TWI707211B - Pattern exposure device - Google Patents
Pattern exposure device Download PDFInfo
- Publication number
- TWI707211B TWI707211B TW108131088A TW108131088A TWI707211B TW I707211 B TWI707211 B TW I707211B TW 108131088 A TW108131088 A TW 108131088A TW 108131088 A TW108131088 A TW 108131088A TW I707211 B TWI707211 B TW I707211B
- Authority
- TW
- Taiwan
- Prior art keywords
- mask
- projection
- substrate
- exposure
- illumination
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/24—Curved surfaces
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70008—Production of exposure light, i.e. light sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70258—Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70283—Mask effects on the imaging process
- G03F7/70291—Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70358—Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70808—Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
- G03F7/70833—Mounting of optical systems, e.g. mounting of illumination system, projection system or stage systems on base-plate or ground
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0334—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/0337—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
Landscapes
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Health & Medical Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
Abstract
具備:第1支承構件,係以沿著以既定曲率彎曲成圓筒面狀之第1面之方式支承光罩與基板中之一方;第2支承構件,係沿著既定之第2面之方式支承光罩與基板中之另一方;移動機構,使第1支承構件旋轉,且使第2支承構件移動,以使光罩與基板移動於掃描曝光方向;投影光學系統,藉由包含與垂直於投影區域之掃描曝光方向中心之線大致平行之主光線的投影光束將圖案之像形成於既定之投影像面;移動機構,係設定第1支承構件之移動速度及第2支承構件之移動速度,使圖案之投影像面與基板之曝光面中曲率較大之面或為平面之側之移動速度較另一方之移動速度相對小。 Equipped with: a first support member that supports one of the mask and the substrate along the first surface that is curved into a cylindrical surface with a predetermined curvature; the second support member that supports one of the mask and the substrate along the predetermined second surface Supporting the other of the photomask and the substrate; a moving mechanism that rotates the first support member and moves the second support member to move the photomask and the substrate in the scanning exposure direction; the projection optical system, by including and perpendicular to The projection beam of the chief ray whose line is roughly parallel to the center of the scanning exposure direction of the projection area forms the image of the pattern on the predetermined projection image surface; the moving mechanism is to set the moving speed of the first supporting member and the moving speed of the second supporting member. The moving speed of the projected image surface of the pattern and the exposed surface of the substrate on the side with the larger curvature or the flat side is relatively slower than that of the other side.
Description
本發明係關於將光罩之圖案投影至基板且於該基板曝光該圖案之基板處理裝置、元件製造方法、掃描曝光方法、曝光裝置、元件製造系統及元件製造方法。 The present invention relates to a substrate processing device, a device manufacturing method, a scanning exposure method, an exposure device, a device manufacturing system, and a device manufacturing method for projecting a pattern of a photomask onto a substrate and exposing the pattern on the substrate.
有製造液晶顯示器等顯示元件或半導體等各種元件之元件製造系統。元件製造系統具備曝光裝置等基板處理裝置。專利文獻1所記載之基板處理裝置,係將配置於照明區域之光罩上所形成之圖案之像投影至配置於投影區域之基板等,將該圖案曝光於基板。用於基板處理裝置之光罩有平面狀者、圓筒狀者等。 There is an element manufacturing system that manufactures display elements such as liquid crystal displays or various elements such as semiconductors. The component manufacturing system includes a substrate processing device such as an exposure device. The substrate processing apparatus described in
在微影製程所使用之曝光裝置中,已知一種如下述專利文獻所揭示之使用圓筒狀或圓柱狀光罩(以下亦總稱為圓筒光罩)使基板曝光的曝光裝置(例如專利文獻2)。又,亦已知一種使用圓筒光罩將顯示面板用之元件圖案連續曝光於具有可撓性(flexible)之長條基板上的曝光裝置(例如專利文獻3)。 Among the exposure apparatuses used in the lithography process, there is known an exposure apparatus that uses a cylindrical or cylindrical mask (hereinafter also collectively referred to as a cylindrical mask) to expose a substrate as disclosed in the following patent documents (for example, Patent Literature 2). In addition, there is also known an exposure device that uses a cylindrical mask to continuously expose element patterns for display panels on a flexible long substrate (for example, Patent Document 3).
[專利文獻1]日本特開2007-299918號公報 [Patent Document 1] JP 2007-299918 A
[專利文獻2]國際公開WO2008/029917號 [Patent Document 2] International Publication No. WO2008/029917
[專利文獻3]日本特開2011-221538號公報 [Patent Document 3] JP 2011-221538 A
此處,基板處理裝置能藉由增大在掃描曝光方向之曝光區域(狹縫狀之投影區),來縮短對基板上之一個照射區域或元件區域之掃描曝光時間,而能使每一單位時間之基板處理片數等之生產性提升。然而,如專利文獻1所記載,若為了提升生產性而使用能旋轉之圓筒狀光罩,則由於光罩圖案彎曲成圓筒狀,因此若將光罩圖案(圓筒狀)之周方向設為掃描曝光之方向,使狹縫狀之投影區域之掃描曝光方向之尺寸增大,則有時投影曝光至基板之圖案之品質(像質)會降低。 Here, the substrate processing device can shorten the scanning exposure time for an irradiated area or element area on the substrate by increasing the exposure area (slit-shaped projection area) in the scanning exposure direction, thereby enabling each unit Increase the productivity of the number of substrates processed in time. However, as described in
如前述之專利文獻2所示,圓筒狀或圓柱狀之光罩具有從既定旋轉中心軸(中心線)起一定半徑之外周面(圓筒面),於該外周面形成有電子圖案(例如半導體晶片等)之光罩圖案。當於感光性之基板(晶圓)上轉印光罩圖案時,係一邊使基板以既定速度移動於一方向,一邊使圓筒光罩繞旋轉中心軸同步旋轉。此情形下,若將圓筒光罩之直徑設定為圓筒光罩之外周面全周長對應於基板之長度,則能沿基板長度連續地掃描曝光光罩圖案。又,如專利文獻3所示,若使用此種圓筒光罩,則能僅一邊使長條可撓性片狀基板(具有感光層)以既定速度移送於長度方向,一邊與該速度同步地使圓筒光罩,即於片狀基板上反覆連續地曝光顯示面板用之圖案。如上述,在使用圓筒光罩之場合,被期待基板之曝光處理之效率或作業時間提升,電子元件、顯示面板等之生產性提高。 As shown in the
然而,特別是在使顯示面板用之光罩圖案曝光之場合,顯示面板之畫面尺寸係有各式各樣如數吋~數十吋,用於其之光罩圖案之區域尺寸或寬高比亦有各式各樣。此情形下,若能安裝於曝光裝置之圓筒光罩之直徑或旋轉中心軸方向之尺寸唯一地決定,則難以對應於各種大小之顯示面板來有效率地將光罩圖案區域配置於圓筒光罩之外周面。例如在大畫面尺寸之顯示面板之場 合,即使能將該顯示面板之一面量之光罩圖案區域形成於圓筒光罩之外周面之大致全周,在較該尺寸小些許之顯示面板之場合,則無法形成兩面量之光罩圖案區域,周方向(或旋轉中心軸方向)之余白增大。 However, especially when exposing the mask pattern for the display panel, the screen size of the display panel varies from several inches to tens of inches, and the area size or aspect ratio of the mask pattern used for it is also There are all kinds. In this case, if the diameter of the cylindrical mask that can be installed in the exposure device or the size in the direction of the central axis of rotation are uniquely determined, it is difficult to efficiently arrange the mask pattern area on the cylinder corresponding to display panels of various sizes. The outer circumference of the photomask. For example, in the case of a display panel with a large screen size, even if the mask pattern area of one surface of the display panel can be formed on the outer circumference of the cylindrical mask, in the case of a display panel slightly smaller than this size , The mask pattern area of two sides cannot be formed, and the margin in the circumferential direction (or the direction of the central axis of rotation) increases.
本發明之態樣,其目的在於提供能以高生產性生產高品質之基板之基板處理裝置、元件製造方法及掃描曝光方法。 The aspect of the present invention aims to provide a substrate processing apparatus, a device manufacturing method, and a scanning exposure method that can produce high-quality substrates with high productivity.
本發明之另一態樣,其目的在於提供能安裝直徑不同之圓筒光罩之曝光裝置、元件製造系統及使用此種曝光裝置之元件製造方法。 Another aspect of the present invention is to provide an exposure device, a device manufacturing system, and a device manufacturing method using such an exposure device that can mount cylindrical masks of different diameters.
根據本發明第1態樣,提供一種基板處理裝置,具備投影光學系統,其使來自配置於照明光之照明區域之光罩之圖案之光束投射於配置基板之投影區域,其特徵在於,具備:第1支承構件,係以在前述照明區域與前述投影區域中之一方區域中沿著以既定曲率彎曲成圓筒面狀之第1面之方式支承前述光罩與前述基板中之一方;第2支承構件,係以在前述照明區域與前述投影區域中之另一方區域中沿著既定之第2面之方式支承前述光罩與前述基板中之另一方;移動機構,使前述第1支承構件旋轉,使該第1支承構件所支承之前述光罩與前述基板中之一方移動於掃描曝光方向,且使前述第2支承構件移動,使該第2支承構件所支承之前述光罩與前述基板中之另一方移動於前述掃描曝光方向;前述投影光學系統將前述圖案之像形成於既定之投影像面;前述移動機構,係設定前述第1支承構件之移動速度及前述第2支承構件之移動速度,使前述圖案之投影像面與前述基板之曝光面中曲率較大之面或為平面之側之移動速度較另一方之移動速度相對小。 According to a first aspect of the present invention, there is provided a substrate processing apparatus including a projection optical system for projecting a light beam from a pattern of a mask arranged in an illumination area of illuminating light onto a projection area where a substrate is arranged, characterized in that: The first support member supports one of the photomask and the substrate in one of the illumination area and the projection area along the first surface that is curved into a cylindrical surface with a predetermined curvature; second The supporting member supports the other of the photomask and the substrate in the other of the illumination area and the projection area along a predetermined second surface; the moving mechanism rotates the first supporting member , Move one of the photomask and the substrate supported by the first support member in the scanning exposure direction, and move the second support member, so that the photomask and the substrate supported by the second support member The other side moves in the scanning exposure direction; the projection optical system forms the image of the pattern on the predetermined projection image surface; the moving mechanism sets the moving speed of the first supporting member and the moving speed of the second supporting member , So that the moving speed of the projected image surface of the pattern and the exposed surface of the substrate with the larger curvature surface or the flat side is relatively slower than the moving speed of the other.
根據本發明第2態樣,提供一種元件製造方法,包含:使用第1態樣之基板處理裝置於前述基板形成前述光罩之圖案的動作;以及對前述基板處理裝置供應前述基板的動作。 According to a second aspect of the present invention, there is provided a device manufacturing method, including: forming the pattern of the photomask on the substrate using the substrate processing apparatus of the first aspect; and supplying the substrate to the substrate processing apparatus.
根據本發明第3態樣,提供一種掃描曝光方法,係將形成於以既定曲率半徑彎曲成圓筒狀之光罩之一面之圖案透過投影光學系統投影至支承成圓筒狀或平面狀之可撓性基板的表面,且一邊將前述光罩沿著前述彎曲之一面以既定速度移動,一邊沿著支承成前述圓筒狀或平面狀之前述基板的表面以既定速度使前述基板移動,以將前述投影光學系統之前述圖案之投影像掃描曝光至前述基板上,其特徵在於:將前述投影光學系統之前述圖案之投影像以最佳聚焦狀態形成之投影像面之曲率半徑設為Rm、將支承成前述圓筒狀或平面狀之前述基板的表面之曲率半徑設為Rp,將藉由前述光罩之移動而沿著前述投影像面移動之前述圖案像之移動速度設為Vm,將沿著前述基板之表面之既定速度設為Vp時,在Rm<Rp之場合設定為Vm>Vp,在Rm>Rp之場合設定為Vm<Vp。 According to a third aspect of the present invention, there is provided a scanning exposure method in which a pattern formed on one surface of a mask curved into a cylindrical shape with a predetermined radius of curvature is projected through a projection optical system to a cylindrical or flat support The surface of the flexible substrate, while moving the mask along one of the curved surfaces at a predetermined speed, while moving the substrate at a predetermined speed along the surface of the substrate supported in the cylindrical or flat shape, The projection image of the pattern of the projection optical system is scanned and exposed to the substrate, and is characterized in that the radius of curvature of the projection image surface formed in the best focus state of the projection image of the pattern of the projection optical system is set to Rm, and The radius of curvature of the surface of the substrate supported in the cylindrical or planar shape is set to Rp, and the moving speed of the pattern image that moves along the projection image surface by the movement of the mask is set to Vm, When the predetermined speed on the surface of the aforementioned substrate is set to Vp, set it to Vm>Vp when Rm<Rp, and set Vm<Vp when Rm>Rp.
根據本發明第4態樣,提供一種曝光裝置,其包含:照明光學系統,將照明光導至從既定軸線以一定曲率半徑彎曲之曲面之外周面具有圖案之圓筒光罩;基板支承機構,支承基板;投影光學系統,將以前述照明光照明之前述圓筒光罩之前述圖案投影至前述基板支承機構所支承之前述基板;更換機構,更換前述圓筒光罩;以及調整部,在前述更換機構將前述圓筒光罩更換成直徑不同之圓筒光罩時,調整前述照明光學系統之至少一部分與前述投影光學系統之至少一部分之至少一方。 According to a fourth aspect of the present invention, there is provided an exposure apparatus including: an illumination optical system that guides the illumination light to a cylindrical mask with a pattern on the outer peripheral surface of a curved surface that is bent at a certain radius of curvature from a predetermined axis; a substrate supporting mechanism, supporting Substrate; a projection optical system that projects the pattern of the cylindrical mask illuminated by the illumination light onto the substrate supported by the substrate support mechanism; a replacement mechanism to replace the cylindrical mask; and an adjustment part, which is replaced in the foregoing When the mechanism replaces the cylindrical mask with a cylindrical mask with a different diameter, at least one of at least a part of the illumination optical system and at least a part of the projection optical system is adjusted.
根據本發明第5態樣,提供一種曝光裝置,其包含:光罩保持機構,將一個在從既定軸線以一定曲率半徑彎曲成圓筒狀之外周面具有圖案、彼此直徑不同之複數個圓筒光罩以能更換之方式安裝並使之繞前述既定軸線旋轉;照明系,將照明光照射於前述圓筒光罩之圖案;基板支承機構,將以來自前述照明光照射之前述圓筒光罩之前述圖案之光曝光的基板,沿著彎曲之面或平面加以支承;以及調整部,係對應於安裝於前述光罩保持機構之前述圓筒光罩之直徑,調整至少前述既定軸線與前述基板支承機構之距離。 According to a fifth aspect of the present invention, there is provided an exposure apparatus including: a mask holding mechanism for forming a plurality of cylinders having a pattern on the outer peripheral surface of which is bent into a cylindrical shape with a certain radius of curvature from a predetermined axis, and having different diameters from each other. The mask is installed in a replaceable manner and rotated around the predetermined axis; the lighting system irradiates the pattern of the aforementioned cylindrical mask with illumination light; the substrate support mechanism will illuminate the aforementioned cylindrical mask with the aforementioned illumination light The light-exposed substrate of the aforementioned pattern is supported along the curved surface or plane; and the adjustment part is adapted to adjust at least the predetermined axis and the substrate corresponding to the diameter of the cylindrical mask mounted on the mask holding mechanism The distance of the supporting mechanism.
根據本發明第6態樣,提供一種元件製造系統,具備:前述之曝光裝置;以及對前述曝光裝置供應前述基板之基板供應裝置。 According to a sixth aspect of the present invention, there is provided a device manufacturing system including: the aforementioned exposure device; and a substrate supply device that supplies the aforementioned substrate to the aforementioned exposure device.
根據本發明第7態樣,提供一種元件製造方法,包含:使用前述之曝光裝置將前述圓筒光罩之前述圖案曝光於前述基板的動作;以及藉由處理曝光後之前述基板,將與前述圓筒光罩之前述圖案對應之元件形成於前述基板上的動作。 According to a seventh aspect of the present invention, there is provided a device manufacturing method, including: exposing the pattern of the cylindrical mask to the substrate using the exposure device; and processing the exposed substrate to combine with the substrate The aforementioned pattern of the cylindrical mask corresponds to the action of forming elements on the aforementioned substrate.
根據本發明之態樣,能抑制因形成圖案像之投影像面與轉印圖案像之基板之表面之任一方在基板之掃描曝光方向彎曲而產生之像位置之偏移(像變位),同時取得較大之掃描曝光時之曝光寬度,而能以高生產性製得以高品質轉印圖案像之基板。 According to the aspect of the present invention, it is possible to suppress the image position shift (image displacement) caused by either one of the projection image surface forming the pattern image and the surface of the substrate transferring the pattern image being bent in the scanning exposure direction of the substrate, At the same time, a larger exposure width during scanning exposure is obtained, and a substrate with high-quality pattern image transfer can be manufactured with high productivity.
根據本發明之其他態樣,即使在安裝有於既定範圍內直徑不同之圓筒光罩的場合,亦能提供能轉印高品質圖案之曝光裝置、元件製造系統及元件製造方法。 According to other aspects of the present invention, even when cylindrical masks with different diameters within a predetermined range are installed, an exposure device, a device manufacturing system, and a device manufacturing method capable of transferring high-quality patterns can be provided.
1‧‧‧元件製造系統 1‧‧‧Component Manufacturing System
2‧‧‧基板供應裝置 2‧‧‧Substrate supply device
4‧‧‧基板回收裝置 4‧‧‧Substrate recovery device
5‧‧‧上位控制裝置 5‧‧‧Upper control device
U3‧‧‧曝光裝置 U3‧‧‧Exposure device
M‧‧‧光罩 M‧‧‧Mask
IR1~IR6‧‧‧照明區域 IR1~IR6‧‧‧Illumination area
IL1~IL6‧‧‧照明光學系統 IL1~IL6‧‧‧Illumination optical system
ILM‧‧‧照明光學模組 ILM‧‧‧Lighting Optical Module
PA1~PA6‧‧‧投影區域 PA1~PA6‧‧‧Projection area
PLM‧‧‧投影光學模組 PLM‧‧‧Projection Optical Module
圖1係顯示第1實施形態之元件製造系統之構成的圖。 Fig. 1 is a diagram showing the configuration of the component manufacturing system of the first embodiment.
圖2係顯示第1實施形態之曝光裝置(基板處理裝置)之整體構成的圖。 Fig. 2 is a diagram showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the first embodiment.
圖3係顯示圖2所示之曝光裝置之照明區域及投影區域之配置的圖。 FIG. 3 is a diagram showing the arrangement of the illumination area and projection area of the exposure device shown in FIG. 2.
圖4係顯示圖2所示之曝光裝置之照明光學系統及投影光學系統之構成的圖。 4 is a diagram showing the configuration of the illumination optical system and the projection optical system of the exposure device shown in FIG. 2.
圖5係誇張顯示在光罩之照明光束及投影光束之狀態的圖。 Figure 5 is an exaggerated view showing the state of the illumination beam and the projection beam in the mask.
圖6係示意顯示在圖4中之偏光分束器之照明光束及投影光束之行進方式的 圖。 Fig. 6 is a diagram schematically showing the traveling mode of the illumination beam and the projection beam of the polarization beam splitter in Fig. 4.
圖7係誇張顯示光罩之圖案之投影像面之移動與基板之曝光面之移動之關係的說明圖。 FIG. 7 is an explanatory diagram that exaggerates the relationship between the movement of the projection image surface of the mask pattern and the movement of the exposure surface of the substrate.
圖8A係顯示在投影像面與曝光面之周速度無差異時之曝光寬度內之像的偏移量、差分量之變化一例的圖表。 FIG. 8A is a graph showing an example of changes in the image offset and the difference in the exposure width when there is no difference in the peripheral speed between the projection image surface and the exposure surface.
圖8B係顯示在投影像面與曝光面之周速度有差異時之曝光寬度內之像的偏移量、差分量之變化一例的圖表。 FIG. 8B is a graph showing an example of the shift amount of the image within the exposure width when the circumferential speed of the projection image surface and the exposure surface are different, and the change of the difference component.
圖8C係顯示改變投影像面與曝光面之周速度之差異時之曝光寬度內之像的差分量之變化一例的圖表。 FIG. 8C is a graph showing an example of the change in the difference component of the image within the exposure width when the difference between the peripheral speed of the projection image surface and the exposure surface is changed.
圖9係顯示因投影像面與曝光面之周速度之差異有無而變化之圖案投影像之曝光寬度內之對比率變化一例的圖表。 FIG. 9 is a graph showing an example of the contrast ratio change within the exposure width of the pattern projection image that changes due to the difference in the peripheral speed of the projection image surface and the exposure surface.
圖10係顯示第2實施形態之曝光裝置(基板處理裝置)之整體構成的圖。 Fig. 10 is a diagram showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the second embodiment.
圖11係誇張顯示光罩之圖案之投影像面之移動與基板之曝光面之移動之關係的說明圖。 FIG. 11 is an explanatory diagram that exaggerates the relationship between the movement of the projection image surface of the mask pattern and the movement of the exposure surface of the substrate.
圖12係顯示因第2實施形態之投影像面與曝光面之周速度之差異有無而變化之曝光寬度內之像偏移量變化一例的圖表。 FIG. 12 is a graph showing an example of the change in the amount of image shift within the exposure width that changes due to the difference in the peripheral speed between the projection image surface and the exposure surface of the second embodiment.
圖13A係顯示光罩M上之L & S圖案之投影像之光強度分布的圖。 13A is a diagram showing the light intensity distribution of the projection image of the L & S pattern on the mask M.
圖13B係顯示光罩M上之孤立線(ISO)圖案之投影像之光強度分布的圖。 13B is a diagram showing the light intensity distribution of the projected image of the isolated line (ISO) pattern on the mask M.
圖14係在無周速度差異(修正前)之狀態下模擬L & S圖案之投影像之對比值與對比率的圖表。 Fig. 14 is a graph of the contrast value and contrast ratio of the projected image of the simulated L & S pattern under the condition of no difference in circumferential speed (before correction).
圖15係在有周速度差異(修正後)之狀態下模擬L & S圖案之投影像之對比值與對比率的圖表。 Fig. 15 is a graph showing the contrast value and contrast ratio of the projected image of the simulated L & S pattern under the condition of the difference in weekly velocity (after correction).
圖16係在無周速度差異(修正前)之狀態下模擬孤立(ISO)圖案之投影像之對比值與對比率的圖表。 Figure 16 is a graph of the contrast value and contrast ratio of the projected image of the simulated isolated (ISO) pattern under the condition of no difference in circumferential speed (before correction).
圖17係在有周速度差異(修正後)之狀態下模擬孤立(ISO)圖案之投影像之對比值與對比率的圖表。 Fig. 17 is a graph of the contrast value and contrast ratio of the projected image of the simulated isolated (ISO) pattern under the condition of the difference of the weekly velocity (after correction).
圖18係顯示相對於基板上之曝光面移動速度改變光罩M之投影像面之周速度時之像變位量(偏移量)與曝光寬度之關係的圖表。 18 is a graph showing the relationship between the image displacement amount (offset amount) and the exposure width when the peripheral speed of the projection image surface of the mask M is changed relative to the moving speed of the exposure surface on the substrate.
圖19係顯示藉由使用偏移量與解像力而求出之評估值Q1、Q2評估最佳之曝光寬度之模擬例的圖表。 FIG. 19 is a graph showing a simulation example of evaluating the optimal exposure width by using the evaluation values Q1 and Q2 obtained by using the offset and the resolution.
圖20係顯示第3實施形態之曝光裝置(基板處理裝置)之整體構成的圖。 Fig. 20 is a diagram showing the overall configuration of an exposure apparatus (substrate processing apparatus) of the third embodiment.
圖21係顯示第4實施形態之曝光裝置(基板處理裝置)之整體構成的圖。 Fig. 21 is a diagram showing the overall configuration of an exposure apparatus (substrate processing apparatus) according to a fourth embodiment.
圖22係誇張顯示光罩之圖案之投影像面之移動與基板之曝光面之移動之關係的說明圖。 FIG. 22 is an explanatory diagram that exaggerates the relationship between the movement of the projection image surface of the mask pattern and the movement of the exposure surface of the substrate.
圖23係顯示第5實施形態之曝光裝置之整體構成的圖。 Fig. 23 is a diagram showing the overall configuration of the exposure apparatus of the fifth embodiment.
圖24係顯示將曝光裝置所使用之光罩更換成其他光罩時之步驟的流程圖。 Fig. 24 is a flowchart showing the steps when the photomask used in the exposure apparatus is replaced with another photomask.
圖25係顯示第奇數個之第1投影光學系統之光罩側之視野區域位置與第偶數個之第2投影光學系統之光罩側之視野區域位置之關係的圖。 25 is a diagram showing the relationship between the position of the field of view on the mask side of the odd-numbered first projection optical system and the position of the field of view on the mask side of the even-numbered second projection optical system.
圖26係顯示於表面具有儲存有光罩資訊之資訊儲存部的光罩的立體圖。 FIG. 26 is a perspective view showing a photomask with an information storage portion storing photomask information on the surface.
圖27係儲存有曝光條件之曝光條件設定表的示意圖。 Fig. 27 is a schematic diagram of an exposure condition setting table storing exposure conditions.
圖28係基於先前之圖5概略地顯示直徑不同之光罩間之照明光束及投影光束之狀態的圖。 FIG. 28 is a diagram schematically showing the state of the illumination beam and the projection beam between masks with different diameters based on the previous FIG. 5.
圖29係顯示更換成直徑不同之光罩時之編碼器讀頭等之配置變更的圖。 Fig. 29 is a diagram showing the configuration change of the encoder reading head etc. when replacing with a mask with a different diameter.
圖30係校正裝置的圖。 Fig. 30 is a diagram of a correction device.
圖31係用以說明校正的圖。 Fig. 31 is a diagram for explaining correction.
圖32係顯示使用空氣軸承將光罩能旋轉地支承之例的側視圖。 Fig. 32 is a side view showing an example in which the photomask is rotatably supported using an air bearing.
圖33係顯示使用空氣軸承將光罩能旋轉地支承之例的立體圖。 Fig. 33 is a perspective view showing an example in which the photomask is rotatably supported using an air bearing.
圖34係顯示第6實施形態之曝光裝置之整體構成的圖。 Fig. 34 is a diagram showing the overall configuration of the exposure apparatus of the sixth embodiment.
圖35係顯示第7實施形態之曝光裝置之整體構成的圖。 Fig. 35 is a diagram showing the overall configuration of the exposure apparatus of the seventh embodiment.
圖36係顯示反射型圓筒光罩M在曝光裝置內之支承機構的局部構造例的立體圖。 FIG. 36 is a perspective view showing a partial structure example of the support mechanism of the reflective cylindrical mask M in the exposure apparatus.
圖37係顯示元件製造方法的流程圖。 Fig. 37 is a flowchart showing a method of manufacturing a device.
針對用以實施本發明之形態(實施形態),參照圖面詳細的說明如下。本發明不受限於以下實施形態所記載之內容。又,以下記載之構成要素中,包含發明所屬技術領域中具有通常知識者容易想到者、亦包含實質上相同之物。此外,以下記載之構成要素可適當的加以組合。再者,在不脫離本發明要旨之範圍內可進行構成要素之各種省略、置換或變更。例如,以下實施形態中,雖作為元件係說明製造可撓性顯示器的場合,但不限定於此。作為元件,亦能製造形成以銅箔等形成之配線圖案之配線基板、形成多數個半導體元件(電晶體、二極體等)之基板等。 The mode (embodiment) for implementing the present invention will be described in detail with reference to the drawings as follows. The present invention is not limited to the content described in the following embodiments. In addition, the constituent elements described below include those easily conceived by those having ordinary knowledge in the technical field to which the invention belongs, and also include substantially the same thing. In addition, the constituent elements described below can be combined as appropriate. In addition, various omissions, substitutions, or changes of constituent elements can be made without departing from the scope of the present invention. For example, in the following embodiment, although the case of manufacturing a flexible display is described as an element system, it is not limited to this. As an element, it is also possible to manufacture a wiring board formed with a wiring pattern formed of copper foil, etc., a substrate formed with a plurality of semiconductor elements (transistors, diodes, etc.).
第1實施形態之基板處理裝置係對基板施以曝光處理之曝光裝置,曝光裝置係組裝在對曝光後之基板施以各種處理以製造元件之元件製造系統。首先,說明元件製造系統。 The substrate processing device of the first embodiment is an exposure device that applies exposure processing to a substrate, and the exposure device is incorporated in a component manufacturing system that applies various processing to the exposed substrate to manufacture components. First, the component manufacturing system will be explained.
<元件製造系統> <Component Manufacturing System>
圖1係顯示第1實施形態之元件製造系統之構成的圖。圖1所示之元件製造系統1,係製造作為元件之可撓性顯示器之生產線(可撓性顯示器生產線)。作為可撓性顯示器,例如有有機EL顯示器等。此元件製造系統1,係從將可撓性基板P捲繞成捲筒狀之供應用捲筒FR1送出該基板P,並對送出之基板P連續的施以各種處理後,將處理後之基板P作為可撓性元件捲繞於回收用捲筒FR2、所謂之捲 對捲(Roll to Roll)方式。第1實施形態之元件製造系統1,係顯示將成薄膜狀片材之基板P從供應用捲筒FR1送出,從供應用捲筒FR1送出之基板P,依序經n台之處理裝置U1、U2、U3、U4、U5、...Un,捲繞至回收用捲筒FR2為止之例。首先,針對作為元件製造系統1之處理對象的基板P加以說明。 Fig. 1 is a diagram showing the configuration of the component manufacturing system of the first embodiment. The
基板P,例如係使用由樹脂薄膜、不鏽鋼等之金屬或合金構成之箔(foil)等。作為樹脂薄膜之材質,例如包含聚乙烯樹脂、聚丙烯樹脂、聚酯樹脂、乙烯乙烯共聚物樹脂、聚氯乙烯樹脂、纖維素樹酯、聚醯胺樹脂、聚醯亞胺樹脂、聚碳酸酯樹脂、聚苯乙烯樹脂、乙酸乙烯酯樹脂中之1或2種以上。 For the substrate P, for example, a foil made of metal or alloy such as a resin film, stainless steel, or the like is used. The material of the resin film includes, for example, polyethylene resin, polypropylene resin, polyester resin, ethylene ethylene copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, and polycarbonate resin. , Polystyrene resin, vinyl acetate resin, one or more than two kinds.
基板P,以選擇例如熱膨脹係數顯著較大、而能在對基板P實施之各種處理中因受熱而產生之變形量可實質忽視者較佳。熱膨脹係數,例如,可藉由將無機填充物混入樹脂薄膜中,據以設定為較對應製程溫度等之閾值小。無機填充物,可以是例如,氧化鈦、氧化鋅、氧化鋁、氧化矽等。又,基板P可以是以浮製法等製造之厚度100μm程度之極薄玻璃之單層體、或於此極薄玻璃貼合上述樹脂薄膜、箔等之積層體。 For the substrate P, it is better to select, for example, the coefficient of thermal expansion is significantly larger, and the amount of deformation that can be generated by heat during various processes performed on the substrate P can be substantially ignored. The coefficient of thermal expansion, for example, can be set to be smaller than the threshold of the corresponding process temperature by mixing inorganic fillers into the resin film. The inorganic filler may be, for example, titanium oxide, zinc oxide, aluminum oxide, silicon oxide, and the like. In addition, the substrate P may be a single layer of ultra-thin glass with a thickness of about 100 μm manufactured by a float method or the like, or a laminate of the above-mentioned resin film, foil, etc., bonded to this ultra-thin glass.
以此方式構成之基板P,被捲繞成捲筒狀而成為供應用捲筒FR1,此供應用捲筒FR1被安裝於元件製造系統1。裝有供應用捲筒FR1之元件製造系統1,對從供應用捲筒FR1送出之基板P反覆實施用以製造1個元件之各種處理。因此,處理後之基板P成為複數個元件連結之狀態。也就是說,從供應用捲筒FR1送出之基板P,為擷取多面用之基板。此外,基板P亦可以是藉由預先之既定前處理,將其表面予以改質而活性化者、或以刻印法等於表面形成用以精密圖案化之微細間隔壁構造(凹凸構造)者。 The substrate P configured in this manner is wound into a roll shape to become a supply roll FR1, and this supply roll FR1 is installed in the
處理後之基板P,被捲繞成捲筒狀作為回收用捲筒FR2加以回收。回收用捲筒FR2,被安裝於未圖示之切割裝置。裝有回收用捲筒FR2之切割裝置,將處理後之基板P分割(切割)成各個元件,據以成複數個元件。基板P 之尺寸,例如,寬度方向(短邊之方向)之尺寸為10cm~2m程度、而長度方向(長條之方向)尺寸則為10m以上。當然,基板P之尺寸不限於上述尺寸。 The processed substrate P is wound into a roll shape to be recovered as a recovery roll FR2. The recycling roll FR2 is installed in a cutting device not shown. A cutting device equipped with a reel FR2 for recovery, divides (cuts) the processed substrate P into individual components, and then forms multiple components. The size of the substrate P, for example, the size in the width direction (the direction of the short side) is about 10 cm to 2 m, and the size in the length direction (the direction of the long strip) is more than 10 m. Of course, the size of the substrate P is not limited to the above-mentioned size.
圖1中,X方向、Y方向及Z方向成一正交之正交座標系。X方向係在水平面內連結供應用捲筒FR1及回收用捲筒FR2之方向,為圖1中之左右方向。Y方向係在水平面內與X方向正交之方向,為圖1中之前後方向。Y方向係供應用捲筒FR1及回收用捲筒FR2之軸方向。Z方向係鉛直方向,係圖1中之上下方向。 In Figure 1, the X direction, Y direction and Z direction form an orthogonal coordinate system. The X direction is the direction in which the supply roll FR1 and the recovery roll FR2 are connected in the horizontal plane, and is the left-right direction in FIG. 1. The Y direction is the direction orthogonal to the X direction in the horizontal plane, which is the front and back direction in Figure 1. The Y direction is the axial direction of the supply roll FR1 and the recovery roll FR2. The Z direction is the vertical direction, which is the up and down direction in Figure 1.
元件製造系統1,具備供應基板P之基板供應裝置2、對由基板供應裝置2供應之基板P施以各種處理之處理裝置U1~Un、回收經處理裝置U1~Un施以處理之基板P之基板回收裝置4、以及控制元件製造系統1之各裝置之上位控制裝置5。 The
於基板供應裝置2,以可旋轉之方式安裝供應用捲筒FR1。基板供應裝置2,具有從所安裝之供應用捲筒FR1送出基板P的驅動輥R1、與調整基板P在寬度方向(Y方向)之位置的邊緣位置控制器EPC1。驅動輥D1,一邊夾持基板P之表背兩面一邊旋轉,將基板P從供應用捲筒FR1往朝向回收用捲筒FR2之搬送方向送出,據以將基板P供應至處理裝置U1~Un。此時,邊緣位置控制器EPC1係以基板P在寬度方向端部(邊緣)之位置,相對目標位置在±十數μm至數十μm程度之範圍內之方式,使基板P移動於寬度方向,以修正基板P在寬度方向之位置。 On the
於基板回收裝置4,以可旋轉之方式裝有回收用捲筒FR2。基板回收裝置4,具有將處理後之基板P拉向回收用捲筒FR2側的驅動輥R2、與調整基板P在寬度方向(Y方向)之位置的邊緣位置控制器EPC2。基板回收裝置4,一邊以驅動輥R2夾持基板P之表背兩面一邊旋轉,將基板P拉向搬送方向,並藉由使回收用捲筒FR2旋轉,據以捲繞基板P。此時,邊緣位置控制器EPC2與邊緣 位置控制器EPC1同樣構成,修正基板P在寬度方向之位置,以避免基板P之寬度方向端部(邊緣)在寬度方向產生不均。 The
處理裝置U1,係在從基板供應裝置2供應之基板P表面塗布感光性機能液之塗布裝置。作為感光性機能液,例如係使用光阻劑、感光性矽烷耦合材(例如感光性親撥液性改質材、感光性鍍敷還原材等)、UV硬化樹脂液等。處理裝置U1,從基板P之搬送方向上游側起,依序設有塗布機構Gp1與乾燥機構Gp2。塗布機構Gp1,具有捲繞基板P之壓輥DR1、與和壓輥DR1對向之塗布輥DR2。塗布機構Gp1在將所供應之基板P捲繞於壓輥DR1之狀態下,以壓輥DR1及塗布輥DR2夾持基板P。接著,塗布機構Gp1藉由使壓輥DR1及塗布輥DR2旋轉,一邊使基板P移動於搬送方向、一邊以塗布輥DR2塗布感光性機能液。乾燥機構Gp2吹出熱風或乾燥空氣等之乾燥用空氣以除去感光性機能液中所含之溶質(溶劑或水),使塗有感光性機能液之基板P乾燥,以在基板P上形成感光性機能層。 The processing device U1 is a coating device that coats the surface of the substrate P supplied from the
處理裝置U2,係為了使形成在基板P表面之感光性機能層安定,而將從處理裝置U1搬送之基板P加熱至既定温度(例如,數10~120℃程度)之加熱裝置。處理裝置U2,從基板P之搬送方向上游側起依序設有加熱室HA1與冷卻室HA2。加熱室HA1,於其內部設有複數個輥及複數個空氣翻轉桿(air turn bar),複數個輥及複數個空氣翻轉桿構成基板P之搬送路徑。複數個輥以滾接於基板P背面之方式設置,複數個空氣翻轉桿以非接觸狀態設於基板P之表面側。複數個輥及複數個空氣翻轉桿為加長基板P之搬送路徑,而呈蛇行狀之搬送路徑。通過加熱室HA1內之基板P,一邊沿蛇行狀之搬送路徑被搬送、一邊被加熱至既定温度。冷卻室HA2,為使在加熱室HA1加熱之基板P之温度與後製程(處理裝置U3)之環境温度一致,而將基板P冷卻至環境温度。冷卻室HA2,其內部設有複數個輥,複數個輥,與加熱室HA1同樣的,為加長基板P之搬送路徑而呈 蛇行狀搬送路徑之配置。通過冷卻室HA2內之基板P,一邊沿蛇行狀之搬送路徑被搬送一邊被冷卻。於冷卻室HA2之搬送方向下游側設有驅動輥R3,驅動輥R3一邊夾持通過冷卻室HA2之基板P一邊旋轉,據以將基板P供應向處理裝置U3。 The processing device U2 is a heating device that heats the substrate P conveyed from the processing device U1 to a predetermined temperature (for example, several 10 to 120°C) in order to stabilize the photosensitive functional layer formed on the surface of the substrate P. The processing device U2 is provided with a heating chamber HA1 and a cooling chamber HA2 in this order from the upstream side in the conveying direction of the substrate P. The heating chamber HA1 is provided with a plurality of rollers and a plurality of air turn bars (air turn bars), and the plurality of rollers and a plurality of air turn bars constitute a transport path of the substrate P. A plurality of rollers are arranged in a manner of rolling on the back surface of the substrate P, and a plurality of air inversion rods are arranged on the surface side of the substrate P in a non-contact state. A plurality of rollers and a plurality of air inverting rods lengthen the conveyance path of the substrate P, and present a meandering conveyance path. The substrate P in the heating chamber HA1 is heated to a predetermined temperature while being conveyed along a meandering conveying path. The cooling chamber HA2 cools the substrate P to the ambient temperature in order to make the temperature of the substrate P heated in the heating chamber HA1 consistent with the ambient temperature of the subsequent process (processing device U3). The cooling chamber HA2 is provided with a plurality of rollers inside, and the plurality of rollers, like the heating chamber HA1, are arranged in a meandering conveying path to lengthen the conveying path of the substrate P. The substrate P in the cooling chamber HA2 is cooled while being transported along the meandering transport path. A drive roller R3 is provided on the downstream side in the conveying direction of the cooling chamber HA2, and the drive roller R3 rotates while clamping the substrate P passing through the cooling chamber HA2, thereby supplying the substrate P to the processing device U3.
處理裝置(基板處理裝置)U3,係對從處理裝置U2供應、表面形成有感光性機能層之基板(感光基板)P,投影曝光顯示器用電路或配線等圖案之曝光裝置。詳細將留待後敘,處理裝置U3以照明光束照明反射型之光罩M,將藉由照明光束被光罩M反射所得之投影光束投影曝光於基板P。處理裝置U3,具有將從處理裝置U2供應之基板P送往搬送方向下游側的驅動輥R4、與調整基板P在寬度方向(Y方向)之位置的邊緣位置控制器EPC3。驅動輥R4藉由在夾持基板P之表背兩面之同時進行旋轉,將基板P送向搬送方向下游側,據以將基板P朝在曝光位置支承之旋轉捲筒DR5供應。邊緣位置控制器EPC3與邊緣位置控制器EPC1同樣構成,修正基板P在寬度方向之位置,以使在曝光位置之基板P之寬度方向成為目標位置。又,處理裝置U3具有在對曝光後基板P賦予鬆弛之狀態下,將基板P送往搬送方向下游側之2組驅動輥DR6、DR7。2組驅動輥DR6、DR7在基板P之搬送方向隔著既定間隔配置。驅動輥DR6夾持搬送之基板P之上游側旋轉、驅動輥DR7夾持搬送之基板P之下游側旋轉,據以將基板P供應向處理裝置U4。此時,由於基板P已被賦予鬆弛,因此能吸收在較驅動輥DR7位於搬送方向下游側所產生之搬送速度之變動,能切斷搬送速度之變動對基板P之曝光處理之影響。此外,於處理裝置U3內設有為進行光罩M之光罩圖案之一部分之像與基板P之相對位置對準(alignment)而檢測預先形成在基板P之對準標記等之對準顯微鏡AM1、AM2。 The processing device (substrate processing device) U3 is an exposure device for projecting and exposing patterns such as a circuit or wiring for a display to a substrate (photosensitive substrate) P supplied from the processing device U2 and having a photosensitive functional layer formed on the surface. The details will be described later. The processing device U3 illuminates the reflective mask M with an illuminating beam, and projects and exposes the substrate P to the substrate P by the projection beam reflected by the illuminating beam by the mask M. The processing device U3 has a drive roller R4 that sends the substrate P supplied from the processing device U2 to the downstream side in the conveying direction, and an edge position controller EPC3 that adjusts the position of the substrate P in the width direction (Y direction). The driving roller R4 rotates while clamping the front and back surfaces of the substrate P, and sends the substrate P to the downstream side in the conveying direction, thereby supplying the substrate P to the rotating reel DR5 supported at the exposure position. The edge position controller EPC3 has the same configuration as the edge position controller EPC1, and corrects the position of the substrate P in the width direction so that the width direction of the substrate P at the exposure position becomes the target position. In addition, the processing device U3 has two sets of drive rollers DR6 and DR7 that send the substrate P to the downstream side in the conveying direction while slackening the substrate P after exposure. The two sets of drive rollers DR6 and DR7 are separated in the conveying direction of the substrate P Follow the established interval configuration. The driving roller DR6 clamps and rotates the upstream side of the conveyed substrate P, and the driving roller DR7 rotates the downstream side of the conveyed substrate P clamped, thereby supplying the substrate P to the processing device U4. At this time, since the substrate P has been given slack, it can absorb the change in the conveying speed that occurs on the downstream side of the driving roller DR7 in the conveying direction, and can cut off the influence of the change in the conveying speed on the exposure processing of the substrate P. In addition, the processing device U3 is provided with an alignment microscope AM1 for aligning the image of a part of the mask pattern of the mask M with the substrate P and detecting the alignment marks and the like formed on the substrate P in advance. , AM2.
處理裝置U4,係對從處理裝置U3搬送而來之曝光後之基板P,進行濕式之顯影處理、無電電鍍處理等之濕式處理裝置。處理裝置U4,於其內部具有於鉛直方向(Z方向)階段化之3個處理槽BT1、BT2、BT3、與搬送基板P 之複數個輥。複數個輥係以基板P依序通過3個處理槽BT1、BT2、BT3內部之搬送路徑的方式配置。於處理槽BT3之搬送方向下游側設有驅動輥DR8,驅動輥DR8藉由一邊夾持通過處理槽BT3後之基板P一邊旋轉,據以將基板P供應向處理裝置U5。 The processing device U4 is a wet processing device that performs wet development processing and electroless plating processing on the exposed substrate P conveyed from the processing device U3. The processing device U4 has three processing tanks BT1, BT2, BT3 stepped in the vertical direction (Z direction), and a plurality of rollers for transporting the substrate P inside. The plurality of rollers are arranged such that the substrate P sequentially passes through the conveying path inside the three processing tanks BT1, BT2, and BT3. A driving roller DR8 is provided on the downstream side of the processing tank BT3 in the conveying direction. The driving roller DR8 rotates while clamping the substrate P after passing through the processing tank BT3, thereby supplying the substrate P to the processing device U5.
雖省略圖示,但處理裝置U5係使從處理裝置U4搬送而來之基板P乾燥的乾燥裝置。處理裝置U5,將在處理裝置U4濕式處理而附著於基板P之液滴除去,且調整基板P之水分含有量。由處理裝置U5加以乾燥之基板P,經由若干個處理裝置後被搬送至處理裝置Un。在以處理裝置Un加以處理後,基板P即被捲繞於基板回收裝置4之回收用捲筒FR2。 Although not shown, the processing device U5 is a drying device that dries the substrate P conveyed from the processing device U4. The processing device U5 removes the droplets attached to the substrate P by wet processing in the processing device U4, and adjusts the moisture content of the substrate P. The substrate P dried by the processing device U5 is transported to the processing device Un after passing through a plurality of processing devices. After being processed by the processing device Un, the substrate P is wound on the recovery reel FR2 of the
上位控制裝置5,統籌控制基板供應裝置2、基板回收裝置4及複數個處理裝置U1~Un。上位控制裝置5控制基板供應裝置2及基板回收裝置4,將基板P從基板供應裝置2搬送向基板回收裝置4。又,上位控制裝置5,與基板P之搬送同步,控制複數個處理裝置U1~Un,以實施對基板P之各種處理。 The
<曝光裝置(基板處理裝置)> <Exposure Device (Substrate Processing Device)>
其次,針對作為第1實施形態之處理裝置U3之曝光裝置(基板處理裝置)之構成,參照圖2至圖5加以說明。圖2係顯示第1實施形態之曝光裝置(基板處理裝置)之整體構成的圖。圖3係顯示圖2所示曝光裝置之照明區域及投影區域之配置的圖。圖4係顯示圖2所示之曝光裝置之照明光學系統及投影光學系統之構成的圖。圖5係顯示照射於光罩之照明光束及從光罩射出之投影光束之狀態的圖。圖6係示意顯示在圖4中之偏光分束器之照明光束及投影光束之行進方式的圖。以下將處理裝置U3稱為曝光裝置U3。 Next, the configuration of the exposure apparatus (substrate processing apparatus) as the processing apparatus U3 of the first embodiment will be described with reference to FIGS. 2 to 5. Fig. 2 is a diagram showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the first embodiment. FIG. 3 is a diagram showing the arrangement of the illumination area and the projection area of the exposure device shown in FIG. 2. 4 is a diagram showing the configuration of the illumination optical system and the projection optical system of the exposure device shown in FIG. 2. Fig. 5 is a diagram showing the state of the illumination beam irradiated on the mask and the projection beam emitted from the mask. FIG. 6 is a diagram schematically showing the traveling mode of the illumination beam and the projection beam of the polarization beam splitter in FIG. 4. Hereinafter, the processing device U3 is referred to as an exposure device U3.
圖2所示之曝光裝置U3係所謂的掃描曝光裝置,一邊將基板P往搬送方向(掃描方向)搬送、一邊將形成在圓筒狀光罩M之外周面之光罩圖案之像,投影曝光至基板P表面。又,圖2中係X方向、Y方向及Z方向正交之正交座 標系,與圖1為同樣之正交座標系。 The exposure device U3 shown in FIG. 2 is a so-called scanning exposure device, which conveys the substrate P in the conveying direction (scanning direction) while projecting and exposing the image of the mask pattern formed on the outer peripheral surface of the cylindrical mask M To the surface of the substrate P. In addition, Fig. 2 is an orthogonal coordinate system in which the X, Y, and Z directions are orthogonal, and is the same orthogonal coordinate system as in Fig. 1.
首先,說明用於曝光裝置U3之光罩M。光罩M係例如使用金屬製圓筒體之反射型光罩。光罩M係形成具有以延伸於Y方向之第1軸AX1為中心之曲率半徑Rm之外周面(圓周面)的圓筒體。光罩M之圓周面係形成有既定光罩圖案(圖案)之光罩面(圖案面)P1。光罩面P1,包含將光束以高效率反射於既定方向之高反射部、與於既定方向不反射光束或以低效率反射之反射抑制部。光罩圖案以高反射部及反射抑制部形成。因此,反射抑制部亦可吸收光,亦可透射,亦可往既定方向以外反射(例如散射)。此處之光罩M,能將反射抑制部以吸收光之材料或使光透射之材料構成。曝光裝置U3能使用以鋁或SUS等金屬之圓筒體作成之光罩作為上述構成之光罩M。因此,曝光裝置U3能使用廉價之光罩來進行曝光。 First, the photomask M used in the exposure device U3 will be described. The mask M is a reflection type mask using a metal cylindrical body, for example. The mask M is formed as a cylindrical body having an outer peripheral surface (circumferential surface) of a curvature radius Rm centered on the first axis AX1 extending in the Y direction. The circumferential surface of the mask M is a mask surface (pattern surface) P1 formed with a predetermined mask pattern (pattern). The mask surface P1 includes a high reflection part that reflects the light beam in a predetermined direction with high efficiency, and a reflection suppression part that does not reflect the light beam in the predetermined direction or reflects with low efficiency. The mask pattern is formed with a high reflection part and a reflection suppression part. Therefore, the reflection suppression part may absorb light, may transmit light, or may reflect (e.g., scatter) outside a predetermined direction. The mask M here can be made of a material that absorbs light or a material that transmits light. The exposure device U3 can use a photomask made of a cylindrical body of metal such as aluminum or SUS as the photomask M having the above configuration. Therefore, the exposure device U3 can use an inexpensive photomask for exposure.
此外,光罩M可以是形成有對應1個顯示元件之面板用圖案之全體或一部分、亦可以是形成有對應複數個顯示元件之面板用圖案。又,光罩M可以是在繞第1軸AX1之周方向反覆形成複數個面板用圖案、亦可以是小型的面板用圖案在與第1軸AX1平行之方向反覆形成複數個。再者,於光罩M,亦可以是形成有第1顯示元件之面板用圖案與和第1顯示元件尺寸等不同之第2顯示元件之面板用圖案。又,光罩M只要是具有以第1軸AX1為中心之曲率半徑為Rm之圓周面即可,並不限定於圓筒體之形狀。例如,光罩M可以是具有圓周面之圓弧狀板材。此外,光罩M可以是薄板狀、亦可以是使薄板狀光罩M彎曲而具有圓周面。 In addition, the mask M may be formed with all or a part of the panel pattern corresponding to one display element, or may be formed with the panel pattern corresponding to a plurality of display elements. In addition, the mask M may have a plurality of panel patterns formed repeatedly in the circumferential direction around the first axis AX1, or a small panel pattern may be formed repeatedly in a direction parallel to the first axis AX1. In addition, the mask M may be a pattern for a panel on which the first display element is formed and a pattern for a second display element that is different in size from the first display element. In addition, the mask M is not limited to a cylindrical shape as long as it has a circumferential surface with a radius of curvature Rm centered on the first axis AX1. For example, the mask M may be an arc-shaped plate with a circumferential surface. In addition, the mask M may have a thin plate shape, or the thin plate-shaped mask M may be curved to have a circumferential surface.
其次,說明圖2所示之曝光裝置U3。曝光裝置U3,除上述驅動輥DR4、DR6、DR7、旋轉捲筒DR5、邊緣位置控制器EPC3及對準顯微鏡AM1、AM2之外,亦具有光罩保持機構11、基板支承機構12、照明光學系統IL、投影光學系統PL、以及下位控制裝置16。曝光裝置U3,藉由將從光源裝置13射出之 照明光透過照明光學系統IL及投影光學系統PL之一部分而照射於光罩保持機構11所支承之光罩M之圖案面P1,並將在光罩M之圖案面P1反射之投影光束(成像光)透過投影光學系統PL投射至以基板支承機構12支承之基板P。 Next, the exposure apparatus U3 shown in FIG. 2 will be explained. Exposure device U3, in addition to the above-mentioned drive rollers DR4, DR6, DR7, rotating reel DR5, edge position controller EPC3, and alignment microscopes AM1, AM2, also has a
下位控制裝置16控制曝光裝置U3之各部,使各部實施處理。下位控制裝置16可以是元件製造系統1之上位控制裝置5之一部分或全部。又,下位控制裝置16亦可以是受上位控制裝置5控制、與上位控制裝置5不同之另一裝置。下位控制裝置16,例如包含電腦。 The
光罩保持機構11,具有保持光罩M之圓筒滾筒(亦稱為光罩保持圓筒)21、與使圓筒滾筒21旋轉之第1驅動部22。圓筒滾筒21將光罩M保持成以光罩M之第1軸AX1為旋轉中心。第1驅動部22連接於下位控制裝置16,以第1軸AX1為旋轉中心使圓筒滾筒21旋轉。 The
此外,光罩保持機構11之圓筒滾筒21雖係於其外周面以高反射部與低反射部直接形成光罩圖案,但不限於此構成。作為光罩保持機構11之圓筒滾筒21亦可順著其外周面將薄板狀之反射型光罩M捲繞保持。此外,作為光罩保持機構11之圓筒滾筒21,亦可將預先以半徑Rm彎曲成圓弧狀之板狀反射型光罩M可拆裝地保持於圓筒滾筒21之外周面。 In addition, although the
基板支承機構12,具有支承基板P之基板支承圓筒25(圖1中之旋轉圓筒DR5)、使基板支承圓筒25旋轉之第2驅動部26、一對空氣翻轉桿(air turn bar)ATB1、ATB2、以及一對導輥27、28。基板支承圓筒25係形成為具有以延伸於Y方向之第2軸AX2為中心之曲率半徑為Rp之外周面(圓周面)的圓筒形狀。此處,第1軸AX1與第2軸AX2彼此平行,並以通過第1軸AX1及第2軸AX2之面為中心面CL。基板支承圓筒25之圓周面之一部分為支承基板P之支承面P2。也就是說,基板支承圓筒25係藉由將基板P捲繞於其支承面P2,據以將基板P彎曲成圓筒面狀來支承。第2驅動部26連接於下位控制裝置16,以第2軸AX2為旋轉中心 使基板支承圓筒25旋轉。一對空氣翻轉桿ATB1、ATB2與一對導輥27、28隔著基板支承圓筒25,分別設在基板P之搬送方向上游側及下游側。導輥27將從驅動輥DR4搬送而來之基板P透過空氣翻轉桿ATB1導引至基板支承圓筒25,導輥28則將經由基板支承圓筒25從空氣翻轉桿ATB2搬送而來之基板P引導至驅動輥DR6。 The
基板支承機構12以第2驅動部26使基板支承圓筒25旋轉,據以將導入基板支承圓筒25之基板P一邊以基板支承圓筒25之支承面P2加以支承、一邊以既定速度往長條方向(X方向)搬送。 The
此時,連接於第1驅動部22及第2驅動部26之下位控制裝置16,使圓筒滾筒21與基板支承圓筒25以既定旋轉速度比同步旋轉,藉此將形成在光罩M之光罩面P1之光罩圖案之像,連續的反覆投影曝光於捲繞在基板支承圓筒25之支承面P2之基板P表面(順著圓周面彎曲之面)。曝光裝置U3、第1驅動部22及第2驅動部26為本實施形態之移動機構。 At this time, the
光源裝置13,射出照明於光罩M之照明光束EL1。光源裝置13具有光源31與導光構件32。光源31係射出既定波長之光的光源。光源31,係例如水銀燈等之燈光源、雷射二極體或發光二極體(LED)等。光源31所射出之照明光,例如係從燈光源射出之輝線(g線、h線、i線)、KrF準分子雷射光(波長248nm)等遠紫外光(DUV光)、ArF準分子雷射光(波長193nm)等。此處,光源31較佳為射出包含較i線(365nm之波長)短之波長的照明光束EL1。作為此種照明光束EL1,能使用從YAG雷射(第3諧波雷射)射出之雷射光(365nm之波長)、從YAG雷射(第4諧波雷射)射出之雷射光(266nm之波長)、或從KrF準分子雷射射出之雷射光(248nm之波長)等。 The
導光構件32將從光源31射出之照明光束EL1導至照明光學系統IL。導光構件32係以使用光纖、或反射鏡之中繼模組等構成。又,導光構件32,在照明光學系統IL設有複數個之情形時,係將來自光源31之照明光束EL1分離為 複數條後,將複數條照明光束EL1導向複數個照明光學系統IL。本實施形態之導光構件32,係使從光源31射出之照明光束EL1成為既定偏光狀態之光而射入偏光分束器PBS。偏光分束器PBS為了對光罩M進行落射照明而設於光罩M與投影光學系統PL之間,反射作為S偏光之直線偏光之光束,使作為P偏光之直線偏光之光束透射。因此,光源裝置13係射出射入偏光分束器PBS之照明光束EL1成為直線偏光(S偏光)之照明光束EL1。光源裝置13對偏光分束器PBS射出波長及相位一致之偏光雷射。例如,光源裝置13在從光源31射出之光束為偏光後之光的場合,係使用偏波面保存光纖作為導光構件32,維持從光源裝置13輸出之雷射光之偏光狀態來導光。又,例如亦可以光纖導引從光源31輸出之光束,以偏光板使從光纖輸出之光偏光。亦即,光源裝置13,在導引隨機偏光之光束時,亦可以偏光板使隨機偏光之光束偏光。又,光源裝置13亦可藉由使用透鏡等之中繼光學系統導引從光源31輸出之光束。 The
此處,如圖3所示,第1實施形態之曝光裝置U3,係假定所謂之多透鏡(multi lens)方式之曝光裝置。又,圖3中,顯示了從-Z側觀察圓筒滾筒21所保持之光罩M上之照明區域IR的俯視圖(圖3中左側之圖)、與從+Z側觀察基板支承圓筒25所支承之基板P上之投影區域PA的俯視圖(圖3中右側之圖)。圖3之符號Xs,代表圓筒滾筒21及基板支承圓筒25之移動方向(旋轉方向)。多透鏡方式之曝光裝置U3,係於光罩M上之複數個(第1實施形態中,例如係6個)照明區域IR1~IR6分別照明照明光束EL1,將各照明光束EL1在各照明區域IR1~IR6反射所得之複數個投影光束EL2,投影曝光至基板P上複數個(第1實施形態中,例如係6個)投影區域PA1~PA6。 Here, as shown in FIG. 3, the exposure apparatus U3 of the first embodiment assumes a so-called multi-lens exposure apparatus. In addition, FIG. 3 shows a plan view of the illumination area IR on the mask M held by the
首先,說明以照明光學系統IL照明之複數個照明區域IR1~IR6。如圖3所示,複數個照明區域IR1~IR6係隔著中心面CL於旋轉方向上游側之光罩M上配置第1照明區域IR1、第3照明區域IR3及第5照明區域IR5,於旋轉方向下游 側之光罩M上配置第2照明區域IR2、第4照明區域IR4及第6照明區域IR6。各照明區域IR1~IR6係具有延伸於光罩M之軸方向(Y方向)之平行的短邊及長邊之細長梯形之區域。此時,梯形之各照明區域IR1~IR6係成一其短邊位於中心面CL側、其長邊位於外側之區域。第1照明區域IR1、第3照明區域IR3及第5照明區域IR5,於軸方向相隔既定間隔配置。又,第2照明區域IR2、第4照明區域IR4及第6照明區域IR6亦於軸方向相隔既定間隔配置。此時,第2照明區域IR2,於軸方向係配置在第1照明區域IR1與第3照明區域IR3之間。同樣的,第3照明區域IR3,於軸方向係配置在第2照明區域IR2與第4照明區域IR4之間。第4照明區域IR4,於軸方向配置在第3照明區域IR3與第5照明區域IR5之間。第5照明區域IR5,於軸方向配置在第4照明區域IR4與第6照明區域IR6之間。各照明區域IR1~IR6,從光罩M之周方向(X方向)看,係以相鄰梯形照明區域之斜邊部之三角部重疊(overlap)之方式配置。又,第1實施形態中,各照明區域IR1~IR6雖係作成梯形區域,但亦可以是作成長方形區域。 First, a plurality of illumination areas IR1 to IR6 illuminated by the illumination optical system IL will be described. As shown in Fig. 3, a plurality of illumination areas IR1 to IR6 are arranged on the mask M on the upstream side in the rotation direction with the center plane CL interposed between the first illumination area IR1, the third illumination area IR3, and the fifth illumination area IR5. The second illumination area IR2, the fourth illumination area IR4, and the sixth illumination area IR6 are arranged on the mask M on the downstream side in the direction. Each of the illumination areas IR1 to IR6 is an area having a slender trapezoid with parallel short sides and long sides extending in the axial direction (Y direction) of the mask M. At this time, each illumination area IR1~IR6 of the trapezoid forms an area whose short side is on the side of the central plane CL and its long side is on the outside. The first illumination area IR1, the third illumination area IR3, and the fifth illumination area IR5 are arranged at predetermined intervals in the axial direction. In addition, the second illumination area IR2, the fourth illumination area IR4, and the sixth illumination area IR6 are also arranged at a predetermined interval in the axial direction. At this time, the second illumination area IR2 is arranged between the first illumination area IR1 and the third illumination area IR3 in the axial direction. Similarly, the third illumination area IR3 is arranged between the second illumination area IR2 and the fourth illumination area IR4 in the axial direction. The fourth illumination area IR4 is arranged between the third illumination area IR3 and the fifth illumination area IR5 in the axial direction. The fifth illumination area IR5 is arranged between the fourth illumination area IR4 and the sixth illumination area IR6 in the axial direction. The illumination areas IR1 to IR6, viewed from the circumferential direction (X direction) of the mask M, are arranged in such a way that the triangles of the hypotenuses of adjacent trapezoidal illumination areas overlap. In addition, in the first embodiment, although the illumination areas IR1 to IR6 are formed as trapezoidal areas, they may be formed as rectangular areas.
又,光罩M,具有形成有光罩圖案之圖案形成區域A3、與沒有形成光罩圖案之圖案非形成區域A4。圖案非形成區域A4係吸收照明光束EL1之不易反射區域,配置成以框狀圍繞圖案形成區域A3。第1~第6照明區域IR1~IR6係配置成能涵蓋圖案形成區域A3之Y方向全寬。 In addition, the mask M has a pattern formation area A3 in which a mask pattern is formed, and a pattern non-formation area A4 in which a mask pattern is not formed. The pattern non-formation area A4 is a non-reflection area that absorbs the illumination light beam EL1, and is arranged to surround the pattern formation area A3 in a frame shape. The first to sixth illumination areas IR1 to IR6 are arranged to cover the full width of the pattern formation area A3 in the Y direction.
照明光學系統IL係對應複數個照明區域IR1~IR6設有複數個(第1實施形態中,例如係6個)。於複數個照明光學系統(分割罩明光學系統)IL1~IL6,分別射入來自光源裝置13之照明光束EL1。各照明光學系統IL1~IL6,將從光源裝置13射入之各照明光束EL1分別導至各照明區域IR1~IR6。也就是說,第1照明光學系統IL1將照明光束EL1導至第1照明區域IR1,同樣的,第2~第6照明光學系統IL2~IL6將照明光束EL1導至第2~第6照明區域IR2~IR6。複數個照明光學系統IL1~IL6,隔著中心面CL在配置第1、第3、第5照明區域IR1、IR3、 IR5之側(圖2之左側),配置第1照明光學系統IL1、第3照明光學系統IL3及第5照明光學系統IL5。第1照明光學系統IL1、第3照明光學系統IL3及第5照明光學系統IL5於Y方向相隔既定間隔配置。又,複數個照明光學系統IL1~IL6,隔著中心面CL在配置第2、第4、第6照明區域IR2、IR4、IR6之側(圖2之右側),配置第2照明光學系統IL2、第4照明光學系統IL4及第6照明光學系統IL6。第2照明光學系統IL2、第4照明光學系統IL4及第6照明光學系統IL6於Y方向相隔既定間隔配置。此時,第2照明光學系統IL2,係於軸方向配置在第1照明光學系統IL1與第3照明光學系統IL3之間。同樣的,第3照明光學系統IL3、第4照明光學系統IL4、第5明光學系統IL5,於軸方向配置在第2照明光學系統IL2與第4照明光學系統IL4之間、第3照明光學系統IL3與第5照明光學系統IL5之間、第4照明光學系統IL4與第6照明光學系統IL6之間。此外,第1照明光學系統IL1、第3照明光學系統IL3及第5照明光學系統IL5與第2照明光學系統IL2、第4照明光學系統IL4及第6照明光學系統IL6,從Y方向看係對稱配置。 The illumination optical system IL is provided with a plurality of illumination regions IR1 to IR6 (in the first embodiment, for example, there are 6). The illumination light beam EL1 from the
其次,參照圖4說明各照明光學系統IL1~IL6。又,由於各照明光學系統IL1~IL6皆係同樣構成,因此以第1照明光學系統IL1(以下,僅稱為照明光學系統IL)為例進行說明。 Next, each illumination optical system IL1 to IL6 will be described with reference to FIG. 4. In addition, since each of the illumination optical systems IL1 to IL6 has the same configuration, the first illumination optical system IL1 (hereinafter, simply referred to as the illumination optical system IL) will be described as an example.
照明光學系統IL,為了以均一照度照明照明區域IR(第1照明區域IR1),係適用將來自光源裝置13之照明光束EL1柯勒照明於光罩M上之照明區域IR。又,照明光學系統IL係使用偏光分束器PBS之落射照明系。照明光學系統IL,從來自光源裝置13之照明光束EL1之射入側起,依序具有照明光學模組ILM、偏光分束器PBS、及1/4波長板41。 In order to illuminate the illumination area IR (first illumination area IR1) with uniform illuminance, the illumination optical system IL is adapted to illuminate the illumination area IR on the mask M with the illumination beam EL1 Koehler from the
如圖4所示,照明光學模組ILM,從照明光束EL1之射入側起,依序包含準直透鏡51、複眼透鏡52、複數個聚光透鏡53、柱面透鏡54、照明視野光闌55、及複數個中繼透鏡56,係設在第1光軸BX1上。 As shown in Fig. 4, the illumination optical module ILM includes a
準直透鏡51使從導光構件32射出之光射入,照射設在複眼透鏡52之射入側之面全體。 The
複眼透鏡52設在準直透鏡51之射出側。複眼透鏡52之射出側之面之中心配置在第1光軸BX1上。複眼透鏡52,將來自準直透鏡51之照明光束EL1以多數個點光源像分割而生成面光源像。照明光束EL1從該面光源像生成。此時,生成點光源像之複眼透鏡52之射出側之面,藉由從複眼透鏡52透過照明視野光闌55至後述投影光學系統PL之第1凹面鏡72的各種透鏡,配置成與第1凹面鏡72之反射面所在之光瞳面光學上共軛。 The fly-
聚光透鏡53設在複眼透鏡52之射出側。聚光透鏡53之光軸配置在第1光軸BX1上。聚光透鏡53將來自形成於複眼透鏡52射出側之多數個點光源像之各個的光在照明視野光闌55上重疊,以均一照度分布照射照明視野光闌55。照明視野光闌55具有與圖3所示之照明區域IR相似之梯形或長方形之矩形開口部,該開口部中心配置於第1光軸BX1上。藉由設於照明視野光闌55至光罩M之光路中之中繼透鏡56、偏光分束器PBS、1/4波長板41,照明視野光闌55之開口部配置成與光罩M上之照明區域IR在光學上共軛之關係。中繼透鏡56使透射過照明視野光闌55之開口部之照明光束EL1射入偏光分束器PBS。於聚光透鏡53之射出側且為與照明視野光闌55相鄰之位置設有柱面透鏡54。柱面透鏡54係射入側為平面、射出側為凸面之平凸柱面透鏡。柱面透鏡54之光軸配置在第1光軸BX1上。柱面透鏡54係使照射光罩M上之照明區域IR之照明光束EL1之各主光線在XZ面內收斂,在Y方向成為平行狀態。 The
偏光分束器PBS,配置在照明光學模組ILM與中心面CL之間。偏光分束器PBS,在波面分割面反射作為S偏光之直線偏光之光束,使作為P偏光之直線偏光之光束透射。此處,若使射入偏光分束器PBS之照明光束EL1成為S偏光之直線偏光,則照明光束EL1係在偏光分束器PBS之波面分割面反射,透射1 /4波長板41成為圓偏光而照射光罩M上之照明區域IR。在光罩M上之照明區域IR反射之投影光束EL2,藉由再度通過1/4波長板41而從圓偏光轉換成直線P偏光,透射過偏光分束器PBS之波面分割面而射向投影光學系統PL。偏光分束器PBS,較佳為反射射入波面分割面之照明光束EL1之大部分且使投影光束EL2之大部分透射。在偏光分束器PBS之波面分割面之偏光分離特性雖以消光比表示,但由於該消光比亦會因射向波面分割面之光線之射入角而改變,因此波面分割面之特性係亦考量照明光束EL1或投影光束EL2之NA(數值孔徑)後而設計成對實用上之成像性能之影響不會成為問題。 The polarizing beam splitter PBS is arranged between the illumination optical module ILM and the center plane CL. The polarization beam splitter PBS reflects the linearly polarized light beam as S-polarized light on the wavefront splitting surface, and transmits the linearly polarized light beam as P-polarized light. Here, if the illumination light beam EL1 incident on the polarizing beam splitter PBS is made to be linearly polarized light of S polarization, the illumination light beam EL1 is reflected on the wave surface division surface of the polarization beam splitter PBS, and transmitted through the 1/4
圖5係將照射於光罩M上之照明區域IR之照明光束EL1與在照明區域IR反射之投影光束EL2之狀態在XZ面(與第1軸AX1垂直之面)內誇張顯示的圖。如圖5所示,上述之照明光學系統IL,係以在光罩M之照明區域IR反射之投影光束EL2之主光線成為遠心(平行系)之方式,使照射於光罩M之照明區域IR之照明光束EL1之主光線在XZ面(與軸AX1垂直之面)內意圖地成為非遠心狀態,在YZ面(與中心面CL平行)內成為遠心狀態。照明光束EL1之此種特性,係藉由圖4中所示之柱面透鏡54被賦予。具體而言,在設定有通過光罩面P1上之照明區域IR之周方向中央之點Q1而朝向第1軸AX1之線與光罩面P1之半徑Rm之1/2之圓的交點Q2時,係將柱面透鏡54之凸圓筒透鏡面之曲率設定成通過照明區域IR之照明光束EL1之各主光線在XZ面射向交點Q2。如此,在照明區域IR內反射之投影光束EL2之各主光線,在XZ面內成為與通過第1軸AX1、點Q1、交點Q2之直線平行(遠心)的狀態。 5 is an exaggerated display of the state of the illumination light beam EL1 irradiated on the illumination area IR on the mask M and the projection light beam EL2 reflected in the illumination area IR in the XZ plane (plane perpendicular to the first axis AX1). As shown in FIG. 5, the above-mentioned illumination optical system IL irradiates the illumination area IR of the mask M so that the chief ray of the projection beam EL2 reflected in the illumination area IR of the mask M becomes telecentric (parallel system) The chief ray of the illumination beam EL1 intentionally becomes a non-telecentric state in the XZ plane (a plane perpendicular to the axis AX1), and becomes a telecentric state in the YZ plane (parallel to the center plane CL). Such characteristics of the illumination light beam EL1 are given by the
其次,說明以投影光學系統PL投影曝光之複數個投影區域PA1~PA6。如圖3所示,基板P上之複數個投影區域PA1~PA6係與光罩M上之複數個照明區域IR1~IR6對應配置。也就是說,基板P上之複數個投影區域PA1~PA6係於搬送方向上游側之基板P上配置第1投影區域PA1、第3投影區域PA3及第5投 影區域PA5,於搬送方向下游側之基板P上配置第2投影區域PA2、第4投影區域PA4及第6投影區域PA6。各投影區域PA1~PA6係具有延伸於基板P之寬度方向(Y方向)之短邊及長邊的細長梯形區域。此時,梯形之各投影區域PA1~PA6係其短邊位於中心面CL側、其長邊位於外側之區域。第1投影區域PA1、第3投影區域PA3及第5投影區域PA5於寬度方向相隔既定間隔配置。又,第2投影區域PA2、第4投影區域PA4及第6投影區域PA6亦於寬度方向相隔既定間隔配置。此時,第2投影區域PA2,於軸方向係配置在第1投影區域PA1與第3投影區域PA3之間。同樣的,第3投影區域PA3,於軸方向配置在第2投影區域PA2與第4投影區域PA4之間。第4投影區域PA4於軸方向配置在第3投影區域PA3與第5投影區域PA5之間。第5投影區域PA5於軸方向配置在第4投影區域PA4與第6投影區域PA6之間。各投影區域PA1~PA6,與各照明區域IR1~IR6同樣的,從基板P之搬送方向看,係以於Y方向相鄰之梯形投影區域PA之斜邊部之三角部重疊(overlap)之方式配置。此時,投影區域PA,係在相鄰投影區域PA之重複區域之曝光量與在不重複區域之曝光量成為實質相同的形狀。而第1~第6投影區域PA1~PA6係被配置成能涵蓋曝光至基板P上之曝光區域A7之Y方向全寬。 Next, a plurality of projection areas PA1 to PA6 projected and exposed by the projection optical system PL will be described. As shown in FIG. 3, the plurality of projection areas PA1 to PA6 on the substrate P are arranged corresponding to the plurality of illumination areas IR1 to IR6 on the mask M. In other words, the plurality of projection areas PA1 to PA6 on the substrate P are arranged on the substrate P on the upstream side in the conveying direction. The first projection area PA1, the third projection area PA3, and the fifth projection area PA5 are arranged on the downstream side in the conveying direction. The second projection area PA2, the fourth projection area PA4, and the sixth projection area PA6 are arranged on the substrate P. Each of the projection areas PA1 to PA6 has an elongated trapezoidal area extending in the short side and the long side in the width direction (Y direction) of the substrate P. At this time, each of the projection areas PA1 to PA6 of the trapezoid is an area whose short side is on the side of the center plane CL and its long side is on the outside. The first projection area PA1, the third projection area PA3, and the fifth projection area PA5 are arranged at predetermined intervals in the width direction. In addition, the second projection area PA2, the fourth projection area PA4, and the sixth projection area PA6 are also arranged at predetermined intervals in the width direction. At this time, the second projection area PA2 is arranged between the first projection area PA1 and the third projection area PA3 in the axial direction. Similarly, the third projection area PA3 is arranged between the second projection area PA2 and the fourth projection area PA4 in the axial direction. The fourth projection area PA4 is arranged between the third projection area PA3 and the fifth projection area PA5 in the axial direction. The fifth projection area PA5 is arranged between the fourth projection area PA4 and the sixth projection area PA6 in the axial direction. The projection areas PA1~PA6 are the same as the illumination areas IR1~IR6. Seen from the conveying direction of the substrate P, they are overlapped by the triangles of the hypotenuses of the trapezoidal projection areas PA adjacent in the Y direction. Configuration. At this time, the projection area PA has substantially the same shape as the exposure amount in the overlapping area of the adjacent projection area PA and the non-overlapping area. The first to sixth projection areas PA1 to PA6 are configured to cover the full width of the exposure area A7 exposed on the substrate P in the Y direction.
此處,圖2中,於XZ面內觀察時,從光罩M上之照明區域IR1(及IR3、IR5)中心點至照明區域IR2(及IR4、IR6)中心點之周長,係設定成從順著支承面P2之基板P上之投影區域PA1(及PA3、PA5)之中心點至第2投影區域PA2(及PA4、PA6)中心點之周長實質相等。 Here, in Figure 2, when viewed in the XZ plane, the perimeter from the center point of the illumination area IR1 (and IR3, IR5) on the mask M to the center point of the illumination area IR2 (and IR4, IR6) is set as The circumference from the center point of the projection area PA1 (and PA3, PA5) on the substrate P along the supporting surface P2 to the center point of the second projection area PA2 (and PA4, PA6) is substantially equal.
投影光學系統PL,係對應複數個投影區域PA1~PA6設有複數個(在第1實施形態中例如為六個)。於複數個投影光學系統(分割投影光學系統)PL1~PL6,從複數個照明區域IR1~IR6反射之複數個投影光束EL2分別射入。各投影光學系統PL1~PL6將被光罩M反射之各投影光束EL2分別導至各投影區域PA1~PA6。也就是說,第1投影光學系統PL1將來自第1照明區域IR1之投影光束 EL2導至第1投影區域PA1,同樣的,第2~第6投影光學系統PL2~PL6將來自第2~第6照明區域IR2~IR6之各投影光束EL2導至第2~第6投影區域PA2~PA6。複數個投影光學系統PL1~PL6係隔著中心面CL,於配置第1、第3、第5投影區域PA1、PA3、PA5之側(圖2之左側)配置第1投影光學系統PL1、第3投影光學系統PL3及第5投影光學系統PL5。第1投影光學系統PL1、第3投影光學系統PL3及第5投影光學系統PL5於Y方向相隔既定間隔配置。又,複數個投影光學系統PL1~PL6係隔著中心面CL,於配置第2、第4、第6投影區域PA2、PA4、PA6之側(圖2之右側)配置第2投影光學系統PL2、第4投影光學系統PL4及第6投影光學系統PL6。第2投影光學系統PL2、第4投影光學系統PL4及第6投影光學系統PL6於Y方向相隔既定間隔配置。此時,第2投影光學系統PL2,於軸方向配置在第1投影光學系統PL1與第3投影光學系統PL3之間。同樣的,第3投影光學系統PL3、第4投影光學系統PL4、第5投影光學系統PL5,於軸方向配置在第2投影光學系統PL2與第4投影光學系統PL4之間、第3投影光學系統PL3與第5投影光學系統PL5之間、第4投影光學系統PL4與第6投影光學系統PL6之間。又,第1投影光學系統PL1、第3投影光學系統PL3及第5投影光學系統PL5與第2投影光學系統PL2、第4投影光學系統PL4及第6投影光學系統PL6,從Y方向看係對稱配置。 The projection optical system PL is provided in plural (for example, six in the first embodiment) corresponding to the plural projection areas PA1 to PA6. In a plurality of projection optical systems (divided projection optical systems) PL1~PL6, a plurality of projection light beams EL2 reflected from a plurality of illumination areas IR1~IR6 are respectively incident. Each projection optical system PL1~PL6 guides each projection light beam EL2 reflected by the mask M to each projection area PA1~PA6, respectively. In other words, the first projection optical system PL1 guides the projection light beam EL2 from the first illumination area IR1 to the first projection area PA1. Similarly, the second to sixth projection optical systems PL2 to PL6 will come from the second to sixth Each projection light beam EL2 of the illumination area IR2~IR6 is guided to the second to sixth projection areas PA2~PA6. The plurality of projection optical systems PL1 to PL6 are arranged with the center plane CL interposed between the first, third, and fifth projection areas PA1, PA3, PA5 (left side in Fig. 2), and the first projection optical system PL1 and the third Projection optical system PL3 and fifth projection optical system PL5. The first projection optical system PL1, the third projection optical system PL3, and the fifth projection optical system PL5 are arranged at a predetermined interval in the Y direction. In addition, the plurality of projection optical systems PL1 to PL6 are interposed with the center plane CL, and the second projection optical system PL2 is arranged on the side where the second, fourth, and sixth projection areas PA2, PA4, and PA6 are arranged (the right side of FIG. 2). The fourth projection optical system PL4 and the sixth projection optical system PL6. The second projection optical system PL2, the fourth projection optical system PL4, and the sixth projection optical system PL6 are arranged at a predetermined interval in the Y direction. At this time, the second projection optical system PL2 is arranged between the first projection optical system PL1 and the third projection optical system PL3 in the axial direction. Similarly, the third projection optical system PL3, the fourth projection optical system PL4, and the fifth projection optical system PL5 are arranged in the axial direction between the second projection optical system PL2 and the fourth projection optical system PL4, and the third projection optical system Between PL3 and fifth projection optical system PL5, and between fourth projection optical system PL4 and sixth projection optical system PL6. In addition, the first projection optical system PL1, the third projection optical system PL3, and the fifth projection optical system PL5, the second projection optical system PL2, the fourth projection optical system PL4, and the sixth projection optical system PL6 are symmetrical when viewed from the Y direction. Configuration.
進一步的,參照圖4說明各投影光學系統PL1~PL6。又,由於各投影光學系統PL1~PL6係同樣構成,因此以第1投影光學系統PL1(以下,僅稱為投影光學系統PL)為例進行說明。 Further, each projection optical system PL1 to PL6 will be described with reference to FIG. 4. In addition, since each of the projection optical systems PL1 to PL6 has the same configuration, the first projection optical system PL1 (hereinafter, simply referred to as the projection optical system PL) will be described as an example.
投影光學系統PL,將在光罩M上之照明區域IR(第1照明區域IR1)之光罩圖案之像投影於基板P上之投影區域PA。投影光學系統PL,從來自光罩M之投影光束EL2之射入側起,依序具有上述1/4波長板41、上述偏光分束器PBS、及投影光學模組PLM。 The projection optical system PL projects the image of the mask pattern in the illumination area IR (first illumination area IR1) on the mask M onto the projection area PA on the substrate P. The projection optical system PL includes the 1/4
1/4波長板41及偏光分束器PBS係與照明光學系統IL兼用。換言 之,照明光學系統IL及投影光學系統PL共有1/4波長板41及偏光分束器PBS。 The quarter-
如圖7所示,在照明區域IR(參照圖3)反射之投影光束EL2成為各主光線彼此平行之遠心光束,射入圖2所示之投影光學系統PL。於照明區域IR反射之圓偏光之投影光束EL2,被1/4波長板41從圓偏光轉換為直線偏光(P偏光)後,射入偏光分束器PBS。射入偏光分束器PBS之投影光束EL2在穿透偏光分束器PBS後,射入圖4所示投影光學模組PLM。 As shown in FIG. 7, the projection light beam EL2 reflected in the illumination area IR (refer to FIG. 3) becomes a telecentric light beam in which the principal rays are parallel to each other, and enters the projection optical system PL shown in FIG. The circularly polarized projection light beam EL2 reflected in the illumination area IR is converted from the circularly polarized light to the linearly polarized light (P polarized light) by the
作為一例,偏光分束器PBS係在XZ面內貼合三角形之兩個稜鏡(石英製),或藉由光學接觸件接觸保持而使整體成為矩形狀者。於其貼合面,為了有效率地進行偏光分離而形成包含氧化鉿等之多層膜。再者,來自光罩M之投影光束EL2射入之偏光分束器PBS之面與將該投影光束EL2往投影光學系統PL之第1偏向構件70之第1反射面P3射出之面,設定為相對投影光束EL2之主光線成垂直。再者,照明光束EL1所射入之偏光分束器PBS之面設定為與照明光學系統IL之第1光軸BX1(參照圖4)成垂直。此外,若擔心因使用接著劑而影響對紫外線或雷射光之耐性,偏光分束器PBS之貼合面係適用不使用接著劑之光學接觸件之接合。 As an example, the polarizing beam splitter PBS is one in which two triangular ridges (made of quartz) are attached in the XZ plane, or the whole is formed into a rectangular shape by being held in contact with an optical contact. On the bonding surface, a multilayer film containing hafnium oxide or the like is formed for efficient polarization separation. Furthermore, the surface of the polarization beam splitter PBS where the projection light beam EL2 from the mask M is incident and the surface where the projection light beam EL2 is projected toward the first reflection surface P3 of the
在照明區域IR反射之投影光束EL2成為遠心光束,射入投影光學系統PL。於照明區域IR反射之圓偏光之投影光束EL2,被1/4波長板41從圓偏光轉換為直線偏光(P偏光)後,射入偏光分束器PBS。射入偏光分束器PBS之投影光束EL2在穿透偏光分束器PBS後,射入投影光學模組PLM。 The projection light beam EL2 reflected in the illumination area IR becomes a telecentric light beam and enters the projection optical system PL. The circularly polarized projection light beam EL2 reflected in the illumination area IR is converted from the circularly polarized light to the linearly polarized light (P polarized light) by the
投影光學模組PLM與照明光學模組ILM對應設置。也就是說,第1投影光學系統PL1之投影光學模組PLM係將被第1照明光學系統IL1之照明光學模組ILM照明之第1照明區域IR1之光罩圖案之像投影於基板P上之第1投影區域PA1。同樣地,第2~第6投影光學系統PL2~PL6之投影光學模組PLM係將被第2~第6照明光學系統IL2~IL6之照明光學模組ILM照明之第2~第6照明區域IR2 ~IR6之光罩圖案之像投影於基板P上之第2~第6投影區域PA2~PA6。 The projection optical module PLM and the illumination optical module ILM are arranged correspondingly. That is, the projection optical module PLM of the first projection optical system PL1 projects the image of the mask pattern of the first illumination region IR1 illuminated by the illumination optical module ILM of the first illumination optical system IL1 on the substrate P The first projection area PA1. Similarly, the projection optical modules PLM of the second to sixth projection optical systems PL2 to PL6 will be illuminated by the second to sixth illumination areas IR2 of the second to sixth illumination optical systems IL2 to IL6. The image of the mask pattern of ~IR6 is projected on the second to sixth projection areas PA2 to PA6 on the substrate P.
如圖4所示,投影光學模組PLM,具備於中間像面P7成像出照明區域IR之光罩圖案之像的第1光學系統61、將第1光學系統61所成像之中間像之至少一部分再成像於基板P之投影區域PA的第2光學系統62、以及配置在形成中間像之中間像面P7的投影視野光闌63。此外,投影光學模組PLM,具備聚焦修正光學構件64、像偏移用光學構件65、倍率修正用光學構件66、旋轉(rotation)修正機構67、及偏光調整機構68。 As shown in FIG. 4, the projection optical module PLM is provided with a first
第1光學系統61及第2光學系統62係例如將戴森(Dyson)系加以變形之遠心的反射折射光學系統。第1光學系統61,其光軸(以下,稱第2光軸BX2)相對中心面CL實質正交。第1光學系統61具備第1偏向構件70、第1透鏡群71與第1凹面鏡72。第1偏向構件70係具有第1反射面P3與第2反射面P4之三角稜鏡。第1反射面P3係使來自偏光分束器PBS之投影光束EL2反射,使反射之投影光束EL2通過第1透鏡群71而射入第1凹面鏡72的面。第2反射面P4係使在第1凹面鏡72反射之投影光束EL2通過第1透鏡群71,並將射入之投影光束EL2往投影視野光闌63反射的面。第1透鏡群71包含各種透鏡,各種透鏡之光軸配置於第2光軸BX2上。第1凹面鏡72配置於第1光學系統61之光瞳面,設定成與藉由複眼透鏡52生成之多數個點光源像光學上共軛的關係。 The first
來自偏光分束器PBS之投影光束EL2在第1偏向構件70之第1反射面P3反射,通過第1透鏡群71之上半部之視野區域而射入第1凹面鏡72。射入第1凹面鏡72之投影光束EL2在第1凹面鏡72反射,通過第1透鏡群71之下半部之視野區域而射入第1偏向構件70之第2反射面P4。射入第2反射面P4之投影光束EL2在第2反射面P4反射,通過聚焦修正光學構件64及像偏移用光學構件65而射入投影視野光闌63。 The projection light beam EL2 from the polarization beam splitter PBS is reflected on the first reflection surface P3 of the
投影視野光闌63具有規定投影區域PA之形狀的開口。亦即,投 影視野光闌63之開口形狀規定投影區域PA之形狀。因此,在將照明光學系統IL內之照明視野光闌55之開口形狀設為與投影區域PA之實質形狀相似之梯形時,能省略投影視野光闌63。 The
第2光學系統62係與第1光學系統61相同之構成,隔著中間像面P7與第1光學系統61對稱設置。第2光學系統62,其光軸(以下,稱第3光軸BX3)相對中心面CL實質正交,與第2光軸BX2成平行。第2光學系統62具備第2偏向構件80、第2透鏡群81與第2凹面鏡82。第2偏向構件80具有第3反射面P5與第4反射面P6。第3反射面P5係使來自投影視野光闌63之投影光束EL2反射,使反射之投影光束EL2通過第2透鏡群81而射入第2凹面鏡82的面。第4反射面P6係使在第2凹面鏡72反射之投影光束EL2通過第2透鏡群81,並將射入之投影光束EL2往投影區域PA反射的面。第2透鏡群81包含各種透鏡,各種透鏡之光軸配置於第3光軸BX3上。第2凹面鏡82配置於第2光學系統62之光瞳面,設定成與成像於第1凹面鏡72之多數個點光源像光學上共軛的關係。 The second
來自投影視野光闌63之投影光束EL2在第2偏向構件80之第3反射面P5反射,通過第2透鏡群81之上半部之視野區域而射入第2凹面鏡82。射入第2凹面鏡82之投影光束EL2在第2凹面鏡82反射,通過第2透鏡群81之下半部之視野區域而射入第2偏向構件80之第4反射面P6。射入第4反射面P6之投影光束EL2在第4反射面P6反射,通過倍率修正用光學構件66而射入投影區域PA。藉此,在照明區域IR之光罩圖案之像係以等倍(×1)投影於投影區域PA。 The projection light beam EL2 from the
聚焦修正光學構件64配置在第1偏向構件70與投影視野光闌63之間。聚焦修正光學構件64係調整投影於基板P上之光罩圖案像之聚焦狀態。聚焦修正光學構件64,例如係將2片楔形稜鏡顛倒(圖4中於X方向顛倒)重疊成整體為透明之平行平板。將此1對稜鏡在不改變彼此對向之面間之間隔的情形下滑向斜面方向,即能改變作為平行平板之厚度。據此,即能微調第1光學系統61之實 效光路長,對形成於中間像面P7及投影區域PA之光罩圖案像之對焦狀態進行微調。 The focus correction
像偏移用光學構件65配置在第1偏向構件70與投影視野光闌63之間。像偏移用光學構件65,可調整投影於基板P上之光罩圖案之像在像面內移動。像偏移用光學構件65由圖4之在XZ面內可傾斜之透明的平行平板玻璃、與圖4之在YZ面內可傾斜之透明的平行平板玻璃構成。藉由調整該2片平行平板玻璃之各傾斜量,即能使形成於中間像面P7及投影區域PA之光罩圖案之像於X方向及Y方向微幅偏移。 The image shift
倍率修正用光學構件66配置在第2偏向構件70與基板P之間。倍率修正用光學構件66,係以例如將凹透鏡、凸透鏡、凹透鏡之3片以既定間隔同軸配置,前後之凹透鏡固定、而之間之凸透鏡可於光軸(主光線)方向移動之方式構成。據此,形成於投影區域PA之光罩圖案之像,即能在維持遠心之成像狀態之同時,等向的微幅放大或縮小。又,構成倍率修正用光學構件66之3片透鏡群之光軸,在XZ面內係傾斜而與投影光束EL2之主光線平行。 The
旋轉修正機構67,例如係藉由致動器(圖示省略)使第1偏向構件70繞與Z軸平行(或垂直)之軸微幅旋轉者。此旋轉修正機構67藉由使第1偏向構件70旋轉,可使形成於中間像面P7之光罩圖案之像在該中間像面P7內微幅旋轉。 The
偏光調整機構68,係例如藉由致動器(圖示省略)使1/4波長板41繞與板面正交之軸旋轉,以調整偏光方向者。偏光調整機構68藉由使1/4波長板41旋轉,可調整投射於投影區域PA之投影光束EL2之照度。 The
在以此方式構成之投影光學系統PL中,來自光罩M之投影光束EL2從照明區域IR以遠心狀態(各主光線彼此平行之狀態)射出,通過1/4波長板41及偏光分束器PBS射入第1光學系統61。射入第1光學系統61之投影光束EL2, 於第1光學系統61之第1偏向構件70之第1反射面(平面鏡)P3反射,通過第1透鏡群71而在第1凹面鏡72反射。在第1凹面鏡72反射之投影光束EL2再次通過第1透鏡群71而在第1偏向構件70之第2反射面(平面鏡)P4反射,透射過聚焦修正光學構件64及像偏移用光學構件65而射入投影視野光闌63。通過投影視野光闌63之投影光束EL2,於第2光學系統62之第2偏向構件80之第3反射面(平面鏡)P5反射,通過第2透鏡群81而在第2凹面鏡82反射。在第2凹面鏡82反射之投影光束EL2再次通過第2透鏡群81而在第2偏向構件80之第4反射面(平面鏡)P6反射,射入倍率修正用光學構件66。從倍率修正用光學構件66射出之投影光束EL2,射入基板P上之投影區域PA,出現在照明區域IR內之光罩圖案之像以等倍(×1)被投影於投影區域PA。 In the projection optical system PL constructed in this way, the projection light beam EL2 from the mask M is emitted from the illumination area IR in a telecentric state (the state where the principal rays are parallel to each other), and passes through the quarter-
本實施形態中,第1偏向構件70之第2反射面(平面鏡)P4與第2偏向構件80之第3反射面(平面鏡)P5,雖係相對中心面CL(或光軸BX2、BX3)傾斜45°之面,但第1偏向構件70之第1反射面(平面鏡)P3與第2偏向構件80之第4反射面(平面鏡)P6,係設定為相對中心面CL(或光軸BX2、BX3)為45°以外之角度。第1偏向構件70之第1反射面P3之相對中心面CL(或光軸BX2)之角度α°(絕對值),當在圖5中設定為通過點Q1、交點Q2、第1軸AX1之直線與中心面CL所構成之角度為θ°時,係定為α°=45°+θ°/2的關係。同樣地,第2偏向構件80之第4反射面P6之相對中心面CL(或光軸BX2)之角度β°(絕對值),當設定為通過在基板支承圓筒25之外周面周方向之投影區域PA內之中心點之投影光束EL2之主光線與中心面CL在ZX面內之角度為ε°時,係定為β°=45°+ε°/2的關係。此外,角度ε雖會因投影光學系統PL之光罩M側、基板P側之構造上的尺寸、偏光分束器PBS等之尺寸、照明區域IR或投影區域PA之周方向尺寸等而不同,但此處係設定為10°~30°左右。 In this embodiment, the second reflecting surface (plane mirror) P4 of the
<光罩之圖案之投影像面與基板之曝光面之關係> <Relationship between the projection image surface of the mask pattern and the exposure surface of the substrate>
圖7係誇張顯示光罩M之圓筒狀圖案面P1之投影像面Sm與被支承成圓筒狀支承之基板P之曝光面Sp之關係的說明圖。其次,參照圖7說明第1實施形態之曝光裝置U3中之光罩之投影像面與基板之曝光面之關係。 FIG. 7 is an explanatory diagram that exaggerates the relationship between the projected image surface Sm of the cylindrical pattern surface P1 of the mask M and the exposure surface Sp of the substrate P supported in a cylindrical shape. Next, referring to FIG. 7, the relationship between the projection image surface of the photomask and the exposure surface of the substrate in the exposure apparatus U3 of the first embodiment will be described.
曝光裝置U3係藉由投影光學系統PL將投影光束EL2成像,而形成光罩M之圖案之投影像面Sm。投影像面Sm係光罩M之圖案被成像之位置,為作為最佳聚焦之位置。此外,亦可取代投影像面Sm而使用最佳聚焦以外之位置之面。例如亦可係在從最佳聚焦起分離一定距離之位置形成的面。此處,光罩M如前所述配置於曲率半徑Rm之曲面(在ZX平面為曲線)。由於將投影光學系統PL之投影倍率設為等倍,因此藉此,投影像面Sm亦可在投影區域PA之周方向尺寸即曝光寬度2A之範圍,可視為近似地以延伸於Y方向之中心線AX1’為中心之曲率半徑Rm之曲面的一部分。又,如前所述,由於基板P被圓筒形狀之基板支承圓筒25之支承面P2所保持,因此基板P之表面之曝光面Sp成為曲率半徑Rp之曲面(在ZX平面為曲線)之一部分。再者,投影像面Sm之曲率中心即中心線AX1’與基板支承圓筒25之中心軸AX2彼此平行,若其包含於與YZ面平行之面KS,則面KS位於曝光寬度2A之中點,進而成為包含半徑Rm之投影像面Sm與半徑Rp之曝光面Sp接觸之延伸於Y方向之接線Cp。此外,為了說明,曝光面Sp之半徑Rp與投影像面Sm之半徑Rm設定為Rp>Rm之關係。 The exposure device U3 uses the projection optical system PL to image the projection light beam EL2 to form the projection image surface Sm of the pattern of the mask M. The projection image surface Sm is the position where the pattern of the mask M is imaged, and is the position of the best focus. In addition, instead of the projection image surface Sm, a surface other than the best focus position may be used. For example, it may be a surface formed at a position separated by a certain distance from the best focus. Here, the mask M is arranged on the curved surface of the radius of curvature Rm (curved in the ZX plane) as described above. Since the projection magnification of the projection optical system PL is set to the same magnification, the projection image surface Sm can also be in the circumferential direction of the projection area PA, that is, the range of the exposure width 2A, which can be regarded as extending approximately in the center of the Y direction The line AX1' is a part of the curved surface with the radius of curvature Rm at the center. Also, as described above, since the substrate P is held by the support surface P2 of the cylindrical
此處,保持光罩M之圓筒滾筒21,係藉由第1驅動部22而以角速度ωm旋轉,支承基板P(曝光面Sp)之基板支承圓筒25則藉由第2驅動部26而以角速度ωp旋轉。又,將與面KS正交且包含投影像面Sm與曝光面Sp之接線Cp的面設為基準面HP。此基準面HP與XY面平行,假定為基準面HP以假想之移動速度V(等速)移動於X方向。該移動速度V與投影像面Sm及曝光面Sp之周方向之移動速度(周速度)一致。本實施形態之曝光區域(投影區域PA),係在平行於基準面HP之方向中以該投影像面Sm與曝光面Sp之接線Cp為中心成為寬度2A的寬度。亦 即,曝光區域(投影區域PA),係包含在基準面HP之移動方向中從投影像面Sm與曝光面Sp之接線Cp起往+X方向與-X方向之各個移動距離A後之位置為止的區域。 Here, the
投影像面Sm由於係以角速度ωm在曲率半徑Rm之面上旋轉,因此存在於接線Cp上之投影像面Sm上之特定點在經過時間t後係旋轉θm=ωm‧t。因此,該特定點,若在基準面HP上觀察,係位於往+X方向移動Xm=Rm‧sin(θm)後的點Cp1。另一方面,若存在於接線Cp上之上述特定點沿著基準面HP以移動速度V直線移動,則該特定點,在經過時間t後,係位於往+X方向移動V‧t後的點Cp0。因此,接線Cp上之特定點在經過時間t後沿著投影像面Sm已移動時之X方向之移動量與沿著基準面HP已直線移動時之X方向之移動量的偏移量△1,為△1=V‧t-Xm=V‧t-Rm‧sin(θm)。 Since the projection image surface Sm rotates on the surface of the curvature radius Rm at the angular velocity ωm, the specific point on the projection image surface Sm existing on the connection line Cp is rotated after the time t is θm=ωm•t. Therefore, if the specific point is viewed on the reference plane HP, it is located at the point Cp1 after moving Xm=Rm‧sin(θm) in the +X direction. On the other hand, if the above-mentioned specific point on the connection line Cp moves linearly along the reference plane HP at the moving speed V, then the specific point is located at the point after moving V‧t in the +X direction after the time t has passed Cp0. Therefore, the shift amount of the movement amount in the X direction when the specific point on the line Cp has moved along the projection image plane Sm after the elapse of time t and the amount of movement in the X direction when the reference plane HP has moved linearly is △1 , Is △1=V‧t-Xm=V‧t-Rm‧sin(θm).
同樣地,曝光面Sp由於係以角速度ωp在曲率半徑Rp之面上旋轉,因此存在於接線Cp上之曝光面Sp上之特定點,若在基準面HP上觀察,於經過時間t後係旋轉θp=ωp‧t。因此,該曝光面Sp上之特定點,係位於往+X方向移動Xp=Rp‧sin(θp)後的點Cp2。因此,接線Cp上之特定點在經過時間t後沿著曝光面Sp已移動時之X方向之移動量與沿著基準面HP已直線移動時之X方向之移動量的偏移量△2,為△2=V‧t-Xp=V‧t-Rp‧sin(θm)。上述偏移量△1、△2,亦稱為將圓筒面上之點射影於平面(基準面HP)時之射影誤差。如先前在圖5所說明,本實施形態中,在圖7所示之曝光寬度2A之投影區域PA內,光罩M之圖案之投影像以遠心狀態投影於曝光面Sp。亦即,在XZ面內,投影像面Sm上之各點沿著與面KS平行之線(與基準面HP垂直之線)射影於曝光面Sp上。因此,對應於基準面HP上之點Cp0之投影像面Sm上之點Cp1(位置Xm),在曝光面Sp上亦射影於相同之X方向之位置Xm,而在與對應於基準面HP上之點Cp0之曝光面Sp上之點Cp2之位置Xp之間差生偏移。此偏移之主要原因係投影像面Sm之半徑Rm與曝光 面Sp之半徑Rp相異之故。 Similarly, because the exposure surface Sp rotates on the surface of the curvature radius Rp at an angular velocity ωp, a specific point on the exposure surface Sp existing on the connection line Cp, if viewed on the reference plane HP, will rotate after time t θp=ωp‧t. Therefore, the specific point on the exposure surface Sp is located at the point Cp2 after moving Xp=Rp‧sin(θp) in the +X direction. Therefore, the shift amount Δ2 between the movement amount in the X direction when the specific point on the line Cp has moved along the exposure surface Sp after the time t has passed and the movement amount in the X direction when the reference plane HP has moved linearly, △2=V‧t-Xp=V‧t-Rp‧sin(θm). The above offset △1 and △2 are also called the projection error when projecting a point on the cylindrical surface onto the plane (reference plane HP). As previously explained in FIG. 5, in this embodiment, in the projection area PA of the exposure width 2A shown in FIG. 7, the projected image of the pattern of the mask M is projected on the exposure surface Sp in a telecentric state. That is, in the XZ plane, each point on the projection image plane Sm is projected on the exposure plane Sp along a line parallel to the plane KS (line perpendicular to the reference plane HP). Therefore, the point Cp1 (position Xm) on the projection image surface Sm corresponding to the point Cp0 on the reference plane HP is also projected on the exposure surface Sp at the same position Xm in the X direction, and on the same X-direction position Xm corresponding to the reference plane HP The position Xp of the point Cp2 on the exposure surface Sp of the point Cp0 is offset. The main reason for this deviation is that the radius Rm of the projection image surface Sm is different from the radius Rp of the exposure surface Sp.
如上述,在半徑Rm與半徑Rp具有差異的場合,圖7中所示之投影像面Sm上之點Cp1之偏移量△1與曝光面Sp上之點Cp2之偏移量△2之差分量△(=△1-△2)係對應於曝光寬度2A內之X方向之位置而逐漸變化。因此,藉由將因投影像面Sm與曝光面Sp之半徑差(Rm/Rp)而產生之偏移之差分量△在曝光寬度2A內定量化(模擬),而能設定考量了投影曝光於基板P上之圖案之品質(投影像之質)後的最佳曝光條件。此外,差分量△亦稱為將圓筒狀之投影像面Sm轉印於圓筒狀之曝光面Sp上時之射影誤差。 As mentioned above, when the radius Rm and the radius Rp are different, the difference between the offset Δ1 of the point Cp1 on the projection image surface Sm and the offset Δ2 of the point Cp2 on the exposure surface Sp shown in Fig. 7 The component △(=△1-△2) changes gradually corresponding to the position in the X direction within the exposure width 2A. Therefore, by quantifying (simulating) the difference Δ of the offset caused by the radius difference (Rm/Rp) between the projection image surface Sm and the exposure surface Sp within the exposure width 2A, it can be set to take into account the projection exposure on the substrate The best exposure conditions after the quality of the pattern on P (the quality of the projected image). In addition, the difference Δ is also called the projection error when the cylindrical projection image surface Sm is transferred to the cylindrical exposure surface Sp.
圖8A,作為一例,係將投影像面Sm之半徑Rm設為125mm,將曝光面Sp之半徑Rp設為200mm,使投影像面Sm之周速度(設為Vm)與曝光面Sp之周速度(設為Vp)一致於移動速度V之狀態下,作為曝光寬度2A在±10mm之範圍內算出上述之偏移量△1、△2及差分量△之變化的圖表。圖8A中,橫軸表示以投影區域PA之中心(面KS通過之位置)為原點之基準面HP上之座標位置[mm],縱軸係表示偏移量△1、△2、差分量△[μm]。如圖8A所示,在投影像面Sm之周速度Vm與曝光面Sp之周速度Vp一致的場合,差分量△之絕對值係從投影像面Sm與曝光面Sp所接觸之接線Cp之位置(原點)起隨著往±X方向離開而逐漸變大。例如,為了忠實轉印最小線寬為數μm~10μm程度之圖案,而將差分量△之絕對值抑制於1μm之程度的場合,從圖8A之計算結果來看,投影區域PA之曝光寬度2A必須為±6mm(寬度為12mm)以下。 8A, as an example, the radius Rm of the projection image surface Sm is set to 125mm, and the radius Rp of the exposure surface Sp is set to 200mm, so that the peripheral speed of the projection image surface Sm (set to Vm) and the peripheral speed of the exposure surface Sp (Set as Vp) Under the condition that it is consistent with the moving speed V, as the exposure width 2A in the range of ±10mm, calculate the above-mentioned shift amount △1, △2 and the change of the difference component △. In FIG. 8A, the horizontal axis represents the coordinate position [mm] on the reference plane HP with the center of the projection area PA (the position through which the surface KS passes) as the origin, and the vertical axis represents the offset △1, △2, and the difference △[μm]. As shown in Fig. 8A, when the peripheral speed Vm of the projection image surface Sm is the same as the peripheral speed Vp of the exposure surface Sp, the absolute value of the difference component Δ is from the position of the line Cp between the projection image surface Sm and the exposure surface Sp (Origin) It gradually increases as it moves away from the ±X direction. For example, in order to faithfully transfer a pattern with a minimum line width of several μm to 10 μm, while suppressing the absolute value of the difference component △ to about 1 μm, from the calculation result of FIG. 8A, the exposure width 2A of the projection area PA must be It is ±6mm (width 12mm) or less.
此外,投影像面Sm之周速度Vm,若將保持於圓筒滾筒21之光罩M之圖案面之周速度設為Vf,則依據投影光學系統PL之投影倍率β,設定為Vm=β‧Vf之關係。例如,若投影倍率β為1.00(等倍),則光罩M之圖案面之周速度Vf與曝光面Sp之周速度Vp設定為相等,若投影倍率β為2.00(兩倍放大),則設定為2‧Vf=Vp。一般而言,如圖8A所示,由於投影像面Sm與曝光面Sp之各周速 度設定為Vm=Vp,因此係將保持光罩M之圓筒滾筒21與支承基板P之基板支承圓筒25之旋轉角速度精密地控制成β‧Vf=Vp之關係(基準之速度關係)。然而,嚐試對投影像面Sm之周速度Vm與曝光面Sp之周速度Vp賦予些許之差,將圖8A中之差分量△會如何變化如後述之圖8C般模擬後發現,藉由對周速度Vm與周速度Vp賦予些許之差,而能在將差分量△之絕對值抑制得較小之狀態下,放大能利用之曝光寬度2A。本實施形態中,在曝光面Sp之半徑Rp較投影像面Sm之半徑Rm大的條件下,使曝光面Sp之周速度Vp較投影像面Sm之周速度Vm相對降低。具體而言,係不改變曝光面Sp之周速度Vp而僅些許改變投影像面Sm(光罩M)側之旋轉角速度ωm以使投影像面Sm之周速度Vm較圖7所示之基準面HP之移動速度V高些許。將變更後之角速度設為ωm’,經過時間t後之投影像面Sm之旋轉角度設為θm’。試著使投影像面Sm之周速度Vm相對移動速度V高少許,並算出偏移量△1後,可知圖8A中之偏移量△1之圖表曲線變化成在原點0具有負之傾斜。 In addition, the peripheral speed Vm of the projected image surface Sm, if the peripheral speed of the pattern surface of the mask M held on the
因此,本實施形態中,係利用此種傾向,將投影像面Sm之周速度Vm(角速度ωm’)設定為在曝光寬度2A內之位置在隔著原點0之對稱兩處,差分量△成為0。圖8B係表示將投影像面Sm之周速度Vm變更後所得之差分量△、偏移量△1、△2之各計算結果的圖表,縱軸與橫軸之定義與圖8A相同。圖8B中,雖偏移量△2之圖表與圖8A中所示者相同,但偏移量△1之圖表,係將投影像面Sm之角速度ωm’(θm’)設定為在曝光寬度中之+5mm、-5mm之各位置及原點0中偏移量△1成為0。其結果,差分量△,在曝光寬度中之位置在±4mm之範圍內以負之傾斜變化,在其外側之範圍則以正傾斜變化,在曝光寬度中之原點0、+6.4mm、-6.4mm之各位置成為0。 Therefore, in this embodiment, using this tendency, the circumferential velocity Vm (angular velocity ωm') of the projection image surface Sm is set so that the position within the exposure width 2A is symmetrical with the
在作為差分量△能容許之範圍為例如±1μm程度時,雖在先前圖8A之條件下的曝光寬度為±6mm,但在圖8B之條件下的曝光寬度擴大至±8mm左右。此意味著能使投影區域PA之掃描曝光方向(周方向)之尺寸從12mm增大至 16mm(約增加33%),亦意味著只要曝光用照明光之照度為相同,則可在不使圖案轉印忠實度降低之狀態下,將基板P之搬送速度增快33%,而能提升生產性。又,能使投影區域PA之尺寸增大33%,亦意味著能使賦予基板P之曝光量對應地增加,能使曝光條件緩和。此外,曝光裝置U3能藉由一邊分別以高分解能力之旋轉編碼器測量保持光罩M之圓筒滾筒21之旋轉與支承基板P之基板支承圓筒25之旋轉、一邊進行伺服控制,來在使產生微小之旋轉速度之差的同時進行精度高之旋轉控制。 When the allowable range as the difference component Δ is, for example, about ±1 μm, although the exposure width under the conditions of FIG. 8A was ±6 mm, the exposure width under the conditions of FIG. 8B was expanded to approximately ±8 mm. This means that the size of the scanning exposure direction (circumferential direction) of the projection area PA can be increased from 12mm to 16mm (about 33% increase). It also means that as long as the illuminance of the exposure illumination light is the same, the pattern can be When the transfer fidelity is reduced, the transfer speed of the substrate P can be increased by 33%, and the productivity can be improved. In addition, being able to increase the size of the projection area PA by 33% also means that the amount of exposure given to the substrate P can be increased correspondingly, and the exposure conditions can be alleviated. In addition, the exposure device U3 can perform servo control while measuring the rotation of the
若將曝光面Sp之周速度Vp設為與基準面HP之移動速度V相等,使投影像面Sm之周速度Vm略高於基準面HP之移動速度V,則圖8A中所示之差分量△會如圖8C所示般變化。圖8C係顯示相較於圖8A中之僅差分量△之圖表,將投影像面Sm之周速度Vm相對於曝光面Sp之周速度Vp(=V)的變化率設為α〔=(Vm-Vp)/Vp〕%從±0%以各+0.01%改變時的傾向。圖8C中之α=±0%之差分量△之圖表,係與圖8A中之差分量△之圖表相同。在變化率α=±0%之場合係周速度Vm與周速度Vp一致之狀態,例如,在變化率α=+0.02%之場合則係周速度Vm較周速度Vp大0.02%之狀態。根據如此圖8C之計算,圖8B中,係在使投影像面Sm之周速度Vm相較於基準面HP之基準速度V(=Vp)增加約0.026%之狀態下進行了模擬。圖8C之模擬結果,係藉由將求出相較於投影像面Sm之基準面HP之偏移量△1之式中之Rm‧sin(θm)之θm置換為(1+α)‧θm,將變化率α改變為各種數值而取得。實際上,若將V‧t置換為表示曝光寬度之X方向之位置(mm)的A,則可藉由以下之式簡單求得。 If the peripheral speed Vp of the exposure surface Sp is set equal to the moving speed V of the reference surface HP, and the peripheral speed Vm of the projected image surface Sm is slightly higher than the moving speed V of the reference surface HP, the difference is shown in FIG. 8A △ will change as shown in Fig. 8C. Fig. 8C shows the graph of only the difference component △ in Fig. 8A, the change rate of the peripheral velocity Vm of the projection image surface Sm with respect to the peripheral velocity Vp(=V) of the exposure surface Sp is set to α〔=(Vm- The tendency when Vp)/Vp]% changes from ±0% by +0.01% each. The graph of the difference component △ of α=±0% in Fig. 8C is the same as the graph of the difference component △ in Fig. 8A. When the rate of change α=±0%, the peripheral speed Vm is consistent with the peripheral speed Vp. For example, when the rate of change α=+0.02%, the peripheral speed Vm is 0.02% larger than the peripheral speed Vp. According to the calculation in FIG. 8C, in FIG. 8B, the simulation was performed in a state where the circumferential velocity Vm of the projection image surface Sm was increased by about 0.026% compared to the reference velocity V (=Vp) of the reference surface HP. The simulation result of Fig. 8C is obtained by replacing the θm of Rm‧sin(θm) with (1+α)‧θm in the formula for obtaining the offset △1 of the reference plane HP compared to the projection image plane Sm , Change the rate of change α to various values to obtain. In fact, if V•t is replaced by A, which represents the position (mm) in the X direction of the exposure width, it can be easily obtained by the following formula.
△=△1-△2=(A-Rm‧sin〔(1+α)‧A/Rm〕)-△2 △=△1-△2=(A-Rm‧sin〔(1+α)‧A/Rm〕)-△2
如以上所述,在投影像面Sm之半徑Rm與曝光面Sp之半徑Rp不同的場合,藉由對投影像面Sm與曝光面Sp之各移動速度(周速度Vm、Vp)賦予些微之差,即能擴大掃描曝光時之各種曝光條件(光罩M之半徑、光感應層之感度、 基板P之進給速度、照明用之光源功率、投影區域PA之尺寸等)之設定範圍,而能得到一可彈性地對應製程變更等的曝光裝置。 As described above, when the radius Rm of the projection image surface Sm and the radius Rp of the exposure surface Sp are different, a slight difference is given to the respective moving speeds (peripheral speeds Vm, Vp) of the projection image surface Sm and the exposure surface Sp , Which can expand the setting range of various exposure conditions (the radius of the mask M, the sensitivity of the light sensing layer, the feed speed of the substrate P, the power of the light source for lighting, the size of the projection area PA, etc.) during scanning exposure, and An exposure device that can flexibly respond to process changes etc. is obtained.
其次,參照圖9說明在如圖8B所示藉由對投影像面Sm與曝光面Sp之各周速度Vm、Vp賦予些微之差之場合,在曝光面Sp上所得之圖案像之對比。圖9係於橫軸取將圖8A、7B中之原點0設為0mm之曝光寬度之位置(絕對值),於縱軸取將在原點0之值設為1.00(100%)之對比率,在投影像面Sm與曝光面Sp無周速度差之場合(圖8A)與有周速度差之場合(圖8B)計算與曝光寬度內之位置對應之對比率之變化的圖表。本實施形態中,將照明光束EL1(曝光用光)之波長λ設為365nm,將圖4所示之投影光學系統PL(PLM)之數值孔徑NA設為0.0875,將製程常數k設為0.6。在此條件下所得到之最大解像力Rs,由於係依據Rs=k‧(λ/NA)而為2.5μm,因此經計算後,使用2.5μm之L & S(線與空間)圖案。 Next, with reference to FIG. 9, the comparison of the pattern image obtained on the exposure surface Sp when a slight difference is given to the circumferential speeds Vm and Vp of the projection image surface Sm and the exposure surface Sp as shown in FIG. 8B will be described. Figure 9 is the position (absolute value) of the exposure width where the
如圖9所示,藉由將光罩圖案之投影像面Sm與基板P上之曝光面Sp中曲率較大之面側之周速度Vp設為較另一周速度Vm低些許,得到高對比率之曝光寬度之範圍較廣。例如,為了維持轉印至曝光面Sp上之圖案像之品質而對比率0.8左右為必要時,相較於在無周速度差之狀態(Vm=Vp)下之曝光寬度為±6mm左右,在有周速度差之狀態(Vm>Vp)下之曝光寬度能確保±8mm以上。又,只要是對比率亦可為0.6左右,則在有周速度差之狀態(Vm>Vp)下之曝光寬度擴大至±9.5mm左右。如上所述,藉由對投影像面Sm之周速度Vm與曝光面Sp之周速度Vp賦予些微之差,即使增大投影區域PA之掃描曝光方向之尺寸(曝光寬度2A),亦能進行將被投影之投影像之對比(像質)良好地維持之圖案曝光。又,由於能增大投影區域PA之掃描曝光方向之曝光寬度2A,因此能將基板P之進給速度提高,或降低投影區域PA內之每一單位面積之曝光用光(投影光束EL2)之照度。 As shown in FIG. 9, by setting the peripheral velocity Vp of the larger curvature surface of the projection image surface Sm of the mask pattern and the exposure surface Sp on the substrate P to be slightly lower than the other peripheral velocity Vm, a high contrast ratio is obtained The exposure width is wider. For example, when the contrast ratio of about 0.8 is necessary to maintain the quality of the pattern image transferred to the exposure surface Sp, the exposure width is about ±6mm compared to the state without a circumferential speed difference (Vm=Vp). The exposure width under the condition of peripheral speed difference (Vm>Vp) can be ensured at least ±8mm. In addition, as long as the contrast ratio can be about 0.6, the exposure width in a state with a peripheral velocity difference (Vm>Vp) will expand to about ±9.5 mm. As described above, by giving a slight difference between the peripheral velocity Vm of the projection image surface Sm and the peripheral velocity Vp of the exposure surface Sp, even if the size of the projection area PA in the scanning exposure direction (exposure width 2A) is increased, the The contrast (image quality) of the projected image to be projected is well maintained for pattern exposure. In addition, since the exposure width 2A in the scanning exposure direction of the projection area PA can be increased, the feed speed of the substrate P can be increased, or the exposure light per unit area (projection beam EL2) in the projection area PA can be reduced Illuminance.
此外,在如先前圖8C所示,將周速度差(Vm-Vp)一點一點地改 變同時模擬相對曝光寬度之位置之差分量△的場合,在投影區域PA內之圖案之投影像面Sm與基板P上之曝光面Sp在掃描曝光方向之偏移之差分量△平均值或最大值較佳係設定為較待轉印之圖案像之最小線寬(最小尺寸)小。例如,若著眼於圖8B中之曝光寬度中在曝光寬度0mm~+6mm之範圍,則在該範圍內之差分量△之平均值為約-0.42μm、最大值為約-0.66μm。又,若著眼於曝光寬度0mm~+8mm之範圍,則在該範圍內之差分量△之平均值為約-0.18μm、最大值為約-1.2μm。若將待轉印之圖案像之最小線寬設為在先前圖9之模擬時設定之2.5μm,則不論係在至曝光寬度6mm為止之範圍與至曝光寬度8mm為止之範圍,均能使差分量△之平均值、最大值設為較最小線寬2.5μm小。 In addition, as shown in Fig. 8C, when the peripheral velocity difference (Vm-Vp) is changed little by little while simulating the difference △ of the position of the relative exposure width, the projection image surface of the pattern in the projection area PA The average value or the maximum value of the difference Δ of the deviation between Sm and the exposure surface Sp on the substrate P in the scanning exposure direction is preferably set to be smaller than the minimum line width (minimum size) of the pattern image to be transferred. For example, if you focus on the exposure width in FIG. 8B in the exposure width range of 0mm~+6mm, the average value of the difference component Δ in this range is about -0.42μm and the maximum value is about -0.66μm. In addition, focusing on the range of the exposure width of 0 mm to +8 mm, the average value of the difference component Δ in this range is about -0.18 μm, and the maximum value is about -1.2 μm. If the minimum line width of the pattern image to be transferred is set to 2.5μm in the previous simulation in Figure 9, the difference can be made regardless of whether it is in the range up to the exposure width of 6mm and the exposure width up to 8mm. The average value and maximum value of the component △ are set to be smaller than the minimum line width of 2.5μm.
又,較佳為如先前圖8B所示,在以模擬求出之差分量△之變化特性中,將在實際曝光寬度(投影區域PA之掃描曝光方向之尺寸)內差分量△成為0之位置設置至少三處。例如,在投影區域PA設定為±8mm之曝光寬度之場合,在掃描曝光之期間,投影於投影區域PA內之圖案像中之一點係從曝光寬度內之-8mm之位置移動至+8mm之位置。在此期間,圖案像中之一點係通過差分量△為0之位置-6.4mm、位置0mm(原點)、位置+6.4mm之各個而轉印至曝光面Sp上。如此,藉由將保持光罩M之圓筒滾筒21與基板支承圓筒25之各旋轉速度精密地控制成在投影區域PA之掃描曝光方向之曝光寬度內之至少三處差分量△成為0,而能將曝光於投影區域PA內(曝光面Sp)之圖案像在掃描曝光方向之尺寸(線寬)誤差抑制得較小,而能進行忠實之圖案轉印。 In addition, it is preferable that the variation characteristic of the difference component Δ obtained by simulation is the position where the difference component Δ becomes 0 within the actual exposure width (the size of the projection area PA in the scanning exposure direction) as shown in FIG. 8B. Set at least three places. For example, when the projection area PA is set to an exposure width of ±8mm, during the scanning exposure, one point of the pattern image projected in the projection area PA is moved from the position of -8mm within the exposure width to the position of +8mm . During this period, a point in the pattern image is transferred to the exposure surface Sp through each of the position where the difference Δ is 0 -6.4mm, the position 0mm (origin), and the position +6.4mm. In this way, by precisely controlling the rotation speeds of the
如先前亦有說明,最大之解像力Rs係藉由投影光學系統PL之投影像面Sm側之數值孔徑NA、照明光束EL1之波長λ、製程常數k(通常為1以下),以Rs=k‧(λ/NA)來規定。此情形下,若將基準面HP之移動速度設為V,將基準面HP之移動距離設為x,將A設為曝光寬度之絕對值,則較佳為滿足下述之關係。 As previously explained, the maximum resolution Rs is determined by the numerical aperture NA on the side of the projection image surface Sm of the projection optical system PL, the wavelength λ of the illumination beam EL1, and the process constant k (usually less than 1), with Rs=k‧ (λ/NA) to specify. In this case, if the moving speed of the reference plane HP is set to V, the moving distance of the reference plane HP is set to x, and A is set to the absolute value of the exposure width, the following relationship is preferably satisfied.
此式F(x),雖係顯示在基準面HP上之某點之位置x之差分量△的式,但基準面HP之移動速度V與移動距離x之關係,如參照圖7所說明般,相當於時間t(=x/V)。本實施形態之曝光裝置U3,藉由滿足上述式,即使增大實效之投影區域PA之曝光寬度,亦可在不使被投影之圖案像之對比降低之狀態下以良好像質將圖案形成於基板P。 This formula F(x) is a formula showing the difference △ of the position x of a certain point on the reference plane HP, but the relationship between the moving speed V of the reference plane HP and the moving distance x is as explained with reference to Fig. 7 , Which is equivalent to time t(=x/V). The exposure apparatus U3 of this embodiment satisfies the above formula, even if the exposure width of the effective projection area PA is increased, the pattern can be formed with good image quality without reducing the contrast of the projected pattern image. Substrate P.
又,本實施形態之曝光裝置U3,係能更換保持光罩M之圓筒滾筒21。在反射型之圓筒光罩之場合,能於圓筒滾筒21之外周面直接形成作為光罩圖案之高反射部與低反射部(光吸收部)。此情形下,光罩更換係就各圓筒滾筒21進行。此時,有時會使新安裝於曝光裝置之反射型圓筒光罩之圓筒滾筒21半徑(直徑)不同於更換前安裝之圓筒光罩之半徑。此點有可能會在改變欲曝光於基板P上之元件尺寸(顯示面板之尺寸等)時等產生。本實施形態中,即使係此種場合,亦根據更換後之圓筒滾筒21之光罩圖案面之半徑,藉由進行如圖8A~7C、圖9之計算(模擬)來事前決定應設定於圓筒滾筒21與基板支承圓筒25之旋轉角速度差、應設定之投影區域PA之曝光寬度、應調整之照明光束EL2之照度、或應調整之基板P之搬送速度(基板支承圓筒25之旋轉速度)等參數。此外,在可更換地安裝半徑Rm例如以毫米單位或公分單位相異之複數個圓筒滾筒21時,係設有在Z方向調整支承圓筒滾筒21之旋轉中心軸AX1之曝光裝置側之軸承部的機構。又,作為調整之參數,改變投影區域PA之掃描曝光方向之曝光寬度的場合,例如能以圖4中之照明視野光闌55或中間像面P7之投影視野光闌63調整。如以上所 述,曝光裝置U3(基板處理裝置)能藉由調整上述各種參數來對應光罩M適當調整曝光條件,能進行適於光罩M之曝光。 In addition, the exposure apparatus U3 of this embodiment is capable of replacing the
曝光裝置U3,較佳為根據基於投影像面Sm與曝光面Sp之關係所規定之條件式據以計算之值、進而加入製程中之基板P之伸縮等測量結果而計算之值來調整基板支承機構12(基板支承圓筒25)移動基板P之移動速度、以及投影區域PA之掃描曝光方向之寬度之至少一個。 The exposure device U3 preferably adjusts the substrate support according to the calculated value based on the conditional formula specified based on the relationship between the projection image surface Sm and the exposure surface Sp, and the calculated value added to the measurement results of the expansion and contraction of the substrate P in the process The mechanism 12 (substrate support cylinder 25) moves at least one of the moving speed of the substrate P and the width of the projection area PA in the scanning exposure direction.
本實施形態之曝光裝置U3,係在形成於基板P上之顯示面板等之全圖案區域之寬度方向尺寸較投影區域PA之軸AX2方向之尺寸大的前提下以一個投影光學系統PL之投影區域PA如圖3之右圖排列之方式設有六個投影光學系統PL1~PL6,但其數目可依據基板P之寬度而為一個或亦可為七個以上。 The exposure device U3 of this embodiment uses a projection area of a projection optical system PL on the premise that the width direction size of the entire pattern area of the display panel, etc. formed on the substrate P is larger than the size of the projection area PA in the axis AX2 direction PA has six projection optical systems PL1~PL6 arranged in the right picture of Figure 3, but the number can be one or more than seven according to the width of the substrate P.
在於基板P之寬度方向排列複數個投影光學系統PL之場合,於掃描曝光時於各投影區域PA之曝光寬度積算之曝光量,較佳為在與掃描曝光方向正交之方向(基板P之寬度方向)中無論何處均為大致一定(例如在±數%以內)。 When a plurality of projection optical systems PL are arranged in the width direction of the substrate P, the total exposure amount of the exposure width of each projection area PA during scanning exposure is preferably in the direction orthogonal to the scanning exposure direction (the width of the substrate P The direction) is almost constant everywhere (for example, within ± several%).
其次,參照圖10說明第2實施形態之曝光裝置U3a。此外,為了避免重複之記載,係針對與第1實施形態相異之部分加以說明,對與第1實施形態相同之構成要素係賦予與第1實施形態相同符號加以說明。圖10係顯示第2實施形態之曝光裝置(基板處理裝置)之整體構成的圖。第1實施形態之曝光裝置U3雖係以圓筒狀之基板支承圓筒25保持通過投影區域之基板P之構成,但第2實施形態之曝光裝置U3a係以能移動之基板支承機構12a來保持平板狀基板P之構成。 Next, with reference to FIG. 10, the exposure apparatus U3a of 2nd Embodiment is demonstrated. In addition, in order to avoid repetitive descriptions, the description will be given for the parts that are different from the first embodiment, and the same components as those of the first embodiment are given the same reference numerals as those of the first embodiment. Fig. 10 is a diagram showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the second embodiment. Although the exposure apparatus U3 of the first embodiment is configured to hold the substrate P passing through the projection area by the cylindrical
在第2實施形態之曝光裝置U3a中,基板支承機構12a具備將基板P平面狀地保持之基板載台102與使基板載台102在與中心面CL正交之面內(XY面)沿X方向掃描移動的移動裝置(省略圖示)。 In the exposure apparatus U3a of the second embodiment, the
圖10之基板P之支承面P2由於係實質上與XY面平行之平面,因此 在光罩M反射而射入投影光學模組PLM(PL1~PL6)之投影光束EL2設定為在投射於基板P時投影光束EL2之主光線與XY面成垂直。 Since the supporting surface P2 of the substrate P in FIG. 10 is a plane substantially parallel to the XY plane, the projection light beam EL2 reflected by the mask M and incident on the projection optical module PLM (PL1~PL6) is set to be projected on the substrate P The chief ray of the projection beam EL2 is perpendicular to the XY plane.
又,第2實施形態中亦與先前之圖2同樣地,在XZ面內觀察時,從光罩M上之照明區域IR1(及IR3、IR5)之中心點至照明區域IR2(及IR4、IR6)之中心點的周長與順著支承面P2之基板P上之投影區域PA1(及PA3、PA5)之中心點至第2投影區域PA2(及PA4、PA6)之中心點的周長,係設定成實質相等。 Also, in the second embodiment, similar to the previous Fig. 2, when viewed in the XZ plane, from the center point of the illumination area IR1 (and IR3, IR5) on the mask M to the illumination area IR2 (and IR4, IR6) The perimeter of the center point of) and the perimeter of the center point of the projection area PA1 (and PA3, PA5) on the substrate P along the supporting surface P2 to the center point of the second projection area PA2 (and PA4, PA6) are the Set to be substantially equal.
圖10中之曝光裝置U3a亦同樣地,下位控制裝置16控制基板支承機構12之移動裝置(掃描曝光用之線性馬達或微動用之致動器等),與圓筒滾筒21之旋轉同步地驅動基板載台102。此外,在本實施形態之基板P亦可係樹脂膜等可撓性基板,亦可係液晶顯示面板用之玻璃板。再者,在藉由基板載台102之精密移動實施掃描曝光時,於支承面P2設有真空吸附基板P之構造(例如銷夾頭方式、多孔質方式之平面保持具等)。又,在基板載台102不移動而僅將基板P平面狀地支承的場合,係於支承面P2設有將基板P藉由空氣軸承之氣體層以低摩擦狀態或非接觸狀態支承之機構(例如貝努里夾具方式之平面保持具等)與對基板P賦予既定張力以保持平面性之張力賦予機構。 The exposure device U3a in FIG. 10 is the same. The
其次,參照圖11說明第2實施形態之曝光裝置U3a中之光罩M之圖案之投影像面Sm之移動與基板P之曝光面Sp之移動的關係。圖11係在與先前圖7相同條件與定義下將光罩M之圖案之投影像面Sm與基板P上之曝光面Sp之關係誇張表示的說明圖。 Next, the relationship between the movement of the projection image surface Sm of the pattern of the mask M and the movement of the exposure surface Sp of the substrate P in the exposure apparatus U3a of the second embodiment will be described with reference to FIG. 11. FIG. 11 is an explanatory diagram that exaggerates the relationship between the projection image surface Sm of the pattern of the mask M and the exposure surface Sp on the substrate P under the same conditions and definitions as the previous FIG. 7.
曝光裝置U3a係藉由遠心之投影光學系統PL形成圓筒面狀之光罩M之圖案之投影像面Sm。投影像面Sm亦係被成像光罩M之圖案之最佳聚焦面。此處,由於光罩M之圖案面亦以曲率半徑Rm之曲面形成,因此投影像面Sm亦為以假想之AX1’為中心之曲率半徑Rm之圓筒面(在ZX平面中為圓弧曲線)之一部分。另一方面,由於基板P被基板載台102保持成平面,因此曝光面Sp為平 面(在ZX平面中為直線)。因此,本實施形態之曝光面Sp成為與先前圖7所示之基準面HP一致之面。亦即,曝光面Sp可視為曲率半徑Rp無限大(∞)的面或相較於投影像面Sm之半徑Rm為極大之曲面。 The exposure device U3a forms the projected image surface Sm of the pattern of the cylindrical mask M by the telecentric projection optical system PL. The projection image surface Sm is also the best focus surface of the pattern of the imaged mask M. Here, since the pattern surface of the mask M is also formed with a curved surface with a radius of curvature Rm, the projection image surface Sm is also a cylindrical surface with a radius of curvature Rm centered on the imaginary AX1' (in the ZX plane, it is a circular arc curve). ) Part. On the other hand, since the substrate P is held flat by the
投影像面Sm由於係以角速度ωm在曲率半徑Rm之面上旋轉,因此投影像面Sm與曝光面Sp所接觸之投影像面Sm上之點Cp在經過時間t後係位於已旋轉角度θm=ωm‧t後的點Cp1。因此,投影像面Sm上之點Cp1之沿基準面HP之方向(X方向)的位置Xm,成為Xm=Rm‧sin(θm)。又,曝光面Sp,由於係與基準面HP一致之平面,因此投影像面Sm與曝光面Sp所接觸之曝光面Sp上之點Cp在經過時間t後係位於已往X方向移動Xp=V‧t後的點Cp0。因此,如先前圖7所說明,在經過時間t後之投影像面Sm上之點Cp1與曝光面Sp上之點Cp0在X方向(掃描曝光方向)之偏移量△1,為△1=V‧t-Rm‧sin(θm)。 Since the projection image surface Sm rotates on the surface of the curvature radius Rm at an angular velocity ωm, the point Cp on the projection image surface Sm that the projection image surface Sm and the exposure surface Sp contact is located at the rotated angle θm= The point Cp1 after ωm‧t. Therefore, the position Xm of the point Cp1 on the projection image plane Sm along the direction (X direction) of the reference plane HP becomes Xm=Rm‧sin(θm). Furthermore, the exposure surface Sp is a plane that coincides with the reference plane HP, so the point Cp on the exposure surface Sp where the projection image surface Sm and the exposure surface Sp are in contact is moved in the X direction after the time t has passed Xp=V‧ The point Cp0 after t. Therefore, as explained in FIG. 7, the offset Δ1 between the point Cp1 on the projection image surface Sm and the point Cp0 on the exposure surface Sp after the time t has elapsed in the X direction (scanning exposure direction) is Δ1= V‧t-Rm‧sin(θm).
圖11中之偏移量△1係因光罩M或投影像面Sm以等角速度移動,基板P或曝光面Sp等速直線移動而產生之射影誤差(sin誤差)。該偏移量△1,若在點Cp位於成為曝光寬度2A內之中心之面KS上時設為0,則會從該位置起隨著往±X方向離開逐漸增大。在掃描曝光時,於基板P上之曝光面Sp,係於曝光寬度2A之範圍中投影像面Sm之圖案像持續地被積算而轉印。然而,因偏移量△1之射影誤差之影響,被轉印之圖案像之掃描曝光方向之尺寸相較於光罩M上之圖案之尺寸會具有誤差,轉印忠實度降低。 The offset Δ1 in FIG. 11 is the projection error (sin error) caused by the constant angular velocity movement of the mask M or the projection image surface Sm, and the constant linear movement of the substrate P or the exposure surface Sp. If the offset Δ1 is set to 0 when the point Cp is located on the surface KS that becomes the center within the exposure width 2A, it will gradually increase from this position in the ±X direction. During the scanning exposure, the exposure surface Sp on the substrate P is continuously accumulated and transferred with the pattern image of the projection image surface Sm in the range of the exposure width 2A. However, due to the influence of the projection error of the offset Δ1, the size of the pattern image to be transferred in the scanning exposure direction will have an error compared with the size of the pattern on the mask M, and the transfer fidelity is reduced.
因此,本實施形態中亦同樣地,藉由在投影像面Sm與曝光面Sp中將曲率半徑較小之面之周速度設定為較曲率半徑較大之面之周速度高些許,而能得到與先前之第1實施形態相同之效果。本實施形態中,曝光面Sp之曲率半徑Rp與投影像面Sm之曲率半徑Rm由於係Rp》Rm之關係,因此係使投影像面Sm之周速度Vm相較於曝光面Sp之移動速度V高些許。 Therefore, in this embodiment as well, by setting the peripheral velocity of the surface with the smaller radius of curvature in the projection image surface Sm and the exposure surface Sp to be slightly higher than the peripheral velocity of the surface with the larger radius of curvature, it is possible to obtain The same effect as the previous first embodiment. In this embodiment, the radius of curvature Rp of the exposure surface Sp and the radius of curvature Rm of the projection image surface Sm are related to Rp》Rm, so the peripheral speed Vm of the projection image surface Sm is compared to the movement speed V of the exposure surface Sp Slightly higher.
以下,使用圖12至圖18說明以曝光裝置U3a之構成執行各種模擬 後的一例。圖12係顯示因曝光面Sp之移動速度V(與周速度Vp相同)與投影像面Sm之周速度Vm之差之有無而導致之偏移量△1之變化的圖表,圖12之縱軸表示圖11中之偏移量△1,橫軸與圖8A、7B同樣地表示曝光寬度。此外,在圖12以後之各模擬中,係將光罩M之半徑Rm亦即投影像面Sm之半徑Rm設為150mm。如以圖11所說明,在使曝光面Sp之移動速度V(周速度Vp)與投影像面Sm之周速度Vm設為相等之場合,亦即無周速度差之場合,若將偏移量△1之容許範圍設為±1μm左右,則曝光寬度為±5mm左右之範圍。 Hereinafter, an example of performing various simulations using the configuration of the exposure device U3a will be described with reference to Figs. 12 to 18. Figure 12 is a graph showing the change in offset △1 due to the difference between the moving speed V of the exposure surface Sp (same as the peripheral speed Vp) and the peripheral speed Vm of the projection image surface Sm, the vertical axis of Figure 12 It shows the offset Δ1 in FIG. 11, and the horizontal axis shows the exposure width as in FIGS. 8A and 7B. In addition, in each simulation after FIG. 12, the radius Rm of the mask M, that is, the radius Rm of the projection image surface Sm, is set to 150 mm. As illustrated in FIG. 11, when the moving speed V (peripheral speed Vp) of the exposure surface Sp and the peripheral speed Vm of the projection image surface Sm are set equal, that is, when there is no difference in peripheral speed, if the offset is set The allowable range of △1 is set to about ±1μm, and the exposure width is about ±5mm.
因此,若將投影像面Sm之角速度從ωm調整成ωm’(ωm<ωm’)以使投影像面Sm之周速度Vm較曝光面Sp之移動速度V(周速度Vp)高些許,則偏移量△1’在以原點0為中心之曝光寬度±4mm之範圍中係以負之傾斜變化,在該範圍之外側則以正之傾斜變化。若將偏移量△1’為0之曝光寬度上之位置設為±6.7mm左右,則偏移量△1’之容許範圍在±1μm左右之曝光寬度為±8mm左右之範圍。此係將作為掃描曝光能使用之曝光寬度相較於不賦予周速度差之場合增大60%左右。 Therefore, if the angular velocity of the projection image surface Sm is adjusted from ωm to ωm' (ωm<ωm') so that the peripheral velocity Vm of the projection image surface Sm is slightly higher than the movement velocity V (peripheral velocity Vp) of the exposure surface Sp, then The shift amount △1' changes with a negative tilt in the range of the exposure width ±4mm centered on the
其次,與先前之圖9同樣地,說明使曝光面Sp之移動速度V(=周速度Vp)與投影像面Sm之周速度Vm一致之場合(無周速度差)與僅賦予些許差異之場合(有周速度差)之圖案像之對比值(或對比率)的變化。圖13A,係表示將投影光學系統PL之曝光面Sp側之數值孔徑NA設為0.0875,將照明光束EL1之波長設為365nm,將製程常數k設為0.6,將照明σ設為0.7時,在投影形成於光罩M上之最大解像力Rs=2.5μm之L & S圖案之場合在曝光面Sp上得到之像的對比。圖13B係表示在投影以相同投影條件所得之最大解像力Rs=2.5μm之孤立線(ISO)圖案之場合在曝光面Sp上得到之像的對比。 Next, similar to the previous Fig. 9, the case where the moving speed V (= the peripheral speed Vp) of the exposure surface Sp coincides with the peripheral speed Vm of the projection image surface Sm (no difference in peripheral speed) and the case where only a slight difference is provided The change of the contrast value (or contrast ratio) of the pattern image (with a difference in peripheral speed). FIG. 13A shows that when the numerical aperture NA on the side of the exposure surface Sp of the projection optical system PL is set to 0.0875, the wavelength of the illumination beam EL1 is set to 365 nm, the process constant k is set to 0.6, and the illumination σ is set to 0.7, when The contrast of the image obtained on the exposure surface Sp when projecting the L & S pattern with the maximum resolution Rs=2.5μm formed on the mask M. FIG. 13B shows the comparison of the images obtained on the exposure surface Sp when projecting the isolated line (ISO) pattern with the maximum resolution Rs=2.5 μm obtained under the same projection conditions.
不論係2.5μm之L & S圖案或係ISO圖案,像之明部分在作為對比值係接近1.0,暗部分為接近0之強度分布CN1為佳。對比值,藉由明部分之光強 度之最大值Imax與暗部分之光強度之最小值Imin,依據(Imax-Imin)/(Imax+Imin)而求出。強度分布CN1雖總的來說係對比較高之狀態,但所謂較低之狀態係如強度分布CN2般最大值Imax與最小值Imin之差(振寬)較小。以圖13A、12B所示之像之強度分布CN1雖係2.5μm之L & S圖案或ISO圖案之靜止之投影像之對比,但在掃描曝光之場合,在基板P移動於所設定之曝光寬度的期間,例如使靜止之強度分布CN1於掃描曝光方向依據圖8B所說明之差分量△或圖12所說明之偏移量△1的變化而使其偏移同時積算後的數值,成為轉印於基板P上之圖案像之最終對比。 Regardless of whether it is a 2.5μm L & S pattern or an ISO pattern, the bright part of the image should be close to 1.0 as a contrast value, and the dark part should be close to 0 in intensity distribution CN1. The contrast value is calculated from the maximum value Imax of the light intensity of the bright part and the minimum value Imin of the light intensity of the dark part according to (Imax-Imin)/(Imax+Imin). Although the intensity distribution CN1 is generally a relatively high state, the so-called low state is that the difference (vibration width) between the maximum value Imax and the minimum value Imin is small like the intensity distribution CN2. The intensity distribution CN1 of the image shown in Figs. 13A and 12B is the contrast of the static projection image of the 2.5μm L & S pattern or the ISO pattern, but in the case of scanning exposure, the substrate P moves to the set exposure width During the period, for example, the static intensity distribution CN1 is shifted in the scanning exposure direction according to the difference amount △ illustrated in FIG. 8B or the shift amount △ 1 illustrated in FIG. The final comparison of the pattern image on the substrate P.
其次,在圖13A、12B所說明之投影曝光條件(Rm=150mm、Rp=∞、NA=0.0875、λ=365nm、k=0.6)下,將2.5μm之L & S圖案之相對於投影像之曝光寬度之位置的對比值(對比率)的變化模擬後的結果顯示於圖14、圖15。圖14、圖15之橫軸係表示正側之曝光寬度A之位置,縱軸係表示依據(Imax-Imin)/(Imax+Imin)而求出之對比值與將在曝光寬度0mm之對比值規格化成1.0時之對比率。進而,圖14係表示曝光面Sp之移動速度V(=周速度Vp)與投影像面Sm之周速度Vm一致之無周速度差時的對比變化,圖15係如圖12中之偏移量△1’之變化特性般,使投影像面Sm之周速度Vm較曝光面Sp之移動速度V(=周速度Vp)大些許之有周速度差時之對比變化。 Next, under the projection exposure conditions (Rm=150mm, Rp=∞, NA=0.0875, λ=365nm, k=0.6) illustrated in Figures 13A and 12B, the 2.5μm L & S pattern is compared to the projection image The simulation results of the change of the contrast value (contrast ratio) of the position of the exposure width are shown in Fig. 14 and Fig. 15. The horizontal axis of Figure 14 and Figure 15 represents the position of the exposure width A on the positive side, and the vertical axis represents the contrast value calculated based on (Imax-Imin)/(Imax+Imin) and the contrast value at the exposure width 0mm Contrast ratio when normalized to 1.0. Furthermore, FIG. 14 shows the contrast change when the moving speed V (=peripheral speed Vp) of the exposure surface Sp coincides with the peripheral speed Vm of the projection image surface Sm and there is no difference in the peripheral speed, and FIG. 15 shows the offset in FIG. 12 The change characteristic of △1' is similar to the contrast change when the peripheral speed Vm of the projection image surface Sm is slightly larger than the movement speed V (=peripheral speed Vp) of the exposure surface Sp.
如圖14所示,在無周速度差(修正前)之場合,對比率,在曝光寬度之位置從原點0至4mm左右之間雖大致一定,但從5mm以上之位置起則急遽地降低。接著,曝光寬度之位置在8mm以上時對比率為0.4以下,對光阻之曝光有可能會有對比不足。此外,在模擬中,在曝光寬度之位置0mm之對比值為約0.934,對比率係將該值規格化成1.0後顯示。 As shown in Figure 14, when there is no difference in circumferential velocity (before correction), the contrast ratio is approximately constant from the
相對於此,如圖15所示,在有周速度差(修正前)之場合,對比率,在曝光寬度之位置在0~4mm之間雖從1.0逐漸降低至0.8左右,但在位置4mm~ 8mm之間則維持0.8mm左右。就模擬結果來看,在曝光寬度之位置5mm之對比率為約0.77,在位置7mm之對比率為約0.82。如上述,藉由使投影像面Sm之周速度Vm較平面狀曝光面Sp之移動速度V(=周速度Vp)大些許,即能增大在掃描曝光時能設定之投影區域PA之曝光寬度2A。 In contrast, as shown in Fig. 15, when there is a difference in peripheral speed (before correction), the contrast ratio gradually decreases from 1.0 to about 0.8 at the position of the exposure width between 0~4mm, but at the position of 4mm~ Between 8mm, it is maintained at about 0.8mm. From the simulation results, the contrast ratio at the position 5mm of the exposure width is about 0.77, and the contrast ratio at the position 7mm is about 0.82. As mentioned above, by making the peripheral speed Vm of the projection image surface Sm slightly larger than the moving speed V (=peripheral speed Vp) of the planar exposure surface Sp, the exposure width of the projection area PA that can be set during scanning exposure can be increased 2A.
又,如圖16所示,在無周速度差(修正前)之場合之2.5μm之ISO圖案之像的對比率,雖曝光寬度之位置至5mm為止為大致一定,但5mm以上起徐徐降低,在位置6mm為約0.9,在位置8mm為約0.6,在位置9mm為約0.5,接著在位置10mm為約0.4。此外,圖16中之對比率,係以在圖14中之曝光寬度之位置0mm得到之2.5μm之L & S圖案之像之對比值(約0.934)作為基準,取得以2.5μm之ISO圖案之像所得到之對比值(在位置0mm為約0.968)之比。因此,圖16所示之對比率之初始值(在位置0mm之值)為約1.04。 Also, as shown in Figure 16, the contrast ratio of the 2.5μm ISO pattern image when there is no difference in the circumferential velocity (before correction), although the position of the exposure width is approximately constant up to 5mm, it gradually decreases from 5mm or more. It is about 0.9 at the
相對於此,在如圖17所示有周速度差(修正後)之場合之2.5μm之ISO圖案之像的對比率,雖在曝光寬度之位置在0~8mm之範圍係維持0.9以上,在位置9mm則降低至0.8左右,但在位置10mm亦維持約0.67。如上述,藉由使投影像面Sm之周速度Vm較平面狀曝光面Sp之移動速度V(=周速度Vp)相對大些許,即能增大在掃描曝光時能設定之投影區域PA之曝光寬度2A。 On the other hand, when there is a peripheral speed difference (after correction) as shown in Figure 17, the contrast ratio of the 2.5μm ISO pattern image is maintained at 0.9 or more in the range of 0~8mm at the position of the exposure width. The position 9mm is reduced to about 0.8, but the position 10mm also maintains about 0.67. As mentioned above, by making the peripheral speed Vm of the projection image surface Sm relatively larger than the moving speed V (=peripheral speed Vp) of the planar exposure surface Sp, the exposure of the projection area PA that can be set during scanning exposure can be increased Width 2A.
此外,對投影像面Sm之周速度Vm與曝光面Sp之周速度Vp(或直線移動速度V)之間賦予些微之差,即能得到如圖8B中之差分量△或圖12中之偏移量△1’的特性,為了找出最佳曝光寬度2A(或A)之範圍,亦有利用差分量△或偏移量△1’與解像力Rs的關係的評估法。以下雖說明該方法,但為了簡化,將圖8B中之差分量△或圖12中之偏移量△1’改稱為像變位量△。 In addition, a slight difference is given between the peripheral speed Vm of the projection image surface Sm and the peripheral speed Vp (or the linear movement speed V) of the exposure surface Sp, that is, the difference component △ in Figure 8B or the deviation in Figure 12 can be obtained. In order to find out the range of the best exposure width 2A (or A) for the characteristics of the displacement △1', there is also an evaluation method using the relationship between the difference △ or the displacement △1' and the resolution Rs. Although this method is described below, for simplicity, the difference Δ in FIG. 8B or the offset Δ1' in FIG. 12 is renamed as the image displacement amount Δ.
該評估法,係將像變位量△之平均值/Rs之關係或像變位量△2之平均值/Rs之關係就每個曝光寬度之位置計算。因此,根據圖18、圖19說明將像變位量△之平均值/Rs設為評估值Q1、將像變位量△2之平均值/Rs設為評估 值Q2而模擬之例。圖18雖係與先前之圖12所示之偏移量△1’之圖表相同者,但其將應計算之曝光寬度設為±12mm之範圍。又,算出偏移量△1’(像變位量△)之曝光寬度上之取樣點與圖12同樣地為0.5mm間隔。 This evaluation method calculates the relationship between the average value of the image displacement △/Rs or the average value of the image displacement △ 2 /Rs for the position of each exposure width. Thus, according to FIG. 18, FIG. 19 will be described as an average value of the displacement amount △ / Rs to the evaluation value Q1, the displacement amount as the average of two △ / Rs to the evaluation value Q2 while the analog embodiment. Although Fig. 18 is the same as the graph of the offset Δ1' shown in Fig. 12, it sets the calculated exposure width to the range of ±12mm. In addition, the sampling points on the exposure width of the calculated offset Δ1' (image displacement Δ) are 0.5 mm intervals as in FIG. 12.
像變位量△之平均值係將在從曝光寬度之原點0mm起至所著眼之取樣點為止之間所得到之各偏移量△1’之絕對值加算平均後之值。例如,在位置-10mm之取樣點之像變位量△之平均值,係加算在從位置0mm至-10mm間之各取樣點(圖18中為21點)所得到之偏移量△1’之絕對值,並將其除以取樣點數而求得。在圖18之場合,在從位置0mm至-10mm之各取樣點之偏移量△1’之絕對值之加算值為20.86μm,除以取樣點數21後之平均值為約0.99μm。又,模擬中之解像力Rs,在此處設為NA=0.0875、λ=368nm、製程常數k=0.5時係設為2.09μm。因此,在曝光寬度之位置-10mm之評估值Q1(無單位)為約0.48。將如以上之計算以曝光寬度內之各位置(取樣點)進行後,可知評估值Q1之變化傾向。 The average value of the image displacement amount Δ is the value obtained by adding and averaging the absolute value of each offset amount Δ1' obtained from the origin of the exposure width 0mm to the sampling point of the eye. For example, the average value of the image displacement △ at the sampling point at position -10mm is added to the offset △1' obtained at each sampling point from position 0mm to -10mm (21 points in Figure 18) The absolute value of, and divide it by the number of sampling points. In the case of Fig. 18, the total value of the absolute value of the offset Δ1' of each sampling point from the position 0mm to -10mm is 20.86μm, and the average value after dividing by the
又,(像變位量△)2之平均值係將在從曝光寬度之原點0mm起至所著眼之取樣點為止之間所得到之各偏移量△1’之絕對值之平方值(μm2)加算平均後之值。在圖18之場合,例如,將在位置0mm至-10mm之各取樣點之偏移量△1’之絕對值平方並加算後的值為42.47μm2,除以取樣點數21後之平均值為約2.02μm2。由於將模擬中之解像力Rs設為2.09μm,因此曝光寬度之位置-10mm之評估值Q2為約0.97μm。將如以上之計算以曝光寬度內之各位置(取樣點)進行後,可知評估值Q2(μm)之變化傾向。 In addition, the average value of (image displacement △) 2 is the square value of the absolute value of each offset △1' obtained from the origin of the exposure width 0mm to the sampling point of the eye ( μm 2 ) The average value after adding. In the case of Figure 18, for example, square the absolute value of the offset △1' of each sampling point at position 0mm to -10mm and add the value to 42.47μm 2 , divided by the average value of 21 sampling points It is about 2.02μm 2 . Since the resolution Rs in the simulation is set to 2.09 μm, the evaluation value Q2 at the position of the exposure width of -10 mm is about 0.97 μm. After performing the above calculation with each position (sampling point) within the exposure width, the tendency of the evaluation value Q2 (μm) to change can be known.
圖19係於縱軸取如以上方式求出之評估值Q1、Q2,於橫軸取曝光寬度之位置的圖表。評估值Q1(像變位量△之平均值/解像力Rs)係隨著曝光寬度(絕對值)變大而平緩地變化,大約在曝光寬度之±12mm之位置成為大致1.0。此點,係意味著在±12mm之位置之像變位量△之平均值與解像力Rs大致一致。另一方面,評估值Q2(像變位量△2之平均值/解像力Rs),雖在至曝光寬度之位置 ±8mm之範圍中以與評估值Q1同等之傾向變化,但在8mm以上係急遽地變化,在曝光寬度之位置±10mm成為大致1(μm)。 Fig. 19 is a graph in which the evaluation values Q1 and Q2 obtained as described above are taken on the vertical axis, and the position of the exposure width is taken on the horizontal axis. The evaluation value Q1 (average value of image displacement Δ/resolution Rs) changes gradually as the exposure width (absolute value) becomes larger, and becomes approximately 1.0 at approximately ±12 mm of the exposure width. This point means that the average value of the image displacement Δ at the position of ±12mm is approximately the same as the resolution Rs. On the other hand, the evaluation value Q2 (average value of the amount of image displacement △ 2 /resolution Rs) changes with the same tendency as the evaluation value Q1 in the range of ±8 mm to the exposure width, but it is abruptly greater than 8 mm The ground changes to approximately 1 (μm) at the position of the exposure width ±10mm.
此處,在先前圖17所示之ISO圖案之對比變化或圖15所示之L & S圖案之對比變化中,從曝光寬度為8mm以上處起對比率大幅降低。在圖15、圖17所求出之對比率之變化,係將解像力Rs設為2.5μm之場合,雖並非以Rs=2.09μm來計算,但傾向大略相同。如上述,藉由將評估值Q1或Q2作為指標之評估法,亦能決定反應了對比變化之最佳曝光寬度。 Here, in the contrast change of the ISO pattern shown in FIG. 17 or the contrast change of the L & S pattern shown in FIG. 15, the contrast ratio is greatly reduced from the point where the exposure width is 8 mm or more. The changes in the contrast ratio obtained in Fig. 15 and Fig. 17 are when the resolution Rs is set to 2.5 μm. Although it is not calculated with Rs=2.09 μm, the tendency is roughly the same. As mentioned above, by the evaluation method that uses the evaluation value Q1 or Q2 as an index, the optimal exposure width that reflects the contrast change can also be determined.
此外,本實施形態之場合,先前第1實施形態所使用之式F(x),由於曝光面Sp係與基準面HP平行地於X方向以移動速度V(周速度Vp)移動,因此係置換為如以下之式F’(x)。 In addition, in the case of this embodiment, the formula F(x) used in the previous first embodiment is replaced by the exposure surface Sp moving in the X direction in parallel with the reference plane HP at the moving speed V (peripheral speed Vp) As the following formula F'(x).
圖10所示之第2實施形態之曝光裝置U3a,能將此式F’(x)適用於上述第1實施形態之式,藉由滿足該關係而得到與第1實施形態相同之效果。 The exposure apparatus U3a of the second embodiment shown in Fig. 10 can apply this formula F'(x) to the formula of the above-mentioned first embodiment, and by satisfying this relationship, the same effect as the first embodiment can be obtained.
其次,參照圖20說明第3實施形態之曝光裝置U3b。此外,為了避免重複之記載,係僅針對與第1、第2實施形態相異之部分加以說明,對與第1、第2實施形態相同之構成要素係賦予與第1、第2實施形態相同符號加以說明。圖20係顯示第3實施形態之曝光裝置(基板處理裝置)之整體構成的圖。第1實施形態之曝光裝置U3雖係使用在光罩M之圖案面反射之光成為投影光束之反射型光罩的構成,但第3實施形態之曝光裝置U3b係使用透射過光罩之圖案面之光成為投影光束之透射型光罩的構成。 Next, the exposure apparatus U3b of the third embodiment will be described with reference to FIG. 20. In addition, in order to avoid repetitive descriptions, only the parts that are different from the first and second embodiments are described, and the same components as in the first and second embodiments are given the same as those in the first and second embodiments. Symbol to illustrate. Fig. 20 is a diagram showing the overall configuration of an exposure apparatus (substrate processing apparatus) of the third embodiment. Although the exposure device U3 of the first embodiment uses a reflection type mask in which light reflected on the pattern surface of the mask M becomes a projection beam, the exposure device U3b of the third embodiment uses a pattern surface that transmits through the mask. The light becomes the structure of the transmissive mask for the projection beam.
第3實施形態之曝光裝置U3a中,光罩保持機構11a具備保持光罩M之圓筒滾筒(光罩保持圓筒)21a與支承圓筒滾筒21a之導輥93、驅動圓筒滾筒21a 之驅動輥94、以及驅動部96。 In the exposure apparatus U3a of the third embodiment, the
圓筒滾筒21a形成配置光罩MA之照明區域IR之光罩面。本實施形態中,光罩面包含使線段(母線)繞與此線段平行之軸(圓筒形狀之中心軸)旋轉的面(以下稱為圓筒面)。圓筒面例如係圓筒之外周面、圓柱之外周面等。圓筒滾筒21a係以例如玻璃或石英等構成,係具有一定厚度之圓筒狀,其外周面(圓筒面)形成光罩面。亦即,本實施形態中,光罩MA上之照明區域彎曲成從中心線具有曲率半徑Rm之圓筒面狀。圓筒滾筒21a中從圓筒滾筒21a徑方向觀看時與光罩M之圖案重疊之部分、例如圓筒滾筒21a之Y軸方向兩端側以外之中央部分對照明光束EL1具有透光性。 The
光罩MA,例如係作成為於平坦性佳之長條狀極薄玻璃板(例如厚度100~500μm)之一面以鉻等遮光層形成有圖案之透射型平面狀片光罩,使其順著圓筒滾筒21a之外周面彎曲,在捲繞於(貼附於)此外周面之狀態下被使用。光罩MA具有未形成有圖案之圖案非形成區域,於圖案非形成區域安裝於圓筒滾筒21a。光罩MA可拆裝於圓筒滾筒21a。光罩MA,係與第1實施形態之光罩M同樣地,亦可取代捲繞於透明圓筒母材之圓筒滾筒21a之方式,而於透明圓筒母材之圓筒滾筒21a之外周面直接描繪形成鉻等遮光層所形成之光罩圖案來一體化。此情形亦由圓筒滾筒21a發揮光罩圖案之保持構件之功能。 The mask MA is, for example, a transmissive flat sheet mask with a pattern formed on one side of a long strip of ultra-thin glass plate with good flatness (for example, a thickness of 100~500μm) with a shading layer such as chrome, so that it follows the circle The outer peripheral surface of the
導輥93及驅動輥94延伸於相對圓筒滾筒21a之中心軸為平行之Y軸方向。導輥93及驅動輥94設置成能繞與中心軸平行之軸旋轉。導輥93及驅動輥94設置成不接觸於圓筒滾筒21a所保持之光罩MA。驅動輥94與驅動部96連接。驅動輥94藉由將從驅動部96供應之力矩傳至圓筒滾筒21a,以使圓筒滾筒21a繞中心軸旋轉。 The
本實施形態之照明裝置13a具備光源(圖示略)及照明光學系統ILa。照明光學系統ILa與複數個投影光學系統PL1~PL6之各個對應地具備排列 於Y軸方向之複數個(例如六個)照明光學系統ILa1~ILa6。光源能與前述之各種照明裝置13a同樣地使用各種光源。從光源射出之照明光,照度分布被均一化,透過例如光纖等導光構件區分至複數個照明光學系統ILa1~ILa6。 The
複數個照明光學系統ILa1~ILa6之各個,包含透鏡等複數個光學構件、積分光學系統、桿透鏡、複眼透鏡等,藉由均一照度分布之照明光束EL1照明照明區域IR。本實施形態中,複數個照明光學系統ILa1~ILa6配置於圓筒滾筒21a內側。複數個照明光學系統ILa1~ILa6之各個從圓筒滾筒21a內側通過圓筒滾筒21a而照明保持於圓筒滾筒21a之外周面之光罩MA上之各照明區域。 Each of a plurality of illumination optical systems ILa1~ILa6, including a plurality of optical components such as lenses, an integrator optical system, a rod lens, a fly-eye lens, etc., illuminates the illumination area IR with an illumination beam EL1 with a uniform illuminance distribution. In this embodiment, a plurality of illumination optical systems ILa1 to ILa6 are arranged inside the
照明裝置13a藉由照明光學系統ILa1~ILa6導引從光源射出之光,將被導引之照明光束從圓筒滾筒21a內部照射於光罩MA。照明裝置13,係藉由照明光束EL1以均一明度照明圓筒滾筒21a所保持之光罩M之一部分(照明區域IR)。此外,光源亦可配置於圓筒滾筒21a內側,亦可配置於圓筒滾筒21a外側。又,光源亦可係與曝光裝置U3b不同之裝置(外部裝置)。 The illuminating
曝光裝置U3a,在使用透射型光罩作為光罩時,亦與曝光裝置U3、U3a同樣地,藉由將投影像面Sm之移動速度(周速度Vm)與曝光面Sp之移動速度(V或周速度Vp)之關係與先前之第2實施形態同樣地調整(修正),而能放大掃描曝光時能利用之曝光寬度。 Exposure device U3a, when using a transmissive mask as the mask, is similar to the exposure devices U3 and U3a, by comparing the moving speed of the projection image surface Sm (peripheral speed Vm) and the moving speed of the exposure surface Sp (V or The relationship between the peripheral speed Vp) is adjusted (corrected) in the same way as in the previous second embodiment, and the exposure width that can be used in scanning exposure can be enlarged.
其次,參照圖21說明第4實施形態之曝光裝置U3c。此外,為了避免重複之記載,係僅針對與先前各實施形態相異之部分加以說明,對與先前各實施形態相同之構成要素係賦予相同符號加以說明。圖21係顯示第4實施形態之曝光裝置(基板處理裝置)之整體構成的圖。先前各實施形態之曝光裝置U3、U3a、U3b均係使用保持於能旋轉之圓筒滾筒21(或21a)之圓筒狀光罩M的構成。第4實施形態之曝光裝置U3c則係設有光罩保持機構11b,其具備保持平板狀之反射型光罩 MB、於掃描曝光時移動於沿著XY面之X方向移動的光罩載台110。 Next, with reference to FIG. 21, the exposure apparatus U3c of 4th Embodiment is demonstrated. In order to avoid repetitive descriptions, only the parts that are different from the previous embodiments are described, and the same components as those in the previous embodiments are given the same reference numerals. Fig. 21 is a diagram showing the overall configuration of an exposure apparatus (substrate processing apparatus) according to a fourth embodiment. The exposure apparatuses U3, U3a, and U3b of the previous embodiments all use a cylindrical mask M held by a rotatable cylindrical drum 21 (or 21a). The exposure apparatus U3c of the fourth embodiment is provided with a
第4實施形態之曝光裝置U3c中,光罩保持機構11b具備保持平板狀之反射型光罩MB之光罩載台110與使光罩載台110在與中心面CL正交之面內沿著X方向掃描移動的移動裝置(圖示略)。 In the exposure apparatus U3c of the fourth embodiment, the
由於圖21之光罩MB之光罩面P1係實質上與XY面平行之平面,因此從光罩MB反射之投影光束EL2之主光線係與XY面垂直。因此,照明光罩MB上之各照明區域IR1~IR6之來自照明光學系統IL1~IL6之照明光束EL1之主光線亦配置成隔著偏光分束器PBS相對XY面成垂直。 Since the mask surface P1 of the mask MB in FIG. 21 is a plane substantially parallel to the XY plane, the chief ray of the projection beam EL2 reflected from the mask MB is perpendicular to the XY plane. Therefore, the principal rays of the illumination beam EL1 from the illumination optical systems IL1 to IL6 in the illumination areas IR1 to IR6 on the illumination mask MB are also arranged to be perpendicular to the XY plane via the polarizing beam splitter PBS.
又,在從光罩MB反射之投影光束EL2之主光線與XY面成垂直之場合,投影光學模組PLM之第1光學系統61所包含之第1偏向構件70之第1反射面P3,係設成使來自偏光分束器PBS之投影光束EL2反射,使反射之投影光束EL2通過第1透鏡群71而射入第1凹面鏡72的角度。具體而言,第1偏向構件70之第1反射面P3,係相對第2光軸BX2(XY面)實質設定成45°。 In addition, when the chief ray of the projection beam EL2 reflected from the mask MB is perpendicular to the XY plane, the first reflecting surface P3 of the first deflecting
又,第4實施形態亦與先前之圖2同樣地,於XZ面內觀察時,從光罩MB上之照明區域IR1(及IR3、IR5)中心點至照明區域IR2(及IR4、IR6)中心點之X方向之直線距離,係設定成從順著基板支承圓筒25之支承面P2之基板P上之投影區域PA1(及PA3、PA5)之中心點至第2投影區域PA2(及PA4、PA6)中心點之周長距離實質相等。 In addition, in the fourth embodiment, similar to the previous figure 2, when viewed in the XZ plane, from the center point of the illumination area IR1 (and IR3, IR5) on the mask MB to the center of the illumination area IR2 (and IR4, IR6) The linear distance of the point in the X direction is set from the center point of the projection area PA1 (and PA3, PA5) on the substrate P along the support surface P2 of the
圖21之曝光裝置U3c亦同樣地,下位控制裝置16控制光罩保持機構11之移動裝置(掃描曝光用之線性馬達或微動用之致動器等),與基板支承圓筒25之旋轉同步地驅動光罩載台110。圖21之曝光裝置U3c,必須在光罩MB往+X方向之同步移動中進行掃描曝光後,進行使光罩MB返回至-X方向之初始位置的動作(捲回)。因此,在使基板支承圓筒25以一定速度連續旋轉而將基板P以等速(周速度Vp)持續進給時,在光罩MB之捲回動作期間係不進行對基板P上之圖 案曝光,而係在基板P之搬送方向斷續地(分離地)形成面板用圖案。然而,實用上,由於掃描曝光時之基板P之速度(周速度Vp)與光罩MB之速度係假定為50~100mm/s,因此在光罩MB之捲回時只要將光罩載台110以例如500~1000mm/s之最高速驅動,即能縮小形成於基板P上之面板用圖案在搬送方向之余白。 The same applies to the exposure device U3c of FIG. 21. The
其次,參照圖22說明第4實施形態之曝光裝置U3c中之光罩之圖案之投影像面Sm與基板P上之曝光面Sp的關係。圖22係說明光罩之圖案之投影像面Sm之移動與基板P上之曝光面Sp之移動的關係,相當於與以先前圖11所說明之投影像面Sm與曝光面Sp之關係相反者。亦即,圖22中,係將形成於平面狀(曲率半徑無限大)之投影像面Sm之圖案像轉印至曲率半徑Rp之曝光面Sp上。 Next, the relationship between the projected image surface Sm of the pattern of the mask in the exposure apparatus U3c of the fourth embodiment and the exposure surface Sp on the substrate P will be described with reference to FIG. 22. FIG. 22 illustrates the relationship between the movement of the projection image surface Sm of the mask pattern and the movement of the exposure surface Sp on the substrate P, which is equivalent to the opposite of the relationship between the projection image surface Sm and the exposure surface Sp described in FIG. 11 . That is, in FIG. 22, the pattern image formed on the projection image surface Sm of a plane shape (with an infinite radius of curvature) is transferred to the exposure surface Sp of the radius of curvature Rp.
此處,由於光罩M係平面,因此投影像面Sm(最佳聚焦面)亦係平面。因此,圖22中之投影像面Sm相當於先前圖7所示之以速度V移動之基準面HP。另一方面,基板P上之曝光面Sp,與先前圖7所示者同樣地,為曲率半徑Rp之圓筒面(在ZX平面中為圓弧)。 Here, since the mask M is a plane, the projection image surface Sm (best focus plane) is also a plane. Therefore, the projection image plane Sm in FIG. 22 corresponds to the reference plane HP moving at the speed V shown in FIG. 7 previously. On the other hand, the exposure surface Sp on the substrate P is a cylindrical surface with a radius of curvature Rp (an arc in the ZX plane) similarly to the one shown in FIG. 7.
本實施形態中亦同樣地,若將基板支承圓筒25(曝光面Sp)之角速度設為ωp,且與圖7同樣地在面KS之位置投影像面Sm與曝光面Sp接觸,則以XP=Rp‧sin(ωp‧t)求出該接點Cp沿著半徑Rp之曝光面Sp經過時間t後所移動之點Cp2之C方向位置Xp。此處之ωp‧t,係以接點Cp作為原點而從該處經過時間t後之曝光面Sp之旋轉角度θp。相對於此,投影像面Sm與曝光面Sp之接點Cp,沿著平坦之投影像面Sm從原點經過時間t後所移動之點Cp0之位置Xm由於係以Xm=V‧t(不過係V=Vm)表示,因此與先前各實施形態同樣地,於投影像面Sm與曝光面Sp之間產生射影誤差(偏移量或像變位量)。 Similarly in this embodiment, if the angular velocity of the substrate support cylinder 25 (exposure surface Sp) is set to ωp, and the projection image surface Sm is in contact with the exposure surface Sp at the position of the surface KS as in FIG. 7, XP =Rp‧sin(ωp‧t) Calculate the C-direction position Xp of the point Cp2 that the contact point Cp moves along the exposure surface Sp of the radius Rp after time t. Here, ωp‧t is the rotation angle θp of the exposure surface Sp after the time t has elapsed from the contact point Cp as the origin. In contrast, the contact point Cp between the projection image surface Sm and the exposure surface Sp is the position Xm of the point Cp0 moved along the flat projection image surface Sm from the origin after the time t has elapsed because Xm=V‧t (but It is represented by V=Vm). Therefore, as in the previous embodiments, a projection error (amount of offset or image displacement) occurs between the projection image surface Sm and the exposure surface Sp.
若將該射影誤差(偏移量或像變位量)設為偏移量△2,則偏移量△2係以△2=Xm-Xp求出,成為△2=V‧t-Rp‧sin(θp)。此偏移量△2之特性與圖8A中之偏移量△2之圖表相同,能藉由對投影像面Sm之移動速度V與曝光面Sp之 周速度Vp賦予些微之差而與先前各實施形態同樣地放大掃描曝光時能利用之投影區域PA之曝光寬度。為此,必須使投影像面Sm與曝光面Sp中曲率半徑較小者之面之速度(周速度)相對地大些許。本實施形態中,係以投影像面Sm之速度V(周速度Vm)較曝光面Sp之周速度Vp小例如圖8C中所例示之變化率α左右之方式,將光罩MB之掃描曝光時之周速度Vf設定為較基於投影倍率β所決定之基準速度V小些許。 If the projective error (offset or image displacement) is set as the offset △2, the offset △2 is calculated as △2=Xm-Xp and becomes △2=V‧t-Rp‧ sin(θp). The characteristic of the offset △2 is the same as the chart of the offset △2 in Fig. 8A. It can be compared with the previous ones by giving a slight difference between the moving speed V of the projection image surface Sm and the peripheral speed Vp of the exposure surface Sp. The embodiment similarly enlarges the exposure width of the projection area PA that can be used in scanning exposure. For this reason, it is necessary to make the speed (circumferential speed) of the surface with the smaller radius of curvature of the projection image surface Sm and the exposure surface Sp relatively larger. In this embodiment, the speed V (peripheral speed Vm) of the projection image surface Sm is smaller than the peripheral speed Vp of the exposure surface Sp, such as the rate of change α illustrated in FIG. 8C. When the scanning exposure of the mask MB The peripheral speed Vf is set to be slightly smaller than the reference speed V determined based on the projection magnification β.
此處,第1實施形態之F(x)之式,在本實施形態之曝光裝置U3c之場合係置換為下述之F’(x)之式。 Here, the formula of F(x) in the first embodiment is replaced with the formula of F'(x) below in the case of the exposure apparatus U3c of this embodiment.
此處,曝光裝置U3c藉由將此F’(x)適用於先前之第1實施形態之式並滿足該關係,即能得到與上述各實施形態同樣之效果。 Here, the exposure device U3c can obtain the same effect as the above-mentioned embodiments by applying this F'(x) to the formula of the previous first embodiment and satisfying this relationship.
此外,本實施形態之曝光裝置,光罩保持機構與基板支承機構中以曲面保持者為第1支承構件,以曲面或平面支承者為第2支承構件。 In addition, in the exposure apparatus of this embodiment, among the mask holding mechanism and the substrate support mechanism, the curved surface holder is used as the first support member, and the curved surface or flat surface support is used as the second support member.
以上,在各實施形態中雖使用圓筒狀或平面狀之光罩M,但即使係根據CAD資料控制DMD(數位鏡元件)或SLM(空間光調變元件)等而將對應圖案之光分布透過投影光學系統(亦可包含微透鏡陣列)投射於曝光面Sp上之無光罩曝光方式,亦能得到相同之效果。 Although the cylindrical or planar mask M is used in each embodiment above, even if DMD (digital mirror element) or SLM (spatial light modulator) is controlled based on CAD data, the light distribution of the corresponding pattern is The same effect can also be obtained through the maskless exposure method projected on the exposure surface Sp through the projection optical system (which may also include a microlens array).
又,各實施形態中,係比較圖案之投影像面Sm與基板P之曝光面Sp之曲率半徑,在掃描曝光時,藉由使面Sm與面Sp中曲率半徑較小者之周速度相對地大些許或使面Sm與面Sp中曲率半徑較大者之周速度(或直線移動速度)相對地小些許,即能放大掃描曝光能利用之曝光寬度。至於相對之周速度(或直線移動速度)之些微差需設為何種程度,則可依據像變位量△(差分量△、偏移量△1、△2)與解像力Rs來改變。例如,在先前圖19之評估值Q1、Q2之評估法中,雖將 解像力Rs設為2.09μm,但此係藉由投影光學系統PL之數值孔徑NA、曝光波長λ、製程常數k來決定者。實際上曝光於基板P上之圖案之最小尺寸(線寬),係取決於光罩M上所形成之圖案與投影倍率β。假設,待形成於基板P上之顯示面板用之圖案中最小之實際尺寸(實線寬度)可為5μm,則只要將該實線寬度之值設為解像力Rs來求出成為可容許之像變位量△之範圍內的周速度差(變化率α等)即可。亦即,可依據取決於曝光裝置之構成(NA,λ)之解像力Rs或待轉印於基板P上之圖案之最小尺寸來決定用以放大曝光寬度之周速度差之變化率α。 In addition, in each embodiment, the curvature radius of the projected image surface Sm of the pattern and the exposure surface Sp of the substrate P is compared. During scanning exposure, the peripheral speed of the surface Sm and the surface Sp of the smaller radius of curvature is made relatively To be slightly larger or to make the peripheral speed (or linear movement speed) of the surface Sm and the surface Sp with the larger radius of curvature relatively small, that is, the exposure width available for scanning exposure can be enlarged. As for the degree to which the relative peripheral speed (or linear movement speed) needs to be set, it can be changed according to the image displacement △ (difference component △, offset △1, △2) and resolution Rs. For example, in the previous evaluation method of the evaluation values Q1 and Q2 in FIG. 19, although the resolution Rs is set to 2.09μm, this is determined by the numerical aperture NA of the projection optical system PL, the exposure wavelength λ, and the process constant k . In fact, the minimum size (line width) of the pattern exposed on the substrate P depends on the pattern formed on the mask M and the projection magnification β. Assuming that the smallest actual size (width of the solid line) in the pattern for the display panel to be formed on the substrate P can be 5 μm, the value of the width of the solid line is set as the resolution Rs to obtain the allowable image change The difference in peripheral velocity (rate of change α, etc.) within the range of the position amount △ is sufficient. That is, the rate of change α of the peripheral velocity difference used to enlarge the exposure width can be determined based on the resolution Rs depending on the configuration (NA, λ) of the exposure device or the minimum size of the pattern to be transferred on the substrate P.
以上,藉由使用各實施形態所示之曝光裝置來實施以下之掃描曝光方法。亦即,在將於以既定曲率半徑彎曲成圓筒狀之光罩(M、MB)之一面所形成之圖案透過投影光學系統PL(PLM)投影至被支承成圓筒狀或平面狀之可撓性基板P之表面(曝光面Sp),且一邊使光罩M沿著彎曲之一面以既定速度移動,一邊沿著支承成圓筒狀或平面狀之基板表面(Sp)以既定速度使基板P移動,將投影光學系統所形成之圖案之投影像掃描曝光至基板上時,將投影光學系統所形成之圖案之投影像以最佳聚焦狀態形成之投影像面Sm之曲率半徑設為Rm(亦包含Rm=∞)、將支承成圓筒狀或平面狀之基板P表面(曝光面)Sp之曲率半徑設為Rp(亦包含Rp=∞)、將藉由光罩(M、MB)之移動而沿著投影像面(Sm)移動之圖案像之移動速度設為Vm、將沿著基板P之表面(曝光面)Sp之既定速度設為Vp時,在Rm<Rp之場合設定為Vm>Vp,在Rm>Rp之場合設定為Vm<Vp。 As mentioned above, the following scanning exposure method is implemented by using the exposure apparatus shown in each embodiment. That is, the pattern formed on one surface of the mask (M, MB) curved into a cylindrical shape with a predetermined radius of curvature is projected through the projection optical system PL (PLM) to a cylindrical or flat support The surface of the flexible substrate P (exposure surface Sp), and while moving the mask M along one of the curved surfaces at a predetermined speed, the substrate is moved at a predetermined speed along the substrate surface (Sp) supported in a cylindrical or planar shape. P moves, when scanning and exposing the projection image of the pattern formed by the projection optical system to the substrate, set the projection image of the pattern formed by the projection optical system in the best focus state as the radius of curvature of the projection image surface Sm as Rm( It also includes Rm=∞), the radius of curvature of the surface (exposure surface) Sp of the substrate P supported in a cylindrical or flat shape is set to Rp (also includes Rp=∞), and the mask (M, MB) The moving speed of the pattern image that moves along the projection image surface (Sm) is set to Vm. When the predetermined speed of Sp along the surface (exposure surface) of the substrate P is set to Vp, set it to Vm when Rm<Rp >Vp, set Vm<Vp when Rm>Rp.
圖23係顯示第5實施形態之曝光裝置之整體構成的圖。處理裝置U3d相當於圖1及圖2所示之處理裝置U3。以下中,將處理裝置U3d稱為曝光裝置U3d來說明。此曝光裝置U3d具有更換光罩M之機構。曝光裝置U3d由於係與前述之曝光裝置U3相同之構造,因此共通之構造原則上省略說明。 Fig. 23 is a diagram showing the overall configuration of the exposure apparatus of the fifth embodiment. The processing device U3d is equivalent to the processing device U3 shown in FIGS. 1 and 2. Hereinafter, the processing device U3d is referred to as an exposure device U3d for description. This exposure device U3d has a mechanism for replacing the mask M. Since the exposure device U3d has the same structure as the aforementioned exposure device U3, the description of the common structure is omitted in principle.
曝光裝置U3d除了具有上述之驅動輥R4~R6、邊緣位置控制器 EPC3及對準顯微鏡AM1、AM2以外,還具有光罩保持機構11、基板支承機構12、照明光學系統(照明系)IL、投影光學系統PL、下位控制裝置16。 In addition to the above-mentioned drive rollers R4 to R6, edge position controller EPC3, and alignment microscopes AM1 and AM2, the exposure device U3d also has a
下位控制裝置16控制曝光裝置U3d之各部,使各部實施處理。下位控制裝置16可以是元件製造系統1之上位控制裝置5之一部分或全部。又,下位控制裝置16亦可以是受上位控制裝置5控制、與上位控制裝置5不同之另一裝置。下位控制裝置16,例如包含電腦。本實施形態中,下位控制裝置16連接從安裝於光罩M之資訊儲存部(例如條碼、能儲存磁性儲存媒體或資訊之IC標籤)讀取與光罩M相關之資訊之讀取裝置17、測量光罩M之形狀、尺寸及安裝位置等之測量裝置18。 The
此外,光罩保持機構11雖係以光罩保持圓筒21保持圓筒體之光罩M(以高反射部與低反射部形成之光罩圖案面),但不限於此構成這點係與第1實施形態相同。本實施形態中,在稱光罩M或圓筒光罩時,不僅指光罩M,而亦包含保持有光罩M之狀態之光罩保持圓筒21(光罩M與光罩保持圓筒21之組裝體)。 In addition, although the
基板支承機構12係將以被照明光照射之來自光罩M之圖案之光曝光之基板P沿著彎曲之面或平面支承。基板支承圓筒25形成為具有以延伸於Y方向之第2軸AX2為中心之曲率半徑Rfa之外周面(圓周面)之圓筒形狀。此處,第1軸AX1與第2軸AX2彼此平行,將包含第1軸AX1及第2軸AX2且與兩者平行之平面設為中心面CL。中心面CL係由兩條直線(此例中為第1軸AX1及第2軸AX2)所定義之平面。基板支承圓筒25之圓周面之一部分為支承基板P之支承面P2。也就是說,基板支承圓筒25係藉由將基板P捲繞於其支承面P2,據以將支承基板P來搬送。如上述,基板支承圓筒25具有以從作為既定軸線之第2軸AX2起一定半徑(曲率半徑Rfa)彎曲之曲面(外周面),於外周面捲繞有基板P之一部分而以第2軸AX2作為中心旋轉。第2驅動部26連接於下位控制裝置16,以第2軸AX2為旋轉中心軸使基板支承圓筒25旋轉。 The
一對空氣翻轉桿ATB1、ATB2隔著基板支承圓筒25分別設在基板P之搬送方向上游側及下游側。一對空氣翻轉桿ATB1、ATB2設於基板P之表面側,於鉛直方向(Z方向)配置於較基板支承圓筒25之支承面P2下方側。一對導輥27、28隔著一對空氣翻轉桿ATB1、ATB2分別設在基板P之搬送方向上游側及下游側。一對導輥27、28其一方之導輥27將從驅動輥R4搬送而來之基板P導引至空氣翻轉桿ATB1,其另一方之導輥28則將從空氣翻轉桿ATB2搬送而來之基板P引導至驅動輥R5。 A pair of air inversion rods ATB1 and ATB2 are respectively provided on the upstream side and the downstream side in the conveyance direction of the substrate P via the
因此,基板支承機構12將從驅動輥R4搬送來之基板P藉由導輥27導引至空氣翻轉桿ATB1,將通過空氣翻轉桿ATB1之基板P導入基板支承圓筒25。基板支承機構12藉由以第2驅動部26使基板支承圓筒25旋轉,而將導入基板支承圓筒25之基板P一邊以基板支承圓筒25之支承面P2支承,一邊往空氣翻轉桿ATB2搬送。基板支承機構12將搬送至空氣翻轉桿ATB2之基板P藉由空氣翻轉桿ATB2導引至導輥28,將通過導輥28之基板P導引至驅動輥R5。 Therefore, the
此時,連接於第1驅動部22及第2驅動部26之下位控制裝置16,使圓筒滾筒21與基板支承圓筒25以既定旋轉速度比同步旋轉,藉此將形成在光罩M之光罩面P1之光罩圖案之像,連續的反覆投影曝光於捲繞在基板支承圓筒25之支承面P2之基板P表面(順著圓周面彎曲之面)。 At this time, the
曝光裝置U3d如圖23所示,於光罩M之外周面外側具備檢測預先形成於光罩M之對準標記等之對準顯微鏡GS1、GS2。又,曝光裝置U3d具有用以檢測光罩M及光罩保持圓筒21之旋轉角度等之編碼器讀頭EH1、EH2。此等係沿著光罩M(或光罩保持圓筒21)之周方向配置。編碼器讀頭EH1、EH2例如安裝於光罩保持圓筒21之第1軸AX1方向之兩端部,讀取刻設於與光罩保持圓筒21一起以第1軸AX1為中心旋轉之標尺圓盤SD之外周面之標尺(於周方向以一定節距刻設之格子狀圖案)。進而,曝光裝置U3d能設置測量旋轉之光罩M之外周面(光 罩面P1)在徑方向之微小變位,以檢測光罩面P1相對於投影光學系統PL之焦點偏移之焦點測量裝置AFM及檢測附著於光罩面P1上之異物之異物檢查裝置CD。此等雖能配置於繞光罩M之外周面之任意方位,但只要設置於避開光罩更換時之光罩M之插拔移動空間的方向即可。 As shown in FIG. 23, the exposure apparatus U3d is equipped with the alignment microscopes GS1, GS2 which detect the alignment mark etc. formed in the photomask M beforehand on the outer peripheral surface of the photomask M. In addition, the exposure device U3d has encoder heads EH1 and EH2 for detecting the rotation angle of the mask M and the
此外,編碼器讀頭EH1之標尺讀取位置,在與第1軸AX1正交之XZ面中,設置成一致於光罩M上之第奇數個照明區域IR1、IR3、IR5之周方向中心位置(圖5或圖7中之交點Q1),編碼器讀頭EH2之標尺讀取位置,在XZ面中,設置成一致於光罩M上之第偶數個照明區域IR2、IR4、IR6之周方向中心位置。又,藉由編碼器讀頭EH1、EH2測量之標尺,亦可與光罩圖案一起形成於光罩保持圓筒21(光罩M)之兩端部外周面。 In addition, the scale reading position of the encoder head EH1 is set in the XZ plane orthogonal to the first axis AX1 to coincide with the circumferential center position of the odd-numbered illumination areas IR1, IR3, and IR5 on the mask M (Intersection Q1 in Fig. 5 or Fig. 7), the scale reading position of the encoder read head EH2 is set in the XZ plane to be consistent with the circumferential direction of the even-numbered illumination areas IR2, IR4, and IR6 on the mask M Central location. In addition, the scales measured by the encoder heads EH1 and EH2 may also be formed on the outer peripheral surface of both ends of the mask holding cylinder 21 (mask M) together with the mask pattern.
曝光裝置U3d,除了具備檢測基板P上之標記等之對準顯微鏡AM1、AM2以外,還具有用以檢測基板支承圓筒25之旋轉角度等之編碼器讀頭EN1、EN2、EN3、EN4。此等係沿著基板支承圓筒25之周方向配置。編碼器讀頭EN1、EN2、EN3、EN4,例如安裝於基板支承圓筒25之第2軸AX2方向之兩端部,讀取刻設於與基板支承圓筒25一起以第2軸AX2旋轉之標尺圓盤之外周面或基板支承圓筒25在第2軸AX2方向之兩端外周面之標尺(於周方向以一定節距刻設之格子狀圖案)。 The exposure device U3d has not only alignment microscopes AM1, AM2 for detecting marks on the substrate P, etc., but also encoder heads EN1, EN2, EN3, EN4 for detecting the rotation angle of the
此外,編碼器讀頭EN1之標尺讀取位置,在與第2軸AX2正交之XZ面中,設置成一致於對準顯微鏡AM1之觀察視野之周方向位置,編碼器讀頭EN4之標尺讀取位置,在XZ面中,設置成一致於對準顯微鏡AM2之觀察視野之周方向位置。同樣地,編碼器讀頭EN2之標尺讀取位置,設置成一致於基板P上之第奇數個投影區域PA1、PA3、PA5之周方向中心位置,編碼器讀頭EN3之標尺讀取位置,設置成一致於基板P上之第偶數個投影區域PA2、PA4、PA6之周方向中心位置。 In addition, the scale reading position of the encoder read head EN1 is set in the XZ plane orthogonal to the second axis AX2 to coincide with the circumferential position of the observation field of view of the alignment microscope AM1, and the scale read of the encoder read head EN4 Take the position and set it to coincide with the circumferential position of the observation field of view of the alignment microscope AM2 in the XZ plane. Similarly, the scale reading position of the encoder read head EN2 is set to be consistent with the circumferential center position of the odd-numbered projection areas PA1, PA3, PA5 on the substrate P, and the scale reading position of the encoder read head EN3 is set They are aligned with the circumferential center positions of the even-numbered projection areas PA2, PA4, and PA6 on the substrate P.
再者,如圖23所示,曝光裝置U3d具備用以更換基板P之更換機構150。更換機構150能將曝光裝置U3d所保持之光罩M更換成曲率半徑Rm相同之其他光罩M,或更換成曲率半徑Rm不同之其他光罩M。在更換成曲率半徑Rm相同之光罩M之場合,更換機構150,亦可僅將光罩M從光罩保持圓筒21卸除並更換,亦可將光罩M連同光罩保持圓筒21一起從曝光裝置U3d卸除並更換。在更換成曲率半徑Rm不同之光罩M之場合,更換機構150,能將光罩M連同光罩保持圓筒21一起從曝光裝置U3d卸除並更換。在光罩M與光罩保持圓筒21為一體之場合,更換機構150亦可將兩者一體更換。更換機構150只要能將光罩M或光罩M與光罩保持圓筒21之組裝體安裝於曝光裝置U3d或從曝光裝置U3d卸除,任何構造皆可。 Furthermore, as shown in FIG. 23, the exposure apparatus U3d is equipped with the replacement|
曝光裝置U3d藉由具備更換機構150,而能將直徑不同之光罩M自動地安裝以將光罩圖案曝光於基板P。因此,具備曝光裝置U3d之元件製造系統1,能對應所製造之元件(顯示面板)之尺寸使用適當直徑之光罩M。其結果,元件製造系統1能抑制基板P不被使用之余白部分產生,抑制基板P之浪費,減低元件之製造成本。如上述,具備更換機構150之曝光裝置U3d,由於元件製造系統1所製造之元件(顯示面板)尺寸之選擇自由度大,因此不需要如替換曝光裝置本身之類過大之設備投資,而有能有效製造不同吋尺寸之顯示面板的優點。 The exposure device U3d is equipped with the
在更換成直徑不同之光罩M之場合,在兩方之光罩M間,藉由光罩面P1之曲率及第1軸AX1在Z方向之位置等之不同,照明光束EL1與光罩M與投影光束EL2之關係、光罩M上之照明區域IR之位置及照明光束EL1之主光線之非遠心程度等,會在直徑不同之光罩M彼此間變化,或編碼器讀頭EN1、EH2與標尺圓盤SD之位置關係會不同。 When replacing the mask M with a different diameter, between the two masks M, the illumination beam EL1 and the mask M are projected by the difference in the curvature of the mask surface P1 and the position of the first axis AX1 in the Z direction. The relationship between the light beam EL2, the position of the illumination area IR on the mask M and the non-telecentric degree of the chief ray of the illumination beam EL1, etc., will vary between masks M with different diameters, or the encoder read head EN1, EH2 and the scale The positional relationship of the disc SD will be different.
因此,在將曝光裝置U3d之光罩M更換成直徑不同之光罩M之場合,係將形成於光罩M之光罩面P1之光罩圖案之像對基板P以適切之像質投影曝 光,且在多透鏡方式之場合,必須將出現於複數個投影區域PA1~PA6之各個之光罩圖案之像以良好精度彼此接續之方式調整曝光裝置U3d內之關聯機構及與此有關係之部分。 Therefore, when the mask M of the exposure device U3d is replaced with a mask M with a different diameter, the image of the mask pattern formed on the mask surface P1 of the mask M is projected and exposed to the substrate P with a suitable image quality And in the case of the multi-lens method, the images of the mask patterns appearing in the multiple projection areas PA1~PA6 must be adjusted to each other with good precision to adjust the related mechanism in the exposure device U3d and the parts related to it .
本實施形態中,在更換成直徑不同之光罩M時,例如係將下位控制裝置16作為調整用之控制部(調整部)使用,進行變更曝光裝置U3d之各部、具體而言為構成照明光學系統IL或投影光學系統PL之光學構件之至少一部分位置或將光學構件之一部分切換成不同特性之構件等的調整。藉由此方式,在光罩M之更換後,曝光裝置U3d能對基板P適切且良好地曝光。亦即,曝光裝置U3d能良好地實現對元件之尺寸自由度大之曝光、亦即使用不同直徑尺寸之光罩M之曝光。其次,說明將曝光裝置U3d所使用之光罩M更換成直徑不同之光罩M或相同直徑之光罩M之步驟的概略與曝光裝置U3d之調整具體例。 In this embodiment, when replacing the mask M with a different diameter, for example, the
圖24係顯示將曝光裝置所使用之光罩更換為其他光罩時之步驟的流程圖。圖25係顯示第奇數個之第1投影光學系統之光罩側之視野區域之位置與第偶數個之第2投影光學系統之光罩側之視野區域之位置之關係的圖。圖26係顯示於表面具有儲存有光罩資訊之資訊儲存部的光罩的立體圖。圖27係儲存有曝光條件之曝光條件設定表之示意圖。 Fig. 24 is a flowchart showing the steps when the photomask used in the exposure apparatus is replaced with another photomask. 25 is a diagram showing the relationship between the position of the field of view area on the mask side of the odd-numbered first projection optical system and the position of the field of view area on the mask side of the even-numbered second projection optical system. FIG. 26 is a perspective view showing a photomask with an information storage portion storing photomask information on the surface. Fig. 27 is a schematic diagram of an exposure condition setting table storing exposure conditions.
將曝光裝置U3d所使用之光罩M更換為不同直徑之光罩M時,在步驟S101中,圖23所示之下位控制裝置16開始光罩M之更換動作。具體而言,下位控制裝置16係驅動更換機構150而將目前安裝於曝光裝置U3d之光罩M卸除後,驅動更換機構150將更換對象之光罩M安裝於曝光裝置U3d。在此更換中,更換機構150係將具有光罩M之光罩保持圓筒21連同作為第1軸AX1之軸構件一起卸除,將直徑不同之光罩M及光罩保持圓筒21安裝於曝光裝置U3d。此時,在於光罩保持圓筒21兩端部與第1軸AX1同軸地安裝有標尺圓盤SD時,亦可連同該標尺圓盤SD一起更換。 When the mask M used in the exposure device U3d is replaced with a mask M of a different diameter, in step S101, the
本實施形態中,在更換成直徑不同之光罩M時,係根據安裝於新的曝光裝置U3d之光罩M(光罩面P1)之直徑變更在光罩保持圓筒21之旋轉中心軸即第1軸AX1在Z軸方向之軸構件支承位置。因此,曝光裝置U3d具有能將可旋轉地保持光罩保持圓筒21之軸承裝置往Z軸方向移動之機構。 In this embodiment, when replacing the mask M with a different diameter, the diameter of the mask M (mask surface P1) installed in the new exposure device U3d is changed on the rotation center axis of the
此軸承裝置,具有將往光罩保持圓筒21兩端側突出之作為第1軸AX1之軸構件之各個能旋轉地軸支之軸承(滾珠軸承、滾針軸承等接觸型或空氣軸承等非接觸型)。接觸型之軸承係以固定於光罩保持圓筒21之軸構件之內輪與固定於曝光裝置U3d本體側之外輪與夾入於內輪與外輪間之滾珠或滾針所構成。 This bearing device has bearings that are rotatably supported as shaft members of the first shaft AX1 protruding toward both ends of the mask holding cylinder 21 (contact type such as ball bearings, needle bearings, etc., or non-contact type such as air bearings) type). The contact type bearing is composed of an inner wheel fixed to the shaft member of the
為了進行順暢之光罩更換,較佳係在接觸型軸承之內輪與外輪兩者附著於光罩保持圓筒21之軸構件側之狀態下,接觸型軸承外輪從曝光裝置U3d本體側之軸承裝置脫離的構造。又,曝光裝置U3d本體側之軸承裝置,包含調整在YZ面內之傾斜以使第1軸AX1(軸構件)與第2軸AX2(Y軸)平行的Z驅動機構,且具有調整在XY面內之傾斜以使第1軸AX1(軸構件)與中心面亦平行的X驅動機構。 In order to perform smooth mask replacement, it is preferable to set the contact type bearing outer wheel from the bearing on the main body side of the exposure device U3d when both the inner and outer wheels of the contact bearing are attached to the shaft member side of the
圖25係顯示將保持於光罩保持圓筒21之光罩M更換成直徑較此等小之光罩保持圓筒21a所保持之光罩Ma之情形的狀態。光罩M之曲率半徑係Rm,光罩Ma之曲率半徑係Rma(Rma<Rm)。圖25中之IRa係第1投影光學系統(圖23所示之第1投影光學系統PL1、第3投影光學系統PL3及第5投影光學系統PL5)之光罩M側視野區域(相當於來自照明光學系統IL之照明光束EL1照射於光罩M之第奇數個之照明區域IR1、IR3、IR5),IRb係第2投影光學系統(圖23所示之第2投影光學系統PL2、第4投影光學系統PL4及第6投影光學系統PL6)之光罩M側視野區域(相當於來自照明光學系統IL之照明光束EL1照射於光罩M之第偶數個之照明區域IR2、IR4、IR6)。 FIG. 25 shows a state in which the mask M held by the
本實施形態中,較佳為在將光罩M更換成光罩Ma前後,在Z軸方 向之第1投影光學系統之視野區域IRa與在Z方向之第2投影光學系統之視野區域IRb不變。Z軸方向係與光罩M(光罩保持圓筒21)之旋轉中心軸(第1軸AX1)與基板支承圓筒25之旋轉中心軸(第2軸AX2)兩者正交,係沿著中心面CL之方向。藉由使在Z軸方向之視野區域IRa與視野區域IRb之空間上配置關係在光罩M之更換前後不變,而能將照明光學系統IL及投影光學系統PL之調整、各種測量用機器(編碼器讀頭EH1、EH2、對準顯微鏡GS1、GS2等)之位置調整或與此等關連之零件之變更等抑制為最小限度。 In this embodiment, it is preferable that the field of view area IRa of the first projection optical system in the Z axis direction and the field of view area IRb of the second projection optical system in the Z direction remain unchanged before and after the mask M is replaced with the mask Ma. . The Z axis direction is orthogonal to the rotation center axis (first axis AX1) of the mask M (mask holding cylinder 21) and the rotation center axis (second axis AX2) of the
本實施形態雖係以如圖23所示之多透鏡方式為前提,但為於Y方向配置單一或複數個將設定於光罩M外周面之周方向一處之照明區域IR內之圖案投影至投影區域PA內之投影光學系統的曝光裝置的場合,可將其照明區域IR與投影區域PA之周方向之各中心均配置於中心面CL上。此種曝光裝置,在將半徑(曲率半徑)Rm之光罩M更換成半徑Rma(Rma<Rm)之光罩Ma之場合,只要將軸承裝置Z方向驅動成光罩Ma之旋轉中心(軸構件)往Z方向位移半徑差(Rma-Rm)即可。 Although this embodiment is based on the premise of the multi-lens method as shown in FIG. 23, it is to arrange a single or a plurality of patterns in the Y direction to project the pattern in the illumination area IR set at one position on the peripheral surface of the mask M to In the case of the exposure device of the projection optical system in the projection area PA, each center in the circumferential direction of the illumination area IR and the projection area PA can be arranged on the center plane CL. In this type of exposure device, when the mask M with a radius (radius of curvature) Rm is replaced with a mask Ma with a radius of Rma (Rma<Rm), it is only necessary to drive the bearing device in the Z direction to the rotation center (shaft member) of the mask Ma ) Displace the radius difference (Rma-Rm) in the Z direction.
然而,在本實施形態之多透鏡方式中,由於第奇數個投影光學系統之視野區域IRa(與第奇數個投影區域PA共軛之物面)位於光罩M之外周面上之周方向分離之兩處之其中一處,第偶數個投影光學系統之視野區域IRb(與第偶數個投影區域PA共軛之物面)位於該兩處之另一處,因此即使單將光罩Ma往Z方向位置變更半徑差(Rma-Rm),仍會視半徑之程度而有無法得到良好聚焦精度(或良好之接續位置精度)的情形。因此,本實施形態中,係使軸承裝置往Z方向驅動成被更換之圓筒光罩之外周面正確地對齊於第奇數個投影光學系統之視野區域IRa(物面)與第偶數個投影光學系統之視野區域IRb(物面)兩者。 However, in the multi-lens method of the present embodiment, since the field of view area IRa of the odd-numbered projection optical system (the object surface conjugated to the odd-numbered projection area PA) is located on the outer peripheral surface of the mask M and separated in the circumferential direction In one of the two places, the field of view area IRb of the even-numbered projection optical system (object plane conjugated to the even-numbered projection area PA) is located in the other of the two places, so even if the mask Ma is simply moved to the Z direction The position change radius difference (Rma-Rm), depending on the degree of the radius, may not get good focus accuracy (or good splicing position accuracy). Therefore, in this embodiment, the bearing device is driven in the Z direction so that the outer peripheral surface of the replaced cylindrical mask is correctly aligned with the field of view area IRa (object surface) of the odd-numbered projection optical system and the even-numbered projection optical system. Both the system's field of view area IRb (object plane).
以上實施形態中,係依照被安裝之圓筒光罩之直徑改變圓筒光罩之Z方向之位置以使第奇數個投影光學系統(PL1、PL3、PL5)之視野區域IRa與第 偶數個投影光學系統(PL2、PL4、PL6)之視野區域IRb在曝光裝置內之位置(XYZ之各方向)不變。如此,若使視野區域IRa、IRb之位置不變,則有對直徑不同之圓筒光罩之裝置側之變更位置或調整位置較少即可的優點。然而,此情形下,使圓筒光罩旋轉之馬達及使往XYZ方向微動之致動器之類的驅動系亦整體地使往Z方向移動,而亦有損及驅動系之穩定性的可能性。 In the above embodiment, the Z direction position of the cylindrical mask is changed according to the diameter of the cylindrical mask to be installed so that the field of view area IRa of the odd-numbered projection optical system (PL1, PL3, PL5) and the even-numbered projection The position of the visual field IRb of the optical system (PL2, PL4, PL6) in the exposure device (in each direction of XYZ) does not change. In this way, if the positions of the field of view regions IRa and IRb are kept unchanged, there is an advantage that there are fewer changes or adjustment positions on the device side of cylindrical masks with different diameters. However, in this case, a drive system such as a motor that rotates the cylindrical mask and an actuator that slightly moves in the XYZ direction also moves in the Z direction as a whole, which may also impair the stability of the drive system. Sex.
因此,為了得到能保持驅動系之穩定性之優點,亦可不改變在曝光裝置內之圓筒光罩之旋轉中心(第1軸AX1、軸構件)之Z位置(或X位置)而安裝直徑不同之圓筒光罩。如此,除了能得到能保持驅動系之穩定性之優點以外,亦能得到僅更換相對直徑一定之旋轉軸而安裝於外側之中空狀圓筒光罩(外周面之半徑不同)即可之特徵效果。為了對應此方式,在曝光裝置側,最好係先作成可進行各投影光學系統之焦點位置調整、各種對準感測器(顯微鏡)對圓筒光罩之焦點位置調整、視野區域IRa、IRb及對準感測器之檢測視野往XYZ方向之位置調整、照明光束EL1之主光線傾斜與收斂程度之調整或第奇數個投影光學系統(PL1、PL3、PL5)與第偶數個投影光學系統(PL2、PL4、PL6)之間隔調整等的構成。 Therefore, in order to obtain the advantage of maintaining the stability of the drive system, the Z position (or X position) of the cylindrical mask in the exposure device can be changed without changing the Z position (or X position) of the cylindrical mask. The cylinder mask. In this way, in addition to the advantage of maintaining the stability of the drive system, the characteristic effect of only replacing the rotating shaft with a certain relative diameter and installing it on the outer hollow cylindrical mask (different outer peripheral surface radius) can be obtained. . In order to cope with this method, on the exposure device side, it is best to make the focus position adjustment of each projection optical system, the focus position adjustment of the cylindrical mask by various alignment sensors (microscope), and the field of view area IRa, IRb. And adjust the position adjustment of the detection field of view of the sensor to the XYZ direction, the adjustment of the tilt and convergence of the principal ray of the illumination beam EL1, or the odd number of projection optical systems (PL1, PL3, PL5) and the even number of projection optical systems ( PL2, PL4, PL6) interval adjustment, etc.
接著,本實施形態中,如圖23所示,係藉由更換機構150將光罩M(及光罩保持圓筒21)從軸承裝置取出,將另外準備之光罩Ma(具有光罩保持圓筒21a)安裝於軸承裝置。在光罩M之取出及光罩Ma之安裝時,若圖23中之焦點測量裝置AFM或異物檢查裝置CD會與光罩或更換機構150之一部分空間上干涉,則先使該等暫時退避。又,如圖23所示,由於相對於支承第1軸AX1之軸承裝置,投影光學系統PL及照明光學系統IL位於-Z方向,對準顯微鏡GS1、GS2位於-X方向,因此能搬出、搬入光罩M或光罩Ma之方向係相對軸承裝置為+Z方向或+X方向或±Y方向(第1軸AX1之方向)。 Next, in this embodiment, as shown in FIG. 23, the mask M (and the mask holding cylinder 21) is taken out from the bearing device by the
光罩M更換為直徑不同之光罩Ma後,進至步驟S102,下位控制 裝置16取得更換後安裝於曝光裝置U3d之光罩Ma之資訊(更換後光罩資訊)。更換後光罩資訊,例如係直徑、周長、寬度、厚度等尺寸、公差、圖案種類、光罩面P1之真圓度、偏心特性或平坦度等光罩相關之各種規格值或修正值等。 After the mask M is replaced with a mask Ma with a different diameter, the process proceeds to step S102, and the
此等資訊,例如如圖26所示,儲存於光罩保持圓筒21a表面所設置之資訊儲存部19。資訊儲存部19例如係條碼、全像圖、或IC標籤等。本實施形態中,資訊儲存部19雖設於光罩保持圓筒21a表面,但亦可與元件用圖案一起設於光罩Ma。本實施形態中,在稱為圓筒光罩表面時,亦包含光罩Ma之表面及光罩保持圓筒21a表面之任一者。圖26中,資訊儲存部19雖設於光罩保持圓筒21a之圓筒狀之外周面,但亦可設於光罩保持圓筒21a之軸線方向之端面部。 Such information is stored in the
下位控制裝置16,係取得讀取裝置17從資訊儲存部19讀取之更換後光罩資訊。讀取裝置17,在資訊儲存部19為條碼時可使用條碼讀取機,在為IC標籤時可使用IC標籤讀取機等。資訊儲存部19亦可係於光罩Ma預先寫入有資訊之部分。 The
更換後光罩資訊,亦可包含於與曝光條件相關之曝光資訊。曝光資訊係曝光對象之基板P之資訊、基板P之掃描速度、照明光束EL1之功率之類曝光裝置U3d對基板P施加曝光處理時所必須之資訊。本實施形態中,係於曝光資訊加入更換後光罩資訊,進行各種調整及修正,且進行曝光時之裝置運轉上之製法條件及參數設定。曝光資訊,例如儲存於圖27所示之曝光資訊儲存表TBL,儲存於下位控制裝置16之儲存部或上位控制裝置5之儲存部。下位控制裝置16係從前述之儲存部讀出曝光資訊儲存表TBL,取得更換後光罩資訊。此外,更換後光罩資訊亦可係透過對下位控制裝置16或上位控制裝置5之輸入裝置(鍵盤或滑鼠等)來輸入者。此情形下,下位控制裝置16係從前述之輸入裝置取得更換後光罩資訊。下位控制裝置16在取得更換後光罩資訊後,進至步驟S103。 The mask information after replacement may also be included in the exposure information related to the exposure conditions. The exposure information is information necessary for the exposure device U3d such as the information of the substrate P to be exposed, the scanning speed of the substrate P, and the power of the illumination beam EL1 when applying the exposure processing to the substrate P. In this embodiment, the replacement mask information is added to the exposure information, various adjustments and corrections are made, and the manufacturing method conditions and parameter settings of the device operation during exposure are set. The exposure information is, for example, stored in the exposure information storage table TBL shown in FIG. 27, and stored in the storage section of the
步驟S103中,下位控制裝置16係依據更換後之光罩Ma之直徑收 集或運算曝光裝置U3d之必須調整之部分及調整所必要之條件相關之資料。作為必須調整之部分,例如有光罩M在Z軸方向之位置、照明光學系統IL、投影光學系統PL、光罩M之旋轉速度、曝光寬度(照明區域IR之周方向之寬度)、編碼器讀頭EH1、EH2之位置或姿勢、對準顯微鏡GS1、GS2之位置或姿勢等。又,本實施形態中,由於更換後之光罩Ma之旋轉中心軸(第1軸AX1a)係從更換前之光罩M之旋轉中心位置往Z軸方向位移,因此必須以驅動光罩Ma之驅動源(例如電動機)之輸出軸能與光罩Ma之軸構件連結之方式先在步驟S103中調整(位移)驅動源在曝光裝置本體內之安裝位置。因此,曝光裝置U3d具有調整部,其係將彼此直徑不同之複數個光罩之一個能更換地安裝,且依據使繞作為既定軸線之第1軸AX1旋轉之光罩保持機構11所安裝之光罩Ma之直徑調整至少第1軸AX1與基板支承機構之距離。此調整部係將安裝於光罩保持機構11之光罩之外周面與基板支承機構所支承之基板P之間隔設定於預先決定之容許範圍內。 In step S103, the
如前所述,本實施形態中,在Z軸方向之照明視野IR之位置在更換成直徑不同之光罩Ma之前後係不變。因此,例如在步驟S101中,下位控制裝置16僅更換成直徑不同之光罩Ma,在步驟S102中取得更換後光罩資訊後,據此將光罩Ma在Z軸方向之照明視野IR之位置控制成與更換前同等之位置。此外,亦可在更換成光罩Ma前,下位控制裝置16從例如曝光資訊儲存表TBL取得光罩Ma之資訊,根據此資訊以更換成光罩Ma之時點將光罩Ma在Z軸方向之照明視野IR之位置控制成與更換前同等之位置。其次,說明步驟S103之調整例。 As described above, in the present embodiment, the position of the illumination field of view IR in the Z-axis direction is unchanged before and after replacement with a mask Ma with a different diameter. Therefore, for example, in step S101, the
圖28係基於先前之圖5概略地顯示直徑不同之光罩間之照明光束及投影光束之狀態的圖。如前所述,在光罩M之更換前後中,若使照明視野IR在Z軸方向之位置不變化,則如圖25所示,光罩M及光罩保持圓筒21之旋轉中心軸、亦即第1軸AX1在Z軸方向之位置會變化。具體而言,直徑小之光罩Ma之旋轉中心軸AX1a,較直徑大之光罩M之第1軸AX1更接近基板支承圓筒25之旋轉中 心軸即第2軸AX2。 FIG. 28 is a diagram schematically showing the state of the illumination beam and the projection beam between masks with different diameters based on the previous FIG. 5. As mentioned above, before and after the replacement of the mask M, if the position of the illumination field of view IR in the Z-axis direction does not change, as shown in FIG. 25, the mask M and the mask maintain the rotation center axis of the
即使在更換後之光罩Ma直徑較更換前之光罩M小之場合,亦如圖28所示,不改變光罩Ma(光罩面P1a)上照明區域IR之周方向中心即交點Q1在XYZ座標內之絕對位置(曝光裝置內之唯一位置)。因此,若如圖28所示,一邊維持對更換前之光罩M設定之照明光束EL1之照明條件、亦即在XZ面內使照明光束EL1之各主光線往半徑(曲率半徑)Rm之1/2之點Q2傾斜的條件,一邊將照明光束EL1照射於直徑小之光罩Ma,則在光罩Ma上之照明區域IR反射之投影光束EL2a之各主光線會從彼此平行之狀態偏移而成為在XZ面內擴散的狀態,行進方向亦偏移。 Even if the diameter of the mask Ma after replacement is smaller than that of the mask M before replacement, as shown in Fig. 28, the circumferential center of the illumination area IR on the mask Ma (mask surface P1a), that is, the intersection Q1, is at The absolute position in XYZ coordinates (the only position in the exposure device). Therefore, as shown in Fig. 28, while maintaining the illumination conditions of the illumination beam EL1 set for the mask M before replacement, that is, the principal rays of the illumination beam EL1 are directed to 1 of the radius (radius of curvature) Rm in the XZ plane. Under the condition that the point Q2 of /2 is inclined, when the illumination beam EL1 is irradiated on the small diameter mask Ma, the principal rays of the projection beam EL2a reflected by the illumination area IR on the mask Ma will shift from being parallel to each other It becomes a state diffused in the XZ plane, and the traveling direction is also shifted.
因此,必須將來自照明光學系統IL之照明光束EL1調整成適於光罩Ma之照明光束EL1。因此,在步驟S103中,係將照明光學系統IL所具有之柱面透鏡54(參照圖4)變更為不同功率者以將倍率遠心之狀態調整成照明光束EL1之各主光線在XZ面內往光罩Ma之半徑Rma之1/2之位置收斂。再者,係使用未圖示之偏角稜鏡將在視野區域IRa(照明區域IR)中心即交點Q1之軸遠心之狀態調整成通過交點Q1之照明光束EL1之主光線之延長會通過光罩Ma之中心軸AX1a的狀態。 Therefore, the illumination light beam EL1 from the illumination optical system IL must be adjusted to be suitable for the illumination light beam EL1 of the mask Ma. Therefore, in step S103, the cylindrical lens 54 (refer to FIG. 4) of the illumination optical system IL is changed to a different power to adjust the state of the magnification telecentric so that the principal rays of the illumination light beam EL1 travel in the XZ plane The position of 1/2 of the radius Rma of the mask Ma converges. Furthermore, the deflection angle not shown in the figure is used to adjust the telecentric state of the axis of the intersection Q1 at the center of the field of view area IRa (illumination area IR) so that the extension of the chief ray of the illumination beam EL1 passing through the intersection Q1 will pass through the mask The state of the central axis AX1a of Ma.
又,係調整來自光罩Ma之反射光束、亦即投影光束EL2a之角度。此情形下,照明光束EL1與投影光束EL2a之軸角度(主光線在XZ面內之角度)由於因光罩Ma之直徑(主光線之中心位置)變化,因此能於共通光路即偏光分束器PBS與光罩Ma間配置偏角稜鏡(射入面與射出面非平行之楔形狀稜鏡)以調整投影光束EL2a之角度。 In addition, the angle of the reflected light beam from the mask Ma, that is, the projection light beam EL2a is adjusted. In this case, the axis angle between the illumination beam EL1 and the projection beam EL2a (the angle of the chief ray in the XZ plane) changes due to the diameter of the mask Ma (the central position of the chief ray), so it can be in the common optical path, that is, the polarization beam splitter An off-angle beam (wedge-shaped beam in which the incident surface and the exit surface are not parallel) is arranged between the PBS and the mask Ma to adjust the angle of the projection light beam EL2a.
又,在僅調整投影光束EL2a之角度之場合,亦可調整投影光學系統PL所具有之偏光構件(例如第1偏向構件70之第1反射面P3或第2偏向構件80之第4反射面P6)之角度。藉由此方式,在更換成直徑不同之光罩Ma時(此例中係 更換後之光罩Ma直徑較更換前小),能使在光罩Ma反射之投影光束EL2a之各主光線在XZ面內彼此成為平行光。亦即,對更換後之直徑不同之光罩Ma,亦由照明光學系統IL調整照射於光罩Ma上之照明區域IR之照明光束EL1之照明條件以使在光罩Ma之照明區域IR反射之投影光束EL2a成為遠心狀態。 In addition, when only the angle of the projection light beam EL2a is adjusted, the polarization member of the projection optical system PL (for example, the first reflection surface P3 of the
在執行前述之調整之場合,例如於照明光學系統IL之照明光學模組ILM附設有將功率不同之複數個柱面透鏡54內之一個可更換地設置於光路內之透鏡更換機構等。亦可藉由來自下位控制裝置16之指令,控制該透鏡更換機構以切換成最適合之功率之柱面透鏡54。此時,下位控制裝置16係根據更換後之光罩Ma之直徑資訊切換柱面透鏡54。又,亦可藉由下位控制裝置16控制用以調整前述之偏光分束器PBS與光罩Ma間之偏角稜鏡或投影光學模組PLM內之偏光構件之角度(及在XZ面內之位置)之致動器,調整在光罩Ma反射之投影光束EL2a之光學特性。此情形亦係由下位控制裝置16根據更換後之光罩Ma之直徑資訊調整偏角稜鏡或偏光構件之角度。此外,柱面透鏡54之更換及偏角稜鏡等之調整亦可由曝光裝置U3d之操作者進行。 In the case of performing the aforementioned adjustment, for example, the illumination optical module ILM of the illumination optical system IL is attached with a lens replacement mechanism that replaces one of a plurality of
圖29係顯示更換成直徑不同之光罩時之編碼器讀頭等之配置變更的圖。在步驟S103之調整,係視必要進一步進行編碼器讀頭EH1、EH2、對準顯微鏡GS1、GS2、光罩M側之焦點測量裝置AFM及檢測異物之異物檢查裝置CD之調整。如圖29所示,例如在從半徑(曲率半徑)Rm之光罩M及光罩保持圓筒21更換成直徑小之半徑Rma之光罩Ma及光罩保持圓筒21a之場合,配置於光罩M周圍之編碼器讀頭EH1、EH2、對準顯微鏡GS1、GS2、焦點測量裝置AFM及異物檢查裝置CD需重新配置於直徑變小之光罩Ma周圍或調整姿勢。藉此方式,能正確地測量光罩Ma上之對準標記之位置、光罩Ma之旋轉角度等。 Fig. 29 is a diagram showing the configuration change of the encoder reading head etc. when replacing with a mask with a different diameter. The adjustment in step S103 is to further adjust the encoder read heads EH1, EH2, aligning the microscope GS1, GS2, the focus measuring device AFM on the side of the mask M, and the foreign body inspection device CD for foreign body detection as necessary. As shown in FIG. 29, for example, when the mask M and the
圖29所示之例中,係將對準顯微鏡GS1、GS2、焦點測量裝置AFM及異物檢查裝置CD重新配置於直徑變小之光罩Ma周圍。又,此例中之編碼器讀 頭EH1、EH2,在XZ面內分別配置於第1投影光學系統(奇數個)之視野區域IRa之位置、第2投影光學系統(偶數個)之視野區域IRb之位置附近。因此,在光罩更換後,不需將編碼器讀頭EH1、EH2之位置在XZ面內大幅變更。 In the example shown in FIG. 29, the alignment microscopes GS1, GS2, the focus measurement device AFM, and the foreign matter inspection device CD are relocated around the mask Ma whose diameter is reduced. In addition, the encoder heads EH1 and EH2 in this example are respectively arranged at the position of the field of view area IRa of the first projection optical system (odd number) and the field of view area IRb of the second projection optical system (even number) in the XZ plane. The location nearby. Therefore, after the mask is replaced, there is no need to significantly change the positions of the encoder read heads EH1 and EH2 in the XZ plane.
然而,藉由更換成光罩Ma,編碼器讀頭EH1、EH2所讀取之標尺圓盤SD之外周面之標尺或與光罩Ma一起形成於光罩保持圓筒21a之外周面之標尺與各編碼器讀頭EH1、EH2之相對讀取角度會變化。因此,編碼器讀頭EH1、EH2之姿勢係被調整成正確地與標尺面對向。具體而言,如圖29所示之箭頭N1、N2,係使各讀頭EH1、EH2對應於標尺面之直徑在其位置旋轉(傾斜)。藉由此方式,能高精度地取得光罩Ma之旋轉角度資訊。 However, by replacing the mask Ma, the scale on the outer circumference of the scale disc SD read by the encoder heads EH1 and EH2 or the scale formed on the outer circumference of the
在更換成光罩Ma時,亦可同時更換光罩Ma及光罩保持圓筒21a與標尺圓盤SD,調整編碼器讀頭EH1、EH2之姿勢(傾斜),且調整安裝位置等。標尺亦可設於光罩Ma表面或光罩保持圓筒21a之外周面。在更換成光罩Ma時,在編碼器讀頭EH1、EH2所讀取之標尺周方向之格子節距與更換前不同的場合,下位控制裝置16係修正更換後之標尺之格子節距與編碼器讀頭EH1、EH2之檢測值之對應關係。具體而言,編碼器系統之數位計數器之一次計數,係作為更換後之光罩Ma之旋轉角度或光罩面P1a周方向之移動距離而修正會成為何種程度之值之轉換係數。 When replacing the mask Ma, the mask Ma, the
焦點測量裝置AFM及異物檢查裝置CD,亦可如圖29中之假想線所示,配置於光罩M或光罩Ma之旋轉中心軸(第1軸AX1或第1軸AX1a)在Z軸方向之正下方且第1投影光學系統之照明視野IRa與第2投影光學系統之照明視野IRb之間,從下方檢測光罩M或光罩Ma之光罩面P1或光罩面P1a。如此,即能在光罩Ma之更換前後中,減小焦點測量裝置AFM及異物檢查裝置CD至光罩M之表面或光罩Ma表面之距離變化。因此,有能以焦點測量裝置AFM及異物檢查裝置CD之光學系統或處理用軟體之修正等來對應的可能性。此情形下,亦可不變更焦 點測量裝置AFM及異物檢查裝置CD之安裝位置。 The focus measurement device AFM and the foreign object inspection device CD can also be arranged on the rotation center axis (the first axis AX1 or the first axis AX1a) of the mask M or the mask Ma in the Z-axis direction as shown by the imaginary line in Fig. 29 Directly below and between the illumination field of view IRa of the first projection optical system and the illumination field of view IRb of the second projection optical system, the mask surface P1 or the mask surface P1a of the mask M or the mask Ma is detected from below. In this way, before and after the replacement of the mask Ma, the change in the distance from the focus measuring device AFM and the foreign object inspection device CD to the surface of the mask M or the surface of the mask Ma can be reduced. Therefore, it is possible to correspond with the correction of the optical system of the focal point measuring device AFM and the foreign body inspection device CD or the processing software. In this case, the installation positions of the focal point measuring device AFM and the foreign body inspection device CD may not be changed.
藉由更換成光罩Ma,曲率半徑變小,藉此有投影區域PA之曝光寬度(基板P之掃描方向或光罩Ma之周方向)內之散焦變大的可能性。此種情形下,必須調整曝光寬度(包含傾斜部分)、照明光學系統IL之照度或掃描速度(光罩Ma之旋轉速度與基板P之進給速度)。此等可藉由調整投影視野光闌63或下位控制裝置16調整光源裝置13之光源輸出、光罩保持圓筒21a及基板支承圓筒25之旋轉來調整。此情形下,較佳為將曝光寬度與照度與掃描速度一起變更。 By replacing it with the mask Ma, the radius of curvature becomes smaller, so that there is a possibility that the defocus within the exposure width of the projection area PA (the scanning direction of the substrate P or the circumferential direction of the mask Ma) becomes larger. In this case, it is necessary to adjust the exposure width (including the inclined portion), the illuminance of the illumination optical system IL or the scanning speed (the rotation speed of the mask Ma and the feeding speed of the substrate P). These can be adjusted by adjusting the
再者,必須調整投影光學系統PL之投影區域PA之位置、投影光學模組PLM之相對位置關係、以及因光罩Ma之周長變化導致之光罩Ma在旋轉方向之倍率等。例如,下位控制裝置16能藉由控制投影光學系統PL之投影光學模組PLM所具備之像偏移用光學構件65或倍率修正用光學構件66等,來調整投影光學系統PL之投影區域PA或光罩Ma在旋轉方向之倍率等。 Furthermore, it is necessary to adjust the position of the projection area PA of the projection optical system PL, the relative positional relationship of the projection optical module PLM, and the magnification of the mask Ma in the rotation direction caused by the change in the circumference of the mask Ma. For example, the
在步驟S103中,係進行光罩Ma在Z軸方向之位置之調整、照明光學系統IL所具有之光學零件之調整、投影光學系統PL所具有之光學零件之調整、以及編碼器讀頭EH1、EH2之調整等的機械性調整。此等調整中,有能藉由下位控制裝置16與調整用驅動機構等自動(或半自動)調整者,亦有曝光裝置U3d之操作者手動調整者。此外,在步驟S103中,下位控制裝置16係根據更換後光罩資訊或曝光資訊等變更用以控制曝光裝置U3d之控制資料(各種參數)等。 In step S103, the adjustment of the position of the mask Ma in the Z-axis direction, the adjustment of the optical components of the illumination optical system IL, the adjustment of the optical components of the projection optical system PL, and the encoder reader EH1 are performed Mechanical adjustment such as EH2 adjustment. Among these adjustments, there are those that can be adjusted automatically (or semi-automatically) by the
在步驟S103中,雖係根據在步驟S102取得之更換後光罩資訊調整曝光裝置U3d,但亦可將圖23所示之測量裝置18所測量之光罩Ma之形狀、尺寸及安裝位置等作為更換後光罩資訊,並根據此資訊調整曝光裝置U3d。此情形下,例如下位控制裝置16係在更換成光罩Ma後,根據測量裝置18所測量之光罩Ma進行各種調整。又,針對必須由操作者調整、更換之零件等,係由下位控制裝置16將必須調整之零件等例如顯示於監視器等來通知操作者。藉由根據更換 後之光罩Ma之測量值調整曝光裝置U3d,而能得到例如溫度或濕度等增加了環境變化之更換後光罩資訊,因此能依據更實際之狀態調整曝光裝置U3d。在步驟S103中,在更換成光罩Ma之調整結束後,進至步驟S104。 In step S103, although the exposure device U3d is adjusted based on the post-replacement mask information obtained in step S102, the shape, size, and installation position of the mask Ma measured by the measuring
如上所述,在更換成不同直徑之光罩後,有時會有曝光裝置內之相關連光學系統、機構系、檢測系之各特性變動之情形。本實施形態中,為了能確認作為光罩更換後之曝光裝置之特性或性能,而設置如圖30所示之校正裝置。圖30係校正裝置之圖。圖31係用以說明校正的圖。步驟S103中,曝光裝置U3d雖成為適於更換後光罩Ma之狀態,但藉由在步驟S104中進行校正,而能使曝光裝置U3d之狀態成為更適於更換後之光罩Ma之狀態。校正係使用圖30所示之校正裝置110。本實施形態之校正係由下位控制裝置16執行。下位控制裝置16,係藉由校正裝置110,檢測如圖31所示之設於光罩保持圓筒21a所保持之光罩Ma表面之作為調整用標記之第1標記ALMM與設於基板支承圓筒25之表面(支承基板支承圓筒25之基板P之部分)之作為調整用標記之第2標記ALMR。接著,下位控制裝置16係將照明光學系統IL、投影光學系統PL、光罩Ma之旋轉速度、基板P之搬送速度或倍率等調整成第1標記ALMM與第2標記ALMR之相對位置成為既定之位置關係。因此,校正之步驟S104,雖較佳為在將基板P捲繞於基板支承圓筒25前進行,但只要係基板P之透射性高且於基板P上未形成有各種圖案之狀態,則亦可在將基板P捲繞於基板支承圓筒25之狀態下進行校正。 As mentioned above, after changing to masks of different diameters, there may be situations in which the characteristics of the related optical system, mechanism, and detection system in the exposure device change. In this embodiment, in order to confirm the characteristics or performance of the exposure device after the mask is replaced, a correction device as shown in FIG. 30 is provided. Figure 30 is a diagram of the calibration device. Fig. 31 is a diagram for explaining correction. In step S103, although the exposure device U3d is in a state suitable for the replaced photomask Ma, by performing calibration in step S104, the state of the exposure device U3d can be made more suitable for the replaced photomask Ma. The calibration system uses the
如圖30所示,校正裝置110包含攝影元件(例如CCD、CMOS)111、透鏡群112、稜鏡反射鏡113、光束分束器114。校正裝置110在為多透鏡方式之場合,係對應各個照明光學系統IL1~IL6而設置。在執行校正之場合,下位控制裝置16係將校正裝置110之光束分束器114配置於照明光學系統IL與偏光分束器PBS間之照明光束EL1之光路中。在不執行校正之場合,光束分束器114係從照明光束EL1之光路退避。 As shown in FIG. 30, the
由於攝影元件111之感度充分地高,因此亦可不考慮光功率之損失。因此,光束分束器114例如可為半稜鏡等。又,能藉由使光束分束器114進出於在照明光學系統IL與偏光分束器PBS間之照明光束EL1之光路來使校正裝置110小型化。 Since the sensitivity of the
如圖30所示,亦有使來自校正用之光源115之光束從與用以分離照明光束EL1與投影光束EL2a之偏光分束器PBS之照明光束EL1所射入之面相反之面側射入的方法。再者,亦可於基板支承圓筒25之第2標記ALMR背面側配置校正用之光源115(發光部),從第2標記ALMR之背面側照射校正用之光束,並使透射第2標記ALMR之光透過投影光學系統PL與偏光分束器PBS投射於更換後之光罩Ma之光罩面P1a。此情形下,校正裝置110之攝影元件111能將逆投影於更換後之光罩Ma上之基板支承圓筒25之第2標記ALMR之像與光罩Ma上之第1標記ALMM一起拍攝。 As shown in FIG. 30, the light beam from the
藉由在照明光學系統IL與偏光分束器PBS間之照明光束EL1之光路配置光束分束器114,來自光罩Ma之第1標記ALMM之像與來自基板支承圓筒25之第2標記ALMR之像透過光束分束器114被導至校正裝置110之稜鏡反射鏡113。在稜鏡反射鏡113反射之各標記像之光通過透鏡群112後,射入具有一幀框量之攝影時間(取樣時間)為極短之0.1~1毫秒程度之高速快門速度的攝影元件111。下位控制裝置16係解析與從攝影元件111輸出之第1標記ALMM之像及對應於第2標記ALMR之像之影像訊號,並根據其解析結果與攝影時(取樣時)之各編碼器讀頭EH1、EH2、EN2、EN3之測量值,求出第1標記ALMM與第2標記ALMR之相對位置關係,將照明光學系統IL、投影光學系統PL、光罩Ma之旋轉速度、基板P之搬送速度或倍率等調整成兩者之相對位置成為既定之狀態。 The beam splitter 114 is arranged in the optical path of the illumination beam EL1 between the illumination optical system IL and the polarization beam splitter PBS, the image of the first mark ALMM from the mask Ma and the second mark ALMR from the
如圖31所示,第1標記ALMM配置於與各個照明光學系統IL(IL1~IL6)對應之各個照明區域IR(IR1~IR6)隔著中心面CL重疊的位置(各照明區域 IR在Y方向之兩端之三角部)。第2標記ALMR配置於與各個投影光學系統PL(PL1~PL6)對應之各個投影區域PA(PA1~PA6)隔著中心面CL重疊的位置(各投影區域PA在Y方向之兩端之三角部)。在校正中,就各投影光學模組PLM之每一個所設之校正裝置110,係隔著中心面CL依照第一列(奇數個)、第二列(偶數個)之順序依序接收第1標記ALMM之像與第2標記ALMR之像。 As shown in Fig. 31, the first mark ALMM is arranged at a position where each illumination area IR (IR1 to IR6) corresponding to each illumination optical system IL (IL1 to IL6) overlaps with the center plane CL (each illumination area IR is in the Y direction The triangle at both ends). The second mark ALMR is arranged at a position where each projection area PA (PA1 to PA6) corresponding to each projection optical system PL (PL1 to PL6) overlaps with the center plane CL (the triangular part of each projection area PA at both ends in the Y direction) ). In the calibration, the
如以上所述,在步驟S103中,藉由更換成光罩Ma之調整(主要為機械性調整)結束後,下位控制裝置16係以更換後之光罩Ma與搬送基板P之基板支承圓筒25間之位置偏移成為容許範圍以下之方式調整曝光裝置U3d。如上述,下位控制裝置16係至少使用第1標記ALMM之像及第2標記ALMR之像調整曝光裝置U3d。藉由此方式,可根據從更換後之光罩Ma與基板支承圓筒25取得之實際之標記之像進一步修正透過機械性調整無法完全修正之誤差。其結果,曝光裝置U3d能以適切且良好之精度進行使用了更換後之光罩Ma之曝光。 As described above, in step S103, after the adjustment (mainly mechanical adjustment) by replacing the mask Ma is completed, the
上述例中,雖在更換光罩後,主要係機械性地調整了曝光裝置U3d,但更換光罩後之調整不限定於此。例如,在能安裝於曝光裝置U3d之圓筒光罩之直徑之差較小之場合,亦能配合該等圓筒光罩中直徑最小之圓筒光罩,先決定照明光學系統IL及投影光學系統PL之有效徑及偏光分束器PBS之大小,藉此可不需要照明光束EL1等之角度特性等之調整。如此,能簡化曝光裝置U3d之調整作業。本實施形態中,係將曝光裝置U3d能使用之光罩就光罩之各直徑來分類成複數個群組,亦可在群組內變更光罩直徑之場合與超過群組而變更光罩直徑之場合,變更曝光裝置U3d之調整對象或零件等。 In the above example, after the mask is replaced, the exposure device U3d is mainly adjusted mechanically, but the adjustment after the mask is replaced is not limited to this. For example, when the difference in the diameter of the cylindrical mask that can be installed in the exposure device U3d is small, it can also be matched with the cylindrical mask with the smallest diameter among the cylindrical masks to determine the illumination optical system IL and projection optics first. The effective diameter of the system PL and the size of the polarizing beam splitter PBS can eliminate the need to adjust the angular characteristics of the illumination beam EL1. In this way, the adjustment work of the exposure device U3d can be simplified. In this embodiment, the masks that can be used by the exposure device U3d are classified into a plurality of groups for each diameter of the mask. The mask diameter can also be changed when the diameter of the mask is changed within the group and beyond the group. In this case, change the adjustment object or parts of the exposure device U3d.
圖32係顯示使用空氣軸承將光罩能旋轉地支承之例的側視圖。圖33係顯示使用空氣軸承將光罩能旋轉地支承之例的立體圖。保持光罩M之光罩保持圓筒21,亦可藉由空氣軸承160將兩端部能旋轉地支承。空氣軸承160係將複數個支承單元161往光罩保持圓筒21之外周面環狀地配置而作成。又,空氣軸承 160藉由從各個支承單元161之內周面往光罩保持圓筒21之外周面噴出空氣(air),而將光罩保持圓筒21能旋轉地支承。如上述,空氣軸承160係發揮將彼此直徑不同之複數個光罩M之一個能更換地安裝支承,使之繞既定軸線(第1軸AX1)旋轉之光罩保持機構的功能。 Fig. 32 is a side view showing an example in which the photomask is rotatably supported using an air bearing. Fig. 33 is a perspective view showing an example in which the photomask is rotatably supported using an air bearing. The
在前述之步驟S103中,係依據更換後之光罩Ma之直徑,空氣軸承160更換支承單元161。又,在更換前後中,在光罩M之直徑(2×Rm)之差較小之場合,亦可調整各個支承單元161在徑方向之位置以使對應於更換後之光罩M。如此,在曝光裝置U3d透過空氣軸承160將光罩M能旋轉地支承之場合,空氣軸承160係發揮將直徑不同之光罩能更換地支承之曝光裝置U3d本體側之軸承裝置的功能。 In the aforementioned step S103, the
圖34係顯示第6實施形態之曝光裝置之整體構成的圖。使用圖34說明曝光裝置U3e。為了避免重複之記載,僅針對與前述之實施形態不同之部分進行說明,針對與實施形態相同之構成要素,係賦予與實施形態相同之符號來說明。此外,第5實施形態之曝光裝置U3d之各構成能適用於本實施形態。 Fig. 34 is a diagram showing the overall configuration of the exposure apparatus of the sixth embodiment. The exposure device U3e will be described using FIG. 34. In order to avoid repetitive description, only the parts that are different from the foregoing embodiment are described, and the same components as the embodiment are given the same symbols as the embodiment for description. In addition, each configuration of the exposure apparatus U3d of the fifth embodiment can be applied to this embodiment.
實施形態之曝光裝置U3,雖係使用反射光罩之光成為投影光束之反射型光罩的構成,但本實施形態之曝光裝置U3e,係使用透射光罩之光成為投影光束之透射型光罩(透射型圓筒光罩)的構成。曝光裝置U3e中,光罩保持機構11e具備保持光罩MA之光罩保持圓筒21e、支承光罩保持圓筒21e之導輥93、驅動光罩保持圓筒21e之驅動輥94、以及驅動部96。雖未圖示,但曝光裝置U3e具備如圖23所示之用以更換基板P之更換機構150。 Although the exposure device U3 of the embodiment uses a reflective mask that uses light from a reflective mask to become a projection beam, the exposure device U3e of this embodiment uses a transmissive mask that uses light from a transmission mask to become a projection beam. (Transmissive cylindrical mask) structure. In the exposure apparatus U3e, the
光罩保持機構11e,係將彼此直徑不同之複數個光罩MA之一個能更換地安裝,且使繞既定軸線(第1軸AX1)旋轉。曝光裝置U3d具有調整部,其係將彼此直徑不同之複數個光罩MA之一個能更換地安裝,更換且依據使繞作為既 定軸線之第1軸AX1旋轉之光罩保持機構11e所安裝之光罩MA之直徑調整至少第1軸AX1與基板支承機構之距離。此調整部係將安裝於光罩保持機構11e之光罩MA之外周面與基板支承機構所支承之基板P之間隔設定於預先決定之容許範圍內。 The
光罩保持圓筒21e係以例如玻璃或石英等製造之具有一定厚度之圓筒狀,其外周面(圓筒面)形成光罩MA之光罩面。亦即,本實施形態中,光罩MA上之照明區域彎曲成從中心線具有一定曲率半徑Rm之圓筒面狀。光罩保持圓筒21e中從光罩保持圓筒21e徑方向觀看時與光罩MA之圖案重疊之部分、例如光罩保持圓筒21e之Y軸方向兩端側以外之中央部分對照明光束具有透光性。於光罩面配置光罩MA上之照明區域。 The
光罩MA,例如係作成為於平坦性佳之長條狀極薄玻璃板(例如厚度100~500μm)之一面以鉻等遮光層形成有圖案之透射型平面狀片光罩,使其順著光罩保持圓筒21e之外周面彎曲,在捲繞於(貼附於)此外周面之狀態下被使用。光罩MA具有未形成有圖案之圖案非形成區域,於圖案非形成區域安裝於光罩保持圓筒21e。光罩MA可拆裝於光罩保持圓筒21e。光罩MA,係與實施形態之光罩M同樣地,亦可取代捲繞於透明圓筒母材之光罩保持圓筒21e之方式,而於透明圓筒母材之光罩保持圓筒21e之外周面直接描繪形成鉻等遮光層所形成之光罩圖案來一體化。此情形亦由光罩保持圓筒21e發揮光罩圖案之支承構件之功能。 The mask MA, for example, is made into a transmissive flat sheet mask with a pattern formed on one side of a long strip of ultra-thin glass plate (for example, 100~500μm in thickness) with a light-shielding layer such as chromium to make it follow the light The cover keeps the outer peripheral surface of the
導輥93及驅動輥94延伸於相對光罩保持圓筒21e之中心軸為平行之Y軸方向。導輥93及驅動輥94設置成能繞與光罩MA及光罩保持圓筒21e之旋轉中心軸平行之軸線旋轉。導輥93及驅動輥94之各個,軸線方向之端部外徑較其他部分之外形大,此端部外接於光罩保持圓筒21e。如上述,導輥93及驅動輥94設置成不接觸於光罩保持圓筒21e所保持之光罩MA。驅動輥94與驅動部96連 接。驅動輥94藉由將從驅動部96供應之力矩傳至光罩保持圓筒21e,以使光罩保持圓筒21e繞其旋轉中心軸旋轉。 The
光罩保持機構11e,雖具備一個導輥93但數目不限定,亦可為兩個以上。同樣地,光罩保持機構11e,雖具備一個驅動輥94但數目不限定,亦可為兩個以上。導輥93與驅動輥94中至少一個亦可配置於光罩保持圓筒21e內側,與光罩保持圓筒21e內接。又,光罩保持圓筒21e中從光罩保持圓筒21e之徑方向觀看不與光罩MA之圖案重疊之部分(Y軸方向兩端側)亦可對照明光束具有透光性,亦可不具有透光性。又,導輥93及驅動輥94之一方或雙方亦可為例如圓錐台狀,其中心軸(旋轉軸)相對中心軸為非平行。 Although the
曝光裝置U3e,較佳為於導輥93與驅動輥94之位置分別配置圖25所示之第1投影光學系統之視野區域(照明區域)IRa與第2投影光學系統之視野區域(照明區域)IRb。如此,即使光罩MA之直徑變化,亦能將視野區域IRa、IRb各自在Z軸方向之位置保持於一定。其結果,在更換成直徑不同之光罩MA之場合,視野區域IRa、IRb各自在Z軸方向之位置調整係容易。 The exposure device U3e preferably arranges the field of view area (illumination area) IRa of the first projection optical system (illumination area) and the field of view area (illumination area) of the second projection optical system shown in FIG. 25 at the positions of the
本實施形態之照明裝置13e具備光源(圖示略)及照明光學系統(照明系)ILe。照明光學系統ILe與複數個投影光學系統PL1~PL6之各個對應地具備排列於Y軸方向之複數個(例如六個)照明光學系統ILe1~ILe6。光源能與實施形態之光源裝置13同樣地使用各種光源。從光源射出之照明光,照度分布被均一化,透過例如光纖等導光構件區分至複數個照明光學系統ILe1~ILe6。 The
複數個照明光學系統ILe1~ILe6之各個,包含透鏡等複數個光學構件。複數個照明光學系統ILe1~ILe6之各個,包含例如積分光學系統、桿透鏡或複眼透鏡等,藉由均一照度分布之照明光束照明光罩MA之照明區域。本實施形態中,複數個照明光學系統ILe1~ILe6配置於光罩保持圓筒21e內側。複數個照明光學系統ILe1~ILe6之各個從光罩保持圓筒21e內側通過光罩保持圓筒21e 而照明保持於光罩保持圓筒21e之外周面之光罩MA上之各照明區域。 Each of the plurality of illumination optical systems ILe1 to ILe6 includes a plurality of optical components such as lenses. Each of a plurality of illumination optical systems ILe1~ILe6, including, for example, an integrator optical system, a rod lens, or a fly-eye lens, etc., illuminates the illumination area of the mask MA with an illumination beam with a uniform illuminance distribution. In this embodiment, a plurality of illumination optical systems ILe1 to ILe6 are arranged inside the
照明裝置13e藉由照明光學系統ILe1~ILe6導引從光源射出之光,將被導引之照明光束從光罩保持圓筒21e內部照射於光罩MA。照明裝置13e,係藉由照明光束以均一明度照明光罩保持圓筒21e所保持之光罩MA之一部分(照明區域)。此外,光源亦可配置於光罩保持圓筒21e內側,亦可配置於光罩保持圓筒21e外側。又,光源亦可係與曝光裝置U3e不同之裝置(外部裝置)。 The illuminating
照明光學系統ILe1~ILe6,係從光罩MA內側往其外周面,於作為既定軸線之第1軸AX1之方向照射延伸成狹縫狀之照明光束。又,曝光裝置U3e具有依據所安裝之光罩MA之直徑調整照明光束在光罩MA之旋轉方向之寬度的調整部。 The illumination optical systems ILe1~ILe6 irradiate the illuminating light beam extending into a slit shape in the direction of the first axis AX1, which is a predetermined axis, from the inner side of the mask MA to the outer peripheral surface. In addition, the exposure device U3e has an adjusting part that adjusts the width of the illumination beam in the rotation direction of the mask MA according to the diameter of the mounted mask MA.
曝光裝置U3e之基板支承機構12e具備保持平面狀之基板P之基板載台102與使基板載台102在與中心面CL正交之面內沿X方向掃描移動的移動裝置(省略圖示)。圖34所示在支承面P2側之基板P之表面由於係實質上與XY面平行之平面,因此從光罩MA反射、通過投影光學系統PL而投射於基板P之投影光束之主光線與XY面成垂直。前述之步驟S104之校正中,係於基板載台102之支承面P2表面設有圖31所示之第2標記ALMR。 The
曝光裝置U3e雖係使用透射型光罩作為光罩MA,但此情形亦與曝光裝置U3同樣地能與直徑不同之光罩MA更換。接著,在更換成不同直徑之光罩MA時,曝光裝置U3e係與曝光裝置U3同樣地,在至少調整照明光學系統ILe1~ILe6與投影光學系統PL1~PL6之至少一方後,調整(設定)成更換後之光罩MA與搬送基板P之基板載台102間之相對位置關係成為既定容許範圍以下之偏移。藉由此方式,可根據從光罩MA與搬送基板P之基板載台102取得之實際之標記像進一步精密地修正透過機械性調整無法完全修正之誤差。其結果,曝光裝置U3e能保持適切且良好之精度,進行使用了更換後之光罩之曝光。 Although the exposure device U3e uses a transmission type photomask as the photomask MA, in this case, it can be replaced with a photomask MA having a different diameter in the same way as the exposure device U3. Next, when replacing the mask MA with a different diameter, the exposure device U3e is the same as the exposure device U3. After adjusting at least one of the illumination optical systems ILe1 to ILe6 and the projection optical systems PL1 to PL6, adjust (set) to The relative positional relationship between the replaced mask MA and the
此外,亦可取代實施形態之曝光裝置U3所具有之基板支承機構12,而將本實施形態之曝光裝置U3e所具有之基板支承機構12e適用於曝光裝置U3。又,亦可於實施形態之曝光裝置U3,使用導輥93與驅動輥94將基板支承圓筒25可旋轉地支承,且於導輥93與驅動輥94之位置分別配置圖25所示之第1投影光學系統之視野區域(照明區域)IRa與第2投影光學系統之視野區域(照明區域)IRb。如此,在更換成直徑不同之光罩MA之場合,視野區域IRa、IRb各自在Z軸方向之位置調整係容易。 In addition, instead of the
圖35係顯示第7實施形態之曝光裝置之整體構成的圖。使用圖35說明曝光裝置U3f。為了避免重複之記載,僅針對與前述之實施形態不同之部分進行說明,針對與實施形態相同之構成要素,係賦予與實施形態相同之符號來說明。此外,第5實施形態之曝光裝置U3d及第6實施形態之曝光裝置U3e之各構成能適用於本實施形態。 Fig. 35 is a diagram showing the overall configuration of the exposure apparatus of the seventh embodiment. The exposure device U3f will be described using FIG. 35. In order to avoid repetitive description, only the parts that are different from the foregoing embodiment are described, and the same components as the embodiment are given the same symbols as the embodiment for description. In addition, each configuration of the exposure apparatus U3d of the fifth embodiment and the exposure apparatus U3e of the sixth embodiment can be applied to this embodiment.
曝光裝置U3f係對基板P施加所謂近接曝光之基板處理裝置。曝光裝置U3f,係將光罩MA與基板支承圓筒25f之間隙(近接間隙)設定於數μm~數十μm,照明光學系統ILc直接將照明光束EL照射於基板P,進行非接觸曝光。光罩MA設於光罩保持圓筒21f表面。本實施形態之曝光裝置U3f,係使用透射光罩MA之光成為投影光束EL之透射型光罩的構成。曝光裝置U3f中,光罩保持圓筒21f係以例如玻璃或石英等製造之具有一定厚度之圓筒狀,其外周面(圓筒面)形成光罩MA之光罩面。雖未圖示,但曝光裝置U3f具備如圖23所示之用以更換光罩MA之更換機構150。 The exposure device U3f is a substrate processing device that applies so-called proximity exposure to the substrate P. The exposure device U3f sets the gap (proximity gap) between the mask MA and the
本實施形態中,基板支承圓筒25f係藉由從包含電動馬達等致動器之第2驅動部26f供應之力矩而旋轉。以與第2驅動部26f之旋轉方向逆向旋轉之方式由例如以磁性齒輪連結之一對驅動輥MGG、MGG驅動光罩保持圓筒21f。 第2驅動部26f係使基板支承圓筒25f旋轉,且使驅動輥MGG、MGG與光罩保持圓筒21f旋轉,使光罩保持圓筒21f與基板支承圓筒25f同步移動(同步旋轉)。基板P由於其一部分透過一對空氣翻轉桿ATB1f、ATB2f與一對導輥27f、28f捲繞於基板支承圓筒25f,因此在基板支承圓筒25f旋轉後,基板P係與光罩保持圓筒21f同步被搬送。如上述,一對驅動輥MGG、MGG係發揮將彼此直徑不同之複數個光罩M之一個能更換地安裝支承,使之繞既定軸線(第1軸AX1)旋轉之光罩保持機構的功能。 In the present embodiment, the
照明光學系統ILc,係在與一對驅動輥MGG、MGG之位置,在光罩MA之外周面與基板支承圓筒25f所支承之基板P最接近之位置,將於Y方向延伸成狹縫狀之照明光束從光罩MA內側往基板P投射。此種近接曝光方式,對基板P之光罩圖案之曝光位置(相當於投影區域PA)由於在光罩MA之周方向為一處,因此在更換成直徑不同之圓筒光罩時,只要以將近接間隙保持於既定值之方式調整支承圓筒光罩在Z軸方向之位置或支承基板P之基板支承圓筒25f在Z軸方向之位置即可。 The illumination optical system ILc is located at the position of the pair of driving rollers MGG and MGG, at the position closest to the substrate P supported by the
如上述,曝光裝置U3f雖係使用透射型光罩作為光罩MA且對基板P施加近接曝光,但此情形亦與曝光裝置U3同樣地能與直徑不同之光罩MA更換。接著,在更換成不同直徑之光罩MA時,曝光裝置U3f藉由進行與曝光裝置U3同樣之校正,而能調整成更換後之光罩MA與搬送基板P之基板支承圓筒25f間之相對位置偏移(亦包含近接間隙)成為既定容許範圍內。藉由此方式,可根據從光罩MA與基板支承圓筒25f取得之實際之標記像進一步精密地修正透過機械性調整無法完全修正之誤差。其結果,曝光裝置U3f能保持適切且良好之精度進行曝光。 As described above, although the exposure device U3f uses a transmissive photomask as the photomask MA and applies proximity exposure to the substrate P, in this case, it can also be replaced with a photomask MA having a different diameter as in the exposure device U3. Then, when replacing the mask MA with a different diameter, the exposure device U3f can be adjusted to the position between the replaced mask MA and the
此外,如圖35之曝光裝置U3f之照明光學系統ILc,由於僅係將於Y方向細長且於X方向(光罩MA之旋轉方向)寬度狹窄之照明光束照射以既定之 數值孔徑(NA)照射於光罩MA之光罩面,因此即使所安裝之圓筒光罩之直徑不同,亦無須實質上大幅調整來自照明光學系統ILc之照明光束之配向特性(主光線之傾斜等)。不過,亦可依據光罩MA之直徑(半徑),以能改變照射於光罩面之照明光束在X方向(光罩MA之旋轉方向)之寬度之方式於照明光學系統ILc內設置寬度可變之照明視野光闌(可變遮簾),或設置僅縮小或放大照明光束在X方向(光罩MA之旋轉方向)之寬度之折射光學系統(例柱面變焦透鏡等)。 In addition, the illumination optical system ILc of the exposure device U3f shown in Fig. 35 is only irradiated with a predetermined numerical aperture (NA) because it only irradiates a slender illuminating beam in the Y direction and a narrow width in the X direction (the rotation direction of the mask MA) It is on the mask surface of the mask MA, so even if the diameter of the cylindrical mask installed is different, it is not necessary to substantially adjust the alignment characteristics of the illumination beam from the illumination optical system ILc (the tilt of the chief ray, etc.). However, according to the diameter (radius) of the mask MA, a variable width can be set in the illumination optical system ILc in such a way that the width of the illumination beam irradiated on the mask surface in the X direction (rotation direction of the mask MA) can be changed. Illumination field diaphragm (variable blind), or a refractive optical system (for example, cylindrical zoom lens, etc.) that only reduces or enlarges the width of the illumination beam in the X direction (rotation direction of the mask MA).
又,圖35之曝光裝置U3f,雖係藉由基板支承圓筒25f將基板P成圓筒面狀地支承,但亦可如圖34之曝光裝置U3e所示支承成平面狀。若基板P被支承成平面狀,則與支承成圓筒面狀之情形相較,能使與光罩MA直徑差異對應之照明光束在X方向(光罩MA之旋轉方向)之寬度之調整範圍較大。藉由此方式,能在與光罩MA直徑對應之近接間隙之容許範圍內,將照明光束在X方向(光罩MA之旋轉方向)之寬度調整為最佳,能使轉印至基板P上之圖案品質(忠實度等)之維持與生產性最佳化。此情形下,可變遮簾與柱面變焦透鏡等包含於可依據透射型光罩MA直徑調整照明光束之寬度的調整部。 In addition, although the exposure apparatus U3f in FIG. 35 supports the substrate P in a cylindrical surface shape by the
以上各實施形態中,能安裝於曝光裝置之圓筒光罩直徑有一定範圍。例如,在具備投影線寬為2μm~3μm左右之微細圖案之投影光學系統之曝光裝置中,一般而言該投影光學系統之焦深DOF為寬度較狹窄之數μm左右,且在投影光學系統內之聚焦調整範圍亦狹窄。對此種曝光裝置而言,難以安裝從規格為既定之直徑以毫米單位改變之直徑的圓筒光罩。不過,在曝光裝置側,以從起初即與圓筒光罩之直徑變化對應之方式使各部分、各機構具有較大調整範圍的場合,係可考量該調整範圍後,決定能安裝之圓筒光罩之直徑範圍。又,如圖35之近接方式之曝光裝置,只要光罩MA之外周面之一部分與基板P之間隙落在既定範圍即可,只要係圓筒光罩之支承機構能對應之構成,則即使係直徑為0.5倍、1.5倍、2倍...等大幅相異之圓筒光罩亦能安裝。 In the above embodiments, the diameter of the cylindrical mask that can be installed in the exposure device has a certain range. For example, in an exposure apparatus equipped with a projection optical system with a projection line width of about 2μm to 3μm, the focal depth DOF of the projection optical system is generally a narrow width of about several μm. The focus adjustment range is also narrow. For this type of exposure device, it is difficult to install a cylindrical mask with a diameter that changes from a predetermined diameter in millimeters. However, on the exposure device side, when the parts and mechanisms have a large adjustment range in a way that corresponds to the change in the diameter of the cylindrical mask from the beginning, the adjustment range can be considered and the cylinder that can be installed can be determined The diameter range of the mask. In addition, as for the exposure device of the proximity method as shown in Fig. 35, the gap between a part of the outer peripheral surface of the mask MA and the substrate P should be within a predetermined range, and as long as the support mechanism of the cylindrical mask can correspond to the structure, even if it is Cylindrical masks with diameters of 0.5 times, 1.5 times, 2 times, etc. can also be installed.
圖36係顯示反射型圓筒光罩M在曝光裝置內之支承機構的局部構造例的立體圖。圖36中,雖僅顯示支承往圓筒光罩M(光罩保持圓筒21)之旋轉軸AX1延伸之方向(Y方向)一方側突出之軸構件21S的機構,但於相反側亦設有相同之機構。圖36之場合,標尺圓盤SD雖與圓筒光罩M一體設置,但亦可於圓筒光罩M之外周面之Y方向兩端側,與元件用光罩圖案之形成同時地刻設能藉由編碼器讀頭讀取之標尺(格子)。 FIG. 36 is a perspective view showing a partial structure example of the support mechanism of the reflective cylindrical mask M in the exposure apparatus. In FIG. 36, although only the mechanism supporting the
於軸構件21S之前端部,即使係不同直徑之光罩M(光罩保持圓筒21)亦形成有隨時以一定直徑精密加工後之圓筒體21K。此圓筒體21K,係在將曝光裝置本體之機架(機體)200之一部分切除成U字形之部分中被能移動於上下方向(Z方向)之Z可動體204支承。於機架200之U字形切除部分之延伸於Z方向之端部,形成有在X方向以既定間隔對向之直線延伸於Z方向之導軌部201A、201B。 At the front end of the
於Z可動體204形成用以將圓筒體21K下半部以空氣軸承支承之凹陷成半圓狀之墊部204P及與機架200之導軌部201A、201B卡合之滑件部204A、204B。滑件部204A、204B係相對導軌部201A、201B被機械性地接觸之軸承或空氣軸承支承為能順暢地移動於Z方向。 The Z
於機架200設有被軸支成能繞與Z軸平行之軸線旋轉之滾珠螺桿203與使此滾珠螺桿203旋轉之驅動源(馬達、減速齒輪等)202。與滾珠螺桿203螺合之螺帽部,設於設在Z可動體204下側之凸輪構件206內。因此,藉由滾珠螺桿203之旋轉,凸輪構件206直線移動於Z方向,藉此Z可動體204亦直線移動於Z方向。雖於圖36未顯示,但於支承滾珠螺桿203前端部之構件,亦可設置不使凸輪構件206位移於X方向或Y方向而導引成移動於Z方向的導引構件。 The
凸輪構件206與Z可動體204亦可一體固定,亦可以於Z方向以高剛性之板彈簧或可撓性構件等連結,於X方向或Y方向以低剛性之板彈簧或可撓性構件等連結。或者,亦可於凸輪構件206之上面與Z可動體204之下面之各個形 成球面座,於該等球面座之間設置鋼球。如此,即能一邊於Z方向以高剛性支承凸輪構件206與Z可動體204,一邊容許以鋼球為中心之凸輪構件206與Z可動體204之相對微幅傾斜。再者,圖36之支承機構中,於Z可動體204與機架200之間設有用以支承圓筒光罩M(光罩保持圓筒21)之自重之大部分之彈性支承構件208A、208B。 The
此彈性支承構件208A、208B係以藉由向內部供應壓榨空氣而長度會改變之空氣活塞構成,藉由空壓支承以Z可動體204支承之圓筒光罩M(光罩保持圓筒21)之載重。在以Z可動體204之墊部204P支承作為圓筒光罩M(光罩保持圓筒21)之旋轉軸之圓筒體21K的場合,在直徑不同之圓筒光罩M(光罩保持圓筒21)中,當然自重亦不同。因此,係對應於其自重,調整對作為彈性支承構件208A、208B之空氣活塞內供應之壓榨氣體的壓力。如此,能大幅減低作用於滾珠螺桿203與凸輪構件206中之螺帽部間之Z方向之載重,滾珠螺桿203亦以極小之力矩即能旋轉,是以驅動源202亦能作成較小型,能抑制因發熱等引起之機架200之變形。 The
又,雖圖36中並未顯示,但Z可動體204之Z方向之位置,係藉由如線性編碼器之測距器以超微米以下之測量分析能力精密地測量,根據其測量值伺服控制驅動源202。再者,亦可設置用以測量於Z可動體204與凸輪構件206間作用之載重之變化之載重感測器或測量因凸輪構件206之Z方向應力產生之變形之應變感測器等,依據來自各個感測器之測量值,伺服控制對作為彈性支承構件208A、208B之空氣活塞供應之壓榨氣體的壓力(氣體之供應與排氣)。 Also, although it is not shown in Fig. 36, the position of the Z-direction of the Z
再者,有時亦會將圓筒光罩M(光罩保持圓筒21)安裝於Z可動體204之墊部204P,因驅動源202導致之Z方向高度設定於既定位置後,在進行照明光學系統IL或投影光學系統PL之各種調整或校正之途中或根據校正之結果,再度使圓筒光罩M(光罩保持圓筒21)之Z方向位置微動。圖36之包含Z可動體204之 支承機構亦設於圓筒光罩M(光罩保持圓筒21)之相反側之軸構件,藉由個別調整設於兩側之支承機構之各Z可動體204之Z方向位置,而亦能調整旋轉中心軸AX1相對XY面之微小傾斜。在藉由以上方式結束所安裝之圓筒光罩M(光罩保持圓筒21)之Z方向之位置調整或傾斜調整後,亦可將Z可動體204機械性地夾持於導軌部201A、201B(亦即機架200)。 In addition, sometimes the cylindrical mask M (mask holding cylinder 21) is attached to the
若將能安裝於投影曝光裝置之圓筒光罩M(光罩保持圓筒21)之最大直徑設為DSa,最小直徑設為DSb,則Z可動體204之Z方向移動動程,(DSa-DSb)/2即可。例如,若將能安裝之圓筒光罩M(光罩保持圓筒21)之最大直徑設為300mm,最小直徑設為240mm,則Z可動體204之移動動程為30mm。 If the maximum diameter of the cylindrical mask M (mask holding cylinder 21) that can be installed in the projection exposure device is set to DSa and the minimum diameter is set to DSb, the Z-direction movement of the Z
直徑300mm之圓筒光罩M,係意味著相對於直徑240mm之圓筒光罩M,將作為光罩M之圖案形成區域往圓筒光罩之周方向(掃描曝光方向)擴展了60mm×π≒188mm。如以往之掃描曝光裝置,在使平面光罩往一維方向掃描移動時,將圖案形成區域擴展於掃描方向,會招致對應平面光罩之180mm以上之尺寸擴大之光罩載台之大型化,以及用以使光罩載台之移動動程擴大180mm以上之機體構造體之大型化。相對於此,如圖36所示,僅係將支承圓筒光罩M(光罩保持圓筒21)之旋轉軸AX1(軸構件21S)之Z可動體204作成能於Z方向精密移動之構成,則可在不使裝置其他部分大型化之狀態下容易地對應光罩之圖案形成區域之放大。 The cylindrical mask M with a diameter of 300mm means that compared to the cylindrical mask M with a diameter of 240mm, the pattern formation area of the mask M is expanded in the circumferential direction (scanning exposure direction) of the cylindrical mask by 60mm×π ≒188mm. As in the conventional scanning exposure device, when the flat mask is scanned and moved in a one-dimensional direction, the pattern formation area is expanded in the scanning direction, which will lead to the enlargement of the mask stage corresponding to the size of the flat mask over 180mm. And to increase the size of the body structure to expand the movement of the mask stage by more than 180mm. On the other hand, as shown in FIG. 36, only the Z
<元件製造方法> <Component Manufacturing Method>
其次,參照圖37,說明元件製造方法。圖37係顯示元件製造系統之元件製造方法的流程圖。此元件製造方法,亦能藉由第1實施形態至第7實施形態之任一者來實現。 Next, referring to Fig. 37, a method of manufacturing the element will be described. FIG. 37 is a flowchart showing the component manufacturing method of the component manufacturing system. This device manufacturing method can also be realized by any one of the first embodiment to the seventh embodiment.
圖37所示之元件製造方法,首先,係進行例如使用有機EL等自發光元件形成之顯示面板之功能、性能設計,以CAD等設計所需之電路圖案及 配線圖案(步驟S201)。接著,根據以CAD等設計之各種的每一層圖案,製作所需層量之光罩M(步驟S202)。並準備捲繞有作為顯示面板之基材之可撓性基板P(樹脂薄膜、金屬箔膜、塑膠等)的供應用捲筒FR1(步驟S203)。又,於此步驟S203中準備之捲筒狀基板P,可以是視需要將其表面改質者、或事前已形成底層(例如透過印記(imprint)方式之微小凹凸)者、或預先積層有光感應性之功能膜或透明膜(絶緣材料)者。 In the device manufacturing method shown in FIG. 37, first, the function and performance design of a display panel formed using a self-luminous device such as organic EL is performed, and the required circuit patterns and wiring patterns are designed by CAD or the like (step S201). Next, according to various patterns of each layer designed by CAD or the like, a mask M of the required layer amount is produced (step S202). The supply roll FR1 on which the flexible substrate P (resin film, metal foil film, plastic, etc.) as the base material of the display panel is wound is prepared (step S203). In addition, the roll-shaped substrate P prepared in this step S203 may be one whose surface has been modified as necessary, or one that has been formed in advance (for example, micro-concave and convex through imprint method), or one that has been pre-laminated with light. Inductive functional film or transparent film (insulating material).
接著,於基板P上形成構成顯示面板元件之電極或以配線、絶緣膜、TFT(薄膜半導體)等構成之底板層,並以積層於該底板之方式形成以有機EL等自發光元件構成之發光層(顯示像素部)(步驟S204)。於此步驟S204中,雖包含使用先前各實施形態所說明之曝光裝置U3使光阻層曝光之習知微影製程,但亦包含使取代光阻而塗有感光性矽烷耦合劑之基板P圖案曝光來於表面形成親撥水性之圖案的曝光製程、使光感應性觸媒層圖案曝光並以無電解鍍敷法形成金屬膜圖案(配線、電極等)的濕式製程、或以含有銀奈米粒子之導電性墨水等描繪圖案的印刷製程等之處理。 Next, on the substrate P, electrodes constituting the display panel elements or a backplane layer composed of wiring, insulating film, TFT (thin film semiconductor), etc. are formed, and a light-emitting element composed of self-luminous elements such as organic EL is formed by stacking on the substrate. Layer (display pixel portion) (step S204). In this step S204, although it includes the conventional lithography process of exposing the photoresist layer using the exposure device U3 described in the previous embodiments, it also includes the pattern of the substrate P coated with a photosensitive silane coupling agent instead of the photoresist Exposure comes from an exposure process that forms a water-repellent pattern on the surface, a wet process that exposes a photo-sensitive catalyst layer pattern and forms a metal film pattern (wiring, electrode, etc.) by electroless plating, or contains silver The processing of printing process, etc. for drawing patterns such as conductive ink of rice particles.
接著,針對以捲筒方式於長條基板P上連續製造之每一顯示面板元件切割基板P、或於各顯示面板元件表面貼合保護膜(耐環境障壁層)或彩色濾光片膜等,組裝元件(步驟S205)。接著,進行顯示面板元件是否可正常作動、或是否滿足所欲性能及特性之檢查步驟(步驟S206)。經由以上方式,即能製造顯示面板(可撓性顯示器)。 Then, cut the substrate P for each display panel element continuously manufactured on the long substrate P in a roll manner, or paste a protective film (environmental barrier layer) or color filter film on the surface of each display panel element. The components are assembled (step S205). Next, a step of checking whether the display panel element can operate normally or whether it meets the desired performance and characteristics is performed (step S206). Through the above method, a display panel (flexible display) can be manufactured.
前述實施形態及其變形例的曝光裝置,係藉由組裝各種次系統(包含本案申請範圍中所列舉的各構成要素),以能保持既定之機械精度、電氣精度、光學精度之方式所製造。為確保此等各種精度,於組裝前後,係進行對各種光學系統進行用以達成光學精度之調整、對各種機械系統進行用以達成機械精度之調整、對各種電氣系統進行用以達成電氣精度之調整。從各種次系統至 曝光裝置之組裝製程,係包含機械連接、電路之配線連接、氣壓迴路之配管連接等。當然,從各種次系統至曝光裝置之組裝製程前,係有各次系統個別之組裝製程。當各種次系統至曝光裝置之組裝製程結束後,即進行綜合調整,以確保曝光裝置全體之各種精度。此外,曝光裝置之製造最好是在溫度及清潔度等皆受到管理之潔淨室進行。 The exposure apparatus of the foregoing embodiment and its modification examples are manufactured by assembling various sub-systems (including the constituent elements listed in the application scope of this application) in a manner that can maintain predetermined mechanical, electrical, and optical accuracy. In order to ensure these various precisions, before and after assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, and various electrical systems are adjusted to achieve electrical accuracy. Adjustment. The assembly process from various sub-systems to exposure devices includes mechanical connections, wiring connections for circuits, and piping connections for pneumatic circuits. Of course, before the assembly process from the various sub-systems to the exposure device, there are individual assembly processes for each sub-system. After the assembling process of the various sub-systems to the exposure device is completed, comprehensive adjustments are made to ensure the various accuracy of the entire exposure device. In addition, the manufacturing of the exposure device is preferably carried out in a clean room where temperature and cleanliness are managed.
又,上述實施形態及其變形例之構成要素可適當加以組合。又,亦有不使用部分構成要素之情形。再者,能在不脫離本發明要旨之範圍內進行構成要素之置換或變更。又,在法令許可範圍內,援用前述各實施形態所引用之關於曝光裝置等之所有公開公報及美國專利之記載作為本說明書記載之一部分。如上述,發明所屬技術領域中具有通常知識者依據上述實施形態所進行之其他實施形態及運用技術等均為本發明之範圍所含。 In addition, the constituent elements of the above-mentioned embodiment and its modification examples can be appropriately combined. In addition, there are cases where some constituent elements are not used. Furthermore, it is possible to replace or change the constituent elements without departing from the scope of the present invention. In addition, within the scope of statutory regulations, all the publications and U.S. patents on exposure devices cited in the foregoing embodiments are cited as part of the description of this specification. As described above, other embodiments and application techniques performed by those with ordinary knowledge in the technical field to which the invention pertains based on the above embodiments are included in the scope of the present invention.
A‧‧‧移動距離 A‧‧‧moving distance
AX1’‧‧‧中心線 AX1’‧‧‧Centerline
AX2‧‧‧中心軸 AX2‧‧‧Central axis
Cp,Cp0‧‧‧接線 Cp,Cp0‧‧‧Wiring
Cp1,Cp2‧‧‧點 Cp1, Cp2‧‧‧point
HP‧‧‧基準面 HP‧‧‧Base surface
KS‧‧‧面 KS‧‧‧Noodles
Rm,Rp‧‧‧半徑 Rm,Rp‧‧‧radius
Sm‧‧‧投影像面 Sm‧‧‧Projection image surface
Sp‧‧‧曝光面 Sp‧‧‧exposure
V‧‧‧移動速度 V‧‧‧Movement speed
2A‧‧‧曝光寬度 2A‧‧‧Exposure width
PA‧‧‧投影區域 PA‧‧‧Projection area
Claims (9)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013087650 | 2013-04-18 | ||
JPJP2013-087650 | 2013-04-18 | ||
JPJP2013-154965 | 2013-07-25 | ||
JP2013154965 | 2013-07-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201945865A TW201945865A (en) | 2019-12-01 |
TWI707211B true TWI707211B (en) | 2020-10-11 |
Family
ID=51731223
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103111893A TWI610142B (en) | 2013-04-18 | 2014-03-31 | Substrate processing apparatus and component manufacturing method |
TW107130374A TWI672568B (en) | 2013-04-18 | 2014-03-31 | Exposure device |
TW108131088A TWI707211B (en) | 2013-04-18 | 2014-03-31 | Pattern exposure device |
TW106134986A TWI640841B (en) | 2013-04-18 | 2014-03-31 | Scanning exposure method, exposure device, component manufacturing system, and component manufacturing method |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103111893A TWI610142B (en) | 2013-04-18 | 2014-03-31 | Substrate processing apparatus and component manufacturing method |
TW107130374A TWI672568B (en) | 2013-04-18 | 2014-03-31 | Exposure device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106134986A TWI640841B (en) | 2013-04-18 | 2014-03-31 | Scanning exposure method, exposure device, component manufacturing system, and component manufacturing method |
Country Status (6)
Country | Link |
---|---|
JP (4) | JP6269658B2 (en) |
KR (5) | KR102062509B1 (en) |
CN (4) | CN107908083B (en) |
HK (2) | HK1215307A1 (en) |
TW (4) | TWI610142B (en) |
WO (1) | WO2014171270A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017073608A1 (en) * | 2015-10-30 | 2017-05-04 | 株式会社ニコン | Substrate processing apparatus, substrate processing apparatus adjustment method, device production system, and device production method |
US10983389B2 (en) | 2016-03-04 | 2021-04-20 | Applied Materials, Inc. | Wire grid polarizer manufacturing method |
US10541165B2 (en) * | 2016-11-10 | 2020-01-21 | Applied Materials, Inc. | Systems, apparatus, and methods for an improved load port backplane |
CN106950801A (en) * | 2017-04-16 | 2017-07-14 | 合肥芯碁微电子装备有限公司 | A kind of rapid edge exposure method without mask laser direct-write photoetching equipment |
WO2019138940A1 (en) * | 2018-01-10 | 2019-07-18 | 凸版印刷株式会社 | Photomask |
JP7232586B2 (en) * | 2018-07-31 | 2023-03-03 | 東京エレクトロン株式会社 | SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD, AND STORAGE MEDIUM |
JP7358970B2 (en) * | 2018-12-26 | 2023-10-11 | 株式会社デンソーウェーブ | optical information reader |
CN109760407A (en) * | 2019-03-09 | 2019-05-17 | 深圳市正鑫源实业有限公司 | The control method and its letterpress system of intelligent letterpress force of impression |
DE102019205271A1 (en) * | 2019-04-11 | 2020-10-15 | Carl Zeiss Smt Gmbh | Imaging optics for imaging an object field in an image field as well as projection exposure system with such imaging optics |
US10880528B1 (en) * | 2019-10-31 | 2020-12-29 | Christie Digital Systems Usa, Inc. | Device, system and method for modulating light using a phase light modulator and a spatial light modulator |
TWI724867B (en) * | 2020-04-16 | 2021-04-11 | 光群雷射科技股份有限公司 | Manufacturing method of transfer type roller and transfer type roller |
CN111510141B (en) * | 2020-06-03 | 2023-09-15 | 江苏集萃微纳自动化系统与装备技术研究所有限公司 | Physical package of miniature atomic clock and miniature atomic clock |
CN111965954B (en) * | 2020-09-09 | 2022-12-30 | 中国科学院光电技术研究所 | Exposure device with mask and substrate rotating coaxially relatively |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008029917A1 (en) * | 2006-09-08 | 2008-03-13 | Nikon Corporation | Mask, exposure apparatus and device manufacturing method |
WO2011129369A1 (en) * | 2010-04-13 | 2011-10-20 | 株式会社ニコン | Exposure apparatus, substrate processing apparatus, and device manufacturing method |
TW201312295A (en) * | 2011-09-07 | 2013-03-16 | 尼康股份有限公司 | Substrate processing device |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3101473B2 (en) * | 1993-11-05 | 2000-10-23 | キヤノン株式会社 | Exposure method and device manufacturing method using the exposure method |
JP2000035677A (en) * | 1998-07-17 | 2000-02-02 | Adtec Engineeng:Kk | Aligner |
KR200214060Y1 (en) * | 1998-12-31 | 2001-09-25 | 배진원 | Belt tensioning device |
EP1478010A4 (en) * | 2002-01-29 | 2007-12-12 | Nikon Corp | Image formation state adjustment system, exposure method, exposure apparatus, program, and information recording medium |
JP2007227438A (en) * | 2006-02-21 | 2007-09-06 | Nikon Corp | Exposure apparatus and exposure method, and mask for light exposure |
KR101415313B1 (en) * | 2006-02-28 | 2014-07-04 | 마이크로닉 마이데이터 아베 | Platform, device, system, and method for substrate processing and analysis |
JP4984631B2 (en) | 2006-04-28 | 2012-07-25 | 株式会社ニコン | EXPOSURE APPARATUS AND METHOD, EXPOSURE MASK, AND DEVICE MANUFACTURING METHOD |
JP5181451B2 (en) * | 2006-09-20 | 2013-04-10 | 株式会社ニコン | Mask, exposure apparatus, exposure method, and device manufacturing method |
JP2008216653A (en) * | 2007-03-05 | 2008-09-18 | Fujifilm Corp | Photomask holding structure of lithography, and holding method |
JP5282895B2 (en) * | 2009-03-06 | 2013-09-04 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
JP2011033907A (en) * | 2009-08-04 | 2011-02-17 | Nikon Corp | Illuminating device, exposure device, illuminating method, exposure method, and method for manufacturing device |
JP2011104957A (en) * | 2009-11-20 | 2011-06-02 | Ihi Corp | Method and apparatus for controlling printing pressure of printer |
JP5724564B2 (en) | 2010-04-13 | 2015-05-27 | 株式会社ニコン | Mask case, mask unit, exposure apparatus, substrate processing apparatus, and device manufacturing method |
JP2011221536A (en) * | 2010-04-13 | 2011-11-04 | Nikon Corp | Mask moving device, exposure device, substrate processor and device manufacturing method |
WO2013035696A1 (en) | 2011-09-05 | 2013-03-14 | 株式会社ニコン | Substrate transfer apparatus and substrate processing apparatus |
WO2013035489A1 (en) * | 2011-09-06 | 2013-03-14 | 株式会社ニコン | Substrate processing device |
JP2013213983A (en) * | 2012-04-03 | 2013-10-17 | Nikon Corp | Exposure apparatus and device manufacturing method |
CN104246618B (en) * | 2012-04-19 | 2016-04-20 | 株式会社尼康 | Mask unit and substrate board treatment |
-
2014
- 2014-03-24 KR KR1020197021656A patent/KR102062509B1/en active IP Right Grant
- 2014-03-24 CN CN201711078129.4A patent/CN107908083B/en active Active
- 2014-03-24 CN CN201810312226.3A patent/CN108710263B/en active Active
- 2014-03-24 CN CN201480034715.7A patent/CN105339846B/en active Active
- 2014-03-24 KR KR1020207017897A patent/KR102204689B1/en active IP Right Grant
- 2014-03-24 JP JP2015512375A patent/JP6269658B2/en active Active
- 2014-03-24 KR KR1020197034564A patent/KR102126981B1/en active IP Right Grant
- 2014-03-24 CN CN201611264164.0A patent/CN106933066B/en active Active
- 2014-03-24 WO PCT/JP2014/058109 patent/WO2014171270A1/en active Application Filing
- 2014-03-24 KR KR1020157032598A patent/KR101956973B1/en active IP Right Grant
- 2014-03-24 KR KR1020197004930A patent/KR102005701B1/en active IP Right Grant
- 2014-03-31 TW TW103111893A patent/TWI610142B/en active
- 2014-03-31 TW TW107130374A patent/TWI672568B/en active
- 2014-03-31 TW TW108131088A patent/TWI707211B/en active
- 2014-03-31 TW TW106134986A patent/TWI640841B/en active
-
2016
- 2016-03-18 HK HK16103193.1A patent/HK1215307A1/en not_active IP Right Cessation
- 2016-03-18 HK HK18114874.2A patent/HK1255723A1/en unknown
-
2017
- 2017-03-08 JP JP2017044411A patent/JP6380583B2/en active Active
- 2017-12-26 JP JP2017250254A patent/JP6515993B2/en active Active
-
2019
- 2019-04-16 JP JP2019078021A patent/JP6773168B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008029917A1 (en) * | 2006-09-08 | 2008-03-13 | Nikon Corporation | Mask, exposure apparatus and device manufacturing method |
WO2011129369A1 (en) * | 2010-04-13 | 2011-10-20 | 株式会社ニコン | Exposure apparatus, substrate processing apparatus, and device manufacturing method |
TW201312295A (en) * | 2011-09-07 | 2013-03-16 | 尼康股份有限公司 | Substrate processing device |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI707211B (en) | Pattern exposure device | |
JP6816814B2 (en) | Scanning exposure method | |
JP2020170162A (en) | Scanning exposure method and device manufacturing method | |
JP6531622B2 (en) | Cylindrical mask, exposure system | |
JP6705531B2 (en) | Device manufacturing method |