_ K73E S 4+1 C6
P1AF6456 49B4 AA變異體K23E_ K73E D 4+1 C7
8.1.2.對照物質
使用以下分子作為對照: 低風險比較物:Erbitux ,亦即西妥昔單抗(cetuximab),重組抗EGFR,嵌合IgG1,Merck Serono, USA,原液5 mg/mL,無菌液體,儲存在4℃下。 高風險比較物:Lemtrada®,亦即阿倫單抗(alemtuzumab),重組抗CD52,人類化IgG1,Genzyme, USA,原液10 mg/mL,無菌液體,儲存在4℃下。 LPS:源自馬流產沙門菌(Salmonella abortus)之脂多醣,Sigma,產品號L5886,原液濃度:1 mg/mL PBS:杜貝克氏磷酸鹽緩衝液鹽水(Dulbecco's phosphate-buffered saline),Gibco編號14190 8.1.3.人類全血分析
將來自健康供體之靜脈血收集在含有鋰肝素作為抗凝劑之vacutainer管(Roche Medical Center, Basel, Switzerland)中,且保持在室溫下直至起始分析(1-3小時內)。
預驗證實驗揭示在3小時內處理血液之最佳性能條件,否則會發生紅血球溶解。藉由以一式三份向含有5 μl待測試項目之96孔板之U底孔中添加195 μl血液(1:40),最終測試項目之濃度範圍為0,1至50  g/ml抗原結合分子。選擇此濃度範圍以覆蓋如自早期研究中已知之在投與P1AD4524後之預知暴露。
該等條件確保關於實用性及效率之最佳性能,以獲得至少70  l血漿及足夠的細胞以分別進行多細胞介素分析及細胞亞組列舉。藉由包括分別含有PBS或媒劑及LPS之對照來評價血細胞之內源性活化及反應性。在37℃與5% CO2 下培育24小時後,藉由以1800 g離心5 min分離細胞及血漿。使血漿樣品在-80℃下儲存,直至分析細胞介素含量。 8.1.4.多重細胞介素分析
對以1:5稀釋之冷凍血漿樣品實施細胞介素濃度之測定。預測試揭示,新鮮與解凍樣品之間的細胞介素水準並無差異。使用人類細胞介素化學發光分析套組(Aushon Ciraplex,目錄號101-269-1-AB)以及SignaturePLUS™成像系統及Cirasoft分析軟體,藉由ELISA來測定分析物濃度。結果以pg/ml表示。為高於ULOQ濃度之值指派最高標準之濃度,如下所示:IFNγ,500 pg/mL;IL-6,2000 pg/mL;IL-8,4000 pg/mL;TNFα,1000 pg/ml。為低於LLOQ水準之樣品值指派LLOQ濃度:IFNγ,0.24 pg/mL;IL-6,0.98 pg/mL;IL-8,1.95 pg/mL;TNFα,1.95 pg/ml。 8.2 結果及結論
在此分析中,相對於陰性比較物Erbitux®,OX40(49B4) × FAP (4B9) 4 +1 (P1AD4524, C3)導致分泌IL-6、IL-8,最大陽性反應為33%及33%,且最大中值細胞介素分別上調1.0倍(IL-6)及2.73倍(IL-8)。對於IL-6在10 μg/ml P1AD4525下且對於IL-8在50 μg/ml P1AD4524下觀察到最高反應者頻率及最大中值上調。
相比之下,對於如本文所闡述之雙特異性FAP × OX40抗原結合分子組(C1、C4、C5、C6及C7),觀察到IL-6及IL-8釋放較少,C2除外,其在50 μg/ml下之IL-8反應者頻率甚至略有升高(44%)。在所有測試分子中,C1具有最佳之細胞介素概況(最低IL-6及IL-8釋放)。C1及C2顯示無IFNγ反應者,而C3具有22%反應者。在所測試之所有構築體中,TNF-α反應較低(0-11%)。
42A42B 顯示在添加不同濃度之測試分子後,每名供體血液樣品中之IL-6分泌,IL-8分泌示於 43A43B 中。 實例9 免疫原性風險評估
使用活體外DC:CD4+ T細胞再刺激分析評估序列相關之免疫原性風險,且使用對人類IgG1抗體耐受之基因轉殖小鼠評估與作用模式相關之免疫原性。 9.1 DC-T細胞分析
FAP × OX40雙特異性抗原結合分子之序列相關之免疫原性使用DC:CD4+ T細胞再刺激分析進行,以用於評價來自30名健康人類供體之PBMC之T細胞活化。所有蛋白質均在相同的30名健康供體中進行測試,且藉由IFNγ FluoroSpot評價每一條件誘導之CD4+ T細胞反應。 9.1.1.材料
作為對照,根據製造商之推薦,在無菌條件下重構鑰孔帽貝血藍蛋白(KLH)且以一次性使用等分試樣儲存在-80℃下。包括貝伐珠單抗(Avastin®)及/或阿達木單抗(Humira®)作為基準蛋白質。Avastin®由F. Hoffmann-La Roche AG供應,且以一次性使用等分試樣儲存在+4℃。對於DC刺激階段及APC再刺激階段二者,Avastin®均以300 nM之最終濃度使用。
所測試之FAP × OX40雙特異性抗原結合分子為OX40(CLC563) × FAP(1G1a_EPKSCD) 3+1 (P1AF6454)及OX40(CLC563) × FAP(1G1a_EPKSCS) 3+1 (P1AF6455)。在早期實驗中,亦測試P1AD4524。
對於供體細胞,所有樣品均係根據由當地REC (研究倫理委員會)批准之倫理方案來收集,且在樣品捐贈之前自每一供體獲得書面知情同意書。來自健康供體之PBMC係在抽血六小時內自全血製備。使細胞冷凍保存在氣相氮中,直至用於分析中。藉由利用陽性對照(諸如KLH)活化7天來分析每一PBMC製劑之品質及功能,以評價原初T細胞反應。30名健康供體之MHC-II類同種異型廣泛覆蓋多樣性,且本研究中之HLA-DRB1頻率與世界群體匹配。 9.1.2.方法 9.1.2.1 Epibase® DC:CD4+ T細胞再刺激分析(根據Lonza方案)
藉由磁珠選擇(Miltenyi Biotec)自冷凍PBMC樣品分離單核球,且使用GM-CSF及IL4使其分化成不成熟DC (iDC)。接著收穫iDC,洗滌且在37℃下加載每一個別測試蛋白質持續4小時。接著添加含有TNFα及IL-1B之DC成熟混合劑再持續40-42小時,以使DC活化/成熟(mDC)。藉由流式細胞術評價關鍵DC表面標記物(CD11c、CD14、CD40、CD80、CD83、CD86、CD209及HLA-DR)在不成熟及成熟階段中之表現,以確保DC在T細胞相互作用之前經活化。接著使1×105 個mDC與1×106 個自體CD4+ T細胞(藉由負磁選分離)於潮濕氣氛中在37℃、5% CO2 下共培養6天。在第6天,使用負向磁珠選擇自PBMC分離自體單核球,且加載最初用於加載DC之所選蛋白質/肽。於潮濕氣氛中在37℃、5% CO2 下培育4小時後,將5×104 個單核球/孔連同相應的DC:CD4共培養物以一式四份(2.5×105 個CD4+ T細胞/孔)添加至抗INFγ/抗IL-5預包覆之FluoroSpot板(Mabtech)。於潮濕氣氛中使FluoroSpot板在37℃、5% CO2 下培育40-42小時。培育後,使用內部程序使FluoroSpot板顯色,且使用IRISTM FluoroSpot讀數器(Mabtech)在每一測試條件下對每一細胞介素評價每孔中之斑點形成細胞(SFC)。
亦在不成熟及成熟階段對單核球源性DC實施表面標記物QC檢查,以確定測試化合物對DC分化之任何可能的影響,且容許在隨後與CD4+ T細胞共培養之前評價DC之品質。使用螢光標記抗體及Guava® easyCyte   8HT 流式細胞儀,藉由流式細胞術評價表面標記物。 9.1.2.2 資料管理及QC
對所有實驗資料實施有據可查之QC及QA程序。使用Excel及統計學程式「R」進行後續資料分析,使用GraphPad Prism用於資料之圖形表示。 9.1.2.3 統計學分析
反應頻率 :以供體水準分析資料,以確定每一個別測試條件是否在每一供體中誘導顯著之T細胞反應。利用分佈不拘重抽樣(DFR)方法(Moodie等人,2010)評估因應於每一測試條件的每孔之斑點形成單位(SFU)(亦即每孔之細胞介素分泌細胞之數目)。DFR方法係非參數統計測試,其將每一供體之每一測試條件與參照條件進行比較,且指示測試條件與參照條件之間的差異是否在統計學上顯著。此方法之兩個所闡述變化形式為DFR(eq)及DFR(2×)。
DFR(eq)利用置換重抽樣且容許最大假陽性率為5% (p ≤ 0.05)且最小為1% (p ≤  0.01)。DFR(2×)用自體抽樣法檢定(Bootstrap test)替代置換重抽樣且經由應用更嚴格之虛無假設將假陽性率控制至< 1% (p < 0.01),該虛無假設併入最小反應臨限值,其中實驗結果必須最少為相關陰性對照之2倍,以便判斷為在統計學上顯著。該兩種DFR方法與Westfall-Young步降max T方法(單向)結合,以計算p值並慮及多重比較。在此項目中,使用DFR(2×)確定統計學上顯著之CD4+ T細胞反應。
反應強度 :藉由將測試條件下之SFU/孔除以空白(僅分析培養基)之SFU/孔,計算每一供體在每一測試條件下之刺激指數(SI),以突出每一供體中T細胞反應之量級。接著計算每一測試條件之30名供體群體之幾何平均值以及中值及四分位距。 9.1.2.4 免疫原性之群體分析
為評價每一樣品對整個30名供體群體之影響,計算每一供體在每一測試條件下之刺激指數(SI)。藉由將測試條件下之SFU/孔除以空白(僅分析培養基)計算刺激指數,以突出每一供體中T細胞反應之量級。接著計算每一測試條件之30名供體群體之幾何平均值以及中值及四分位距。 9.1.3.結果及結論
KLH (陽性對照)係CD4+ T細胞之強效刺激劑且在大多數供體中誘導高IFNγ (100%)及IL-5 (93.3%)反應,而貝伐珠單抗(Avastin,陰性對照)基於IFNγ及IL-5讀出顯示低反應。化合物P1AF6454及P1AF6455二者均誘導對IFNγ (P1AF6454:6.6%及P1AF6455:10%) ( 44A 44B )以及對IL-5 (二者均為6.6%)之低供體T細胞反應頻率。基於先前驗證實驗,將低反應者頻率之臨限值設置為高於10%;因此,所測試之兩種化合物均視為與序列相關之免疫原性風險較低相關。
相比之下,與新的FAP × OX40抗原結合分子P1AF6454及P1AF6455相比,P1AD4524誘導較高之對INFγ之供體T細胞反應頻率(33%)及較高之INFγ刺激(刺激指數為2.5) (圖45A及45B)。 9.2 評價FAP-Ox40候選者在對人類IgG1抗體免疫耐受之基因轉殖小鼠中引發抗藥物抗體(ADA)之潛力的4週免疫原性研究
本研究之目的為藉由在C57BL/6-Tg (hIgG1,k,l)基因轉殖小鼠模型中測試FAP-OX40分子來研究其免疫原性潛力。與C57BL/6野生型小鼠相反,C57BL/6-Tg (hIgG1,k,l)基因轉殖小鼠具有基因轉殖非重排人類Ig重鏈及輕鏈基因座。在B細胞分化時,該等基因轉殖基因座經歷功能性Ig基因重排,隨後B細胞表現可溶性人類IgG1。因此,C57BL/6-Tg (hIgG1,k,l)基因轉殖小鼠之免疫系統對大範圍之人類IgG1抗體耐受,且可用作活體內模型以評價基於IgG1之藥物化合物的免疫原性,並潛在地預測在人類中之藥物特異性免疫原性。對於每一測試項目,在第1天、第5天、第8天、第12天、第15天、第19天及第22天,每次注射向10隻野生型小鼠及10隻基因轉殖小鼠皮下投與10 μg/小鼠。在1天、第8天、第15天、第22天及第29天製備血液樣品以進行IgG量測,以監測潛在ADA反應之進展。使用對所注射化合物具有特異性之小鼠IgG抗體的基於ELISA之偵測作為免疫學讀出。 9.2.1.材料
所測試之FAP × OX40雙特異性抗原結合分子為OX40(CLC563) × FAP(1G1a_EPKSCD) 3+1 (P1AF6454)、OX40(CLC563) × FAP(1G1a_EPKSCS) 3+1 (P1AF6455)及OX40(49B4) × FAP(4B9) 4+1 (P1AD4524)。
該實驗中所用之小鼠品系為C57BL/6野生型小鼠及-C57BL/6-Tg (hIgG1,k,l)基因轉殖小鼠。 9.2.2.方法
ELISA 測試 :將Nunc Maxisorp平底96孔ELISA板用每孔100 µL 1 µg/mL於NaHCO3 100 mM緩衝液中之測試化合物在+4℃下包覆隔夜。第二天,將ELISA板用PBS + 0.05% Tween洗滌三次。對於封阻,將100 µL PBS + 2% BSA添加至每一孔中且使ELISA板在室溫下培育兩小時。在圓底稀釋板之第一列中,將血清以1:50稀釋於PBS + 1% FBS中,之後為1:3連續稀釋步驟,在PBS + 1% FBS中稀釋七次。將ELISA板用PBS + 0.05% Tween洗滌三次,且將100 µL經稀釋血清自稀釋板轉移至ELISA板中。在室溫下培育兩小時後,將ELISA板用PBS + 0.05% Tween洗滌三次。為偵測經免疫小鼠血清中之小鼠抗藥物抗體(ADA),每孔添加100 µL以1:2000稀釋於PBS +1% BSA中的結合之山羊抗小鼠IgG鹼性磷酸酶(Jackson目錄號115-055-071)。在室溫下培育一小時後,將ELISA板用PBS + 0.05% Tween洗滌三次。每孔添加100 µL即用型受質磷酸對硝基苯酯(Life Technologies目錄號002212),且在室溫下培育十分鐘後,利用Versamax ELISA讀數儀讀取405 nm下之光學密度(OD)作為終點量測值。
統計學分析 :此分析之主要讀出在本質上視為二元的(不同的免疫反應對無明顯反應),此乃因來自ELISA之OD變化無法在不同的抗體偵測分析之間進行比較,且由此容易地轉化為通用定量量測。決定將重點放在每個測試項目兩個群組之十隻小鼠中之反應頻率上。為可再現地鑑別免疫反應,吾人定義高於基線以稱為陽性反應之6σ標準。將在至少一個時間點達到高於背景6個標準偏差(SD)之OD值之動物計為反應者。為確定平均背景水準及背景標準偏差,吾人在第1天(治療前,n =20)驗證沒有證據表明兩種基因型之基線水準或分佈有明顯的初始差異(分別t檢定及F檢定,p值>0.05)後,將基因轉殖及野生型組讀出合併。如在幾個樣品資料集中所證實,藉由此方法鑑別之反應者與藉由人類直覺自圖表所鑑別之反應者非常一致。基於二項分佈模型,計及所觀察到之反應數及組大小(n=10),計算反應率之95%信賴區間。以1:50之稀釋度獲取ELISA OD值,在自所執行的稀釋曲線確保基線清晰且沒有(基質效應)後,得到最大信號。使用定製R腳本直接自讀板儀格式輸入OD值,用於處理活體內免疫原性資料、對其進行分析並使其可視化。 9.2.3.結果及結論
用P1AF6455治療之兩個個別小鼠組之ELISA結果示於 46 中。該等ELISA分析揭示,6/10 (60%)之C57BL/6野生型小鼠引發Ig免疫反應,如藉由免疫小鼠血清中存在針對此化合物之ADA所量測。鑑於P1AF6455係完全人類IgG1抗體且因此預期會被鼠類免疫系統視為外源的,故預計會出現此顯著之免疫反應。相比之下,0/10 (0%)之C57BL/6-Tg (hIgG1,k,l)基因轉殖小鼠產生針對P1AF6455之抗體反應。
用P1AF6454治療之兩個個別小鼠組之ELISA結果示於 47 中。該等ELISA分析揭示,0/10 (0%)之C57BL/6野生型小鼠引發Ig免疫反應,如藉由免疫小鼠血清中存在針對此化合物之ADA所量測。與C57BL/6野生型小鼠中之情形相當,在C57BL/6-Tg (hIgG1,k,l)基因轉殖小鼠中未觀察到針對P1AF6454之ADA反應者(0/10 (0%))。此結果指示,P1AF6454在C57BL/6野生型小鼠及C57BL/6-Tg(hIgG1,k,l)基因轉殖小鼠中均不產生抗體反應。
用P1AD4524治療之兩個個別小鼠組之ELISA結果示於 48 中。該等ELISA分析揭示,5/8 (62.5%)之C57BL/6野生型小鼠引發Ig免疫反應,如藉由免疫小鼠血清中存在針對此化合物之ADA所量測。鑑於P1AD4524係完全人類IgG1抗體且因此預期會被鼠類免疫系統視為外源的,故預計會出現此顯著之免疫反應。6/9 (66.7%)之C57BL/6-Tg(hIgG1,k,l)基因轉殖小鼠產生針對RO7194691之抗體反應,此突出在人類中之高免疫原性風險。
活體內免疫原性研究展示P1AD4524之高免疫原性風險,且相比之下,化合物P1AF6454及P1AF6455誘導體液性免疫反應之傾向較低。所觀察到之差異可能歸因於三種所測試化合物之間序列性質之改變。P1AF6454及P1AF6455中之該等序列改變可能影響化合物源性肽之MHC II類呈現或可能產生無法誘導免疫原性T細胞及B細胞反應之非免疫原性肽序列。 實例10 FAP × OX40雙特異性抗原結合分子與CEACAM5 TCB之組合在人類化小鼠中之MKN45異種移植物中之功效研究
此處所闡述之功效研究之目的在於,在完全人類化之NSG小鼠中選擇就腫瘤消退而言在活體內最強效之FAP × OX40雙特異性抗原結合分子。
人類MKN45細胞(人類胃癌)最初係自ATCC獲得,且在擴增後寄存於Glycart內部細胞庫中。使細胞於含有10% FCS之DMEM中在37℃下於水飽和之氣氛中在5% CO2 下培養。使用活體外第7代進行皮下注射,存活率為98%之。人類纖維母細胞NIH-3T3最初係自ATCC獲得,在Roche Nutley經工程改造以表現人類FAP且在含有10%小牛血清、1×丙酮酸鈉及1.5  g/ml嘌呤黴素之DMEM中培養。使用活體外第5代之純系39,且存活率為> 95%。
利用22G-30G針將與50微升基質膠混合的50微升細胞懸浮液(1×106 個MKN45細胞+ 1×106 個3T3-huFAP)皮下注射在經麻醉小鼠之側腹中。
根據既定導則(GV-Solas;Felasa;TierschG),使在開始實驗時為4-5週齡之雌性NSG小鼠(Jackson Laboratory)維持在無特定病原體之條件下,且每天維持12 h光/12 h暗之循環。實驗研究方案經當地政府評審並批准(P 2011/128)。在到達之後,使動物維持一週以適應新環境並加以觀察。定期進行持續健康監測。
對雌性NSG小鼠i.p.注射15 mg/kg白消安(Busulfan),一天後,i.v.注射1x105 個自臍帶血分離之人類造血幹細胞。在幹細胞注射後在第14-16週對小鼠進行舌下放血,且藉由流式細胞術分析血液以獲得成功人類化。根據小鼠人類T細胞頻率,將有效植入之小鼠隨機化至不同的治療組中。此時,如所闡述用腫瘤/纖維母細胞混合物注射小鼠( 49 ),且在腫瘤大小達到大約200 mm3 時(第29天),每週用化合物或組胺酸緩衝液(媒劑)治療一次。所有小鼠均i.v.注射200 µl適當溶液。為獲得每200 µl適當量之化合物,在必要時用組胺酸緩衝液稀釋原液(表34)。 表34:活體內實驗中所用之組合物
化合物 原液濃度(mg/ml) 調配緩衝液
CEACAM5-TCB 19.2 20 mM組胺酸、140 mM NaCl pH 6.0
FAP × OX40 (49B CPV;4+1) (P1AE6456) 1.43 20 mM組胺酸、140 mM NaCl pH 6.0
FAP-OX40 (CLC563;3+1) (P1AF6454) 4.4 20 mM組胺酸、140 mM NaCl pH 6.0
FAP-OX40 (8H9;2+1) (P1AE8870) 3.99 20 mM組胺酸、140 mM NaCl pH 6.0
FAP-OX40 (49B4, 4+1) (P1AD4524) 24.32 20 mM組胺酸、140 mM NaCl pH 6.0
使用測徑器每週量測兩次腫瘤生長,且如下計算腫瘤體積: Tv:(W2/2) × L              (W:寬度,L:長度)
在第50天,研究終止。
50A 顯示腫瘤生長動力學(平均值,+SEM),且 50B 顯示研究終止時每個個別小鼠及組與基線(治療開始)相比之腫瘤體積變化百分比。如本文所闡述,含有CLC563純系的呈3+1格式之FAP × OX40構築體與CEACAM5-TCB組合顯現最佳之抗腫瘤活性。在該治療組中,8隻小鼠中有5隻顯示腫瘤消退(瀑布圖)。
1A 至圖 1E 顯示特異性地結合至人類OX40以及FAP之雙特異性抗原結合分子之示意圖示。 1A 顯示呈4+1格式之雙特異性FAP-OX40抗體之示意圖示,其由四個OX40結合Fab片段與一個FAP (1G1a)結合部分組合作為交叉Fab片段組成,其中VH-Cκ鏈融合在Fc隆凸鏈之C末端(對於OX40為四價且對於FAP為單價)。 1B 顯示呈3+1格式之雙特異性FAP-OX40抗體之示意圖示,其由三個OX40結合Fab片段與一個FAP (1G1a)結合部分組合作為交叉Fab片段組成,其中VH-Cκ鏈融合在Fc隆凸鏈之C末端(對於OX40為三價且對於FAP為單價)。包含兩個彼此融合的OX40結合Fab片段之臂係在Fc隆凸鏈上。 1C 顯示呈3+1格式之雙特異性FAP-OX40抗體之示意圖示,其由三個OX40結合Fab片段與一個FAP (1G1a)結合部分組合作為交叉Fab片段組成,其中VH-Cκ鏈融合在Fc隆凸鏈之C末端(對於OX40為三價且對於FAP為單價)。包含兩個彼此融合的OX40結合Fab片段之臂係在Fc孔洞鏈上。 1D 顯示呈2+1格式之雙特異性FAP-OX40抗體之示意圖示,其由兩個OX40結合Fab片段與一個FAP (1G1a)結合部分組合作為交叉Fab片段組成,其中VH-Cκ鏈融合在Fc隆凸鏈之C末端(對於OX40為二價且對於FAP為單價)。 1E 顯示呈4+1格式之雙特異性FAP-OX40抗體P1AD4524之示意圖示,其由四個OX40結合Fab片段與一個FAP (4B9)結合部分組合作為VH及VL結構域組成,其中該VL結構域融合在Fc隆凸鏈之C末端且該VH結構域融合在Fc孔洞鏈之C末端(對於OX40為四價且對於FAP為單價)。黑點象徵隆凸-孔洞突變。 2A 2F 顯示包含OX40純系49B4的呈不同格式之雙特異性抗原結合分子之細胞結合。FAP抗原結合結構域H212係FAP純系212之人類化形式,其在本文中稱為FAP (1G1a)。使人類FAP陰性腫瘤細胞(A549- NLR)( 2F )、FAP陽性纖維母細胞(NIH/3T3-huFAP-純系19) ( 2E )、OX40陽性活化PBMC (活化CD4及CD8 T細胞,分別為 2A2C )以及OX40陰性靜息PBMC (靜息CD4及CD8 T細胞,分別為 2B2D )與測試抗體之指示連續稀釋液一起培育,接著藉由針對人類Fcγ之螢光標記2級抗體偵測。對活細胞設門,且自兩個重複繪製二級抗體之平均螢光強度,基線由僅培養基樣品校正。誤差槓指示SEM。 3A3F 顯示包含OX40純系8H9的呈不同格式之雙特異性抗原結合分子之細胞結合,且與包含OX40純系49B4的呈4+1格式之雙特異性抗原結合分子(P1AE6838)進行比較。使人類FAP陰性腫瘤細胞(A549- NLR)( 3F )、FAP陽性纖維母細胞(NIH/3T3-huFAP-純系19) ( 3E )、OX40陽性活化PBMC (活化CD4及CD8 T細胞,分別為 3A3C )以及OX40陰性靜息PBMC (靜息CD4及CD8 T細胞,分別為 3B3D )與測試抗體之指示連續稀釋液一起培育,接著藉由針對人類Fcγ之螢光標記2級抗體偵測。對活細胞設門,且自兩個重複繪製二級抗體之平均螢光強度,基線由僅培養基樣品校正。誤差槓指示SEM。純系8H9以亞奈莫耳親和力結合至OX40陽性細胞且強度與三價及二價抗體相當。 4A4F 顯示包含OX40純系MOXR0916的呈不同格式之雙特異性抗原結合分子之細胞結合,且與包含OX40純系49B4的呈4+1格式之雙特異性抗原結合分子(P1AE6838)進行比較。使人類FAP陰性腫瘤細胞(A549- NLR)( 4F )、FAP陽性纖維母細胞(NIH/3T3-huFAP-純系19) ( 4E )、OX40陽性活化PBMC (活化CD4及CD8 T細胞,分別為 4A4C )以及OX40陰性靜息PBMC (靜息CD4及CD8 T細胞,分別為 4B4D )與測試抗體之指示連續稀釋液一起培育,接著藉由針對人類Fcγ之螢光標記2級抗體偵測。對活細胞設門,且自兩個重複繪製二級抗體之平均螢光強度,基線由僅培養基樣品校正。誤差槓指示SEM。純系MOXR0916以奈莫耳親和力結合至OX40陽性細胞,其強度與三價及二價抗體相當。 5A5F 顯示包含OX40純系CLC563的呈不同格式之雙特異性抗原結合分子之細胞結合,且與包含OX40純系49B4的呈4+1格式之雙特異性抗原結合分子(P1AE6838)進行比較。使人類FAP陰性腫瘤細胞(A549- NLR)( 5F )、FAP陽性纖維母細胞(NIH/3T3-huFAP-純系19) ( 5E )、OX40陽性活化PBMC (活化CD4及CD8 T細胞,分別為 5A5C )以及OX40陰性靜息PBMC (靜息CD4及CD8 T細胞,分別為 5B5D )與測試抗體之指示連續稀釋液一起培育,接著藉由針對人類Fcγ之螢光標記2級抗體偵測。對活細胞設門,且自兩個重複繪製二級抗體之平均螢光強度,基線由僅培養基樣品校正。誤差槓指示SEM。純系CLC-563以奈莫耳親和力結合至OX40陽性細胞,其強度與三價及二價抗體相當。 6A6F 顯示包含在VH結構域中具有胺基酸突變的OX40純系49B4之不同變異體的呈不同格式之雙特異性抗原結合分子之細胞結合,且與包含OX40純系49B4的呈4+1格式之雙特異性抗原結合分子(P1AE6838)進行比較。使人類FAP陰性腫瘤細胞(A549- NLR)( 6F )、FAP陽性纖維母細胞(NIH/3T3-huFAP-純系19) ( 6E )、OX40陽性活化PBMC (活化CD4及CD8 T細胞,分別為 6A6C )以及OX40陰性靜息PBMC (靜息CD4及CD8 T細胞,分別為 6B6D )與測試抗體之指示連續稀釋液一起培育,接著藉由針對人類Fcγ之螢光標記2級抗體偵測。對活細胞設門,且自兩個重複繪製二級抗體之平均螢光強度,基線由僅培養基樣品校正。誤差槓指示SEM。與包括純系49B4之抗原結合分子相比,所有包含具有胺基酸突變之OX40 (49B4)變異體之抗原結合分子均顯示與OX40陽性細胞之結合略有改良。 7A7C 顯示表現OX40之報導細胞株HeLa_hOx40_NFκB_Luc1中NFκB介導之螢光素酶表現活性。將包含OX40純系49B4的呈不同格式之雙特異性抗原結合分子或其對照之濃度對在培育並添加螢光素酶偵測溶液後量測之光釋放單位(URL)作圖。所示為4+1、3+1或2+1格式之NFκB誘導,該等格式與表現人類FAP之NIH/3T3纖維母細胞交聯( 7A )、與2:1比率之二級抗體交聯( 7B )或沒有進一步交聯( 7C )。同型對照抗體不誘導任何NFκB活化。所有含OX40之構築體均誘導劑量依賴性NFκB活化。由於在不存在交聯之情形下已組裝三聚體核心OX40受體信號傳導單元,故包含四個OX40 Fab片段之四價格式誘導一定之NFκB活化。呈三價或二價格式之相同純系相應地顯示較低之生物活性。OX40抗原結合結構域之價愈高,NFκB活化程度愈強,且所需濃度愈低。所示為兩個重複之平均值。誤差槓表示SEM。 8A8C 顯示包含OX40純系8H9之不同雙特異性抗原結合分子在表現OX40之報導細胞株HeLa_hOx40_NFκB_Luc1中的NFκB介導之螢光素酶表現活性。將呈不同格式之雙特異性抗原結合分子或其對照之濃度對在培育並添加螢光素酶偵測溶液後量測之光釋放單位(URL)作圖。所示為3+1或2+1格式之NFκB誘導,該等格式與表現人類FAP之NIH/3T3纖維母細胞交聯( 8A )、與2:1比率之二級抗體交聯( 8B )或沒有進一步交聯( 8C )。同型對照抗體不誘導任何NFκB活化。所有含OX40之構築體均誘導劑量依賴性NFκB活化。由於在不存在交聯之情形下已組裝三聚體核心OX40受體信號傳導單元,故包含四個OX40 Fab片段之四價格式誘導一定之NFκB活化且為最強效的。包含呈三價或二價格式之OX40純系8H9之雙特異性抗原結合分子相應地顯示較低之生物活性。表現人類FAP之纖維母細胞經由FAP結合部分或二級交聯抗體經由OX40抗原結合分子之Fc區所引起的額外交聯進一步增加NFκB活化。純系OX40 (8H9)已以2+1格式達成最高之NFkB活化誘導。三價並未增加進一步益處。所示為兩個重複之平均值。誤差槓表示SEM。 9A9C 顯示包含OX40純系MOXR0916之不同雙特異性抗原結合分子在表現OX40之報導細胞株HeLa_hOx40_NFκB_Luc1中的NFκB介導之螢光素酶表現活性。將呈不同格式之雙特異性抗原結合分子或其對照之濃度對在培育並添加螢光素酶偵測溶液後量測之光釋放單位(URL)作圖。所示為3+1或2+1格式之NFκB誘導,該等格式與表現人類FAP之NIH/3T3纖維母細胞交聯( 9A )、與2:1比率之二級抗體交聯( 9B )或沒有進一步交聯( 9C )。同型對照抗體不誘導任何NFκB活化。所有含OX40之構築體均誘導劑量依賴性NFκB活化。由於在不存在交聯之情形下已組裝三聚體核心OX40受體信號傳導單元,故包含四個OX40 Fab片段之四價格式誘導一定之NFκB活化且為最強效的。包含呈三價或二價格式之OX40純系MOXR0916之雙特異性抗原結合分子相應地顯示較低之生物活性。表現人類FAP之纖維母細胞經由FAP結合部分或二級交聯抗體經由OX40抗原結合分子之Fc區所引起的額外交聯進一步增加NFκB活化。純系OX40 (MOXR0916)已以2+1格式達成最高之NFkB活化誘導,3+1格式並未獲得進一步益處。所示為兩個重複之平均值。誤差槓表示SEM。 10A10C 顯示包含OX40純系CLC563之不同雙特異性抗原結合分子在表現OX40之報導細胞株HeLa_hOx40_NFκB_Luc1中的NFκB介導之螢光素酶表現活性。將呈不同格式之雙特異性抗原結合分子或其對照之濃度對在培育並添加螢光素酶偵測溶液後量測之光釋放單位(URL)作圖。所示為3+1或2+1格式之NFκB誘導,該等格式與表現人類FAP之NIH/3T3纖維母細胞交聯( 10A )、與2:1比率之二級抗體交聯( 10B )或沒有進一步交聯( 10C )。同型對照抗體不誘導任何NFκB活化。所有含OX40之構築體均誘導劑量依賴性NFκB活化。由於在不存在交聯之情形下已組裝三聚體核心OX40受體信號傳導單元,故包含四個OX40 Fab片段之四價格式誘導一定之NFκB活化且為最強效的。包含呈三價或二價格式之OX40純系CLC563之雙特異性抗原結合分子顯示較低之生物活性。表現人類FAP之纖維母細胞經由FAP結合部分或二級交聯抗體經由OX40抗原結合分子之Fc區所引起的額外交聯進一步增加NFκB活化。純系OX40 (CLC563)以3+1格式達成最高之NFκB活化誘導,其較2+1格式略微更強效。所示為兩個重複之平均值。誤差槓表示SEM。 11A11C 顯示呈不同格式的在VH結構域中具有胺基酸突變之OX40純系49B4之不同變異體在表現OX40之報導細胞株HeLa_hOx40_NFκB_Luc1中的NFκB介導之螢光素酶表現活性,且與包含OX40純系49B4的呈4+1格式之雙特異性抗原結合分子(P1AE6838)進行比較。將呈不同格式之雙特異性抗原結合分子或其對照之濃度對在培育並添加螢光素酶偵測溶液後量測之光釋放單位(URL)作圖。所示為NFκB誘導,與表現人類FAP之NIH/3T3纖維母細胞交聯( 11A )、與2:1比率之二級抗體交聯( 11B )或沒有進一步交聯( 11C )。同型對照抗體不誘導任何NFκB活化。所有胺基酸變異體誘導劑量依賴性NKκB活化之程度均與呈4+1格式之OX40 (49B4)抗體類似。由於三聚體核心OX40受體信號傳導單元之組裝,故以四價使用OX40抗原結合結構域誘導一定之NFκB活化。表現人類FAP之纖維母細胞經由FAP結合部分或二級交聯抗體經由OX40抗原結合分子之Fc區所引起的額外交聯進一步增加NFκB活化,其在較低濃度下已顯而易見。所示為兩個重複之平均值。誤差槓表示SEM。 12A12B 顯示與不同的參照分子(P1AD3690,亦即包含四個OX40 (49B4) Fab片段之非靶向分子;P1AD4524,亦即包含四個OX40 (49B4) Fab片段及FAP抗體4B9作為C末端VH/VL之分子;P1AD4353,亦即包含兩個OX40 (49B4) Fab片段及FAP抗體4B9之分子;及P1AD3691,亦即包含兩個OX40 (49B4) Fab片段及兩個FAP (28H1) Fab片段之分子)相比,雙特異性抗原結合分子P1AE6838之原代T細胞生物活性。 12A 顯示CD4+ T細胞之數目,且 12B 顯示在終點時CD4+ T細胞上之CD25活化標記物表現。觀察到FAP靶向之四價OX40抗原結合分子以劑量依賴性方式增加增殖及CD25活化標記物表現。與四價相比,二價分子導致生物活性降低,此與49B4為親合力驅動之OX40抗體之事實一致。非靶向OX40分子在最高測試濃度下顯示最小活性,而同型對照在基線校正後不顯示活化。所示為三個重複之平均值。誤差槓表示SEM。 13A13B 顯示與P1AD4524 (一種包含四個OX40 (49B4) Fab片段及FAP抗體4B9作為C末端VH/VL之分子)相比,包含OX40(49B4)及FAP (1G1a)的呈4+1、3+1及2+1格式之雙特異性抗原結合分子之原代T細胞生物活性。 13A 顯示CD4+ T細胞之數目,且 13B 顯示在終點時CD4+ T細胞上之CD25活化標記物表現。觀察到FAP靶向之四價OX40抗原結合分子以劑量依賴性方式增加增殖及CD25活化標記物表現。與四價相比,三價及在更大程度上二價OX40抗原結合分子導致生物活性降低,此與49B4為親合力驅動抗體之事實一致。同型對照在基線校正後不顯示活化。所示為三個重複之平均值。誤差槓表示SEM。 14A14B 顯示與P1AE6838 (一種包含四個OX40 (49B4) Fab片段之分子)相比,包含純系OX40(8H9)的呈3+1及2+1格式之雙特異性抗原結合分子之原代T細胞生物活性。 14A 顯示CD4+ T細胞之數目,且 14B 顯示在終點時CD4+ T細胞上之CD25活化標記物表現。觀察到FAP靶向之四價OX40抗原結合分子以劑量依賴性方式增加增殖及CD25活化標記物表現。與四價純系49B4相比,包含純系8H9之三價及二價抗原結合分子導致最大反應略微降低,其中亞奈莫耳EC50 相當。同型對照在基線校正後不顯示活化。所示為三個重複之平均值。誤差槓表示SEM。 15A15B 顯示與P1AE6838 (一種包含四個OX40 (49B4) Fab片段之分子)相比,包含純系OX40(MOXR0916)的呈3+1及2+1格式之雙特異性抗原結合分子之原代T細胞生物活性。 15A 顯示CD4+ T細胞之數目,且 15B 顯示在終點時CD4+ T細胞上之CD25活化標記物表現。觀察到FAP靶向之四價OX40抗原結合分子以劑量依賴性方式增加增殖及CD25活化標記物表現。與包含純系49B4之四價分子相比,包含純系MOXR0916之三價及二價抗原結合分子使得CD4+ T細胞數目相似且使得最大CD25表現降低。在含有MOXR0916之分子的最高測試濃度下,CD4+ T細胞之下降係活化誘導細胞死亡之指標。同型對照在基線校正後不顯示活化。所示為三個重複之平均值。誤差槓表示SEM。 16A16B 顯示與P1AE6838 (一種包含四個OX40 (49B4) Fab片段之分子)相比,包含純系OX40 (CLC563)的呈3+1及2+1格式之雙特異性抗原結合分子之原代T細胞生物活性。 16A 顯示CD4+ T細胞之數目,且 15B 顯示在終點時CD4+ T細胞上之CD25活化標記物表現。觀察到FAP靶向之四價OX40抗原結合分子以劑量依賴性方式增加增殖及CD25活化標記物表現。與包含純系49B4之四價分子相比,包含純系CLC563之三價及二價抗原結合分子使得CD4+ T細胞數目相似且使得最大CD25表現降低。同型對照在基線校正後不顯示活化。所示為三個重複之平均值。誤差槓表示SEM。 17A17B 顯示呈不同格式的在VH結構域中具有胺基酸突變之OX40純系49B4之不同變異體的原代T細胞生物活性,且與包含OX40純系49B4的呈4+1格式之雙特異性抗原結合分子(P1AE6838)進行比較。 17A 顯示CD8+ T細胞之數目,且 17B 顯示在終點時CD4+ T細胞上之CD25活化標記物表現。觀察到FAP靶向之四價OX40抗原結合分子以劑量依賴性方式增加增殖及CD25活化標記物表現。就CD8+ T細胞增殖及CD4+ T細胞上之CD25上調而言,該三種四價胺基酸變異體展示與親代抗體相當之活性。同型對照在基線校正後不顯示活化。所示為三個重複之平均值。誤差槓表示SEM。 18 中提供對所有抗原結合分子在終點處量測的CD4+ T細胞上CD25活化標記物表現之曲線下面積(AUC)之正規化概覽。 19 顯示如在三隻不同的雌性HuFcRn小鼠(F350、F351及F353)中量測之參照分子P1AD4524之血清濃度-時間曲線及平均值曲線。 20A20C 顯示如參照化合物P1AD4524中所包括的FAP純系4B9之Fab區之等電位表面區域。黑色網格繪示帶正電荷之區片,而白色網格繪示帶負電荷之區片。 20A 給予背面視圖, 20B 顯示正面視圖且 20C 圖解說明抗體之頂部。 20D20F 顯示如本發明分子中所包括的FAP純系1G1a之Fab區之等電位表面區域。黑色網格繪示帶正電荷之區片,而白色網格繪示帶負電荷之區片。 20D 給予背面視圖, 20E 顯示正面視圖且 20F 圖解說明Fab之頂部。 21 顯示如在三隻不同的雌性HuFcRn小鼠(F350、F351及F353)中量測的包含FAP抗體1G1a之雙特異性抗原結合分子P1AE6836與參照分子P1AD4524相比之血清濃度-時間曲線及平均值曲線。 22A22C 顯示如參照化合物P1AD4524中所包括的OX40純系49B9之Fab區之等電位表面區域。黑色網格繪示帶正電荷之區片,而白色網格繪示帶負電荷之區片。 22A 給予背面視圖, 22B 顯示正面視圖且 22C 圖解說明抗體之頂部。 23A23C 顯示OX40純系8H9之Fab區之等電位表面區域。黑色網格繪示帶正電荷之區片,而白色網格繪示帶負電荷之區片。 23A 給予背面視圖, 23B 顯示正面視圖且 23C 圖解說明抗體之頂部。 24A24C 顯示OX40純系CLC563之Fab區之等電位表面區域。黑色網格繪示帶正電荷之區片,而白色網格繪示帶負電荷之區片。 24A 給予背面視圖, 24B 顯示正面視圖且 24C 圖解說明抗體之頂部。 25A25C 顯示OX40純系MOXR0916之Fab區之等電位表面區域。黑色網格繪示帶正電荷之區片,而白色網格繪示帶負電荷之區片。 25A 給予背面視圖, 25B 顯示正面視圖且 25C 圖解說明抗體之頂部。 26 係ARC分析中所用之transwell系統之示意圖。將馬丁達比犬腎細胞(Madin-Darby Canine Kidney cell, MDCK)接種於transwell系統之頂端區室中。MDCK細胞已經人類FcRn轉染。 27A 27C 顯示如利用實例7.1中所闡述之分析所量測的一組人類個體血漿樣品中先前存在之抗藥物抗體(ADA)反應性。對於如WO 2017/060144 A1中所闡述的其中VH及VL結構域以c末端連接至每一重鏈之雙特異性抗原結合分子OX40 (49B4) × FAP (4B9) (4+1),觀察到高信號具有高發生率( 27A) 。對於融合至Fc結構域之C末端的VH及VL結構域由Fab片段替代之雙特異性抗原結合分子,偵測到較少之發生率。然而,如自 27B 中之OX40 (49B4) × FAP (4B9) (4+1)及 27C 中之OX40 (49B4) × FAP (1G1a) (4+1)可見,似乎仍存在針對Fab片段之先前存在之抗藥物抗體。1G1a係FAP純系212之人類化變異體(H212)。 28 比較在一組人類個體血漿樣品中,包含不同的抗OX40純系(49B4、8H9、MOX0916及CLC-563)之呈2+1格式之雙特異性抗原結合分子的先前存在之抗藥物抗體(ADA)反應性。 29A 顯示對照分子、亦即非靶向四價OX40 (49B4)抗原結合分子(P1AD3690)、FAP (1G1a)抗體(P1AE1689)或生殖系對照抗體(DP47)不引起先前存在之抗藥物抗體(ADA)反應性,而如 29B 中所示,包含融合在Fc結構域之C末端的Fab片段之雙特異性抗原分子均引起先前存在之IgG干擾。令人驚訝地,較小之2+1分子較呈3+1及4+1格式之分子誘導略高之發生率。 30A30C 係關於雙特異性抗原結合分子OX40 (49B4) × FAP (1G1a) (3+1)之先前存在之抗藥物抗體(ADA)反應性之測試。如 30A 中可見,包含具有「游離」 C末端EPKSC之CH1結構域之分子誘導先前存在之ADA反應性。藉由在沒有藥物分子之情形下實施分析所量測之個別緩衝液背景信號示於 30B 中,且 30C 顯示減去背景信號之分子的先前存在之ADA反應性。 31A31C :如圖30C中所測定之雙特異性抗原結合分子OX40 (49B4) × FAP (1G1a) (3+1)在一組人類個體血漿樣品中先前存在之抗藥物抗體(ADA)反應性亦示於 31A 中,且將其與由包含EPKSCD末端之雙特異性分子OX40 (MOXR0916) × FAP (1G1a) (3+1) ( 31B )或由包含EPKSCS末端之雙特異性分子OX40 (MOXR0916) × FAP (1G1a) (3+1) ( 31C )誘導的先前存在之IgG反應性進行比較。觀察到EPKSD變異體使得先前存在之ADA反應性顯著降低,而EPKSCS變異體使得先前存在之ADA反應性完全消除。 32A 32C 顯示呈2+1格式之各別分子集,且對如下等先前結果予以證實:與具有游離C末端EPKSC之分子OX40 (49B4) × FAP (1G1a) (2+1) (P1AE6840, 32A )相比,具有EPKSCD末端之雙特異性抗原結合分子OX40 (MOXR0916) × FAP (1G1a) (2+1) (P1AF4852, 32B )降低與血漿中先前存在抗體之反應性,而具有EPKSCS末端之雙特異性抗原結合分子OX40 (MOXR0916) × FAP (1G1a) (2+1) (P1AF4858, 32C )消除與血漿中先前存在抗體之反應性。 33A33F 證實三個其他實例觀察到相同之效應。顯示以下各項在一組人類個體血漿樣品中先前存在之ADA反應性:具有EPKSCD末端之OX40 (CLC563) × FAP (1G1a) (3+1) (P1AF6454, 33A )、具有EPKSCS末端之OX40 (CLC563) × FAP (1G1a) (3+1) (P1AF6455, 33B) 、具有EPKSCD末端之OX40 (CLC563) × FAP (1G1a) (4+1) (P1AF7205, 33C )、具有EPKSCS末端之OX40 (CLC563) × FAP (1G1a) (4+1) (P1AF7217, 33D )、具有EPKSCD末端之OX40 (49B4_K23E_K73E) × FAP (1G1a) (3+1) (P1AF6456, 33E )及具有EPKSCS末端之OX40 (49B4_K23E_K73E) × FAP (1G1a) (3+1) (P1AF6457, 33F )。 34A34F 顯示包含OX40純系OX40(49B4_K23E_K73E)或OX40(CLC563)的呈3+1及4+1格式作為如所指示之D及S變異體的雙特異性抗原結合分子之細胞結合。使對活化CD4細胞( 34A 34C 34E )及活化CD8 T細胞( 34C 34D 34F )設門之OX40陽性活化PBMC分別與測試抗體之指示連續稀釋液一起培育,接著藉由針對人類Fcγ之螢光標記2級抗體偵測。對活細胞設門,且自兩個重複繪製二級抗體之平均螢光強度,基線由僅培養基樣品校正。 34A 顯示作為D及S變異體之OX40(CLC563) 3+1構築體與活化CD4細胞之結合,且與活化CD8 T細胞之結合示於 34B 中。 34C 34D 中顯示作為D及S變異體之OX40(CLC563) 4+1構築體分別在活化CD4細胞上及在活化CD8細胞上之結合。作為D及S變異體之OX40(49B4_K23E_K73E) 4+1構築體與活化CD4細胞及與活化CD8 T細胞之結合分別示於 34E 34F 中。作為對照分子,使用非靶向四價OX40(49B4) 4+0構築體(P1AD3690)、四價OX40(49B4)-FAP(4B9) 4+1構築體(P1AD4524)及同型對照。 35A35F 顯示表現OX40之報導細胞株HeLa_hOx40_NFκB_Luc1中NFκB介導之螢光素酶表現活性。將包含OX40純系OX40(49B4_K23E_K73E)或OX40(CLC563)的呈3+1及4+1格式作為D及S變異體之雙特異性抗原結合分子之濃度對在培育並添加螢光素酶偵測溶液後量測之光釋放單位(URL)作圖。所示為NFκB誘導,與表現人類FAP之NIH/3T3纖維母細胞交聯( 35A 為作為D及S變異體之OX40(CLC563) 3+1構築體, 35C 為作為D及S變異體之OX40(CLC563) 4+1構築體且 35E 為作為D及S變異體之OX40(49B4_K23E_K73E) 4+1構築體),或沒有進一步交聯( 35B 為作為D及S變異體之OX40(CLC563) 3+1構築體, 35D 為作為D及S變異體之OX40(CLC563) 4+1構築體且 35F 為作為D及S變異體之OX40(49B4_K23E_K73E) 4+1構築體)。同型對照抗體不誘導任何NFκB活化。所有含OX40之構築體均誘導劑量依賴性NFκB活化。由於在不存在交聯之情形下已組裝三聚體核心OX40受體信號傳導單元,故包含四個OX40 Fab片段之四價格式誘導一定之NFκB活化。S及D變異體之性能相似。所示為兩個重複之平均值。誤差槓表示SEM。 36A36F 顯示包含OX40純系OX40(49B4_K23E_K73E)或OX40(CLC563)的呈3+1及4+1格式作為如所指示之D及S變異體之雙特異性抗原結合分子之原代T細胞生物活性。此處所評估之生物活性標記物為在終點時CD4+ T細胞( 36A 為OX40(CLC563) 3+1構築體, 36C 為OX40(CLC563) 4+1構築體且 36E 為OX40(49B4_K23E_K73E) 4+1構築體)及CD8+ T細胞( 36B 為OX40(CLC563) 3+1構築體, 36D 為OX40(CLC563) 4+1構築體且 36F 為OX40(49B4_K23E_K73E) 4+1構築體)上之CD25活化標記物表現。觀察到FAP靶向之OX40抗原結合分子以劑量依賴性方式增加增殖及CD25活化標記物表現。非靶向OX40分子僅在最高測試濃度下顯示活性,而同型對照在基線校正後不顯示活化。在S與D變異體之間未能偵測到統計學上顯著之差異。所示為兩個重複之平均值。誤差槓表示SEM。 37A37F 顯示,利用FAP靶向之OX40促效劑進行共刺激增強由CEACAM5 TCB介導之腫瘤細胞溶解誘導的PBMC之細胞介素分泌。使PBMC與MKN45 NLR靶細胞、FAP+ NIH/3T3-huFAP純系19、CECAM5 TCB [2 nM]及包含OX40純系OX40(49B4_K23E_K73E)或OX40(CLC563)的呈3+1及4+1格式作為如所指示之D及S變異體之雙特異性抗原結合分子共培養48小時。此處所評估之生物活性標記物為分析上清液中GM-CSF ( 37A 為OX40(CLC563) 3+1構築體, 37C 為OX40(CLC563) 4+1構築體且 37E 為OX40(49B4_K23E_K73E) 4+1構築體)及TNF-α ( 37B 為OX40(CLC563) 3+1構築體, 37D 為OX40(CLC563) 4+1構築體且 37F 為OX40(49B4_K23E_K73E) 4+1構築體)相對於僅TCB處理樣品之倍數增加。據觀察,僅FAP交聯之OX40促效劑以劑量依賴性方式誘導細胞介素。非靶向OX40對照分子(P1AD3690)及同型對照在此處不顯示活性。與D變異體相比,S變異體顯示生物活性降低之趨勢。所示為三個重複之平均值。 38A38F 亦顯示,利用FAP靶向之OX40促效劑進行共刺激增強由CEACAM5 TCB介導之腫瘤細胞溶解誘導的PBMC之細胞介素分泌。使PBMC與MKN45 NLR靶細胞、FAP+ NIH/3T3-huFAP純系19、CECAM5 TCB [2 nM]及包含OX40純系OX40(49B4_K23E_K73E)或OX40 (CLC563)的呈3+1及4+1格式作為如所指示之D及S變異體之雙特異性抗原結合分子共培養48小時。此處所評估之生物活性標記物為分析上清液中IFNγ ( 38A 為OX40 (CLC563) 3+1構築體, 38C 為OX40 (CLC563) 4+1構築體且 38E 為OX40 (49B4_K23E_K73E) 4+1構築體)及IL-2 ( 38B 為OX40 (CLC563) 3+1構築體, 38D 為OX40 (CLC563) 4+1構築體且 38F 為OX40 (49B4_K23E_K73E) 4+1構築體)相對於僅TCB處理樣品之倍數增加。據觀察,僅FAP交聯之OX40促效劑以劑量依賴性方式誘導細胞介素。非靶向OX40對照分子(P1AD3690)及同型對照在此處不顯示活性。與D變異體相比,S變異體顯示生物活性降低之趨勢。所示為三個重複之平均值。 39 彙總資料,且顯示利用所有FAP靶向之OX40促效劑進行共刺激均增強由CEACAM5 TCB介導之腫瘤細胞溶解誘導的PBMC之細胞介素分泌。計算圖37A至37F及38A至38F中劑量反應曲線之AUC,且針對OX40 (CLC563) × FAP (1G1a_EPKSCD) 3+1抗原結合分子(P1AF6454,亦稱為3+1 CLC563/H212-D)之AUC作正規化。在盒須圖中,每一符號表示一種細胞介素。 40A40C 顯示,利用FAP靶向之OX40促效劑進行共刺激抑制TGFβ對Treg細胞上FoxP3之誘導。在利用針對CD28及CD3之抗體活化T細胞期間,在TGFβ存在下培養含有原初CD4 T細胞之人類PBMC製劑。經由包含OX40純系OX40(CLC563)或OX40(49B4_K23E_K73E)的呈3+1及4+1格式作為D及S變異體之雙特異性抗原結合分子之連續稀釋列提供OX40促效作用。藉由包覆至珠粒之FAP抗原提供交聯。OX40促效作用干擾Treg誘導,此可藉由FoxP3表現減少看出。對活的CD4+ CD25+ Treg單態細胞設門,且報告αFoxP3抗體之MFI。藉由不含OX40抗體之樣品(由此僅存在TGBβ)之MFI校正每一濃度之FoxP3 MFI。 40A 顯示OX40(CLC563) 3+1構築體之效應, 40B 顯示OX40(CLC563) 4+1構築體之效應且 40C 顯示OX40(49B4_K23E_K73E) 4+1構築體之效應。每一FAP靶向之OX40雙特異性抗原結合分子之D及S變異體將FoxP3抑制至相似之範圍。所示為三個重複之平均值,誤差槓表示SEM。 41 顯示Hu FcRn小鼠中OX40(CLC563) × FAP(1G1a_EPKSCD) 3+1抗原結合分子(P1AE6454)及OX40(49B4) × FAP(4B9) 4+1抗原結合分子(P1AD4524)之單劑量血漿濃度-時間曲線。 42A42B 顯示在與FAP × OX40雙特異性抗原結合分子一起培育時,人類全血樣品中細胞介素IL-6之釋放。所示為相對於作為陰性比較物的Erbitux®之信號,每一供體及不同濃度之中值信號。在 42A 中,顯示雙特異性抗體C1、C2及C3 (參見實例8.1.1)之中值信號,而雙特異性抗體C4、C5、C6及C7之中值信號示於 42B 中。 43A43B 顯示在與FAP × OX40雙特異性抗原結合分子一起培育時,人類全血樣品中細胞介素IL-8之釋放。所示為相對於作為陰性比較物的Erbitux®之信號,每一供體及不同濃度之中值信號。在 43A 中,顯示雙特異性抗體C1、C2及C3 (參見實例8.1.1)之中值信號,且在 43B 中,顯示雙特異性抗體C4、C5、C6及C7之中值信號。 44A44B 顯示DC:CD4+ T細胞分析之結果,該分析評估雙特異性FAP × OX40抗體P1AF6454及P1AF6455與作為陽性對照之鑰孔帽貝血藍蛋白(KLH)及貝伐珠單抗(Bevacizumab)(Avastin®)相比之序列相關免疫原性風險。 44A 顯示IFNγ刺激對刺激指數之圖,且圖44B給出以反應者%計之反應率概覽。 45A45B 係關於DC:CD4+ T細胞分析之結果,該分析評估P1AD4525針對作為陽性對照之鑰孔帽貝血藍蛋白(KLH)以及貝伐珠單抗(Avastin®)及阿達木單抗(adalimumab)(Humira®)。 45A 顯示IFNγ刺激對刺激指數之圖,且 45B 給出以反應者%計之反應率概覽。 46 4748 顯示在C57BL/6野生型小鼠及對人類IgG1抗體免疫耐受之基因轉殖C57BL/6-Tg (hIgG1,k,l)小鼠中之4週免疫原性研究之結果。用P1AF6455治療之兩個個別小鼠組之免疫反應示於 46 中,用P1AF6454治療之兩個個別小鼠組之彼等免疫反應示於 47 中,且用P1AD4524治療之兩個個別小鼠組獲得之免疫反應圖解說明於 48 中。 49 顯示在人類化小鼠中之MKN45異種移植物中,雙特異性FAP × OX40抗體(不同的OX40純系相比較)與CEACAM5 TCB組合之功效研究之研究設計。所示為設計及不同的治療組。對包含抗體OX40 (49B4_K23E_K73E,此處稱為49B4 CPV)、OX40 (CLC563)、OX40 (8H9)及OX40 (49B4)之雙特異性FAP × OX40抗體進行比較。 50A 50B 顯示FAP × OX40雙特異性抗體與CEACAM5 TCB之組合在人類化小鼠中之MKN45異種移植物中之功效研究結果。所示為不同治療組之個別小鼠之平均腫瘤體積( 50A )或腫瘤體積變化百分比( 50B ),如在y軸上所繪製。
 
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0013
Figure 12_A0101_SEQ_0014
Figure 12_A0101_SEQ_0015
Figure 12_A0101_SEQ_0016
Figure 12_A0101_SEQ_0017
Figure 12_A0101_SEQ_0018
Figure 12_A0101_SEQ_0019
Figure 12_A0101_SEQ_0020
Figure 12_A0101_SEQ_0021
Figure 12_A0101_SEQ_0022
Figure 12_A0101_SEQ_0023
Figure 12_A0101_SEQ_0024
Figure 12_A0101_SEQ_0025
Figure 12_A0101_SEQ_0026
Figure 12_A0101_SEQ_0027
Figure 12_A0101_SEQ_0028
Figure 12_A0101_SEQ_0029
Figure 12_A0101_SEQ_0030
Figure 12_A0101_SEQ_0031
Figure 12_A0101_SEQ_0032
Figure 12_A0101_SEQ_0033
Figure 12_A0101_SEQ_0034
Figure 12_A0101_SEQ_0035
Figure 12_A0101_SEQ_0036
Figure 12_A0101_SEQ_0037
Figure 12_A0101_SEQ_0038
Figure 12_A0101_SEQ_0039
Figure 12_A0101_SEQ_0040
Figure 12_A0101_SEQ_0041
Figure 12_A0101_SEQ_0042
Figure 12_A0101_SEQ_0043
Figure 12_A0101_SEQ_0044
Figure 12_A0101_SEQ_0045
Figure 12_A0101_SEQ_0046
Figure 12_A0101_SEQ_0047
Figure 12_A0101_SEQ_0048
Figure 12_A0101_SEQ_0049
Figure 12_A0101_SEQ_0050
Figure 12_A0101_SEQ_0051
Figure 12_A0101_SEQ_0052
Figure 12_A0101_SEQ_0053
Figure 12_A0101_SEQ_0054
Figure 12_A0101_SEQ_0055
Figure 12_A0101_SEQ_0056
Figure 12_A0101_SEQ_0057
Figure 12_A0101_SEQ_0058
Figure 12_A0101_SEQ_0059
Figure 12_A0101_SEQ_0060
Figure 12_A0101_SEQ_0061
Figure 12_A0101_SEQ_0062
Figure 12_A0101_SEQ_0063
Figure 12_A0101_SEQ_0064
Figure 12_A0101_SEQ_0065
Figure 12_A0101_SEQ_0066
Figure 12_A0101_SEQ_0067
Figure 12_A0101_SEQ_0068
Figure 12_A0101_SEQ_0069
Figure 12_A0101_SEQ_0070
Figure 12_A0101_SEQ_0071
Figure 12_A0101_SEQ_0072
Figure 12_A0101_SEQ_0073
Figure 12_A0101_SEQ_0074
Figure 12_A0101_SEQ_0075
Figure 12_A0101_SEQ_0076
Figure 12_A0101_SEQ_0077
Figure 12_A0101_SEQ_0078
Figure 12_A0101_SEQ_0079
Figure 12_A0101_SEQ_0080
Figure 12_A0101_SEQ_0081
Figure 12_A0101_SEQ_0082
Figure 12_A0101_SEQ_0083
Figure 12_A0101_SEQ_0084
Figure 12_A0101_SEQ_0085
Figure 12_A0101_SEQ_0086
Figure 12_A0101_SEQ_0087
Figure 12_A0101_SEQ_0088
Figure 12_A0101_SEQ_0089
Figure 12_A0101_SEQ_0090
Figure 12_A0101_SEQ_0091
Figure 12_A0101_SEQ_0092
Figure 12_A0101_SEQ_0093
Figure 12_A0101_SEQ_0094
Figure 12_A0101_SEQ_0095
Figure 12_A0101_SEQ_0096
Figure 12_A0101_SEQ_0097
Figure 12_A0101_SEQ_0098
Figure 12_A0101_SEQ_0099
Figure 12_A0101_SEQ_0100
Figure 12_A0101_SEQ_0101
Figure 12_A0101_SEQ_0102
Figure 12_A0101_SEQ_0103
Figure 12_A0101_SEQ_0104
Figure 12_A0101_SEQ_0105
Figure 12_A0101_SEQ_0106
Figure 12_A0101_SEQ_0107
Figure 12_A0101_SEQ_0108
Figure 12_A0101_SEQ_0109
Figure 12_A0101_SEQ_0110
Figure 12_A0101_SEQ_0111
Figure 12_A0101_SEQ_0112
Figure 12_A0101_SEQ_0113
Figure 12_A0101_SEQ_0114
Figure 12_A0101_SEQ_0115
Figure 12_A0101_SEQ_0116
Figure 12_A0101_SEQ_0117
Figure 12_A0101_SEQ_0118
Figure 12_A0101_SEQ_0119
Figure 12_A0101_SEQ_0120
Figure 12_A0101_SEQ_0121
Figure 12_A0101_SEQ_0122
Figure 12_A0101_SEQ_0123
Figure 12_A0101_SEQ_0124
Figure 12_A0101_SEQ_0125
Figure 12_A0101_SEQ_0126
Figure 12_A0101_SEQ_0127
Figure 12_A0101_SEQ_0128
Figure 12_A0101_SEQ_0129
Figure 12_A0101_SEQ_0130
Figure 12_A0101_SEQ_0131
Figure 12_A0101_SEQ_0132
Figure 12_A0101_SEQ_0133
Figure 12_A0101_SEQ_0134
Figure 12_A0101_SEQ_0135
Figure 12_A0101_SEQ_0136
Figure 12_A0101_SEQ_0137
Figure 12_A0101_SEQ_0138
Figure 12_A0101_SEQ_0139
Figure 12_A0101_SEQ_0140
Figure 12_A0101_SEQ_0141
Figure 12_A0101_SEQ_0142
Figure 12_A0101_SEQ_0143
Figure 12_A0101_SEQ_0144
Figure 12_A0101_SEQ_0145
Figure 12_A0101_SEQ_0146
Figure 12_A0101_SEQ_0147
Figure 12_A0101_SEQ_0148
Figure 12_A0101_SEQ_0149
Figure 12_A0101_SEQ_0150
Figure 12_A0101_SEQ_0151
Figure 12_A0101_SEQ_0152
Figure 12_A0101_SEQ_0153
Figure 12_A0101_SEQ_0154
Figure 12_A0101_SEQ_0155
Figure 12_A0101_SEQ_0156
Figure 12_A0101_SEQ_0157
Figure 12_A0101_SEQ_0158
Figure 12_A0101_SEQ_0159
Figure 12_A0101_SEQ_0160
Figure 12_A0101_SEQ_0161
Figure 12_A0101_SEQ_0162
Figure 12_A0101_SEQ_0163
Figure 12_A0101_SEQ_0164
Figure 12_A0101_SEQ_0165
Figure 12_A0101_SEQ_0166
Figure 12_A0101_SEQ_0167
Figure 12_A0101_SEQ_0168
Figure 12_A0101_SEQ_0169
Figure 12_A0101_SEQ_0170
Figure 12_A0101_SEQ_0171
Figure 12_A0101_SEQ_0172
Figure 12_A0101_SEQ_0173
Figure 12_A0101_SEQ_0174
Figure 12_A0101_SEQ_0175
Figure 12_A0101_SEQ_0176
Figure 12_A0101_SEQ_0177
Figure 12_A0101_SEQ_0178
Figure 12_A0101_SEQ_0179
Figure 12_A0101_SEQ_0180
Figure 12_A0101_SEQ_0181
Figure 12_A0101_SEQ_0182
Figure 12_A0101_SEQ_0183
Figure 12_A0101_SEQ_0184
Figure 12_A0101_SEQ_0185
Figure 12_A0101_SEQ_0186
Figure 12_A0101_SEQ_0187
Figure 12_A0101_SEQ_0188
Figure 12_A0101_SEQ_0189
Figure 12_A0101_SEQ_0190
Figure 12_A0101_SEQ_0191
Figure 12_A0101_SEQ_0192
Figure 12_A0101_SEQ_0193
Figure 12_A0101_SEQ_0194
Figure 12_A0101_SEQ_0195
Figure 12_A0101_SEQ_0196
Figure 12_A0101_SEQ_0197
Figure 12_A0101_SEQ_0198
Figure 12_A0101_SEQ_0199
Figure 12_A0101_SEQ_0200
Figure 12_A0101_SEQ_0201
Figure 12_A0101_SEQ_0202
Figure 12_A0101_SEQ_0203

Claims (24)

  1. 一種雙特異性抗原結合分子,其包含(a)至少兩個能夠特異性結合至OX40之抗原結合結構域,其中該能夠特異性結合至OX40之抗原結合結構域包含(i)重鏈可變區(VHOX40),該VHOX40包含(i)CDR-H1,其包含SEQ ID NO:27之胺基酸序列,(ii)CDR-H2,其包含SEQ ID NO:28之胺基酸序列,及(iii)CDR-H3,其包含SEQ ID NO:29之胺基酸序列;以及輕鏈可變區(VLOX40),該VLOX40包含(iv)CDR-L1,其包含SEQ ID NO:30之胺基酸序列,(v)CDR-L2,其包含SEQ ID NO:31之胺基酸序列,及(vi)CDR-L3,其包含SEQ ID NO:32之胺基酸序列,或(ii)重鏈可變區(VHOX40),該VHOX40包含(i)CDR-H1,其包含SEQ ID NO:35之胺基酸序列,(ii)CDR-H2,其包含SEQ ID NO:36之胺基酸序列,及(iii)CDR-H3,其包含SEQ ID NO:37之胺基酸序列;以及輕鏈可變區(VLOX40),該VLOX40包含(iv)CDR-L1,其包含SEQ ID NO:38之胺基酸序列,(v)CDR-L2,其包含SEQ ID NO:39之胺基酸序列,及(vi)CDR-L3,其包含SEQ ID NO:40之胺基酸序列,或(iii)重鏈可變區(VHOX40),該VHOX40包含(i)CDR-H1,其包含SEQ ID NO:43之胺基酸序列,(ii)CDR-H2,其包含SEQ ID NO:44之胺基酸序列,及(iii)CDR-H3,其包含SEQ ID NO:45之胺基酸序列;以及輕鏈可變區(VLOX40),該VLOX40包含(iv)CDR-L1,其包含SEQ ID NO:46之胺基酸序列,(v)CDR-L2,其包含SEQ ID NO:47之胺基酸序列,及(vi)CDR-L3,其包含SEQ ID NO:48之胺基酸序列, 或(iv)重鏈可變區(VHOX40),該VHOX40包含(i)CDR-H1,其包含SEQ ID NO:51之胺基酸序列,(ii)CDR-H2,其包含SEQ ID NO:52之胺基酸序列,及(iii)CDR-H3,其包含SEQ ID NO:53之胺基酸序列;以及輕鏈可變區(VLOX40),該VLOX40包含(iv)CDR-L1,其包含SEQ ID NO:54之胺基酸序列,(v)CDR-L2,其包含SEQ ID NO:55之胺基酸序列,及(vi)CDR-L3,其包含SEQ ID NO:56之胺基酸序列,(b)能夠特異性結合至纖維母細胞活化蛋白(FAP)之抗原結合結構域,其包含:包含SEQ ID NO:15之胺基酸序列之重鏈可變區(VHFAP)及包含SEQ ID NO:21之胺基酸序列之輕鏈可變區(VLFAP);及(c)由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區,其中該Fc區包含一或多個降低抗體與Fc受體之結合親和力及/或效應功能之胺基酸取代。
  2. 如請求項1之雙特異性抗原結合分子,其中該能夠特異性結合至OX40之抗原結合結構域包含(i)包含SEQ ID NO:33之胺基酸序列之重鏈可變區(VHOX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VLOX40),或(ii)包含SEQ ID NO:41之胺基酸序列之重鏈可變區(VHOX40)及包含SEQ ID NO:42之胺基酸序列之輕鏈可變區(VLOX40),或(iii)包含SEQ ID NO:49之胺基酸序列之重鏈可變區(VHOX40)及包含SEQ ID NO:50之胺基酸序列之輕鏈可變區(VLOX40),或(iv)包含SEQ ID NO:57之胺基酸序列之重鏈可變區(VHOX40)及包含SEQ ID NO:58之胺基酸序列之輕鏈可變區(VLOX40)。
  3. 如請求項1之雙特異性抗原結合分子,其中該能夠特異性結合至OX40之抗原結合結構域包含(i)包含SEQ ID NO:59之胺基酸序列之重鏈可變區(VHOX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VLOX40),或(ii)包含SEQ ID NO:60之胺基酸序列之重鏈可變區(VHOX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VLOX40),或(iii)包含SEQ ID NO:61之胺基酸序列之重鏈可變區(VHOX40)及包含SEQ ID NO:34之胺基酸序列之輕鏈可變區(VLOX40)。
  4. 如請求項1或2之雙特異性抗原結合分子,其中該能夠特異性結合至OX40之抗原結合結構域包含有包含SEQ ID NO:41之胺基酸序列之重鏈可變區(VHOX40)及包含SEQ ID NO:42之胺基酸序列之輕鏈可變區(VLOX40)。
  5. 如請求項1或2之雙特異性抗原結合分子,其中該Fc區為IgG Fc區。
  6. 如請求項1或2之雙特異性抗原結合分子,其中該Fc區為IgG1 Fc區或IgG4 Fc區。
  7. 如請求項1或2之雙特異性抗原結合分子,其中該Fc區為具有胺基酸突變L234A、L235A及P329G(根據Kabat EU索引進行編號)之人類IgG1亞類Fc區。
  8. 如請求項1或2之雙特異性抗原結合分子,其中該雙特異性抗原結合分子包含(a)至少兩個能夠特異性結合至OX40之Fab片段,其各自連結至該Fc區之一個亞單元之N末端,及(b)一個能夠特異性結合至FAP之交叉Fab片段,其與該Fc區之一個亞單元之C末端融合,及(c)該由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區。
  9. 如請求項8之雙特異性抗原結合分子,其中該能夠特異性結合至FAP之交叉fab片段之VH-C κ鏈與該Fc區之一個亞單元之C末端融合。
  10. 如請求項1或2之雙特異性抗原結合分子,其由以下組成:(aa)能夠特異性結合至OX40之第一Fab片段,(ab)能夠特異性結合至OX40之第二Fab片段,(b)能夠特異性結合至FAP之交叉Fab片段,其與該Fc區之一個亞單元之C末端融合,及(c)該由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區,其中該第一Fab片段(aa)在VH-CH1鏈之C末端與該第一亞單元之N末端融合且該第二Fab片段(ab)在VH-CH1鏈之C末端與該第二亞單元之N末端融合。
  11. 如請求項1或2之雙特異性抗原結合分子,其由以下組成:(aa)能夠特異性結合至OX40之第一Fab片段,(ab)能夠特異性結合至OX40之第二Fab片段, (ac)能夠特異性結合至OX40之第三Fab片段,(b)能夠特異性結合至FAP之交叉Fab片段,其與該Fc區之一個亞單元之C末端融合,及(c)該由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區,其中該第二Fab片段(ab)在VH-CH1鏈之C末端與該第一Fab片段(aa)之VH-CH1鏈之N末端融合,該第一Fab片段(aa)之VH-CH1鏈又在其C末端與該第一亞單元之N末端融合,且該第三Fab片段(ac)在Fab重鏈之C末端與該第二亞單元之N末端融合。
  12. 如請求項1或2之雙特異性抗原結合分子,其由以下組成:(aa)能夠特異性結合至OX40之第一Fab片段,(ab)能夠特異性結合至OX40之第二Fab片段,(ac)能夠特異性結合至OX40之第三Fab片段,(ad)能夠特異性結合至OX40之第四Fab片段,(b)能夠特異性結合至FAP之交叉Fab片段,其與該Fc區之一個亞單元之C末端融合,及(c)該由能夠穩定締合之第一亞單元及第二亞單元構成之Fc區,其中該第二Fab片段(ab)在VH-CH1鏈之C末端與該第一Fab片段(aa)之VH-CH1鏈之N末端融合,該第一Fab片段(aa)之VH-CH1鏈又在其C末端與該第一亞單元之N末端融合,且該第四Fab片段(ad)在VH-CH1鏈之C末端與該第三Fab片段(ac)之VH-CH1鏈之N末端融合,該第三Fab片段(ac)之VH-CH1鏈又在其C末端與該第二亞單元之N末端融合。
  13. 如請求項1或2之雙特異性抗原結合分子,其包含(a)重鏈,其包含能夠特異性結合至OX40之第一Fab片段之VH-CH1鏈,該第一Fab片段之VH-CH1鏈在其N末端視情況經由肽連接體與能夠特異性結合至OX40之第二Fab片段之VH-CH1鏈融合,以及Fc區亞單元,(b)重鏈,其包含能夠特異性結合至OX40之Fab片段之VH-CH1結構域、Fc區亞單元以及能夠特異性結合至FAP之Fab片段之VH-CL鏈,該Fab片段之VH-CL鏈視情況經由肽連接體與該Fc區亞單元之C末端融合,(c)三條輕鏈,每一輕鏈包含能夠特異性結合至OX40之Fab片段的VL及CL結構域,及(d)輕鏈,其包含能夠特異性結合至FAP之Fab片段之VL及CH1結構域。
  14. 如請求項1或2之雙特異性抗原結合分子,其包含(a)第一重鏈,其包含SEQ ID NO:97之胺基酸序列;第二重鏈,其包含SEQ ID NO:95之胺基酸序列;三條輕鏈,每一輕鏈包含SEQ ID NO:93之胺基酸序列;及輕鏈,其包含SEQ ID NO:88之胺基酸序列,或(b)第一重鏈,其包含SEQ ID NO:97之胺基酸序列;第二重鏈,其包含SEQ ID NO:95之胺基酸序列;三條輕鏈,每一輕鏈包含SEQ ID NO:93之胺基酸序列;及輕鏈,其包含SEQ ID NO:94之胺基酸序列,或(c)第一重鏈,其包含SEQ ID NO:97之胺基酸序列;第二重鏈,其 包含SEQ ID NO:95之胺基酸序列;三條輕鏈,每一輕鏈包含SEQ ID NO:93之胺基酸序列;及輕鏈,其包含SEQ ID NO:96之胺基酸序列。
  15. 一種經分離核酸,其編碼如請求項1至14中任一項之雙特異性抗原結合分子。
  16. 一種表現載體,其包含如請求項15之經分離核酸。
  17. 一種宿主細胞,其包含如請求項15之經分離核酸或如請求項16之表現載體。
  18. 一種產生雙特異性抗原結合分子之方法,其包括在適於表現該雙特異性抗原結合分子之條件下培養如請求項17之宿主細胞並分離該雙特異性抗原結合分子。
  19. 一種醫藥組合物,其包含如請求項1至14中任一項之雙特異性抗原結合分子以及醫藥學上可接受之載劑。
  20. 如請求項19之醫藥組合物,其進一步包含額外治療劑。
  21. 一種如請求項1至14中任一項之雙特異性抗原結合分子或如請求項19之醫藥組合物之用途,其用以製造用於以下之藥劑:(i)誘導免疫刺激,(ii)刺激腫瘤特異性T細胞反應, (iii)引起腫瘤細胞之凋亡,(iv)治療癌症,(v)延遲癌症之進展,(vi)延長患有癌症之患者的存活期,(vii)治療感染。
  22. 如請求項21之用途,其中該藥劑用於治療癌症。
  23. 如請求項22之用途,其中該藥劑用於與化學治療劑、輻射及/或其他用於癌症免疫療法之劑組合投與。
  24. 如請求項22之用途,其中雙特異性促效性OX40抗原結合分子用於與T細胞活化性抗CD3雙特異性抗體組合投與。
TW110111809A 2020-04-01 2021-03-31 靶向ox40及fap之雙特異性抗原結合分子 TWI810541B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20167624 2020-04-01
EP20167624.4 2020-04-01

Publications (2)

Publication Number Publication Date
TW202144437A TW202144437A (zh) 2021-12-01
TWI810541B true TWI810541B (zh) 2023-08-01

Family

ID=70154343

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110111809A TWI810541B (zh) 2020-04-01 2021-03-31 靶向ox40及fap之雙特異性抗原結合分子

Country Status (17)

Country Link
US (3) US11780919B2 (zh)
EP (2) EP4126946A1 (zh)
JP (2) JP2023520684A (zh)
KR (1) KR20220150935A (zh)
CN (2) CN115362174A (zh)
AR (1) AR121706A1 (zh)
AU (1) AU2021247502A1 (zh)
BR (1) BR112022019531A2 (zh)
CA (1) CA3169601A1 (zh)
CL (1) CL2022002647A1 (zh)
CO (1) CO2022013898A2 (zh)
CR (1) CR20220479A (zh)
IL (1) IL294922A (zh)
MX (1) MX2022012188A (zh)
PE (1) PE20221869A1 (zh)
TW (1) TWI810541B (zh)
WO (2) WO2021198335A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3559034B1 (en) 2016-12-20 2020-12-02 H. Hoffnabb-La Roche Ag Combination therapy of anti-cd20/anti-cd3 bispecific antibodies and 4-1bb (cd137) agonists
TW201829469A (zh) 2017-01-03 2018-08-16 瑞士商赫孚孟拉羅股份公司 包含抗4-1bb純系20h4.9之雙特異性抗原結合分子
EP3601346A1 (en) 2017-03-29 2020-02-05 H. Hoffnabb-La Roche Ag Bispecific antigen binding molecule for a costimulatory tnf receptor
EP3601345A1 (en) 2017-03-29 2020-02-05 H. Hoffnabb-La Roche Ag Bispecific antigen binding molecule for a costimulatory tnf receptor
MX2021003548A (es) 2018-10-01 2021-05-27 Hoffmann La Roche Moleculas de union a antigeno biespecificas que comprenden el clon 212 anti-fap.
MA54513A (fr) 2018-12-21 2022-03-30 Hoffmann La Roche Molécules de liaison à l'antigène cd28 agonistes de ciblage de tumeurs
CR20240246A (es) * 2021-12-20 2024-07-19 Hoffmann La Roche Anticuerpos agonistas anti-ltbr y anticuerpos biespecificos que los comprenden

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017060144A1 (en) * 2015-10-07 2017-04-13 F. Hoffmann-La Roche Ag Bispecific antibodies with tetravalency for a costimulatory tnf receptor
WO2019086497A2 (en) * 2017-11-01 2019-05-09 F. Hoffmann-La Roche Ag Combination therapy with targeted ox40 agonists

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL85035A0 (en) 1987-01-08 1988-06-30 Int Genetic Eng Polynucleotide molecule,a chimeric antibody with specificity for human b cell surface antigen,a process for the preparation and methods utilizing the same
EP0307434B2 (en) 1987-03-18 1998-07-29 Scotgen Biopharmaceuticals, Inc. Altered antibodies
WO1990005144A1 (en) 1988-11-11 1990-05-17 Medical Research Council Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
DE3920358A1 (de) 1989-06-22 1991-01-17 Behringwerke Ag Bispezifische und oligospezifische, mono- und oligovalente antikoerperkonstrukte, ihre herstellung und verwendung
US5959177A (en) 1989-10-27 1999-09-28 The Scripps Research Institute Transgenic plants expressing assembled secretory antibodies
US5571894A (en) 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
DE69233254T2 (de) 1991-06-14 2004-09-16 Genentech, Inc., South San Francisco Humanisierter Heregulin Antikörper
GB9114948D0 (en) 1991-07-11 1991-08-28 Pfizer Ltd Process for preparing sertraline intermediates
US5587458A (en) 1991-10-07 1996-12-24 Aronex Pharmaceuticals, Inc. Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof
DE69334351D1 (de) 1992-02-06 2011-05-12 Novartis Vaccines & Diagnostic Biosynthetisches Bindeprotein für Tumormarker
EP0714409A1 (en) 1993-06-16 1996-06-05 Celltech Therapeutics Limited Antibodies
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US6267958B1 (en) 1995-07-27 2001-07-31 Genentech, Inc. Protein formulation
GB9603256D0 (en) 1996-02-16 1996-04-17 Wellcome Found Antibodies
US6171586B1 (en) 1997-06-13 2001-01-09 Genentech, Inc. Antibody formulation
CA2293829C (en) 1997-06-24 2011-06-14 Genentech, Inc. Methods and compositions for galactosylated glycoproteins
US6040498A (en) 1998-08-11 2000-03-21 North Caroline State University Genetically engineered duckweed
DE19742706B4 (de) 1997-09-26 2013-07-25 Pieris Proteolab Ag Lipocalinmuteine
WO1999022764A1 (en) 1997-10-31 1999-05-14 Genentech, Inc. Methods and compositions comprising glycoprotein glycoforms
AUPP221098A0 (en) 1998-03-06 1998-04-02 Diatech Pty Ltd V-like domain binding molecules
DK1071700T3 (da) 1998-04-20 2010-06-07 Glycart Biotechnology Ag Glykosylerings-modifikation af antistoffer til forbedring af antistofafhængig cellulær cytotoksicitet
US7115396B2 (en) 1998-12-10 2006-10-03 Compound Therapeutics, Inc. Protein scaffolds for antibody mimics and other binding proteins
US6818418B1 (en) 1998-12-10 2004-11-16 Compound Therapeutics, Inc. Protein scaffolds for antibody mimics and other binding proteins
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
PL209786B1 (pl) 1999-01-15 2011-10-31 Genentech Inc Przeciwciało zawierające wariant regionu Fc ludzkiej IgG1, przeciwciało wiążące czynnik wzrostu śródbłonka naczyń oraz immunoadhezyna
BR0014480A (pt) 1999-10-04 2002-06-11 Medicago Inc Método para regular a transcrição de genes estranhos
US7125978B1 (en) 1999-10-04 2006-10-24 Medicago Inc. Promoter for regulating expression of foreign genes
AU2002218166A1 (en) 2000-09-08 2002-03-22 Universitat Zurich Collections of repeat proteins comprising repeat modules
MXPA04001072A (es) 2001-08-03 2005-02-17 Glycart Biotechnology Ag Variantes de glicosilacion de anticuerpos que tienen citotoxicidad celulares dependiente de anticuerpos incrementada.
DK1443961T3 (da) 2001-10-25 2009-08-24 Genentech Inc Glycoprotein-sammensætninger
US20040093621A1 (en) 2001-12-25 2004-05-13 Kyowa Hakko Kogyo Co., Ltd Antibody composition which specifically binds to CD20
US7361740B2 (en) 2002-10-15 2008-04-22 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
HUE035898T2 (en) 2002-12-16 2018-05-28 Genentech Inc Immunoglobulin variants and their applications
US7871607B2 (en) 2003-03-05 2011-01-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases
ES2319426T3 (es) 2003-07-04 2009-05-07 Affibody Ab Polipeptidos que presentan afinidad de union por her-2.
WO2005019255A1 (en) 2003-08-25 2005-03-03 Pieris Proteolab Ag Muteins of tear lipocalin
EP2348051B1 (en) 2003-11-05 2018-12-19 Roche Glycart AG CD20 antibodies with increased fc receptor binding affinity and effector function
TW200531979A (en) 2003-12-05 2005-10-01 Compound Therapeutics Inc Inhibitors of type 2 vascular endothelial growth factor receptors
EP1791565B1 (en) 2004-09-23 2016-04-20 Genentech, Inc. Cysteine engineered antibodies and conjugates
JO3000B1 (ar) 2004-10-20 2016-09-05 Genentech Inc مركبات أجسام مضادة .
CA2633766C (en) 2005-12-21 2016-06-28 Micromet Ag Pharmaceutical compositions comprising a bispecific single chain antibody with specificity for human cd3 and human cea and having resistance to soluble cea
DE102007001370A1 (de) 2007-01-09 2008-07-10 Curevac Gmbh RNA-kodierte Antikörper
EP1958957A1 (en) 2007-02-16 2008-08-20 NascaCell Technologies AG Polypeptide comprising a knottin protein moiety
US20090162359A1 (en) 2007-12-21 2009-06-25 Christian Klein Bivalent, bispecific antibodies
EP2235064B1 (en) 2008-01-07 2015-11-25 Amgen Inc. Method for making antibody fc-heterodimeric molecules using electrostatic steering effects
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
UA113712C2 (xx) 2010-08-13 2017-02-27 Антитіло до fap і способи його застосування
KR101614195B1 (ko) 2011-03-29 2016-04-20 로슈 글리카트 아게 항체 Fc 변이체
PE20141522A1 (es) * 2011-08-17 2014-11-17 Glaxo Group Ltd Proteinas y peptidos modificados
KR101833602B1 (ko) 2013-02-26 2018-02-28 로슈 글리카트 아게 이중특이적 t 세포 활성화 항원 결합 분자
WO2015140126A1 (en) 2014-03-21 2015-09-24 F. Hoffmann-La Roche Ag In vitro prediction of in vivo half-life of antibodies
MA40682B1 (fr) 2014-03-31 2020-01-31 Hoffmann La Roche Anticorps anti-ox40 et procédés d'utilisation correspondants
CA2960445A1 (en) 2014-10-24 2016-04-28 F.Hoffmann-La Roche Ag Vh-vl-interdomain angle based antibody humanization
UA125577C2 (uk) 2014-11-14 2022-04-27 Ф. Хоффманн-Ля Рош Аг Антигензв'язуюча молекула, які містить тримерний ліганд сімейства tnf
PE20170585A1 (es) 2014-11-20 2017-05-11 Hoffmann La Roche Moleculas de union a antigeno biespecificas activadoras de celulas t
CN107207579B (zh) 2015-03-31 2022-02-25 豪夫迈·罗氏有限公司 包含三聚体tnf家族配体的抗原结合分子
AR106188A1 (es) 2015-10-01 2017-12-20 Hoffmann La Roche Anticuerpos anti-cd19 humano humanizados y métodos de utilización
WO2017055314A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Bispecific anti-cd19xcd3 t cell activating antigen binding molecules
PE20180950A1 (es) 2015-10-02 2018-06-11 Hoffmann La Roche Anticuerpos biespecificos especificos para un receptor de tnf coestimulador
KR20180054863A (ko) 2015-10-02 2018-05-24 에프. 호프만-라 로슈 아게 높은 친화성을 갖는 항-인간 cd19 항체
EP3231813A1 (en) 2016-03-29 2017-10-18 F. Hoffmann-La Roche AG Trimeric costimulatory tnf family ligand-containing antigen binding molecules
JP7285076B2 (ja) 2016-05-11 2023-06-01 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Tnfファミリーリガンドトリマーとテネイシン結合部分とを含む抗原結合分子
EP3243836A1 (en) 2016-05-11 2017-11-15 F. Hoffmann-La Roche AG C-terminally fused tnf family ligand trimer-containing antigen binding molecules
EP3243832A1 (en) 2016-05-13 2017-11-15 F. Hoffmann-La Roche AG Antigen binding molecules comprising a tnf family ligand trimer and pd1 binding moiety
JP7125400B2 (ja) 2016-12-19 2022-08-24 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト 標的化4-1bb(cd137)アゴニストとの併用療法
EP3559034B1 (en) 2016-12-20 2020-12-02 H. Hoffnabb-La Roche Ag Combination therapy of anti-cd20/anti-cd3 bispecific antibodies and 4-1bb (cd137) agonists
TW201829469A (zh) 2017-01-03 2018-08-16 瑞士商赫孚孟拉羅股份公司 包含抗4-1bb純系20h4.9之雙特異性抗原結合分子
EP3601346A1 (en) 2017-03-29 2020-02-05 H. Hoffnabb-La Roche Ag Bispecific antigen binding molecule for a costimulatory tnf receptor
EP3601345A1 (en) 2017-03-29 2020-02-05 H. Hoffnabb-La Roche Ag Bispecific antigen binding molecule for a costimulatory tnf receptor
US20180340030A1 (en) 2017-04-04 2018-11-29 Hoffmann-La Roche Inc. Novel bispecific antigen binding molecules capable of specific binding to cd40 and to fap
CN110573626B (zh) 2017-04-28 2024-05-03 豪夫迈·罗氏有限公司 抗体选择方法
JP7098725B2 (ja) 2017-11-01 2022-07-11 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト 二重特異性2+1コントースボディ
WO2019086499A1 (en) 2017-11-01 2019-05-09 F. Hoffmann-La Roche Ag Novel tnf family ligand trimer-containing antigen binding molecules
TWI841551B (zh) 2018-03-13 2024-05-11 瑞士商赫孚孟拉羅股份公司 使用靶向4-1bb (cd137)之促效劑的組合療法
JP7159332B2 (ja) 2018-03-13 2022-10-24 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト 4-1bbアゴニストと抗cd20抗体の治療的組み合わせ
KR20200144114A (ko) 2018-04-13 2020-12-28 에프. 호프만-라 로슈 아게 4-1bbl을 포함하는 her-2 표적화 항원 결합 분자
TW202035447A (zh) 2018-07-04 2020-10-01 瑞士商赫孚孟拉羅股份公司 新穎雙特異性促效性4-1bb抗原結合分子
MX2021003548A (es) 2018-10-01 2021-05-27 Hoffmann La Roche Moleculas de union a antigeno biespecificas que comprenden el clon 212 anti-fap.
JP2022511396A (ja) 2018-10-01 2022-01-31 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Cd40への三価結合を伴う二重特異性抗原結合分子
CN113677403A (zh) 2019-04-12 2021-11-19 豪夫迈·罗氏有限公司 包含脂质运载蛋白突变蛋白的双特异性抗原结合分子
BR112021026293A2 (pt) 2019-06-26 2022-03-03 Hoffmann La Roche Moléculas de ligação, anticorpos humanizados, ácido nucleico isolado, célula hospedeira, métodos para produzir a molécula de ligação ao antígeno, para tratar um indivíduo e suprarregular ou prolongar a atividade de células t citotóxicas, composição farmacêutica e uso da molécula

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017060144A1 (en) * 2015-10-07 2017-04-13 F. Hoffmann-La Roche Ag Bispecific antibodies with tetravalency for a costimulatory tnf receptor
WO2019086497A2 (en) * 2017-11-01 2019-05-09 F. Hoffmann-La Roche Ag Combination therapy with targeted ox40 agonists

Also Published As

Publication number Publication date
EP4126946A1 (en) 2023-02-08
IL294922A (en) 2022-09-01
JP2023521582A (ja) 2023-05-25
MX2022012188A (es) 2022-10-27
US11780919B2 (en) 2023-10-10
CN115362174A (zh) 2022-11-18
CL2022002647A1 (es) 2023-06-16
CR20220479A (es) 2022-10-26
AR121706A1 (es) 2022-06-29
TW202144437A (zh) 2021-12-01
CN115768473A (zh) 2023-03-07
KR20220150935A (ko) 2022-11-11
BR112022019531A2 (pt) 2022-11-16
CA3169601A1 (en) 2021-10-07
WO2021198333A1 (en) 2021-10-07
US20220025046A1 (en) 2022-01-27
CO2022013898A2 (es) 2022-10-31
EP4126041A1 (en) 2023-02-08
JP2023520684A (ja) 2023-05-18
WO2021198335A1 (en) 2021-10-07
AU2021247502A1 (en) 2022-09-15
US20230227584A1 (en) 2023-07-20
US20240117049A1 (en) 2024-04-11
PE20221869A1 (es) 2022-12-02

Similar Documents

Publication Publication Date Title
US11613587B2 (en) Combination therapy of T cell activating bispecific antigen binding molecules and PD-1 axis binding antagonists
TWI810541B (zh) 靶向ox40及fap之雙特異性抗原結合分子
JP6997212B2 (ja) Pd1及びlag3に特異的に結合する二重特異性抗体
JP7098725B2 (ja) 二重特異性2+1コントースボディ
US20200071411A1 (en) Bispecific antibodies specific for ox40
CN118440201A (zh) 靶向肿瘤的激动性cd28抗原结合分子
US20230355754A1 (en) Combination therapy of tumor targeted icos agonists with t-cell bispecific molecules
KR20210094588A (ko) Cd3에 결합하는 항체
JP2022538075A (ja) 抗体結合cea及び4-1bblの融合
TW202216767A (zh) 與CD3及FolR1結合之抗體
US20220098305A1 (en) Novel icos antibodies and tumor-targeted antigen binding molecules comprising them
TW202340248A (zh) 促效性ltbr抗體及包含其之雙特異性抗體
TW202307008A (zh) 靶向EpCAM之促效的CD28抗原結合分子
US20220242962A1 (en) 4-1bb and ox40 binding proteins and related compositions and methods, antibodies against 4-1bb, antibodies against ox40
RU2799429C2 (ru) Биспецифические антигенсвязывающие молекулы, содержащие анти-fap клон 212
RU2826084C2 (ru) МОЛЕКУЛЫ АНТИТЕЛА, КОТОРЫЕ СВЯЗЫВАЮТ PD-L1 и CD137
CN118434768A (zh) 激动性ltbr抗体以及包含它们的双特异性抗体