Nothing Special   »   [go: up one dir, main page]

TWI857796B - System for monitoring ionization rate of cleaning etching gas and method of using the system - Google Patents

System for monitoring ionization rate of cleaning etching gas and method of using the system Download PDF

Info

Publication number
TWI857796B
TWI857796B TW112137184A TW112137184A TWI857796B TW I857796 B TWI857796 B TW I857796B TW 112137184 A TW112137184 A TW 112137184A TW 112137184 A TW112137184 A TW 112137184A TW I857796 B TWI857796 B TW I857796B
Authority
TW
Taiwan
Prior art keywords
pressure
cleaning
value
flow rate
chamber
Prior art date
Application number
TW112137184A
Other languages
Chinese (zh)
Inventor
陳世育
江雨龍
黃品霖
Original Assignee
友達光電股份有限公司
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to CN202410255431.6A priority Critical patent/CN118127486A/en
Application granted granted Critical
Publication of TWI857796B publication Critical patent/TWI857796B/en

Links

Images

Abstract

The present disclosure provides a system including a chamber, a pressure module, a flow module, and an analysis module. The chamber is used for entering a cleaning etching gas to etch a semiconductor film. The pressure module is used for measuring a pressure change curve of pressure changing with time in the chamber. The flow module is used for measuring a flow rate of the cleaning etching gas entering the chamber. The analysis module is used for calculating an ionization rate of the cleaning etching gas based on the pressure change curve, the flow rate, a system calibration value, a reference flow rate of the cleaning etching gas, and a reference pressure of the cleaning etching gas, in which the reference pressure is the pressure of the cleaning etching gas with the reference flow rate when the cleaning etching gas is not ionized.

Description

監測清理蝕刻氣體解離率的系統及其使用方法System for monitoring the dissociation rate of cleaning etching gas and method of using the same

本揭示內容是關於一種監測清理蝕刻氣體解離率的系統及其使用方法。The present disclosure relates to a system for monitoring the dissociation rate of a cleaning etch gas and a method of using the same.

沉積製程可能伴隨清理製程以除去腔體內的沉積殘留物等。然而,隨著與製程相關的工具的老化等因素,清理製程可能無法有效地實施,並使得過多沉積殘留物殘留於腔體內而影響沉積製程的良率。當清理製程的效率降低時,為確保沉積殘留物得以移除,往往增加清理製程的時間而造成製程浪費。而且,為了確認沉積殘留物是否移除也可能需要停止機台的運作,因此造成製程效率降低。因此,需要一種新的系統及使用系統的方法,以有效地監測清理製程的實施效率。The deposition process may be accompanied by a cleaning process to remove deposition residues in the chamber. However, due to factors such as the aging of process-related tools, the cleaning process may not be effectively implemented, and too much deposition residues may remain in the chamber, affecting the yield of the deposition process. When the efficiency of the cleaning process decreases, in order to ensure that the deposition residues are removed, the time of the cleaning process is often increased, resulting in process waste. Moreover, in order to confirm whether the deposition residues are removed, the operation of the machine may need to be stopped, thereby reducing the process efficiency. Therefore, a new system and a method of using the system are needed to effectively monitor the efficiency of the implementation of the cleaning process.

本揭示內容提供一種監測清理蝕刻氣體解離率的系統。系統包括腔體、壓力模組、流量模組以及分析模組。腔體用以通入清理蝕刻氣體以蝕刻半導體膜。壓力模組用以測量腔體內的壓力隨時間變化的壓力變化曲線。流量模組用以測量通入腔體的清理蝕刻氣體的清理蝕刻氣體流量。分析模組用以根據壓力變化曲線、清理蝕刻氣體流量、系統校正值、清理蝕刻氣體流量基準值及清理蝕刻氣體壓力基準值計算清理蝕刻氣體的解離率,其中清理蝕刻氣體壓力基準值為具有清理蝕刻氣體流量基準值的清理蝕刻氣體在未解離時的壓力值。The present disclosure provides a system for monitoring the dissociation rate of a cleaning etching gas. The system includes a chamber, a pressure module, a flow module, and an analysis module. The chamber is used to introduce a cleaning etching gas to etch a semiconductor film. The pressure module is used to measure a pressure change curve of the pressure in the chamber changing with time. The flow module is used to measure the cleaning etching gas flow rate of the cleaning etching gas introduced into the chamber. The analysis module is used to calculate the dissociation rate of the cleaning etching gas according to the pressure variation curve, the cleaning etching gas flow rate, the system calibration value, the cleaning etching gas flow rate reference value and the cleaning etching gas pressure reference value, wherein the cleaning etching gas pressure reference value is the pressure value of the cleaning etching gas having the cleaning etching gas flow rate reference value when it is not dissociated.

在一些實施方式中,分析模組用以根據壓力變化曲線中在第一時間的第一壓力、清理蝕刻氣體流量、系統校正值、清理蝕刻氣體流量基準值及清理蝕刻氣體壓力基準值計算解離率,以及第一時間係在壓力變化曲線從第一平台上升至第二平台的上升區段中的最高點處的時間。In some embodiments, the analysis module is used to calculate the dissociation rate based on a first pressure at a first time in the pressure variation curve, a cleaning etching gas flow rate, a system calibration value, a cleaning etching gas flow rate baseline value, and a cleaning etching gas pressure baseline value, and the first time is the time at the highest point in the rising section of the pressure variation curve from the first platform to the second platform.

在一些實施方式中,腔體更用以通入惰性氣體;流量模組更用以測量通入腔體的惰性氣體的惰性氣體流量;分析模組更用以根據壓力變化曲線、惰性氣體流量、惰性氣體流量基準值及惰性氣體壓力基準值計算系統校正值;以及惰性氣體壓力基準值為具有惰性氣體流量基準值的惰性氣體的壓力值。In some embodiments, the cavity is further used to pass an inert gas; the flow module is further used to measure the inert gas flow of the inert gas passed into the cavity; the analysis module is further used to calculate the system correction value according to the pressure variation curve, the inert gas flow, the inert gas flow reference value and the inert gas pressure reference value; and the inert gas pressure reference value is the pressure value of the inert gas having the inert gas flow reference value.

在一些實施方式中,分析模組用以根據壓力變化曲線中在第二時間的第二壓力、惰性氣體流量、惰性氣體流量基準值及惰性氣體壓力基準值計算系統校正值,以及第二時間係在腔體通入惰性氣體之後及大約在腔體通入清理蝕刻氣體時。In some embodiments, the analysis module is used to calculate the system correction value according to the second pressure, the inert gas flow rate, the inert gas flow rate baseline value and the inert gas pressure baseline value at the second time in the pressure variation curve, and the second time is after the inert gas is introduced into the chamber and approximately when the cleaning etching gas is introduced into the chamber.

在一些實施方式中,系統更包括紀錄模組以及顯示模組。紀錄模組用以紀錄重複使用分析模組而得到的多個解離率,並將這些解離率依據對應的多個重複次數記錄成解離率變化曲線。顯示模組用以顯示解離率變化曲線及顯示當解離率變化曲線包括低於一數值的解離率時的一通知。In some embodiments, the system further includes a recording module and a display module. The recording module is used to record a plurality of dissociation rates obtained by repeatedly using the analysis module, and record these dissociation rates into a dissociation rate variation curve according to the corresponding plurality of repetition times. The display module is used to display the dissociation rate variation curve and display a notification when the dissociation rate variation curve includes a dissociation rate lower than a value.

本揭示內容也提供一種使用監測清理蝕刻氣體解離率的系統的方法。方法包括以下操作。通入清理蝕刻氣體至腔體中,以蝕刻腔體中的第一半導體膜。使用壓力模組測量腔體內的壓力隨時間變化的第一壓力變化曲線。使用流量模組測量通入腔體的清理蝕刻氣體的第一清理蝕刻氣體流量。使用分析模組,以根據第一壓力變化曲線、第一清理蝕刻氣體流量、系統校正值、清理蝕刻氣體流量基準值及清理蝕刻氣體壓力基準值計算清理蝕刻氣體的第一解離率,其中清理蝕刻氣體壓力基準值為具有清理蝕刻氣體流量基準值的清理蝕刻氣體在未解離時的壓力值。The present disclosure also provides a method for using a system for monitoring the dissociation rate of a cleaning etch gas. The method includes the following operations. A cleaning etch gas is introduced into a chamber to etch a first semiconductor film in the chamber. A pressure module is used to measure a first pressure change curve of the pressure in the chamber changing with time. A flow module is used to measure a first cleaning etch gas flow rate of the cleaning etch gas introduced into the chamber. An analysis module is used to calculate a first dissociation rate of the cleaning etch gas according to a first pressure variation curve, a first cleaning etch gas flow rate, a system calibration value, a cleaning etch gas flow rate reference value, and a cleaning etch gas pressure reference value, wherein the cleaning etch gas pressure reference value is a pressure value of the cleaning etch gas having the cleaning etch gas flow rate reference value when not dissociated.

在一些實施方式中,清理蝕刻氣體包括含氟氣體。In some embodiments, the clean etch gas includes a fluorine-containing gas.

在一些實施方式中,蝕刻第一半導體膜包括蝕刻過程及過蝕刻過程;第一壓力變化曲線具有從對應蝕刻過程的第一平台上升至對應過蝕刻過程的第二平台的一上升區段;以及使用分析模組包括根據上升區段的最高點處的壓力、第一清理蝕刻氣體流量、系統校正值、清理蝕刻氣體流量基準值及清理蝕刻氣體壓力基準值計算第一解離率。In some embodiments, etching the first semiconductor film includes an etching process and an over-etching process; the first pressure variation curve has a rising section from a first platform corresponding to the etching process to a second platform corresponding to the over-etching process; and using an analysis module includes calculating a first dissociation rate based on the pressure at the highest point of the rising section, a first cleaning etching gas flow rate, a system calibration value, a cleaning etching gas flow rate baseline value, and a cleaning etching gas pressure baseline value.

在一些實施方式中,方法更包括:通入惰性氣體至腔體中;使用流量模組測量通入腔體的惰性氣體的惰性氣體流量;以及使用分析模組以根據第一壓力變化曲線、惰性氣體流量、惰性氣體流量基準值及惰性氣體壓力基準值計算系統校正值,其中惰性氣體壓力基準值為具有惰性氣體流量基準值的惰性氣體的壓力值。In some embodiments, the method further includes: introducing an inert gas into the cavity; using a flow module to measure the inert gas flow rate of the inert gas introduced into the cavity; and using an analysis module to calculate a system correction value based on a first pressure variation curve, an inert gas flow rate, an inert gas flow rate benchmark value, and an inert gas pressure benchmark value, wherein the inert gas pressure benchmark value is a pressure value of an inert gas having an inert gas flow rate benchmark value.

在一些實施方式中,通入惰性氣體在通入清理蝕刻氣體之前執行;以及使用分析模組包括根據第一壓力變化曲線中對應通入清理蝕刻氣體時的一壓力、惰性氣體流量、惰性氣體流量基準值及惰性氣體壓力基準值計算系統校正值。In some embodiments, the inert gas is introduced before the cleaning etching gas is introduced; and the analysis module is used to calculate the system correction value according to a pressure corresponding to the introduction of the cleaning etching gas in the first pressure variation curve, the inert gas flow rate, the inert gas flow rate baseline value and the inert gas pressure baseline value.

在一些實施方式中,方法更包括以下操作。從腔體中移除清理蝕刻氣體。通入清理蝕刻氣體至腔體中,以蝕刻腔體中的第二半導體膜。使用壓力模組測量腔體中的壓力隨時間變化的第二壓力變化曲線。使用流量模組測量通入腔體的清理蝕刻氣體的第二清理蝕刻氣體流量。使用分析模組,以根據第二壓力變化曲線、第二清理蝕刻氣體流量、系統校正值、清理蝕刻氣體流量基準值及清理蝕刻氣體壓力基準值計算清理蝕刻氣體的第二解離率。使用紀錄模組紀錄對應第一監測時間的第一解離率及對應第二監測時間的第二解離率,以及第二監測時間在第一監測時間之後。In some embodiments, the method further includes the following operations. Removing the cleaning etch gas from the chamber. Introducing the cleaning etch gas into the chamber to etch a second semiconductor film in the chamber. Using a pressure module to measure a second pressure variation curve in which the pressure in the chamber varies with time. Using a flow module to measure a second cleaning etch gas flow of the cleaning etch gas introduced into the chamber. Using an analysis module to calculate a second dissociation rate of the cleaning etch gas based on the second pressure variation curve, the second cleaning etch gas flow, the system calibration value, the cleaning etch gas flow reference value, and the cleaning etch gas pressure reference value. A recording module is used to record a first dissociation rate corresponding to a first monitoring time and a second dissociation rate corresponding to a second monitoring time, and the second monitoring time is after the first monitoring time.

為了使本揭示內容的說明更加詳細及完整,下文對實施方式的態樣及具體實施方式做出說明性的描述。這並非限制本揭示內容的實施方式為唯一形式。本揭示內容的實施方式在有益的情形下可相互結合和/或取代,且可在未進一步說明的情況下附加其他實施方式。In order to make the description of the present disclosure more detailed and complete, the following is an illustrative description of the implementation mode and specific implementation mode. This does not limit the implementation mode of the present disclosure to a single form. The implementation modes of the present disclosure can be combined and/or replaced with each other in beneficial situations, and other implementation modes can be added without further description.

本揭示內容的「約」、「近似」、「接近」、「基本上」或「實質上」等用語包括所述數值及特徵和所屬技術領域中通常知識者可理解的數值及特徵的偏差範圍。例如,考慮到數值及特徵的誤差等,這些用語可表示所述數值的一個或多個標準偏差內的值(例如,±30%、±20%、±15%、±10%或±5%內的值),或是表示所述特徵在實務操作上涵蓋的偏差(例如,「實質上平行」的敘述可表示實務上接近平行而非理想上完美的平行)。此外,可依照測量性質或其它性質等來選擇可接受的偏差範圍,而不以一種偏差範圍適用所有數值及特徵。The terms "about", "approximately", "close to", "substantially" or "substantially" in the present disclosure include the numerical values and features and the deviation ranges of the numerical values and features that can be understood by those of ordinary skill in the art. For example, taking into account the errors of the numerical values and features, these terms may represent values within one or more standard deviations of the numerical values (e.g., values within ±30%, ±20%, ±15%, ±10% or ±5%), or represent the deviations covered by the features in practical operations (e.g., the statement "substantially parallel" may mean close to parallel in practice rather than perfect parallel in ideal). In addition, the acceptable deviation range may be selected according to the measured properties or other properties, rather than applying one deviation range to all numerical values and features.

本揭示內容提供一種監測清理蝕刻氣體解離率的系統。系統包括腔體、壓力模組、流量模組以及分析模組。腔體用以通入清理蝕刻氣體以蝕刻半導體膜。壓力模組用以測量腔體內的壓力隨時間變化的壓力變化曲線。流量模組用以測量通入腔體的清理蝕刻氣體的清理蝕刻氣體流量。分析模組用以根據壓力變化曲線、清理蝕刻氣體流量、系統校正值、清理蝕刻氣體流量基準值及清理蝕刻氣體壓力基準值計算清理蝕刻氣體的解離率,其中清理蝕刻氣體壓力基準值為具有清理蝕刻氣體流量基準值的清理蝕刻氣體在未解離(或實質上電中性)時的壓力值。本揭示內容的系統可有效地藉由監測清理蝕刻氣體的解離率來監測清理製程的實施效率,並因此得以實時地調整清理製程的實施時間,以有效地避免藉由停止機台運作來檢測清理製程的實施效率。也就是說,本揭示內容的系統有效地避免製程浪費、增加製程良率及效率,以及顯著地降低製程成本。接下來根據一些實施方式詳細地說明本揭示內容的系統。The present disclosure provides a system for monitoring the dissociation rate of a cleaning etching gas. The system includes a chamber, a pressure module, a flow module, and an analysis module. The chamber is used to introduce a cleaning etching gas to etch a semiconductor film. The pressure module is used to measure a pressure change curve of the pressure in the chamber changing with time. The flow module is used to measure the cleaning etching gas flow rate of the cleaning etching gas introduced into the chamber. The analysis module is used to calculate the dissociation rate of the cleaning etch gas according to the pressure variation curve, the cleaning etch gas flow rate, the system calibration value, the cleaning etch gas flow rate baseline value and the cleaning etch gas pressure baseline value, wherein the cleaning etch gas pressure baseline value is the pressure value of the cleaning etch gas with the cleaning etch gas flow rate baseline value when it is not dissociated (or substantially electrically neutral). The system disclosed in the present invention can effectively monitor the implementation efficiency of the cleaning process by monitoring the dissociation rate of the cleaning etch gas, and thus adjust the implementation time of the cleaning process in real time to effectively avoid stopping the machine operation to detect the implementation efficiency of the cleaning process. In other words, the system disclosed in the present invention effectively avoids process waste, increases process yield and efficiency, and significantly reduces process costs. Next, the system of the present disclosure is described in detail according to some implementation methods.

參照第1圖的示意圖。本揭示內容的系統10包括腔體100、壓力模組200、流量模組300及分析模組400。腔體100直接與壓力模組200及流量模組300連接,以分別藉由壓力模組200及流量模組300來測量腔體100內的壓力及通入腔體100的氣體(例如下文描述的清理蝕刻氣體CEG和/或惰性氣體IG)的流量。由壓力模組200及流量模組300取得的壓力(和/或壓力隨時間變化的壓力變化曲線)及流量再藉由分析模組400得到清理蝕刻氣體CEG在腔體100內執行清理製程時的解離率。接下來詳細介紹各個元件。Refer to the schematic diagram of FIG. 1. The system 10 of the present disclosure includes a chamber 100, a pressure module 200, a flow module 300, and an analysis module 400. The chamber 100 is directly connected to the pressure module 200 and the flow module 300 to measure the pressure in the chamber 100 and the flow rate of the gas (e.g., the cleaning etching gas CEG and/or the inert gas IG described below) introduced into the chamber 100 through the pressure module 200 and the flow module 300, respectively. The pressure (and/or the pressure change curve of the pressure change with time) and the flow rate obtained by the pressure module 200 and the flow module 300 are then used by the analysis module 400 to obtain the dissociation rate of the cleaning etching gas CEG when performing the cleaning process in the chamber 100. Next, each component is introduced in detail.

首先說明腔體100,並參照第2圖。腔體100可用以執行任何可行的沉積製程,例如化學氣相沉積、物理氣相沉積等,並在完成沉積製程之後可能使腔體100內具有沉積殘留物(即,本揭示內容如第2圖所示的半導體膜101,但未限制半導體膜101在腔體100內的實際位置、大小、形狀等)。沉積製程的沉積前驅物(未圖示)可藉由腔體100的入口102進入腔體100中。腔體100也用以將清理蝕刻氣體CEG藉由腔體100的入口102通入(圖中以指向腔體的箭頭示意通入)腔體100中,以對經沉積製程形成的半導體膜101進行與蝕刻相關的清理製程來移除沉積殘留物。在一些實施方式中,清理蝕刻氣體CEG包括離子態的清理蝕刻氣體CEG。在一些實施方式中,腔體100為真空腔體,且腔體100內具有小於大氣壓力的壓力。First, the chamber 100 is described with reference to FIG. 2 . The chamber 100 can be used to perform any feasible deposition process, such as chemical vapor deposition, physical vapor deposition, etc., and after the deposition process is completed, there may be deposition residues in the chamber 100 (i.e., the semiconductor film 101 shown in FIG. 2 in the present disclosure, but the actual position, size, shape, etc. of the semiconductor film 101 in the chamber 100 is not limited). The deposition precursor (not shown) of the deposition process can enter the chamber 100 through the inlet 102 of the chamber 100 . The chamber 100 is also used to introduce a cleaning etching gas CEG into the chamber 100 through an inlet 102 of the chamber 100 (in the figure, the introduction is indicated by an arrow pointing to the chamber) to perform an etching-related cleaning process on the semiconductor film 101 formed by the deposition process to remove the deposited residues. In some embodiments, the cleaning etching gas CEG includes an ionized cleaning etching gas CEG. In some embodiments, the chamber 100 is a vacuum chamber, and the pressure in the chamber 100 is less than the atmospheric pressure.

繼續參照第2圖。在一些實施方式中,系統10更包括可直接和/或間接連接腔體100的射頻訊號產生器RF,以使得射頻訊號產生器RF藉由提供射頻而將清理蝕刻氣體CEG離子化成包括離子態的清理蝕刻氣體CEG。在一些實施方式中,射頻訊號產生器RF包括第一射頻訊號產生器RF1及第二射頻訊號產生器RF2,以有效地增加離子態的清理蝕刻氣體CEG的數量,其中第一射頻訊號產生器RF1可在腔體100外先對清理蝕刻氣體CEG進行一次離子化的過程,然後經第一射頻訊號產生器RF1離子化的清理蝕刻氣體CEG可在通入腔體100之後又藉由第二射頻訊號產生器RF2提供的射頻進行另一次的離子化的過程。在一些實施方式中,系統10更包括介於第一射頻訊號產生器RF1與腔體100之間並與第一射頻訊號產生器RF1及腔體100連接的遠端腔體RC,以使得清理蝕刻氣體CEG可在遠端腔體RC先由第一射頻訊號產生器RF1提供的射頻進行離子化之後再通入腔體100。在一些實施方式中,第二射頻訊號產生器RF2也可用於與電漿相關的沉積製程(例如電漿增強化學氣相沉積等)。在一些實施方式中,第一射頻訊號產生器RF1及第二射頻訊號產生器RF2的射頻頻率各自獨立為10 MHz至15 MHz,例如13.56 MHz等。Continue to refer to Fig. 2. In some embodiments, the system 10 further includes a radio frequency signal generator RF that can be directly and/or indirectly connected to the chamber 100, so that the radio frequency signal generator RF ionizes the cleaning etching gas CEG into the cleaning etching gas CEG including ions by providing radio frequency. In some embodiments, the radio frequency signal generator RF includes a first radio frequency signal generator RF1 and a second radio frequency signal generator RF2 to effectively increase the amount of ionized cleaning etching gas CEG, wherein the first radio frequency signal generator RF1 can first perform an ionization process on the cleaning etching gas CEG outside the chamber 100, and then the cleaning etching gas CEG ionized by the first radio frequency signal generator RF1 can be introduced into the chamber 100 and then subjected to another ionization process by the radio frequency provided by the second radio frequency signal generator RF2. In some embodiments, the system 10 further includes a remote chamber RC between the first RF signal generator RF1 and the chamber 100 and connected to the first RF signal generator RF1 and the chamber 100, so that the cleaning etching gas CEG can be ionized by the RF provided by the first RF signal generator RF1 in the remote chamber RC before entering the chamber 100. In some embodiments, the second RF signal generator RF2 can also be used for plasma-related deposition processes (such as plasma enhanced chemical vapor deposition, etc.). In some embodiments, the RF frequencies of the first RF signal generator RF1 and the second RF signal generator RF2 are independently 10 MHz to 15 MHz, such as 13.56 MHz, etc.

繼續說明腔體100,並參照第2圖。在一些實施方式中,腔體100內包括電極103,以有助於進行清理蝕刻氣體CEG(和/或執行沉積製程時的沉積前驅物)的離子化的過程。在一些實施方式中,電極103包括第一電極104及在第一電極104下方的第二電極105,以及沉積製程形成的沉積薄膜可位在第二電極105上並位於第一電極104及第二電極105之間。在一些實施方式中,第一電極104包括朝向第二電極105且彼此相鄰排列的多個氣體通道104A,以有助於從入口102進入的清理蝕刻氣體CEG和/或執行沉積製程時的沉積前驅物在流經氣體通道104A時受到氣體通道104A的分佈影響而平均分散在腔體100中,因此有助於提升沉積製程的沉積均勻度及清理製程中的蝕刻均勻度。也就是說,第一電極104也可稱為擴散板。在一些實施方式中,第二電極105也可被加熱而稱為加熱板,以有助於沉積製程的實施。The chamber 100 is described below with reference to FIG. 2. In some embodiments, the chamber 100 includes an electrode 103 to facilitate the ionization of the cleaning etching gas CEG (and/or the deposition precursor when performing the deposition process). In some embodiments, the electrode 103 includes a first electrode 104 and a second electrode 105 below the first electrode 104, and the deposition film formed by the deposition process can be located on the second electrode 105 and between the first electrode 104 and the second electrode 105. In some embodiments, the first electrode 104 includes a plurality of gas channels 104A arranged adjacent to each other and facing the second electrode 105, so as to facilitate the cleaning etching gas CEG entering from the inlet 102 and/or the deposition precursor during the deposition process to be evenly dispersed in the chamber 100 under the influence of the distribution of the gas channels 104A when flowing through the gas channels 104A, thereby facilitating the improvement of the deposition uniformity of the deposition process and the etching uniformity in the cleaning process. In other words, the first electrode 104 can also be referred to as a diffusion plate. In some embodiments, the second electrode 105 can also be heated and referred to as a heating plate to facilitate the implementation of the deposition process.

繼續說明腔體100,並參照第2圖。在一些實施方式中,腔體100內更包括在第一電極104上方的背板106。背板106可固定第一電極104,且背板106與第一電極104之間具有空間106A而有助於從入口102進入的清理蝕刻氣體CEG(和/或執行沉積製程時的沉積前驅物)在空間106A中擴散至第一電極104。在一些實施方式中,腔體100更包括出口107,以連接腔體100外的抽氣幫浦(未圖示)。在一些實施方式中,腔體100內更包括固定件108,以固定任何可行的基板(未圖示,例如玻璃基板、半導體機板等)於第二電極105上,並使得沉積製程中形成的沉積薄膜可沉積在基板上。在一些實施方式中,腔體100內更包括支撐柱110,以支撐第二電極105,並可藉由升降支撐柱110帶動第二電極105及其上的基板等而有助於執行沉積製程。The chamber 100 is described below with reference to FIG. 2 . In some embodiments, the chamber 100 further includes a back plate 106 above the first electrode 104. The back plate 106 can fix the first electrode 104, and a space 106A is provided between the back plate 106 and the first electrode 104 to facilitate the cleaning etching gas CEG (and/or deposition precursor when performing a deposition process) entering from the inlet 102 to diffuse in the space 106A to the first electrode 104. In some embodiments, the chamber 100 further includes an outlet 107 to connect to an exhaust pump (not shown) outside the chamber 100. In some embodiments, the chamber 100 further includes a fixing member 108 to fix any feasible substrate (not shown, such as a glass substrate, a semiconductor board, etc.) on the second electrode 105, so that the deposition film formed in the deposition process can be deposited on the substrate. In some embodiments, the chamber 100 further includes a supporting column 110 to support the second electrode 105, and the second electrode 105 and the substrate thereon can be moved by lifting the supporting column 110 to facilitate the deposition process.

接著說明第1圖的壓力模組200。壓力模組200包括任何可行且直接連接腔體100的壓力計(未圖示),以測量執行清理製程時腔體100內的壓力變化。在一些實施方式中,壓力計包括電容式真空計、壓力感測器、派藍尼真空計、巴登管壓力錶、熱絲極離子真空計、U型壓力計、其類似物或其組合等。在一些實施方式中,壓力模組200更包括任何可行的壓力計控制器(未圖示),以讀取、顯示、校正及傳輸經壓力計測得的壓力值等。在一些實施方式中,壓力模組200更包括任何可行的具處理器、記憶體等的計算機裝置(未圖示,例如電腦等),以根據壓力計測量時間將壓力值轉化為壓力隨時間變化的壓力變化曲線(例如參照第4圖的壓力變化曲線PC),且可存取壓力變化曲線等。在一些實施方式中,壓力計、壓力計控制器和/或計算機裝置之間的連接可包括任何可行的有線和/或無線連接,例如基於通用介面匯流排、通用序列匯流排、推薦標準-232、視訊圖形陣列、乙太網路、區域網路、其類似物或其組合等的連接。在一些實施方式中,壓力模組200更包括任何可行的壓力閥(未圖示),例如節流閥、隔離閥、閘閥、流量控制閥、其類似物或其組合等,以根據需求在元件的連接處提供壓力調節。Next, the pressure module 200 of FIG. 1 is described. The pressure module 200 includes any feasible pressure gauge (not shown) directly connected to the chamber 100 to measure the pressure change in the chamber 100 when the cleaning process is performed. In some embodiments, the pressure gauge includes a capacitive vacuum gauge, a pressure sensor, a Pyranny vacuum gauge, a Baden tube pressure gauge, a hot filament electrode ion vacuum gauge, a U-type pressure gauge, the like, or a combination thereof. In some embodiments, the pressure module 200 further includes any feasible pressure gauge controller (not shown) to read, display, calibrate, and transmit the pressure value measured by the pressure gauge. In some embodiments, the pressure module 200 further includes any feasible computer device (not shown, such as a computer, etc.) with a processor, a memory, etc., to convert the pressure value into a pressure variation curve of pressure variation with time (such as referring to the pressure variation curve PC in FIG. 4 ) according to the pressure gauge measurement time, and can access the pressure variation curve, etc. In some embodiments, the connection between the pressure gauge, the pressure gauge controller and/or the computer device may include any feasible wired and/or wireless connection, such as a connection based on a universal interface bus, a universal serial bus, a recommended standard-232, a video graphics array, an Ethernet, a local area network, the like, or a combination thereof. In some embodiments, the pressure module 200 further includes any feasible pressure valve (not shown), such as a throttling valve, an isolation valve, a gate valve, a flow control valve, the like, or a combination thereof, to provide pressure regulation at the connection of the components as required.

接著說明第1圖的流量模組300。流量模組300包括任何可行且直接連接腔體100的流量計(未圖示),以測量執行清理製程時通入腔體100的清理蝕刻氣體CEG(和/或下文描述的惰性氣體IG)的流量。在一些實施方式中,流量計包括基於熱感應、壓力感應或其組合的流量計等。在一些實施方式中,流量模組300更包括任何可行的流量計控制器(未圖示),以讀取、顯示、校正及傳輸經流量計測得的流量值等。在一些實施方式中,流量模組300更包括任何可行的具處理器、記憶體等的計算機裝置(未圖示,例如電腦等),且可與壓力模組200共用相同的計算機裝置,以可存取流量值等。在一些實施方式中,流量計、流量計控制器和/或計算機裝置之間的連接可包括任何可行的有線和/或無線連接,例如基於通用介面匯流排、通用序列匯流排、推薦標準-232、視訊圖形陣列、乙太網路、區域網路、其類似物或其組合等的連接。在一些實施方式中,流量模組300更包括任何可行的流量閥(未圖示),例如節流閥、流量控制閥、其類似物或其組合等,以根據需求在元件的連接處提供流量調節。Next, the flow module 300 of FIG. 1 is described. The flow module 300 includes any feasible flow meter (not shown) directly connected to the chamber 100 to measure the flow rate of the cleaning etching gas CEG (and/or the inert gas IG described below) introduced into the chamber 100 when performing the cleaning process. In some embodiments, the flow meter includes a flow meter based on thermal sensing, pressure sensing, or a combination thereof. In some embodiments, the flow module 300 further includes any feasible flow meter controller (not shown) to read, display, calibrate, and transmit the flow value measured by the flow meter. In some embodiments, the flow module 300 further includes any feasible computer device (not shown, such as a computer, etc.) with a processor, memory, etc., and can share the same computer device with the pressure module 200 to access the flow value, etc. In some embodiments, the connection between the flow meter, the flow meter controller and/or the computer device may include any feasible wired and/or wireless connection, such as a connection based on a universal interface bus, a universal serial bus, a recommended standard-232, a video graphics array, an Ethernet, a local area network, the like, or a combination thereof. In some embodiments, the flow module 300 further includes any feasible flow valve (not shown), such as a throttling valve, a flow control valve, the like, or a combination thereof, to provide flow regulation at the connection of the components as required.

接著說明第1圖的分析模組400。分析模組400用以根據由壓力模組200取得的壓力變化曲線、由流量模組300取得的清理蝕刻氣體流量、系統校正值 、清理蝕刻氣體流量基準值及清理蝕刻氣體壓力基準值計算清理蝕刻氣體CEG在執行清理製程時的解離率。在一些實施方式中,分析模組400包括任何可行的具處理器、記憶體等的計算機裝置(未圖示,例如電腦等),且可與壓力模組200和/或流量模組300共用相同的計算機裝置,以進行前述計算而得到解離率,並可存取解離率等。系統校正值為執行清理製程時的系統因應各種系統和/或人為誤差而需調整分析模組400計算的解離率的一校正值,且可根據任何可行的方法取得系統校正值,其中本揭示內容提供的一種較佳的系統校正值詳述於後。清理蝕刻氣體壓力基準值為當清理蝕刻氣體CEG以一清理蝕刻氣體流量基準值通入腔體100,且此清理蝕刻氣體CEG還不解離(例如至少95%以上、至少99%以上或甚至100%的數量的清理蝕刻氣體CEG不解離,以及例如藉由不啟動射頻訊號產生器RF來避免離子化清理蝕刻氣體CEG)時,清理蝕刻氣體CEG在腔體100內的一壓力值。因此,測量所得的壓力變化曲線及清理蝕刻氣體流量,藉由分析模組400與未解離的清理蝕刻氣體壓力基準值及清理蝕刻氣體流量基準值互相比較,再輔以系統校正值的校正,得到本揭示內容精準的解離率。作為基準的清理蝕刻氣體流量基準值及其對應的清理蝕刻氣體壓力基準值可根據需求選擇。在一些實施方式中,較佳的清理蝕刻氣體流量基準值為8000 sccm至14000 sccm,例如8000 sccm、9000 sccm、10000 sccm、11000 sccm、12000 sccm、13000 sccm或14000 sccm等;較佳的清理蝕刻氣體壓力基準值為280 mtorr至340 mtorr,例如280 mtorr、290 mtorr、300 mtorr、310 mtorr、320 mtorr、330 mtorr或340 mtorr等;其中例如當通入腔體100的清理蝕刻氣體CEG的流量為11000 sccm時,其對應的清理蝕刻氣體CEG的壓力為310 mtorr。在一些實施方式中,清理蝕刻氣體流量可與清理蝕刻氣體流量基準值相同或不同。在一些實施方式中,分析模組400更包括任何可行的資料儲存裝置(未圖示,例如隨身硬碟、雲端資料庫等),以存取系統校正值 、清理蝕刻氣體流量基準值、清理蝕刻氣體壓力基準值、壓力變化曲線、清理蝕刻氣體流量、解離率(和/或下文描述的惰性氣體流量、惰性氣體流量基準值及惰性氣體壓力基準值)等。在一些實施方式中,計算機裝置和資料儲存裝置之間的連接可包括任何可行的有線和/或無線連接,例如基於通用序列匯流排、藍牙、乙太網路、區域網路、廣域網路、其類似物或其組合等的連接。Next, the analysis module 400 of FIG. 1 is described. The analysis module 400 is used to calculate the dissociation rate of the cleaning etch gas CEG when performing the cleaning process according to the pressure variation curve obtained by the pressure module 200, the cleaning etch gas flow obtained by the flow module 300, the system calibration value, the cleaning etch gas flow reference value, and the cleaning etch gas pressure reference value. In some embodiments, the analysis module 400 includes any feasible computer device with a processor, memory, etc. (not shown, such as a computer, etc.), and can share the same computer device with the pressure module 200 and/or the flow module 300 to perform the above-mentioned calculation to obtain the dissociation rate, and can access the dissociation rate, etc. The system calibration value is a calibration value for adjusting the dissociation rate calculated by the analysis module 400 in response to various system and/or human errors when the system performs the cleaning process, and the system calibration value can be obtained according to any feasible method, wherein a preferred system calibration value provided by the present disclosure is described in detail below. The cleaning etching gas pressure baseline value is a pressure value of the cleaning etching gas CEG in the chamber 100 when the cleaning etching gas CEG is introduced into the chamber 100 at a cleaning etching gas flow baseline value and the cleaning etching gas CEG is not dissociated (for example, at least 95%, at least 99% or even 100% of the cleaning etching gas CEG is not dissociated, and for example, the ionization of the cleaning etching gas CEG is avoided by not starting the radio frequency signal generator RF). Therefore, the measured pressure variation curve and cleaning etching gas flow rate are compared with the undissociated cleaning etching gas pressure reference value and cleaning etching gas flow reference value by the analysis module 400, and then calibrated with the system calibration value to obtain the accurate dissociation rate of the present disclosure. The cleaning etching gas flow reference value and its corresponding cleaning etching gas pressure reference value can be selected according to the needs. In some embodiments, a preferred cleaning etch gas flow rate reference value is 8000 sccm to 14000 sccm, such as 8000 sccm, 9000 sccm, 10000 sccm, 11000 sccm, 12000 sccm, 13000 sccm or 14000 sccm, etc.; a preferred cleaning etch gas pressure reference value is 280 mtorr to 340 mtorr, such as 280 mtorr, 290 mtorr, 300 mtorr, 310 mtorr, 320 mtorr, 330 mtorr or 340 mtorr, etc.; for example, when the flow rate of the cleaning etch gas CEG introduced into the chamber 100 is 11000 sccm, the corresponding cleaning etch gas CEG pressure is 310 mtorr. mtorr. In some embodiments, the cleaning etch gas flow rate may be the same as or different from the cleaning etch gas flow rate benchmark value. In some embodiments, the analysis module 400 further includes any feasible data storage device (not shown, such as a portable hard drive, a cloud database, etc.) to access the system calibration value, the cleaning etch gas flow rate benchmark value, the cleaning etch gas pressure benchmark value, the pressure variation curve, the cleaning etch gas flow rate, the dissociation rate (and/or the inert gas flow rate, the inert gas flow rate benchmark value and the inert gas pressure benchmark value described below), etc. In some embodiments, the connection between the computer device and the data storage device may include any feasible wired and/or wireless connection, such as a connection based on USB, Bluetooth, Ethernet, local area network, wide area network, the like, or a combination thereof.

詳細說明第1圖的分析模組400。在一些實施方式中,分析模組400用以將壓力變化曲線中在第一時間的第一壓力P1、清理蝕刻氣體流量F CEG、系統校正值C、清理蝕刻氣體流量基準值F CEG,S及清理蝕刻氣體壓力基準值P CEG,S轉化為解離率IR,如以下式(1)及式(2)所示: 式(1), 式(2), 其中P0為經系統校正值C校正和經與已知清理蝕刻氣體流量基準值F CEG,S及其對應的清理蝕刻氣體壓力基準值P CEG,S比較後的具有清理蝕刻氣體流量F CEG的清理蝕刻氣體CEG在未解離時應具有的壓力值,因此將此壓力值P0再與測量所得的第一壓力P1比較可得到精準的清理蝕刻氣體CEG的解離率IR。第一壓力P1取自壓力變化曲線中的第一時間(例如參照第4圖的第一時間T1),而第一時間係壓力變化曲線從第一平台上升至第二平台的上升區段中的最高點處的時間(例如參照第4圖的第一平台PF1、第二平台PF2、上升區段IS及最高點處HP)。由於清理製程的進行係基於清理蝕刻氣體CEG蝕刻半導體膜101來移除沉積殘留物,使得清理製程可包括過蝕刻半導體膜101之前的蝕刻過程及蝕刻過程之後的過蝕刻過程,即第一平台及第二平台分別對應蝕刻過程及過蝕刻過程,而第一壓力精準地反映影響解離率的系統狀態。在一些實施方式中,第一平台及第二平台係發生在清理蝕刻氣體CEG已通入腔體100之後。在一些實施方式中,第一平台及第二平台係發生在射頻訊號產生器RF已啟動以離子化清理蝕刻氣體CEG之後。在一些實施方式中,第一壓力P1為壓力變化曲線中具最大值的壓力值(未另外圖示)。 The analysis module 400 of FIG. 1 is described in detail. In some embodiments, the analysis module 400 is used to convert the first pressure P1 at the first time, the cleaning etching gas flow rate F CEG , the system correction value C, the cleaning etching gas flow rate reference value F CEG,S and the cleaning etching gas pressure reference value P CEG,S in the pressure variation curve into the dissociation rate IR, as shown in the following formula (1) and formula (2): Formula (1), Formula (2), wherein P0 is the pressure value that the cleaning etch gas CEG with the cleaning etch gas flow rate F CEG should have when not dissociated after being corrected by the system correction value C and compared with the known cleaning etch gas flow rate reference value F CEG ,S and its corresponding cleaning etch gas pressure reference value P CEG,S . Therefore, by comparing this pressure value P0 with the measured first pressure P1, an accurate dissociation rate IR of the cleaning etch gas CEG can be obtained. The first pressure P1 is taken from the first time in the pressure variation curve (for example, refer to the first time T1 in Figure 4), and the first time is the time at the highest point in the rising section of the pressure variation curve from the first platform to the second platform (for example, refer to the first platform PF1, the second platform PF2, the rising section IS and the highest point HP in Figure 4). Since the cleaning process is performed based on the cleaning etching gas CEG etching the semiconductor film 101 to remove the deposited residues, the cleaning process may include an etching process before etching the semiconductor film 101 and an over-etching process after the etching process, that is, the first platform and the second platform correspond to the etching process and the over-etching process respectively, and the first pressure accurately reflects the system state that affects the dissociation rate. In some embodiments, the first platform and the second platform occur after the cleaning etching gas CEG has been introduced into the chamber 100. In some embodiments, the first platform and the second platform occur after the radio frequency signal generator RF has been activated to ionize the cleaning etching gas CEG. In some embodiments, the first pressure P1 is a pressure value having a maximum value in the pressure variation curve (not shown in the figure).

詳細說明系統校正值,並參照第1圖至第2圖。在一些實施方式中,可藉由通入惰性氣體IG至腔體100來得到較精準的系統校正值。詳細地說,腔體100更包括用以在通入清理蝕刻氣體CEG之前通入惰性氣體IG,其中惰性氣體IG可藉由入口102進入腔體100;一旦腔體100通入惰性氣體IG,上述壓力模組200即可用來測量腔體100內的壓力變化,並因此得到壓力變化曲線;流量模組300也可更包括用以測量通入腔體100的惰性氣體IG的惰性氣體流量;以及分析模組400也可更包括用以根據壓力變化曲線、惰性氣體流量、惰性氣體流量基準值及惰性氣體壓力基準值計算系統校正值。惰性氣體壓力基準值為當惰性氣體IG以一惰性氣體流量基準值通入腔體100,且腔體100內實質上未包括清理蝕刻氣體CEG(例如在大約通入清理蝕刻氣體CEG之前或之時)時,惰性氣體IG在腔體100內的一壓力值。因此,測量所得的壓力變化曲線及惰性氣體流量,藉由分析模組400與惰性氣體壓力基準值及惰性氣體流量基準值互相比較,可得到本揭示內容精準的系統校正值,以精準地校正例如基於抽氣幫浦、壓力閥、流量閥、人為操作等的誤差。作為基準的惰性氣體流量基準值及其對應的惰性氣體壓力基準值可根據需求選擇。在一些實施方式中,較佳的惰性氣體流量基準值為2000 sccm至8000 sccm,例如2000 sccm、3000 sccm、4000 sccm、5000 sccm、6000 sccm、7000 sccm或8000 sccm等;較佳的惰性氣體壓力基準值為131 mtorr至191 mtorr,例如131 mtorr、141 mtorr、151 mtorr、161 mtorr、171 mtorr、181 mtorr或191 mtorr等;其中例如當通入腔體100的惰性氣體IG的流量為5000 sccm時,其對應的惰性氣體IG的壓力為161 mtorr。在一些實施方式中,惰性氣體流量可與惰性氣體流量基準值相同或不同。在一些實施方式中,腔體100除了更包括用以通入惰性氣體IG以得到精準的系統校正值之外,通入惰性氣體IG還有助於使之後通入的清理蝕刻氣體CEG更容易進行離子化的過程,以提升解離率。舉例來說,惰性氣體IG也可同清理蝕刻氣體CEG流經遠端腔體RC,並在遠端腔體RC中協助清理蝕刻氣體CEG的離子化的過程。The system calibration value is described in detail with reference to FIG. 1 and FIG. 2. In some embodiments, a more accurate system calibration value can be obtained by introducing an inert gas IG into the chamber 100. In detail, the chamber 100 further includes a module for introducing an inert gas IG before introducing the cleaning etching gas CEG, wherein the inert gas IG can enter the chamber 100 through the inlet 102; once the inert gas IG is introduced into the chamber 100, the pressure module 200 can be used to measure the pressure change in the chamber 100, and thus obtain a pressure change curve; the flow module 300 can also further include a module for measuring the inert gas flow rate of the inert gas IG introduced into the chamber 100; and the analysis module 400 can also further include a module for calculating a system calibration value based on the pressure change curve, the inert gas flow rate, the inert gas flow rate reference value and the inert gas pressure reference value. The inert gas pressure reference value is a pressure value of the inert gas IG in the chamber 100 when the inert gas IG is introduced into the chamber 100 at an inert gas flow reference value and the chamber 100 substantially does not include the cleaning etching gas CEG (for example, before or when the cleaning etching gas CEG is introduced). Therefore, the measured pressure variation curve and the inert gas flow rate are compared with the inert gas pressure reference value and the inert gas flow reference value by the analysis module 400 to obtain the accurate system correction value of the present disclosure, so as to accurately correct errors such as those based on the exhaust pump, pressure valve, flow valve, human operation, etc. The inert gas flow reference value as a reference and its corresponding inert gas pressure reference value can be selected according to the needs. In some embodiments, a preferred inert gas flow rate reference value is 2000 sccm to 8000 sccm, such as 2000 sccm, 3000 sccm, 4000 sccm, 5000 sccm, 6000 sccm, 7000 sccm or 8000 sccm, etc.; a preferred inert gas pressure reference value is 131 mtorr to 191 mtorr, such as 131 mtorr, 141 mtorr, 151 mtorr, 161 mtorr, 171 mtorr, 181 mtorr or 191 mtorr, etc.; for example, when the flow rate of the inert gas IG introduced into the chamber 100 is 5000 sccm, the corresponding inert gas IG pressure is 161 mtorr. In some embodiments, the inert gas flow rate may be the same as or different from the inert gas flow rate reference value. In some embodiments, in addition to the chamber 100 further including a passage for the inert gas IG to obtain an accurate system calibration value, the passage of the inert gas IG also helps to make the cleaning etching gas CEG introduced later to be ionized more easily to improve the dissociation rate. For example, the inert gas IG may also flow through the remote chamber RC together with the cleaning etching gas CEG and assist the ionization process of the cleaning etching gas CEG in the remote chamber RC.

繼續說明系統校正值,並參照第1圖至第2圖。在一些實施方式中,分析模組400用以將壓力變化曲線中在第二時間的第二壓力P2、惰性氣體流量F IG、惰性氣體流量基準值F IG,S及惰性氣體壓力基準值P IG,S轉化為適用於上文式(1)及式(2)中的系統校正值C,如以下式(3)所示: 式(3)。 式(3)將測量所得的第二壓力P2及惰性氣體流量F IG與已知惰性氣體流量基準值F IG,S及其對應的惰性氣體壓力基準值P IG,S比較,以得到精準的系統校正值C。第二壓力P2取自壓力變化曲線中的第二時間(例如參照第4圖的第二時間T2),而第二時間係在腔體100通入惰性氣體IG之後及在大約腔體100通入清理蝕刻氣體CEG之時,例如實質上等於清理蝕刻氣體CEG通入腔體100之時,或例如在清理蝕刻氣體CEG通入腔體100前1秒內等,以確保在腔體100尚未包含清理蝕刻氣體CEG時得到精準的系統校正值C。在一些實施方式中,第二時間係發生在上文所述的第一時間之前。 The system correction value is further described with reference to FIG. 1 and FIG. 2. In some embodiments, the analysis module 400 is used to convert the second pressure P2 at the second time in the pressure variation curve, the inert gas flow rate F IG , the inert gas flow rate reference value F IG,S and the inert gas pressure reference value P IG,S into a system correction value C applicable to the above formula (1) and formula (2), as shown in the following formula (3): Formula (3). Formula (3) compares the measured second pressure P2 and the inert gas flow rate F IG with the known inert gas flow rate reference value F IG,S and its corresponding inert gas pressure reference value P IG,S to obtain an accurate system calibration value C. The second pressure P2 is taken from the second time in the pressure variation curve (for example, refer to the second time T2 in FIG. 4), and the second time is after the inert gas IG is introduced into the chamber 100 and at about the time when the cleaning etching gas CEG is introduced into the chamber 100, for example, substantially equal to the time when the cleaning etching gas CEG is introduced into the chamber 100, or for example, within 1 second before the cleaning etching gas CEG is introduced into the chamber 100, etc., to ensure that the accurate system calibration value C is obtained when the chamber 100 does not yet contain the cleaning etching gas CEG. In some implementations, the second time occurs before the first time described above.

在一些實施方式中,系統10更包括紀錄模組(未圖示),用以重複紀錄使用分析模組400而得到的多個解離率,並將這些解離率依據對應的多個重複次數(或時間)記錄成解離率變化曲線(例如參照第5圖的解離率變化曲線IRC)。也就是說,每次執行清理製程移除沉積殘留物時,不僅可藉由本揭示內容的系統10監測該次的解離率,還可藉由紀錄模組得到解離率變化,以使操作人員針對清理製程的實施效率做出適當的應對。在一些實施方式中,紀錄模組包括任何可行的具處理器、記憶體等的計算機裝置(未圖示,例如電腦等),且可與壓力模組200、流量模組300和/或分析模組400共用相同的計算機裝置。在一些實施方式中,紀錄模組可與分析模組400的資料儲存裝置連接,以存取每次執行清理製程所得的解離率,並進一步得到解離率變化曲線,而紀錄模組和分析模組400的資料儲存裝置之間的連接可包括任何可行的有線和/或無線連接,例如基於通用序列匯流排、藍牙、乙太網路、區域網路、廣域網路、其類似物或其組合等的連接。In some embodiments, the system 10 further includes a recording module (not shown) for repeatedly recording a plurality of dissociation rates obtained by using the analysis module 400, and recording these dissociation rates as dissociation rate variation curves (e.g., refer to the dissociation rate variation curve IRC in FIG. 5 ) according to the corresponding plurality of repetition times (or time). In other words, each time a cleaning process is performed to remove deposited residues, not only the dissociation rate of that time can be monitored by the system 10 of the present disclosure, but also the variation of the dissociation rate can be obtained by the recording module, so that the operator can make appropriate responses to the efficiency of the implementation of the cleaning process. In some embodiments, the recording module includes any feasible computer device (not shown, such as a computer, etc.) with a processor, memory, etc., and can share the same computer device with the pressure module 200, the flow module 300, and/or the analysis module 400. In some embodiments, the recording module can be connected to the data storage device of the analysis module 400 to access the dissociation rate obtained by each execution of the cleaning process, and further obtain the dissociation rate change curve, and the connection between the recording module and the data storage device of the analysis module 400 can include any feasible wired and/or wireless connection, such as a connection based on a universal serial bus, Bluetooth, Ethernet, local area network, wide area network, the like, or a combination thereof.

在一些實施方式中,系統10更包括預測模組(未圖示),用以將解離率變化曲線轉化成一解離率預測曲線(例如參照第5圖的解離率預測曲線IRPC)。預測模組可根據任何可行的曲線擬合方法執行上述轉化,例如基於指數、高斯、多項式、其類似物或其組合等的曲線擬合方法。也就是說,每次執行清理製程之前即可根據前些清理製程所得的解離率變化曲線預測該次清理製程的解離率,使得操作人員可更加即時地針對清理製程的實施效率做出適當的應對。在一些實施方式中,預測模組預測解離率的準確率達90%以上。在一些實施方式中,預測模組包括任何可行的具處理器、記憶體等的計算機裝置(未圖示,例如電腦等),且可與壓力模組200、流量模組300、分析模組400和/或記錄模組共用相同的計算機裝置。在一些實施方式中,預測模組可與紀錄模組連接,以將解離率變化曲線轉化成解離率預測曲線,而預測模組和紀錄模組之間的連接可包括任何可行的有線和/或無線連接,例如基於通用序列匯流排、藍牙、乙太網路、區域網路、廣域網路、其類似物或其組合等的連接。In some embodiments, the system 10 further includes a prediction module (not shown) for converting the dissociation rate variation curve into a dissociation rate prediction curve (e.g., refer to the dissociation rate prediction curve IRPC in FIG. 5 ). The prediction module can perform the above conversion according to any feasible curve fitting method, such as a curve fitting method based on exponential, Gaussian, polynomial, the like, or a combination thereof. In other words, before each cleaning process is executed, the dissociation rate of the cleaning process can be predicted based on the dissociation rate variation curve obtained from the previous cleaning processes, so that the operator can make appropriate responses to the implementation efficiency of the cleaning process more immediately. In some embodiments, the accuracy of the prediction module in predicting the dissociation rate is more than 90%. In some embodiments, the prediction module includes any feasible computer device (not shown, such as a computer, etc.) with a processor, memory, etc., and can share the same computer device with the pressure module 200, the flow module 300, the analysis module 400, and/or the recording module. In some embodiments, the prediction module can be connected to the recording module to convert the dissociation rate variation curve into a dissociation rate prediction curve, and the connection between the prediction module and the recording module can include any feasible wired and/or wireless connection, such as a connection based on a universal serial bus, Bluetooth, Ethernet, local area network, wide area network, the like, or a combination thereof.

在一些實施方式中,系統10更包括顯示模組(未圖示),用以顯示由壓力模組200得到的執行該次清理製程的壓力變化曲線、由流量模組300得到的執行該次清理製程的清理蝕刻氣體流量(和/或惰性氣體流量)、由分析模組400得到的執行該次清理製程的解離率、由記錄模組得到的包含執行先前清理製程的解離率的解離率變化曲線和/或由預測模組得到的解離率預測曲線等,以使操作人員可即時地針對清理製程的實施效率做出適當的應對。在一些實施方式中,顯示模組更包括用以顯示當解離率和/或解離率變化曲線包括低於一警戒數值的解離率時的一通知,使得操作人員可更加即時地針對清理製程的實施效率做出適當的應對。在一些實施方式中,警戒數值包括第一警戒數值及第二警戒數值(例如參照第5圖的第一警戒數值WP1及第二警戒數值WP2)。在一些實施方式中,第一警戒數值為解離率為65%至75%時,例如70%,以及第二警戒數值為解離率為60%至70%時,例如65%。因此,當解離率低於第一警戒數值時,顯示模組可提醒操作人員因清理製程的實施效率不足而需增加清理製程的實施時間,而當解離率低於第二警戒數值時,顯示模組可提醒操作人員因清理製程的實施效率嚴重不足,而需停止基台運作等。在一些實施方式中,顯示模組包括任何可行的顯示螢幕。在一些實施方式中,顯示模組包括任何可行的具處理器、記憶體等的計算機裝置(未圖示,例如電腦等),且可與壓力模組200、流量模組300、分析模組400、記錄模組和/或預測模組共用相同的計算機裝置。在一些實施方式中,顯示模組可與壓力模組200、流量模組300、分析模組400、紀錄模組和/或預測模組連接,且此連接包括任何可行的有線和/或無線連接,例如基於通用序列匯流排、藍牙、乙太網路、區域網路、廣域網路、其類似物或其組合等的連接。In some embodiments, the system 10 further includes a display module (not shown) for displaying a pressure variation curve obtained by the pressure module 200 for executing the cleaning process, a cleaning etching gas flow rate (and/or an inert gas flow rate) obtained by the flow module 300 for executing the cleaning process, a dissociation rate obtained by the analysis module 400 for executing the cleaning process, a dissociation rate variation curve including a dissociation rate for executing a previous cleaning process obtained by the recording module, and/or a dissociation rate prediction curve obtained by the prediction module, etc., so that the operator can make appropriate responses to the implementation efficiency of the cleaning process in real time. In some embodiments, the display module further includes a notification for displaying when the dissociation rate and/or the dissociation rate variation curve includes a dissociation rate lower than a warning value, so that the operator can make appropriate responses to the implementation efficiency of the cleaning process more immediately. In some embodiments, the warning value includes a first warning value and a second warning value (for example, refer to the first warning value WP1 and the second warning value WP2 of FIG. 5). In some embodiments, the first warning value is when the dissociation rate is 65% to 75%, for example, 70%, and the second warning value is when the dissociation rate is 60% to 70%, for example, 65%. Therefore, when the dissociation rate is lower than the first warning value, the display module can remind the operator that the cleaning process needs to be implemented for a longer time because the efficiency of the cleaning process is insufficient, and when the dissociation rate is lower than the second warning value, the display module can remind the operator that the base station operation needs to be stopped because the efficiency of the cleaning process is seriously insufficient. In some embodiments, the display module includes any feasible display screen. In some embodiments, the display module includes any feasible computer device with a processor, memory, etc. (not shown, such as a computer, etc.), and can share the same computer device with the pressure module 200, the flow module 300, the analysis module 400, the recording module and/or the prediction module. In some embodiments, the display module may be connected to the pressure module 200, the flow module 300, the analysis module 400, the recording module and/or the prediction module, and this connection includes any feasible wired and/or wireless connection, such as a connection based on a universal serial bus, Bluetooth, Ethernet, a local area network, a wide area network, the like, or a combination thereof.

本揭示內容也提供一種使用上述監測清理蝕刻氣體解離率的系統10的方法20。方法20包括以下操作21至操作24,並參照第3圖的方法流程圖。操作21包括通入清理蝕刻氣體CEG至腔體100中,以蝕刻腔體100中的第一半導體膜。操作22包括使用壓力模組200測量腔體100內的壓力隨時間變化的第一壓力變化曲線。操作23包括使用流量模組300測量通入腔體100的清理蝕刻氣體CEG的第一清理蝕刻氣體流量。操作24包括使用分析模組400,以根據第一壓力變化曲線、第一清理蝕刻氣體流量、系統校正值、清理蝕刻氣體流量基準值及清理蝕刻氣體壓力基準值計算清理蝕刻氣體的第一解離率,其中清理蝕刻氣體壓力基準值為具有清理蝕刻氣體流量基準值的清理蝕刻氣體在未解離時的壓力值。第一半導體膜、第一壓力變化曲線、第一清理蝕刻氣體流量及第一解離率分別相當於上文描述的半導體膜、壓力變化曲線、清理蝕刻氣體流量及解離率,因此詳細可參照上文。接下來根據一些實施方式並參照第1圖至第2圖詳細說明本揭示內容的方法20。The present disclosure also provides a method 20 for using the system 10 for monitoring the dissociation rate of a cleaning etch gas. The method 20 includes the following operations 21 to 24, and refers to the method flow chart of FIG. 3. Operation 21 includes introducing a cleaning etch gas CEG into a chamber 100 to etch a first semiconductor film in the chamber 100. Operation 22 includes using a pressure module 200 to measure a first pressure change curve of the pressure in the chamber 100 changing with time. Operation 23 includes using a flow module 300 to measure a first cleaning etch gas flow rate of the cleaning etch gas CEG introduced into the chamber 100. Operation 24 includes using the analysis module 400 to calculate a first dissociation rate of the cleaning etch gas according to the first pressure variation curve, the first cleaning etch gas flow rate, the system calibration value, the cleaning etch gas flow rate reference value, and the cleaning etch gas pressure reference value, wherein the cleaning etch gas pressure reference value is the pressure value of the cleaning etch gas having the cleaning etch gas flow rate reference value when not dissociated. The first semiconductor film, the first pressure variation curve, the first cleaning etch gas flow rate, and the first dissociation rate are respectively equivalent to the semiconductor film, the pressure variation curve, the cleaning etch gas flow rate, and the dissociation rate described above, and therefore, the details can be referred to above. Next, method 20 of the present disclosure is described in detail according to some implementation modes and with reference to FIGS. 1 to 2 .

在方法20的操作21中,通入清理蝕刻氣體CEG至腔體100中,以可藉由清理製程蝕刻腔體100中的第一半導體膜(或半導體膜101)來移除沉積殘留物。通入腔體100的清理蝕刻氣體CEG的流量可根據需求調整,並在操作23中藉由流量模組300測量流量值並在操作24中藉由分析模組400計算解離率。在一些實施方式中,通入腔體100的清理蝕刻氣體CEG持續通入至清理製程結束,且從清理蝕刻氣體CEG通入腔體100至結束清理製程的清理蝕刻氣體流量實質上保持一定值。在一些實施方式中,清理蝕刻氣體CEG包括含氟氣體,例如三氟化氮、六氟化硫、其類似物或其組合等。在一些實施方式中,第一半導體膜(或半導體膜101)為含矽半導體膜,例如包括氮化矽、非晶矽、其類似物或其組合等。在一些實施方式中,第一半導體膜(或半導體膜101)的厚度可為2500 nm至4500 nm,例如2500 nm、3000 nm、3500 nm、4000 nm或4500 nm等。在一些實施方式中,方法20更包括在執行操作21之前執行任何可行的沉積製程以形成如第一半導體膜(或半導體膜101)的沉積殘留物。在一些實施方式中,方法20更包括在清理蝕刻氣體CEG通入腔體100之前,使用(或啟動)第一射頻訊號產生器RF1在腔體100外離子化清理蝕刻氣體CEG。在一些實施方式中,方法20更包括在清理蝕刻氣體CEG通入腔體100之後,使用(或啟動)第二射頻訊號產生器RF2在腔體100內離子化清理蝕刻氣體CEG。In operation 21 of method 20, a cleaning etching gas CEG is introduced into the chamber 100 so that the first semiconductor film (or the semiconductor film 101) in the chamber 100 can be etched by the cleaning process to remove the deposited residues. The flow rate of the cleaning etching gas CEG introduced into the chamber 100 can be adjusted according to demand, and the flow rate value is measured by the flow module 300 in operation 23 and the dissociation rate is calculated by the analysis module 400 in operation 24. In some embodiments, the cleaning etching gas CEG introduced into the chamber 100 is continuously introduced until the cleaning process is completed, and the cleaning etching gas flow rate from the introduction of the cleaning etching gas CEG into the chamber 100 to the completion of the cleaning process is substantially maintained at a constant value. In some embodiments, the cleaning etching gas CEG includes a fluorine-containing gas, such as nitrogen trifluoride, sulfur hexafluoride, the like, or a combination thereof. In some embodiments, the first semiconductor film (or semiconductor film 101) is a silicon-containing semiconductor film, such as silicon nitride, amorphous silicon, the like, or a combination thereof. In some embodiments, the thickness of the first semiconductor film (or semiconductor film 101) may be 2500 nm to 4500 nm, such as 2500 nm, 3000 nm, 3500 nm, 4000 nm, or 4500 nm. In some embodiments, the method 20 further includes performing any feasible deposition process to form a deposition residue such as the first semiconductor film (or semiconductor film 101) before performing operation 21. In some embodiments, the method 20 further includes using (or starting) a first radio frequency signal generator RF1 to ionize the cleaning etching gas CEG outside the chamber 100 before the cleaning etching gas CEG is introduced into the chamber 100. In some embodiments, the method 20 further includes using (or starting) a second radio frequency signal generator RF2 to ionize the cleaning etching gas CEG inside the chamber 100 after the cleaning etching gas CEG is introduced into the chamber 100.

在方法20的操作22中,使用壓力模組200測量腔體100內的壓力隨時間變化的第一壓力變化曲線(例如參照第4圖的壓力變化曲線PC)。由於蝕刻第一半導體膜包括蝕刻過程及過蝕刻過程,第一壓力變化曲線具有從對應蝕刻過程的第一平台上升至對應過蝕刻過程的第二平台的上升區段,詳細參照上文。In operation 22 of method 20, a first pressure variation curve (e.g., refer to pressure variation curve PC in FIG. 4 ) in which the pressure in chamber 100 varies with time is measured using pressure module 200. Since etching the first semiconductor film includes an etching process and an over-etching process, the first pressure variation curve has a rising section from a first platform corresponding to the etching process to a second platform corresponding to the over-etching process, as described above in detail.

在方法20的操作23中,使用流量模組300測量通入腔體100的清理蝕刻氣體CEG的第一清理蝕刻氣體流量。在一些實施方式中,通入腔體100的清理蝕刻氣體CEG的流量經流量模組300測量為8000 sccm至14000 sccm,例如8000 sccm、9000 sccm、10000 sccm、11000 sccm、12000 sccm、13000 sccm或14000 sccm等。In operation 23 of method 20, a first cleaning etch gas flow rate of the cleaning etch gas CEG introduced into the chamber 100 is measured using a flow module 300. In some embodiments, the flow rate of the cleaning etch gas CEG introduced into the chamber 100 is measured by the flow module 300 to be 8000 sccm to 14000 sccm, for example, 8000 sccm, 9000 sccm, 10000 sccm, 11000 sccm, 12000 sccm, 13000 sccm, or 14000 sccm.

在方法20的操作24中,使用分析模組400,以根據第一壓力變化曲線、第一清理蝕刻氣體流量、系統校正值、清理蝕刻氣體流量基準值及清理蝕刻氣體壓力基準值計算第一解離率。在一些實施方式中,使用分析模組400詳細是根據第一壓力變化曲線中的上升區段中的最高點處的壓力(即上文描述的第一壓力)、第一清理蝕刻氣體流量、系統校正值、清理蝕刻氣體流量基準值及清理蝕刻氣體壓力基準值計算第一解離率。經壓力模組200取得的第一壓力可反映清理製程的實施效率,並透過上文詳細的描述經校正和比較之後轉化成精準的第一解離率,以使操作人員針對清理製程的實施效率做出適當的應對。In operation 24 of method 20, an analysis module 400 is used to calculate a first dissociation rate according to the first pressure variation curve, the first cleaning etch gas flow rate, the system correction value, the cleaning etch gas flow rate reference value, and the cleaning etch gas pressure reference value. In some embodiments, the analysis module 400 is used to calculate the first dissociation rate according to the pressure at the highest point in the rising section of the first pressure variation curve (i.e., the first pressure described above), the first cleaning etch gas flow rate, the system correction value, the cleaning etch gas flow rate reference value, and the cleaning etch gas pressure reference value. The first pressure obtained by the pressure module 200 can reflect the implementation efficiency of the cleaning process, and is converted into an accurate first dissociation rate after correction and comparison as described in detail above, so that the operator can make appropriate responses according to the implementation efficiency of the cleaning process.

在一些實施方式中,方法20更包括在通入清理蝕刻氣體CEG到腔體100之前,通入惰性氣體IG至腔體100中,以進行上文描述的得到系統校正值及增加清理蝕刻氣體CEG的離子化數目。通入腔體100的惰性氣體IG的流量可根據需求調整,並且方法20可更包括藉由流量模組300測量通入腔體100的惰性氣體IG的惰性氣體流量。在一些實施方式中,通入腔體100的惰性氣體IG的流量經流量模組300測量為2000 sccm至8000 sccm,例如2000 sccm、3000 sccm、4000 sccm、5000 sccm、6000 sccm、7000 sccm或8000 sccm等。在一些實施方式中,通入腔體100的清理蝕刻氣體CEG與惰性氣體IG的流量比為1至10,例如1、2、4、6、8或10等。在一些實施方式中,惰性氣體IG包括氬氟、其類似物或其組合等。由於腔體100也通入惰性氣體IG,壓力模組200測量的第一壓力變化曲線也可包括壓力因應惰性氣體IG的通入而發生的改變。因此,在腔體100也通入惰性氣體IG的實施方式中,方法20可更包括使用分析模組400以根據第一壓力變化曲線、惰性氣體流量、惰性氣體流量基準值及惰性氣體壓力基準值計算系統校正值。在一些實施方式中,使用分析模組400詳細是根據第一壓力變化曲線中大約對應通入清理蝕刻氣體時的壓力(即上文描述的第二壓力)、惰性氣體流量、惰性氣體流量基準值及惰性氣體壓力基準值計算系統校正值。在一些實施方式中,惰性氣體IG通入腔體100係發生在使用(或啟動)射頻訊號產生器RF離子化清理蝕刻氣體CEG之前,且惰性氣體IG通入腔體100持續至使用(或啟動)第一射頻訊號產生器RF1離子化清理蝕刻氣體CEG之後、清理蝕刻氣體CEG通入腔體100之後及使用(或啟動)第二射頻訊號產生器RF2離子化清理蝕刻氣體CEG之前,例如藉由關閉流量閥停止惰性氣體IG持續進入腔體100,以使得惰性氣體IG幫助清理蝕刻氣體CEG進行離子化的過程,但避免清理蝕刻氣體CEG在蝕刻第一半導體膜時腔體100內具有惰性氣體IG(即,對應蝕刻過程的第一壓力變化曲線中的第一平台在發生時,腔體100內實質上不包括惰性氣體)。在一些實施方式中,惰性氣體IG通入腔體100至結束惰性氣體IG通入腔體100的惰性氣體流量實質上保持一定值。In some embodiments, the method 20 further includes introducing an inert gas IG into the chamber 100 before introducing the cleaning etching gas CEG into the chamber 100 to perform the above-described method of obtaining a system calibration value and increasing the number of ionizations of the cleaning etching gas CEG. The flow rate of the inert gas IG introduced into the chamber 100 can be adjusted as required, and the method 20 can further include measuring the inert gas flow rate of the inert gas IG introduced into the chamber 100 by the flow module 300. In some embodiments, the flow rate of the inert gas IG introduced into the chamber 100 is measured by the flow module 300 to be 2000 sccm to 8000 sccm, such as 2000 sccm, 3000 sccm, 4000 sccm, 5000 sccm, 6000 sccm, 7000 sccm or 8000 sccm, etc. In some embodiments, the flow ratio of the cleaning etching gas CEG to the inert gas IG introduced into the chamber 100 is 1 to 10, such as 1, 2, 4, 6, 8 or 10. In some embodiments, the inert gas IG includes argon fluorine, its analogs or a combination thereof. Since the chamber 100 also introduces the inert gas IG, the first pressure variation curve measured by the pressure module 200 may also include the change in pressure in response to the introduction of the inert gas IG. Therefore, in the embodiment in which the chamber 100 also introduces the inert gas IG, the method 20 may further include using the analysis module 400 to calculate the system calibration value according to the first pressure variation curve, the inert gas flow rate, the inert gas flow rate reference value and the inert gas pressure reference value. In some embodiments, the analysis module 400 is used to calculate the system correction value based on the pressure in the first pressure variation curve approximately corresponding to the pressure when the cleaning etching gas is introduced (i.e., the second pressure described above), the inert gas flow rate, the inert gas flow rate baseline value, and the inert gas pressure baseline value. In some embodiments, the inert gas IG is introduced into the chamber 100 before the RF signal generator RF is used (or activated) to ionize the cleaning etching gas CEG, and the inert gas IG is introduced into the chamber 100 until the first RF signal generator RF1 is used (or activated) to ionize the cleaning etching gas CEG, after the cleaning etching gas CEG is introduced into the chamber 100, and after the second RF signal generator RF2 is used (or activated) to ionize the cleaning etching gas CEG. Before cleaning the etching gas CEG, the inert gas IG is stopped from continuously entering the chamber 100 by closing the flow valve, for example, so that the inert gas IG helps the cleaning etching gas CEG to ionize, but avoids the cleaning etching gas CEG having the inert gas IG in the chamber 100 when etching the first semiconductor film (that is, when the first platform in the first pressure variation curve corresponding to the etching process occurs, the chamber 100 does not substantially include the inert gas). In some embodiments, the inert gas flow rate from the time the inert gas IG is introduced into the chamber 100 to the time the inert gas IG is finished entering the chamber 100 is substantially maintained at a constant value.

在一些實施方式中,方法20更包括重複上述操作以進行另一次的清理製程和/或沉積製程,以監測系統的解離率變化。例如,從腔體100中移除歷經上述清理製程的清理蝕刻氣體CEG。然後,再次通入清理蝕刻氣體CEG至腔體100中,以蝕刻腔體100中可經另一沉積製程形成的第二半導體膜。然後,再次使用壓力模組200測量腔體100中的壓力隨時間變化的第二壓力變化曲線,以及再次使用流量模組300測量通入腔體100的清理蝕刻氣體CEG的第二清理蝕刻氣體流量。然後,再次使用分析模組400,以根據第二壓力變化曲線、第二清理蝕刻氣體流量、系統校正值、清理蝕刻氣體流量基準值及清理蝕刻氣體壓力基準值計算清理蝕刻氣體的第二解離率。第二半導體膜、第二壓力變化曲線、第二清理蝕刻氣體流量及第二解離率的敘述分別類似上文的第一半導體膜、第一壓力變化曲線、第一清理蝕刻氣體流量及第一解離率的敘述,因此詳細可參照上文。重複的清理製程也可更包括通入惰性氣體IG至腔體100中,以得到另一系統校正值。在一些實施方式中,方法20更包括使用系統10的紀錄模組,以紀錄執行第一次清理製程和/或沉積製程時對應第一監測時間的第一解離率及執行第二次清理製程和/或沉積製程時對應第二監測時間的第二解離率,即得到解離率變化曲線,且重複本揭示內容的方法20還可得到如參照第5圖的解離率變化曲線IRC。在一些實施方式中,方法20更包括使用系統10的預測模組,以解離率變化曲線轉化成解離率預測曲線(例如參照第5圖的解離率預測曲線IRPC)。在一些實施方式中,方法20更包括使用系統10的顯示模組,以實時地顯示壓力變化曲線、清理蝕刻氣體流量(和/或惰性氣體流量)、解離率、解離率變化曲線和/或解離率預測曲線等,並可適時地接收當解離率和/或解離率變化曲線包括低於警戒數值的解離率時的通知。In some embodiments, the method 20 further includes repeating the above operations to perform another cleaning process and/or deposition process to monitor the dissociation rate change of the system. For example, the cleaning etch gas CEG that has undergone the above cleaning process is removed from the chamber 100. Then, the cleaning etch gas CEG is introduced into the chamber 100 again to etch a second semiconductor film that can be formed in the chamber 100 through another deposition process. Then, the pressure module 200 is used again to measure a second pressure change curve of the pressure in the chamber 100 changing with time, and the flow module 300 is used again to measure the second cleaning etch gas flow rate of the cleaning etch gas CEG introduced into the chamber 100. Then, the analysis module 400 is used again to calculate the second dissociation rate of the cleaning etching gas according to the second pressure variation curve, the second cleaning etching gas flow rate, the system calibration value, the cleaning etching gas flow rate reference value and the cleaning etching gas pressure reference value. The description of the second semiconductor film, the second pressure variation curve, the second cleaning etching gas flow rate and the second dissociation rate are similar to the description of the first semiconductor film, the first pressure variation curve, the first cleaning etching gas flow rate and the first dissociation rate in the above text, so the details can be referred to above. The repeated cleaning process can also include introducing an inert gas IG into the chamber 100 to obtain another system calibration value. In some embodiments, the method 20 further includes using a recording module of the system 10 to record a first dissociation rate corresponding to a first monitoring time when performing a first cleaning process and/or a deposition process and a second dissociation rate corresponding to a second monitoring time when performing a second cleaning process and/or a deposition process, i.e., obtaining a dissociation rate variation curve, and repeating the method 20 of the present disclosure can also obtain a dissociation rate variation curve IRC as shown in FIG. 5. In some embodiments, the method 20 further includes using a prediction module of the system 10 to convert the dissociation rate variation curve into a dissociation rate prediction curve (e.g., referring to the dissociation rate prediction curve IRPC in FIG. 5). In some embodiments, method 20 further includes using a display module of system 10 to display in real time a pressure variation curve, a cleaning etching gas flow rate (and/or an inert gas flow rate), a dissociation rate, a dissociation rate variation curve, and/or a dissociation rate prediction curve, etc., and timely receive a notification when the dissociation rate and/or the dissociation rate variation curve includes a dissociation rate below a warning value.

接下來參照第4圖至第5圖的詳細實施例說明本揭示內容的系統10及方法20。需注意的是,實施例係為使所屬技術領域中通常知識者更理解本揭示內容,並非意欲限制本揭示內容欲涵蓋的範圍。Next, the system 10 and method 20 of the present disclosure are described with reference to the detailed embodiments of Figures 4 and 5. It should be noted that the embodiments are provided to enable a person skilled in the art to better understand the present disclosure, and are not intended to limit the scope of the present disclosure.

在一實施例中,通入清理蝕刻氣體CEG及惰性氣體IG至腔體100中,以對腔體100中的半導體膜執行清理製程,其中清理蝕刻氣體CEG的清理蝕刻氣體流量經流量模組300測量為11000 sccm,以及惰性氣體IG的惰性氣體流量經流量模組300測量為5000 sccm。藉由壓力模組200測量的壓力變化曲線PC如第4圖所示,其中曲線中的點A對應惰性氣體IG通入腔體100的時間及壓力;點B對應使用(或啟動)第一射頻訊號產生器RF1的時間及壓力;點C對應清理蝕刻氣體CEG通入腔體100的時間及壓力(即為本實施例的第二時間及第二壓力,以用以將第二壓力轉化為系統校正值,但本揭示內容也可使用點C前1秒的壓力作為第二壓力);點D對應停止通入惰性氣體IG至腔體100的時間及壓力;點E對應使用(或啟動)第二射頻訊號產生器RF2的時間及壓力;第一平台PF1對應蝕刻過程;第二平台PF2對應過蝕刻過程;第一平台PF1與第二平台PF2之間的上升區段IS 的最高點處HP的時間及壓力對應上文的第一時間及第一壓力,以用以將第一壓力轉化為解離率;以及點F對應清理蝕刻的結束,例如停止清理蝕刻氣體CEG通入腔體100、關閉射頻訊號產生器RF等。在本實施例中,第二壓力為165 mtorr,以及惰性氣體流量基準值及其對應的惰性氣體壓力基準值可根據分析模組400的資料儲存裝置存取的資料取為5000 sccm及161 mtorr,因此本實施例的系統校正值可根據如上文式(3)經分析模組400計算為約0.9758。在本實施例中,第一壓力為625 mtorr,以及清理蝕刻氣體流量基準值及其對應的清理蝕刻氣體壓力基準值可根據分析模組400的資料儲存裝置存取的資料取為11000 sccm及310 mtorr,因此本實施例的解離率可根據如上文式(1)及式(2)經分析模組400計算為約96.7%。藉由重複清理製程,每次的解離率可再藉由本系統得到如第5圖所示的解離率變化曲線IRC及解離率預測曲線IRPC。In one embodiment, a cleaning etch gas CEG and an inert gas IG are introduced into the chamber 100 to perform a cleaning process on the semiconductor film in the chamber 100, wherein the cleaning etch gas flow rate of the cleaning etch gas CEG is measured by the flow module 300 to be 11000 sccm, and the inert gas flow rate of the inert gas IG is measured by the flow module 300 to be 5000 sccm. The pressure variation curve PC measured by the pressure module 200 is shown in FIG. 4 , wherein point A in the curve corresponds to the time and pressure of the inert gas IG entering the chamber 100; point B corresponds to the time and pressure of using (or starting) the first RF signal generator RF1; point C corresponds to the time and pressure of the cleaning etching gas CEG entering the chamber 100 (i.e., the second time and the second pressure of the present embodiment, so as to convert the second pressure into system calibration value, but the present disclosure may also use the pressure 1 second before point C as the second pressure); point D corresponds to the time and pressure of stopping the introduction of inert gas IG into the chamber 100; point E corresponds to the time and pressure of using (or starting) the second RF signal generator RF2; the first platform PF1 corresponds to the etching process; the second platform PF2 corresponds to the etching process; the time and pressure HP at the highest point of the rising section IS between the first platform PF1 and the second platform PF2 correspond to the first time and first pressure mentioned above, so as to convert the first pressure into the dissociation rate; and point F corresponds to the end of the cleaning etching, such as stopping the introduction of the cleaning etching gas CEG into the chamber 100, turning off the RF signal generator RF, etc. In this embodiment, the second pressure is 165 mtorr, and the inert gas flow rate reference value and its corresponding inert gas pressure reference value can be taken as 5000 sccm and 161 mtorr according to the data accessed by the data storage device of the analysis module 400. Therefore, the system calibration value of this embodiment can be calculated by the analysis module 400 according to the above formula (3) as approximately 0.9758. In this embodiment, the first pressure is 625 mtorr, and the cleaning etching gas flow rate reference value and its corresponding cleaning etching gas pressure reference value can be taken as 11000 sccm and 310 mtorr according to the data accessed by the data storage device of the analysis module 400. Therefore, the dissociation rate of this embodiment can be calculated as about 96.7% according to the above formula (1) and formula (2) by the analysis module 400. By repeating the cleaning process, the dissociation rate of each time can be obtained by the system as shown in FIG. 5, i.e., the dissociation rate variation curve IRC and the dissociation rate prediction curve IRPC.

本揭示內容的系統及其使用的方法可有效、快速及簡單地藉由監測清理蝕刻氣體的解離率來監測清理製程的實施效率,其中解離率精準地反映系統狀態對於解離率的影響,以可實時地根據系統狀態調整清理製程的實施時間。例如解離率可反映腔體內的元件(例如第一電極、背板等)是否因過度老化而影響解離率,以及可反映系統中是否任意元件(例如抽氣幫浦、壓力閥、流量閥等)具顯著誤差而影響解離率等。也就是說,本揭示內容的系統及其使用的方法可有效地增加清理製程的良率、效率及降低成本,並避免了藉由停止機台運作來檢測清理製程的實施效率所造成的製程效率降低,以及避免了無效率地使用過多清理蝕刻氣體所造成浪費等。The system disclosed herein and the method for using the same can effectively, quickly and simply monitor the efficiency of the cleaning process by monitoring the dissociation rate of the cleaning etching gas, wherein the dissociation rate accurately reflects the influence of the system state on the dissociation rate, so that the implementation time of the cleaning process can be adjusted in real time according to the system state. For example, the dissociation rate can reflect whether the components in the chamber (such as the first electrode, the back plate, etc.) are affected by excessive aging, and whether any component in the system (such as the exhaust pump, the pressure valve, the flow valve, etc.) has a significant error that affects the dissociation rate. In other words, the system disclosed herein and the method of using the system can effectively increase the yield, efficiency and reduce the cost of the cleaning process, and avoid the reduction in process efficiency caused by stopping the machine operation to detect the efficiency of the implementation of the cleaning process, and avoid the waste caused by inefficient use of excessive cleaning etching gas.

本揭示內容相當詳細地以一些實施方式進行描述,但其它實施方式也可能是可行的,因此不應以本揭示內容所含實施方式的描述限制所附申請專利範圍的範圍和精神。對於所屬技術領域中具通常知識者來說,可在不偏離本揭示內容的範圍和精神下對本揭示內容進行修改和變更。只要這些修改和變更屬於所附申請專利範圍的範圍和精神,即涵蓋於本揭示內容中。The present disclosure is described in considerable detail in some embodiments, but other embodiments may also be possible, and therefore the description of the embodiments contained in the present disclosure should not limit the scope and spirit of the attached patent applications. For those with ordinary knowledge in the relevant technical field, modifications and changes can be made to the present disclosure without departing from the scope and spirit of the present disclosure. As long as these modifications and changes fall within the scope and spirit of the attached patent applications, they are covered by the present disclosure.

10:系統 20:方法 21:操作 22:操作 23:操作 24:操作 100:腔體 200:壓力模組 300:流量模組 400:分析模組 101:半導體膜 102:入口 103:電極 104:第一電極 104A:氣體通道 105:第二電極 106:背板 106A:空間 107:出口 108:固定件 110:支撐柱 A:點 B:點 C:點 CEG:清理蝕刻氣體 D:點 E:點 F:點 IG:惰性氣體 IRC:解離率變化曲線 IRPC:解離率預測曲線 IS:上升區段 HP:最高點處 P1:第一壓力 P2:第二壓力 PC:壓力變化曲線 PF1:第一平台 PF2:第二平台 RC:遠端腔體 RF:射頻訊號產生器 RF1:第一射頻訊號產生器 RF2:第二射頻訊號產生器 T1:第一時間 T2:第二時間 WP1:第一警戒數值 WP2:第二警戒數值10: System 20: Method 21: Operation 22: Operation 23: Operation 24: Operation 100: Chamber 200: Pressure module 300: Flow module 400: Analysis module 101: Semiconductor membrane 102: Inlet 103: Electrode 104: First electrode 104A: Gas channel 105: Second electrode 106: Back plate 106A: Space 107: Outlet 108: Fixing part 110: Support column A: Point B: Point C: Point CEG: Cleaning etching gas D: Point E: Point F: Point IG: Inert gas IRC: Dissociation rate change curve IRPC: Dissociation rate prediction curve IS: Ascending section HP: Highest point P1: First pressure P2: Second pressure PC: Pressure change curve PF1: First platform PF2: Second platform RC: Remote cavity RF: Radio frequency signal generator RF1: First radio frequency signal generator RF2: Second radio frequency signal generator T1: First time T2: Second time WP1: First warning value WP2: Second warning value

閱讀本揭示內容的附圖時,建議從下文詳細的敘述瞭解本揭示內容的各個面向。需注意的是,按照工業的標準做法,各種特徵尺寸可能未依比例繪製。且為了使討論清晰,各種特徵尺寸可能被增大或減小。此外,為了簡化圖式,慣用結構與元件將在圖中以簡單示意的方式繪示。 第1圖是根據本揭示內容一些實施方式的監測清理蝕刻氣體解離率的系統的示意圖。 第2圖是根據本揭示內容一些實施方式的監測清理蝕刻氣體解離率的系統的含有腔體的部分示意圖。 第3圖是根據本揭示內容一些實施方式的使用監測清理蝕刻氣體解離率的系統的方法流程圖。 第4圖是根據本揭示內容一些實施方式的腔體內的壓力變化曲線示意圖。 第5圖是根據本揭示內容一些實施方式的清理蝕刻氣體的解離率變化曲線示意圖。 When reading the drawings accompanying the present disclosure, it is recommended to understand various aspects of the present disclosure from the detailed description below. It should be noted that various feature sizes may not be drawn to scale in accordance with standard industry practices. And for the sake of clarity of discussion, various feature sizes may be enlarged or reduced. In addition, in order to simplify the drawings, conventional structures and components will be shown in the drawings in a simple schematic manner. FIG. 1 is a schematic diagram of a system for monitoring the dissociation rate of a cleaning etch gas according to some embodiments of the present disclosure. FIG. 2 is a partial schematic diagram of a chamber containing a system for monitoring the dissociation rate of a cleaning etch gas according to some embodiments of the present disclosure. FIG. 3 is a flow chart of a method for using a system for monitoring the dissociation rate of a cleaning etch gas according to some embodiments of the present disclosure. FIG. 4 is a diagram showing a pressure variation curve in a chamber according to some embodiments of the present disclosure. FIG. 5 is a diagram showing a dissociation rate variation curve of a cleaning etching gas according to some embodiments of the present disclosure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date, and number) None Foreign storage information (please note in the order of storage country, institution, date, and number) None

10:系統 10: System

100:腔體 100: Cavity

200:壓力模組 200: Pressure module

300:流量模組 300:Flow module

400:分析模組 400:Analysis module

Claims (11)

一種監測清理蝕刻氣體解離率的系統,包括: 一腔體,用以通入一清理蝕刻氣體以蝕刻一半導體膜; 一壓力模組,用以測量該腔體內的一壓力隨時間變化的一壓力變化曲線; 一流量模組,用以測量通入該腔體的該清理蝕刻氣體的一清理蝕刻氣體流量;以及 一分析模組,用以根據該壓力變化曲線、該清理蝕刻氣體流量、一系統校正值、一清理蝕刻氣體流量基準值及一清理蝕刻氣體壓力基準值計算該清理蝕刻氣體的一解離率,其中該清理蝕刻氣體壓力基準值為具有該清理蝕刻氣體流量基準值的該清理蝕刻氣體在未解離時的一壓力值。 A system for monitoring the dissociation rate of a cleaning etching gas comprises: a chamber for introducing a cleaning etching gas to etch a semiconductor film; a pressure module for measuring a pressure change curve of a pressure in the chamber changing with time; a flow module for measuring a cleaning etching gas flow rate of the cleaning etching gas introduced into the chamber; and An analysis module is used to calculate a dissociation rate of the cleaning etching gas according to the pressure variation curve, the cleaning etching gas flow rate, a system calibration value, a cleaning etching gas flow rate reference value, and a cleaning etching gas pressure reference value, wherein the cleaning etching gas pressure reference value is a pressure value of the cleaning etching gas having the cleaning etching gas flow rate reference value when not dissociated. 如請求項1所述的系統,其中該分析模組用以根據該壓力變化曲線中在一第一時間的一第一壓力、該清理蝕刻氣體流量、該系統校正值、該清理蝕刻氣體流量基準值及該清理蝕刻氣體壓力基準值計算該解離率,以及該第一時間係在該壓力變化曲線從一第一平台上升至一第二平台的一上升區段中的一最高點處的一時間。A system as described in claim 1, wherein the analysis module is used to calculate the dissociation rate based on a first pressure at a first time in the pressure variation curve, the cleaning etching gas flow rate, the system calibration value, the cleaning etching gas flow rate baseline value and the cleaning etching gas pressure baseline value, and the first time is a time at a highest point in a rising section of the pressure variation curve from a first platform to a second platform. 如請求項1所述的系統,其中該腔體更用以通入一惰性氣體;該流量模組更用以測量通入該腔體的該惰性氣體的一惰性氣體流量;該分析模組更用以根據該壓力變化曲線、該惰性氣體流量、一惰性氣體流量基準值及一惰性氣體壓力基準值計算該系統校正值;以及該惰性氣體壓力基準值為具有該惰性氣體流量基準值的該惰性氣體的一壓力值。A system as described in claim 1, wherein the cavity is further used to pass an inert gas; the flow module is further used to measure an inert gas flow rate of the inert gas passed into the cavity; the analysis module is further used to calculate the system correction value based on the pressure variation curve, the inert gas flow rate, an inert gas flow rate benchmark value and an inert gas pressure benchmark value; and the inert gas pressure benchmark value is a pressure value of the inert gas having the inert gas flow rate benchmark value. 如請求項3所述的系統,其中該分析模組用以根據該壓力變化曲線中在一第二時間的一第二壓力、該惰性氣體流量、該惰性氣體流量基準值及該惰性氣體壓力基準值計算該系統校正值,以及該第二時間係在該腔體通入該惰性氣體之後及大約在該腔體通入該清理蝕刻氣體時。A system as described in claim 3, wherein the analysis module is used to calculate the system correction value based on a second pressure at a second time in the pressure variation curve, the inert gas flow rate, the inert gas flow rate baseline value and the inert gas pressure baseline value, and the second time is after the inert gas is introduced into the chamber and approximately when the cleaning etching gas is introduced into the chamber. 如請求項1所述的系統,更包括: 一紀錄模組,用以紀錄重複使用該分析模組而得到的多個解離率,並將該些解離率依據對應的多個重複次數記錄成一解離率變化曲線;以及 一顯示模組,用以顯示該解離率變化曲線及顯示當該解離率變化曲線包括低於一數值的一解離率時的一通知。 The system as described in claim 1 further includes: a recording module for recording a plurality of dissociation rates obtained by repeatedly using the analysis module, and recording the dissociation rates into a dissociation rate variation curve according to the corresponding plurality of repetition times; and a display module for displaying the dissociation rate variation curve and displaying a notification when the dissociation rate variation curve includes a dissociation rate lower than a value. 一種使用監測清理蝕刻氣體解離率的系統的方法,包括: 通入一清理蝕刻氣體至一腔體中,以蝕刻該腔體中的一第一半導體膜; 使用一壓力模組測量該腔體內的一壓力隨一時間變化的一第一壓力變化曲線; 使用一流量模組測量通入該腔體的該清理蝕刻氣體的一第一清理蝕刻氣體流量;以及 使用一分析模組,以根據該第一壓力變化曲線、該第一清理蝕刻氣體流量、一系統校正值、一清理蝕刻氣體流量基準值及一清理蝕刻氣體壓力基準值計算該清理蝕刻氣體的一第一解離率,其中該清理蝕刻氣體壓力基準值為具有該清理蝕刻氣體流量基準值的該清理蝕刻氣體在未解離時的一壓力值。 A method for using a system for monitoring the dissociation rate of a cleaning etch gas, comprising: Introducing a cleaning etch gas into a chamber to etch a first semiconductor film in the chamber; Using a pressure module to measure a first pressure variation curve of a pressure in the chamber varying with time; Using a flow module to measure a first cleaning etch gas flow rate of the cleaning etch gas introduced into the chamber; and An analysis module is used to calculate a first dissociation rate of the cleaning etching gas according to the first pressure variation curve, the first cleaning etching gas flow rate, a system calibration value, a cleaning etching gas flow rate reference value, and a cleaning etching gas pressure reference value, wherein the cleaning etching gas pressure reference value is a pressure value of the cleaning etching gas having the cleaning etching gas flow rate reference value when not dissociated. 如請求項6所述的方法,其中該清理蝕刻氣體包括一含氟氣體。The method of claim 6, wherein the cleaning etching gas comprises a fluorine-containing gas. 如請求項6所述的方法,其中蝕刻該第一半導體膜包括一蝕刻過程及一過蝕刻過程;該第一壓力變化曲線具有從對應該蝕刻過程的一第一平台上升至對應該過蝕刻過程的一第二平台的一上升區段;以及使用該分析模組包括根據該上升區段的一最高點處的一壓力、該第一清理蝕刻氣體流量、該系統校正值、該清理蝕刻氣體流量基準值及該清理蝕刻氣體壓力基準值計算該第一解離率。A method as described in claim 6, wherein etching the first semiconductor film includes an etching process and an over-etching process; the first pressure variation curve has a rising section from a first platform corresponding to the etching process to a second platform corresponding to the over-etching process; and using the analysis module includes calculating the first dissociation rate based on a pressure at a highest point of the rising section, the first cleaning etching gas flow rate, the system correction value, the cleaning etching gas flow rate baseline value and the cleaning etching gas pressure baseline value. 如請求項6所述的方法,更包括通入一惰性氣體至該腔體中;使用該流量模組測量通入該腔體的該惰性氣體的一惰性氣體流量;以及使用該分析模組以根據該第一壓力變化曲線、該惰性氣體流量、一惰性氣體流量基準值及一惰性氣體壓力基準值計算該系統校正值,其中該惰性氣體壓力基準值為具有該惰性氣體流量基準值的該惰性氣體的一壓力值。The method as described in claim 6 further includes introducing an inert gas into the cavity; using the flow module to measure an inert gas flow rate of the inert gas introduced into the cavity; and using the analysis module to calculate the system correction value based on the first pressure variation curve, the inert gas flow rate, an inert gas flow rate benchmark value and an inert gas pressure benchmark value, wherein the inert gas pressure benchmark value is a pressure value of the inert gas having the inert gas flow rate benchmark value. 如請求項9所述的方法,其中通入該惰性氣體在通入該清理蝕刻氣體之前執行;以及使用該分析模組包括根據該第一壓力變化曲線中對應通入該清理蝕刻氣體時的一壓力、該惰性氣體流量、一惰性氣體流量基準值及一惰性氣體壓力基準值計算該系統校正值。A method as described in claim 9, wherein the introduction of the inert gas is performed before the introduction of the cleaning etching gas; and using the analysis module includes calculating the system correction value based on a pressure in the first pressure variation curve corresponding to the introduction of the cleaning etching gas, the inert gas flow rate, an inert gas flow rate baseline value and an inert gas pressure baseline value. 如請求項6所述的方法,更包括: 從該腔體中移除該清理蝕刻氣體; 通入該清理蝕刻氣體至該腔體中,以蝕刻該腔體中的一第二半導體膜; 使用該壓力模組測量該腔體中的一壓力隨一時間變化的一第二壓力變化曲線; 使用該流量模組測量通入該腔體的該清理蝕刻氣體的一第二清理蝕刻氣體流量; 使用該分析模組,以根據該第二壓力變化曲線、該第二清理蝕刻氣體流量、一系統校正值、該清理蝕刻氣體流量基準值及該清理蝕刻氣體壓力基準值計算該清理蝕刻氣體的一第二解離率;以及 使用一紀錄模組紀錄對應一第一監測時間的該第一解離率及對應一第二監測時間的該第二解離率,以及該第二監測時間在該第一監測時間之後。 The method as described in claim 6 further includes: Removing the cleaning etch gas from the chamber; Passing the cleaning etch gas into the chamber to etch a second semiconductor film in the chamber; Using the pressure module to measure a second pressure variation curve of a pressure in the chamber varying with time; Using the flow module to measure a second cleaning etch gas flow of the cleaning etch gas passed into the chamber; Using the analysis module to calculate a second dissociation rate of the cleaning etch gas based on the second pressure variation curve, the second cleaning etch gas flow, a system calibration value, the cleaning etch gas flow reference value and the cleaning etch gas pressure reference value; and A recording module is used to record the first dissociation rate corresponding to a first monitoring time and the second dissociation rate corresponding to a second monitoring time, and the second monitoring time is after the first monitoring time.
TW112137184A 2023-09-27 2023-09-27 System for monitoring ionization rate of cleaning etching gas and method of using the system TWI857796B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410255431.6A CN118127486A (en) 2023-09-27 2024-03-06 System for monitoring dissociation rate of cleaning etching gas and using method thereof

Publications (1)

Publication Number Publication Date
TWI857796B true TWI857796B (en) 2024-10-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080059619A (en) 2005-10-03 2008-06-30 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 Systems and methods for determination of endpoint of chamber cleaning process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080059619A (en) 2005-10-03 2008-06-30 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 Systems and methods for determination of endpoint of chamber cleaning process

Similar Documents

Publication Publication Date Title
JP4699367B2 (en) Method and apparatus for diagnosing processing equipment using adaptive multivariable analysis
US7713760B2 (en) Process system health index and method of using the same
US20090099991A1 (en) Method and system for predicting process performance using material processing tool and sensor data
JP6860547B2 (en) Methodology for chamber performance matching for semiconductor devices
US20040195208A1 (en) Method and apparatus for performing hydrogen optical emission endpoint detection for photoresist strip and residue removal
TW200419631A (en) Method and system for analyzing data from a plasma process
US7047095B2 (en) Process control system and process control method
JP2010093272A (en) Method and system for controlling process by using material process-tool and performance data
US7139620B2 (en) Prediction method and apparatus of a processing result
US5900161A (en) Apparatus and method for detecting end point of post treatment
TWI834662B (en) Methods and apparatus for detecting an endpoint of a seasoning process
US20080110569A1 (en) Plasma etching apparatus and plasma etching method
US20100190098A1 (en) Infrared endpoint detection for photoresist strip processes
US8048326B2 (en) Method and apparatus for determining an etch property using an endpoint signal
TWI857796B (en) System for monitoring ionization rate of cleaning etching gas and method of using the system
JP7270489B2 (en) Performance calculation method and processing device
TWI392987B (en) System and method for implementing multi-resolution advanced process control
JP4220378B2 (en) Processing result prediction method and processing apparatus
JP3732768B2 (en) Semiconductor processing equipment
US7630064B2 (en) Prediction method and apparatus for substrate processing apparatus
CN118127486A (en) System for monitoring dissociation rate of cleaning etching gas and using method thereof
WO2003090271A1 (en) Film formation method
US8206996B2 (en) Etch tool process indicator method and apparatus
JP2009010370A (en) Semiconductor processing apparatus
JPH08288258A (en) Judging method of etching termination, and method and apparatus of dry-etching