Nothing Special   »   [go: up one dir, main page]

TWI805228B - 3d and flash memory device and method of fabricating the same - Google Patents

3d and flash memory device and method of fabricating the same Download PDF

Info

Publication number
TWI805228B
TWI805228B TW111105711A TW111105711A TWI805228B TW I805228 B TWI805228 B TW I805228B TW 111105711 A TW111105711 A TW 111105711A TW 111105711 A TW111105711 A TW 111105711A TW I805228 B TWI805228 B TW I805228B
Authority
TW
Taiwan
Prior art keywords
layer
gate stack
stack structure
conductor layer
region
Prior art date
Application number
TW111105711A
Other languages
Chinese (zh)
Other versions
TW202335262A (en
Inventor
蘇嬿如
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW111105711A priority Critical patent/TWI805228B/en
Application granted granted Critical
Publication of TWI805228B publication Critical patent/TWI805228B/en
Publication of TW202335262A publication Critical patent/TW202335262A/en

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Semiconductor Memories (AREA)

Abstract

A memory device includes a dielectric substrate, a conductive layer, a gate stack structure, a plurality of ring-shaped slits and a plurality of inner slits. The conductive layer is located on the dielectric substrate. The gate stack structure is located on a first part of the conductive layer. The dielectric layer is located on the gate stack structure and a second part of the conductive layer. The plurality of ring-shaped slits extends through the dielectric layer, the gate stack structure and the conductive layer to define a plurality of tiles. The plurality of inner slits are arranged in the ring-shaped slits to define a plurality of blocks in each ring-shaped slit. A height of the plurality of inner slits is the same as a height of the plurality of ring-shaped slits.

Description

三維AND快閃記憶體元件及其製造方法Three-dimensional AND flash memory device and manufacturing method thereof

本發明是有關於一種半導體元件及其製造方法,且特別是有關於一種快閃記憶體元件及其製造方法。The present invention relates to a semiconductor element and its manufacturing method, and in particular to a flash memory element and its manufacturing method.

非揮發性記憶體具有可使得存入的資料在斷電後也不會消失的優點,因此廣泛採用於個人電腦和其他電子設備中。目前業界較常使用的三維記憶體包括反或式(NOR)記憶體以及反及式(NAND)記憶體。此外,另一種三維記憶體為及式(AND)記憶體,其可應用在多維度的記憶體陣列中而具有高積集度與高面積利用率,且具有操作速度快的優點。因此,三維記憶體元件的發展已逐漸成為目前的趨勢。然而,仍存在許多與三維記憶體元件相關的挑戰。Non-volatile memory has the advantage that the stored data will not disappear after power failure, so it is widely used in personal computers and other electronic devices. The 3D memory commonly used in the industry currently includes Negative OR (NOR) memory and Negative AND (NAND) memory. In addition, another type of three-dimensional memory is AND memory, which can be applied in a multi-dimensional memory array and has high integration and high area utilization, and has the advantage of fast operation speed. Therefore, the development of three-dimensional memory components has gradually become a current trend. However, there are still many challenges associated with 3D memory elements.

本發明實施例的一種記憶體元件,包括:介電基底、導體層、閘極堆疊結構、多個環形分隔牆以及多個內分隔牆。導體層位於所述介電基底上。閘極堆疊結構位於所述導體層上。介電層,位於所述閘極堆疊結構上。多個環形分隔牆,將所述介電層、所述閘極堆疊結構與所述導體層界定出多個塊元。每一內分隔牆設置在所述多個環形分隔牆內,將每一塊元界定出多個區塊。所述多個內分隔牆與所述多個環形分隔牆的高度相同。A memory device according to an embodiment of the present invention includes: a dielectric substrate, a conductor layer, a gate stack structure, a plurality of annular partition walls, and a plurality of inner partition walls. A conductor layer is located on the dielectric substrate. The gate stack structure is located on the conductor layer. The dielectric layer is located on the gate stack structure. A plurality of annular partition walls define a plurality of block elements for the dielectric layer, the gate stack structure and the conductor layer. Each inner partition wall is arranged in the plurality of annular partition walls, and each block unit defines a plurality of blocks. The plurality of inner partition walls have the same height as the plurality of annular partition walls.

本發明實施例的一種記憶體元件,包括:基底、內連線結構、導體層、閘極堆疊結構、介電層以及分隔結構。基底包括陣列區、階梯區與邊緣區,其中所述邊緣區環繞所述階梯區,且所述階梯區環繞所述陣列區。內連線結構位於所述陣列區與所述階梯區的所述基底之上。導體層位於所述陣列區、所述階梯區與所述邊緣區的所述內連線結構上。閘極堆疊結構位於所述陣列區與所述階梯區的所述導體層上,其中在所述階梯區的所述閘極堆疊結構具有階梯結構。介電層位於所述邊緣區的所述導體層以及階梯區的階梯結構上。分隔結構延伸穿過所述陣列區與所述階梯區的所述閘極堆疊結構、所述閘極堆疊結構的所述階梯結構以及所述導體層,以界定出塊元,並在所述塊元中形成多個區塊。A memory element according to an embodiment of the present invention includes: a substrate, an interconnection structure, a conductor layer, a gate stack structure, a dielectric layer, and a separation structure. The substrate includes an array area, a step area and an edge area, wherein the edge area surrounds the step area, and the step area surrounds the array area. The interconnection structure is located on the base of the array area and the step area. The conductor layer is located on the interconnect structure of the array area, the step area and the edge area. The gate stack structure is located on the conductor layer of the array area and the step area, wherein the gate stack structure in the step area has a step structure. The dielectric layer is located on the conductor layer in the edge area and the stepped structure in the stepped area. The separation structure extends through the array region and the gate stack structure of the step region, the step structure of the gate stack structure and the conductor layer to define block elements, and in the block Multiple blocks are formed in the meta.

本發明實施例的一種記憶體元件的製造法,包括:提供介電基底。形成毯覆式導體層,以覆蓋於所述介電基底上。形成閘極堆疊結構於所述毯覆式導體層上。在所述閘極堆疊結構中形成多個通道孔,其中所述通道孔裸露出所述毯覆式導體層。在每一通道孔中形成通道柱。在所述通道柱與所述閘極堆疊結構的多個閘極導體層之間形成電荷儲存結構。形成介電層於所述閘極堆疊結構與所述毯覆式導體層上。形成多個分隔結構,延伸穿過所述介電層、所述閘極堆疊結構與所述毯覆式導體層,以界定出多個塊元,並將每一塊元界定出多個區塊。A method for manufacturing a memory device according to an embodiment of the present invention includes: providing a dielectric substrate. A blanket conductor layer is formed to cover the dielectric substrate. A gate stack structure is formed on the blanket conductor layer. A plurality of via holes are formed in the gate stack structure, wherein the via holes expose the blanket conductor layer. A channel column is formed in each channel hole. A charge storage structure is formed between the channel pillar and the plurality of gate conductor layers of the gate stack structure. A dielectric layer is formed on the gate stack structure and the blanket conductor layer. A plurality of separation structures are formed extending through the dielectric layer, the gate stack structure and the blanket conductor layer to define a plurality of blocks, and each block defines a plurality of blocks.

基於上述,本發明實施例中,位於堆疊結構下方的導體層是在形成分隔(Slit)結構時才被圖案化,因此,在形成通道開孔的乾蝕刻(例如是電漿蝕刻)期間,此導體層可以做為電荷的導通路徑,以減小電弧效應,避免基底上的各個材料層與構件因為電漿轟擊而毀損,因此,可以提升製程的良率。Based on the above, in the embodiment of the present invention, the conductor layer under the stacked structure is patterned when the Slit structure is formed. Therefore, during the dry etching (for example, plasma etching) for forming the channel opening, this The conductor layer can be used as a conduction path for charges to reduce the arc effect and avoid damage to various material layers and components on the substrate due to plasma bombardment, thus improving the yield rate of the process.

圖1A示出根據一些實施例的3D AND快閃記憶體陣列的電路圖。圖1B示出圖1A中部分的記憶體陣列的局部三維視圖。圖1C與圖1D示出圖1B的切線I-I’的剖面圖。圖1E示出圖1B、圖1C與圖1D的切線II-II’的上視圖。Figure 1A shows a circuit diagram of a 3D AND flash memory array according to some embodiments. FIG. 1B shows a partial three-dimensional view of a portion of the memory array in FIG. 1A . FIG. 1C and FIG. 1D show cross-sectional views of the line I-I' in FIG. 1B. Fig. 1E shows a top view of the line II-II' of Fig. 1B, Fig. 1C and Fig. 1D.

圖1A為包括配置成列及行的垂直AND記憶體陣列10的2個區塊BLOCK (i)與BLOCK (i+1)的示意圖。區塊BLOCK (i)中包括記憶體陣列A (i)。記憶體陣列A (i)的一列(例如是第m+1列)是具有共同字元線(例如WL (i) m+1)的AND記憶單元20集合。記憶體陣列A (i)的每一列(例如是第m+1列)的AND記憶單元20對應於共同字元線(例如WL (i) m+1),且耦接至不同的源極柱(例如SP (i) n與SP (i) n+1)與汲極柱(例如DP (i) n與DP (i) n+1),從而使得AND記憶單元20沿共同字元線(例如WL (i) m+1)邏輯地配置成一列。 FIG. 1A is a schematic diagram of two blocks BLOCK (i) and BLOCK (i+1) including vertical AND memory arrays 10 arranged in columns and rows. Block BLOCK (i) includes memory array A (i) . A column (eg column m+1) of the memory array A (i) is a set of AND memory cells 20 having a common word line (eg WL (i) m+1 ). The AND memory cells 20 of each column (eg column m+1) of the memory array A (i) correspond to a common word line (eg WL (i) m+1 ), and are coupled to different source columns (such as SP (i) n and SP (i) n+1 ) and drain poles (such as DP (i) n and DP (i) n+1 ), so that the AND memory cell 20 is along a common word line (such as WL (i) m+1 ) are logically arranged into a column.

記憶體陣列A ( i )的一行(例如是第n行)是具有共同源極柱(例如SP ( i ) n)與共同汲極柱(例如DP ( i ) n)的AND記憶單元20集合。記憶體陣列A (i)的每一行(例如是第n行)的AND記憶單元20對應於不同字元線(例如WL ( i ) m+1與WL ( i ) m),且耦接至共同的源極柱(例如SP ( i ) n)與共同的汲極柱(例如DP ( i ) n)。因此,記憶體陣列A (i)的AND記憶單元20沿共同源極柱(例如SP ( i ) n)與共同汲極柱(例如DP ( i ) n)邏輯地配置成一行。在實體佈局中,根據所應用的製造方法,行或列可經扭曲,以蜂巢式模式或其他方式配置,以用於高密度或其他原因。 A row (eg row n) of the memory array A ( i ) is a set of AND memory cells 20 having a common source column (eg SP ( i ) n ) and a common drain column (eg DP ( i ) n ). The AND memory cells 20 of each row (eg row n) of the memory array A (i) correspond to different word lines (eg WL ( i ) m+1 and WL ( i ) m ), and are coupled to a common source posts (eg SP ( i ) n ) and common drain posts (eg DP ( i ) n ). Therefore, the AND memory cells 20 of the memory array A (i) are logically arranged in a row along a common source column (eg, SP ( i ) n ) and a common drain column (eg, DP ( i ) n ). In a physical layout, the rows or columns may be distorted, arranged in a honeycomb pattern or otherwise, for high density or for other reasons, depending on the fabrication method applied.

在圖1A中,在區塊BLOCK (i)中,記憶體陣列A (i)的第n行的AND記憶單元20共用共同的源極柱(例如SP ( i ) n)與共同的汲極柱(例如DP ( i ) n)。第n+1行的AND記憶單元20共用共同的源極柱(例如SP (i) n+1)與共同的汲極柱(例如DP ( i ) n+1)。 In FIG. 1A, in the block BLOCK (i) , the AND memory cells 20 in the nth row of the memory array A (i) share a common source column (for example, SP ( i ) n ) and a common drain column. (e.g. DP ( i ) n ). The AND memory cells 20 in row n+1 share a common source column (eg SP (i) n+1 ) and a common drain column (eg DP ( i ) n+1 ).

共同的源極柱(例如SP ( i ) n)耦接至共同的源極線(例如SL n);共同的汲極柱(例如DP ( i ) n)耦接至共同的位元線(例如BL n)。共同的源極柱(例如SP ( i ) n+1)耦接至共同的源極線(例如SL n+1);共同的汲極柱(例如DP ( i ) n+1)耦接至共同的位元線(例如BL n+1)。 A common source post (eg SP ( i ) n ) is coupled to a common source line (eg SL n ); a common drain post (eg DP ( i ) n ) is coupled to a common bit line ( eg BLn ). A common source post (eg SP ( i ) n+1 ) is coupled to a common source line (eg SL n+1 ); a common drain post (eg DP ( i ) n+1 ) is coupled to a common bit line (eg BL n+1 ).

相似地,區塊BLOCK (i+1)包括記憶體陣列A (i+1),其與在區塊BLOCK (i)中的記憶體陣列A (i)相似。記憶體陣列A (i+1)的一列(例如是第m+1列)是具有共同字元線(例如WL (i+1) m+1)的AND記憶單元20集合。記憶體陣列A (i+1)的每一列(例如是第m+1列)的AND記憶單元20對應於共同字元線(例如WL (i+1) m+1),且耦接至不同的源極柱(例如SP (i+1) n與SP (i+1) n+1)與汲極柱(例如DP (i+1) n與DP (i+1) n+1)。記憶體陣列A ( i+1 )的一行(例如是第n行)是具有共同源極柱(例如SP ( i+1 ) n)與共同汲極柱(例如DP ( i+1 ) n)的AND記憶單元20集合。記憶體陣列A (i+1)的每一行(例如是第n行)的AND記憶單元20對應於不同字元線(例如WL ( i+1 ) m+1與WL ( i+1 ) m),且耦接至共同的源極柱(例如SP ( i+1 ) n)與共同的汲極柱(例如DP ( i+1 ) n)。因此,記憶體陣列A (i+1)的AND記憶單元20沿共同源極柱(例如SP ( i+1 ) n)與共同汲極柱(例如DP ( i+1 ) n)邏輯地配置成一行。 Similarly, block BLOCK (i+1) includes memory array A (i+1) which is similar to memory array A (i) in block BLOCK (i) . A column (eg column m+1) of the memory array A (i +1) is a set of AND memory cells 20 having a common word line (eg WL (i+1) m+1 ). The AND memory cells 20 of each column (eg column m+1) of the memory array A (i +1) correspond to a common word line (eg WL (i+1) m+1 ), and are coupled to different source columns (eg SP (i+1) n and SP (i+1) n+1 ) and drain columns (eg DP (i+1) n and DP (i+1) n+1 ). A row (for example, row n) of memory array A ( i+1 ) has a common source column (for example, SP ( i+1 ) n ) and a common drain column (for example, DP ( i+1 ) n ) AND memory cells 20 sets. The AND memory cells 20 of each row (for example, row n) of the memory array A (i+1 ) correspond to different word lines (for example, WL ( i+1 ) m+1 and WL ( i+1 ) m ) , and are coupled to a common source post (eg SP ( i+1 ) n ) and a common drain post (eg DP ( i+1 ) n ). Therefore, the AND memory cells 20 of the memory array A (i+1) are logically configured along a common source column (eg SP ( i+1 ) n ) and a common drain column (eg DP ( i+1 ) n ) one line.

區塊BLOCK (i+1)與區塊BLOCK (i)共用源極線(例如是SL n與SL n+1)與位元線(例如BL n與BL n+1)。因此,源極線SL n與位元線BL n耦接至區塊BLOCK (i)的AND記憶體陣列A (i)中的第n行AND記憶單元20,且耦接至區塊BLOCK (i+1)中的AND記憶體陣列A (i+1)中的第n行AND記憶單元20。同樣,源極線SL n+1與位元線BL n+1耦接至區塊BLOCK (i)的AND記憶體陣列A (i)中的第n+1行AND記憶單元20,且耦接至區塊BLOCK (i+1)中的AND記憶體陣列A (i+1)中的第n+1行AND記憶單元20。 The block BLOCK (i+1) and the block BLOCK (i) share source lines (such as SL n and SL n+1 ) and bit lines (such as BL n and BL n+1 ). Therefore, the source line SL n and the bit line BL n are coupled to the nth row of AND memory cells 20 in the AND memory array A (i) of the block BLOCK ( i) , and are coupled to the block BLOCK (i +1) in the AND memory cell 20 in the nth row of the AND memory array A (i+1) . Similarly, the source line SL n+1 and the bit line BL n+1 are coupled to the n+1th row of AND memory cells 20 in the AND memory array A (i) of the block BLOCK (i ), and are coupled to To the AND memory unit 20 in the n+1th row of the AND memory array A ( i+1) in the block BLOCK (i +1).

請參照圖1B至圖1D,記憶體陣列10可安置於半導體晶粒的內連線結構上,諸如,安置於在半導體基底上形成的一或多個主動元件(例如電晶體)上方。因此,介電基底50例如是形成於矽基板上的金屬內連線結構上方的介電層,例如氧化矽層。記憶體陣列10可包括閘極堆疊結構52、多個通道柱16、多個第一導體柱(又可稱為源極柱)32a與多個第二導體柱(又可稱為汲極柱)32b和多個電荷儲存結構40。Referring to FIG. 1B to FIG. 1D , the memory array 10 can be disposed on the interconnection structure of the semiconductor die, such as disposed on one or more active devices (such as transistors) formed on the semiconductor substrate. Therefore, the dielectric substrate 50 is, for example, a dielectric layer, such as a silicon oxide layer, formed above the metal interconnect structure on the silicon substrate. The memory array 10 may include a gate stack structure 52, a plurality of channel pillars 16, a plurality of first conductive pillars (also called source pillars) 32a, and a plurality of second conductive pillars (also called drain pillars). 32b and a plurality of charge storage structures 40.

請參照圖1B,閘極堆疊結構52形成在陣列區(未示出)與階梯區(未示出)的介電基底50上。閘極堆疊結構52包括在介電基底50的表面50s上垂直堆疊的多個閘極層(又稱為字元線)38與多層的絕緣層54。在Z方向上,這些閘極層38藉由設置在其彼此之間的絕緣層54電性隔離。閘極層38在與介電基底50的表面平行的方向上延伸。階梯區的閘極層38可具有階梯結構(未示出)。因此,下部的閘極層38比上部閘極層38長,且下部的閘極層38的末端橫向延伸出上部閘極層38的末端。用於連接閘極層38的接觸窗(未示出)可著陸於閘極層38的末端,藉以將各層閘極層38連接至各個導線。Referring to FIG. 1B , the gate stack structure 52 is formed on the dielectric substrate 50 in the array region (not shown) and the step region (not shown). The gate stack structure 52 includes a plurality of gate layers (also referred to as word lines) 38 and multiple layers of insulating layers 54 vertically stacked on the surface 50 s of the dielectric substrate 50 . In the Z direction, the gate layers 38 are electrically isolated by an insulating layer 54 disposed between them. The gate layer 38 extends in a direction parallel to the surface of the dielectric substrate 50 . The gate layer 38 of the stepped region may have a stepped structure (not shown). Therefore, the lower gate layer 38 is longer than the upper gate layer 38 , and the end of the lower gate layer 38 extends laterally beyond the end of the upper gate layer 38 . Contact windows (not shown) for connecting to the gate layer 38 may be landed at the ends of the gate layer 38 so as to connect each gate layer 38 to each wire.

請參照圖1B至圖1D,記憶體陣列10還包括多個通道柱16。通道柱16連續延伸穿過閘極堆疊結構52且延伸至基底100和閘極堆疊結構52之間的導體層53。導體層53的材料可包括摻雜多晶矽。舉例來說,導體層53的材料可包括P型摻雜的多晶矽。在一些實施例中,通道柱16於上視角度來看可具有環形的輪廓。通道柱16的材料可以是半導體,例如是未摻雜的多晶矽。Please refer to FIG. 1B to FIG. 1D , the memory array 10 further includes a plurality of channel columns 16 . The channel pillar 16 continuously extends through the gate stack 52 and extends to the conductor layer 53 between the substrate 100 and the gate stack 52 . The material of the conductive layer 53 may include doped polysilicon. For example, the material of the conductive layer 53 may include P-type doped polysilicon. In some embodiments, the channel post 16 may have a ring-shaped profile when viewed from above. The material of the channel pillar 16 can be semiconductor, such as undoped polysilicon.

請參照圖1B至圖1D,記憶體陣列10還包括絕緣柱28、多個第一導體柱32a與多個第二導體柱32b。在此例中,第一導體柱32a做為源極柱;第二導體柱32b做為汲極柱。第一導體柱32a與第二導體柱32b以及絕緣柱28各自在垂直於閘極層38的表面(即XY平面)的方向(即Z方向)上延伸。第一導體柱32a與第二導體柱32b藉由絕緣柱28分隔,且被絕緣填充層24環繞。第一導體柱32a與第二導體柱32b電性連接該通道柱16。第一導體柱32a與第二導體柱32b包括摻雜的多晶矽或金屬材料。絕緣柱28例如是氮化矽或是氧化矽,絕緣填充層24例如是氧化矽。Referring to FIG. 1B to FIG. 1D , the memory array 10 further includes insulating columns 28 , a plurality of first conductive columns 32 a and a plurality of second conductive columns 32 b. In this example, the first conductive post 32a is used as a source post; the second conductive post 32b is used as a drain post. The first conductive pillar 32 a , the second conductive pillar 32 b and the insulating pillar 28 each extend in a direction (ie, a Z direction) perpendicular to a surface of the gate layer 38 (ie, an XY plane). The first conductive post 32 a and the second conductive post 32 b are separated by the insulating post 28 and surrounded by the insulating filling layer 24 . The first conductive post 32 a and the second conductive post 32 b are electrically connected to the channel post 16 . The first conductive pillar 32a and the second conductive pillar 32b include doped polysilicon or metal material. The insulating pillar 28 is, for example, silicon nitride or silicon oxide, and the insulating filling layer 24 is, for example, silicon oxide.

請參照圖1C與圖1D,電荷儲存結構40設置於通道柱16與多層閘極層38之間。電荷儲存結構40可以包括穿隧層(或稱為能隙工程穿隧氧化層)14、電荷儲存層12以及阻擋層36。電荷儲存層12位於穿隧層14與阻擋層36之間。在一些實施例中,穿隧層14以及阻擋層36包括氧化矽。電荷儲存層12包括氮化矽,或其他包括可以捕捉以電荷的材料。在一些實施例中,如圖1C所示,電荷儲存結構40的一部分(穿隧層14與電荷儲存層12)在垂直於閘極層38的方向(即Z方向)上連續延伸,而電荷儲存結構40的另一部分(阻擋層36)環繞於閘極層38的周圍。在另一些實施例中,如圖1D所示,電荷儲存結構40(穿隧層14、電荷儲存層12與阻擋層36)環繞於閘極層38的周圍。Referring to FIG. 1C and FIG. 1D , the charge storage structure 40 is disposed between the channel pillar 16 and the multilayer gate layer 38 . The charge storage structure 40 may include a tunneling layer (or called a bandgap engineered tunnel oxide layer) 14 , a charge storage layer 12 and a blocking layer 36 . The charge storage layer 12 is located between the tunneling layer 14 and the blocking layer 36 . In some embodiments, the tunneling layer 14 and the barrier layer 36 include silicon oxide. The charge storage layer 12 includes silicon nitride, or other materials that can trap charges. In some embodiments, as shown in FIG. 1C , a part of the charge storage structure 40 (the tunneling layer 14 and the charge storage layer 12 ) extends continuously in a direction perpendicular to the gate layer 38 (ie, the Z direction), and the charge storage Another portion of structure 40 (barrier layer 36 ) surrounds gate layer 38 . In other embodiments, as shown in FIG. 1D , the charge storage structure 40 (the tunneling layer 14 , the charge storage layer 12 and the blocking layer 36 ) surrounds the gate layer 38 .

請參照圖1E,電荷儲存結構40、通道柱16以及源極柱32a與汲極柱32b被閘極層38環繞,並且界定出記憶單元20。記憶單元20可藉由不同的操作方法進行1位元操作或2位元操作。舉例來說,在對源極柱32a與汲極柱32b施加電壓時,由於源極柱32a與汲極柱32b與通道柱16連接,因此電子可沿著通道柱16傳送並儲存在整個電荷儲存結構40中,如此可對記憶單元20進行1位元的操作。此外,對於利用福勒-諾德漢穿隧(Fowler-Nordheim tunneling)的操作來說,可使電子或是電洞被捕捉在源極柱32a與汲極柱32b之間的電荷儲存結構40中。對於源極側注入(source side injection)、通道熱電子(channel-hot-electron)注入或帶對帶穿隧熱載子(band-to-band tunneling hot carrier)注入的操作來說,可使電子或電洞被局部地捕捉在鄰近兩個源極柱32a與汲極柱32b中的一者的電荷儲存結構40中,如此可對記憶單元20進行單位晶胞(SLC,1位元)或多位晶胞(MLC,大於或等於2位元)的操作。Referring to FIG. 1E , the charge storage structure 40 , the channel column 16 , the source column 32 a and the drain column 32 b are surrounded by the gate layer 38 and define the memory cell 20 . The memory unit 20 can perform 1-bit operation or 2-bit operation through different operation methods. For example, when a voltage is applied to the source column 32a and the drain column 32b, since the source column 32a and the drain column 32b are connected to the channel column 16, electrons can be transmitted along the channel column 16 and stored in the entire charge storage In the structure 40, a 1-bit operation can be performed on the memory unit 20 in this way. In addition, for the operation utilizing Fowler-Nordheim tunneling, electrons or holes can be trapped in the charge storage structure 40 between the source post 32a and the drain post 32b. . For source side injection, channel-hot-electron injection, or band-to-band tunneling hot carrier injection, electrons can be Or the holes are locally trapped in the charge storage structure 40 adjacent to one of the two source posts 32a and drain posts 32b, so that the unit cell (SLC, 1 bit) or multiple Bit cell (MLC, greater than or equal to 2 bits) operations.

在進行操作時,將電壓施加至所選擇的字元線(閘極層)38,例如施加高於對應記憶單元20的相應起始電壓(V th)時,與所選擇的字元線38相交的通道柱16的通道區被導通,而允許電流從位元線BL n或BL n+1(示於圖1B)進入汲極柱32b,並經由導通的通道區流至源極柱32a(例如,在由箭頭60所指示的方向上),最後流到源極線SL n或SL n+1(示於圖1B)。 In operation, a voltage is applied to a selected word line (gate layer) 38 , such as when a corresponding threshold voltage (V th ) higher than that of the corresponding memory cell 20 is applied, intersecting the selected word line 38 The channel region of the channel column 16 is turned on, allowing current to enter the drain column 32b from the bit line BL n or BL n+1 (shown in FIG. 1B ) and flow to the source column 32a (eg , in the direction indicated by the arrow 60 ), finally flows to the source line SL n or SL n+1 (shown in FIG. 1B ).

圖2A示出根據本發明的實施例的記憶體晶片的上視圖。圖2B示出圖2A的局部區域的上視圖。FIG. 2A shows a top view of a memory die according to an embodiment of the invention. FIG. 2B shows a top view of a partial area of FIG. 2A.

請參照圖2A與圖2B,記憶體晶片MC-1例如是AND記憶元件。記憶體晶片MC-1可以包括區C1與區C2。區C1可包括彼此分離的多個塊元T。塊元T可以排列成具有多行與多列的陣列。在圖2A是由7行與8列所形成塊元陣列,然而,本發明實施例不以此為限。區C1中的每一個塊元T具有多個記憶體陣列。區C2包括周邊電路,例如是互補式金氧半導體元件(CMOS)設置在塊元陣列的周邊。Please refer to FIG. 2A and FIG. 2B , the memory chip MC- 1 is, for example, an AND memory element. The memory chip MC-1 may include a region C1 and a region C2. Region C1 may include a plurality of tiles T separated from each other. The block elements T can be arranged in an array with multiple rows and multiple columns. In FIG. 2A , the block element array is formed by 7 rows and 8 columns, however, the embodiment of the present invention is not limited thereto. Each block T in area C1 has multiple memory arrays. The region C2 includes peripheral circuits, such as complementary metal oxide semiconductor devices (CMOS), disposed on the periphery of the block array.

請參照圖2A與圖2B,記憶體晶片MC-1還包括多組分隔結構SLT。每一組分隔結構SLT包括第一分隔牆SLT1與多個第二分隔牆SLT2。Please refer to FIG. 2A and FIG. 2B , the memory chip MC- 1 further includes multiple sets of separation structures SLT. Each set of partition structures SLT includes a first partition wall SLT1 and a plurality of second partition walls SLT2.

第一分隔牆SLT1環繞於多個第二分隔牆SLT2之外圍,多個第二分隔牆SLT2形成在第一分隔牆SLT1之內。因此,第一分隔牆SLT1又可以稱為外分隔牆SLT1,第二分隔牆SLT2又可以稱為內分隔牆SLT2。第一分隔牆SLT1的上視圖可以是環形,因此,第一分隔牆SLT1又可以稱為環形牆。第二分隔牆SLT2為在X方向上延伸的長條形,因此,第二分隔牆SLT2又可以稱為長形牆。The first partition wall SLT1 surrounds the periphery of the plurality of second partition walls SLT2, and the plurality of second partition walls SLT2 are formed inside the first partition wall SLT1. Therefore, the first partition wall SLT1 can also be called an outer partition wall SLT1, and the second partition wall SLT2 can also be called an inner partition wall SLT2. The top view of the first partition wall SLT1 may be circular, therefore, the first partition wall SLT1 may also be called a circular wall. The second partition wall SLT2 is a long strip extending in the X direction, therefore, the second partition wall SLT2 can also be called a long wall.

多個第一分隔牆SLT1界定出彼此分離的多個塊元T。每一個塊元T可以包括陣列區AR、階梯區SR與邊緣區ER。階梯區SR在陣列區AR的周圍。邊緣區ER在階梯區SR的周圍。第一分隔牆SLT1使兩個塊元T彼此分離。多個第二分隔牆SLT2形成在塊元T內,且將每一個塊元T界定出多個區塊B。在圖2B包括三個區塊B1、B2與B3,然而,本發明實施例不以此為限。The plurality of first partition walls SLT1 define a plurality of blocks T separated from each other. Each block T may include an array area AR, a step area SR and an edge area ER. The stepped area SR is around the array area AR. The edge region ER is around the step region SR. The first partition wall SLT1 separates the two tiles T from each other. A plurality of second partition walls SLT2 are formed in the blocks T, and each block T defines a plurality of blocks B. FIG. 2B includes three blocks B1 , B2 and B3 , however, the embodiment of the present invention is not limited thereto.

第一分隔牆SLT1包括彼此在末端連接的兩個第一分隔部P1以及兩個第二分隔部P2。第一分隔部P1在X方向延伸,且形成在陣列區AR、階梯區SR與邊緣區ER。多個第二分隔部P2,在Y方向延伸,且形成在邊緣區ER。在一些實施例中,X方向又稱為第一方向,Y方向又稱為第二方向,Z方向又稱為第三方向。The first partition wall SLT1 includes two first partitions P1 and two second partitions P2 connected to each other at ends. The first partition P1 extends in the X direction and is formed in the array region AR, the stepped region SR and the edge region ER. The plurality of second partitions P2 extend in the Y direction and are formed in the edge region ER. In some embodiments, the X direction is also called the first direction, the Y direction is also called the second direction, and the Z direction is also called the third direction.

請參照圖2B,多個第一分隔牆SLT1彼此分離,且可以排列成多行與多列的陣列,以界定出多個塊元組成的塊元陣列。Referring to FIG. 2B , a plurality of first partition walls SLT1 are separated from each other, and can be arranged in an array of rows and columns to define a block array composed of a plurality of blocks.

請參照圖2B,本發明實施例是在形成分隔結構SLT之前,使閘極堆疊結構GSK下方的導體層103一直維持未圖案化且毯覆式的覆蓋在介電基底50上,可以在形成通道開孔的蝕刻製程中做為放電路徑。因此,本發明實施例之三維記憶體元件無需在閘極堆疊結構GSK下方的內連線結構中額外設置放電電路。Please refer to FIG. 2B . In the embodiment of the present invention, before forming the separation structure SLT, the conductor layer 103 below the gate stack structure GSK is kept unpatterned and blanket-covered on the dielectric substrate 50, which can be used to form channels. The openings are used as discharge paths during the etching process. Therefore, the three-dimensional memory device according to the embodiment of the present invention does not need to additionally provide a discharge circuit in the interconnection structure below the gate stack structure GSK.

圖3A至圖3F示出依據本發明實施例之記憶體元件的製造流程的上視圖。圖4A至圖4F示出依據本發明實施例之記憶體元件的製造流程的剖面圖。3A to 3F show top views of a manufacturing process of a memory device according to an embodiment of the present invention. 4A to 4F show cross-sectional views of the manufacturing process of a memory device according to an embodiment of the present invention.

請參照圖3A與圖4A,提供基底90。基底90包括陣列區AR、階梯區SR以及邊緣區ER。基底90可以包括半導體基底,半導體基底例如是矽基底。基底90上可以包括主動元件(例如PMOS、NMOS、CMOS、JFET、BJT或二極體等元件)或被動元件等構件。於基底90的陣列區AR與階梯區SR上形成內連線結構92。內連線結構92可以包括內層介電層、接觸窗、導線、層間介電層及介層窗等構件。內層介電層與層間介電層的材料例如氧化矽層。接著,在內連線結構92上形成介電層100。介電層100的材料例如氧化矽。在一些實施例中,介電層100又可以稱為介電基底100。Referring to FIG. 3A and FIG. 4A , a substrate 90 is provided. The substrate 90 includes an array region AR, a stepped region SR and an edge region ER. The substrate 90 may include a semiconductor substrate, such as a silicon substrate. The substrate 90 may include components such as active elements (such as PMOS, NMOS, CMOS, JFET, BJT, or diodes) or passive elements. An interconnection structure 92 is formed on the array region AR and the step region SR of the substrate 90 . The interconnect structure 92 may include components such as an interlayer dielectric layer, a contact window, a wire, an interlayer dielectric layer, and a via window. The material of the interlayer dielectric layer and the interlayer dielectric layer is, for example, a silicon oxide layer. Next, a dielectric layer 100 is formed on the interconnect structure 92 . The material of the dielectric layer 100 is silicon oxide, for example. In some embodiments, the dielectric layer 100 may also be referred to as a dielectric substrate 100 .

接著,請繼續參照圖3A與圖4A,於陣列區AR與階梯區SR的介電層100上形成毯覆式的導體層103。導體層103還延伸至邊緣區ER。導體層103例如是接地的P型摻雜的多晶矽層。導體層103又可以稱為虛設閘極,其可以用來關閉漏電路徑。Next, please continue to refer to FIG. 3A and FIG. 4A , a blanket conductive layer 103 is formed on the dielectric layer 100 in the array region AR and the step region SR. The conductor layer 103 also extends to the edge region ER. The conductive layer 103 is, for example, a grounded P-type doped polysilicon layer. The conductive layer 103 can also be called a dummy gate, which can be used to close the leakage path.

請參照圖3B與圖4B,在導體層103上形成堆疊結構SK1。堆疊結構SK1又可稱為絕緣堆疊結構SK1。在本實施例中,堆疊結構SK1由依序交錯堆疊於導體層103上的絕緣層104與中間層106所構成。在其他實施例中,堆疊結構SK1可由依序交錯堆疊於導體層103上的中間層106與絕緣層104所構成。此外,在本實施例中,堆疊結構SK1的最上層為絕緣層104。絕緣層104的材料例如為氧化矽。中間層106的材料例如為氮化矽。中間層106可作為犧牲層,在後續的製程中被局部移除之。在本實施例中,堆疊結構SK1具有5層絕緣層104與4層中間層106,但本發明不限於此。在其他實施例中,可視實際需求來形成更多層的絕緣層104與更多層的中間層106。Referring to FIG. 3B and FIG. 4B , a stack structure SK1 is formed on the conductor layer 103 . The stack structure SK1 can also be called an insulating stack structure SK1. In this embodiment, the stack structure SK1 is composed of insulating layers 104 and intermediate layers 106 stacked on the conductive layer 103 in sequence. In other embodiments, the stack structure SK1 may be formed by the intermediate layer 106 and the insulating layer 104 that are sequentially stacked on the conductive layer 103 . In addition, in this embodiment, the uppermost layer of the stack structure SK1 is the insulating layer 104 . The material of the insulating layer 104 is, for example, silicon oxide. The material of the middle layer 106 is, for example, silicon nitride. The intermediate layer 106 can be used as a sacrificial layer, which is partially removed in subsequent processes. In this embodiment, the stack structure SK1 has 5 layers of insulating layers 104 and 4 layers of intermediate layers 106 , but the invention is not limited thereto. In other embodiments, more insulating layers 104 and more intermediate layers 106 can be formed according to actual needs.

請參照圖3B,將堆疊結構SK1圖案化,以在階梯區SR形成階梯結構SC,並移除邊緣區ER的部分的堆疊結構SK1,以裸露出基底90的表面90s。為簡化起見,圖4B中未示出階梯結構SC。Referring to FIG. 3B , the stacked structure SK1 is patterned to form a stepped structure SC in the stepped region SR, and part of the stacked structure SK1 in the edge region ER is removed to expose the surface 90 s of the substrate 90 . For simplicity, the stair structure SC is not shown in FIG. 4B.

請參照圖3C與圖4C,在基底90上方形成介電層105,以覆蓋階梯結構SC。介電層105的材料例如是氧化矽。介電層105的形成方法例如是形成介電材料層,以填覆蓋階梯結構SC。之後再以例如是化學機械研磨製程進行平坦化製程。Referring to FIG. 3C and FIG. 4C , a dielectric layer 105 is formed on the substrate 90 to cover the stepped structure SC. The material of the dielectric layer 105 is, for example, silicon oxide. The method for forming the dielectric layer 105 is, for example, to form a dielectric material layer to fill the capping step structure SC. Afterwards, a planarization process is performed by, for example, a chemical mechanical polishing process.

之後,在介電層105上形成罩幕層HM1。硬罩幕層HM1例如是含碳層。硬罩幕層HM1覆蓋陣列區AR、階梯區SR與邊緣區ER,且與邊緣區ER的基底90的表面90s以及導體層103的側壁103s電性連接。亦即,導體層103可以經由硬罩幕層HM1與基底90電性連接。Afterwards, a mask layer HM1 is formed on the dielectric layer 105 . The hard mask layer HM1 is, for example, a carbon-containing layer. The hard mask layer HM1 covers the array region AR, the step region SR and the edge region ER, and is electrically connected to the surface 90s of the substrate 90 and the sidewall 103s of the conductor layer 103 in the edge region ER. That is, the conductor layer 103 can be electrically connected to the substrate 90 via the hard mask layer HM1 .

接著,對硬罩幕層HM1進行圖案化(例如微影與蝕刻製程)。接著,再以硬罩幕層HM1為罩幕,進行蝕刻製程,以在堆疊結構SK1中形成多個開孔VC。開孔VC裸露出導體層103。蝕刻製程可以是乾式蝕刻製程、濕式蝕刻製程或其組合。乾式蝕刻製程例如是電漿蝕刻製程。由於導體層103為毯覆地覆蓋在基底90的上方,因此在進行電漿蝕刻製程期間可以此導體層103做為電荷的導通路徑,藉由硬罩幕層HM1將電荷導到基底90。故,可以減小電弧效應,並且可避免基底90上的各個材料層與構件被電漿轟擊而毀損。Then, the hard mask layer HM1 is patterned (such as lithography and etching process). Next, an etching process is performed by using the hard mask layer HM1 as a mask to form a plurality of openings VC in the stack structure SK1 . The opening VC exposes the conductor layer 103 . The etching process can be a dry etching process, a wet etching process or a combination thereof. The dry etching process is, for example, a plasma etching process. Since the conductive layer 103 covers the substrate 90 in a blanket manner, the conductive layer 103 can be used as a conduction path for charges during the plasma etching process, and the charges are guided to the substrate 90 through the hard mask layer HM1. Therefore, the arc effect can be reduced, and various material layers and components on the substrate 90 can be prevented from being damaged by plasma bombardment.

在本實施例中,開孔VC並未延伸穿過導體層103。在本實施例中,以上視角度來看,開孔VC具有圓形的輪廓,但本發明不限於此。在其他實施例中,開孔VC可具有其他形狀的輪廓,例如多邊形(未示出)。In this embodiment, the opening VC does not extend through the conductive layer 103 . In this embodiment, from the above perspective, the opening VC has a circular outline, but the invention is not limited thereto. In other embodiments, the opening VC may have other shaped contours, such as a polygon (not shown).

參照圖3D與圖4D,移除硬罩幕層HM1。在開孔VC中形成電荷儲存結構140的穿隧材料與通道材料。接著,進行回蝕製程,以局部移除通道材料以及穿隧材料,以形成通道柱116與穿隧層114。Referring to FIG. 3D and FIG. 4D , the hard mask layer HM1 is removed. The tunneling material and channel material of the charge storage structure 140 are formed in the opening VC. Next, an etch-back process is performed to locally remove the channel material and the tunneling material to form the channel pillar 116 and the tunneling layer 114 .

穿隧層114與通道柱116可延伸穿過堆疊結構SK1,且未未延伸穿過導體層103,但不限於此。通道柱116的上視圖例如為環形,且在其延伸方向上(例如垂直基底90的表面90s的方向上)可為連續的。也就是說,通道柱116在其延伸方向上為整體的,並未分成多個不相連的部分。在一些實施例中,通道柱116於上視角度來看可具有圓形的輪廓,但本發明不限於此。在其他實施例中,通道柱116以上視角度來看也可具有其他形狀(例如多邊形)的輪廓。The tunneling layer 114 and the channel pillar 116 may extend through the stack structure SK1 and not extend through the conductor layer 103 , but is not limited thereto. The upper view of the channel column 116 is, for example, ring-shaped, and may be continuous in its extending direction (eg, in a direction perpendicular to the surface 90 s of the base 90 ). That is to say, the channel column 116 is integral in its extending direction, and is not divided into a plurality of disconnected parts. In some embodiments, the channel post 116 may have a circular profile when viewed from above, but the invention is not limited thereto. In other embodiments, the channel column 116 may also have other shapes (such as polygonal) contours from the above perspective.

在堆疊結構SK1上以及開孔VC之中填入絕緣填充材料。絕緣填充材料例如是低溫氧化矽。填入開孔VC中的絕緣填充材料形成絕緣填充層124且在絕緣填充層124中央會留下一圓形孔隙。然後,進行非等向性蝕刻製程,以使圓形孔隙擴大而形成孔109。在絕緣填充層124上以及孔109之中形成絕緣材料層。然後,進行非等向性蝕刻製程,移除部分的絕緣材料層,以在孔109之中形成絕緣柱128。絕緣柱128的材料與絕緣填充層124的材料不同。絕緣柱128的材料例如是氮化矽。An insulating filling material is filled on the stack structure SK1 and in the opening VC. The insulating filling material is, for example, low temperature silicon oxide. The insulating filling material filled into the opening VC forms the insulating filling layer 124 and leaves a circular void in the center of the insulating filling layer 124 . Then, an anisotropic etching process is performed to enlarge the circular pores to form holes 109 . A layer of insulating material is formed on the insulating fill layer 124 and in the hole 109 . Then, an anisotropic etching process is performed to remove part of the insulating material layer to form insulating pillars 128 in the holes 109 . The material of the insulating pillar 128 is different from that of the insulating filling layer 124 . The material of the insulating pillar 128 is, for example, silicon nitride.

參照圖3E與圖4E,進行圖案化製程,例如是微影與蝕刻製程,以在絕緣填充層124中形成孔130a與130b。在進行蝕刻的過程中,可以導體層103做為蝕刻停止層。因此,所形成的孔130a與130b從堆疊結構SK1延伸至裸露出導體層103為止。圖案化製程所定義的孔的圖案的輪廓可以與絕緣柱128的輪廓相切。圖案化製程所定義的孔的圖案的輪廓也可超出絕緣柱128的輪廓(未示出)。Referring to FIG. 3E and FIG. 4E , a patterning process, such as lithography and etching process, is performed to form holes 130 a and 130 b in the insulating filling layer 124 . During the etching process, the conductive layer 103 can be used as an etching stop layer. Therefore, the formed holes 130 a and 130 b extend from the stack structure SK1 to the exposed conductor layer 103 . The contour of the hole pattern defined by the patterning process may be tangent to the contour of the insulating pillar 128 . The contour of the pattern of holes defined by the patterning process may also extend beyond the contour of the insulating posts 128 (not shown).

然後,在堆疊結構SK1上形成頂蓋絕緣層115。頂蓋絕緣層115的材料例如是氧化矽層。Then, a cap insulating layer 115 is formed on the stacked structure SK1. The material of the top insulating layer 115 is, for example, a silicon oxide layer.

請參照圖3E與圖4E,之後,進行晶邊工程處理(wafer bevel engineering process),以移除邊緣區ER的部分的頂蓋絕緣層115,使基底90的表面90s 裸露出來。接著,在頂蓋絕緣層115上形成硬罩幕層HM2。硬罩幕層HM2例如是含碳層。硬罩幕層HM2覆蓋陣列區AR、階梯區SR與邊緣區ER的頂蓋絕緣層115,且與邊緣區ER的基底90的表面90s以及導體層103的側壁103s電性連接。Referring to FIG. 3E and FIG. 4E , afterward, a wafer bevel engineering process is performed to remove part of the top insulating layer 115 of the edge region ER, so that the surface 90s of the substrate 90 is exposed. Next, a hard mask layer HM2 is formed on the cap insulating layer 115 . The hard mask layer HM2 is, for example, a carbon-containing layer. The hard mask layer HM2 covers the array region AR, the step region SR and the top insulating layer 115 of the edge region ER, and is electrically connected to the surface 90s of the substrate 90 and the sidewall 103s of the conductor layer 103 in the edge region ER.

對硬罩幕層HM2進行圖案化(例如微影與蝕刻製程),將硬罩幕層HM2圖案化。接著,再以硬罩幕層HM2為罩幕,進行蝕刻製程,將堆疊結構SK1以及導體層103圖案化,以形成分隔溝渠133。在進行蝕刻製程時,可以介電層100或是導體層103做為蝕刻停止層,使得分隔溝渠133裸露出介電層100或是導體層103。蝕刻製程可以是乾式蝕刻製程,例如是電漿蝕刻製程。由於硬罩幕層HM2為含碳層,因此在進行電漿蝕刻期間可以導體層103做為電荷的導通路徑,經由硬罩幕層HM2而將電荷導到基底90,以減小電弧效應,避免基底90上的各個材料層與構件被電漿轟擊而毀損。The hard mask layer HM2 is patterned (such as lithography and etching processes), and the hard mask layer HM2 is patterned. Next, an etching process is performed by using the hard mask layer HM2 as a mask to pattern the stack structure SK1 and the conductor layer 103 to form separation trenches 133 . During the etching process, the dielectric layer 100 or the conductive layer 103 can be used as an etching stop layer, so that the separation trench 133 exposes the dielectric layer 100 or the conductive layer 103 . The etching process may be a dry etching process, such as a plasma etching process. Since the hard mask layer HM2 is a carbon-containing layer, the conductive layer 103 can be used as a conduction path for charges during the plasma etching, and the charges are guided to the substrate 90 through the hard mask layer HM2 to reduce the arc effect and avoid Various material layers and components on the substrate 90 are damaged by the plasma bombardment.

每一分隔溝渠133包括第一分隔溝渠133 1與多個第二分隔溝渠133 2。第一分隔溝渠133 1環繞於多個第二分隔溝渠133 2之外圍,多個第二分隔溝渠133 2在第一分隔溝渠133 1之內。因此,第一分隔溝渠133 1又可以稱為外分隔溝渠,第二分隔溝渠133 2又可以稱為內分隔溝渠。第一分隔溝渠133 1可以是環形分隔溝渠。第一分隔溝渠133 1將堆疊結構SK1以及導體層103圖案化成多個的塊元T(例如T1、T2、T2、T4)。多個第二分隔溝渠133 2將每個塊元T分成多個區塊B(例如B1、B2、B3)。 Each separation trench 133 includes a first separation trench 133 1 and a plurality of second separation trenches 133 2 . The first separation trench 133 1 surrounds the periphery of the plurality of second separation trenches 133 2 , and the plurality of second separation trenches 133 2 are inside the first separation trench 133 1 . Therefore, the first separation trench 133 1 can also be called an outer separation trench, and the second separation trench 133 2 can also be called an inner separation trench. The first separation trench 1331 may be an annular separation trench. The first separation trench 133 1 patterns the stack structure SK1 and the conductor layer 103 into a plurality of blocks T (eg T1 , T2 , T2 , T4 ). The plurality of second separation trenches 133 2 divides each block T into a plurality of blocks B (eg, B1, B2, B3).

請參照圖3F與圖4F,將硬罩幕層HM2移除。之後,對多層中間層106進行取代製程。首先,進行蝕刻製程,例如濕式蝕刻製程,以將部分的多層中間層106移除。由於蝕刻製程所採用的蝕刻液(例如是熱磷酸)注入於分隔溝渠133之中,再將所接觸的部分的多層中間層106移除,以形成多個水平開口134。Referring to FIG. 3F and FIG. 4F , the hard mask layer HM2 is removed. Afterwards, a replacement process is performed on the multi-layer intermediate layer 106 . First, an etching process, such as a wet etching process, is performed to remove part of the multi-layer intermediate layer 106 . The etchant (such as hot phosphoric acid) used in the etching process is injected into the separation trench 133 , and then the contacted part of the multi-layer intermediate layer 106 is removed to form a plurality of horizontal openings 134 .

在多個水平開口134中形成多層電荷儲存層112、多層阻擋層136以及多層閘極層138。電荷儲存層112例如是氮化矽。阻擋層136例如為介電常數大於或等於7的高介電常數的材料,例如氧化鋁(Al 1O 3)、氧化鉿(HfO 2)、氧化鑭(La 2O 5)、過渡金屬氧化物、鑭系元素氧化物或其組合。閘極層138例如是鎢。在一些實施例中,在形成多層閘極層138之前,還形成阻障層137。阻障層137的材料例如為鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)或其組合。 A multilayer charge storage layer 112 , a multilayer barrier layer 136 , and a multilayer gate layer 138 are formed in the plurality of horizontal openings 134 . The charge storage layer 112 is, for example, silicon nitride. The barrier layer 136 is, for example, a material with a high dielectric constant greater than or equal to 7, such as aluminum oxide (Al 1 O 3 ), hafnium oxide (HfO 2 ), lanthanum oxide (La 2 O 5 ), transition metal oxide , lanthanide oxides, or combinations thereof. The gate layer 138 is, for example, tungsten. In some embodiments, before forming the multilayer gate layer 138 , a barrier layer 137 is also formed. The material of the barrier layer 137 is, for example, titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN) or a combination thereof.

電荷儲存層112、阻擋層136、阻障層137以及閘極層138的形成方法例如是在分隔溝渠133與水平開口134之中依序形成儲存材料、阻擋材料、阻障材料以及導體材料,然後,再進行回蝕刻製程,移除多個分隔溝渠133中的儲存材料、阻擋材料、阻障材料以及導體材料,以在多個水平開口134中形成電荷儲存層112、阻擋層136、阻障層137以及閘極層138。穿隧層114、電荷儲存層112、與阻擋層136合稱為電荷儲存結構140。至此,形成閘極堆疊結構GSK。閘極堆疊結構GSK設置於介電基底100上,且包括彼此交互堆疊的多層閘極層138與多層絕緣層104。The formation method of the charge storage layer 112, the barrier layer 136, the barrier layer 137 and the gate layer 138 is, for example, sequentially forming the storage material, the barrier material, the barrier material and the conductor material in the separation trench 133 and the horizontal opening 134, and then , and then perform an etch-back process to remove the storage material, barrier material, barrier material, and conductor material in the plurality of separation trenches 133, so as to form the charge storage layer 112, the barrier layer 136, and the barrier layer in the plurality of horizontal openings 134. 137 and gate layer 138. The tunneling layer 114 , the charge storage layer 112 , and the blocking layer 136 are collectively referred to as the charge storage structure 140 . So far, the gate stack structure GSK is formed. The gate stack structure GSK is disposed on the dielectric substrate 100 and includes multiple gate layers 138 and multiple insulating layers 104 stacked alternately.

請參照圖3F與圖4F,在分隔溝渠133中形成分隔結構SLT。即在分隔溝渠133 1中形成第一分隔牆SLT1,在分隔溝渠133 2中形成第二分隔牆SLT2。第一分隔牆SLT1與第二分隔牆SLT2具有相同的高度。第一分隔牆SLT1與第二分隔牆SLT2高度大於導體層103的高度,且大於閘極堆疊結構GSK的高度。分隔結構SLT可以是單層或是多層,如圖5A至圖5C所示。 Referring to FIG. 3F and FIG. 4F , the separation structure SLT is formed in the separation trench 133 . That is, the first partition wall SLT1 is formed in the partition trench 1331 , and the second partition wall SLT2 is formed in the partition trench 1332 . The first partition wall SLT1 has the same height as the second partition wall SLT2. The height of the first partition wall SLT1 and the second partition wall SLT2 is greater than the height of the conductor layer 103 and greater than the height of the gate stack structure GSK. The separation structure SLT can be single-layer or multi-layer, as shown in FIG. 5A to FIG. 5C .

請參照圖3F、圖4F與圖5A,在一些實施例中,分隔結構SLT的形成方法如下所述。在閘極堆疊結構GSK上以及分隔溝渠133中填入絕緣襯層以及導體材料。絕緣襯層例如氧化矽。導體材料例如是多晶矽。然後經由回蝕刻製程或是平坦化製程移除閘極堆疊結構GSK上以及邊緣區ER上多餘的絕緣襯層材料以及導體材料,以形成襯層142與導體層144。之後,再於基底90上方形成介電材料,之後,可以再進行回蝕刻製程或是平坦化製程以使介電材料平坦化,而形成介電層146。襯層142導體層144以及部分的介電層146形成分隔結構SLT,如圖5A所示。Referring to FIG. 3F , FIG. 4F and FIG. 5A , in some embodiments, the formation method of the separation structure SLT is as follows. An insulating liner and conductor materials are filled on the gate stack structure GSK and in the separation trench 133 . Insulating liner such as silicon oxide. The conductive material is, for example, polysilicon. Then, the excess insulating liner material and conductive material on the gate stack structure GSK and the edge region ER are removed through an etch-back process or a planarization process, so as to form the liner layer 142 and the conductive layer 144 . Afterwards, a dielectric material is formed on the substrate 90 , and then an etch-back process or a planarization process may be performed to planarize the dielectric material to form the dielectric layer 146 . The liner layer 142 , the conductive layer 144 and a part of the dielectric layer 146 form a separation structure SLT, as shown in FIG. 5A .

在一些實施例中,分隔結構SLT也可以是全部被絕緣材料142’填滿,而無任何導體材料,如圖5B所示。在又一些實施例中,分隔結構SLT也可以是襯層142,且襯層142包覆著氣隙(air gap)AG而無任何導體材料,如圖5C所示。In some embodiments, the separation structure SLT may also be completely filled with insulating material 142' without any conductive material, as shown in FIG. 5B . In some other embodiments, the separation structure SLT may also be a liner 142 , and the liner 142 covers an air gap AG without any conductive material, as shown in FIG. 5C .

圖6A至圖6D示出圖3F中各個局部區域99A、99B、99C、99D的立體圖與剖面圖。6A to 6D show perspective views and cross-sectional views of respective partial areas 99A, 99B, 99C, 99D in FIG. 3F.

請參照圖3F與圖6A,在圖3F的99A區中,第一分隔牆SLT1的第一分隔部P1將塊元T1的閘極堆疊結構GSK與位於塊元T1和塊元T2之間的閘極堆疊結構GSK’分隔開。導體層103的邊緣與閘極堆疊結構GSK以及閘極堆疊結構GSK’的邊緣對齊。Please refer to FIG. 3F and FIG. 6A. In the area 99A of FIG. 3F, the first partition P1 of the first partition wall SLT1 connects the gate stack structure GSK of the block T1 to the gate between the block T1 and the block T2. The pole stack structure GSK' is separated. The edges of the conductive layer 103 are aligned with the edges of the gate stack GSK and the gate stack GSK'.

請參照圖6B,在圖3F的99B區中,第一分隔牆SLT1的第一分隔部P1將塊元T3的階梯結構SC與位於塊元T3和塊元T4之間的階梯結構SC’分隔開。導體層103從階梯區SR延伸至邊緣區ER。在階梯區SR的導體層103的第一部分表面103S1被塊元T3的階梯結構SC以及位於塊元T3和塊元T4之間的階梯結構SC’覆蓋,且階梯結構SC與SC’被介電層105覆蓋。在邊緣區ER的導體層103(第二部分)表面103S2被介電層105覆蓋。導體層103的側壁與第一分隔牆SLT1的第一分隔部P1的側壁SW1接觸。Please refer to FIG. 6B, in the area 99B of FIG. 3F, the first partition P1 of the first partition wall SLT1 separates the ladder structure SC of the block T3 from the ladder structure SC' between the block T3 and the block T4 open. The conductive layer 103 extends from the stepped region SR to the edge region ER. The first partial surface 103S1 of the conductor layer 103 in the step region SR is covered by the step structure SC of the block T3 and the step structure SC' between the block T3 and the block T4, and the step structures SC and SC' are covered by a dielectric layer 105 covered. The surface 103S2 of the conductor layer 103 (second portion) in the edge region ER is covered with the dielectric layer 105 . The sidewalls of the conductor layer 103 are in contact with the sidewalls SW1 of the first partition P1 of the first partition wall SLT1 .

請參照圖3F與圖6C,在圖3F的99C區中,第一分隔牆SLT1的第二分隔部P2位於塊元T1的邊緣區ER上。並且,第一分隔牆SLT1的第二分隔部P2的側壁與導體層103的側壁103s以及覆蓋在階梯結構SC以及導體層103上的介電層105的側壁105s接觸。Referring to FIG. 3F and FIG. 6C , in the area 99C of FIG. 3F , the second partition portion P2 of the first partition wall SLT1 is located on the edge region ER of the block T1 . Moreover, the sidewalls of the second partition portion P2 of the first partition wall SLT1 are in contact with the sidewalls 103 s of the conductive layer 103 and the sidewalls 105 s of the dielectric layer 105 covering the stepped structure SC and the conductive layer 103 .

請參照圖3F與圖6D,在圖3F的99D區中,相鄰的塊元T1與T3之間具有兩個第一分隔牆SLT1的第二分隔部P2。兩個第二分隔部P2穿過在邊緣區ER上的介電層105與導體層103。並且,第一分隔牆SLT1的第二分隔部P2的外側壁SW2與導體層103的側壁103s1以及覆蓋在階梯結構SC以及導體層103上的介電層105的側壁105s1接觸。第一分隔牆SLT1的第二分隔部P2的內側壁SW3與導體層103的側壁103s2以及覆蓋在導體層103上方的介電層105的側壁105s2接觸。Referring to FIG. 3F and FIG. 6D , in the area 99D in FIG. 3F , there are two second partitions P2 of the first partition wall SLT1 between adjacent blocks T1 and T3 . The two second partitions P2 pass through the dielectric layer 105 and the conductive layer 103 on the edge region ER. Moreover, the outer sidewall SW2 of the second partition portion P2 of the first partition wall SLT1 is in contact with the sidewall 103s1 of the conductive layer 103 and the sidewall 105s1 of the dielectric layer 105 covering the stepped structure SC and the conductive layer 103 . The inner sidewall SW3 of the second partition portion P2 of the first partition wall SLT1 is in contact with the sidewall 103s2 of the conductor layer 103 and the sidewall 105s2 of the dielectric layer 105 covering the conductor layer 103 .

圖7A示出根據本發明的另一實施例的記憶體元件的多個塊元的上視圖。圖7B示出根據本發明的又一實施例的記憶體元件的多個塊元的上視圖。圖6E與圖6F示出圖7A與圖7B中局部區域99E與99F的立體圖與剖面圖。FIG. 7A shows a top view of multiple blocks of a memory device according to another embodiment of the present invention. FIG. 7B shows a top view of multiple blocks of a memory device according to yet another embodiment of the present invention. 6E and 6F show perspective and cross-sectional views of partial areas 99E and 99F in FIGS. 7A and 7B .

請參照圖7A,在一些實施例中,在相鄰兩個塊元T1與T3之間以及塊元T2與T4之間還可以包括至少一虛設分隔牆DSLT。虛設分隔牆DSLT可以形成在相鄰的兩個第二分隔部P2之間。虛設分隔牆DSLT與第二分隔部P2可以在同時形成。Referring to FIG. 7A , in some embodiments, at least one dummy partition wall DSLT may be further included between two adjacent blocks T1 and T3 and between blocks T2 and T4 . A dummy partition wall DSLT may be formed between adjacent two second partition parts P2. The dummy partition wall DSLT and the second partition part P2 may be formed at the same time.

請參照圖7B,在一些實施例中,第一分隔牆SLT1的第一分隔部P11從陣列區AR延伸至階梯區SR以及邊緣區ER,且穿過閘極堆疊結構GSK、階梯結構SC、介電層105以及導體層103(如圖6E所示)。第一分隔牆SLT1的第一分隔部P12設置在階梯結構SC周邊的邊緣區ER且延伸穿過在邊緣區ER的介電層105與導體層103,如圖6F所示。Please refer to FIG. 7B , in some embodiments, the first partition P11 of the first partition wall SLT1 extends from the array region AR to the step region SR and the edge region ER, and passes through the gate stack structure GSK, the step structure SC, the interposer The electrical layer 105 and the conductor layer 103 (as shown in FIG. 6E ). The first partition portion P12 of the first partition wall SLT1 is disposed in the edge region ER around the stepped structure SC and extends through the dielectric layer 105 and the conductor layer 103 in the edge region ER, as shown in FIG. 6F .

本發明除可以用在3D AND快閃記憶體中,也可以用在3D NOR快閃記憶體以及3D NAND快閃記憶體中。3D NOR快閃記憶體的結構可以如圖2A所示。3D NAND快閃記憶體的晶片MC-2,可以如圖8所示。In addition to being used in 3D AND flash memory, the present invention can also be used in 3D NOR flash memory and 3D NAND flash memory. The structure of the 3D NOR flash memory can be shown in FIG. 2A. The chip MC-2 of the 3D NAND flash memory can be shown in FIG. 8 .

基於上述,本發明實施例中,位於堆疊結構下方的導體層,是在形成分隔溝渠時才被圖案化,因此,在堆疊結構中形成通道開孔的乾蝕刻(例如是電漿蝕刻)期間,此導體層可以做為電荷的導通路徑,以減小電弧效應,避免基底上的各個材料層與構件因為電漿轟擊而毀損,因此,藉由本發明實施例的方法可以提升製程的良率。Based on the above, in the embodiment of the present invention, the conductor layer located under the stack structure is patterned when the separation trench is formed. Therefore, during the dry etching (for example, plasma etching) for forming channel openings in the stack structure, The conductor layer can be used as a conduction path for charges to reduce the arc effect and avoid damage to various material layers and components on the substrate due to plasma bombardment. Therefore, the method of the embodiment of the present invention can improve the yield of the process.

10、A (i)、A (i+1):記憶體陣列 12:電荷儲存層 14、114:穿隧層 15、56、156:分隔層 16、116:通道柱 20:記憶單元 24、124:絕緣填充層 28、128:絕緣柱 32a:源極柱/導體柱 32b:汲極柱/導體柱 36、136:阻擋層 38、138:閘極層/字元線 40、140:電荷儲存結構 50、100:介電基底 52、GSK、GSK’:閘極堆疊結構 54、101、104:絕緣層 60:箭頭 90:基底 90s:表面 92:內連線結構 102:停止層 103:導體層 103S1、103S2:表面 105:介電層 106:中間層 108:開孔 109:孔 110:保護層 112:電荷儲存層 115:頂蓋絕緣層 130a、130b:孔 132a、132b:導體柱 133、133 1、133 2:分隔溝渠 134:水平開口 137:阻障層 142:襯層 142’:絕緣材料 144:導體層 146:介電層 AG:氣隙 B、B1、B2、B3:區塊 BLOCK、BLOCK (i)、BLOCK (i+1):子區塊 BL n、BL n+1:位元線 C1、C2:區 SP ( i ) n、SP (i) n+1、SP ( i+1 ) n、SP (i+1) n+1:源極柱 DP (i) n、DP i) n+1、DP i+1) n、DP (i+1) n+1:源極柱 SK1:堆疊結構 WL (i) m、WL (i) m+1、WL (i+1) m、WL (i+1) m+1:字元線 X、Y、Z:方向 I-I’、II-II’:切線 MC-1、MC-2:晶片 99A、99B、99C、99D、99E、99F:區域 103s1、103s2、105s、105s1、105s2、SW1、SW2、SW3:側壁 SLT:分隔結構 SLT1、SLT2:分隔牆 T、T1、T2、T3、T4:塊元 ER:邊緣區 SR:階梯區 AR:陣列區 P1:第一分隔部 P2:第二分隔部 10. A (i) , A (i+1) : memory array 12: charge storage layer 14, 114: tunneling layer 15, 56, 156: separation layer 16, 116: channel column 20: memory unit 24, 124 : insulating filling layer 28, 128: insulating pillar 32a: source pole/conductor pillar 32b: drain pole/conductor pillar 36, 136: barrier layer 38, 138: gate layer/word line 40, 140: charge storage structure 50, 100: dielectric substrate 52, GSK, GSK': gate stack structure 54, 101, 104: insulating layer 60: arrow 90: substrate 90s: surface 92: interconnection structure 102: stop layer 103: conductor layer 103S1 , 103S2: surface 105: dielectric layer 106: intermediate layer 108: opening 109: hole 110: protective layer 112: charge storage layer 115: top cover insulating layer 130a, 130b: hole 132a, 132b: conductor post 133, 133 1 , 133 2 : separation trench 134: horizontal opening 137: barrier layer 142: lining layer 142': insulating material 144: conductor layer 146: dielectric layer AG: air gap B, B1, B2, B3: block BLOCK, BLOCK (i) , BLOCK (i+1) : sub-block BL n , BL n+1 : bit line C1, C2: area SP ( i ) n , SP (i) n+1 , SP ( i+1 ) n , SP (i+1) n+1 : source column DP (i) n , DP i) n+1 , DP i+1) n , DP (i+1) n+1 : source column SK1: Stacked structure WL (i) m , WL (i) m+1 , WL (i+1) m , WL (i+1) m+1 : word line X, Y, Z: direction I-I', II -II': tangent line MC-1, MC-2: wafer 99A, 99B, 99C, 99D, 99E, 99F: region 103s1, 103s2, 105s, 105s1, 105s2, SW1, SW2, SW3: sidewall SLT: partition structure SLT1, SLT2: partition wall T, T1, T2, T3, T4: block element ER: edge area SR: step area AR: array area P1: first partition P2: second partition

圖1A示出根據本發明的一些實施例的3D AND快閃記憶體陣列的電路圖。 圖1B示出圖1A中部分的記憶陣列的局部三維視圖。 圖1C與圖1D示出圖1B的切線I-I’的剖面圖。 圖1E示出圖1B、圖1C、圖1D的切線II-II’的上視圖。 圖2A示出根據本發明的實施例的記憶體晶片的上視圖。 圖2B示出圖2A的局部區域的上視圖。 圖3A至圖3F示出根據本發明的實施例的記憶體元件的製造流程的上視圖。 圖4A至圖4F示出根據本發明的實施例的記憶體元件的製造流程的剖面圖。 圖5A至圖5C示出根據本發明的實施例的各種分隔結構的剖面示意圖。 圖6A至圖6F示出圖3F以及圖7B中各個局部區域的立體圖與剖面圖。 圖7A示出根據本發明的另一實施例的記憶體元件的多個塊元的上視圖。 圖7B示出根據本發明的又一實施例的記憶體元件的多個塊元的上視圖。 圖8示出根據本發明的另一實施例的記憶體晶片的上視圖。 FIG. 1A shows a circuit diagram of a 3D AND flash memory array according to some embodiments of the present invention. FIG. 1B shows a partial three-dimensional view of part of the memory array in FIG. 1A. FIG. 1C and FIG. 1D show cross-sectional views of the line I-I' in FIG. 1B. Fig. 1E shows a top view of the line II-II' of Fig. 1B, Fig. 1C, Fig. 1D. FIG. 2A shows a top view of a memory die according to an embodiment of the invention. FIG. 2B shows a top view of a partial area of FIG. 2A. 3A to 3F show top views of a manufacturing process of a memory device according to an embodiment of the present invention. 4A to 4F illustrate cross-sectional views of a manufacturing process of a memory device according to an embodiment of the present invention. 5A to 5C illustrate schematic cross-sectional views of various partition structures according to embodiments of the present invention. 6A to 6F show perspective views and cross-sectional views of respective partial areas in FIG. 3F and FIG. 7B . FIG. 7A shows a top view of multiple blocks of a memory device according to another embodiment of the present invention. FIG. 7B shows a top view of multiple blocks of a memory device according to yet another embodiment of the present invention. FIG. 8 shows a top view of a memory chip according to another embodiment of the present invention.

99D:區域 99D: area

103:導體層 103: conductor layer

103s1、103s2、105s1、105s2、SW2、SW3:側壁 103s1, 103s2, 105s1, 105s2, SW2, SW3: side wall

105:介電層 105: Dielectric layer

SLT1:第一分隔牆 SLT1: The first dividing wall

P2:第二分隔部 P2: Second Partition

SR:階梯區 SR: step area

ER:邊緣區 ER: marginal region

T1、T2:塊元 T1, T2: block element

Claims (18)

一種記憶體元件,包括:介電基底;導體層,位於所述介電基底上;閘極堆疊結構,位於第一部分的所述導體層上;介電層,位於所述閘極堆疊結構以及第二部分的所述導體層上;多個環形分隔牆,連續延伸穿過所述介電層、所述閘極堆疊結構與所述導體層,以界定出多個塊元;以及多個內分隔牆,設置在每一所述多個環形分隔牆內,連續延伸穿過所述介電層、所述閘極堆疊結構與所述導體層,其中所述多個內分隔牆將每一塊元界定出多個區塊;其中所述多個內分隔牆與所述多個環形分隔牆的高度相同。 A memory element, comprising: a dielectric substrate; a conductor layer located on the dielectric substrate; a gate stack structure located on the first part of the conductor layer; a dielectric layer located on the gate stack structure and the second On the conductive layer of two parts; a plurality of annular partition walls continuously extending through the dielectric layer, the gate stack structure and the conductive layer to define a plurality of block elements; and a plurality of inner partitions a wall disposed within each of the plurality of annular partition walls, extending continuously through the dielectric layer, the gate stack structure, and the conductor layer, wherein the plurality of inner partition walls define each block A plurality of blocks; wherein the plurality of internal partition walls and the plurality of annular partition walls have the same height. 如請求項1所述的記憶體元件,其中所述多個環形分隔牆排列成陣列。 The memory device according to claim 1, wherein the plurality of annular partition walls are arranged in an array. 如請求項1所述的記憶體元件,更包括:至少一虛設分隔牆,設置在相鄰的兩個環形分隔牆之間。 The memory device according to claim 1 further includes: at least one dummy partition wall disposed between two adjacent annular partition walls. 如請求項1所述的記憶體元件,其中所述內分隔牆與所述多個環形分隔牆的高度大於所述導體層的高度,且大於所述閘極堆疊結構的高度。 The memory device according to claim 1, wherein the height of the inner partition wall and the plurality of annular partition walls is greater than the height of the conductor layer, and greater than the height of the gate stack structure. 一種記憶體元件,包括:基底,包括陣列區、階梯區與邊緣區,其中所述邊緣區環繞 所述階梯區,且所述階梯區環繞所述陣列區;內連線結構,位於所述陣列區與所述階梯區的所述基底之上;導體層,位於所述陣列區、所述階梯區與所述邊緣區的所述內連線結構上;閘極堆疊結構,位於所述陣列區與所述階梯區的所述導體層上,其中在所述階梯區的所述閘極堆疊結構具有階梯結構;介電層,位於所述邊緣區的所述導體層以及階梯區的階梯結構上;以及分隔結構,連續延伸穿過所述陣列區與所述階梯區的所述閘極堆疊結構、所述階梯結構以及所述導體層,以界定出塊元,並在所述塊元中形成多個區塊。 A memory element, comprising: a substrate including an array area, a step area and an edge area, wherein the edge area surrounds The stepped area, and the stepped area surrounds the array area; the interconnection structure is located on the base of the array area and the stepped area; a conductor layer is located in the array area, the stepped area region and the interconnection structure of the edge region; a gate stack structure located on the conductor layer of the array region and the step region, wherein the gate stack structure in the step region having a stepped structure; a dielectric layer located on the conductor layer of the edge region and the stepped structure of the stepped region; and a separation structure continuously extending through the gate stack structure of the array region and the stepped region , the ladder structure and the conductor layer to define a block and form a plurality of blocks in the block. 如請求項5所述的記憶體元件,其中所述分隔結構的側壁與所述導體層的側壁以及所述介電層接觸。 The memory device according to claim 5, wherein the sidewalls of the separation structure are in contact with the sidewalls of the conductive layer and the dielectric layer. 如請求項5所述的記憶體元件,其中所述分隔結構包括:外分隔牆,連續延伸穿過所述陣列區與所述階梯區的所述閘極堆疊結構與所述導體層,以界定出所述塊元;以及多個內分隔牆,設置在所述外分隔牆內,在第一方向延伸且連續穿過所述陣列區的所述閘極堆疊結構與所述導體層,以界定出所述多個區塊。 The memory device according to claim 5, wherein the separation structure includes: an outer separation wall, the gate stack structure and the conductor layer extending continuously through the array region and the step region, to define the block element; and a plurality of inner partition walls, arranged in the outer partition walls, extending in a first direction and continuously passing through the gate stack structure and the conductor layer of the array region, to define out of the multiple blocks. 如請求項5所述的記憶體元件,其中所述外分隔牆包括: 多個第一分隔部,在所述第一方向延伸,其中所述多個第一分隔部的至少其中之一連續穿過在所述陣列區與所述階梯區的所述閘極堆疊結構、所述介電層與所述導體層;以及多個第二分隔部,在第二方向延伸,連續穿過在所述邊緣區的所述介電層與所述導體層。 The memory element as claimed in item 5, wherein the outer partition wall comprises: a plurality of first partitions extending in the first direction, wherein at least one of the plurality of first partitions continuously passes through the gate stack structure in the array region and the stepped region, the dielectric layer and the conductive layer; and a plurality of second partitions extending in a second direction and continuously passing through the dielectric layer and the conductive layer in the edge region. 如請求項8所述的記憶體元件,其中每一所述多個第一分隔部穿過在所述陣列區與所述階梯區的所述閘極堆疊結構、所述介電層與所述導體層。 The memory device according to claim 8, wherein each of the plurality of first partitions passes through the gate stack structure in the array area and the stepped area, the dielectric layer, and the conductor layer. 如請求項8所述的記憶體元件,其中所述多個第一分隔部之另一,設置在所述階梯結構的外圍,連續延伸穿過在所述邊緣區的所述介電層與所述導體層。 The memory device according to claim 8, wherein another one of the plurality of first partitions is disposed on the periphery of the stepped structure, and continuously extends through the dielectric layer and the edge region in the edge region. the conductor layer. 如請求項5所述的記憶體元件,更包括:至少一虛設分隔牆,在所述第二方向延伸,設置所述第二分隔部旁且延伸穿過所述邊緣區的所述介電層與所述導體層。 The memory device according to claim 5, further comprising: at least one dummy partition extending in the second direction, disposed beside the second partition and extending through the dielectric layer of the edge region with the conductor layer. 一種記憶體元件的製造法,包括:提供介電基底;形成毯覆式導體層,以覆蓋於所述介電基底上;形成閘極堆疊結構於所述毯覆式導體層上;形成多個通道開孔在所述閘極堆疊結構中,其中所述通道開孔裸露出所述毯覆式導體層;形成通道柱在每一通道開孔中; 形成電荷儲存結構在所述通道柱與所述閘極堆疊結構的多個閘極導體層之間;形成介電層於所述閘極堆疊結構與所述毯覆式導體層上;以及形成多個分隔結構,連續延伸穿過所述介電層、所述閘極堆疊結構與所述毯覆式導體層,以界定出多個塊元,並將每一塊元界定出多個區塊。 A method for manufacturing a memory element, comprising: providing a dielectric substrate; forming a blanket conductor layer to cover the dielectric substrate; forming a gate stack structure on the blanket conductor layer; forming a plurality of A channel opening is in the gate stack structure, wherein the channel opening exposes the blanket conductor layer; a channel column is formed in each channel opening; forming a charge storage structure between the channel column and a plurality of gate conductor layers of the gate stack structure; forming a dielectric layer on the gate stack structure and the blanket conductor layer; and forming multiple A separation structure continuously extends through the dielectric layer, the gate stack structure and the blanket conductor layer to define a plurality of blocks, and each block defines a plurality of blocks. 如請求項12所述的記憶體元件的製造方法,其中形成所述多個分隔結構包括:形成多個第一分隔牆,延伸穿過所述介電層、所述閘極堆疊結構與所述毯覆式導體層,以界定出所述多個塊元;以及形成多個第二分隔牆,延伸穿過所述介電層、所述閘極堆疊結構與所述毯覆式導體層,以將所述每一塊元界定出所述多個區塊。 The method for manufacturing a memory element according to claim 12, wherein forming the plurality of partition structures includes: forming a plurality of first partition walls extending through the dielectric layer, the gate stack structure and the a blanket conductor layer defining the plurality of blocks; and forming a plurality of second partition walls extending through the dielectric layer, the gate stack structure, and the blanket conductor layer to define the plurality of blocks; Each of the blocks defines the plurality of blocks. 如請求項13所述的記憶體元件的製造方法,其中形成所述多個分隔結構包括:形成多個第一分隔溝渠與多個第二分隔溝渠,延伸穿過所述介電層、所述閘極堆疊結構與所述毯覆式導體層;以及填充絕緣材料於所述多個第一分隔溝渠與所述多個分隔溝渠中。 The method for manufacturing a memory element according to claim 13, wherein forming the plurality of separation structures includes: forming a plurality of first separation trenches and a plurality of second separation trenches, extending through the dielectric layer, the a gate stack structure and the blanket conductor layer; and filling an insulating material in the plurality of first separation trenches and the plurality of separation trenches. 如請求項14所述的記憶體元件的製造方法,其中所述絕緣材料填滿所述多個第一分隔溝渠與所述多個第二分隔溝渠。 The method of manufacturing a memory device as claimed in claim 14, wherein the insulating material fills up the plurality of first separation trenches and the plurality of second separation trenches. 如請求項14所述的記憶體元件的製造方法,其中所述絕緣材料未填滿所述多個第一分隔溝渠與所述多個第二分隔溝渠,且具有氣隙位於所述絕緣材料中。 The method for manufacturing a memory device according to claim 14, wherein the insulating material does not fill the plurality of first separation trenches and the plurality of second separation trenches, and has air gaps located in the insulating material . 如請求項14所述的記憶體元件的製造方法,其中所述絕緣材料包括襯層,覆蓋所述多個環形分隔溝渠與所述內分隔溝渠的側壁,且形成所述多個分隔結構更包括形成導體材料於所述襯層之間的空間隙。 The method for manufacturing a memory device according to claim 14, wherein the insulating material includes a liner covering the sidewalls of the plurality of annular separation trenches and the inner separation trenches, and forming the plurality of separation structures further includes An empty space between the conductive material and the liner is formed. 如請求項12所述的記憶體元件的製造方法,其中形成所述多個通道開孔的方法包括進行電漿蝕刻法,且以所述毯覆式導體層做為放電路徑。 The method for manufacturing a memory device according to claim 12, wherein the method for forming the plurality of channel openings includes performing plasma etching, and using the blanket conductor layer as a discharge path.
TW111105711A 2022-02-17 2022-02-17 3d and flash memory device and method of fabricating the same TWI805228B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111105711A TWI805228B (en) 2022-02-17 2022-02-17 3d and flash memory device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111105711A TWI805228B (en) 2022-02-17 2022-02-17 3d and flash memory device and method of fabricating the same

Publications (2)

Publication Number Publication Date
TWI805228B true TWI805228B (en) 2023-06-11
TW202335262A TW202335262A (en) 2023-09-01

Family

ID=87802919

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111105711A TWI805228B (en) 2022-02-17 2022-02-17 3d and flash memory device and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI805228B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109887919A (en) * 2019-02-28 2019-06-14 长江存储科技有限责任公司 A kind of semiconductor structure and preparation method thereof
US20200235113A1 (en) * 2019-01-23 2020-07-23 SK Hynix Inc. Non-volatile memory device and method for fabricating the same
TW202143453A (en) * 2020-05-05 2021-11-16 旺宏電子股份有限公司 Semiconductor memory structure and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200235113A1 (en) * 2019-01-23 2020-07-23 SK Hynix Inc. Non-volatile memory device and method for fabricating the same
CN109887919A (en) * 2019-02-28 2019-06-14 长江存储科技有限责任公司 A kind of semiconductor structure and preparation method thereof
TW202143453A (en) * 2020-05-05 2021-11-16 旺宏電子股份有限公司 Semiconductor memory structure and manufacturing method thereof

Also Published As

Publication number Publication date
TW202335262A (en) 2023-09-01

Similar Documents

Publication Publication Date Title
TWI778334B (en) Three-dimensional memory device and forming method thereof
TWI635598B (en) Semiconductor device and its manufacturing method
TW202143455A (en) Three dimensional nand memory device and fabrication method thereof
TWI750678B (en) Semiconductor memory structure and manufacturing method thereof
TWI785764B (en) 3d and flash memory device and method of fabricating the same
US12094814B2 (en) Memory device and flash memory device with improved support for staircase regions
TWI805228B (en) 3d and flash memory device and method of fabricating the same
TWI768969B (en) Memory device
TW202345359A (en) Circuit structure, semiconductor device and method of fabricating the same
US20230262979A1 (en) 3d and flash memory device and method of fabricating the same
TW202315086A (en) 3d and flash memory device and method of fabricating the same
US20240298442A1 (en) Memory device and method of fabricating the same
TWI840172B (en) Memory device and method of fabricating the same
TWI822311B (en) Memory device and method of fabricating the same
TWI794974B (en) 3d and flash memory device and method of fabricating the same
TWI817369B (en) 3d and flash memory device and method of fabricating the same
TWI809855B (en) Memory device, semiconductor device, and method of fabricating the same
TW202437877A (en) Memory device and method of fabricating the same
EP4460163A1 (en) Semiconductor device and method of fabricating the same
TWI837642B (en) Memory device and method of fabricating the same
TWI830427B (en) Memory device and method of fabricating the same
TWI817405B (en) Memory device
US20240081058A1 (en) Memory device and method of fabricating the same
TWI849885B (en) Semiconductor device and method of fabricating the same
TWI832643B (en) Memory device and method for manufacturing the same