TWI844427B - High thermal-stability separator and method for manufacturing thereof - Google Patents
High thermal-stability separator and method for manufacturing thereof Download PDFInfo
- Publication number
- TWI844427B TWI844427B TW112126740A TW112126740A TWI844427B TW I844427 B TWI844427 B TW I844427B TW 112126740 A TW112126740 A TW 112126740A TW 112126740 A TW112126740 A TW 112126740A TW I844427 B TWI844427 B TW I844427B
- Authority
- TW
- Taiwan
- Prior art keywords
- solution
- titanium
- porous
- reaction solution
- high thermal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title abstract description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 59
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 59
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 claims abstract description 49
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 230000006835 compression Effects 0.000 claims abstract description 32
- 238000007906 compression Methods 0.000 claims abstract description 32
- 230000035699 permeability Effects 0.000 claims abstract description 30
- 239000010954 inorganic particle Substances 0.000 claims abstract description 18
- 239000011230 binding agent Substances 0.000 claims abstract description 17
- 239000000243 solution Substances 0.000 claims description 278
- 239000010408 film Substances 0.000 claims description 157
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 149
- 239000012528 membrane Substances 0.000 claims description 141
- 238000002955 isolation Methods 0.000 claims description 131
- 238000006243 chemical reaction Methods 0.000 claims description 124
- 239000002243 precursor Substances 0.000 claims description 95
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 72
- 238000002360 preparation method Methods 0.000 claims description 66
- 239000010410 layer Substances 0.000 claims description 51
- -1 titanium alkoxide Chemical class 0.000 claims description 49
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 48
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 claims description 36
- 239000010936 titanium Substances 0.000 claims description 34
- 229910052719 titanium Inorganic materials 0.000 claims description 34
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 24
- 239000007864 aqueous solution Substances 0.000 claims description 24
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical group C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 claims description 24
- 229920001145 Poly(N-vinylacetamide) Polymers 0.000 claims description 23
- 239000003381 stabilizer Substances 0.000 claims description 23
- 239000010409 thin film Substances 0.000 claims description 20
- 229920001577 copolymer Polymers 0.000 claims description 19
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 claims description 16
- 238000005234 chemical deposition Methods 0.000 claims description 16
- 239000002904 solvent Substances 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 claims description 15
- 150000003839 salts Chemical class 0.000 claims description 15
- 239000003623 enhancer Substances 0.000 claims description 11
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 10
- 229920000193 polymethacrylate Polymers 0.000 claims description 10
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical group [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 claims description 10
- 239000004925 Acrylic resin Substances 0.000 claims description 9
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 claims description 8
- GRWPYGBKJYICOO-UHFFFAOYSA-N 2-methylpropan-2-olate;titanium(4+) Chemical compound [Ti+4].CC(C)(C)[O-].CC(C)(C)[O-].CC(C)(C)[O-].CC(C)(C)[O-] GRWPYGBKJYICOO-UHFFFAOYSA-N 0.000 claims description 7
- 239000002356 single layer Substances 0.000 claims description 7
- 229910020215 Pb(Mg1/3Nb2/3)O3PbTiO3 Inorganic materials 0.000 claims description 6
- 239000003054 catalyst Substances 0.000 claims description 6
- 238000000224 chemical solution deposition Methods 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims description 6
- WLPSNBGDESCKIL-UHFFFAOYSA-N ethanol;titanium Chemical compound [Ti].CCO WLPSNBGDESCKIL-UHFFFAOYSA-N 0.000 claims description 6
- YQXQWFASZYSARF-UHFFFAOYSA-N methanol;titanium Chemical group [Ti].OC YQXQWFASZYSARF-UHFFFAOYSA-N 0.000 claims description 6
- 229910001631 strontium chloride Inorganic materials 0.000 claims description 6
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 claims description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 5
- 229920000178 Acrylic resin Polymers 0.000 claims description 5
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 5
- 239000002033 PVDF binder Substances 0.000 claims description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 5
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 5
- 239000001110 calcium chloride Substances 0.000 claims description 5
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 5
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 5
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 5
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 5
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 5
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 5
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 5
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 5
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 5
- YJPVTCSBVRMESK-UHFFFAOYSA-L strontium bromide Chemical compound [Br-].[Br-].[Sr+2] YJPVTCSBVRMESK-UHFFFAOYSA-L 0.000 claims description 5
- 229940074155 strontium bromide Drugs 0.000 claims description 5
- 229910001625 strontium bromide Inorganic materials 0.000 claims description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical group [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 4
- 239000004952 Polyamide Substances 0.000 claims description 4
- 239000002318 adhesion promoter Substances 0.000 claims description 4
- 229920002647 polyamide Polymers 0.000 claims description 4
- 229920006149 polyester-amide block copolymer Polymers 0.000 claims description 4
- 229920000098 polyolefin Polymers 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- 229910019440 Mg(OH) Inorganic materials 0.000 claims description 3
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 3
- 229910002367 SrTiO Inorganic materials 0.000 claims description 3
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 3
- 229910001593 boehmite Inorganic materials 0.000 claims description 3
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 claims description 3
- 229920002635 polyurethane Polymers 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 3
- 229910018626 Al(OH) Inorganic materials 0.000 claims description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 2
- 229920001973 fluoroelastomer Polymers 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- 230000008021 deposition Effects 0.000 abstract 2
- 230000014759 maintenance of location Effects 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 29
- 239000000523 sample Substances 0.000 description 18
- 239000007788 liquid Substances 0.000 description 13
- 238000010998 test method Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000008367 deionised water Substances 0.000 description 12
- 229910021641 deionized water Inorganic materials 0.000 description 12
- 238000000576 coating method Methods 0.000 description 7
- 239000002562 thickening agent Substances 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 101100008047 Caenorhabditis elegans cut-3 gene Proteins 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 101100496858 Mus musculus Colec12 gene Proteins 0.000 description 1
- 241000233805 Phoenix Species 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- ZEIWWVGGEOHESL-UHFFFAOYSA-N methanol;titanium Chemical compound [Ti].OC.OC.OC.OC ZEIWWVGGEOHESL-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Cell Separators (AREA)
Abstract
Description
本發明係有關於一種高熱穩定性隔離膜,特別涉及一種包含鈦氧化物或/及鈦氫氧化物薄膜的高熱穩定性隔離膜以及該高熱穩定性隔離膜之製造方法。The present invention relates to a high thermal stability isolation film, and in particular to a high thermal stability isolation film comprising a titanium oxide or/and titanium hydroxide film and a method for manufacturing the high thermal stability isolation film.
在鋰離子電池應用過程中,隔離膜必須滿足足夠的機械性能要求,以承受電池內外的各種力,特別是壓應力。實際上,鋰離子電池在組裝過程中需對電池施加堆疊壓力,以保持所有組件之間的緊密接觸,且在電池日常使用過程中的外加載荷和碰撞也會引起內部壓力的波動。最重要的是,在鋰離子電池的每個充電和放電循環中,鋰離子的嵌入和脫嵌不僅是一個電化學過程,而且導致電極材料的體積膨脹,膨脹的電極不可避免地擠壓電池內部有限的空間,連帶壓縮隔離膜,導致隔離膜的微孔變形,從而導致沿厚度方向的離子電導率降低。因此,強化電池隔離膜的耐壓縮性及在壓縮後仍保持一定的透氣性為一重要課題。In the application process of lithium-ion batteries, the separator must meet sufficient mechanical performance requirements to withstand various forces inside and outside the battery, especially pressure. In fact, lithium-ion batteries need to apply stacking pressure to the battery during assembly to maintain close contact between all components, and the external loads and collisions during daily use of the battery will also cause fluctuations in internal pressure. Most importantly, in each charge and discharge cycle of lithium-ion batteries, the embedding and de-embedding of lithium ions is not only an electrochemical process, but also causes the volume expansion of the electrode material. The expanded electrode inevitably squeezes the limited space inside the battery, compressing the separator film, causing the micropores of the separator film to deform, thereby reducing the ionic conductivity along the thickness direction. Therefore, it is an important issue to strengthen the compression resistance of the battery separator film and maintain a certain air permeability after compression.
再者,電池隔離膜在高溫的熔融完整性(melt integrity)是確保電池安全的關鍵特性。如果由於外部高溫、過度充電或內部短路或任何其他異常電化學反應引起溫度升高而導致電池內部熱量積聚,高溫熔融完整性可以提供額外的安全性。因為隔離膜在高溫仍保持其完整性,可防止電極在高溫下相互接觸而導致熱失控。用於鋰離子電池的隔離膜為採用聚烯烴材料為基材,亦即聚乙烯(PE)及/或聚丙烯(PP),其等在高溫下熔體完整性不足,因此,需要具有高溫的熔融完整性的隔離膜。Furthermore, the melt integrity of the battery separator at high temperatures is a key characteristic to ensure battery safety. If heat accumulates inside the battery due to temperature rise caused by external high temperature, overcharging, internal short circuit or any other abnormal electrochemical reaction, high-temperature melt integrity can provide additional safety. Because the separator film still maintains its integrity at high temperatures, it can prevent the electrodes from contacting each other at high temperatures and causing thermal runaway. The separator film used for lithium-ion batteries uses polyolefin materials as the base material, that is, polyethylene (PE) and/or polypropylene (PP), which have insufficient melt integrity at high temperatures. Therefore, a separator film with high-temperature melt integrity is required.
本發明為揭露一種高熱穩定性隔離膜,其具有強化的耐壓縮性及高溫的熔融完整性,且在壓縮後仍保持一定的透氣性。The present invention discloses a high thermal stability isolation film, which has enhanced compression resistance and high temperature melting integrity, and still maintains a certain air permeability after compression.
本發明之高熱穩定性隔離膜包含一多孔膜及一鈦氧化物或/及鈦氫氧化物薄膜,其中該多孔膜包含一多孔基材及一無機層,其中該無機層包含複數無機粒子及一黏結劑,且該無機層形成於該多孔基材的至少一表面上,且該多孔基材及無機層具有複數彼此相通的多孔結構;及該鈦氧化物或/及鈦氫氧化物薄膜,其形成於該多孔膜表面及該等多孔結構的內壁上。The high thermal stability isolation membrane of the present invention comprises a porous membrane and a titanium oxide or/and titanium hydroxide thin film, wherein the porous membrane comprises a porous substrate and an inorganic layer, wherein the inorganic layer comprises a plurality of inorganic particles and a binder, and the inorganic layer is formed on at least one surface of the porous substrate, and the porous substrate and the inorganic layer have a plurality of porous structures that are interconnected; and the titanium oxide or/and titanium hydroxide thin film is formed on the surface of the porous membrane and on the inner walls of the porous structures.
本發明揭露之高熱穩定性隔離膜在以88 Kgf/cm 2荷重持壓30秒後的壓縮抗性大於90%,且壓縮後透氣度(Gurley)降低少於35%。 The high heat-stable isolation film disclosed in the present invention has a compression resistance greater than 90% after being compressed for 30 seconds at a load of 88 Kgf/ cm2 , and a decrease in air permeability (Gurley) of less than 35% after compression.
本發明揭露之高熱穩定性隔離膜之高溫破裂溫度係大於170°C。The high temperature rupture temperature of the high thermal stability isolation film disclosed in the present invention is greater than 170°C.
在本發明揭露之高熱穩定性隔離膜中,該鈦氧化物或/及鈦氫氧化物薄膜係藉由化學溶液沉積法形成,其藉由在該多孔膜上施用一前驅物溶液,並接續施用一反應溶液,使該前驅物溶液與該反應溶液反應而形成。在本發明揭露之高熱穩定性隔離膜的一實施例中,該前驅物溶液為0.25wt%至3wt%鈦醇鹽溶液,該鈦醇鹽溶液之溶劑為甲醇、乙醇、異丙醇或其組合,其中該反應溶液為30至70重量百分比之醇的水溶液。In the thermally stable isolation film disclosed in the present invention, the titanium oxide or/and titanium hydroxide thin film is formed by a chemical solution deposition method, which is formed by applying a precursor solution on the porous membrane and then applying a reaction solution to react the precursor solution with the reaction solution. In an embodiment of the thermally stable isolation film disclosed in the present invention, the precursor solution is a 0.25wt% to 3wt% titanium alkoxide solution, the solvent of the titanium alkoxide solution is methanol, ethanol, isopropanol or a combination thereof, wherein the reaction solution is an aqueous solution of 30 to 70 weight percent of alcohol.
在本發明揭露之高熱穩定性隔離膜中,該鈦氧化物或/及鈦氫氧化物薄膜進一步包含一增黏劑、一安定劑或一金屬鹽類。In the high thermal stability isolation film disclosed in the present invention, the titanium oxide or/and titanium hydroxide film further comprises an adhesion promoter, a stabilizer or a metal salt.
在本發明揭露之高熱穩定性隔離膜中,該增黏劑為聚(甲基)丙烯酸酯、聚-N-乙烯基乙醯胺、交聯性的(甲基)丙烯酸樹脂、丙烯腈-丙烯酸酯共聚物、丙烯腈-丙烯醯胺-丙烯酸酯共聚物或其組合。In the high heat-stable isolation film disclosed in the present invention, the tackifier is poly(meth)acrylate, poly-N-vinyl acetamide, crosslinked (meth)acrylic resin, acrylonitrile-acrylate copolymer, acrylonitrile-acrylamide-acrylate copolymer or a combination thereof.
在本發明揭露之高熱穩定性隔離膜中,該安定劑為六甲基二矽氮烷。In the high thermal stability isolation film disclosed in the present invention, the stabilizer is hexamethyldisilazane.
在本發明揭露之高熱穩定性隔離膜中,該金屬鹽類為溴化鈉、碘化鉀、氯化鎂、氯化鍶、氯化鈣、溴化鍶、氯化銅或其組合。In the high heat stable isolation film disclosed in the present invention, the metal salt is sodium bromide, potassium iodide, magnesium chloride, strontium chloride, calcium chloride, strontium bromide, copper chloride or a combination thereof.
本發明揭露之高熱穩定性隔離膜,其中該多孔膜之多孔基材可以是聚烯烴、聚酯或聚醯胺之單層或多層之多孔結構基材。The invention discloses a highly thermally stable isolation membrane, wherein the porous substrate of the porous membrane can be a single-layer or multi-layer porous structure substrate of polyolefin, polyester or polyamide.
在本發明揭露之高熱穩定性隔離膜中,該多孔膜之無機層包含複數無機粒子及一黏結劑,其中該無機層形成具有與多孔基材彼此相通的多孔結構。在本發明之一實施例中,無機層可包含1至20重量百分比之黏結劑以及80至99重量百分比之無機粒子。在本發明之一較佳實施例中,該多孔膜在其一表面或二表面可包含無機層。In the high thermal stability isolation film disclosed in the present invention, the inorganic layer of the porous film comprises a plurality of inorganic particles and a binder, wherein the inorganic layer forms a porous structure that is interconnected with the porous substrate. In one embodiment of the present invention, the inorganic layer may comprise 1 to 20 weight percent of the binder and 80 to 99 weight percent of the inorganic particles. In a preferred embodiment of the present invention, the porous film may comprise an inorganic layer on one or both surfaces thereof.
在本發明揭露之高熱穩定性隔離膜中,該多孔膜之無機層包含的該等無機粒子為選自由Mg(OH) 2、BaSO 4、BaTiO 3、Pb(Zr,Ti)O 3(PZT)、Pb 1-xLa xZr 1-y(Zr,TiyO 3) (PLZT,其中0<x<1且0<y<1)、Pb(Mg 1/3Nb 2/3)O 3-PbTiO 3(PMN-PT)、HfO 2、SrTiO 3、SnO 2、CeO 2、MgO、NiO、CaO、ZnO、ZrO 2、SiO 2、Y 2O 3、Al(OH) 3、Al 2O 3、勃姆石(AlOOH)、SiC、TiO 2及其組合所組成的群組中。 In the high thermal stability isolation film disclosed in the present invention, the inorganic particles contained in the inorganic layer of the porous film are selected from Mg(OH) 2 , BaSO 4 , BaTiO 3 , Pb(Zr,Ti)O 3 (PZT), Pb 1-x La x Zr 1-y (Zr,TiyO 3 ) (PLZT, wherein 0<x<1 and 0<y<1), Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), HfO 2 , SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , SiO 2 , Y 2 O 3 , Al(OH) 3 , Al 2 O 3 , boehmite (AlOOH), SiC, TiO 2 and their combinations.
在本發明揭露之高熱穩定性隔離膜中,該多孔膜之無機層包含的黏結劑為乙烯-醋酸乙烯酯共聚物(EVA)、聚(甲基)丙烯酸酯、交聯性的(甲基)丙烯酸樹脂、氟系橡膠、苯乙烯-丁二烯橡膠(SBR) 、聚乙烯醇(PVA) 、聚乙烯醇縮丁醛(PVB) 、聚乙烯吡咯烷酮(PVP) 、聚-N-乙烯基乙醯胺、聚偏氟乙烯(PVDF)、聚氨酯或其組合。In the high heat stability isolation film disclosed in the present invention, the binder contained in the inorganic layer of the porous film is ethylene-vinyl acetate copolymer (EVA), poly (meth) acrylate, cross-linked (meth) acrylic resin, fluorine rubber, styrene-butadiene rubber (SBR), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP), poly-N-vinyl acetamide, polyvinylidene fluoride (PVDF), polyurethane or a combination thereof.
本發明之另一態樣中為揭露一種高熱穩定性隔離膜的製備方法,其步驟包含:提供一多孔膜,包含一多孔基材及一無機層,其中該無機層包含複數無機粒子及一黏結劑,且該無機層形成於該多孔基材的至少一表面上,且該多孔基材及該無機層具有複數彼此相通的多孔結構;形成一鈦氧化物或/及鈦氫氧化物薄膜於該多孔膜表面及該等多孔結構的內壁上。Another aspect of the present invention discloses a method for preparing a high thermal stability isolation membrane, the steps of which include: providing a porous membrane, comprising a porous substrate and an inorganic layer, wherein the inorganic layer comprises a plurality of inorganic particles and a binder, and the inorganic layer is formed on at least one surface of the porous substrate, and the porous substrate and the inorganic layer have a plurality of porous structures that are interconnected; forming a titanium oxide and/or titanium hydroxide film on the surface of the porous membrane and on the inner walls of the porous structures.
本發明揭露之高熱穩定性隔離膜的製備方法,其中該形成一鈦氧化物或/及鈦氫氧化物薄膜於該多孔膜之該多孔膜表面及該等多孔結構的內壁上的步驟,包括:製備一第一化學沉積溶液組,其包含一含0.25重量百分比(wt%)至3wt%鈦醇鹽溶液的第一前驅物溶液及一30 wt%至70wt%醇的水溶液之第一反應溶液;將該第一前驅物溶液及該第一反應溶液依序施用於該多孔膜上,使該第一前驅物溶液與該第一反應溶液產生反應,並在該多孔膜之該多孔膜表面及該等多孔結構的內壁上形成一鈦氧化物或/及鈦氫氧化物薄膜。The present invention discloses a method for preparing a high thermal stability isolation membrane, wherein the step of forming a titanium oxide or/and titanium hydroxide thin film on the porous membrane surface of the porous membrane and the inner wall of the porous structures comprises: preparing a first chemical deposition solution set, which comprises a first precursor solution containing 0.25 weight percent (wt%) to 3wt% of a titanium alkoxide solution and a first reaction solution containing 30 wt% to 70wt% of an alcohol aqueous solution; applying the first precursor solution and the first reaction solution to the porous membrane in sequence, allowing the first precursor solution to react with the first reaction solution, and forming a titanium oxide or/and titanium hydroxide thin film on the porous membrane surface of the porous membrane and the inner wall of the porous structures.
在本發明揭露之高熱穩定性隔離膜的製備方法中,該第一前驅物溶液之鈦醇鹽為甲醇鈦、乙醇鈦、異丙醇鈦和叔丁醇鈦或其組合,且較佳為異丙醇鈦,且該鈦醇鹽溶液之溶劑為甲醇、乙醇或異丙醇或其組合。在本發明之一較佳實施例中,該第一前驅物溶液為含0.25重量百分比(wt%)至2.5wt%鈦醇鹽溶液。In the preparation method of the high thermal stability isolation film disclosed in the present invention, the titanium alkoxide of the first precursor solution is titanium methanol, titanium ethanol, titanium isopropoxide and titanium tert-butoxide or a combination thereof, and preferably titanium isopropoxide, and the solvent of the titanium alkoxide solution is methanol, ethanol or isopropanol or a combination thereof. In a preferred embodiment of the present invention, the first precursor solution is a solution containing 0.25 weight percent (wt%) to 2.5wt% of titanium alkoxide.
在本發明揭露之高熱穩定性隔離膜的製備方法中,該第一反應溶液的醇為甲醇、乙醇、異丙醇、乙氧基乙醇、烯丙醇、乙二醇或其組合。在本發明之一較佳實施例中,該第一反應溶液較佳為40至60wt%之醇的水溶液。在本發明之一較佳實施例中,該第一反應溶液為甲醇、乙醇或異丙醇或其組合之醇的水溶液。In the preparation method of the high thermal stability isolation film disclosed in the present invention, the alcohol of the first reaction solution is methanol, ethanol, isopropanol, ethoxyethanol, allyl alcohol, ethylene glycol or a combination thereof. In a preferred embodiment of the present invention, the first reaction solution is preferably an aqueous solution of 40 to 60 wt % of alcohol. In a preferred embodiment of the present invention, the first reaction solution is an aqueous solution of methanol, ethanol or isopropanol or a combination thereof.
在本發明揭露之高熱穩定性隔離膜的製備方法中,該第一前驅物溶液進一步包含一安定劑,其中該安定劑在該第一前驅物溶液中的使用量為0.5wt%至7wt%。In the method for preparing the high thermal stability isolation film disclosed in the present invention, the first precursor solution further comprises a stabilizer, wherein the amount of the stabilizer in the first precursor solution is 0.5wt% to 7wt%.
在本發明揭露之高熱穩定性隔離膜的製備方法中,該第一反應溶液進一步包含一增黏劑,其中該增黏劑在反應溶液中的使用量為0.05wt%至5wt%。In the preparation method of the high thermal stability isolation film disclosed in the present invention, the first reaction solution further comprises a viscosity enhancer, wherein the usage amount of the viscosity enhancer in the reaction solution is 0.05wt% to 5wt%.
在本發明揭露之高熱穩定性隔離膜的製備方法中,在製備該第一化學沉積溶液組之後,更包括步驟,製備一第二化學沉積溶液組,其包含一含0.25wt%至3wt%鈦醇鹽溶液的第二前驅物溶液與一30至70wt%醇的水溶液之第二反應溶液,且在該第一前驅物溶液及該第一反應溶液依序施用於該多孔膜後,依序施用該第二前驅物溶液與該第二反應溶液於該多孔膜。In the preparation method of the high thermal stability isolation membrane disclosed in the present invention, after preparing the first chemical deposition solution set, it further includes the step of preparing a second chemical deposition solution set, which includes a second precursor solution containing 0.25wt% to 3wt% titanium alkoxide solution and a second reaction solution of 30 to 70wt% alcohol aqueous solution, and after the first precursor solution and the first reaction solution are sequentially applied to the porous membrane, the second precursor solution and the second reaction solution are sequentially applied to the porous membrane.
在本發明揭露之高熱穩定性隔離膜的製備方法中,該第二前驅物溶液使用的酞醇鹽種類或濃度可與該第一前驅物溶液的鈦醇鹽溶液相同或不同;該第二前驅物溶液之鈦醇鹽為甲醇鈦、乙醇鈦、異丙醇鈦和叔丁醇鈦或其組合,且使用之溶劑為甲醇、乙醇或異丙醇或其組合。在本發明之一較佳實施例中,該第二前驅物溶液為含0.25重量百分比(wt%)至2.5wt%鈦醇鹽溶液。In the preparation method of the high thermal stability isolation film disclosed in the present invention, the type or concentration of phthalate used in the second precursor solution can be the same as or different from the titanium alkoxide solution of the first precursor solution; the titanium alkoxide of the second precursor solution is titanium methoxide, titanium ethoxide, titanium isopropoxide and titanium tert-butoxide or a combination thereof, and the solvent used is methanol, ethanol or isopropanol or a combination thereof. In a preferred embodiment of the present invention, the second precursor solution is a solution containing 0.25 weight percent (wt%) to 2.5wt% of titanium alkoxide.
在本發明揭露之高熱穩定性隔離膜的製備方法中,該第二反應溶液使用的醇種類或濃度可與第一反應溶液為相同或不同,其中該第二反應溶液中的醇為甲醇、乙醇、異丙醇、乙氧基乙醇、烯丙醇、乙二醇或其組合。在本發明之一較佳實施例中,該第二反應溶液較佳為40至60重量百分比之醇的水溶液。在本發明之一較佳實施例中,該第二反應溶液為甲醇、乙醇或異丙醇或其組合的水溶液。In the preparation method of the high thermal stability isolation film disclosed in the present invention, the alcohol type or concentration used in the second reaction solution can be the same as or different from that in the first reaction solution, wherein the alcohol in the second reaction solution is methanol, ethanol, isopropanol, ethoxyethanol, allyl alcohol, ethylene glycol or a combination thereof. In a preferred embodiment of the present invention, the second reaction solution is preferably an aqueous solution of 40 to 60 weight percent of alcohol. In a preferred embodiment of the present invention, the second reaction solution is an aqueous solution of methanol, ethanol or isopropanol or a combination thereof.
在本發明揭露之高熱穩定性隔離膜的製備方法中,該第二前驅物溶液進一步包含一安定劑,該安定劑在該第二前驅物溶液中的使用量為0.5wt%至7wt%。In the method for preparing the high thermal stability isolation film disclosed in the present invention, the second precursor solution further comprises a stabilizer, and the amount of the stabilizer used in the second precursor solution is 0.5wt% to 7wt%.
在本發明揭露之高熱穩定性隔離膜的製備方法中,該第二反應溶液進一步包含一增黏劑,其中該增黏劑在反應溶液中的使用量為0.05wt%至5wt%。In the preparation method of the high thermal stability isolation film disclosed in the present invention, the second reaction solution further comprises a viscosity enhancer, wherein the usage amount of the viscosity enhancer in the reaction solution is 0.05wt% to 5wt%.
本發明揭露之高熱穩定性隔離膜的製備方法,該第二反應溶液進一步包含一金屬鹽類,其中該金屬鹽類在反應溶液中的使用量為5wt%至20wt%。The present invention discloses a method for preparing a high thermal stability isolation film, wherein the second reaction solution further comprises a metal salt, wherein the amount of the metal salt in the reaction solution is 5wt% to 20wt%.
本發明的另一態樣為一種高熱穩定性隔離膜,其包含一多孔膜,其具複數多孔結構,且該多孔膜表面及該等多孔結構的內壁上具一鈦氧化物或/及鈦氫氧化物-氧化矽薄膜。Another aspect of the present invention is a high thermal stability isolation membrane, which includes a porous membrane having a plurality of porous structures, and a titanium oxide or/and titanium hydroxide-silicon oxide film is provided on the surface of the porous membrane and the inner wall of the porous structures.
本發明揭露之另一態樣的高熱穩定性隔離膜的製備方法,其步驟包括:提供一多孔膜,其具複數多孔結構,且該多孔膜的表面及該等多孔結構的內壁上具一第一鈦氧化物或/及鈦氫氧化物薄膜; 製備一第三化學沉積溶液組,其包含一1 wt%至10 wt%烷氧基矽烷溶液及一90wt%至99.5wt%醇的水溶液之第三反應溶液;將該烷氧基矽烷溶液及該第三反應溶液依序施用於該多孔膜上,使該烷氧基矽烷溶液與該第三反應溶液產生反應,以在該多孔膜之該表面及該等多孔結構的內壁上形成一第二鈦氧化物或/及鈦氫氧化物-氧化矽薄膜。Another aspect of the preparation method of the high thermal stability isolation membrane disclosed in the present invention includes the following steps: providing a porous membrane having a plurality of porous structures, and a first titanium oxide or/and titanium hydroxide thin film is formed on the surface of the porous membrane and the inner walls of the porous structures; preparing a third chemical deposition solution set, which includes a 1 wt% to 10 wt% alkoxysilane solution and a third reaction solution of a 90 wt% to 99.5 wt% alcohol aqueous solution; applying the alkoxysilane solution and the third reaction solution to the porous membrane in sequence, allowing the alkoxysilane solution to react with the third reaction solution to form a second titanium oxide or/and titanium hydroxide-silicon oxide thin film on the surface of the porous membrane and the inner walls of the porous structures.
本發明之另一態樣的高熱穩定性隔離膜的製備方法中,該烷氧基矽烷溶液為為四乙氧基矽烷溶液,且該烷氧基矽烷溶液中的溶劑為甲醇、乙醇、或異丙醇或其組合。In another aspect of the method for preparing a high thermal stability isolation film of the present invention, the alkoxysilane solution is a tetraethoxysilane solution, and the solvent in the alkoxysilane solution is methanol, ethanol, or isopropanol or a combination thereof.
本發明之另一態樣的高熱穩定性隔離膜的製備方法中,該烷氧基矽烷溶液更包含一催化劑,較佳為氨水。在一較佳實施例中,該催化劑使用量為每百重量份溶劑加入5重量份至15重量份。In another aspect of the method for preparing a high thermal stability isolation film of the present invention, the alkoxysilane solution further comprises a catalyst, preferably ammonia water. In a preferred embodiment, the amount of the catalyst used is 5 to 15 parts by weight per 100 parts by weight of the solvent.
在本發明揭露之另一態樣的高熱穩定性隔離膜的製備方法中,該第三反應溶液為醇的水溶液,其中該醇為甲醇、乙醇、異丙醇、乙氧基乙醇、烯丙醇、乙二醇或其組合。In another aspect of the method for preparing a high thermal stability isolation film disclosed in the present invention, the third reaction solution is an aqueous solution of alcohol, wherein the alcohol is methanol, ethanol, isopropanol, ethoxyethanol, allyl alcohol, ethylene glycol or a combination thereof.
上述發明內容旨在提供本揭示內容的簡化摘要,以使閱讀者對本揭示內容具備基本的理解。此處的發明內容並非本揭示內容的完整概述,且其用意並非在指出本發明實施例的重要/關鍵元件或界定本發明的範圍。在參閱下文實施方式後,本發明所屬技術領域中具有通常知識者當可輕易瞭解本發明之基本精神及本發明所採用之技術手段與實施態樣。The above invention contents are intended to provide a simplified summary of the present disclosure so that readers can have a basic understanding of the present disclosure. The invention contents here are not a complete overview of the present disclosure, and are not intended to point out the important/key elements of the embodiments of the present invention or to define the scope of the present invention. After reading the following implementation methods, those with ordinary knowledge in the technical field to which the present invention belongs can easily understand the basic spirit of the present invention and the technical means and implementation modes adopted by the present invention.
為了使本發明揭示內容更加詳盡與完備,下文針對了本發明的實施態樣與具體實施例提出了說明性的描述;但這並非實施或運用本發明具體實施例的唯一形式。以下所揭露的各實施例,在有益的情形下可相互組合或取代,也可在一實施例中附加其他的實施例,而無須進一步的記載或說明。In order to make the disclosure of the present invention more detailed and complete, the following provides an illustrative description of the implementation and specific embodiments of the present invention; however, this is not the only form of implementing or using the specific embodiments of the present invention. The embodiments disclosed below can be combined or replaced with each other under beneficial circumstances, and other embodiments can be added to one embodiment without further recording or description.
本發明之優點、特徵以及達到之技術方法將參照例示性實施例進行更詳盡地描述而更容易理解,且本發明或可以不同形式來實現,故不應被理解僅限於此處所陳述的實施例,相反地,對所屬技術領域具有通常知識者而言,所提供的實施例將使本發明更加透徹與全面且完整地傳達本發明的範疇,且本發明將僅為所附加的申請專利範圍所定義。The advantages, features and technical methods achieved by the present invention will be described in more detail with reference to exemplary embodiments so as to be easier to understand, and the present invention may be implemented in different forms, so it should not be understood to be limited to the embodiments described herein. On the contrary, for those with ordinary knowledge in the relevant technical field, the provided embodiments will make the present invention more thorough and comprehensive and fully convey the scope of the present invention, and the present invention will only be defined by the scope of the attached patent application.
而除非另外定義,所有使用於後文的術語(包含科技及科學術語)與專有名詞,於實質上係與本發明所屬該領域的技術人士一般所理解之意思相同,而例如一般所使用的字典所定義的那些術語應被理解為具有與相關領域的內容一致的意思,且除非明顯地定義於後文,將不以過度理想化或過度正式的意思理解。Unless otherwise defined, all terms (including technical and scientific terms) and technical nouns used in the following text are essentially the same as the meanings generally understood by technical personnel in the field to which the present invention belongs. For example, those terms defined in commonly used dictionaries should be understood to have meanings consistent with the content of the relevant field, and unless clearly defined in the following text, they will not be understood in an overly idealized or overly formal sense.
再者,於本文中,所謂「(甲基)丙烯酸酯」,係指甲基丙烯酸酯及丙烯酸酯。Furthermore, as used herein, "(meth)acrylate" refers to methacrylate and acrylate.
在本發明為揭露一種高熱穩定性隔離膜,其包含一多孔膜,包含一多孔基材及一無機層,其中該無機層包含複數無機粒子及一黏結劑,且該無機層形成於該多孔基材的至少一表面上,且該多孔基材及無機層具有複數彼此相通的多孔結構;及一鈦氧化物或/及鈦氫氧化物薄膜,形成於該多孔膜表面及該等多孔結構的內壁上。The present invention discloses a high thermal stability isolation membrane, which comprises a porous membrane, a porous substrate and an inorganic layer, wherein the inorganic layer comprises a plurality of inorganic particles and a binder, and the inorganic layer is formed on at least one surface of the porous substrate, and the porous substrate and the inorganic layer have a plurality of porous structures that are interconnected; and a titanium oxide or/and titanium hydroxide film formed on the surface of the porous membrane and on the inner walls of the porous structures.
本發明之高熱穩定性隔離膜在以88 Kgf/cm 2荷重持壓30秒後的壓縮抗性大於90%,提供強化的耐壓縮性,以抑制隔離膜孔洞對應力的形變,維持厚度方向的離子電導率。 The high heat-stable isolation film of the present invention has a compression resistance greater than 90% after being subjected to a load of 88 Kgf/ cm2 for 30 seconds, providing enhanced compression resistance to suppress the deformation of the isolation film holes due to the corresponding force and maintain the ionic conductivity in the thickness direction.
再者,本發明之高熱穩定性隔離膜在以88 Kgf/cm 2荷重持壓30秒壓縮後隔離膜孔洞未因應力產生過度形變,仍可維持一定的透氣度,即透氣度(Gurley)降低少於35%,此可避免使用時應力造成電池內電阻或內壓升高。 Furthermore, after the high thermal stability isolation film of the present invention is compressed at a load of 88 Kgf/ cm2 for 30 seconds, the pores of the isolation film do not produce excessive deformation due to stress, and a certain air permeability can still be maintained, that is, the air permeability (Gurley) decreases by less than 35%, which can avoid the stress during use causing the internal resistance or internal pressure of the battery to increase.
在本文中,所謂「縮後透氣度(Gurley,sec/100c.c.)降低」係指隔離膜在以88 Kgf/cm 2荷重持壓30秒後其物理結構遭破壞而致使透氣度下降,計算方法為其壓縮前透氣度為G1,壓縮後透氣度為G2,則壓縮後透氣度降低(%) = (1 - G1/G2) × 100%。 In this article, the so-called "reduction in air permeability after compression (Gurley, sec/100c.c.)" refers to the decrease in air permeability caused by the destruction of the physical structure of the separator film after it is compressed at a load of 88 Kgf/ cm2 for 30 seconds. The calculation method is that the air permeability before compression is G1, and the air permeability after compression is G2, then the air permeability reduction after compression (%) = (1 - G1/G2) × 100%.
在本發明高熱穩定性隔離膜之一較佳實施例中,該透氣度(Gurley)降低少於30%。In a preferred embodiment of the high thermal stability barrier film of the present invention, the air permeability (Gurley) decreases by less than 30%.
本發明揭露的高熱穩定性隔離膜,其高溫破裂溫度大於170°C,其在高溫下的熔融完整性可以防止電極相互接觸,增加電池的安全性。The high-thermal stability isolation film disclosed in the present invention has a high-temperature rupture temperature greater than 170°C. Its melting integrity at high temperatures can prevent electrodes from contacting each other, thereby increasing the safety of the battery.
在本發明揭露之高熱穩定性隔離膜中,該鈦氧化物或/及鈦氫氧化物薄膜係藉由化學溶液沉積法形成,其藉由在該多孔膜上施用一前驅物溶液,並接續施用一反應溶液,使該前驅物溶液與該反應溶液反應而形成。在本發明揭露之高熱穩定性隔離膜的一實施例中,該前驅物溶液為0.25wt%至3wt%鈦醇鹽溶液,該鈦醇鹽溶液之溶劑為甲醇、乙醇、異丙醇或其組合,其中該反應溶液為30至70重量百分比之醇的水溶液。In the thermally stable isolation film disclosed in the present invention, the titanium oxide or/and titanium hydroxide thin film is formed by a chemical solution deposition method, which is formed by applying a precursor solution on the porous membrane and then applying a reaction solution to react the precursor solution with the reaction solution. In an embodiment of the thermally stable isolation film disclosed in the present invention, the precursor solution is a 0.25wt% to 3wt% titanium alkoxide solution, the solvent of the titanium alkoxide solution is methanol, ethanol, isopropanol or a combination thereof, wherein the reaction solution is an aqueous solution of 30 to 70 weight percent of alcohol.
本發明揭露之高熱穩定性隔離膜,其中該鈦氧化物或/及鈦氫氧化物薄膜進一步包含一增黏劑、一安定劑或一金屬鹽類。The high thermal stability isolation film disclosed in the present invention, wherein the titanium oxide or/and titanium hydroxide film further comprises an adhesion promoter, a stabilizer or a metal salt.
在本發明之高熱穩定性隔離膜之一較佳實施例中,該鈦氧化物或/及鈦氫氧化物薄膜可進一步包含一增黏劑,以強化該鈦氧化物或/及鈦氫氧化物與該多孔膜表面及該等多孔結構的內壁的黏著性。適用的增黏劑可例如但不限於是聚(甲基)丙烯酸酯樹脂、交聯性的(甲基)丙烯酸樹脂、聚-N-乙烯基乙醯胺、丙烯腈-丙烯酸酯共聚物、丙烯腈-丙烯醯胺-丙烯酸酯共聚物或其組合。In a preferred embodiment of the high thermal stability isolation film of the present invention, the titanium oxide or/and titanium hydroxide film may further include a viscosity enhancer to enhance the adhesion of the titanium oxide or/and titanium hydroxide to the surface of the porous film and the inner wall of the porous structure. Suitable viscosity enhancers may be, for example but not limited to, poly(meth)acrylate resins, crosslinked (meth)acrylate resins, poly-N-vinyl acetamide, acrylonitrile-acrylate copolymers, acrylonitrile-acrylamide-acrylate copolymers or combinations thereof.
本發明之高熱穩定性隔離膜中, 適用於鈦氧化物或/及鈦氫氧化物薄膜之增黏劑可選用市售產品,例如日本瑞翁公司製造的BM-950B,日本昭和電工公司製造的PNVA GE191系列(例如GE191-103、GE191-104、GE191-107或GE191-108)、美國亞什蘭公司製造的“Soteras TMCCS-V Binder” ,中國珠海辰玉新材料科技有限公司製造的“CYJ-01”等。 In the high thermal stability isolation film of the present invention, the viscosity enhancer suitable for titanium oxide or/and titanium hydroxide film can be selected from commercially available products, such as BM-950B manufactured by Japan Zeon Co., Ltd., PNVA GE191 series (such as GE191-103, GE191-104, GE191-107 or GE191-108) manufactured by Japan Showa Denko Co., Ltd., "Soteras TM CCS-V Binder" manufactured by Ashland Co., Ltd., USA, "CYJ-01" manufactured by Zhuhai Chenyu New Material Technology Co., Ltd., China, etc.
在本發明之高熱穩定性隔離膜之一較佳實施例中,該鈦氧化物或/及鈦氫氧化物薄膜可進一步包含一安定劑,以穩定鈦氧化物或/及鈦氫氧化物。適用的安定劑可為六甲基二矽氮烷。In a preferred embodiment of the high thermal stability isolation film of the present invention, the titanium oxide or/and titanium hydroxide film may further include a stabilizer to stabilize the titanium oxide or/and titanium hydroxide. The suitable stabilizer may be hexamethyldisilazane.
在本發明之高熱穩定性隔離膜之一較佳實施例中,該鈦氧化物或/及鈦氫氧化物薄膜可進一步包含一金屬鹽類以降低該鈦氧化物或/及鈦氫氧化物薄膜之含水率。適用的金屬鹽類可為溴化鈉、碘化鉀、氯化鎂、氯化鍶、氯化鈣、溴化鍶、氯化銅或其組合。In a preferred embodiment of the high thermal stability isolation film of the present invention, the titanium oxide or/and titanium hydroxide film may further include a metal salt to reduce the water content of the titanium oxide or/and titanium hydroxide film. The applicable metal salt may be sodium bromide, potassium iodide, magnesium chloride, strontium chloride, calcium chloride, strontium bromide, copper chloride or a combination thereof.
本發明揭露之高熱穩定性隔離膜,其中該鈦氧化物或/及鈦氫氧化物薄膜亦可視需求進一步包含阻燃劑、抗氧化劑、表面改質劑或抗靜電劑等添加劑。The high thermal stability isolation film disclosed in the present invention, wherein the titanium oxide or/and titanium hydroxide film may further contain additives such as flame retardants, antioxidants, surface modifiers or antistatic agents as required.
本發明的另一態樣為一種高熱穩定性隔離膜,其包含一多孔膜,其包含一多孔基材及一無機層,其中該多孔基材及該無機層具有複數彼此相通的多孔結構,且該無機層的該表面及該等多孔結構上具一鈦氧化物或/及鈦氫氧化物-氧化矽薄膜。Another aspect of the present invention is a high thermal stability isolation membrane, which comprises a porous membrane, which comprises a porous substrate and an inorganic layer, wherein the porous substrate and the inorganic layer have a plurality of porous structures that are interconnected, and the surface of the inorganic layer and the porous structures have a titanium oxide or/and titanium hydroxide-silicon oxide film.
本發明揭露之高熱穩定性隔離膜,其中該多孔膜之多孔基材可以是聚烯烴、聚酯或聚醯胺之單層或多層之多孔結構基材,而沒有特別限制。在本發明之一實施例中,該多孔基材可以例如是單層聚乙烯、單層聚丙烯、雙層聚乙烯/聚丙烯、三層聚丙烯/聚乙烯/聚丙烯、聚酯或聚醯胺,但不限於此。在本發明之一實施例中,該多孔基材厚度可介於約5微米(µm)至30µm之間,較佳為介於7µm至25µm之間,其孔隙率約介於30%至50%間。The present invention discloses a high thermal stability isolation membrane, wherein the porous substrate of the porous membrane can be a single-layer or multi-layer porous structure substrate of polyolefin, polyester or polyamide, without special restrictions. In one embodiment of the present invention, the porous substrate can be, for example, a single-layer polyethylene, a single-layer polypropylene, a double-layer polyethylene/polypropylene, a three-layer polypropylene/polyethylene/polypropylene, polyester or polyamide, but is not limited thereto. In one embodiment of the present invention, the thickness of the porous substrate can be between about 5 micrometers (µm) and 30µm, preferably between 7µm and 25µm, and its porosity is between about 30% and 50%.
在本發明之高熱穩定性隔離膜中,該一多孔基材在其一表面或二表面包含無機層,該無機層包含複數無機粒子及一黏結劑,其中該無機層形成具有與該多孔基材彼此相通的複數多孔結構。在本發明之一實施例中,該無機層可包含80至99重量百分比之無機粒子及1至20重量百分比之黏結劑。In the high thermal stability isolation film of the present invention, the porous substrate comprises an inorganic layer on one or both surfaces thereof, the inorganic layer comprising a plurality of inorganic particles and a binder, wherein the inorganic layer forms a plurality of porous structures interconnected with the porous substrate. In one embodiment of the present invention, the inorganic layer may comprise 80 to 99 weight percent of inorganic particles and 1 to 20 weight percent of binder.
在本發明高熱穩定性隔離膜中,適用於多孔膜之無機層的無機粒子為選自由Mg(OH) 2、BaSO 4、BaTiO 3、Pb(Zr,Ti)O 3(PZT)、Pb 1-xLa xZr 1-y(Zr,TiyO 3)(PLZT,其中0<x<1且0<y<1)、Pb(Mg 1/3Nb 2/3)O 3-PbTiO 3(PMN-PT)、HfO 2、SrTiO 3、SnO 2、CeO 2、MgO、NiO、CaO、ZnO、ZrO 2、SiO 2、Y 2O 3、Al 2O 3、勃姆石(AlOOH)、SiC、TiO 2及其組合所組成的群組中。在本發明高熱穩定性隔離膜中,適用於多孔膜之無機層的黏結劑並沒有特殊限制,可以使用已知適用於隔離膜領域者,例如具有高電化學穩定性、以及對電解液的潤濕性與耐化性佳等的特性之黏結劑。在本發明之一實施例中,可使用之黏結劑可為乙烯-醋酸乙烯酯共聚物、聚(甲基)丙烯酸酯、交聯性的(甲基)丙烯酸樹脂、氟系橡膠、苯乙烯-丁二烯橡膠、聚乙烯醇、聚乙烯醇縮丁醛、聚乙烯吡咯烷酮、聚-N-乙烯基乙醯胺、聚偏氟乙烯、聚氨酯或其組合,但不限於此。在本發明之高熱穩定性隔離膜中,該多孔膜之無機層可採用此技術領域已知的方法塗佈並無特別的限制,例如採用輥式塗佈法、刮刀式塗佈法、浸塗法、滾輪塗佈法、旋轉塗佈法、狹縫式塗佈法等此技術領域泛用的塗佈方法。 In the high thermal stability insulating film of the present invention, the inorganic particles suitable for the inorganic layer of the porous film are selected from the group consisting of Mg(OH) 2 , BaSO 4 , BaTiO 3 , Pb(Zr,Ti)O 3 (PZT), Pb 1-x La x Zr 1-y (Zr,TiyO 3 ) (PLZT, wherein 0<x<1 and 0<y<1), Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), HfO 2 , SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , SiO 2 , Y 2 O 3 , Al 2 O 3 , boehmite (AlOOH), SiC, TiO 2 and combinations thereof. In the high thermal stability separator of the present invention, the binder applicable to the inorganic layer of the porous membrane is not particularly limited, and those known to be applicable to the separator field can be used, such as a binder having high electrochemical stability, good wettability to electrolyte and chemical resistance. In one embodiment of the present invention, the binder that can be used can be ethylene-vinyl acetate copolymer, poly (meth) acrylate, cross-linked (meth) acrylic resin, fluorine rubber, styrene-butadiene rubber, polyvinyl alcohol, polyvinyl butyral, polyvinyl pyrrolidone, poly-N-vinyl acetamide, polyvinylidene fluoride, polyurethane or a combination thereof, but is not limited thereto. In the high thermal stability isolation film of the present invention, the inorganic layer of the porous film can be coated by methods known in the art without particular limitation, such as roller coating, doctor blade coating, dip coating, wheel coating, rotary coating, slit coating, and other coating methods commonly used in the art.
在本發明之另一態樣中為揭露一種高熱穩定性隔離膜的製備方法,其步驟包含:提供一多孔膜,包含一多孔基材及一無機層,其中該無機層包含複數無機粒子及一黏結劑,且該無機層形成於該多孔基材的至少一表面上,且該多孔基材及無機層具有複數彼此相通的多孔結構;形成一鈦氧化物或/及鈦氫氧化物薄膜於該多孔膜表面及該多孔膜的該等多孔結構的內壁上。本發明之高熱穩定性隔離膜的鈦氧化物或/及鈦氫氧化物薄膜可利用例如但不限於化學溶液沉積法形成於該多孔膜表面及該多孔膜的該等多孔結構的內壁上,其它形成薄膜的方法例如但不限於化學氣相沉積法、原子層沉積法等也可適用於本發明。In another embodiment of the present invention, a method for preparing a high thermal stability isolation membrane is disclosed, the steps of which include: providing a porous membrane, comprising a porous substrate and an inorganic layer, wherein the inorganic layer comprises a plurality of inorganic particles and a binder, and the inorganic layer is formed on at least one surface of the porous substrate, and the porous substrate and the inorganic layer have a plurality of porous structures that are interconnected; forming a titanium oxide and/or titanium hydroxide film on the surface of the porous membrane and on the inner walls of the porous structures of the porous membrane. The titanium oxide or/and titanium hydroxide thin film of the high thermal stability isolation membrane of the present invention can be formed on the surface of the porous membrane and the inner wall of the porous structure of the porous membrane by, for example but not limited to, chemical solution deposition. Other methods of forming thin films, such as but not limited to chemical vapor deposition, atomic layer deposition, etc., can also be applied to the present invention.
在本發明高熱穩定性隔離膜的製備方法之一態樣中,該鈦氧化物或/及鈦氫氧化物薄膜形成於該多孔膜表面及該多孔膜的該等多孔結構的內壁上,其步驟包括:製備一第一化學沉積溶液組,其包含一含0.25wt%至3wt%鈦醇鹽溶液的第一前驅物溶液及一30wt%至70wt%醇的水溶液之第一反應溶液;將該第一前驅物溶液及該第一反應溶液依序施用於該多孔膜上,使該第一前驅物溶液與該第一反應溶液產生反應,並在該多孔膜表面及該多孔膜之該等多孔結構的內壁上形成一鈦氧化物或/及鈦氫氧化物薄膜。In one aspect of the method for preparing the high thermal stability isolation membrane of the present invention, the titanium oxide or/and titanium hydroxide film is formed on the surface of the porous membrane and on the inner walls of the porous structures of the porous membrane, and the steps include: preparing a first chemical deposition solution set, which includes a first precursor solution containing 0.25wt% to 3wt% of a titanium alkoxide solution and a first reaction solution of 30wt% to 70wt% of an alcohol aqueous solution; applying the first precursor solution and the first reaction solution to the porous membrane in sequence, allowing the first precursor solution to react with the first reaction solution, and forming a titanium oxide or/and titanium hydroxide film on the surface of the porous membrane and on the inner walls of the porous structures of the porous membrane.
在本發明揭露之製備方法中,該第一前驅物溶液之鈦醇鹽為甲醇鈦、乙醇鈦、異丙醇鈦和叔丁醇鈦或其組合,且較佳為異丙醇鈦,且該鈦醇鹽溶液之溶劑為甲醇、乙醇或異丙醇或其組合。在本發明之一較佳實施例中,該第一前驅物溶液為含0.25重量百分比(wt%)至2.5wt%鈦醇鹽溶液。In the preparation method disclosed in the present invention, the titanium alkoxide of the first precursor solution is titanium methanol, titanium ethanol, titanium isopropoxide and titanium tert-butoxide or a combination thereof, and preferably titanium isopropoxide, and the solvent of the titanium alkoxide solution is methanol, ethanol or isopropanol or a combination thereof. In a preferred embodiment of the present invention, the first precursor solution is a solution containing 0.25 weight percent (wt%) to 2.5wt% of titanium alkoxide.
在本發明揭露之製備方法中,該第一反應溶液為醇的水溶液,適用之醇類可為甲醇、乙醇、異丙醇、乙氧基乙醇、烯丙醇、乙二醇或其組合。在本發明之一較佳實施例中,該第一反應溶液較佳為40至60wt%醇的水溶液。在本發明之一較佳實施例中,該第一反應溶液為甲醇、乙醇或異丙醇或其組合的水溶液。In the preparation method disclosed in the present invention, the first reaction solution is an aqueous solution of alcohol, and the applicable alcohol can be methanol, ethanol, isopropanol, ethoxyethanol, allyl alcohol, ethylene glycol or a combination thereof. In a preferred embodiment of the present invention, the first reaction solution is preferably an aqueous solution of 40 to 60 wt % alcohol. In a preferred embodiment of the present invention, the first reaction solution is an aqueous solution of methanol, ethanol or isopropanol or a combination thereof.
在本發明揭露之高熱穩定性隔離膜的製備方法中,該第一前驅物溶液進一步包含一安定劑以穩定鈦氧化物或/及鈦氫氧化物,其中該安定劑在該第一前驅物溶液中的使用量為0.5wt%至7wt%,尤以介於1wt%至5wt%間為宜。適用的安定劑可為六甲基二矽氮烷。In the preparation method of the high thermal stability isolation film disclosed in the present invention, the first precursor solution further comprises a stabilizer to stabilize titanium oxide and/or titanium hydroxide, wherein the amount of the stabilizer in the first precursor solution is 0.5wt% to 7wt%, preferably between 1wt% and 5wt%. The applicable stabilizer may be hexamethyldisilazane.
在本發明揭露之高熱穩定性隔離膜的製備方法中,該第一反應溶液進一步包含一增黏劑以強化該鈦氧化物或/及鈦氫氧化物與該多孔膜表面及該等多孔結構的內壁的黏著性,其中在第一反應中該增黏劑溶液的使用量為介於0.05wt%至5wt%間,較佳為介於0.05wt%至3wt%間。適用的增黏劑可例如但不限於是聚(甲基)丙烯酸酯樹脂、交聯性的(甲基)丙烯酸樹脂、聚-N-乙烯基乙醯胺、丙烯腈-丙烯酸酯共聚物、丙烯腈-丙烯醯胺-丙烯酸酯共聚物或其組合。In the preparation method of the high thermal stability isolation film disclosed in the present invention, the first reaction solution further comprises a thickener to enhance the adhesion between the titanium oxide and/or titanium hydroxide and the surface of the porous membrane and the inner wall of the porous structure, wherein the amount of the thickener solution used in the first reaction is between 0.05wt% and 5wt%, preferably between 0.05wt% and 3wt%. Applicable thickeners may be, for example but not limited to, poly(meth)acrylate resins, crosslinked (meth)acrylate resins, poly-N-vinyl acetamide, acrylonitrile-acrylate copolymers, acrylonitrile-acrylamide-acrylate copolymers or combinations thereof.
在本發明揭露之製備方法中,將該第一化學沉積溶液組施用於該多孔膜上之施用方法可為溶液浴法或噴塗法。In the preparation method disclosed in the present invention, the first chemical deposition solution set can be applied to the porous membrane by a solution bath method or a spraying method.
在本發明揭露之製備方法的另一實施例中,在製備該第一化學沉積溶液組之後,更製備一第二化學沉積溶液組,其包含一含0.25wt%至3wt%鈦醇鹽溶液的第二前驅物溶液與一30至70wt%醇的水溶液之第二反應溶液,且多孔膜施用第一前驅物溶液及第一反應溶液後,依序施用第二前驅物溶液與第二反應溶液。In another embodiment of the preparation method disclosed in the present invention, after preparing the first chemical deposition solution set, a second chemical deposition solution set is further prepared, which includes a second precursor solution containing 0.25wt% to 3wt% titanium alkoxide solution and a second reaction solution of 30 to 70wt% alcohol aqueous solution, and after the first precursor solution and the first reaction solution are applied to the porous membrane, the second precursor solution and the second reaction solution are applied in sequence.
在本發明揭露之製備方法中,該第二前驅物溶液為鈦醇鹽溶液使用的鈦醇鹽種類或濃度可與第一前驅物溶液的鈦醇鹽溶液相同或不同;該第二前驅物溶液之鈦醇鹽為甲醇鈦、乙醇鈦、異丙醇鈦和叔丁醇鈦或其組合,且使用之溶劑為甲醇、乙醇或異丙醇或其組合。在本發明之一較佳實施例中,該第二前驅物溶液為含0.25重量百分比(wt%)至2.5wt%鈦醇鹽溶液。In the preparation method disclosed in the present invention, the second precursor solution is a titanium alkoxide solution, and the type or concentration of the titanium alkoxide used can be the same as or different from the titanium alkoxide solution of the first precursor solution; the titanium alkoxide of the second precursor solution is titanium methanol, titanium ethanol, titanium isopropoxide and titanium tert-butoxide or a combination thereof, and the solvent used is methanol, ethanol or isopropanol or a combination thereof. In a preferred embodiment of the present invention, the second precursor solution is a titanium alkoxide solution containing 0.25 weight percent (wt%) to 2.5wt%.
在本發明揭露之製備方法的另一較佳實施例中,該第二反應溶液使用的醇種類或濃度可與第一反應溶液為相同或不同,其中醇為甲醇、乙醇、異丙醇、乙氧基乙醇、烯丙醇、乙二醇或其組合。在本發明之一較佳實施例中,該第二反應溶液較佳為40至60wt%之醇的水溶液。在本發明之一較佳實施例中,該第二反應溶液為甲醇、乙醇或異丙醇或其組合的水溶液。In another preferred embodiment of the preparation method disclosed in the present invention, the alcohol type or concentration used in the second reaction solution can be the same as or different from that of the first reaction solution, wherein the alcohol is methanol, ethanol, isopropanol, ethoxyethanol, allyl alcohol, ethylene glycol or a combination thereof. In a preferred embodiment of the present invention, the second reaction solution is preferably an aqueous solution of 40 to 60 wt % of alcohol. In a preferred embodiment of the present invention, the second reaction solution is an aqueous solution of methanol, ethanol or isopropanol or a combination thereof.
在本發明揭露高熱穩定性隔離膜的製備方法之另一較佳實施例中,該第二前驅物溶液可進一步包含一安定劑。在本發明中適用的安定劑為六甲基二矽氮烷,其中該安定劑在第一前驅物溶液及第二前驅物溶液中的使用量可為相同或不同,較佳為介於0.5wt%至7wt%間,尤以介於介於1wt%至5wt%間為宜。In another preferred embodiment of the method for preparing a thermally stable isolation film disclosed in the present invention, the second precursor solution may further include a stabilizer. The stabilizer used in the present invention is hexamethyldisilazane, wherein the amount of the stabilizer used in the first precursor solution and the second precursor solution may be the same or different, preferably between 0.5wt% and 7wt%, and particularly preferably between 1wt% and 5wt%.
在本發明揭露高熱穩定性隔離膜的製備方法之另一較佳實施例中,該第二反應溶液可進一步包含一增黏劑。在本發明中適用的增黏劑為聚(甲基)丙烯酸酯、交聯性的(甲基)丙烯酸樹脂、聚-N-乙烯基乙醯胺、丙烯腈-丙烯酸酯共聚物、丙烯腈-丙烯醯胺-丙烯酸酯共聚物或其組合。在本發明製備方法的一較佳實施例中,該增黏劑在第一或第二反應溶液中的使用量可為相同或不同。在本發明製備方法的一較佳實施例中,該第二反應溶液中的增黏劑使用量為介於0.05wt%至5wt%間,較佳為介於0.05%至3wt%間。In another preferred embodiment of the preparation method of the high thermal stability isolation film disclosed in the present invention, the second reaction solution may further contain a thickener. The thickener applicable in the present invention is poly (meth) acrylate, cross-linked (meth) acrylic resin, poly-N-vinyl acetamide, acrylonitrile-acrylate copolymer, acrylonitrile-acrylamide-acrylate copolymer or a combination thereof. In a preferred embodiment of the preparation method of the present invention, the amount of the thickener used in the first or second reaction solution may be the same or different. In a preferred embodiment of the preparation method of the present invention, the amount of the thickener used in the second reaction solution is between 0.05wt% and 5wt%, preferably between 0.05% and 3wt%.
在本發明中揭露高熱穩定性隔離膜的製備方法之另一較佳實施例中,該第二反應溶液可進一步包含一金屬鹽類。適用的金屬鹽類可為溴化鈉、碘化鉀、氯化鎂、氯化鍶、氯化鈣、溴化鍶、氯化銅或其組合。在本發明揭露之製備方法的一較佳實施例中,其中該金屬鹽類在第二反應溶液中使用量為5wt%至20wt%。In another preferred embodiment of the preparation method of the high thermal stability isolation film disclosed in the present invention, the second reaction solution may further contain a metal salt. Applicable metal salts may be sodium bromide, potassium iodide, magnesium chloride, strontium chloride, calcium chloride, strontium bromide, copper chloride or a combination thereof. In a preferred embodiment of the preparation method disclosed in the present invention, the metal salt is used in an amount of 5wt% to 20wt% in the second reaction solution.
本發明揭露之製備方法,其中該第一或第二反應溶液可視需求進一步包含抗靜電劑、阻燃劑、抗氧化劑、或表面改質劑等添加劑。In the preparation method disclosed in the present invention, the first or second reaction solution may further contain additives such as antistatic agents, flame retardants, antioxidants, or surface modifiers as required.
在本發明揭露之製備方法中,將該第二化學沉積溶液組施用於該多孔膜上之施用方法可為溶液浴法或噴塗法。In the preparation method disclosed in the present invention, the second chemical deposition solution set can be applied to the porous membrane by a solution bath method or a spraying method.
本發明的又一態樣為一種高熱穩定性隔離膜的製備方法,其步驟包含:提供一多孔膜,其具複數多孔結構,且該多孔膜的表面及該等多孔結構上具一鈦氧化物或/及鈦氫氧化物薄膜;形成一鈦氧化物或/及鈦氫氧化物-氧化矽薄膜於該多孔膜的該表面及該多孔膜的該等多孔結構的內壁上。Another aspect of the present invention is a method for preparing a high thermal stability isolation membrane, the steps of which include: providing a porous membrane having a plurality of porous structures, and a titanium oxide or/and titanium hydroxide film on the surface of the porous membrane and the porous structures; forming a titanium oxide or/and titanium hydroxide-silicon oxide film on the surface of the porous membrane and on the inner walls of the porous structures of the porous membrane.
在本發明所揭露一種高熱穩定性隔離膜的製備方法,其中該鈦氧化物或/及鈦氫氧化物-氧化矽薄膜可利用例如但不限於化學溶液沉積法形成於該多孔膜表面及該多孔膜的該等多孔結構的內壁上,其它形成薄膜的方法例如但不限於化學氣相沉積法、原子層沉積法等也可適用於本發明。The present invention discloses a method for preparing a high thermal stability isolation film, wherein the titanium oxide and/or titanium hydroxide-silicon oxide thin film can be formed on the surface of the porous membrane and the inner wall of the porous structure of the porous membrane by, for example but not limited to, chemical solution deposition. Other methods for forming thin films, such as but not limited to chemical vapor deposition, atomic layer deposition, etc., can also be applied to the present invention.
在本發明之另一態樣中,該鈦氧化物或/及鈦氫氧化物-氧化矽薄膜是利用化學溶液沉積法形成於該多孔膜表面及該多孔膜的該等多孔結構的內壁上,其步驟包含:提供一多孔膜,其具複數多孔結構且該多孔膜表面及該多孔膜的該等多孔結構上具一第一鈦氧化物或/及鈦氫氧化物薄膜;製備一第三化學沉積溶液組,其包含一1wt%至10wt%之烷氧基矽烷溶液及一90wt%至99.5wt%醇的水溶液之第三反應溶液;將該烷氧基矽烷溶液施用於該多孔膜後,再將該第三反應溶液施用於該多孔膜,使該烷氧基矽烷溶液與該第三反應溶液產生反應,以形成一第二鈦氧化物或/及鈦氫氧化物-氧化矽薄膜於該多孔膜表面及該多孔膜的該等多孔結構的內壁上。In another embodiment of the present invention, the titanium oxide or/and titanium hydroxide-silicon oxide thin film is formed on the surface of the porous membrane and the inner wall of the porous structure of the porous membrane by chemical solution deposition, and the steps include: providing a porous membrane having a plurality of porous structures and having a first titanium oxide or/and titanium hydroxide thin film on the surface of the porous membrane and the porous structures of the porous membrane; preparing a third chemical deposition solution set, which includes a 1wt% A third reaction solution of an alkoxysilane solution with a weight percent of 1 to 10 wt % and an aqueous solution of an alcohol with a weight percent of 90 wt % to 99.5 wt % is prepared; after applying the alkoxysilane solution to the porous membrane, the third reaction solution is applied to the porous membrane to allow the alkoxysilane solution to react with the third reaction solution to form a second titanium oxide or/and titanium hydroxide-silicon oxide thin film on the surface of the porous membrane and on the inner walls of the porous structures of the porous membrane.
本發明之高熱穩定性隔離膜的製備方法中,該烷氧基矽烷溶液為烷氧基矽烷為四乙氧基矽烷,且該烷氧基矽烷溶液中的溶劑為甲醇、乙醇、異丙醇或其組合。In the method for preparing the high thermal stability isolation film of the present invention, the alkoxysilane solution is tetraethoxysilane, and the solvent in the alkoxysilane solution is methanol, ethanol, isopropanol or a combination thereof.
本發明之高熱穩定性隔離膜的製備方法中,該烷氧基矽烷溶液更包含一催化劑,較佳為氨水。在一較佳實施例中,該催化劑使用量為每百重量份溶劑加入5重量份至15重量份。In the preparation method of the high thermal stability isolation film of the present invention, the alkoxysilane solution further comprises a catalyst, preferably ammonia water. In a preferred embodiment, the catalyst is used in an amount of 5 to 15 parts by weight per 100 parts by weight of the solvent.
在本發明揭露之製備方法中,將該第三化學沉積溶液組施用於該多孔膜上之施用方法可為溶液浴法或噴塗法。In the preparation method disclosed in the present invention, the method for applying the third chemical deposition solution set to the porous membrane can be a solution bath method or a spraying method.
下述實施例係用來進一步說明本發明,但本發明之內容並不受其限制。The following embodiments are used to further illustrate the present invention, but the content of the present invention is not limited thereto.
實施例Embodiment
製備實施例:無機粒子塗液製備Preparation Example: Preparation of Inorganic Particle Coating
將38 g氧化鋁(CQ-030EN,購自山東國瓷功能材料股份有限公司,中國)、0.68 g分散劑 (BYK-154,購自BYK公司,德國)及52.9 g去離子水混合並攪拌均勻。接著加入3.4 g聚丙烯酸酯及0.13g聚醚改質矽氧烷界面活性劑(BYK-349,購自BYK公司,德國)混合並攪拌均勻,以得到無機粒子塗液。38 g of aluminum oxide (CQ-030EN, purchased from Shandong Guoci Functional Materials Co., Ltd., China), 0.68 g of dispersant (BYK-154, purchased from BYK, Germany) and 52.9 g of deionized water were mixed and stirred uniformly. Then 3.4 g of polyacrylate and 0.13 g of polyether-modified siloxane surfactant (BYK-349, purchased from BYK, Germany) were added and mixed and stirred uniformly to obtain an inorganic particle coating solution.
將無機粒子塗液塗覆於一厚度9 µm的聚乙烯多孔基材(孔隙率48%)上並乾燥之。在多孔基材的單側面上形成具厚度為2 µm的無機層,此單塗層多孔膜的總厚度為11 µm;或在多孔基材的雙側面上形成厚度各為2 µm的無機層,此雙塗層多孔膜的總厚度為13 µm。The inorganic particle coating liquid is coated on a 9 µm thick polyethylene porous substrate (porosity 48%) and dried. An inorganic layer with a thickness of 2 µm is formed on one side of the porous substrate, and the total thickness of the single-layer porous membrane is 11 µm; or an inorganic layer with a thickness of 2 µm is formed on both sides of the porous substrate, and the total thickness of the double-layer porous membrane is 13 µm.
實施例1:隔離膜之製備Example 1: Preparation of Isolation Film
在196 g 99.5%無水乙醇中加入4g異丙醇鈦(TTIP),在常溫下攪拌均勻以得到第一前驅物溶液。將100g去離子水及100g 95%乙醇均勻混和並攪拌以得到第一反應溶液。4 g of titanium isopropoxide (TTIP) was added to 196 g of 99.5% anhydrous ethanol, and the mixture was stirred at room temperature to obtain a first precursor solution. 100 g of deionized water and 100 g of 95% ethanol were uniformly mixed and stirred to obtain a first reaction solution.
在198g 99.5%無水乙醇中加入2g異丙醇鈦,在常溫下攪拌以得到第二前驅物溶液。將100g 去離子水及95%乙醇均勻混和,常溫下攪拌以得到第二反應溶液。2 g of titanium isopropoxide was added to 198 g of 99.5% anhydrous ethanol, and stirred at room temperature to obtain a second precursor solution. 100 g of deionized water and 95% ethanol were uniformly mixed, and stirred at room temperature to obtain a second reaction solution.
將製備實施例得到的雙塗層多孔膜浸入第一前驅物溶液,取出後去除表面多餘液體。再接著浸入第一反應溶液,取出後去除表面多餘液體,並於80℃乾燥5分鐘。接著再浸入第二前驅物溶液,取出後去除表面多餘液體,再浸入第二反應溶液,取出後去除表面多餘液體,並於80℃乾燥5分鐘,形成一鈦氧化物或/及鈦氫氧化物薄膜於該多孔膜的表面及多孔結構的內壁上,以製得一高熱穩定性隔離膜。The double-coated porous membrane obtained in the preparation example is immersed in the first precursor solution, and the excess liquid on the surface is removed after being taken out. Then, it is immersed in the first reaction solution, and the excess liquid on the surface is removed after being taken out, and it is dried at 80°C for 5 minutes. Then, it is immersed in the second precursor solution, and the excess liquid on the surface is removed after being taken out, and then immersed in the second reaction solution, and the excess liquid on the surface is removed after being taken out, and it is dried at 80°C for 5 minutes to form a titanium oxide or/and titanium hydroxide film on the surface of the porous membrane and the inner wall of the porous structure to obtain a high thermal stability isolation membrane.
製得之高熱穩定性隔離膜以後文描述的檢測方法進行測試。測試結果列於表1。The obtained high thermal stability isolation film was tested by the test method described below. The test results are listed in Table 1.
厚度測試:依照GB/T6672-2001測試標準,使用膜厚儀(VL-50-B,購自Mitutoyo,日本)測試。使用直徑3mm、下壓探頭荷重為0.01N的平面測頭進行測試。Thickness test: According to GB/T6672-2001 test standard, use a film thickness meter (VL-50-B, purchased from Mitutoyo, Japan) to test. Use a flat probe with a diameter of 3mm and a downward probe load of 0.01N for testing.
透氣度(Gurley)測試:依據ASTM D-726規範將測試之隔離膜裁切成1平方英吋的大小,利用Gurley透氣儀測量100 c.c.空氣通過待測隔離膜所需之時間而得到透氣度。Air permeability (Gurley) test: According to ASTM D-726, the test film is cut into 1 square inch size, and the air permeability is obtained by measuring the time required for 100 c.c. of air to pass through the test film using a Gurley permeability meter.
熱收縮測試:裁取10×10cm之樣品,並於檢測前分別於樣品中心位置標記縱向(MD)及橫向(TD)的初始長度M0及T0。標記好後將樣品夾於兩張A4紙中置入烘箱,以150℃加熱1小時,加熱結束後將樣品置於與測量儀器相同環境下30分鐘,再量測樣品中心位置之縱向(MD)長度M1及橫向(TD)的長度T1。 縱向(MD)熱收縮率(SMD) =(M0-M1)/M0x100% 橫向(TD)熱收縮率(STD) =(T0-T1)/T0x100% Thermal shrinkage test: Cut a 10×10cm sample and mark the initial lengths M0 and T0 in the longitudinal direction (MD) and transverse direction (TD) at the center of the sample before testing. After marking, place the sample between two A4 papers and heat it in an oven at 150℃ for 1 hour. After heating, place the sample in the same environment as the measuring instrument for 30 minutes, and then measure the longitudinal length M1 and transverse length T1 of the sample center. Longitudinal (MD) thermal shrinkage rate (SMD) = (M0-M1)/M0x100% Transverse (TD) thermal shrinkage rate (STD) = (T0-T1)/T0x100%
機械強度測試:依據ASTM D882-09規範將測試之隔離膜分別順縱向(MD)及橫向(TD)裁切成寬度10mm且長度≧150mm的大小,利用萬能拉力機以500mm/min的速率進行拉伸,取得試樣斷裂時的最大荷重值後將其除以隔離膜之截面積(試樣寬度×基材厚度),分別計算出隔離膜縱向(MD)及橫向(TD)的拉伸強度。Mechanical strength test: According to ASTM D882-09, the tested isolation film was cut into pieces with a width of 10 mm and a length of ≥ 150 mm in the longitudinal direction (MD) and transverse direction (TD). The pieces were stretched at a rate of 500 mm/min using a universal tensile testing machine. The maximum load value at the time of fracture was obtained and then divided by the cross-sectional area of the isolation film (specimen width × substrate thickness). The tensile strength of the isolation film in the longitudinal direction (MD) and transverse direction (TD) was calculated.
抗穿刺性(gf) :以拉力機(MSG-5,購自Kato Tech,日本)測量穿刺強度,使用針徑為1mm、R角為0.5mm的圓頭不銹鋼針,測試速度為100±10mm/min去穿刺待測樣品,記錄刺破待測隔離膜所需之最大施力(gf) 。Puncture resistance (gf): The puncture strength was measured using a tensile tester (MSG-5, purchased from Kato Tech, Japan). A round-headed stainless steel needle with a needle diameter of 1 mm and an R angle of 0.5 mm was used to puncture the sample at a test speed of 100±10 mm/min. The maximum force (gf) required to puncture the isolation film was recorded.
吸液速率測試:將測試之隔離膜裁切成80 mm×10 mm的大小,在密閉空間內將樣品垂直懸掛浸潤溶劑(碳酸丙烯酯(PC) 、碳酸二乙酯 (DEC)以重量比1:1之比例混合)中,並於樣品上劃記起始液面高度,1分鐘後以起始液面扛高度為起點記錄隔離膜毛細吸液的高度(mm)。Liquid absorption rate test: Cut the tested isolation film into a size of 80 mm × 10 mm, suspend the sample vertically in a wetting solvent (propylene carbonate (PC) and diethyl carbonate (DEC) mixed in a weight ratio of 1:1) in a closed space, and mark the initial liquid level on the sample. After 1 minute, record the height (mm) of the isolation film capillary absorption starting from the initial liquid level.
接觸角量測:以接觸角量測儀 (Phoenix 150,購自精志科技,台灣)測量接觸角,使用針徑2mm之注射針筒吸取碳酸丙烯酯(PC,純度為99%)並裝設於量測儀上,另將隔離膜待測樣品固定於樣品載台上。由注射針筒擠壓體積液滴至待測樣品上,並以光學系統CCD測定、電腦軟體進一步計算其接觸角。Contact angle measurement: The contact angle was measured using a contact angle meter (Phoenix 150, purchased from Jingzhi Technology, Taiwan). A 2mm diameter syringe was used to absorb propylene carbonate (PC, purity 99%) and mounted on the meter. The isolation film sample to be tested was fixed on the sample carrier. A volume of liquid was squeezed from the syringe and dropped onto the sample to be tested. The optical system CCD was used to measure and the computer software further calculated the contact angle.
裂紋測試:裁切3 cm x 20 cm隔離膜樣品,並置於200℃烘箱內1小時,取出後以目視觀察是否有裂紋,‟X″為有裂紋;‟∆″因隔膜收縮無法判斷;‟¡″為無裂紋。Crack test: Cut 3 cm x 20 cm separator film samples and place them in a 200℃ oven for 1 hour. Take them out and visually inspect them for cracks. 'X' means there are cracks; '∆' means it cannot be determined due to membrane shrinkage; '¡' means there are no cracks.
熔融完整性:裁切長8mm、寬4.5m隔離膜樣品,置入熱機械分析儀(TMA 450,購自TA儀器公司,美國)之樣品槽中,以0.01N荷重下以升溫速率5°C/min升溫至200°C,測試結束後記錄破膜溫度。其中,於0.01N之固定荷重下,隔離膜隨溫度的上升達到受熱極限,形變量達最大值時判定為斷裂,則斷裂溫度點即定義為破膜溫度。Melt integrity: Cut a 8mm long and 4.5m wide isolation film sample and place it in the sample tank of a thermomechanical analyzer (TMA 450, purchased from TA Instruments, USA). The temperature was raised to 200°C at a rate of 5°C/min under a load of 0.01N. The film rupture temperature was recorded after the test. Under a fixed load of 0.01N, the isolation film reached the thermal limit with the increase of temperature. When the deformation reached the maximum value, it was judged to be broken. The fracture temperature point was defined as the film rupture temperature.
壓縮抗性:裁切4 cm x 4cm隔離膜50片並堆疊成為樣品,依前述測量初始厚度(T1),再置入治具中,施加88 Kgf/cm 2荷重並持壓30秒即停止,量測結束後樣品壓縮厚度(T2) 。 樣品壓縮率(%)=(T1- T2) / T1×100; 壓縮抗性 = 100% - 樣品壓縮率% Compression resistance: Cut 50 pieces of 4 cm x 4 cm isolation film and stack them into samples. Measure the initial thickness (T1) as mentioned above, then place them in the fixture, apply a load of 88 Kgf/ cm2 and hold the pressure for 30 seconds before stopping. After the measurement, measure the compressed thickness of the sample (T2). Sample compression rate (%) = (T1- T2) / T1×100; Compression resistance = 100% - sample compression rate%
壓縮後透氣度:依前述測量透氣性的檢測方法量測透氣度(G1);接著使用上述壓縮抗性測試方法壓縮樣品,依照前述測量透氣性的檢測方法量測透氣度(G2);G2即為壓縮後透氣度。 壓縮後透氣度降低率(%)=(1-G1/G2)×100%。 Air permeability after compression: Measure the air permeability (G1) according to the aforementioned air permeability test method; then compress the sample using the aforementioned compression resistance test method, and measure the air permeability (G2) according to the aforementioned air permeability test method; G2 is the air permeability after compression. Air permeability reduction rate after compression (%) = (1-G1/G2) × 100%.
實施例2:隔離膜之製備Example 2: Preparation of Isolation Film
在198.4 g 99.5%無水乙醇中加入1.6g異丙醇鈦,在常溫下攪拌均勻以得到第一前驅物溶液。將98.4g去離子水及98.4g 95%乙醇均勻混和並加入3g聚-N-乙烯基乙醯胺(PNVA GE191-107,購自昭和電工株式會社,日本),常溫下攪拌均勻;再加入0.13g丙烯腈-丙烯醯胺-丙烯酸酯共聚物(BM-950B,購自瑞翁公司,日本),常溫下攪拌以得到第一反應溶液。1.6 g of titanium isopropoxide was added to 198.4 g of 99.5% anhydrous ethanol, and the mixture was stirred at room temperature to obtain a first precursor solution. 98.4 g of deionized water and 98.4 g of 95% ethanol were uniformly mixed, and 3 g of poly-N-vinyl acetamide (PNVA GE191-107, purchased from Showa Denko K.K., Japan) was added, and the mixture was stirred at room temperature to obtain a first reaction solution. 0.13 g of acrylonitrile-acrylamide-acrylate copolymer (BM-950B, purchased from Zeon Co., Ltd., Japan) was added, and the mixture was stirred at room temperature to obtain a first reaction solution.
將製備實施例製得之雙塗層多孔膜浸入第一前驅物溶液,取出後去除表面多餘液體。再接著浸入第一反應溶液,取出後去除表面多餘液體,並於80℃乾燥5分鐘,形成一鈦氧化物或/及鈦氫氧化物薄膜於該多孔膜的表面及多孔結構的內壁上,以製得一高熱穩定性隔離膜。The double-coated porous membrane prepared in the preparation example is immersed in the first precursor solution, and the excess liquid on the surface is removed after being taken out. Then, it is immersed in the first reaction solution, and the excess liquid on the surface is removed after being taken out, and dried at 80° C. for 5 minutes to form a titanium oxide or/and titanium hydroxide film on the surface of the porous membrane and the inner wall of the porous structure, so as to prepare a high thermal stability isolation membrane.
製得之高熱穩定性隔離膜以實施例1描述的檢測方法進行測試。測試結果列於表1。The prepared high thermal stability isolation film was tested using the test method described in Example 1. The test results are listed in Table 1.
實施例3:隔離膜之製備Example 3: Preparation of Isolation Film
依實施例1製備第一前驅物溶液、第一反應溶液及第二前驅物溶液。第二反應溶液的製備係將98.4g 去離子水、98.4g 95%乙醇、3 g聚-N-乙烯基乙醯胺(PNVA GE191-107)及0.13 g丙烯腈-丙烯醯胺-丙烯酸酯共聚物 (BM-950B)均勻混和,常溫下攪拌以得到第二反應溶液。The first precursor solution, the first reaction solution and the second precursor solution were prepared according to Example 1. The second reaction solution was prepared by uniformly mixing 98.4 g of deionized water, 98.4 g of 95% ethanol, 3 g of poly-N-vinyl acetamide (PNVA GE191-107) and 0.13 g of acrylonitrile-acrylamide-acrylate copolymer (BM-950B), and stirring at room temperature to obtain a second reaction solution.
將製備實施例製得之雙塗層多孔膜依序浸入本實施例3的第一前驅物溶液、第一反應溶液、第二前驅物溶液、第二反應溶液,形成一鈦氧化物或/及鈦氫氧化物薄膜於該多孔膜的表面及多孔結構的內壁上,以製得一高熱穩定性隔離膜。The double-coated porous membrane prepared in the preparation example is sequentially immersed in the first precursor solution, the first reaction solution, the second precursor solution, and the second reaction solution of Example 3 to form a titanium oxide and/or titanium hydroxide film on the surface of the porous membrane and the inner wall of the porous structure to obtain a high thermal stability isolation membrane.
製得之高熱穩定性隔離膜以實施例1描述的檢測方法進行測試。測試結果列於表1。The prepared high thermal stability isolation film was tested using the test method described in Example 1. The test results are listed in Table 1.
實施例4:隔離膜之製備Example 4: Preparation of Isolation Film
依實施例1製備第一前驅物溶液、第一反應溶液及第二前驅物溶液。第二反應溶液的製備係將98.3 g 去離子水、98.3 g 95%乙醇及3 g聚-N-乙烯基乙醯胺(PNVA GE191-103 ,購自昭和電工株式會社,日本)均勻混和,再加入0.417 g聚丙烯酸(PAA) (CYJ-01 Binder A,固含量48%,購自珠海辰玉新材料股份有限公司,中國)常溫下攪拌,再加入0.042g環氧樹酯(CYJ-01 Binder B,固含量100%,購自珠海辰玉新材料股份有限公司,中國),常溫下攪拌以得到第二反應溶液。The first precursor solution, the first reaction solution and the second precursor solution were prepared according to Example 1. The second reaction solution was prepared by uniformly mixing 98.3 g of deionized water, 98.3 g of 95% ethanol and 3 g of poly-N-vinyl acetamide (PNVA GE191-103, purchased from Showa Denko K.K., Japan), adding 0.417 g of polyacrylic acid (PAA) (CYJ-01 Binder A, solid content 48%, purchased from Zhuhai Chenyu New Materials Co., Ltd., China) and stirring at room temperature, and then adding 0.042 g of epoxy resin (CYJ-01 Binder B, solid content 100%, purchased from Zhuhai Chenyu New Materials Co., Ltd., China) and stirring at room temperature to obtain a second reaction solution.
將製備實施例製得之雙塗層多孔膜依序浸入本實施例4的第一前驅物溶液、第一反應溶液、第二前驅物溶液、第二反應溶液,形成一鈦氧化物或/及鈦氫氧化物薄膜於該多孔膜的表面及多孔結構的內壁上,以製得一高熱穩定性隔離膜。The double-coated porous membrane prepared in the preparation example is sequentially immersed in the first precursor solution, the first reaction solution, the second precursor solution, and the second reaction solution of Example 4 to form a titanium oxide and/or titanium hydroxide film on the surface of the porous membrane and the inner wall of the porous structure to obtain a high thermal stability isolation membrane.
製得之高熱穩定性隔離膜以實施例1描述的檢測方法進行測試。測試結果列於表1。The prepared high thermal stability isolation film was tested using the test method described in Example 1. The test results are listed in Table 1.
實施例5:隔離膜之製備Example 5: Preparation of Isolation Film
在196.4 g 99.5%無水乙醇中加入1.6 g異丙醇鈦及2 g六甲基二矽氮烷均勻混和,常溫下攪拌以得到第一前驅物反應溶液。將98.4 g去離子水及98.4 g 95%乙醇均勻混和並加入3g聚-N-乙烯基乙醯胺(PNVA GE191-107),常溫下攪拌均勻;再加入0.13g丙烯腈-丙烯醯胺-丙烯酸酯共聚物 (BM-950B),常溫下攪拌以得到第一反應溶液。1.6 g of titanium isopropoxide and 2 g of hexamethyldisilazane were added to 196.4 g of 99.5% anhydrous ethanol and mixed uniformly, and stirred at room temperature to obtain a first precursor reaction solution. 98.4 g of deionized water and 98.4 g of 95% ethanol were mixed uniformly and 3 g of poly-N-vinyl acetamide (PNVA GE191-107) was added, and stirred uniformly at room temperature; 0.13 g of acrylonitrile-acrylamide-acrylate copolymer (BM-950B) was added, and stirred at room temperature to obtain a first reaction solution.
將製備實施例製得之雙塗層多孔膜依序浸入本實施例5的第一前驅物溶液、第一反應溶液,形成一鈦氧化物或/及鈦氫氧化物薄膜於該多孔膜表面及該多孔膜之該等多孔結構的內壁上,以製得一高熱穩定性隔離膜。The double-coated porous membrane prepared in the preparation example is sequentially immersed in the first precursor solution and the first reaction solution of Example 5 to form a titanium oxide and/or titanium hydroxide film on the surface of the porous membrane and on the inner wall of the porous structure of the porous membrane to obtain a high thermal stability isolation membrane.
製得之高熱穩定性隔離膜以實施例1描述的檢測方法進行測試。測試結果列於表1。The prepared high thermal stability isolation film was tested using the test method described in Example 1. The test results are listed in Table 1.
實施例6:隔離膜之製備Example 6: Preparation of Isolation Film
在194 g 99.5%無水乙醇中加入4 g異丙醇鈦及2 g六甲基二矽氮烷均勻混和,常溫下攪拌以得到第一前驅物反應溶液。將100 g去離子水及100 g 95%乙醇均勻混和並攪拌以得到第一反應溶液。4 g of titanium isopropoxide and 2 g of hexamethyldisilazane were added to 194 g of 99.5% anhydrous ethanol, mixed evenly, and stirred at room temperature to obtain a first precursor reaction solution. 100 g of deionized water and 100 g of 95% ethanol were evenly mixed and stirred to obtain a first reaction solution.
在196 g 99.5%無水乙醇中加入2 g異丙醇鈦及2 g六甲基二矽氮烷均勻混和,常溫下攪拌以得到第二前驅物反應溶液。將98.4g去離子水及98.4g 95%乙醇均勻混和並加入3g聚-N-乙烯基乙醯胺(PNVA GE191-107),常溫下攪拌均勻;再加入0.13g丙烯腈-丙烯醯胺-丙烯酸酯共聚物 (BM-950B),常溫下攪拌以得到第二反應溶液。2 g of titanium isopropoxide and 2 g of hexamethyldisilazane were added to 196 g of 99.5% anhydrous ethanol and mixed uniformly, and stirred at room temperature to obtain a second precursor reaction solution. 98.4 g of deionized water and 98.4 g of 95% ethanol were mixed uniformly and 3 g of poly-N-vinyl acetamide (PNVA GE191-107) was added, and stirred uniformly at room temperature; 0.13 g of acrylonitrile-acrylamide-acrylate copolymer (BM-950B) was added, and stirred at room temperature to obtain a second reaction solution.
將製備實施例製得之雙塗層多孔膜依序浸入本實施例6的第一前驅物溶液、第一反應溶液、第二前驅物溶液、第二反應溶液,形成一鈦氧化物或/及鈦氫氧化物薄膜於該多孔膜表面及該多孔膜之該等多孔結構的內壁上,以製得一高熱穩定性隔離膜。The double-coated porous membrane prepared in the preparation example is sequentially immersed in the first precursor solution, the first reaction solution, the second precursor solution, and the second reaction solution of Example 6 to form a titanium oxide and/or titanium hydroxide film on the surface of the porous membrane and on the inner wall of the porous structure of the porous membrane to obtain a high thermal stability isolation membrane.
製得之高熱穩定性隔離膜以實施例1描述的檢測方法進行測試。測試結果列於表1。The prepared high thermal stability isolation film was tested using the test method described in Example 1. The test results are listed in Table 1.
實施例7:隔離膜之製備Example 7: Preparation of Isolation Film
在189 g 99.5%無水乙醇中加入1g異丙醇鈦及10g六甲基二矽氮烷均勻混和,常溫下攪拌以得到第一前驅物反應溶液。將100g去離子水及100g 95%乙醇均勻混和並攪拌以得到第一反應溶液。1 g of titanium isopropoxide and 10 g of hexamethyldisilazane were added to 189 g of 99.5% anhydrous ethanol, mixed evenly, and stirred at room temperature to obtain a first precursor reaction solution. 100 g of deionized water and 100 g of 95% ethanol were evenly mixed and stirred to obtain a first reaction solution.
在189 g 99.5%無水乙醇中加入1g異丙醇鈦 及10g六甲基二矽氮烷均勻混和,常溫下攪拌以得到第二前驅物反應溶液。將98.4g去離子水及98.4g 95%乙醇均勻混和並加入3g聚-N-乙烯基乙醯胺(PNVA GE191-107),常溫下攪拌均勻;再加入0.13g丙烯腈-丙烯醯胺-丙烯酸酯共聚物 (BM-950B),常溫下攪拌以得到第二反應溶液。1g of titanium isopropoxide and 10g of hexamethyldisilazane were added to 189g of 99.5% anhydrous ethanol and mixed evenly, and stirred at room temperature to obtain a second precursor reaction solution. 98.4g of deionized water and 98.4g of 95% ethanol were mixed evenly and 3g of poly-N-vinyl acetamide (PNVA GE191-107) was added, and stirred evenly at room temperature; 0.13g of acrylonitrile-acrylamide-acrylate copolymer (BM-950B) was added, and stirred at room temperature to obtain a second reaction solution.
將製備實施例製得之雙塗層多孔膜依序浸入本實施例7的第一前驅物溶液、第一反應溶液、第二前驅物溶液、第二反應溶液,形成一鈦氧化物或/及鈦氫氧化物薄膜於該多孔膜表面及該多孔膜之該等多孔結構的內壁上,以製得一高熱穩定性隔離膜。The double-coated porous membrane prepared in the preparation example is sequentially immersed in the first precursor solution, the first reaction solution, the second precursor solution, and the second reaction solution of Example 7 to form a titanium oxide and/or titanium hydroxide film on the surface of the porous membrane and on the inner wall of the porous structure of the porous membrane to obtain a high thermal stability isolation membrane.
製得之高熱穩定性隔離膜以實施例1描述的檢測方法進行測試。測試結果列於表1。The prepared high thermal stability isolation film was tested using the test method described in Example 1. The test results are listed in Table 1.
實施例8:隔離膜之製備Example 8: Preparation of Isolation Film
依實施例1之製備第一前驅物溶液、第一反應溶液及第二前驅物溶液,第二反應溶液的製備係將90 g 去離子水、90 g 95%乙醇及20 g氯化鍶(SrCl 2∙6H 2O, 購自Thermo Scientific Co. LLC,美國),常溫下攪拌以得到第二反應溶液。 The first precursor solution, the first reaction solution and the second precursor solution were prepared according to Example 1. The second reaction solution was prepared by stirring 90 g of deionized water, 90 g of 95% ethanol and 20 g of strontium chloride (SrCl 2 ∙6H 2 O, purchased from Thermo Scientific Co. LLC, USA) at room temperature to obtain a second reaction solution.
將製備實施例製得之雙塗層多孔膜依序浸入本實施例8的第一前驅物溶液、第一反應溶液、第二前驅物溶液、第二反應溶液,形成一鈦氧化物或/及鈦氫氧化物薄膜於該多孔膜表面及該多孔膜之該等多孔結構的內壁上,以製得一高熱穩定性隔離膜。The double-coated porous membrane prepared in the preparation example is sequentially immersed in the first precursor solution, the first reaction solution, the second precursor solution, and the second reaction solution of Example 8 to form a titanium oxide and/or titanium hydroxide film on the surface of the porous membrane and on the inner wall of the porous structure of the porous membrane to obtain a high thermal stability isolation membrane.
製得之高熱穩定性隔離膜以實施例1描述的檢測方法進行測試。測試結果列於表1。The prepared high thermal stability isolation film was tested using the test method described in Example 1. The test results are listed in Table 1.
實施例9:隔離膜之製備Example 9: Preparation of Isolation Film
依實施例3之製備第一前驅物溶液、第一反應溶液、第二前驅物溶液及第二反應溶液。According to Example 3, a first precursor solution, a first reaction solution, a second precursor solution and a second reaction solution were prepared.
再者,將16.25g四乙氧基矽烷(TEOS,購自Thermo Scientific公司,美國)加入500g 95%乙醇中,並在50 ℃攪拌均勻,接著加入55g 氨水並持續50 ℃攪拌15分鐘以得到烷氧基矽烷溶液,並以95%濃度乙醇200g作為第三反應溶液。Furthermore, 16.25 g of tetraethoxysilane (TEOS, purchased from Thermo Scientific, USA) was added to 500 g of 95% ethanol and stirred at 50° C., then 55 g of aqueous ammonia was added and stirred at 50° C. for 15 minutes to obtain an alkoxysilane solution, and 200 g of 95% ethanol was used as the third reaction solution.
將製備實施例製得之雙塗層多孔膜依實施例1之步驟依序浸入本實施例9的第一前驅物溶液、第一反應溶液、第二前驅物溶液、第二反應溶液,形成一第一鈦氧化物或/及鈦氫氧化物薄膜於該多孔膜表面及該多孔膜之該等多孔結構的內壁上,然後再依序浸入烷氧基矽烷溶液及第三反應溶液,使該烷氧基矽烷溶液及第三反應溶液進行反應,形成一第二鈦氧化物或/及鈦氫氧化物-氧化矽薄膜,以製得一高熱穩定性隔離膜。The double-layered porous membrane prepared in the preparation example is immersed in the first precursor solution, the first reaction solution, the second precursor solution, and the second reaction solution of the present example 9 in sequence according to the steps of example 1 to form a first titanium oxide and/or titanium hydroxide thin film on the surface of the porous membrane and the inner wall of the porous structure of the porous membrane, and then immersed in an alkoxysilane solution and a third reaction solution in sequence to react with the alkoxysilane solution and the third reaction solution to form a second titanium oxide and/or titanium hydroxide-silicon oxide thin film to obtain a high thermal stability isolation membrane.
製得之高熱穩定性隔離膜以實施例1描述的檢測方法進行測試。測試結果列於表1。The prepared high thermal stability isolation film was tested using the test method described in Example 1. The test results are listed in Table 1.
實施例10:隔離膜之製備Example 10: Preparation of Isolation Film
依實施例3之製備第一前驅物溶液、第一反應溶液、第二前驅物溶液及第二反應溶液。According to Example 3, a first precursor solution, a first reaction solution, a second precursor solution and a second reaction solution were prepared.
將製備實施例製得之單塗層多孔膜依序浸入本實施例10之第一前驅物溶液、第一反應溶液、第二前驅物溶液及第二反應溶液,形成一鈦氧化物或/及鈦氫氧化物薄膜於該多孔膜表面及該多孔膜之該等多孔結構的內壁上,以製得一高熱穩定性隔離膜。The single-layer porous membrane prepared in the preparation example is immersed in the first precursor solution, the first reaction solution, the second precursor solution and the second reaction solution of Example 10 in sequence to form a titanium oxide and/or titanium hydroxide film on the surface of the porous membrane and on the inner wall of the porous structure of the porous membrane to obtain a high thermal stability isolation membrane.
製得之高熱穩定性隔離膜以實施例1描述的檢測方法進行測試。測試結果列於表1。The prepared high thermal stability isolation film was tested using the test method described in Example 1. The test results are listed in Table 1.
比較例1及2Comparison Examples 1 and 2
比較例1及2分別為製備實施例製得之雙塗層多孔膜及單塗層多孔膜。在比較例中,使用的多孔膜未經前驅物溶液及反應溶液的處理,但依實施例1描述的檢測方法進行測試,測試結果列於表1。
表1:實施例1至9及比較例1至2的隔離膜特性量測結果
從表1所列示的特性表現中可知,相較於比較例1至2中未包含鈦氧化物或/及鈦氫氧化物薄膜的隔離膜,本發明之實施例1至9的高熱穩定性隔離膜,於壓縮後其壓縮抗性大於90%且透氣度降低少於34.5%; 且破膜溫度大於170°C,於裂紋測試時表面不因高溫出現裂紋,熱收縮率低,而具備高溫的熔融完整性及強化的耐壓縮性。同時,其對電解液的潤濕性較佳,亦可提升電池應用上之電性表現。From the performance characteristics listed in Table 1, it can be seen that compared with the isolation membranes in Comparative Examples 1 to 2 that do not contain titanium oxide or/and titanium hydroxide thin films, the high heat stability isolation membranes of Examples 1 to 9 of the present invention have a compression resistance greater than 90% and a decrease in air permeability of less than 34.5% after compression; and the membrane breaking temperature is greater than 170°C, and the surface does not crack due to high temperature during the crack test, and the thermal shrinkage rate is low, and it has high-temperature melting integrity and enhanced compression resistance. At the same time, it has better wettability to electrolytes, and can also improve the electrical performance in battery applications.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可做各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed as above by way of embodiments, it is not intended to limit the present invention. Anyone skilled in the art may make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the scope defined in the attached patent application.
Claims (40)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/476,867 US20240234946A1 (en) | 2023-01-10 | 2023-09-28 | High thermal-stability separator and method for manufacturing thereof |
JP2023176125A JP2024098485A (en) | 2023-01-10 | 2023-10-11 | High thermal-stability separator film and method for manufacturing the same |
EP23208045.7A EP4401190A1 (en) | 2023-01-10 | 2023-11-06 | High thermal-stability separator and method for manufacturing thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112101053 | 2023-01-10 | ||
TW112101053 | 2023-01-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI844427B true TWI844427B (en) | 2024-06-01 |
TW202428367A TW202428367A (en) | 2024-07-16 |
Family
ID=92541549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112126740A TWI844427B (en) | 2023-01-10 | 2023-07-18 | High thermal-stability separator and method for manufacturing thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI844427B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201206708A (en) * | 2010-08-13 | 2012-02-16 | Sk Innovation Co Ltd | Pore-protected multi-layered composite separator and the method for manufacturing the same |
WO2015152636A1 (en) * | 2014-04-01 | 2015-10-08 | 주식회사 엘지화학 | Method for manufacturing separator, separator manufactured therefrom, and electrochemical element comprising same |
US20160200886A1 (en) * | 2014-01-17 | 2016-07-14 | Lg Chem, Ltd. | Barrier film and method for preparing the same |
TW202137606A (en) * | 2020-03-19 | 2021-10-01 | 明基材料股份有限公司 | Separator and method for manufacturing thereof |
-
2023
- 2023-07-18 TW TW112126740A patent/TWI844427B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201206708A (en) * | 2010-08-13 | 2012-02-16 | Sk Innovation Co Ltd | Pore-protected multi-layered composite separator and the method for manufacturing the same |
US20160200886A1 (en) * | 2014-01-17 | 2016-07-14 | Lg Chem, Ltd. | Barrier film and method for preparing the same |
WO2015152636A1 (en) * | 2014-04-01 | 2015-10-08 | 주식회사 엘지화학 | Method for manufacturing separator, separator manufactured therefrom, and electrochemical element comprising same |
TW202137606A (en) * | 2020-03-19 | 2021-10-01 | 明基材料股份有限公司 | Separator and method for manufacturing thereof |
Also Published As
Publication number | Publication date |
---|---|
TW202428367A (en) | 2024-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6899422B2 (en) | Improved Isolation Plates for Lithium Ion Batteries and Related Methods | |
CN108260363B (en) | Composite separator for electrochemical element comprising adhesive layer, and electrochemical element comprising same | |
TWI565123B (en) | Separator for non-aqueous type secondary battery, method of producing the same, and non-aqueous type secondary battery | |
CA2775316C (en) | Method for manufacturing separator, separator manufactured therefrom and method for manufacturing electrochemical device having the same | |
TW200950182A (en) | A separator having porous coating layer and electrochemical device containing the same | |
TWI517483B (en) | Organic/inorganic composite separator having porous active coating layer and electrochemical device containing the same | |
KR20180018408A (en) | Separator and electrochemical device containing the same | |
TWI390788B (en) | Electrochemical components | |
TW201042797A (en) | Separator for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery | |
JP7359937B2 (en) | Separation membrane for lithium secondary batteries having improved electrode adhesion and resistance characteristics, and lithium secondary battery containing the separation membrane | |
JP2010135313A (en) | Electrochemical element | |
KR20200036803A (en) | Lithium secondary battery separator with improved adhesiveness toward an electrode and Lithium secondary battery comprising the separator | |
JP7455958B2 (en) | A lithium secondary battery separation membrane having improved electrode adhesion and resistance characteristics, and a lithium secondary battery including the lithium secondary battery separation membrane | |
CN109671894B (en) | Low water content separator and method for producing same | |
KR20180088280A (en) | Method for Preparing Separator, Separator Prepared by the Method and Electrochemical Device Including the Same | |
JP6249589B2 (en) | Battery separator | |
TWI844427B (en) | High thermal-stability separator and method for manufacturing thereof | |
EP3920265B1 (en) | Separator for non-aqueous secondary battery, and non-aqueous secondary battery | |
US20220149482A1 (en) | Separator for non-aqueous secondary battery and non-aqueous secondary battery | |
KR20200143086A (en) | Manufactururing method for separator and separator therefrom | |
KR102311808B1 (en) | Porous separating layer and electrochemical device containing the same | |
TWI860032B (en) | A separator and a method for manufacturing thereof | |
CN118539092A (en) | High-thermal-stability isolating film and preparation method thereof | |
US20240234946A1 (en) | High thermal-stability separator and method for manufacturing thereof | |
KR20200085671A (en) | Electrode assembly and electrochemical device containing the same |