TWI737074B - Firefighting data analysis method, device, computer device and storage medium - Google Patents
Firefighting data analysis method, device, computer device and storage medium Download PDFInfo
- Publication number
- TWI737074B TWI737074B TW108145409A TW108145409A TWI737074B TW I737074 B TWI737074 B TW I737074B TW 108145409 A TW108145409 A TW 108145409A TW 108145409 A TW108145409 A TW 108145409A TW I737074 B TWI737074 B TW I737074B
- Authority
- TW
- Taiwan
- Prior art keywords
- fire
- fire protection
- status information
- data
- input data
- Prior art date
Links
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本發明涉及消防資料分析領域,具體涉及一種消防資料分析方法、消防資料分析裝置、電腦裝置及電腦存儲介質。 The invention relates to the field of fire protection data analysis, in particular to a fire protection data analysis method, a fire protection data analysis device, a computer device and a computer storage medium.
任何消防技術之實施,都必須計算消防投入資料。在進行火災預防與控制技術分析時,如何在滿足消防安全性能之前提下,讓消防投入資料最小、火災損失資料最小、總損失成本降到最低是急需解決之技術問題。現有之消防資料分析方法多採用數學統計表格分析為基礎來研究消防投入資料和火災損失之之間之關係,現有之消防資料分析方法計算速度慢、準確率低。 The implementation of any fire protection technology must calculate the fire protection input data. In the analysis of fire prevention and control technology, how to minimize the fire input data, fire loss data, and total loss cost before meeting the fire safety performance is a technical problem that needs to be solved urgently. The existing fire-fighting data analysis methods mostly use mathematical statistical table analysis as the basis to study the relationship between fire-fighting input data and fire losses. The existing fire-fighting data analysis methods have slow calculation speed and low accuracy.
鑒於以上內容,有必要提出一種消防資料分析方法及裝置、電腦裝置和電腦存儲介質,消防資料分析以更加快速、準確之方式進行。 In view of the above content, it is necessary to propose a fire-fighting data analysis method and device, a computer device and a computer storage medium, and the fire-fighting data analysis can be carried out in a faster and more accurate manner.
本申請之第一方面提供一種消防資料分析方法,所述方法包括:獲取待評估場所之消防狀況資訊,所述消防狀況資訊中之項目包括環境狀態資訊、物品狀態資訊、人員數量;將所述消防狀況資訊輸入到預設之分析模型,輸出所述待評估場所在預設之火災場景中,總損失最少情況下所需之消防投入資料和/或火災損失資料。 The first aspect of this application provides a fire protection data analysis method. The method includes: obtaining fire protection status information of a place to be assessed, and items in the fire protection status information include environmental status information, item status information, and number of personnel; The fire-fighting status information is input to a preset analysis model, and the fire-fighting input data and/or fire loss data required for the site to be assessed in the preset fire scene with the least total loss are output.
優選地,所述方法還包括:比較所述輸出之消防投入資料與實際之消防投入資料; 若所述輸出之消防投入資料小於所述實際消防投入資料,則輸出所述待評估場所之實際消防投入資料過高之提示資訊;若所述輸出之消防投入資料大於所述實際消防投入資料,則輸出所述待評估場所之消防投入資料過低之提示資訊。 Preferably, the method further includes: comparing the outputted fire fighting input data with actual fire fighting input data; If the outputted firefighting input data is less than the actual firefighting input data, output the prompt information indicating that the actual firefighting input data of the place to be assessed is too high; if the outputted firefighting input data is greater than the actual firefighting input data, Then output the prompt information that the fire protection input data of the place to be assessed is too low.
優選地,所述方法還包括:若所述輸出之消防投入資料大於所述實際消防投入資料,根據所述待評估場所之消防狀況資訊輸出改善意見,其中所述改善意見之獲取方法包括:在預設查詢表中查找所述待評估場所之消防狀況資訊中之不同項目對應之消防狀況設計要求,其中所述預設查詢表中記錄了在符合消防安全標準之情況下,單位面積所需之消防狀況資訊;判斷所述待評估場所之消防狀況資訊中之項目是否符合所述消防狀況設計要求;若不符合,則將所述消防狀況設計要求作為所述改善意見進行輸出。 Preferably, the method further includes: if the outputted firefighting input data is greater than the actual firefighting input data, outputting improvement opinions based on the fire protection status information of the place to be assessed, wherein the method for obtaining the improvement opinions includes: The preset query table searches for the fire protection status design requirements corresponding to different items in the fire protection status information of the place to be assessed. Fire protection status information; determine whether the items in the fire protection status information of the place to be assessed meet the design requirements of the fire protection status; if not, the design requirements of the fire protection status are output as the improvement opinions.
優選地,所述預設之分析模型之生成方法包括:獲取不同場所在不同火災場景下之消防狀況資訊、消防投入資料、火災損失資料,並對每一所述場所之消防狀況資訊和消防投入資料、火災損失資料對應存儲;將所述多個場所之消防狀況資訊、消防輸入資料、火災損失資料分為訓練集和驗證集;建立基於神經網路之分析模型,並利用所述訓練集對所述基於神經網路之分析模型之參數進行訓練,其中將所述訓練集中之消防狀況資訊作為所述模型之輸入資料,消防輸入資料、火災損失資料作為所述模型之輸出資料;利用所述驗證集對訓練後之基於神經網路之分析模型進行驗證,並根據驗證結果統計得到所述模型之預測準確率;判斷所述模型之預測準確率是否小於預設閾值; 若所述模型預測準確率不小於所述預設閾值,則將訓練完成之所述基於神經網路之分析模型作為所述預設之分析模型。 Preferably, the method for generating the preset analysis model includes: obtaining fire-fighting status information, fire-fighting input data, and fire-loss data of different places in different fire scenarios, and comparing the fire-fighting status information and fire-fighting input of each of the places Data and fire loss data are stored correspondingly; the fire protection status information, fire input data, and fire loss data of the multiple places are divided into training sets and verification sets; an analysis model based on neural network is established, and the training set is used to pair The parameters of the analysis model based on the neural network are trained, wherein the fire-fighting status information in the training set is used as the input data of the model, and the fire-fighting input data and fire loss data are used as the output data of the model; The validation set validates the neural network-based analysis model after training, and obtains the prediction accuracy rate of the model based on the verification results; judges whether the prediction accuracy rate of the model is less than a preset threshold; If the prediction accuracy of the model is not less than the preset threshold, the trained analysis model based on the neural network is used as the preset analysis model.
優選地,所述方法還包括:若所述基於神經網路之分析模型預測準確率小於所述預設閾值,則調整所述神經網路演算法之結構,並利用所述訓練集重新對調整後之基於神經網路之分析模型進行訓練,其中,所述基於神經網路之分析模型之結構包括卷積核之數量、池化層中元素之數量、全連接層中元素之數量中之至少一種;利用所述驗證集對調整後之基於神經網路之分析模型進行驗證,並根據驗證結果重新統計調整後之基於神經網路之分析模型預測準確率,並判斷調整後之基於神經網路之分析模型之預測準確率是否小於所述預設閾值;若所述重新統計得到之模型預測準確率不小於所述預設閾值,則將調整後之基於神經網路之分析模型作為所述預設之分析模型;及若所述重新統計得到之模型預測準確率小於所述預設閾值,則重複上述調整及訓練之步驟直至藉由所述驗證集驗證得到之模型預測準確率不小於所述預設閾值。 Preferably, the method further includes: if the prediction accuracy rate of the analysis model based on the neural network is less than the preset threshold, adjusting the structure of the neural network algorithm, and using the training set to re-adjust the adjusted The neural network-based analysis model is trained, wherein the structure of the neural network-based analysis model includes at least one of the number of convolution kernels, the number of elements in the pooling layer, and the number of elements in the fully connected layer ; Use the verification set to verify the adjusted neural network-based analysis model, and re-statistics the adjusted neural network-based analysis model prediction accuracy based on the verification results, and determine the adjusted neural network-based analysis model Whether the prediction accuracy of the analysis model is less than the preset threshold; if the prediction accuracy of the model obtained by re-statistics is not less than the preset threshold, the adjusted analysis model based on the neural network is used as the preset Analytical model; and if the model prediction accuracy rate obtained by the re-statistics is less than the preset threshold, repeat the above adjustment and training steps until the model prediction accuracy rate obtained by the verification set verification is not less than the prediction Set the threshold.
優選地,所述不同場所在不同火災場景下之消防狀況資訊、消防投入資料、火災損失資料之獲取方法包括:獲取任一場所之消防狀況資訊,根據所述預設查詢表判斷所述場所之消防狀況是否符合消防安全標準;若符合,則根據所述消防狀況資訊計算所述場所之消防輸入資料,並藉由火災數值模擬系統對所述場所進行不同火災場景下之模擬,並計算所述不同火災場景下所述場所之火災損失資料。 Preferably, the method for acquiring fire protection information, fire protection input data, and fire loss data of different places in different fire scenarios includes: acquiring fire protection information of any place, and judging the location of the place according to the preset query table Whether the fire protection situation meets the fire safety standards; if it does, calculate the fire input data of the place according to the fire protection situation information, and use the fire numerical simulation system to simulate the place under different fire scenarios, and calculate the Fire loss data of the places mentioned in different fire scenarios.
優選地,所述藉由火災數值模擬系統對所述場所進行不同火災場景下之模擬,並計算所述不同火災場景下所述場所之火災損失資料之方法包括: 設置所述場所中每一可燃物之可燃時間和可燃比例,並按照預設比例對所述可燃物進行分割,分割後之每一小塊表示所述可燃物在火災中單位時間內損失之最小金額;根據所述可燃物之可燃時間、可燃比例、在火災中單位時間內損失之最小金額計算不同消防狀況資訊下所述場所之火災損失資料。 Preferably, the method of using a fire numerical simulation system to simulate the site under different fire scenarios and calculating the fire loss data of the site under the different fire scenarios includes: Set the combustible time and combustible ratio of each combustible in the place, and divide the combustible according to the preset ratio, and each small piece after division represents the minimum loss of the combustible per unit time in the fire Amount; according to the combustible time of the combustible, combustible ratio, and the minimum amount of loss per unit time in the fire, calculate the fire loss data of the place under different fire protection information.
本申請之第二方面提供一種消防資料分析裝置,所述裝置包括:獲取模組,用於獲取待評估場所之消防狀況資訊,所述消防狀況資訊中之項目包括環境狀態資訊、物品狀態資訊、人員數量;分析模組,用於將所述消防狀況資訊輸入到預設之分析模型,輸出所述待評估場所在預設之火災場景中,總損失最少情況下所需之消防投入資料和/或火災損失資料。 The second aspect of this application provides a fire protection data analysis device, the device includes: an acquisition module for acquiring fire protection status information of a place to be assessed, and items in the fire protection status information include environmental status information, item status information, The number of personnel; the analysis module is used to input the fire protection status information into the preset analysis model, and output the fire protection input data and/ Or fire damage information.
本申請之第三方面提供一種電腦裝置,所述電腦裝置包括處理器,所述處理器用於執行記憶體中存儲之電腦程式時實現如前所述消防資料分析方法。 A third aspect of the present application provides a computer device. The computer device includes a processor for executing the computer program stored in the memory to implement the fire protection data analysis method as described above.
本申請之第四方面提供一種電腦存儲介質,其上存儲有電腦程式,所述電腦程式被處理器執行時實現如前所述消防資料分析方法。 The fourth aspect of the present application provides a computer storage medium on which a computer program is stored, and the computer program is executed by a processor to realize the fire protection data analysis method as described above.
本發明消防資料分析方法、消防資料分析裝置、電腦裝置及電腦存儲介質,藉由將待評估場所之消防狀況資訊輸入到預設之分析模型中進行分析,分析得到所述待評估場所投資效益最高之消防投資成本。藉由所述方法可以快速準確之計算出在火災中,總損失最小之情況下所需之消防投入資料和/或火災損失資料。 The fire-fighting data analysis method, the fire-fighting data analysis device, the computer device and the computer storage medium of the present invention, by inputting the fire-fighting status information of the place to be evaluated into a preset analysis model for analysis, the analysis shows that the place to be evaluated has the highest investment benefit The cost of fire protection investment. The method can quickly and accurately calculate the fire protection input data and/or fire loss data required in the case of a fire with the smallest total loss.
1:使用者終端 1: User terminal
2:電腦裝置 2: computer device
10:消防資料分析裝置 10: Fire protection data analysis device
20:記憶體 20: memory
30:處理器 30: processor
40:電腦程式 40: computer program
101:獲取模組 101: Get modules
101:分析模組 101: Analysis Module
圖1是本發明實施例一提供之消防資料分析方法之應用環境架構示意圖。 FIG. 1 is a schematic diagram of the application environment architecture of the fire protection data analysis method provided by Embodiment 1 of the present invention.
圖2是本發明實施例二提供之消防資料分析方法流程圖。 Fig. 2 is a flow chart of the fire protection data analysis method provided by the second embodiment of the present invention.
圖3是本發明實施例三提供之消防資料分析裝置之結構示意圖。 Fig. 3 is a schematic diagram of the structure of the fire protection data analysis device provided by the third embodiment of the present invention.
圖4是本發明實施例四提供之電腦裝置示意圖。 FIG. 4 is a schematic diagram of a computer device provided by the fourth embodiment of the present invention.
為了能夠更清楚地理解本發明之上述目的、特徵和優點,下面結合附圖和具體實施例對本發明進行詳細描述。需要說明之是,在不衝突之情況下,本申請之實施例及實施例中之特徵可以相互組合。 In order to be able to understand the above objectives, features and advantages of the present invention more clearly, the present invention will be described in detail below with reference to the accompanying drawings and specific embodiments. It should be noted that the embodiments of the present application and the features in the embodiments can be combined with each other if there is no conflict.
在下面之描述中闡述了很多具體細節以便於充分理解本發明,所描述之實施例僅僅是本發明一部分實施例,而不是全部之實施例。基於本發明中之實施例,本領域普通技術人員在沒有做出創造性勞動前提下所獲得之所有其他實施例,都屬於本發明保護之範圍。 In the following description, many specific details are explained in order to fully understand the present invention. The described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work shall fall within the protection scope of the present invention.
除非另有定義,本文所使用之所有之技術和科學術語與屬於本發明之技術領域之技術人員通常理解之含義相同。本文中在本發明之說明書中所使用之術語只是為了描述具體之實施例之目的,不是旨在於限制本發明。 Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by those skilled in the technical field of the present invention. The terms used in the specification of the present invention herein are only for the purpose of describing specific embodiments, and are not intended to limit the present invention.
實施例一 Example one
參閱圖1所示,為本發明實施例一提供之消防資料分析方法之應用環境架構示意圖。
Refer to FIG. 1, which is a schematic diagram of the application environment architecture of the fire protection data analysis method provided by
本發明中之消防資料分析方法應用在使用者終端1中,所述使用者終端1和一個電腦裝置2藉由網路建立通信連接。所述網路可以是有線網路,也可以是無線網路,例如無線電、無線保真(Wireless Fidelity,WIFI)、蜂窩、衛星、廣播等。所述使用者終端1用於獲取待評估場所之消防狀況資訊,利用所述消防狀況資訊分析所述場所之消防投入資料和火災損失資料,所述電腦裝置2用於存儲不同場所在不同火災場景下之消防狀況資訊、消防投入資料、火災損失資料。
The fire protection data analysis method of the present invention is applied to the
所述使用者終端1可以為安裝有消防資料分析軟體之電子設備,例如個人電腦、平板電腦等。
The
所述電腦裝置2是可以為存儲有不同場所在不同火災場景下之消防狀況資訊、消防投入資料、火災損失資料之電子設備,例如個人電腦、伺服器等,其中,所述伺服器可以是單一之伺服器、伺服器集群或雲伺服器等。 The computer device 2 can be an electronic device that stores information on fire protection conditions, fire protection input data, and fire loss data in different places under different fire scenarios, such as a personal computer, a server, etc., wherein the server can be a single Server, server cluster or cloud server, etc.
在本發明又一實施方式中,所述不同場所在不同火災場景下之消防狀況資訊、消防投入資料、火災損失資料也可以存儲於使用者終端1中。
In another embodiment of the present invention, the fire protection status information, fire protection input data, and fire loss data of the different places in different fire scenarios may also be stored in the
實施例二 Example two
請參閱圖2所示,是本發明第二實施例提供之消防資料分析方法之流程圖。根據不同之需求,所述流程圖中步驟之順序可以改變,某些步驟可以省略。 Please refer to FIG. 2, which is a flowchart of the fire protection data analysis method provided by the second embodiment of the present invention. According to different needs, the order of the steps in the flowchart can be changed, and some steps can be omitted.
步驟S1、獲取待評估場所之消防狀況資訊。 Step S1: Obtain the fire protection status information of the place to be assessed.
所述消防狀況資訊包括疏散人員數量、環境狀態資訊、物品狀態資訊。其中所述環境狀態資訊可以包括固定式消防設施資訊、移動式消防設施資訊,例如:消防警報器、煙霧報警器、天花板消防噴淋頭、火災探測器、室內消火栓、室外消火栓之數量和擺放位置等。所述物品狀態訊息包括待評估場所內之可燃性物品,例如製造設備、材料、辦公電腦、傢俱之數量和擺放位置等。 The fire protection status information includes the number of evacuated persons, environmental status information, and item status information. The environmental status information may include information on fixed firefighting facilities and mobile firefighting facilities, such as: fire alarms, smoke alarms, ceiling fire sprinklers, fire detectors, indoor fire hydrants, and the number and placement of outdoor fire hydrants Location etc. The item status information includes combustible items in the place to be evaluated, such as the quantity and placement of manufacturing equipment, materials, office computers, and furniture.
一個實施方式中,所述待評估場所之消防狀況資訊獲取方式可以包括:接收用戶輸入之所述待評估場所之疏散人員數量、消防設施之種類和數量、可燃物品之種類和數量等消防狀況資訊。 In one embodiment, the method for acquiring fire protection status information of the place to be assessed may include: receiving user input, such as the number of evacuated persons in the place to be evaluated, the type and quantity of fire-fighting facilities, and the type and quantity of combustible materials, etc. .
另一個實施方式中,所述消防狀況資訊獲取方法還可以是藉由接收多個攝像裝置採集之待評估場所之多張圖像,藉由圖像識別方法識別所述圖像中人員數量、消防設施之種類和數量、可燃物品之種類和數量等消防狀況資 訊。 In another embodiment, the method for acquiring fire protection information may also be by receiving multiple images of the place to be evaluated collected by multiple camera devices, and identifying the number of people in the images and the number of firefighters by the image recognition method. Type and quantity of facilities, type and quantity of combustible materials, etc. News.
步驟S2、將所述消防狀況資訊輸入到預設之分析模型,輸出所述待評估場所在預設之火災場景中,總損失最少情況下所需之消防投入資料和/或火災損失資料。 Step S2: Input the fire protection status information into a preset analysis model, and output the fire protection input data and/or fire loss data required for the site to be assessed in the preset fire scene with the least total loss.
所述預設之分析模型之生成方法包括以下步驟: The method for generating the preset analysis model includes the following steps:
(1)獲取不同場所在不同火災場景下之消防狀況資訊、消防投入資料、火災損失資料,並對每一所述場所之消防狀況資訊和消防投入資料、火災損失資料對應存儲。 (1) Obtain the fire-fighting status information, fire-fighting input data, and fire loss data of different places under different fire scenarios, and store the fire-fighting status information, fire-fighting input data, and fire loss data of each of the said places.
所述不同場所在不同火災場景下之消防狀況資訊、消防投入資料、火災損失資料之獲取方法包括: The methods for obtaining the fire protection status information, fire protection input data, and fire loss data of different places under different fire scenarios include:
a)獲取任一場所之消防狀況資訊,根據所述預設查詢表判斷所述場所之消防狀況是否符合消防安全標準。 a) Obtain the fire protection status information of any place, and judge whether the fire protection status of the place meets the fire safety standards according to the preset query table.
所述預設查詢表中記錄了在符合消防安全標準之情況下,單位面積所需之消防狀況資訊,例如單位面積內消防報警器之數量、天花板消防噴淋頭之數量;單位面積內人員之數量、與所述人員數量相匹配之滅火器、防毒面具之數量;單位面積內易燃品之數量,與所述易燃品相匹配之消火栓、滅火器之數量等。 The preset query table records the fire protection information required by the unit area under the condition of meeting the fire safety standards, such as the number of fire alarms in the unit area, the number of ceiling fire sprinklers; the number of personnel in the unit area Quantity, the number of fire extinguishers and gas masks that match the number of personnel; the number of flammable products per unit area, the number of hydrants and fire extinguishers that match the number of flammable products, etc.
b)若符合,則根據所述消防狀況資訊計算所述場所之消防輸入資料,並藉由火災數值模擬系統對所述場所進行不同火災場景下之模擬,並計算所述不同火災場景下所述場所之火災損失資料。 b) If yes, calculate the fire input data of the place according to the fire protection information, and use the fire numerical simulation system to simulate the place under different fire scenarios, and calculate the said place under different fire scenarios. Fire loss data of the site.
所述消防輸入資料之計算方法包括查詢消防狀況資訊中之環境狀態資訊、物品狀態資訊中各個物品之價值,並根據所述價值計算所述場所之消防輸入資料。 The calculation method of the fire protection input data includes querying the environmental status information in the fire protection status information and the value of each item in the item status information, and calculating the fire protection input data of the place based on the value.
所述火災損失資料之計算方法包括設置所述場所中每一可燃物之 可燃時間和可燃比例,並按照預設比例對所述可燃物進行分割,分割後之每一小塊表示所述可燃物在火災中單位時間內損失之最小金額;根據所述可燃物之可燃時間、可燃比例、在火災中單位時間內損失之最小金額計算不同消防狀況資訊下所述場所之火災損失資料。 The calculation method of the fire loss data includes the installation of each combustible in the place Combustible time and combustible ratio, and divide the combustibles according to the preset ratio, and each small piece after division represents the minimum amount of combustibles lost per unit time in the fire; according to the combustible time of the combustibles , Combustible ratio, and the minimum amount of loss per unit time in the fire. Calculate the fire loss data of the places described under different fire protection information.
例如將一台機床進行64等分,所述機床之價值是64萬,每一等分之價值為1萬,每一等分之燃燒時間是2分鐘。按照機床所處之消防狀況資訊,計算所述機床在一場火災中之損失。例如所述機床在具有天花板消防噴淋頭之場所中之火災損失資料,以及所述機床在僅有一個滅火器之場所中火災損失資料。依次方法,可以計算出任意場所之火災損失資料。 For example, if a machine tool is divided into 64 equal parts, the value of the machine tool is 640,000, the value of each equal part is 10,000, and the burning time of each equal part is 2 minutes. Calculate the loss of the machine tool in a fire according to the information on the fire protection situation where the machine tool is located. For example, the fire loss data of the machine tool in a place with a ceiling fire sprinkler, and the fire loss data of the machine tool in a place with only one fire extinguisher. The sequential method can calculate the fire loss data of any place.
(2)將所述多個場所之消防狀況資訊、消防輸入資料、火災損失資料分為訓練集和驗證集。 (2) Divide the fire-fighting status information, fire-fighting input data, and fire loss data of the multiple places into a training set and a verification set.
(3)建立基於神經網路之分析模型,並利用所述訓練集對所述基於神經網路之分析模型之參數進行訓練,其中將所述訓練集中之消防狀況資訊作為所述模型之輸入資料,消防輸入資料、火災損失資料作為所述模型之輸出資料。 (3) Establish an analysis model based on the neural network, and use the training set to train the parameters of the analysis model based on the neural network, where the fire protection status information in the training set is used as the input data of the model , Fire input data and fire loss data are used as the output data of the model.
(4)利用所述驗證集對訓練後之基於神經網路之分析模型進行驗證,並根據驗證結果統計得到所述模型之預測準確率。 (4) Use the verification set to verify the neural network-based analysis model after training, and obtain the prediction accuracy of the model based on the verification results.
(5)判斷所述模型之預測準確率是否小於預設閾值。 (5) Determine whether the prediction accuracy rate of the model is less than a preset threshold.
(6)若所述模型預測準確率不小於所述預設閾值,則將訓練完成之所述基於神經網路之分析模型作為所述預設之分析模型。 (6) If the prediction accuracy of the model is not less than the preset threshold, then the trained analysis model based on the neural network is used as the preset analysis model.
在一些實施方式中,所述步驟還包括: In some embodiments, the step further includes:
(7)若所述基於神經網路之分析模型預測準確率小於所述預設閾值,則調整所述神經網路演算法之結構,並利用所述訓練集重新對調整後之基於神經網路之分析模型進行訓練,其中,所述基於神經網路之分析模型之結構 包括卷積核之數量、池化層中元素之數量、全連接層中元素之數量中之至少一種。 (7) If the prediction accuracy of the neural network-based analysis model is less than the preset threshold, adjust the structure of the neural network algorithm, and use the training set to re-adjust the adjusted neural network-based The analysis model is trained, wherein the structure of the neural network-based analysis model It includes at least one of the number of convolution kernels, the number of elements in the pooling layer, and the number of elements in the fully connected layer.
(8)利用所述驗證集對調整後之基於神經網路之分析模型進行驗證,直至所述重新統計得到之模型預測準確率不小於所述預設閾值,則將調整後之基於神經網路之分析模型作為所述預設之分析模型。 (8) Use the verification set to verify the adjusted analysis model based on the neural network, until the model prediction accuracy obtained by the re-statistics is not less than the preset threshold, then the adjusted neural network-based The analysis model is used as the preset analysis model.
以上預設之分析模型之生成方法中之步驟根據實際需要步驟之順序可以改變,某些步驟可以省略。所述生成方法可以線上完成,也可以離線完成。 The steps in the generation method of the above preset analysis model can be changed according to actual needs, and some steps can be omitted. The generating method can be completed online or offline.
根據待評估場所之消防狀況資訊,將所述消防狀況資訊輸入預設之分析模型,輸出所述待評估場所之消防投資成本、火災損失資料成本。 According to the fire-fighting situation information of the place to be assessed, the fire-fighting situation information is input into a preset analysis model, and the fire-fighting investment cost and fire loss data cost of the place to be assessed are output.
將所述消防狀況資訊輸入至所述預設之分析模型之前,所述方法還包括:將所述待評估場所之消防狀況資訊進行數值化處理,按照所述分析模型按照預設比例將所述消防狀況中之項目映射到0到1之區間。 Before inputting the fire-fighting situation information into the preset analysis model, the method further includes: numerically processing the fire-fighting situation information of the place to be evaluated, and according to the analysis model, the The items in the fire protection situation are mapped to the interval from 0 to 1.
例如,所述分析模型所能分析之人員數量是2000人,待評估場所之人員數量是500人,則將則根據待評估場所之人員數量與所述分析模型所能分析之人員數量之間之比值0.4作為消防狀況資訊之第一分析項目輸入資料登錄到所述分析模型。又如,所述分析模型中所能分析之環境狀態資訊中之天花板消防噴淋頭之數量是1000個,待評估場所之天花板消防噴淋頭之數量是100個,則將則根據待評估場所之天花板消防噴淋頭數量與所述分析模型所能分析之天花板消防噴淋頭數量之間之比值0.1作為消防狀況資訊中之第二分析項目輸入資料登錄到所述分析模型。從而將所述消防狀況資訊中之多個項目進行數值化。 For example, if the number of people that can be analyzed by the analysis model is 2000, and the number of people in the place to be assessed is 500 people, it will be based on the difference between the number of people in the place to be evaluated and the number of people that can be analyzed by the analysis model. The ratio of 0.4 is used as the input data of the first analysis item of the fire protection status information to be registered in the analysis model. For another example, the number of ceiling fire sprinklers in the environmental status information that can be analyzed in the analysis model is 1000, and the number of ceiling fire sprinklers in the place to be evaluated is 100, then it will be based on the place to be evaluated The ratio of 0.1 between the number of ceiling fire sprinklers and the number of ceiling fire sprinklers that can be analyzed by the analysis model is registered in the analysis model as the input data of the second analysis item in the fire protection status information. In this way, multiple items in the fire protection status information are digitized.
將數值化後之消防狀況資訊使用預設之分析模型進行分析,輸出所述待評估場所在預設之火災場景中,總損失最少情況下所需之消防投入資料 和/或火災損失資料。所述分析模型按照預設比例將消防投入資料與火災損失資料映射到0到1之區間。例如,所述分析模型所能分析之消防投入資料是3000萬、火災損失資料為5000萬,將待評估場所之消防狀況資訊輸入到所述分析模型中分析後得出,所述待評估場所之消防投入資料為0.3、火災損失資料為0.5,藉由所述預設比例計算後,所述待評估場所之消防投入資料為900萬,火災損失資料為2500萬。 Analyze the digitized fire-fighting status information using a preset analysis model, and output the fire-fighting input data required for the site to be assessed in the preset fire scenario with the least total loss And/or fire damage information. The analysis model maps the fire protection input data and the fire loss data to the interval from 0 to 1 according to a preset ratio. For example, the analysis model can analyze the fire protection input data of 30 million and the fire loss data of 50 million. The fire protection information of the place to be assessed is input into the analysis model and the result is The fire protection input data is 0.3 and the fire loss data is 0.5. After calculating by the preset ratio, the fire protection input data of the place to be assessed is 9 million, and the fire loss data is 25 million.
在一實施方式中,所述步驟S2還包括:比較所述輸出之消防投入資料與實際之消防投入資料;若所述輸出之消防投入資料小於所述實際消防投入資料,則輸出所述待評估場所之實際消防投入資料過高之提示資訊;若所述輸出之消防投入資料大於所述實際消防投入資料,則輸出所述待評估場所之消防投入資料過低之提示資訊。 In one embodiment, the step S2 further includes: comparing the outputted fire fighting input data with actual fire fighting input data; if the outputted fire fighting input data is less than the actual fire fighting input data, outputting the to-be-assessed The prompt information that the actual fire input data of the site is too high; if the outputted firefighting input data is greater than the actual firefighting input data, output the prompt information that the firefighting input data of the place to be assessed is too low.
在又一實施方式中,所述步驟S2還可以包括,所述根據所述待評估場所之消防狀況資訊提供改善意見之方法包括:若所述輸出之消防投入資料大於所述實際消防投入資料,根據所述待評估場所之消防狀況資訊輸出改善意見,其中所述改善意見之獲取方法包括:在預設查詢表中查找所述待評估場所之消防狀況資訊中之不同項目對應之消防狀況設計要求,其中所述預設查詢表中記錄了在符合消防安全標準之情況下,單位面積所需之消防狀況資訊;判斷所述待評估場所之消防狀況資訊中之項目是否符合所述消防狀況設計要求;若不符合,則將所述消防狀況設計要求作為所述改善意見進行輸出。 In another embodiment, the step S2 may further include that the method of providing improvement opinions based on the fire protection status information of the place to be assessed includes: if the output fire protection input data is greater than the actual fire protection input data, Output improvement opinions based on the fire-fighting status information of the place to be evaluated, wherein the method for obtaining the improvement opinions includes: searching the fire-fighting status design requirements corresponding to different items in the fire-fighting status information of the place to be evaluated in a preset query table , Wherein the preset query table records the fire-fighting status information required by the unit area under the condition of meeting the fire safety standards; judging whether the items in the fire-fighting status information of the place to be assessed meet the design requirements of the fire-fighting status ; If it does not meet the requirements, the design requirements of the fire protection situation are output as the improvement opinions.
例如,經過預設的分析模型分析的所述待評估場所的消防投入資料大於所述實際消防投入資料,則在預設查詢標中查找所述待評估場所的單位面積內消 防報警器的數量、天花板消防噴淋頭的數量;單位面積內人員的數量、與所述人員數量相匹配的滅火器、防毒面具的數量;單位面積內易燃品的數量,與所述易燃品相匹配的消火栓、滅火器的數量是否與預設查詢表中記錄的符合安全消防標準下消防物品的數量一致,若不一致,則輸出所述待評估場所所需消防物品的名稱及數量。 For example, if the fire protection input data of the place to be assessed is greater than the actual fire protection input data analyzed by the preset analysis model, the internal consumption per unit area of the place to be evaluated is searched in the preset query standard. The number of anti-alarms, the number of ceiling fire-fighting sprinklers; the number of personnel in a unit area, the number of fire extinguishers and gas masks that match the number of personnel; the number of flammable products per unit area, and the number of flammable Whether the number of fire hydrants and fire extinguishers that match the product is consistent with the number of fire-fighting items that meet the safety and fire protection standards recorded in the preset query table, if not, the name and quantity of the fire-fighting items required by the site to be assessed will be output.
上述圖2詳細介紹了本發明之消防資料分析方法,下面結合第3-4圖,對實現所述消防資料分析方法之軟體裝置之功能模組以及實現所述消防資料分析方法之硬體裝置架構進行介紹。 The above-mentioned Figure 2 describes in detail the fire protection data analysis method of the present invention. In conjunction with Figures 3-4, the functional modules of the software device that implements the fire protection data analysis method and the hardware device architecture that implements the fire protection data analysis method are described below. Make an introduction.
應所述瞭解,所述實施例僅為說明之用,在專利申請範圍上並不受此結構之限制。 It should be understood that the embodiments are only for illustrative purposes, and are not limited by this structure in the scope of the patent application.
實施例三 Example three
圖3為本發明消防資料分析裝置較佳實施例之結構圖。 Figure 3 is a structural diagram of a preferred embodiment of the fire protection data analysis device of the present invention.
在一些實施例中,消防資料分析裝置10運行於電腦裝置中。所述電腦裝置藉由網路連接了多個使用者終端。所述消防資料分析裝置10可以包括多個由程式碼段所組成之功能模組。所述消防資料分析裝置10中之各個程式段之程式碼可以存儲於電腦裝置之記憶體中,並由所述至少一個處理器所執行,以實現消防資料分析功能。
In some embodiments, the fire protection
本實施例中,所述消防資料分析裝置10根據其所執行之功能,可以被劃分為多個功能模組。參閱圖3所示,所述功能模組可以包括:獲取模組101、分析模組102。本發明所稱之模組是指一種能夠被至少一個處理器所執行並且能夠完成固定功能之一系列電腦程式段,其存儲在記憶體中。在本實施例中,關於各模組之功能將在後續之實施例中詳述。
In this embodiment, the fire protection
所述獲取模組101,用於獲取待評估場所之消防狀況資訊。
The
所述消防狀況資訊包括疏散人員數量、環境狀態資訊、物品狀態 資訊。其中所述環境狀態資訊可以包括固定式消防設施資訊、移動式消防設施資訊,例如:消防警報器、煙霧報警器、天花板消防噴淋頭、火災探測器、室內消火栓、室外消火栓之數量和擺放位置等。所述物品狀態訊息包括待評估場所內之可燃性物品,例如製造設備、材料、辦公電腦、傢俱之數量和擺放位置等。 The fire protection status information includes the number of evacuated personnel, environmental status information, and item status News. The environmental status information may include information on fixed firefighting facilities and mobile firefighting facilities, such as: fire alarms, smoke alarms, ceiling fire sprinklers, fire detectors, indoor fire hydrants, and the number and placement of outdoor fire hydrants Location etc. The item status information includes combustible items in the place to be evaluated, such as the quantity and placement of manufacturing equipment, materials, office computers, and furniture.
一個實施方式中,所述待評估場所之消防狀況資訊獲取方式可以包括:接收用戶輸入之所述待評估場所之疏散人員數量、消防設施之種類和數量、可燃物品之種類和數量等消防狀況資訊。 In one embodiment, the method for acquiring fire protection status information of the place to be assessed may include: receiving user input, such as the number of evacuated persons in the place to be evaluated, the type and quantity of fire-fighting facilities, and the type and quantity of combustible materials, etc. .
另一個實施方式中,所述消防狀況資訊獲取方法還可以是藉由接收多個攝像裝置採集之待評估場所之多張圖像,藉由圖像識別方法識別所述圖像中人員數量、消防設施之種類和數量、可燃物品之種類和數量等消防狀況資訊。 In another embodiment, the method for acquiring fire protection information may also be by receiving multiple images of the place to be evaluated collected by multiple camera devices, and identifying the number of people in the images and the number of firefighters by the image recognition method. The type and quantity of facilities, the type and quantity of combustibles, and other fire-fighting information.
所述分析模組102,用於將所述消防狀況資訊輸入到預設之分析模型,輸出所述待評估場所在預設之火災場景中,總損失最少情況下所需之消防投入資料和/或火災損失資料。
The
所述預設之分析模型之生成方法包括以下步驟: The method for generating the preset analysis model includes the following steps:
(1)獲取不同場所在不同火災場景下之消防狀況資訊、消防投入資料、火災損失資料,並對每一所述場所之消防狀況資訊和消防投入資料、火災損失資料對應存儲。 (1) Obtain the fire-fighting status information, fire-fighting input data, and fire loss data of different places under different fire scenarios, and store the fire-fighting status information, fire-fighting input data, and fire loss data of each of the said places.
所述不同場所在不同火災場景下之消防狀況資訊、消防投入資料、火災損失資料之獲取方法包括: The methods for obtaining the fire protection status information, fire protection input data, and fire loss data of different places under different fire scenarios include:
a)獲取任一場所之消防狀況資訊,根據所述預設查詢表判斷所述場所之消防狀況是否符合消防安全標準。 a) Obtain the fire protection status information of any place, and judge whether the fire protection status of the place meets the fire safety standards according to the preset query table.
所述預設查詢表中記錄了在符合消防安全標準之情況下,單位面 積所需之消防狀況資訊,例如單位面積內消防報警器之數量、天花板消防噴淋頭之數量;單位面積內人員之數量、與所述人員數量相匹配之滅火器、防毒面具之數量;單位面積內易燃品之數量,與所述易燃品相匹配之消火栓、滅火器之數量等。 The preset query table records that in the case of compliance with fire safety standards, the unit Information on the fire protection conditions required by the product, such as the number of fire alarms in a unit area, the number of ceiling fire sprinklers; the number of people in the unit area, the number of fire extinguishers and gas masks that match the number of people; the unit area The number of flammable products inside, the number of hydrants and fire extinguishers that match the flammable products, etc.
b)若符合,則根據所述消防狀況資訊計算所述場所之消防輸入資料,並藉由火災數值模擬系統對所述場所進行不同火災場景下之模擬,並計算所述不同火災場景下所述場所之火災損失資料。 b) If yes, calculate the fire input data of the place according to the fire protection information, and use the fire numerical simulation system to simulate the place under different fire scenarios, and calculate the said place under different fire scenarios. Fire loss data of the site.
所述消防輸入資料之計算方法包括查詢消防狀況資訊中之環境狀態資訊、物品狀態資訊中各個物品之價值,並根據所述價值計算所述場所之消防輸入資料。 The calculation method of the fire protection input data includes querying the environmental status information in the fire protection status information and the value of each item in the item status information, and calculating the fire protection input data of the place based on the value.
所述火災損失資料之計算方法包括設置所述場所中每一可燃物之可燃時間和可燃比例,並按照預設比例對所述可燃物進行分割,分割後之每一小塊表示所述可燃物在火災中單位時間內損失之最小金額;根據所述可燃物之可燃時間、可燃比例、在火災中單位時間內損失之最小金額計算不同消防狀況資訊下所述場所之火災損失資料。 The calculation method of the fire loss data includes setting the combustible time and combustible ratio of each combustible in the place, and dividing the combustible according to the preset ratio, and each small piece after the division represents the combustible The minimum amount of loss per unit time in a fire; according to the combustible time of the combustibles, the proportion of combustibility, and the minimum amount of loss per unit time in the fire, calculate the fire loss data of the place under different fire protection information.
例如將一台機床進行64等分,所述機床之價值是64萬,每一等分之價值為1萬,每一等分之燃燒時間是2分鐘。按照機床所處之消防狀況資訊,計算所述機床在一場火災中之損失。例如所述機床在具有天花板消防噴淋頭之場所中之火災損失資料,以及所述機床在僅有一個滅火器之場所中火災損失資料。依次方法,可以計算出任意場所之火災損失資料。 For example, if a machine tool is divided into 64 equal parts, the value of the machine tool is 640,000, the value of each equal part is 10,000, and the burning time of each equal part is 2 minutes. Calculate the loss of the machine tool in a fire according to the information on the fire protection situation where the machine tool is located. For example, the fire loss data of the machine tool in a place with a ceiling fire sprinkler, and the fire loss data of the machine tool in a place with only one fire extinguisher. The sequential method can calculate the fire loss data of any place.
(2)將所述多個場所之消防狀況資訊、消防輸入資料、火災損失資料分為訓練集和驗證集。 (2) Divide the fire-fighting status information, fire-fighting input data, and fire loss data of the multiple places into a training set and a verification set.
(3)建立基於神經網路之分析模型,並利用所述訓練集對所述基於神經網路之分析模型之參數進行訓練,其中將所述訓練集中之消防狀況資訊 作為所述模型之輸入資料,消防輸入資料、火災損失資料作為所述模型之輸出資料。 (3) Establish an analysis model based on the neural network, and use the training set to train the parameters of the analysis model based on the neural network, where the fire protection status information in the training set As the input data of the model, fire input data and fire loss data are used as the output data of the model.
(4)利用所述驗證集對訓練後之基於神經網路之分析模型進行驗證,並根據驗證結果統計得到所述模型之預測準確率。 (4) Use the verification set to verify the neural network-based analysis model after training, and obtain the prediction accuracy of the model based on the verification results.
(5)判斷所述模型之預測準確率是否小於預設閾值。 (5) Determine whether the prediction accuracy rate of the model is less than a preset threshold.
(6)若所述模型預測準確率不小於所述預設閾值,則將訓練完成之所述基於神經網路之分析模型作為所述預設之分析模型。 (6) If the prediction accuracy of the model is not less than the preset threshold, then the trained analysis model based on the neural network is used as the preset analysis model.
在一些實施方式中,所述步驟還包括: In some embodiments, the step further includes:
(7)若所述基於神經網路之分析模型預測準確率小於所述預設閾值,則調整所述神經網路演算法之結構,並利用所述訓練集重新對調整後之基於神經網路之分析模型進行訓練,其中,所述基於神經網路之分析模型之結構包括卷積核之數量、池化層中元素之數量、全連接層中元素之數量中之至少一種。 (7) If the prediction accuracy of the neural network-based analysis model is less than the preset threshold, adjust the structure of the neural network algorithm, and use the training set to re-adjust the adjusted neural network-based The analysis model is trained, wherein the structure of the neural network-based analysis model includes at least one of the number of convolution kernels, the number of elements in the pooling layer, and the number of elements in the fully connected layer.
(8)利用所述驗證集對調整後之基於神經網路之分析模型進行驗證,直至所述重新統計得到之模型預測準確率不小於所述預設閾值,則將調整後之基於神經網路之分析模型作為所述預設之分析模型。 (8) Use the verification set to verify the adjusted analysis model based on the neural network, until the model prediction accuracy obtained by the re-statistics is not less than the preset threshold, then the adjusted neural network-based The analysis model is used as the preset analysis model.
以上預設之分析模型之生成方法中之步驟根據實際需要步驟之順序可以改變,某些步驟可以省略。所述生成方法可以線上完成,也可以離線完成。 The steps in the generation method of the above preset analysis model can be changed according to actual needs, and some steps can be omitted. The generating method can be completed online or offline.
根據待評估場所之消防狀況資訊,將所述消防狀況資訊輸入預設之分析模型,輸出所述待評估場所之消防投資成本、火災損失資料成本。 According to the fire-fighting situation information of the place to be assessed, the fire-fighting situation information is input into a preset analysis model, and the fire-fighting investment cost and fire loss data cost of the place to be assessed are output.
將所述消防狀況資訊輸入至所述預設之分析模型之前,所述方法還包括:將所述待評估場所之消防狀況資訊進行數值化處理,按照所述分析模型按 照預設比例將所述消防狀況中之項目映射到0到1之區間。 Before inputting the fire-fighting status information into the preset analysis model, the method further includes: numerically processing the fire-fighting status information of the place to be evaluated, and press Map the items in the fire protection situation to the interval from 0 to 1 according to the preset ratio.
例如,所述分析模型所能分析之人員數量是2000人,待評估場所之人員數量是500人,則將則根據待評估場所之人員數量與所述分析模型所能分析之人員數量之間之比值0.4作為消防狀況資訊之第一分析項目輸入資料登錄到所述分析模型。又如,所述分析模型中所能分析之環境狀態資訊中之天花板消防噴淋頭之數量是1000個,待評估場所之天花板消防噴淋頭之數量是100個,則將則根據待評估場所之天花板消防噴淋頭數量與所述分析模型所能分析之天花板消防噴淋頭數量之間之比值0.1作為消防狀況資訊中之第二分析項目輸入資料登錄到所述分析模型。從而將所述消防狀況資訊中之多個項目進行數值化。 For example, if the number of people that can be analyzed by the analysis model is 2000, and the number of people in the place to be assessed is 500 people, it will be based on the difference between the number of people in the place to be evaluated and the number of people that can be analyzed by the analysis model. The ratio of 0.4 is used as the input data of the first analysis item of the fire protection status information to be registered in the analysis model. For another example, the number of ceiling fire sprinklers in the environmental status information that can be analyzed in the analysis model is 1000, and the number of ceiling fire sprinklers in the place to be evaluated is 100, then it will be based on the place to be evaluated The ratio of 0.1 between the number of ceiling fire sprinklers and the number of ceiling fire sprinklers that can be analyzed by the analysis model is registered in the analysis model as the input data of the second analysis item in the fire protection status information. In this way, multiple items in the fire protection status information are digitized.
將數值化後之消防狀況資訊使用預設之分析模型進行分析,輸出所述待評估場所在預設之火災場景中,總損失最少情況下所需之消防投入資料和/或火災損失資料。所述分析模型按照預設比例將消防投入資料與火災損失資料映射到0到1之區間。例如,所述分析模型所能分析之消防投入資料是3000萬、火災損失資料為5000萬,將待評估場所之消防狀況資訊輸入到所述分析模型中分析後得出,所述待評估場所之消防投入資料為0.3、火災損失資料為0.5,藉由所述預設比例計算後,所述待評估場所之消防投入資料為900萬,火災損失資料為2500萬。 Analyze the digitized fire-fighting status information using a preset analysis model, and output the fire-fighting input data and/or fire loss data required for the site to be assessed in the preset fire scene with the least total loss. The analysis model maps the fire protection input data and the fire loss data to the interval from 0 to 1 according to a preset ratio. For example, the analysis model can analyze the fire protection input data of 30 million and the fire loss data of 50 million. After inputting the fire protection status information of the place to be assessed into the analysis model, the result is The fire protection input data is 0.3 and the fire loss data is 0.5. After calculating by the preset ratio, the fire protection input data of the place to be assessed is 9 million, and the fire loss data is 25 million.
在一實施方式中,所述分析模組102還包括:比較所述輸出之消防投入資料與實際之消防投入資料;若所述輸出之消防投入資料小於所述實際消防投入資料,則輸出所述待評估場所之實際消防投入資料過高之提示資訊;若所述輸出之消防投入資料大於所述實際消防投入資料,則輸出所述待評估場所之消防投入資料過低之提示資訊。
In one embodiment, the
在又一實施方式中,所述分析模組102還可以包括,所述根據所述
待評估場所之消防狀況資訊提供改善意見之方法包括:若所述輸出之消防投入資料大於所述實際消防投入資料,根據所述待評估場所之消防狀況資訊輸出改善意見,其中所述改善意見之獲取方法包括:在預設查詢表中查找所述待評估場所之消防狀況資訊中之不同項目對應之消防狀況設計要求,其中所述預設查詢表中記錄了在符合消防安全標準之情況下,單位面積所需之消防狀況資訊;判斷所述待評估場所之消防狀況資訊中之項目是否符合所述消防狀況設計要求;若不符合,則將所述消防狀況設計要求作為所述改善意見進行輸出。
In another embodiment, the
例如,經過預設的分析模型分析的所述待評估場所的消防投入資料大於所述實際消防投入資料,則在預設查詢標中查找所述待評估場所的單位面積內消防報警器的數量、天花板消防噴淋頭的數量;單位面積內人員的數量、與所述人員數量相匹配的滅火器、防毒面具的數量;單位面積內易燃品的數量,與所述易燃品相匹配的消火栓、滅火器的數量是否與預設查詢表中記錄的符合安全消防標準下消防物品的數量一致,若不一致,則輸出所述待評估場所所需消防物品的名稱及數量。 For example, if the fire protection input data of the place to be assessed is greater than the actual fire protection input data analyzed by the preset analysis model, the number of fire alarms per unit area of the place to be evaluated, The number of ceiling fire sprinklers; the number of persons per unit area, the number of fire extinguishers and gas masks matching the number of persons; the number of flammable products per unit area, the fire hydrants matching the number of flammable products, Whether the number of fire extinguishers is consistent with the number of fire-fighting articles that meet the safety and fire-fighting standards recorded in the preset query table, if not, the name and number of fire-fighting articles required by the place to be assessed are output.
實施例四 Example four
圖4為本發明電腦裝置較佳實施例之示意圖。 Fig. 4 is a schematic diagram of a preferred embodiment of the computer device of the present invention.
所述電腦裝置1包括記憶體20、處理器30以及存儲在所述記憶體20中並可在所述處理器30上運行之電腦程式40,例如消防資料分析程式。所述處理器30執行所述電腦程式40時實現上述消防資料分析方法實施例中之步驟,例如圖2所示之步驟S1~S2。或者,所述處理器30執行所述電腦程式40時實現上述消防資料分析裝置實施例中各模組/單元之功能,例如圖3中之單元101-102。
The
示例性之,所述電腦程式40可以被分割成一個或多個模組/單元,
所述一個或者多個模組/單元被存儲在所述記憶體20中,並由所述處理器30執行,以完成本發明。所述一個或多個模組/單元可以是能夠完成特定功能之一系列電腦程式指令段,所述指令段用於描述所述電腦程式40在所述電腦裝置1中之執行過程。例如,所述電腦程式40可以被分割成圖3中之獲取模組101、分析模組102。
Exemplarily, the
所述電腦裝置1可以是桌上型電腦、筆記本、掌上型電腦及雲端伺服器等計算設備。本領域技術人員可以理解,所述示意圖僅僅是電腦裝置1之示例,並不構成對電腦裝置1之限定,可以包括比圖示更多或更少之部件,或者組合某些部件,或者不同之部件,例如所述電腦裝置1還可以包括輸入輸出設備、網路接入設備、匯流排等。
The
所稱處理器30可以是中央處理單元(Central Processing Unit,CPU),還可以是其他通用處理器、數位訊號處理器(Digital Signal Processor,DSP)、專用積體電路(Application Specific Integrated Circuit,ASIC)、現成可程式設計閘陣列(Field-Programmable Gate Array,FPGA)或者其他可程式設計邏輯器件、分立門或者電晶體邏輯器件、分立硬體元件等。通用處理器可以是微處理器或者所述處理器30也可以是任何常規之處理器等,所述處理器30是所述電腦裝置1之控制中心,利用各種介面和線路連接整個電腦裝置1之各個部分。
The so-called
所述記憶體20可用於存儲所述電腦程式40和/或模組/單元,所述處理器30藉由運行或執行存儲在所述記憶體20內之電腦程式和/或模組/單元,以及調用存儲在記憶體20內之資料,實現所述電腦裝置1之各種功能。所述記憶體20可主要包括存儲程式區和存儲資料區,其中,存儲程式區可存儲作業系統、至少一個功能所需之應用程式(比如聲音播放功能、圖像播放功能等)等;存儲資料區可存儲根據電腦裝置1之使用所創建之資料(比如音訊資料、電話本等)等。此外,記憶體20可以包括高速隨機存取記憶體,還可以包括非易失性記憶體,例如硬碟、記憶體、插接式硬碟,智慧存儲卡(Smart Media Card,SMC),
安全數位(Secure Digital,SD)卡,快閃記憶體卡(Flash Card)、至少一個磁碟記憶體件、快閃記憶體器件、或其他易失性固態記憶體件。
The
所述電腦裝置1集成之模組/單元如果以軟體功能單元之形式實現並作為獨立之產品銷售或使用時,可以存儲在一個電腦可讀取存儲介質中。基於這樣之理解,本發明實現上述實施例方法中之全部或部分流程,也可以藉由電腦程式來指令相關之硬體來完成,所述之電腦程式可存儲於一電腦可讀存儲介質中,所述電腦程式在被處理器執行時,可實現上述各個方法實施例之步驟。其中,所述電腦程式包括電腦程式代碼,所述電腦程式代碼可以為原始程式碼形式、物件代碼形式、可執行檔或某些中間形式等。所述電腦可讀介質可以包括:能夠攜帶所述電腦程式代碼之任何實體或裝置、記錄介質、U盤、移動硬碟、磁碟、光碟、電腦記憶體、唯讀記憶體(ROM,Read-Only Memory)、隨機存取記憶體(RAM,Random Access Memory)、電載波信號、電信信號以及軟體分發介質等。需要說明之是,所述電腦可讀介質包含之內容可以根據司法管轄區內立法和專利實踐之要求進行適當之增減,例如在某些司法管轄區,根據立法和專利實踐,電腦可讀介質不包括電載波信號和電信信號。
If the integrated module/unit of the
在本發明所提供之幾個實施例中,應所述理解到,所揭露之電腦裝置和方法,可以藉由其它之方式實現。例如,以上所描述之電腦裝置實施例僅僅是示意性之,例如,所述單元之劃分,僅僅為一種邏輯功能劃分,實際實現時可以有另外之劃分方式。 In the several embodiments provided by the present invention, it should be understood that the disclosed computer device and method can be implemented in other ways. For example, the embodiments of the computer device described above are merely illustrative. For example, the division of the units is only a logical function division, and there may be other divisions in actual implementation.
另外,在本發明各個實施例中之各功能單元可以集成在相同處理單元中,也可以是各個單元單獨物理存在,也可以兩個或兩個以上單元集成在相同單元中。上述集成之單元既可以採用硬體之形式實現,也可以採用硬體加軟體功能模組之形式實現。 In addition, the functional units in the various embodiments of the present invention may be integrated in the same processing unit, or each unit may exist alone physically, or two or more units may be integrated in the same unit. The above-mentioned integrated unit can be realized either in the form of hardware, or in the form of hardware plus software functional modules.
對於本領域技術人員而言,顯然本發明不限於上述示範性實施例 之細節,而且在不背離本發明之精神或基本特徵之情況下,能夠以其他之具體形式實現本發明。因此,無論從哪一點來看,均應將實施例看作是示範性之,而且是非限制性之,本發明之範圍由所附申請專利範圍而不是上述說明限定,因此旨在將落在申請專利範圍之等同要件之含義和範圍內之所有變化涵括在本發明內。不應將申請專利範圍中之任何附圖標記視為限制所涉及之申請專利範圍。此外,顯然“包括”一詞不排除其他單元或步驟,單數不排除複數。電腦裝置申請專利範圍中陳述之多個單元或電腦裝置也可以由同一個單元或電腦裝置藉由軟體或者硬體來實現。第一,第二等詞語用來表示名稱,而並不表示任何特定之順序。 For those skilled in the art, it is obvious that the present invention is not limited to the above exemplary embodiments The details of the present invention can be implemented in other specific forms without departing from the spirit or basic characteristics of the present invention. Therefore, no matter from which point of view, the embodiments should be regarded as exemplary and non-restrictive. The scope of the present invention is defined by the scope of the appended patent application rather than the above description, so it is intended to fall within the application. The meaning of the equivalent elements of the patent scope and all changes within the scope are included in the present invention. Any reference signs in the scope of the patent application should not be regarded as limiting the scope of the patent application involved. In addition, it is obvious that the word "including" does not exclude other units or steps, and the singular does not exclude the plural. Multiple units or computer devices stated in the scope of the computer device patent application can also be implemented by the same unit or computer device by software or hardware. Words such as first and second are used to denote names, but do not denote any specific order.
最後應說明之是,以上實施例僅用以說明本發明之技術方案而非限制,儘管參照較佳實施例對本發明進行了詳細說明,本領域之普通技術人員應當理解,可以對本發明之技術方案進行修改或等同替換,而不脫離本發明技術方案之精神和範圍。 Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be Modifications or equivalent replacements are made without departing from the spirit and scope of the technical solutions of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108145409A TWI737074B (en) | 2019-12-11 | 2019-12-11 | Firefighting data analysis method, device, computer device and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108145409A TWI737074B (en) | 2019-12-11 | 2019-12-11 | Firefighting data analysis method, device, computer device and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202123224A TW202123224A (en) | 2021-06-16 |
TWI737074B true TWI737074B (en) | 2021-08-21 |
Family
ID=77516943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108145409A TWI737074B (en) | 2019-12-11 | 2019-12-11 | Firefighting data analysis method, device, computer device and storage medium |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI737074B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050055249A1 (en) * | 2003-09-04 | 2005-03-10 | Jonathon Helitzer | System for reducing the risk associated with an insured building structure through the incorporation of selected technologies |
TW200832279A (en) * | 2006-09-13 | 2008-08-01 | Internat Design And Construction Online Inc | Computer-based system and method for providing situational awareness for a structure using three-dimensional modeling |
US20150106311A1 (en) * | 2013-10-16 | 2015-04-16 | University Of Tennessee Research Foundation | Method and apparatus for constructing, using and reusing components and structures of an artifical neural network |
CN110046837A (en) * | 2019-05-20 | 2019-07-23 | 北京唐芯物联网科技有限公司 | A kind of fire management system based on artificial intelligence |
CN110392876A (en) * | 2017-03-10 | 2019-10-29 | 净睿存储股份有限公司 | Data set and other managed objects are synchronously copied into storage system based on cloud |
-
2019
- 2019-12-11 TW TW108145409A patent/TWI737074B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050055249A1 (en) * | 2003-09-04 | 2005-03-10 | Jonathon Helitzer | System for reducing the risk associated with an insured building structure through the incorporation of selected technologies |
TW200832279A (en) * | 2006-09-13 | 2008-08-01 | Internat Design And Construction Online Inc | Computer-based system and method for providing situational awareness for a structure using three-dimensional modeling |
US20150106311A1 (en) * | 2013-10-16 | 2015-04-16 | University Of Tennessee Research Foundation | Method and apparatus for constructing, using and reusing components and structures of an artifical neural network |
CN110392876A (en) * | 2017-03-10 | 2019-10-29 | 净睿存储股份有限公司 | Data set and other managed objects are synchronously copied into storage system based on cloud |
CN110046837A (en) * | 2019-05-20 | 2019-07-23 | 北京唐芯物联网科技有限公司 | A kind of fire management system based on artificial intelligence |
Also Published As
Publication number | Publication date |
---|---|
TW202123224A (en) | 2021-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112949157B (en) | Fire data analysis method, device, computer device and storage medium | |
CN113128012B (en) | Disaster guarantee resource calculating method, device, computer device and storage medium | |
KR102159217B1 (en) | Electronic device, identification method, system and computer-readable storage medium | |
US10937241B2 (en) | Systems, methods, and apparatus for identifying an augmented reality service | |
CN111507552A (en) | Deep learning method, system, server and readable storage medium | |
WO2019057048A1 (en) | Low-frequency crawler identification method, device, readable storage medium and equipment | |
CN113128013B (en) | Environmental state analysis method, device, computer device and storage medium | |
WO2023273674A1 (en) | Intelligent dispatch method and apparatus for fire rescue force, and storage medium | |
CN113515837A (en) | Method and device for establishing simulation test platform and electronic equipment | |
WO2019237856A1 (en) | Method and system for displaying network status in real time, and storage medium and electronic device | |
CN112380391A (en) | Video processing method and device based on Internet of things, electronic equipment and storage medium | |
JP7202386B2 (en) | Method and system for providing multiple profiles | |
CN114120221A (en) | Environment checking method based on deep learning, electronic equipment and storage medium | |
CN115879766A (en) | Method and device for generating wind control scheme, electronic equipment and storage medium | |
CN116781568A (en) | Data monitoring alarm method, device, equipment and storage medium | |
EP4024906A1 (en) | Method for identifying a device using attributes and location signatures from the device | |
TWI737074B (en) | Firefighting data analysis method, device, computer device and storage medium | |
KR102589517B1 (en) | Simulation training and evaluation system for fire fighting activity on-scene command system | |
CN110058995A (en) | A kind of the data library test method and system of the interference of avoidable type of database | |
TWI737105B (en) | Disaster guarantee resource calculation method, device, computer device and storage medium | |
CN111723469A (en) | Digital portrait modeling method and system based on twin data | |
CN112565380B (en) | Fire-fighting Internet of things data access method and system | |
CN111885139B (en) | Content sharing method, device and system, mobile terminal and server | |
CN111382626B (en) | Method, device and equipment for detecting illegal image in video and storage medium | |
CN111125556A (en) | Recommendation sorting method and system, electronic device and readable storage medium |