Nothing Special   »   [go: up one dir, main page]

TWI845345B - Type-c physical interface based data transfer method and electronic device - Google Patents

Type-c physical interface based data transfer method and electronic device Download PDF

Info

Publication number
TWI845345B
TWI845345B TW112122240A TW112122240A TWI845345B TW I845345 B TWI845345 B TW I845345B TW 112122240 A TW112122240 A TW 112122240A TW 112122240 A TW112122240 A TW 112122240A TW I845345 B TWI845345 B TW I845345B
Authority
TW
Taiwan
Prior art keywords
type
transmission channels
signal transmission
differential signal
pair
Prior art date
Application number
TW112122240A
Other languages
Chinese (zh)
Other versions
TW202340968A (en
Inventor
邱彥超
孫延騰
孟浩宇
Original Assignee
大陸商合肥集創微電子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商合肥集創微電子科技有限公司 filed Critical 大陸商合肥集創微電子科技有限公司
Publication of TW202340968A publication Critical patent/TW202340968A/en
Application granted granted Critical
Publication of TWI845345B publication Critical patent/TWI845345B/en

Links

Images

Landscapes

  • Dc Digital Transmission (AREA)
  • Communication Control (AREA)

Abstract

The present disclosure provides a Type-C physical interface based data transfer method and an electronic device. The data transmission method determines whether positive and negative plugging states of Type-C physical interfaces of two electronic devices are the same by a received data packets. In case that inconsistency, permutes data to be sent at a transmitter side before sending it out through a corresponding differential signal transmission channel, or permutes received data at a receiver side before operating it. Such processing simplifies an identification process of the positive and negative plugging states of two electronic devices.

Description

基於Type-C物理接口的數據傳輸方法和電子設備 Data transmission method and electronic device based on Type-C physical interface

本發明屬於電腦技術領域,尤其涉及一種基於Type-C物理接口的數據傳輸方法和電子設備。 The present invention belongs to the field of computer technology, and in particular relates to a data transmission method and electronic device based on a Type-C physical interface.

為了滿足高速穩定的數據傳輸,並適應接口小型化的需求,不同電子設備之間從過去的採用網線連接通信逐步過渡到採用Type-C接口進行差分信號傳輸。Type-C接口由於採用對稱設計,因此能夠支持正反插。但這也意味著,為了使通過Type-C接口發送的差分信號能夠被正確接收並解析,需要識別並處理發送端和接收端的正反插狀態。 In order to meet the needs of high-speed and stable data transmission and adapt to the miniaturization of interfaces, different electronic devices have gradually transitioned from using network cables to communicate to using Type-C interfaces for differential signal transmission. The Type-C interface uses a symmetrical design, so it can support forward and reverse insertion. However, this also means that in order for the differential signals sent through the Type-C interface to be correctly received and analyzed, it is necessary to identify and process the forward and reverse insertion status of the sender and receiver.

有鑑於此,本發明實施例提供一種基於Type-C物理接口的數據傳輸方法和電子設備。 In view of this, the present invention provides a data transmission method and electronic device based on the Type-C physical interface.

第一方面,提供一種數據傳輸方法,應用於第一電子設備的發送模塊,所述第一電子設備包括第一Type-C物理接口,第二電子設備包括第二Type-C物理接口,所述第一Type-C物理接口通過Type-C線纜連接到所述第二Type-C物理接口,並由此形成多對差分信號傳輸通道,所述方法包括:從所述多對差分信號傳輸通道中的第一對差分信號傳輸通道接收所述第二電子設備發送的數據包;根據所述數據包的變化情況確定所述第一Type-C物理接口和所述第二Type-C物理接口的正反插狀態是否一致;如果所述第一Type-C物理接口和所 述第二Type-C物理接口的正反插狀態不一致,則將第一數據至第N數據各自的正負差分信號換位後通過所述第二對差分信號傳輸通道至第N+1對差分數據傳輸通道發送出去,N大於或等於2。 In a first aspect, a data transmission method is provided, which is applied to a sending module of a first electronic device, wherein the first electronic device includes a first Type-C physical interface, and a second electronic device includes a second Type-C physical interface, wherein the first Type-C physical interface is connected to the second Type-C physical interface through a Type-C cable, thereby forming a plurality of pairs of differential signal transmission channels, and the method comprises: receiving the second pair of differential signal transmission channels from a first pair of differential signal transmission channels among the plurality of pairs of differential signal transmission channels; data packets sent by the electronic device; determining whether the forward and reverse plugging states of the first Type-C physical interface and the second Type-C physical interface are consistent according to the change of the data packets; if the forward and reverse plugging states of the first Type-C physical interface and the second Type-C physical interface are inconsistent, then the positive and negative differential signals of the first data to the Nth data are transposed and sent through the second pair of differential signal transmission channels to the N+1th pair of differential data transmission channels, where N is greater than or equal to 2.

在一些實施例中,所述根據所述數據包的變化情況確定所述第一Type-C物理接口和所述第二Type-C物理接口的正反插狀態是否一致包括:對於所述數據包,如果接收到的位準序列與發送的位準序列相反,則確定所述第一Type-C物理接口和所述第二Type-C物理接口的正反插狀態不一致。 In some embodiments, determining whether the forward and reverse insertion states of the first Type-C physical interface and the second Type-C physical interface are consistent according to the change of the data packet includes: for the data packet, if the received bit sequence is opposite to the sent bit sequence, then determining that the forward and reverse insertion states of the first Type-C physical interface and the second Type-C physical interface are inconsistent.

在一些實施例中,還包括:通過所述第一對差分信號傳輸通道進行配置數據的傳輸,所述配置數據在所述第一Type-C物理接口和所述第二Type-C物理接口的正反插狀態不一致的情況下,取反後使用。 In some embodiments, the method further includes: transmitting configuration data through the first pair of differential signal transmission channels, and the configuration data is inverted and used when the forward and reverse insertion states of the first Type-C physical interface and the second Type-C physical interface are inconsistent.

在一些實施例中,還包括:採用第N+2對差分信號傳輸通道和第N+3對差分信號傳輸通道分別發送同一時鐘信號,所述第N+2對差分信號傳輸通道和所述第N+3對差分信號傳輸通道的引腳是位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳。 In some embodiments, it also includes: using the N+2th pair of differential signal transmission channels and the N+3th pair of differential signal transmission channels to respectively send the same clock signal, and the pins of the N+2th pair of differential signal transmission channels and the N+3th pair of differential signal transmission channels are two pairs of differential pins located on both sides of the Type-C physical interface and rotated 180 degrees to be symmetrical.

在一些實施例中,所述第一對差分信號傳輸通道的引腳為(A8,B8)。 In some embodiments, the pins of the first pair of differential signal transmission channels are (A8, B8).

在一些實施例中,在高速模式下,所述第二對差分信號傳輸通道至第N+1對差分數據傳輸通道的引腳是(A2,A3)、(B2,B3)、(A11,A10)和(B11,B10)中的位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳。 In some embodiments, in high-speed mode, the pins from the second pair of differential signal transmission channels to the N+1th pair of differential data transmission channels are two pairs of differential pins (A2, A3), (B2, B3), (A11, A10), and (B11, B10) located on both sides of the Type-C physical interface and rotated 180 degrees symmetrically.

在一些實施例中,在高速模式下,所述第N+2對差分信號傳輸通道和第N+3對差分信號傳輸通道的引腳是(A2,A3)、(B2,B3)、(A11,A10)和(B11,B10)中的位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳。 In some embodiments, in high-speed mode, the pins of the N+2nd pair of differential signal transmission channels and the N+3rd pair of differential signal transmission channels are two pairs of differential pins (A2, A3), (B2, B3), (A11, A10) and (B11, B10) located on both sides of the Type-C physical interface and rotated 180 degrees symmetrically.

在一些實施例中,在低速模式下,所述第二對差分信號傳輸 通道至第N+1對差分信號傳輸通道的引腳是(A2,A3)、(B2,B3)、(A11,A10)、(B11,B10)、(A6,A7)和(B6,B7),其中(A6,A7)和(B6,B7)綁定使用。 In some embodiments, in low-speed mode, the pins from the second pair of differential signal transmission channels to the N+1th pair of differential signal transmission channels are (A2, A3), (B2, B3), (A11, A10), (B11, B10), (A6, A7) and (B6, B7), where (A6, A7) and (B6, B7) are bound for use.

在一些實施例中,(A2,A3)、(B2,B3)、(A11,A10)、(B11,B10)、(A6,A7)和(B6,B7)中的位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳,(A6,A7)和(B6,B7)綁定使用。 In some embodiments, two pairs of differential pins (A2, A3), (B2, B3), (A11, A10), (B11, B10), (A6, A7) and (B6, B7) located on both sides of the Type-C physical interface and rotated 180 degrees symmetrically, (A6, A7) and (B6, B7) are bound for use.

第二方面,提供一種數據傳輸方法,應用於第二電子設備的接收模塊,所述第一電子設備包括第一Type-C物理接口,所述第二電子設備包括第二Type-C物理接口,所述第一Type-C物理接口通過Type-C線纜連接到所述第二Type-C物理接口,並由此形成多對差分信號傳輸通道,所述方法包括:從所述多對差分信號傳輸通道中的第一對差分信號傳輸通道接收所述第一電子設備發送的數據包;根據所述數據包的變化情況確定所述第一Type-C物理接口和所述第二Type-C物理接口的正反插狀態是否一致;如果所述第一Type-C物理接口和所述第二Type-C物理接口的正反插狀態不一致,則對通過所述第二對差分信號傳輸通道至第N+1對差分數據傳輸通道接收到的第一數據至第N數據進行換位處理,N大於或等於2。 In a second aspect, a data transmission method is provided, which is applied to a receiving module of a second electronic device, wherein the first electronic device includes a first Type-C physical interface, and the second electronic device includes a second Type-C physical interface, wherein the first Type-C physical interface is connected to the second Type-C physical interface through a Type-C cable, thereby forming multiple pairs of differential signal transmission channels, and the method includes: receiving a data packet sent by the first electronic device from a first pair of differential signal transmission channels among the multiple pairs of differential signal transmission channels; determining whether the forward and reverse insertion states of the first Type-C physical interface and the second Type-C physical interface are consistent according to the change of the data packet; if the forward and reverse insertion states of the first Type-C physical interface and the second Type-C physical interface are inconsistent, transposing the first data to the Nth data received through the second pair of differential signal transmission channels to the N+1th pair of differential data transmission channels, where N is greater than or equal to 2.

在一些實施例中,所述根據所述數據包的變化情況確定所述第一Type-C物理接口和所述第二Type-C物理接口的正反插狀態是否一致包括:對於所述數據包,如果接收到的位準序列與發送的位準序列相反,則確定所述第一Type-C物理接口和所述第二Type-C物理接口的正反插狀態不一致。 In some embodiments, determining whether the forward and reverse insertion states of the first Type-C physical interface and the second Type-C physical interface are consistent according to the change of the data packet includes: for the data packet, if the received bit sequence is opposite to the sent bit sequence, then determining that the forward and reverse insertion states of the first Type-C physical interface and the second Type-C physical interface are inconsistent.

在一些實施例中,還包括:採用第N+2對差分信號傳輸通道和第N+3對差分信號傳輸通道分別發送同一時鐘信號,所述第N+2對差分信號傳輸通道和第N+3對差分信號傳輸通道的引腳是位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳。 In some embodiments, it also includes: using the N+2th pair of differential signal transmission channels and the N+3th pair of differential signal transmission channels to respectively send the same clock signal, and the pins of the N+2th pair of differential signal transmission channels and the N+3th pair of differential signal transmission channels are two pairs of differential pins located on both sides of the Type-C physical interface and rotated 180 degrees to be symmetrical.

第三方面,提供一種電子設備,所述電子設備包括第一 Type-C物理接口,所述第一Type-C物理接口通過Type-C線纜連接到另一電子設備的第二Type-C物理接口,並由此形成多對差分信號傳輸通道,所述電子設備中包含發送模塊,所述發送模塊包括:正反插一致性判斷單元,用於接收所述另一電子設備的數據包,根據數據包的變化情況確定所述電子設備和另一電子設備的正反插狀態是否一致;數據重排單元,用於在所述電子設備和另一電子設備的正反插狀態不一致的情況下,將第一數據至第N數據換位後通過第二對差分信號傳輸通道至第N+1對差分信號傳輸通道發送出去,N大於或等於2。 In a third aspect, an electronic device is provided, the electronic device comprising a first Type-C physical interface, the first Type-C physical interface is connected to a second Type-C physical interface of another electronic device through a Type-C cable, thereby forming multiple pairs of differential signal transmission channels, the electronic device comprises a sending module, the sending module comprises: a forward and reverse plug consistency judgment unit, used to receive a data packet from the other electronic device, and determine whether the forward and reverse plug states of the electronic device and the other electronic device are consistent according to the change of the data packet; a data rearrangement unit, used to, when the forward and reverse plug states of the electronic device and the other electronic device are inconsistent, transpose the first data to the Nth data and send them through the second pair of differential signal transmission channels to the N+1th pair of differential signal transmission channels, where N is greater than or equal to 2.

在一些實施例中,所述正反插一致性判斷單元包括:對於所述數據包,如果接收到的位準序列與發送的位準序列相反,則確定所述電子設備和另一電子設備的正反插狀態不一致。 In some embodiments, the forward and reverse insertion consistency judgment unit includes: for the data packet, if the received bit sequence is opposite to the sent bit sequence, it is determined that the forward and reverse insertion status of the electronic device and another electronic device are inconsistent.

在一些實施例中,還包括:採用第N+2對差分信號傳輸通道和第N+3對差分信號傳輸通道分別發送同一時鐘信號,所述第N+2對差分信號傳輸通道和第N+3對差分信號傳輸通道的引腳是位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳。 In some embodiments, it also includes: using the N+2th pair of differential signal transmission channels and the N+3th pair of differential signal transmission channels to respectively send the same clock signal, and the pins of the N+2th pair of differential signal transmission channels and the N+3th pair of differential signal transmission channels are two pairs of differential pins located on both sides of the Type-C physical interface and rotated 180 degrees to be symmetrical.

在一些實施例中,所述第一對差分信號傳輸通道的引腳為(A8,B8)。 In some embodiments, the pins of the first pair of differential signal transmission channels are (A8, B8).

在一些實施例中,在高速模式下,所述第二對差分信號傳輸通道至第N+1對差分數據傳輸通道的引腳是(A2,A3)、(B2,B3)、(A11,A10)和(B11,B10)中的位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳。 In some embodiments, in high-speed mode, the pins from the second pair of differential signal transmission channels to the N+1th pair of differential data transmission channels are two pairs of differential pins (A2, A3), (B2, B3), (A11, A10), and (B11, B10) located on both sides of the Type-C physical interface and rotated 180 degrees symmetrically.

在一些實施例中,在高速模式下,所述第N+2對差分信號傳輸通道和第N+3對差分信號傳輸通道的引腳是(A2,A3)、(B2,B3)、(A11,A10)和(B11,B10)中的位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳。 In some embodiments, in high-speed mode, the pins of the N+2nd pair of differential signal transmission channels and the N+3rd pair of differential signal transmission channels are two pairs of differential pins (A2, A3), (B2, B3), (A11, A10) and (B11, B10) located on both sides of the Type-C physical interface and rotated 180 degrees to be symmetrical.

在一些實施例中,(A2,A3)、(B2,B3)、(A11,A10)、(B11,B10)、 (A6,A7)和(B6,B7),其中(A6,A7)和(B6,B7)必須綁定使用。 In some embodiments, (A2, A3), (B2, B3), (A11, A10), (B11, B10), (A6, A7) and (B6, B7), among which (A6, A7) and (B6, B7) must be used in a bound manner.

在一些實施例中,在低速模式下,(A2,A3)、(B2,B3)、(A11,A10)、(B11,B10)、(A6,A7)和(B6,B7)中的位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳,(A6,A7)和(B6,B7)綁定使用。 In some embodiments, in low-speed mode, two pairs of differential pins (A2, A3), (B2, B3), (A11, A10), (B11, B10), (A6, A7) and (B6, B7) located on both sides of the Type-C physical interface and rotated 180 degrees symmetrically, (A6, A7) and (B6, B7) are bound for use.

第四方面,提供一種電子設備,所述電子設備包括第一Type-C物理接口,所述第一Type-C物理接口通過Type-C線纜連接到另一電子設備的第二Type-C物理接口,並由此形成多對差分信號傳輸通道,所述電子設備中包含接收模塊,所述接收模塊包括:正反插一致性判斷單元,用於從所述多對差分信號傳輸通道中的第一對差分信號傳輸通道接收所述另一電子設備的數據包,根據所述數據包的變化情況確定所述電子設備和所述另一電子設備的正反插狀態是否一致;數據重排單元,用於在所述電子設備和所述另一電子設備的正反插狀態不一致的情況下,對通過所述第二對差分信號傳輸通道至第N+1對差分數據傳輸通道接收到的第一數據至第N數據進行換位處理,N大於或等於2。 In a fourth aspect, an electronic device is provided, the electronic device comprising a first Type-C physical interface, the first Type-C physical interface is connected to a second Type-C physical interface of another electronic device through a Type-C cable, thereby forming multiple pairs of differential signal transmission channels, the electronic device comprises a receiving module, the receiving module comprises: a forward and reverse insertion consistency judgment unit, for receiving a first pair of differential signals from the multiple pairs of differential signal transmission channels The transmission channel receives the data packet of the other electronic device, and determines whether the forward and reverse plugging states of the electronic device and the other electronic device are consistent according to the change of the data packet; the data rearrangement unit is used to perform a transposition process on the first data to the Nth data received through the second pair of differential signal transmission channels to the N+1th pair of differential data transmission channels when the forward and reverse plugging states of the electronic device and the other electronic device are inconsistent, where N is greater than or equal to 2.

第五方面,提供一種系統,該系統由上述任意一項所述的電子設備級聯而成。 In a fifth aspect, a system is provided, which is formed by cascading any of the electronic devices described above.

本發明實施例提供的數據傳輸方法,通過接收到的數據包確定兩個電子設備的Type-C物理接口的正反插狀態是否一致,並在不一致的情況下,在發送端對要發送的差分信號換位後再通過相應的差分信號傳輸通道發送出去,或者,在接收端對接收到的差分信號進行換位後再使用。如此處理簡化了兩個電子設備正反插狀態的識別過程。本發明實施例還提供多個Type-C物理接口的引腳信號分配方案,以用於提高數據傳輸效率。 The data transmission method provided by the embodiment of the present invention determines whether the forward and reverse plug-in states of the Type-C physical interfaces of two electronic devices are consistent through the received data packets, and in the case of inconsistency, the differential signal to be sent is transposed at the transmitting end and then sent through the corresponding differential signal transmission channel, or the received differential signal is transposed at the receiving end before being used. Such processing simplifies the process of identifying the forward and reverse plug-in states of two electronic devices. The embodiment of the present invention also provides a plurality of pin signal allocation schemes for Type-C physical interfaces to improve data transmission efficiency.

(Aux+,Aux-):傳輸配置數據的通道 (Aux+, Aux-): Channel for transmitting configuration data

(Clk+,Clk-):發送時鐘信號的通道 (Clk+,Clk-): Channel for sending clock signals

(D0+,D0-),...,(Dn+,Dn-):傳輸數據D0到Dn的通道 (D0+,D0-),...,(Dn+,Dn-): Channel for transmitting data from D0 to Dn

100:第一電子設備 100:First Electronic Equipment

101,201:Type-C接口 101,201: Type-C interface

110,210:發送模塊 110,210: Send module

1101:數據重排單元 1101: Data reordering unit

1102:正反插一致性判斷單元 1102: Forward and reverse insertion consistency judgment unit

120,220:接收模塊 120,220: receiving module

200:第二電子設備 200: Second electronic equipment

300:Type-C線纜 300: Type-C cable

A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,CC,CC1,CC2,RX1-,RX1+,RX2-,RX2+,SBU1,SBU2 TX1-,TX1+,TX2-,TX2+,VBUS,VCONN:引腳 A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,CC,CC1,CC2,RX1-,RX1+,RX2-,RX2+,SBU1,SBU2 TX1-,TX1+,TX2-,TX2+,VBUS,VCONN: Pins

Aux:配置數據 Aux: configuration data

Ch:曼徹斯特編碼 Ch: Manchester code

Clk,Clock:時鐘信號 Clk,Clock: clock signal

D-,D+:通道 D-,D+: channel

D,D0,D1,D0/1,Dn:數據 D, D0, D1, D0/1, Dn: data

GND:接地引腳 GND: ground pin

R1,R2,R3,R4:下拉電阻 R1, R2, R3, R4: Pull-down resistors

Rd,Rp:電阻 Rd, Rp: resistance

RX:引腳(接收電路) RX: pin (receiving circuit)

S701,S702,S703,S704:步驟 S701, S702, S703, S704: Steps

TX:引腳(發射電路) TX: pin (transmitter circuit)

Vbias:電壓 Vbias: voltage

通過參照以下圖式對本發明實施例的描述,本發明的上述以及其它目的、特徵和優點將更為清楚,在圖式中: The above and other purposes, features and advantages of the present invention will become clearer through the description of the embodiments of the present invention with reference to the following drawings, in which:

圖1a和圖1b是Type-C接口的插頭和插座的信號引腳分配示意圖; Figures 1a and 1b are schematic diagrams of the signal pin assignments of the Type-C interface plug and socket;

圖2示出了通道配置引腳正插和反插時的示意圖; Figure 2 shows the schematic diagram of the channel configuration pins when they are inserted forward and reverse;

圖3是本發明實施例的應用場景示意圖; Figure 3 is a schematic diagram of the application scenario of an embodiment of the present invention;

圖4是本發明一實施例的基於Type-C物理接口的數據傳輸系統的結構圖; Figure 4 is a structural diagram of a data transmission system based on a Type-C physical interface in an embodiment of the present invention;

圖5a和5b是本發明實施例的高速模式下的Type-C物理接口的信號引腳分配示意圖; Figures 5a and 5b are schematic diagrams of signal pin allocation of the Type-C physical interface in high-speed mode of an embodiment of the present invention;

圖5c和5d是本發明實施例的低速模式下的Type-C物理接口的信號引腳分配示意圖; Figures 5c and 5d are schematic diagrams of signal pin allocation of the Type-C physical interface in low-speed mode of an embodiment of the present invention;

圖5e是本發明實施例的低速模式下的又一Type-C物理接口的信號引腳分配示意圖; Figure 5e is a schematic diagram of signal pin allocation of another Type-C physical interface in low-speed mode of an embodiment of the present invention;

圖6是本發明實施例的用於傳輸配置數據的通道的差分雙向半雙工連接方式的示意圖; Figure 6 is a schematic diagram of a differential bidirectional half-duplex connection method for a channel for transmitting configuration data in an embodiment of the present invention;

圖7是本發明實施例提供的基於Type-C物理接口的數據傳輸方法的流程圖; Figure 7 is a flow chart of a data transmission method based on a Type-C physical interface provided by an embodiment of the present invention;

圖8是曼徹斯特編碼的數據示例。 Figure 8 is an example of Manchester coded data.

以下將參照圖式更詳細地描述本發明。在各個圖式中,相同的元件採用類似的圖式標記來表示。為了清楚起見,圖式中的各個部分沒有按比例繪製。此外,可能未示出某些公知的部分。 The present invention will be described in more detail below with reference to the drawings. In each of the drawings, the same elements are represented by similar drawing marks. For the sake of clarity, the various parts in the drawings are not drawn to scale. In addition, some well-known parts may not be shown.

在介紹本發明各個實施例之前,先介紹Type-C的相關知識。Type-C全稱是USB Type-C。USB是一種串口匯流排標準,也是一種輸入輸出接口的技術規範。USB接口目前存在三種物理規格,分別稱為USB Type-A、USB Type-B和USB Type-C。 Before introducing the various embodiments of the present invention, we first introduce the relevant knowledge of Type-C. The full name of Type-C is USB Type-C. USB is a serial bus standard and also a technical specification for input and output interfaces. There are currently three physical specifications of USB interfaces, namely USB Type-A, USB Type-B and USB Type-C.

如圖1a和1b所示,Type-C接口規範規定了對稱設置的24 個引腳,24對引腳中包括8對差分傳輸線引腳,其中(A2,A3)、(B2,B3)、(A11,A10)和(B11,B10)這4對支持高速差分信號傳輸(小於10Gbps);(A6,A7)和(B6,B7)相容USB2.0設計,用於支持低速差分信號傳輸(速度為480Mbps),而且(B6,B7)必須和(A6,A7)綁定使用,但(A6,A7)可單獨使用;(A8,B8)在USB中規定的輔助引腳,可用於傳輸其他資訊(例如配置資訊),由於它同樣支持低速差分信號傳輸,因此這裡也將其歸類到差分傳輸線引腳。下文將發送端和接收端的差分傳輸線引腳組成的通信通道統稱為差分信號傳輸通道,並將其中的高速差分傳輸線引腳組成的差分信號傳輸通道統稱為高速差分信號傳輸通道,即(A2,A3)、(B2,B3)、(A11,A10)和(B11,B10),而將低速差分傳輸線引腳組成的通信通道統稱為低速差分信號傳輸通道,即(A6,A7)、(B6,B7)和(A8,B8)。 As shown in Figures 1a and 1b, the Type-C interface specification specifies 24 symmetrically arranged pins, including 8 pairs of differential transmission line pins, of which (A2, A3), (B2, B3), (A11, A10) and (B11, B10) support high-speed differential signal transmission (less than 10Gbps); (A6, A7) and (B6, B7) are compatible with USB2.0. Designed to support low-speed differential signal transmission (speed is 480Mbps), and (B6, B7) must be used in conjunction with (A6, A7), but (A6, A7) can be used alone; (A8, B8) is an auxiliary pin specified in USB and can be used to transmit other information (such as configuration information). Since it also supports low-speed differential signal transmission, it is also classified as a differential transmission line pin here. In the following text, the communication channels composed of the differential transmission line pins of the transmitter and the receiver are collectively referred to as differential signal transmission channels, and the differential signal transmission channels composed of high-speed differential transmission line pins are collectively referred to as high-speed differential signal transmission channels, namely (A2, A3), (B2, B3), (A11, A10) and (B11, B10), and the communication channels composed of low-speed differential transmission line pins are collectively referred to as low-speed differential signal transmission channels, namely (A6, A7), (B6, B7) and (A8, B8).

Type-C還包括2個通道配置引腳,其對應圖1a所示的插頭中的A5(CC),B5(VCONN)和圖1b所示的插座中的A5(CC1)和B5(CC2)。A5(CC)通道配置引腳用於功能協商,例如用於判斷設備的插入方向,即正插或者反插。圖2示出了通道配置引腳正插和反插時的示意圖。如圖上所示,正插時,插頭的Type-C接口的CC引腳和插座的CC1引腳電連接,插頭的VCONN引腳和插座的Type-C接口的CC2引腳電連接,反插時插頭的CC引腳和插座的CC2引腳電連接,插頭的VCONN引腳和插座的CC1引腳電連接。因此可通過檢測CC引腳所連接的引腳能夠判斷出Type-C接口的正反插狀態。 Type-C also includes 2 channel configuration pins, which correspond to A5 (CC), B5 (VCONN) in the plug shown in Figure 1a and A5 (CC1) and B5 (CC2) in the socket shown in Figure 1b. The A5 (CC) channel configuration pin is used for functional negotiation, for example, to determine the insertion direction of the device, that is, forward or reverse insertion. Figure 2 shows a schematic diagram of the channel configuration pins when inserted forward and reverse. As shown in the figure, when inserted forward, the CC pin of the Type-C interface of the plug is electrically connected to the CC1 pin of the socket, and the VCONN pin of the plug is electrically connected to the CC2 pin of the Type-C interface of the socket. When inserted reversely, the CC pin of the plug is electrically connected to the CC2 pin of the socket, and the VCONN pin of the plug is electrically connected to the CC1 pin of the socket. Therefore, the forward and reverse insertion status of the Type-C interface can be determined by detecting the pin to which the CC pin is connected.

Type-C接口還包括其他引腳,例如圖上的接地(GND)引腳(A1,B1,A12,B12)和電源(VBUS)引腳(A9,B9,A4,B4)。這些引腳和本發明關聯較小,這裡就不詳細介紹。 The Type-C interface also includes other pins, such as the ground (GND) pins (A1, B1, A12, B12) and power (VBUS) pins (A9, B9, A4, B4) in the figure. These pins are less relevant to the present invention and will not be introduced in detail here.

但本發明實施例提供的數據傳輸系統及方法並不是要簡單遵循USB Type-C規範,而是要靈活運用USB Type-C接口的物理部分(包括引腳、發射和接收電路等)的物理特性重新分配各種信號到 Type-C接口的各個引腳上並根據實際需要調整發送模塊或接收模塊,目的是為了提高通過Type-C物理接口連接的物理設備之間的數據傳輸效率。由此,本發明實施例提供的數據傳輸系統以及方法命名為基於Type-C物理接口的數據傳輸系統及方法。 However, the data transmission system and method provided by the embodiment of the present invention is not to simply follow the USB Type-C specification, but to flexibly use the physical characteristics of the physical part of the USB Type-C interface (including pins, transmitting and receiving circuits, etc.) to reallocate various signals to the various pins of the Type-C interface and adjust the transmitting module or receiving module according to actual needs, in order to improve the data transmission efficiency between physical devices connected through the Type-C physical interface. Therefore, the data transmission system and method provided by the embodiment of the present invention are named as a data transmission system and method based on the Type-C physical interface.

圖3是本發明一實施例的應用場景示意圖。如圖上所示,數據傳輸系統包括第一電子設備100和第二電子設備200。第一電子設備100和第二電子設備200可以是各種終端,例如手機、筆記本、桌上型電腦、虛擬實境(Virtual Reality,VR)等,則本場景是兩個終端通過Type-C線纜300連接到Type-C接口101和201來進行通信。第一電子設備100和第二電子設備200還可以是位於同一個電子設備中的兩個單晶片系統(System on a Chip,SoC),則本場景是兩個單晶片系統通過Type-C線纜300連接到它們各自的Type-C接口101和201進行通信。 FIG3 is a schematic diagram of an application scenario of an embodiment of the present invention. As shown in the figure, the data transmission system includes a first electronic device 100 and a second electronic device 200. The first electronic device 100 and the second electronic device 200 can be various terminals, such as mobile phones, notebooks, desktop computers, virtual reality (VR), etc., and the two terminals are connected to the Type-C interfaces 101 and 201 through the Type-C cable 300 for communication. The first electronic device 100 and the second electronic device 200 can also be two single-chip systems (System on a Chip, SoC) located in the same electronic device, and the two single-chip systems are connected to their respective Type-C interfaces 101 and 201 through the Type-C cable 300 for communication.

第一電子設備100的Type-C接口101和第二電子設備200的Type-C接口201都支持線纜300的正反插,因而當第一電子設備100和第二電子設備200在通信時,需要根據自身和對方的正反插狀態調整數據傳輸,按照現有技術,第一電子設備100或第二電子設備200需要同時獲取自身和對方的正反插狀態(可通過檢測CC引腳所連接的引腳判斷正反插狀態),然後在兩者的正反插狀態不一致時,調整發送或接收的數據,但這種處理方法比較繁瑣。有鑑於此,本發明提供一種基於Type-C物理接口的數據傳輸系統,其結構圖如圖4所示。 The Type-C interface 101 of the first electronic device 100 and the Type-C interface 201 of the second electronic device 200 both support forward and reverse insertion of the cable 300. Therefore, when the first electronic device 100 and the second electronic device 200 are communicating, they need to adjust data transmission according to the forward and reverse insertion status of themselves and the other party. According to the prior art, the first electronic device 100 or the second electronic device 200 needs to obtain the forward and reverse insertion status of itself and the other party at the same time (the forward and reverse insertion status can be determined by detecting the pin connected to the CC pin), and then adjust the sent or received data when the forward and reverse insertion status of the two is inconsistent, but this processing method is relatively cumbersome. In view of this, the present invention provides a data transmission system based on the Type-C physical interface, and its structure diagram is shown in Figure 4.

如圖4所示,第一電子設備100包括發送模塊110和接收模塊120,第二電子設備200包括接收模塊220和發送模塊210。發送模塊110包括數據重排單元1101和正反插一致性判斷單元1102。 As shown in FIG4 , the first electronic device 100 includes a transmitting module 110 and a receiving module 120, and the second electronic device 200 includes a receiving module 220 and a transmitting module 210. The transmitting module 110 includes a data rearrangement unit 1101 and a forward and reverse insertion consistency judgment unit 1102.

正反插一致性判斷單元1102從接收模塊220接收第二電子設備200的數據包,根據數據包的變化情況確定第一電子設備100和 第二電子設備200的正反插狀態是否一致,並將是否一致的結果回饋給數據重排單元1101。數據重排單元1101在第一電子設備100和第二電子設備200的正反插狀態不一致的情況下,對要發送的第一數據至第N數據換位後再通過差分數據傳輸通道發送出去,N大於或等於2。 The forward and reverse plug consistency judgment unit 1102 receives the data packet of the second electronic device 200 from the receiving module 220, determines whether the forward and reverse plug states of the first electronic device 100 and the second electronic device 200 are consistent according to the change of the data packet, and feeds back the result of whether they are consistent to the data rearrangement unit 1101. When the forward and reverse plug states of the first electronic device 100 and the second electronic device 200 are inconsistent, the data rearrangement unit 1101 transposes the first data to the Nth data to be sent and then sends them out through the differential data transmission channel, where N is greater than or equal to 2.

在一些實施例中,正反插一致性判斷單元1102和數據重排單元1101均設置在發送模塊中(例如圖4中的發送模塊110和發送模塊210)中,此時正反插一致性判斷單元1102向接收端的接收模塊發送請求,接收端的接收模塊根據請求返回一個數據包,正反插一致性判斷單元1102根據該數據包的變化情況確定發送端和接收端的正反插狀態是否一致。在另一些實施例中,正反插一致性判斷單元1102和數據重排單元1101均設置在接收模塊(例如圖4所示的接收模塊120和接收模塊220)中,此時正反插一致性判斷單元1102從發送端的發送模塊接收一數據包,並根據該數據包確定發送端和接收端的正反插狀態是否一致。 In some embodiments, the forward and reverse insertion consistency judgment unit 1102 and the data reordering unit 1101 are both set in the sending module (for example, the sending module 110 and the sending module 210 in Figure 4). At this time, the forward and reverse insertion consistency judgment unit 1102 sends a request to the receiving module of the receiving end, and the receiving module of the receiving end returns a data packet according to the request. The forward and reverse insertion consistency judgment unit 1102 determines whether the forward and reverse insertion status of the sending end and the receiving end are consistent according to the changes of the data packet. In other embodiments, the forward and reverse insertion consistency judgment unit 1102 and the data reordering unit 1101 are both arranged in a receiving module (such as the receiving module 120 and the receiving module 220 shown in FIG. 4 ). At this time, the forward and reverse insertion consistency judgment unit 1102 receives a data packet from the sending module of the sending end, and determines whether the forward and reverse insertion states of the sending end and the receiving end are consistent according to the data packet.

用於識別正反插狀態是否一致的數據包可採用特定編碼方式。在一個實施例中,選用曼徹斯特編碼(Manchester)的編碼方式向接收端發送該數據包。曼徹斯特編碼是採用位準跳變來表示1或0的編碼方法,它的每個碼元均用兩個位準信號表示。舉例說明,如圖8所示,ch是曼徹斯特編碼的數據示例,Clock表示對應的時鐘信號。根據圖8所示,發送端先發送至少16個HL(H和L分別表示高位準和低位準,16個HL表示16個0),緊接著發送4個比特的HHHHLLLL,正反插一致性判斷單元1102判斷接收到的數據,如果判斷收到16個以上的HL之後緊跟著HHHHLLLL,則說明發送端和接收端正反插狀態一致;若接收到16個以上的LH緊跟著LLLLHHHH,則說明發送端和接收端的正反插狀態不一致。發送完用於識別正反插狀態是否一致的數據包之後,可接著發送配置數據,配置數據發送完,可再發 送4個比特的HHHHLLLL作為結束。 The data packet used to identify whether the forward and reverse insertion states are consistent can adopt a specific coding method. In one embodiment, the Manchester coding method is selected to send the data packet to the receiving end. Manchester coding is a coding method that uses level jumps to represent 1 or 0, and each of its code elements is represented by two level signals. For example, as shown in Figure 8, ch is an example of Manchester coded data, and Clock represents the corresponding clock signal. As shown in FIG8 , the transmitter first sends at least 16 HLs (H and L represent high level and low level respectively, and 16 HLs represent 16 zeros), followed by 4 bits of HHHHLLLL. The forward and reverse insertion consistency judgment unit 1102 judges the received data. If it is judged that more than 16 HLs are received followed by HHHHLLLL, it means that the forward and reverse insertion states of the transmitter and the receiver are consistent; if more than 16 LHs are received followed by LLLLHHHH, it means that the forward and reverse insertion states of the transmitter and the receiver are inconsistent. After sending the data packet used to identify whether the forward and reverse insertion states are consistent, the configuration data can be sent. After the configuration data is sent, 4 bits of HHHHLLLL can be sent as the end.

繼續參考圖4。發送模塊110和接收模塊220之間通過Type-C線纜連接形成多個差分信號傳輸通道。其中(Aux+,Aux-)表示傳輸配置數據的通道,上述實施例中的提及的用於識別正反插狀態是否一致的數據包和隨後的配置數據都可使用(Aux+,Aux-)通道。接收端會根據數據包判斷發送端和接收端的正反插狀態是否一致,如果一致,則接收到的配置數據可直接使用,如果不一致,則接收到的配置數據需要取反後再使用。(D0+,D0-)至(Dn+,Dn-)表示傳輸數據D0到Dn的通道,數據重排單元1101在發送端和接收端的正反插狀態一致的情況下,則正常發送數據D0到Dn的差分信號,例如採用D0+通道發送D0+信號,D0-通道發送D0-信號,在不一致的情況下,D0和D1換位後發送出去,即D0-通道發送D1-信號,D0+通道發送D1+信號,D1-通道發送D0-信號,D1+通道發送D0+信號。(Clk+,Clk-)表示發送時鐘信號的通道,時鐘信號採用旋轉180度的對側兩對差分信號傳輸通道進行傳輸,以便於接收端無論正反插狀態如何,都能夠得到正確的時鐘信號。 Continue to refer to Figure 4. The transmission module 110 and the receiving module 220 are connected by Type-C cables to form multiple differential signal transmission channels. Among them, (Aux+, Aux-) represents the channel for transmitting configuration data. The data packet used to identify whether the forward and reverse plug-in status is consistent and the subsequent configuration data mentioned in the above embodiment can use the (Aux+, Aux-) channel. The receiving end will determine whether the forward and reverse plug-in status of the transmitting end and the receiving end is consistent based on the data packet. If it is consistent, the received configuration data can be used directly. If it is inconsistent, the received configuration data needs to be inverted before use. (D0+, D0-) to (Dn+, Dn-) represent the channels for transmitting data D0 to Dn. When the forward and reverse insertion states of the transmitting and receiving ends are consistent, the data rearrangement unit 1101 normally sends the differential signal of data D0 to Dn, for example, the D0+ channel is used to send the D0+ signal, and the D0- channel is used to send the D0- signal. In the case of inconsistency, D0 and D1 are sent after being swapped, that is, the D0- channel sends the D1- signal, the D0+ channel sends the D1+ signal, the D1- channel sends the D0- signal, and the D1+ channel sends the D0+ signal. (Clk+, Clk-) indicates the channel for sending the clock signal. The clock signal is transmitted using two pairs of differential signal transmission channels on opposite sides rotated 180 degrees, so that the receiving end can get the correct clock signal regardless of the forward or reverse insertion status.

圖5a和5b是本發明實施例提供的高速模式下的Type-C物理接口的信號引腳分配示意圖。圖5c和5d是本發明實施例提供的低速模式下的Type-C物理接口的信號引腳分配示意圖。圖5e是本發明實施例提供的低速模式下的又一Type-C物理接口的信號引腳分配示意圖。 Figures 5a and 5b are schematic diagrams of signal pin allocation of the Type-C physical interface in high-speed mode provided by an embodiment of the present invention. Figures 5c and 5d are schematic diagrams of signal pin allocation of the Type-C physical interface in low-speed mode provided by an embodiment of the present invention. Figure 5e is a schematic diagram of signal pin allocation of another Type-C physical interface in low-speed mode provided by an embodiment of the present invention.

在高速模式下,業務數據和時鐘信號只能採用差分高速傳輸通道進行傳輸,而配置數據則可以採用差分低速傳輸通道進行傳輸。據此,參見圖5a,分配(A2,A3)和(B2,B3)分別傳輸同一個時鐘信號Clk,與上文的(Clk+,Clk-)對應,(A8,B8)傳輸配置數據,對應於上文的(Aux+,Aux-),(A11,A10)和(B11,B10)傳輸業務數據D0和D1,對應於上文的(D0+,D0-)至(D1+,D1-)。在圖5b中,分配(A11,A10)和(B11,B10) 分別傳輸同一個時鐘信號Clk,(A8,B8)依舊傳輸配置數據,(A2,A3)和(B2,B3)傳輸業務數據D1和D0。 In high-speed mode, service data and clock signals can only be transmitted using differential high-speed transmission channels, while configuration data can be transmitted using differential low-speed transmission channels. Accordingly, referring to Figure 5a, (A2, A3) and (B2, B3) are assigned to transmit the same clock signal Clk, corresponding to (Clk+, Clk-) above, (A8, B8) transmit configuration data, corresponding to (Aux+, Aux-) above, (A11, A10) and (B11, B10) transmit service data D0 and D1, corresponding to (D0+, D0-) to (D1+, D1-) above. In Figure 5b, (A11, A10) and (B11, B10) are assigned to transmit the same clock signal Clk respectively, (A8, B8) still transmits configuration data, (A2, A3) and (B2, B3) transmit business data D1 and D0.

在低速模式下,業務數據、時鐘信號和配置數據可任意選擇低速傳輸通道進行傳輸。據此,參見圖5c,分配(A2,A3)、(B2,B3)、(A11,A10)和(B11,B10)傳輸業務數據D1、D3、D2和D0,(A6,A7)和(B6,B7)傳輸時鐘信號Clk,(A8,B8)傳輸配置數據,在圖5d中,(A6,A7)和(B6,B7)只能傳輸一種業務數據D1,而(A2,A3)和(B2,B3)傳輸時鐘信號Clk。 In low-speed mode, business data, clock signals and configuration data can arbitrarily select low-speed transmission channels for transmission. Accordingly, referring to Figure 5c, (A2, A3), (B2, B3), (A11, A10) and (B11, B10) are allocated to transmit business data D1, D3, D2 and D0, (A6, A7) and (B6, B7) transmit clock signals Clk, (A8, B8) transmit configuration data, and in Figure 5d, (A6, A7) and (B6, B7) can only transmit one type of business data D1, while (A2, A3) and (B2, B3) transmit clock signals Clk.

圖5e是本發明實施例的低速模式下的又一Type-C物理接口的信號引腳分配示意圖。在圖5e中,(A10,A11)和(B10,B11)均發送同一業務數據D0,(A2,A3)和(B2,B2)均發送同一業務數據D1。採用這種信號引腳分配方案的優點在於,即使發送端和接收端的正反插狀態不一致,發送端也可直接發送業務數據D0和D1,無需對D0和D1換位後再發送;或者接收端可直接使用接收到的數據D0和D1,無需對接收到的數據D0和D1換位後再使用。參考圖4所示,也即,這種情況下,可去掉數據重排單元1101。 FIG5e is a schematic diagram of signal pin allocation of another Type-C physical interface in low-speed mode of an embodiment of the present invention. In FIG5e, (A10, A11) and (B10, B11) both send the same business data D0, and (A2, A3) and (B2, B2) both send the same business data D1. The advantage of adopting this signal pin allocation scheme is that even if the forward and reverse insertion states of the sending end and the receiving end are inconsistent, the sending end can directly send business data D0 and D1 without transposing D0 and D1; or the receiving end can directly use the received data D0 and D1 without transposing the received data D0 and D1. As shown in FIG4, that is, in this case, the data reordering unit 1101 can be removed.

圖6是本發明實施例提供的用於傳輸配置數據的通道的差分雙向半雙工連接方式的示意圖。其中TX表示發射電路,RX表示接收電路,R1至R4為下拉電阻。與常規雙向差分的區別在於,配置差分信號線使用下拉電阻將電氣信號下拉到低位準,以減少正反插對信號的影響,後續通過通信協定(而不是電氣信號)來識別正反插狀態。 FIG6 is a schematic diagram of a differential bidirectional half-duplex connection mode for transmitting configuration data provided by an embodiment of the present invention. TX represents a transmitting circuit, RX represents a receiving circuit, and R1 to R4 are pull-down resistors. The difference from conventional bidirectional differential is that the configuration differential signal line uses a pull-down resistor to pull the electrical signal down to a low level to reduce the impact of forward and reverse insertion on the signal, and the forward and reverse insertion status is subsequently identified through the communication protocol (rather than the electrical signal).

相應地,本發明實施例還提供一種系統,該系統由上述各個實施例提供的電子設備級聯而成。此外,本發明實施例還提供一種基於Type-C物理接口的數據傳輸方法,該數據傳輸方法應用於例如圖4中的第一電子設備的發送模塊中,第一電子設備包括第一Type-C物理接口,第二電子設備包括第二Type-C物理接口,第一Type-C物理 接口通過Type-C線纜連接到第二Type-C物理接口,並由此形成多對差分信號傳輸通道,流程圖如圖7所示。 Correspondingly, the embodiment of the present invention also provides a system, which is formed by cascading the electronic devices provided by the above embodiments. In addition, the embodiment of the present invention also provides a data transmission method based on the Type-C physical interface, which is applied to the transmission module of the first electronic device in Figure 4, for example, the first electronic device includes a first Type-C physical interface, the second electronic device includes a second Type-C physical interface, the first Type-C physical interface is connected to the second Type-C physical interface through a Type-C cable, and thus multiple pairs of differential signal transmission channels are formed, and the flow chart is shown in Figure 7.

在步驟S701中,從多對差分信號傳輸通道中的第一對差分信號傳輸通道接收第二電子設備發送的數據包。 In step S701, a data packet sent by a second electronic device is received from a first pair of differential signal transmission channels among multiple pairs of differential signal transmission channels.

在步驟S702中,通過數據包的變化情況判斷第一Type-C物理接口和第二Type-C物理接口的正反插狀態是否一致。如果不一致,則執行步驟S703,如果一致,則執行步驟S704。 In step S702, the forward and reverse insertion states of the first Type-C physical interface and the second Type-C physical interface are determined to be consistent through the change of the data packet. If they are inconsistent, step S703 is executed; if they are consistent, step S704 is executed.

在步驟S703中,則將第一數據至第N數據各自的正負差分信號換位後通過第二對差分信號傳輸通道至第N+1對差分數據傳輸通道發送出去,N大於或等於2。 In step S703, the positive and negative differential signals of the first data to the Nth data are transposed and sent out through the second pair of differential signal transmission channels to the N+1th pair of differential data transmission channels, where N is greater than or equal to 2.

在步驟S704中,通過第二對差分信號傳輸通道至第N+1對差分數據傳輸通道發送出去,N大於或等於2。 In step S704, the data is sent through the second pair of differential signal transmission channels to the N+1th pair of differential data transmission channels, where N is greater than or equal to 2.

在一些實施例中,數據包的每個碼元使用兩個位準信號表示,根據數據包的變化情況確定第一Type-C物理接口和所述第二Type-C物理接口的正反插狀態是否一致包括:對於數據包,如果接收到的位準序列與發送的位準序列相反,則確定第一Type-C物理接口和第二Type-C物理接口的正反插狀態不一致。 In some embodiments, each codeword of the data packet is represented by two level signals, and determining whether the forward and reverse insertion states of the first Type-C physical interface and the second Type-C physical interface are consistent according to the change of the data packet includes: for the data packet, if the received level sequence is opposite to the sent level sequence, then determining that the forward and reverse insertion states of the first Type-C physical interface and the second Type-C physical interface are inconsistent.

在一些實施例中,上述數據傳輸方法還包括:採用第N+2對差分信號傳輸通道和第N+3對差分信號傳輸通道分別發送同一時鐘信號,第N+2對差分信號傳輸通道和所述第N+3對差分信號傳輸通道的引腳是位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳。 In some embodiments, the data transmission method further includes: using the N+2 pair of differential signal transmission channels and the N+3 pair of differential signal transmission channels to respectively send the same clock signal, and the pins of the N+2 pair of differential signal transmission channels and the N+3 pair of differential signal transmission channels are two pairs of differential pins located on both sides of the Type-C physical interface and rotated 180 degrees to be symmetrical.

參考上文關於圖5a至圖5d的描述,對於上述實施例,第一對差分信號傳輸通道的引腳可以為(A8,B8),在高速模式下,第二對差分信號傳輸通道至第N+1對差分數據傳輸通道的引腳可以是(A2,A3)、(B2,B3)、(A11,A10)和(B11,B10)中的位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳,第N+2對差分信號傳輸通 道和第N+3對差分信號傳輸通道的引腳可以是(A2,A3)、(B2,B3)、(A11,A10)和(B11,B10)中的位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳;在低速模式下,第二對差分信號傳輸通道至第N+1對差分數據傳輸通道的引腳是(A2,A3)、(B2,B3)、(A11,A10)和(B11,B10),第N+2對差分信號傳輸通道和第N+3對差分信號傳輸通道的引腳是(A6,A7)和(B6,B7)。 Referring to the description of FIG. 5a to FIG. 5d above, for the above embodiment, the pins of the first pair of differential signal transmission channels may be (A8, B8), and in high-speed mode, the pins of the second pair of differential signal transmission channels to the N+1 pair of differential data transmission channels may be two pairs of differential pins (A2, A3), (B2, B3), (A11, A10) and (B11, B10) located on both sides of the Type-C physical interface and rotated 180 degrees symmetrically, and the pins of the N+2 pair of differential signal transmission channels and the N+3 pair of differential signal transmission channels may be There are two pairs of differential pins (A2, A3), (B2, B3), (A11, A10) and (B11, B10) located on both sides of the Type-C physical interface and rotated 180 degrees symmetrically; in low-speed mode, the pins from the second pair of differential signal transmission channels to the N+1 pair of differential data transmission channels are (A2, A3), (B2, B3), (A11, A10) and (B11, B10), and the pins for the N+2 pair of differential signal transmission channels and the N+3 pair of differential signal transmission channels are (A6, A7) and (B6, B7).

綜上所述,本發明實施例提供的數據傳輸方法,通過接收到的數據包確定兩個電子設備的Type-C物理接口的正反插狀態是否一致,並在不一致的情況下,在發送端對要發送的差分信號換位後再通過相應的差分信號傳輸通道發送出去,或者,在接收端對接收到的差分信號進行換位後再使用。如此處理簡化了兩個電子設備正反插狀態的識別過程。此外,本發明實施例還提供多種Type-C接口的引腳信號分配方案。 In summary, the data transmission method provided by the embodiment of the present invention determines whether the forward and reverse plug-in states of the Type-C physical interfaces of two electronic devices are consistent through the received data packets, and in the case of inconsistency, the differential signal to be sent is transposed at the transmitting end and then sent through the corresponding differential signal transmission channel, or the received differential signal is transposed at the receiving end before being used. Such processing simplifies the process of identifying the forward and reverse plug-in states of two electronic devices. In addition, the embodiment of the present invention also provides a variety of pin signal allocation schemes for Type-C interfaces.

本發明實施例雖然以較佳實施例公開如上,但其並不是用來限定請求項,任何本領域技術人員在不脫離本發明的精神和範圍內,都可以做出可能的變動和修改,因此本發明的保護範圍應當以本發明請求項所界定的範圍為準。 Although the embodiments of the present invention are disclosed as the preferred embodiments above, they are not used to limit the claims. Any technician in this field can make possible changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be based on the scope defined by the claims of the present invention.

對於本領域技術人員而言,本發明可以有各種改動和變化。凡在本發明的精神和原理之內所作的任何修改、等同替換、改進等,均應包含在本發明的保護範圍之內。 For technicians in this field, the present invention can be modified and changed in various ways. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

(Aux+,Aux-):傳輸配置數據的通道 (Aux+, Aux-): Channel for transmitting configuration data

(Clk+,Clk-):發送時鐘信號的通道 (Clk+,Clk-): Channel for sending clock signals

(D0+,D0-),…,(Dn+,Dn-):傳輸數據D0到Dn的通道 (D0+, D0-),…, (Dn+, Dn-): Channel for transmitting data from D0 to Dn

100:第一電子設備 100:First Electronic Equipment

110,210:發送模塊 110,210: Send module

1101:數據重排單元 1101: Data reordering unit

1102:正反插一致性判斷單元 1102: Forward and reverse insertion consistency judgment unit

120,220:接收模塊 120,220: receiving module

200:第二電子設備 200: Second electronic equipment

Aux:配置數據 Aux: configuration data

Clk:時鐘信號 Clk: clock signal

D,D0,D1,D0/1,Dn:數據 D, D0, D1, D0/1, Dn: data

Claims (19)

一種基於Type-C物理接口的數據傳輸方法,應用於第一電子設備的發送模塊,所述第一電子設備包括第一Type-C物理接口,第二電子設備包括第二Type-C物理接口,所述第一Type-C物理接口通過Type-C線纜連接到所述第二Type-C物理接口,並由此形成多對差分信號傳輸通道,所述數據傳輸方法包括:從所述多對差分信號傳輸通道中的第一對差分信號傳輸通道接收所述第二電子設備發送的數據包;根據所述數據包的變化情況確定所述第一Type-C物理接口和所述第二Type-C物理接口的正反插狀態是否一致;如果所述第一Type-C物理接口和所述第二Type-C物理接口的正反插狀態不一致,則將第一數據至第N數據換位後通過第二對差分信號傳輸通道至第N+1對差分信號傳輸通道發送出去,N為大於或等於2的整數,其中,所述根據所述數據包的變化情況確定所述第一Type-C物理接口和所述第二Type-C物理接口的正反插狀態是否一致包括:對於所述數據包,如果接收到的位準序列與發送的位準序列相反,則確定所述第一Type-C物理接口和所述第二Type-C物理接口的正反插狀態不一致。 A data transmission method based on a Type-C physical interface is applied to a sending module of a first electronic device, wherein the first electronic device includes a first Type-C physical interface, and a second electronic device includes a second Type-C physical interface, wherein the first Type-C physical interface is connected to the second Type-C physical interface through a Type-C cable, thereby forming multiple pairs of differential signal transmission channels, and the data transmission method includes: receiving a data packet sent by the second electronic device from a first pair of differential signal transmission channels among the multiple pairs of differential signal transmission channels; determining the positive and negative positions of the first Type-C physical interface and the second Type-C physical interface according to the change of the data packet; If the forward and reverse plug-in states of the first Type-C physical interface and the second Type-C physical interface are inconsistent, the first data to the Nth data are transposed and sent through the second pair of differential signal transmission channels to the N+1th pair of differential signal transmission channels, where N is an integer greater than or equal to 2, wherein determining whether the forward and reverse plug-in states of the first Type-C physical interface and the second Type-C physical interface are consistent according to the change of the data packet includes: for the data packet, if the received bit sequence is opposite to the sent bit sequence, then determining that the forward and reverse plug-in states of the first Type-C physical interface and the second Type-C physical interface are inconsistent. 如請求項1所述的數據傳輸方法,還包括:通過所述第一對差分信號傳輸通道進行配置數據的傳輸,所述配置數據在所述第一Type-C物理接口和所述第二Type-C物理接口的正反插狀態不一致的情況下,取反後使用。 The data transmission method as described in claim 1 further includes: transmitting configuration data through the first pair of differential signal transmission channels, and the configuration data is inverted and used when the forward and reverse insertion states of the first Type-C physical interface and the second Type-C physical interface are inconsistent. 如請求項1所述的數據傳輸方法,還包括:採用第N+2對差分信號傳輸通道和第N+3對差分信號傳輸通道分別發送同一時鐘信號,所述第N+2對差分信號傳輸通道和所述第N+3對差分信號傳輸通道的引腳是位於Type-C物理接口兩側且旋轉180度對稱 的兩對差分引腳。 The data transmission method as described in claim 1 further includes: using the N+2 pair of differential signal transmission channels and the N+3 pair of differential signal transmission channels to respectively send the same clock signal, and the pins of the N+2 pair of differential signal transmission channels and the N+3 pair of differential signal transmission channels are two pairs of differential pins located on both sides of the Type-C physical interface and rotated 180 degrees to be symmetrical. 如請求項1所述的數據傳輸方法,其中,所述第一對差分信號傳輸通道的引腳為(A8,B8)。 The data transmission method as described in claim 1, wherein the pins of the first pair of differential signal transmission channels are (A8, B8). 如請求項1所述的數據傳輸方法,其中,在高速模式下,所述第二對差分信號傳輸通道至所述第N+1對差分數據傳輸通道的引腳是(A2,A3)、(B2,B3)、(A11,A10)和(B11,B10)中的位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳。 The data transmission method as described in claim 1, wherein, in high-speed mode, the pins from the second pair of differential signal transmission channels to the N+1th pair of differential data transmission channels are two pairs of differential pins (A2, A3), (B2, B3), (A11, A10) and (B11, B10) located on both sides of the Type-C physical interface and rotated 180 degrees to be symmetrical. 如請求項3所述的數據傳輸方法,其中,在高速模式下,所述第N+2對差分信號傳輸通道和所述第N+3對差分信號傳輸通道的引腳是(A2,A3)、(B2,B3)、(A11,A10)和(B11,B10)中的位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳。 The data transmission method as described in claim 3, wherein, in high-speed mode, the pins of the N+2th pair of differential signal transmission channels and the N+3th pair of differential signal transmission channels are two pairs of differential pins (A2, A3), (B2, B3), (A11, A10) and (B11, B10) located on both sides of the Type-C physical interface and rotated 180 degrees to be symmetrical. 如請求項1所述的數據傳輸方法,其中,在低速模式下,所述第二對差分信號傳輸通道至所述第N+1對差分數據傳輸通道的引腳是(A2,A3)、(B2,B3)、(A11,A10)、(B11,B10)、(A6,A7)和(B6,B7),其中(A6,A7)和(B6,B7)綁定使用。 The data transmission method as described in claim 1, wherein, in low-speed mode, the pins from the second pair of differential signal transmission channels to the N+1th pair of differential data transmission channels are (A2, A3), (B2, B3), (A11, A10), (B11, B10), (A6, A7) and (B6, B7), wherein (A6, A7) and (B6, B7) are bound for use. 如請求項3所述的數據傳輸方法,其中,在低速模式下,所述第N+2對差分信號傳輸通道和第N+3對差分信號傳輸通道的引腳是(A2,A3)、(B2,B3)、(A11,A10)、(B11,B10)、(A6,A7)和(B6,B7)中的位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳,(A6,A7)和(B6,B7)綁定使用。 The data transmission method as described in claim 3, wherein, in low-speed mode, the pins of the N+2 pair of differential signal transmission channels and the N+3 pair of differential signal transmission channels are two pairs of differential pins located on both sides of the Type-C physical interface and rotated 180 degrees symmetrically among (A2, A3), (B2, B3), (A11, A10), (B11, B10), (A6, A7) and (B6, B7), and (A6, A7) and (B6, B7) are bound for use. 一種基於Type-C物理接口的數據傳輸方法,應用於第二電子設備的接收模塊,第一電子設備包括第一Type-C物理接口,所述第二電子設備包括第二Type-C物理接口,所述第一Type-C物理接口通過Type-C線纜連接到所述第二Type-C物理接口,並由此形成多對差分信號傳輸通道,所述方法包括:從所述多對差分信號傳輸通道中的第一對差分信號傳輸通道接收所述第一電子設備發送的數據包; 根據所述數據包的變化情況確定所述第一Type-C物理接口和所述第二Type-C物理接口的正反插狀態是否一致;如果所述第一Type-C物理接口和所述第二Type-C物理接口的正反插狀態不一致,則對通過第二對差分信號傳輸通道至第N+1對差分數據傳輸通道接收到的第一數據至第N數據進行換位處理,N為大於或等於2的整數,其中,所述根據所述數據包的變化情況確定所述第一Type-C物理接口和所述第二Type-C物理接口的正反插狀態是否一致包括:對於所述數據包,如果接收到的位準序列與發送的位準序列相反,則確定所述第一Type-C物理接口和所述第二Type-C物理接口的正反插狀態不一致。 A data transmission method based on a Type-C physical interface is applied to a receiving module of a second electronic device. The first electronic device includes a first Type-C physical interface, and the second electronic device includes a second Type-C physical interface. The first Type-C physical interface is connected to the second Type-C physical interface through a Type-C cable, thereby forming multiple pairs of differential signal transmission channels. The method includes: receiving a data packet sent by the first electronic device from a first pair of differential signal transmission channels among the multiple pairs of differential signal transmission channels; and determining the forward and reverse insertion status of the first Type-C physical interface and the second Type-C physical interface according to the change of the data packet. If the forward and reverse plugging states of the first Type-C physical interface and the second Type-C physical interface are inconsistent, the first data to the Nth data received through the second pair of differential signal transmission channels to the N+1th pair of differential data transmission channels are transposed, where N is an integer greater than or equal to 2, wherein determining whether the forward and reverse plugging states of the first Type-C physical interface and the second Type-C physical interface are consistent according to the change of the data packet includes: for the data packet, if the received bit sequence is opposite to the sent bit sequence, then determining that the forward and reverse plugging states of the first Type-C physical interface and the second Type-C physical interface are inconsistent. 如請求項9所述的數據傳輸方法,還包括:採用第N+2對差分信號傳輸通道和第N+3對差分信號傳輸通道分別發送同一時鐘信號,所述第N+2對差分信號傳輸通道和所述第N+3對差分信號傳輸通道的引腳是位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳。 The data transmission method as described in claim 9 further includes: using the N+2 pair of differential signal transmission channels and the N+3 pair of differential signal transmission channels to respectively send the same clock signal, and the pins of the N+2 pair of differential signal transmission channels and the N+3 pair of differential signal transmission channels are two pairs of differential pins located on both sides of the Type-C physical interface and rotated 180 degrees to be symmetrical. 一種電子設備,所述電子設備包括第一Type-C物理接口,所述第一Type-C物理接口通過Type-C線纜連接到另一電子設備的第二Type-C物理接口,並由此形成多對差分信號傳輸通道,所述電子設備中包含發送模塊,所述發送模塊包括:正反插一致性判斷單元,用於從所述多對差分信號傳輸通道中的第一對差分信號傳輸通道接收所述另一電子設備的數據包,對於所述數據包,如果接收到的位準序列與發送的位準序列相反,則確定所述電子設備和另一電子設備的正反插狀態不一致;數據重排單元,用於在所述電子設備和另一電子設備的正反插狀態不一致的情況下,將第一數據至第N數據換位後通過第二對差分信號傳輸通道至第N+1對差分信號傳輸通道發送出去,N為大於或 等於2的整數。 An electronic device, comprising a first Type-C physical interface, wherein the first Type-C physical interface is connected to a second Type-C physical interface of another electronic device through a Type-C cable, thereby forming multiple pairs of differential signal transmission channels, wherein the electronic device comprises a sending module, wherein the sending module comprises: a forward and reverse insertion consistency judgment unit, configured to receive the first pair of differential signal transmission channels of the multiple pairs of differential signal transmission channels from the second pair of differential signal transmission channels of the other electronic device; A data packet of an electronic device, for which, if the received bit sequence is opposite to the sent bit sequence, it is determined that the forward and reverse plugging states of the electronic device and another electronic device are inconsistent; a data rearrangement unit, for, when the forward and reverse plugging states of the electronic device and another electronic device are inconsistent, transposing the first data to the Nth data and sending them out through the second pair of differential signal transmission channels to the N+1th pair of differential signal transmission channels, where N is an integer greater than or equal to 2. 如請求項11所述的電子設備,還包括:採用第N+2對差分信號傳輸通道和第N+3對差分信號傳輸通道分別發送同一時鐘信號,所述第N+2對差分信號傳輸通道和所述第N+3對差分信號傳輸通道的引腳是位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳。 The electronic device as described in claim 11 further includes: using the N+2 pair of differential signal transmission channels and the N+3 pair of differential signal transmission channels to respectively send the same clock signal, and the pins of the N+2 pair of differential signal transmission channels and the N+3 pair of differential signal transmission channels are two pairs of differential pins located on both sides of the Type-C physical interface and rotated 180 degrees to be symmetrical. 如請求項11所述的電子設備,其中,所述第一對差分信號傳輸通道的引腳為(A8,B8)。 An electronic device as described in claim 11, wherein the pins of the first pair of differential signal transmission channels are (A8, B8). 如請求項11所述的電子設備,其中,在高速模式下,所述第二對差分信號傳輸通道至第N+1對差分信號傳輸通道的引腳是(A2,A3)、(B2,B3)、(A11,A10)和(B11,B10)中的位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳。 An electronic device as described in claim 11, wherein, in high-speed mode, the pins from the second pair of differential signal transmission channels to the N+1th pair of differential signal transmission channels are two pairs of differential pins (A2, A3), (B2, B3), (A11, A10) and (B11, B10) located on both sides of the Type-C physical interface and rotated 180 degrees to be symmetrical. 如請求項12所述的電子設備,其中,在高速模式下,所述第N+2對差分信號傳輸通道和第N+3對差分信號傳輸通道的引腳是(A2,A3)、(B2,B3)、(A11,A10)和(B11,B10)中的位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳。 An electronic device as described in claim 12, wherein, in high-speed mode, the pins of the N+2nd pair of differential signal transmission channels and the N+3rd pair of differential signal transmission channels are two pairs of differential pins (A2, A3), (B2, B3), (A11, A10) and (B11, B10) located on both sides of the Type-C physical interface and rotated 180 degrees to be symmetrical. 如請求項11所述的電子設備,其中,在低速模式下,所述第二對差分信號傳輸通道至第N+1對差分信號傳輸通道的引腳是(A2,A3)、(B2,B3)、(A11,A10)、(B11,B10)、(A6,A7)和(B6,B7),其中(A6,A7)和(B6,B7)必須綁定使用。 An electronic device as claimed in claim 11, wherein, in low-speed mode, the pins from the second pair of differential signal transmission channels to the N+1th pair of differential signal transmission channels are (A2, A3), (B2, B3), (A11, A10), (B11, B10), (A6, A7) and (B6, B7), wherein (A6, A7) and (B6, B7) must be bound for use. 如請求項12所述的電子設備,其中,在低速模式下,所述第N+2對差分信號傳輸通道和第N+3對差分信號傳輸通道的引腳是(A2,A3)、(B2,B3)、(A11,A10)、(B11,B10)、(A6,A7)和(B6,B7)中的位於Type-C物理接口兩側且旋轉180度對稱的兩對差分引腳。 An electronic device as described in claim 12, wherein, in low-speed mode, the pins of the N+2nd pair of differential signal transmission channels and the N+3rd pair of differential signal transmission channels are two pairs of differential pins located on both sides of the Type-C physical interface and rotated 180 degrees to be symmetrical, among (A2, A3), (B2, B3), (A11, A10), (B11, B10), (A6, A7) and (B6, B7). 一種電子設備,所述電子設備包括第一Type-C物理接口,所述第一Type-C物理接口通過Type-C線纜連接到另一電子設備的第二Type-C物理接口,並由此形成多對差分信號傳輸通道,所 述電子設備中包含接收模塊,所述接收模塊包括:正反插一致性判斷單元,用於從所述多對差分信號傳輸通道中的第一對差分信號傳輸通道接收所述另一電子設備的數據包,對於所述數據包,如果接收到的位準序列與發送的位準序列相反,則確定所述電子設備和另一電子設備的正反插狀態不一致;數據重排單元,用於在所述電子設備和所述另一電子設備的正反插狀態不一致的情況下,對通過所述第二對差分信號傳輸通道至第N+1對差分數據傳輸通道接收到的第一數據至第N數據進行換位處理,N為大於或等於2的整數。 An electronic device, comprising a first Type-C physical interface, the first Type-C physical interface is connected to a second Type-C physical interface of another electronic device through a Type-C cable, thereby forming multiple pairs of differential signal transmission channels, the electronic device comprises a receiving module, the receiving module comprises: a forward and reverse insertion consistency judgment unit, used to receive the first pair of differential signal transmission channels of the multiple pairs of differential signal transmission channels from the other electronic device The electronic device receives a data packet of the device, and if the received bit sequence is opposite to the sent bit sequence for the data packet, it is determined that the forward and reverse insertion states of the electronic device and the other electronic device are inconsistent; the data reordering unit is used to perform bit-swapping processing on the first data to the Nth data received through the second pair of differential signal transmission channels to the N+1th pair of differential data transmission channels when the forward and reverse insertion states of the electronic device and the other electronic device are inconsistent, where N is an integer greater than or equal to 2. 一種數據傳輸系統,所述數據傳輸系統由請求項11至18任一項所述的電子設備級聯而成。 A data transmission system, wherein the data transmission system is formed by cascading the electronic devices described in any one of claims 11 to 18.
TW112122240A 2023-03-21 2023-06-14 Type-c physical interface based data transfer method and electronic device TWI845345B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2023102910015 2023-03-21
CN202310291001.5A CN115994109B (en) 2023-03-21 2023-03-21 Data transmission method based on Type-C physical interface and electronic equipment

Publications (2)

Publication Number Publication Date
TW202340968A TW202340968A (en) 2023-10-16
TWI845345B true TWI845345B (en) 2024-06-11

Family

ID=85993868

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112122240A TWI845345B (en) 2023-03-21 2023-06-14 Type-c physical interface based data transfer method and electronic device

Country Status (2)

Country Link
CN (1) CN115994109B (en)
TW (1) TWI845345B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107665177A (en) * 2017-11-23 2018-02-06 立讯精密工业(滁州)有限公司 USB switching techniques based on USB Type C frameworks
CN111651393A (en) * 2020-06-24 2020-09-11 广西世纪创新显示电子有限公司 TYPE-C interface circuit
TW202103017A (en) * 2019-07-11 2021-01-16 緯創資通股份有限公司 Detection method for usb type-c connector and dual-role-port device
CN113676572A (en) * 2021-08-04 2021-11-19 维沃移动通信有限公司 Interface circuit and electronic device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10339089B2 (en) * 2015-10-28 2019-07-02 Qualcomm Incorporated Enhanced communications over a universal serial bus (USB) type-C cable
CN106874233B (en) * 2017-02-16 2018-10-19 维沃移动通信有限公司 A kind of Type-C interface control circuits, control method and mobile terminal
CN109660913B (en) * 2017-10-12 2021-01-26 中兴通讯股份有限公司 Terminal, terminal peripheral, signal transmission system and signal sending and receiving method
JP6645671B1 (en) * 2019-02-08 2020-02-14 Necプラットフォームズ株式会社 Type-C interface circuit, control method thereof, and CC communication monitoring program
CN112527712A (en) * 2019-09-17 2021-03-19 深圳市中兴微电子技术有限公司 USB3.0Type C interface control method, device and medium
CN111930657A (en) * 2020-05-29 2020-11-13 深圳市广和通无线股份有限公司 Connection circuit, control method of connection circuit, and connection device
WO2022032480A1 (en) * 2020-08-11 2022-02-17 深圳市大疆创新科技有限公司 Signal transmission method, apparatus and system based on type-c interface, and storage medium
CN211742107U (en) * 2020-09-09 2020-10-23 武汉精立电子技术有限公司 USB TYPE-C-based bidirectional transmission circuit and electronic equipment
CN113945869B (en) * 2021-12-20 2022-03-15 深圳佑驾创新科技有限公司 Positive and negative connection identification circuit, method, equipment and system of interface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107665177A (en) * 2017-11-23 2018-02-06 立讯精密工业(滁州)有限公司 USB switching techniques based on USB Type C frameworks
TW202103017A (en) * 2019-07-11 2021-01-16 緯創資通股份有限公司 Detection method for usb type-c connector and dual-role-port device
CN111651393A (en) * 2020-06-24 2020-09-11 广西世纪创新显示电子有限公司 TYPE-C interface circuit
CN113676572A (en) * 2021-08-04 2021-11-19 维沃移动通信有限公司 Interface circuit and electronic device

Also Published As

Publication number Publication date
CN115994109A (en) 2023-04-21
CN115994109B (en) 2023-07-21
TW202340968A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
JP6150886B2 (en) Multiprotocol tunneling using time-division operation
US9641311B2 (en) Full duplex transmission method for high speed backplane system
US7149397B2 (en) 10/100/1000Base-T small-form-factor-pluggable module
US7899111B2 (en) Link interface technique including data indicator symbols
US20100183004A1 (en) System and method for dual mode communication between devices in a network
US11411579B2 (en) Efficient data encoding
JPH05236061A (en) Interface sub-system applicable to plural interface standards
CN107301148B (en) USB Type-C interface conversion module, system and connection method
US10200151B1 (en) Methods and apparatus to improve SNR for signaling across multi-channel cables
US6687779B1 (en) Method and apparatus for transmitting control information across a serialized bus interface
TWI845345B (en) Type-c physical interface based data transfer method and electronic device
US11308016B2 (en) USB integrated circuit
US10909060B2 (en) Data transmission using flippable cable
CN217216609U (en) Network port switching device
CN113439268A (en) PCIe-based data transmission method, device and system
CN211628236U (en) Bandwidth configuration device of PCIE Slimline connector
US20050068987A1 (en) Highly configurable radar module link
TWM321548U (en) Control device for level shift of IIC
TWI805731B (en) Multi-lane data processing circuit and system
CN219891658U (en) Hybrid communication board card
CN218298995U (en) Machine vision mainboard
CN216721543U (en) Control module and terminal equipment based on earphone interface
CN112737794B (en) Optical port and electric port self-adaptive connecting device
TW202420107A (en) Electronic device and data transmission method thereof
US6848935B2 (en) Data control cable for connecting a mobile device to a host device