TWI706366B - Electric vehicle charging station power management method - Google Patents
Electric vehicle charging station power management method Download PDFInfo
- Publication number
- TWI706366B TWI706366B TW108129199A TW108129199A TWI706366B TW I706366 B TWI706366 B TW I706366B TW 108129199 A TW108129199 A TW 108129199A TW 108129199 A TW108129199 A TW 108129199A TW I706366 B TWI706366 B TW I706366B
- Authority
- TW
- Taiwan
- Prior art keywords
- electric
- electric vehicle
- time point
- current time
- state
- Prior art date
Links
Images
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
一種電動車充電站電能管理方法,適用於管理停放於一充電站之所有電動車的充放電狀態,每一電動車對應於一電動車資訊,該充電站設置有一電能儲存裝置,該電動車充電站電能管理方法藉由一處理單元來實施並包含以下步驟:(A)根據停放於該充電站內每一台電動車所對應之電動車資訊、一電價資訊、相關於該電能儲存裝置的電能資訊,及相關於該充電站的一最大供給電功率,該電能資訊包含該電能儲存裝置於前一時間點t-1的荷電狀態、一最小荷電狀態與一最大荷電狀態,利用一線性規劃獲得每一電動車在一當前時間點t的一充電電功率或一放電電功率。An electric vehicle charging station electric energy management method is suitable for managing the charging and discharging state of all electric vehicles parked in a charging station. Each electric vehicle corresponds to an electric vehicle information. The charging station is provided with an electric energy storage device, and the electric vehicle is charged. The station electric energy management method is implemented by a processing unit and includes the following steps: (A) According to the electric vehicle information corresponding to each electric vehicle parked in the charging station, an electricity price information, and the electric energy information related to the electric energy storage device , And a maximum supply electric power related to the charging station, the electric energy information includes the state of charge of the electric energy storage device at the previous time point t-1, a minimum state of charge and a maximum state of charge, and each is obtained by a linear programming A charging electric power or a discharging electric power of the electric vehicle at a current time point t.
Description
本發明是有關於一種停車場電能管理方法,特別是指一種用於電動車的電動車充電站電能管理方法。 The invention relates to a parking lot electric energy management method, in particular to an electric vehicle charging station electric energy management method for electric vehicles.
隨著電動車之需求量日益增長,為了因應大量電動車的充電需求對電網所帶來的衝擊,電動車充電站的電能管理以及價格策略是亟待解決的問題。在電動車充電站引進用戶群代表(Aggregator)商業模式,可使電動車充電站不僅只是單純作為電動車充電使用(亦即,Grid-to-vehicle,簡稱G2V),還可以藉由V2G(Vehicle-to-grid)模式來引導電動車將電能銷售給電網,然而,如何建立電動車充放電策略使得電能銷售的利潤極大化並滿足電動車用戶的充電需求是各界業者與學者致力研究之課題。 With the increasing demand for electric vehicles, in order to cope with the impact of a large number of electric vehicle charging demands on the power grid, the electric energy management and price strategy of electric vehicle charging stations are urgent problems to be solved. The introduction of the user group representative (Aggregator) business model in the electric vehicle charging station enables the electric vehicle charging station not only to be used solely for electric vehicle charging (that is, Grid-to-vehicle, G2V for short), but also to use V2G (Vehicle -to-grid) mode to guide electric vehicles to sell electric energy to the grid. However, how to establish an electric vehicle charging and discharging strategy to maximize the profit of electric vehicle sales and meet the charging needs of electric vehicle users is a topic that industry and scholars from all walks of life are committed to researching.
現有技術如,「An Optimal Charging/Discharging Strategy for Smart Electrical Car Parks」此篇論文所提出之方法係根據電動車的當前的荷電狀態、電價、期望的荷電狀態,及電網需求來建立電動車充放電策略,然而上述方法仍有改良之處。 Existing technologies such as "An Optimal Charging/Discharging Strategy for Smart Electrical Car Parks" the method proposed in this paper is to establish the charging and discharging of electric vehicles based on the current state of charge, electricity price, expected state of charge, and grid demand of electric vehicles. Strategy, but the above method still has improvements.
因此,本發明的目的,即在提供一種同時考量停放於充電站中之所有電動車與設置於充電站之電能儲存裝置的電能需求,以提供更完善之充放電策略的電動車充電站電能管理方法。 Therefore, the object of the present invention is to provide an electric vehicle charging station electric energy management that considers the electric energy requirements of all electric vehicles parked in the charging station and the electric energy storage device installed in the charging station at the same time to provide a more complete charging and discharging strategy method.
於是,本發明電動車充電站電能管理方法,適用於管理停放於一充電站之所有電動車的充放電狀態,每一電動車對應於一電動車資訊,每一電動車資訊包含所對應之電動車的一入場時間、一離場時間、入場時的一入場電池荷電狀態、一期望的離場電池荷電狀態、一最小電池荷電狀態,與一最大電池荷電狀態,該充電站設置有一電能儲存裝置,該電動車充電站電能管理方法藉由一處理單元來實施並包含以下步驟:(A)根據停放於該充電站內每一台電動車所對應之電動車資訊、介於一停放於該充電站之所有電動車中之一最早入場的電動車所對應之一最早入場時間與停放於該充電站之所有電動車中之一最晚離場的電動車所對應之一最晚離場時間之間的電價資訊、相關於該電能儲存裝置的電能資訊,及相關於該充電站的一最大供給電功率,該電能資訊包含該電能儲存裝置於前一時間點t-1的荷電狀態、一最小荷電狀態與一最大荷電狀態,利用一線性規劃獲得每一電動車在一當前時間點t的一充電電功率或一放電電功率。 Therefore, the electric energy management method of the electric vehicle charging station of the present invention is suitable for managing the charging and discharging state of all electric vehicles parked in a charging station. Each electric vehicle corresponds to an electric vehicle information, and each electric vehicle information includes the corresponding electric vehicle information. The charging station is equipped with an electric energy storage device for an entry time, a departure time, an admission battery state of charge at the time of admission, a desired departure battery state of charge, a minimum battery state of charge, and a maximum battery state of charge. , The electric vehicle charging station power management method is implemented by a processing unit and includes the following steps: (A) According to the electric vehicle information corresponding to each electric vehicle parked in the charging station, between a parked at the charging station Between the earliest entry time corresponding to one of the earliest electric vehicles among all electric vehicles and the latest departure time corresponding to one of the latest electric vehicles parked at the charging station Electricity price information of the electric energy storage device, electric energy information related to the electric energy storage device, and a maximum supply electric power related to the charging station. The electric energy information includes the state of charge of the electric energy storage device at the previous time point t-1 and a minimum state of charge With a maximum state of charge, a linear programming is used to obtain a charging electric power or a discharging electric power of each electric vehicle at a current time point t.
本發明的功效在於:藉由該處理單元同時考量該電能儲存裝置於前一時間點t-1的荷電狀態、該最小荷電狀態與該最大荷電狀態,及該充電站的最大供給電功率來進行線性規劃,可使所規劃出之充放電策略不僅符合電動車用戶的需求,也使該電能儲存裝置可自電網買電以儲存電能,或提供電能給電網以賣電,更進一步符合充電站業者之需求。 The effect of the present invention is that the processing unit simultaneously considers the state of charge of the electrical energy storage device at the previous time point t-1, the minimum state of charge and the maximum state of charge, and the maximum supply power of the charging station to perform linearization. The planning can make the planned charging and discharging strategy not only meet the needs of electric vehicle users, but also enable the electric energy storage device to buy electricity from the grid to store electricity, or provide electricity to the grid to sell electricity, and further meet the requirements of charging station operators. demand.
1:運算裝置 1: Computing device
11:輸入單元 11: Input unit
12:通訊單元 12: Communication unit
13:處理單元 13: processing unit
201~202:步驟 201~202: steps
301~302:步驟 301~302: steps
401~404:步驟 401~404: steps
801~803:子步驟 801~803: Sub-step
C1:第一期間 C1: The first period
C2:第二期間 C2: Second period
C3:第三期間 C3: The third period
本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一方塊圖,說明實施本發明電動車充電站電能管理方法之一第一實施例的一運算裝置;圖2是一流程圖,說明本發明電動車充電站電能管理方法之該第一實施例;圖3是一流程圖,說明本發明電動車充電站電能管理方法之一第二實施例 Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, in which: FIG. 1 is a block diagram illustrating a first embodiment of a first embodiment of the electric vehicle charging station power management method of the present invention Computing device; Figure 2 is a flowchart illustrating the first embodiment of the electric vehicle charging station power management method of the present invention; Figure 3 is a flowchart illustrating the second embodiment of the electric vehicle charging station power management method of the present invention
圖4是一流程圖,說明本發明電動車充電站電能管理方法之一第三實施例;圖5是一示意圖,說明對應於一第一優先權重的電價資料;圖6是一示意圖,說明對應於一第二優先權重的電價資料; 圖7是一示意圖,說明對應於一第三優先權重的電價資料;及圖8是一流程圖,說明如何獲得一電動車的一優先權重。 Fig. 4 is a flowchart illustrating a third embodiment of a method for managing electric energy in an electric vehicle charging station of the present invention; Fig. 5 is a schematic diagram illustrating electricity price data corresponding to a first priority; Fig. 6 is a schematic diagram illustrating the corresponding Electricity price information in a second priority; FIG. 7 is a schematic diagram illustrating electricity price data corresponding to a third priority; and FIG. 8 is a flowchart illustrating how to obtain a priority of an electric vehicle.
在本發明被詳細描述前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。 Before the present invention is described in detail, it should be noted that in the following description, similar elements are represented by the same numbers.
參閱圖1與圖2,本發明電動車充電站電能管理方法的一第一實施例適用於管理停放於一充電站之所有電動車(圖未示)的充放電狀態,並藉由一運算裝置1來實施。該充電站設置有一用於儲存電能並與該運算裝置1電連接的電能儲存裝置(圖未示),與一用於產生電能並與該運算裝置1電連接的太陽能模組(圖未示)。
1 and 2, a first embodiment of the electric energy management method of an electric vehicle charging station of the present invention is suitable for managing the charging and discharging state of all electric vehicles (not shown) parked in a charging station, and a
該運算裝置1包含一輸入單元11、一連接至一通訊網路的通訊單元12,及一電連接該輸入單元11與該通訊單元12的處理單元13。在本實施例中,該運算裝置1例如為一電腦、一伺服器或一智慧型手機等。
The
每一電動車對應於一電動車資訊,每一電動車資訊包含所對應之電動車的一入場時間、一離場時間、入場時的一入場電池荷電狀態、一期望的離場電池荷電狀態、一最小電池荷電狀態、一最大電池荷電狀態、一最大的充電電功率、一最大的放電電功率,與一電池劣化成本。 Each electric vehicle corresponds to an electric vehicle information, and each electric vehicle information includes an admission time, an departure time, an admission battery state of charge at the time of admission, an expected departure battery charge state, A minimum battery state of charge, a maximum battery state of charge, a maximum charge power, a maximum discharge power, and a battery degradation cost.
值得一提的是,該電動車資訊中的該入場時間、該離場時間、該入場電池荷電狀態、該離場電池荷電狀態、該最小電池荷電狀態、該最大電池荷電狀態、該最大的充電電功率、該最大的放電電功率,與該電池劣化成本可由所對應之電動車的用戶利用該運算裝置1之輸入單元11進行輸入操作而產生,該入場電池荷電狀態也可藉由裝設於該充電站,並與該運算裝置1電連接的一電量檢測器(圖未示)測量該電動車之電池的荷電狀態後傳送至該運算裝置1而獲得。在其他實施方式中,該電動車資訊也可藉由所對應之電動車的用戶利用其所持有之使用端(圖未示)進行輸入操作而產生後,該使用端將所產生的該電動車資訊經由該通訊網路傳送至該運算裝置1,然並不以此為限。
It is worth mentioning that the admission time, the departure time, the admission battery state of charge, the departure battery charge state, the minimum battery charge state, the maximum battery charge state, and the maximum charge in the electric vehicle information The electric power, the maximum discharge electric power, and the battery degradation cost can be generated by the user of the corresponding electric vehicle using the input unit 11 of the
該電能儲存裝置例如為一儲能系統(Energy Storage System,簡稱ESS)。該電能儲存裝置對應於一電能資訊,該電能資訊包含該電能儲存裝置於前一時間點t-1的荷電狀態、一最小荷電狀態與一最大荷電狀態。該太陽能模組例如包含一太陽電池模板,及一用於測量該太陽電池模板所產生之太陽能電功率的檢測計。用戶群代表可將該電能儲存裝置所儲存之電能與該太陽能模組所產生之電能供應給該電網,也可提供給該充電站自行使用。 The electrical energy storage device is, for example, an Energy Storage System (ESS). The electrical energy storage device corresponds to electrical energy information, and the electrical energy information includes a state of charge of the electrical energy storage device at a previous time point t-1, a minimum state of charge, and a maximum state of charge. The solar module includes, for example, a solar cell template and a meter for measuring the solar electric power generated by the solar cell template. The representative of the user group can supply the electric energy stored in the electric energy storage device and the electric energy generated by the solar module to the grid, or provide the charging station for self-use.
值得一提的是,該電能資訊中的該最小荷電狀態與該最大荷電狀態係由一管理者利用該運算裝置1之輸入單元11進行輸入
操作而產生,該電能資訊中之前一時間點t-1的荷電狀態可藉由該電量檢測器(圖未示)測量該電能儲存裝置之荷電狀態後傳送至該運算裝置1而獲得。該太陽能模組的檢測計在測量到該太陽電池模板所產生之太陽能電功率後,即會將所測量到的太陽能電功率傳送至該運算裝置1。
It is worth mentioning that the minimum state of charge and the maximum state of charge in the electrical energy information are input by a manager using the input unit 11 of the
參閱圖1與圖2,本發明電動車充電站電能管理方法的一第一實施例包含以下步驟。 1 and 2, a first embodiment of a method for managing electric energy in an electric vehicle charging station of the present invention includes the following steps.
在步驟201中,該運算裝置1之處理單元13獲得停放於該充電站內每一台電動車所對應之電動車資訊、介於一停放於該充電站之所有電動車中之一最早入場的電動車所對應之一最早入場時間與停放於該充電站之所有電動車中之一最晚離場的電動車所對應之一最晚離場時間之間的電價資訊、相關於該電能儲存裝置的電能資訊、該太陽能模組在一當前時間點t所產生的一太陽能電功率,及相關於該充電站的一最大供給電功率。其中,該電價資訊係由一電力公司所提供。
In
在步驟202中,該運算裝置1之處理單元13根據每一台電動車所對應之電動車資訊、該電價資訊、該電能資訊、該充電站的該最大供給電功率,及在該當前時間點t所產生該太陽能電功率,利用一線性規劃,獲得每一電動車在該當前時間點t的一充電電功率或一放電電功率,及該電能儲存裝置在該當前時間點t的一充電
電功率或一放電電功率。其中,該線性規劃的一目標函數可被表示成下列公式(1),且該目標函數所滿足的該等限制條件如下列限制條件1~限制條件8。
In
其中,
限制條件1: Restriction 1:
限制條件2: Restriction 2:
限制條件3: Restriction 3:
限制條件4:若t<或t>,則==0。 Restriction 4: If t< Or t> ,then = =0.
限制條件5: Restriction 5:
限制條件6: Restriction 6:
限制條件7: Restriction 7:
限制條件8:
其中,tstart為停放於該充電站之所有電動車中之最早入場的該電動車所對應之該最早入場時間,tend為停放於該充電站之 所有電動車中之最晚離場的該電動車所對應之該最晚離場時間,代表該電價資訊在該當前時間點t所指示出的一用電價格,△t代表一單位時間,例如5分鐘,M代表停放於該充電站之所有電動車的數量,代表第i台電動車在該當前時間點t時是否處於充電狀態,=1代表第i台電動車在該當前時間點t處於充電狀態,=0代表第i台電動車在該當前時間點t非處於充電狀態,當<0,代表第i台電動車在該當前時間點t的充電電功率,當>0,代表第i台電動車在該當前時間點t的放電電功率,代表提供給該電能儲存裝置之一預設的充電電功率,×代表該電能儲存裝置在該當前時間點t的充電電功率,,代表該充電站的該最大供給電功率,代表該電能儲存裝置的該最大荷電狀態,代表該電能儲存裝置於前一時間點t-1的荷電狀態,代表該電能儲存裝置的該最小荷電狀態,代表該電能儲存裝置在該當前時間點t時是否處於充電狀態,=1代表該電能儲存裝置在該當前時間點t處於充電狀態,=0代表該電能儲存裝置在該當前時間點t非處於充電狀態,代表該電價資訊在該當前時間點t所指示出的一賣電價格,指示出第i台電動車在該當前時間點t進行一放電模式的一意願程度,表第i台電動車在該當前時間點t時是否處於放電狀態,=1代表第i台電動車在該當前時間點t處於放電狀 態,=0代表第i台電動車在該當前時間點t非處於放電狀態,代表該太陽能模組在該當前時間點t所能供應給該電網的該太陽能電功率,代表該太陽能模組在該當前時間點t所產生的太陽能電功率,代表該電能儲存裝置在該當前時間點t時是否處於放電狀態,=1代表該電能儲存裝置在該當前時間點t處於放電狀態,=0代表該電能儲存裝置在該當前時間點t非處於放電狀態,代表該電能儲存裝置在該當前時間點t的放電電功率,+指示出用戶群代表決定供應給該電網的一總電功率,、、、、、為該目標函數的決策變數,為一負數,指示出第i台電動車之該最大的充電電功率,為一正數,指示出第i台電動車之該最大的放電電功率,代表第i台電動車的該最小電池荷電狀態,代表第i台電動車的該最大電池荷電狀態,代表第i台電動車入場時的該入場電池荷電狀態,代表第i台電動車期望的該離場電池荷電狀態,Capi代表第i台電動車的一滿充容量(Fully Charge Capacity,簡稱FCC),代表第i台電動車的該入場時間,代表第i台電動車的該離場時間。 Among them, t start is the earliest entry time corresponding to the earliest entry of all electric vehicles parked at the charging station, and t end is the latest entry time of all electric vehicles parked at the charging station. The latest departure time for electric vehicles, Represents the electricity price indicated by the electricity price information at the current time point t, Δt represents a unit time, such as 5 minutes, and M represents the number of all electric vehicles parked at the charging station, Represents whether the i-th electric vehicle is in a charging state at the current time point t, =1 means the i-th electric vehicle is in the charging state at the current time point t, =0 means that the i-th electric vehicle is not in the charging state at the current time point t, when <0, Represents the charging power of the i-th electric vehicle at the current time point t, when >0, Represents the discharge power of the i-th electric vehicle at the current time point t, Represents the preset charging electric power provided to one of the electric energy storage devices, × Represents the charging electric power of the electric energy storage device at the current time point t, , Represents the maximum supply power of the charging station, Represents the maximum state of charge of the electrical energy storage device, Represents the state of charge of the electric energy storage device at the previous time point t-1, Represents the minimum state of charge of the electrical energy storage device, Represents whether the electrical energy storage device is in a charging state at the current time point t, =1 means that the electric energy storage device is in a charging state at the current time point t, =0 means that the electric energy storage device is not in the charging state at the current time point t, Represents a selling price indicated by the electricity price information at the current time point t, Indicates the willingness of the i-th electric vehicle to perform a discharge mode at the current time point t, Table i-th electric vehicle is in the discharge state at the current time point t, =1 means that the i-th electric vehicle is in the discharge state at the current time point t, =0 means that the i-th electric vehicle is not in the discharge state at the current time point t, Represents the solar power that the solar module can supply to the grid at the current time point t, Represents the solar power generated by the solar module at the current time point t, Represents whether the electric energy storage device is in a discharge state at the current time point t, =1 means that the electric energy storage device is in the discharge state at the current time point t, =0 means that the electric energy storage device is not in a discharge state at the current time point t, Represents the discharged electric power of the electric energy storage device at the current time point t, + Indicates that the representative of the user group decides to supply a total electric power to the grid, , , , , , Is the decision variable of the objective function, Is a negative number, indicating the maximum charging power of the i-th electric vehicle, Is a positive number, indicating the maximum discharge power of the i-th electric vehicle, Represents the minimum battery state of charge of the i-th electric vehicle, Represents the maximum battery state of charge of the i-th electric vehicle, Represents the state of charge of the admission battery when the i-th electric vehicle enters the venue, Represents the state of charge of the off-site battery expected by the i-th electric vehicle, and Cap i represents a Fully Charge Capacity (FCC) of the i-th electric vehicle, Represents the entry time of the i-th electric car, Represents the departure time of the i-th electric vehicle.
值得特別說明的是,當時,代表該充電站的該最大供給電功率全部都供應給停放於該充電站之電動車,由於充電站需先滿足停放於該充電站之電動車的充電需求,當已滿足停放於該充電站之電動車的充電需求後,還有剩餘的供給電功率時,
才考量將剩餘的供給電功率提供給該電能儲存裝置充電,因此,若該最大供給電功率全部都供應給停放於該充電站之電動車,則=0,亦即,不對該電能儲存裝置充電。此外,當-=0時,代表該電能儲存裝置已達該最大荷電狀態,亦即,該電能儲存裝置已充滿電,故=0。另外,指示出第i台電動車在該當前時間點t進行該放電模式的該意願程度,在本實施例中,係根據該電價資訊在該當前時間點t所指示出的一賣電價格,與第i台電動車的該電池劣化成本BDCi,利用以下公式(2)而獲得,當賣電價格越高,則進行該放電模式的該意願程度也隨之越高。然而,在其他實施例中,該意願程度亦可由所對應之電動車的用戶利用該運算裝置1之輸入單元11或其所持有之使用端自行輸入其有無意願讓其所擁有的電動車進行該放電模式,當該意願程度設為0,即代表無意願讓其所擁有的電動車進行該放電模式;當該意願程度設為1,即代表有意願讓其所擁有的電動車進行該放電模式。
It is worth noting that when When the maximum power supply of the charging station is all supplied to the electric vehicles parked at the charging station, since the charging station must first meet the charging requirements of the electric vehicles parked at the charging station, when the charging station has been satisfied After the charging demand of the electric vehicle, when there is remaining supply power, the remaining supply power is considered to be provided to the electric energy storage device for charging. Therefore, if the maximum supply power is all supplied to the electric vehicle parked at the charging station ,then =0, that is, the electric energy storage device is not charged. In addition, when - =0, it means that the electric energy storage device has reached the maximum state of charge, that is, the electric energy storage device is fully charged, so =0. In addition, Indicates the willingness of the i-th electric vehicle to perform the discharge mode at the current time point t. In this embodiment, Is based on the electricity price information at the current time point t indicated a selling price , And the battery degradation cost BDC i of the i-th electric vehicle, obtained by the following formula (2), when the selling price The higher the value, the higher the willingness to perform the discharge mode. However, in other embodiments, the user of the corresponding electric vehicle can use the input unit 11 of the
此外,+指示出用戶群代表決定供應給該電網的一總電功率,β與γ之值係由用戶群代表所決定出,(1-β)+(1-γ)為該電能儲存裝置所儲存之電能與該太陽能模組所產生之電能供應給該電網後剩餘的電功率,剩餘的電功率即可提供給該充電站自行使用。在電動車充電站引進用戶群代表(Aggregator)
之商業模式下,該電能儲存裝置也可藉由在電價便宜時,進行充電,而在電價昂貴時,進行放電以將電能銷售給電網,本發明之第一實施例藉由該處理單元13同時考量每一電動車的電能狀態、該電能儲存裝置的電能儲存狀態,及該太陽能模組所產生之電能,可使所規劃出之充放電策略不僅符合電動車用戶的需求,也可符合充電站業者之需求,達成電動車用戶與充電站業者之雙贏。
In addition, + Indicates that the representative of the user group decides to supply a total electric power to the grid, the values of β and γ are determined by the representative of the user group, (1-β) +(1-γ) After the electric energy stored by the electric energy storage device and the electric energy generated by the solar module are supplied to the grid, the remaining electric power can be provided to the charging station for self-use. Under the business model of introducing a user group representative (Aggregator) in an electric vehicle charging station, the electric energy storage device can also be charged when the electricity price is low, and discharged when the electricity price is high, to sell the electric energy to the grid. The present invention In the first embodiment, the
又,值得一提的是,限制條件8之限制式係由以下公式(3)配合限制條件2而推導出。
Moreover, it is worth mentioning that the restriction formula of restriction condition 8 is derived from the following formula (3) in conjunction with
參閱圖1與圖3,本發明電動車充電站電能管理方法的一第二實施例大致上是與該第一實施例相同,相同之處不再贅言,其中不同之處在於:該充電站並無設置與該運算裝置1電連接的太陽能模組。因而,在步驟301中,該運算裝置1之處理單元13無須獲得該太陽能模組在該當前時間點t所產生的該太陽能電功率。此外,在步驟302中,該運算裝置1之處理單元13無須根據在該當前時間點t所產生該太陽能電功率來獲得每一電動車在該當前時間點t的該充電電功率或該放電電功率,及該電能儲存裝置在該當前時間點t的該充電電功率或該放電電功率。故在該第二實施例中所採用的一目標函數中的Cost(t)不會考慮在該當前時間點t所產生該太陽能電功率,該第二實施例中的Cost(t)被表示為以下公式(4)。
1 and 3, a second embodiment of the electric energy management method of an electric vehicle charging station of the present invention is substantially the same as the first embodiment, and the similarities will not be repeated here. The difference is that the charging station is parallel There is no solar module electrically connected to the
其中,指示出用戶群代表決定供應給該電網的一總電功率。 among them, It indicates that the representative of the user group decides to supply a total electric power to the grid.
參閱圖1與圖4,本發明電動車充電站電能管理方法的一第三實施例大致上是與該第二實施例相同,相同之處不再贅言,其中不同之處在於:該運算裝置1之處理單元13更進一步考量了每一台電動車充電的優先權重,而該電價資訊包含多筆分別對應不同優先權重的電價資料,及一筆對應於該電能儲存裝置的電價資料。因而,在步驟401中,該運算裝置1之處理單元13所獲得的該電價資訊包含多筆分別對應不同優先權重的電價資料,及一筆對應於該電能儲存裝置的電價資料。此外,該第三實施例還包含了一優先權重計算步驟,而在獲得每一電動車在該當前時間點t的該充電電功率或該放電電功率,及該電能儲存裝置在該當前時間點t的該充電電功率或該放電電功率時,該運算裝置1之處理單元13還根據每一台電動車所對應之優先權重所對應的電價資料來獲得。
1 and 4, a third embodiment of the method for managing electric energy in an electric vehicle charging station of the present invention is substantially the same as the second embodiment, and the similarities will not be repeated here. The difference lies in: the
值得特別說明的是,該電價資訊係藉由將由該電力公司所提供的電價資料進行調整而獲得,在本實施例中,對應於該電能儲存裝置的該電價資料為該電力公司所提供的原始電價資料,而對 應不同優先權重的電價資料係藉由調整該電力公司所提供的原始電價資料而獲得,圖5示例出對應於一第一優先權重的電價資料,圖6示例出對應於一第二優先權重的電價資料,圖7示例出對應於一第三優先權重的電價資料。比較不同優先權重所對應的電價資料可知,對應於該第一優先權重的電價資料在一第一期間C1、一第二期間C2與一第三期間C3之初期的價格最低,而在該第一期間C1、該第二期間C2與該第三期間C3之中期的價格相對於初期的價格較高,且在該第一期間C1、該第二期間C2與該第三期間C3之末期的價格最高;對應於該第二優先權重的電價資料在該第一期間C1、該第二期間C2與該第三期間C3之中期的價格最低,而在該第一期間C1、該第二期間C2與該第三期間C3之初期與末期的價格相對於中期的價格較高;對應於該第三優先權重的電價資料在該第一期間C1、該第二期間C2與該第三期間C3之初期的價格最高,而在該第一期間C1、該第二期間C2與該第三期間C3之中期的價格相對於初期的價格較低,且在該第一期間C1、該第二期間C2與該第三期間C3之末期的價格最低。 It is worth noting that the electricity price information is obtained by adjusting the electricity price information provided by the power company. In this embodiment, the electricity price information corresponding to the electrical energy storage device is the original price information provided by the power company. Electricity price information, and right The electricity price data with different priority weights are obtained by adjusting the original electricity price data provided by the power company. Figure 5 illustrates the electricity price data corresponding to a first priority weight, and Figure 6 illustrates the electricity price data corresponding to a second priority weight. Electricity price data. Figure 7 illustrates electricity price data corresponding to a third priority. Comparing the electricity price data corresponding to different priority weights, it can be seen that the electricity price data corresponding to the first priority weight has the lowest price at the beginning of a first period C1, a second period C2, and a third period C3. The price in the middle of the period C1, the second period C2 and the third period C3 is higher than the initial price, and the price is the highest in the last period of the first period C1, the second period C2 and the third period C3 ; The electricity price data corresponding to the second priority weight has the lowest price in the middle of the first period C1, the second period C2 and the third period C3, and the price in the first period C1, the second period C2 and the The prices in the initial and final periods of the third period C3 are higher than the prices in the mid-term; the prices of the electricity price data corresponding to the third priority weight in the first period C1, the second period C2 and the third period C3 The price in the middle period of the first period C1, the second period C2 and the third period C3 is lower than the initial price, and in the first period C1, the second period C2 and the third period The price at the end of period C3 is the lowest.
該優先權重計算步驟如步驟402所示,在步驟402中,對於停放於該充電站內的每一台電動車,該運算裝置1之處理單元13根據該電動車所對應之電動車資訊,獲得該電動車的一優先權重。
The priority calculation step is shown in
值得一提的是,參閱圖1與圖8,步驟402包含以下子步
驟。
It is worth mentioning that, referring to Figures 1 and 8,
在子步驟801中,該處理單元13根據第i台電動車所對應之電動車資訊中的該入場電池荷電狀態、該離場電池荷電狀態、該入場時間與該離場時間利用以下公式(5)獲得第i台電動車的優先數值πi,i=1~M。
In
在子步驟802中,該處理單元13根據每一台電動車的優先數值獲得每一台電動車的優先排序。其中若優先數值越大,則優先排序越優先。
In
在子步驟803中,該處理單元13根據每一台電動車的優先排序獲得每一台電動車的優先權重。在本實施例中,該處理單元13係將對應有優先順位為3的倍數+1之順位的電動車(如,第1、4、7...等順位的電動車)之優先權重設為1,並將對應有優先順位為3的倍數+2之順位的電動車(如,第2、5、8...等順位的電動車)之優先權重設為2,且將對應有優先順位為3的倍數之順位的電動車(如,第3、6、9...等順位的電動車)之優先權重設為3。
In
接著,繼續參閱圖1與圖4,在步驟403中,該運算裝置1之處理單元13根據停放於該充電站內每一台電動車所對應之優先權重,獲得每一台電動車所對應之電價資料。
1 and 4, in
最後,在步驟404中,該運算裝置1之處理單元13根據停
放於該充電站內每一台電動車所對應之電動車資訊、介於該最早入場時間與該最晚離場時間之間之每一台電動車所對應的電價資料、該電能資訊、對應於該電能儲存裝置且介於該最早入場時間與該最晚離場時間之間的該電價資料,及該充電站的該最大供給電功率,利用該線性規劃獲得每一電動車在該當前時間點t的該充電電功率或該放電電功率,及該電能儲存裝置在該當前時間點t的該充電電功率或該放電電功率。其中,在該第三實施例中所採用的一目標函數中的Cost(t)大致上於該第二實施例中所採用的目標函數中的Cost(t)相同,其差別在於,不同優先權重的電動車,所對應的電價資料也隨之不同,該第三實施例中的目標函數中的Cost(t)可被表示成下列公式(6),且該目標函數所滿足的該等限制條件如與第一及第二實施例的限制條件1~限制條件8相同。
Finally, in
其中,代表第i台電動車之電價資料在該當前時間點t所指示出的一用電價格,代表該電能儲存裝置之電價資料在該當前時間點t所指示出的一用電價格,代表第i台電動車之電價資料在該當前時間點t所指示出的一賣電價格,代表該電能儲存裝置之電價資料在該當前時間點 t所指示出的一賣電價格。 among them, Represents an electricity price indicated by the electricity price data of the i-th electric vehicle at the current time point t, Represents an electricity price indicated by the electricity price data of the electric energy storage device at the current time point t, Represents a selling price indicated by the electricity price data of the i-th electric vehicle at the current time point t, Represents a selling price indicated by the electricity price data of the electric energy storage device at the current time point t.
由於不同優先權重的對電動車所對應的電價資料也隨之不同,在進行線性規劃時,為了使 Cost(t)的值最小化,對應有第一優先權重的電動車,由於其電價資料指示出其在該第一期間C1、該第二期間C2與該第三期間C3之初期的充電價格最低,故其線性規劃結果會盡可能讓對應有第一優先權重的電動車在該第一期間C1、該第二期間C2與該第三期間C3之初期充電。類似地,對應有第二優先權重的電動車,由於其電價資料指示出其在該第一期間C1、該第二期間C2與該第三期間C3之中期的充電價格最低,故其線性規劃結果會盡可能讓對應有第二優先權重的電動車在該第一期間C1、該第二期間C2與該第三期間C3之中期充電,以此類推。如此一來,理想上,對應有第一優先權重的電動車享有最先充電之優勢,對應有第三優先權重的電動車會最晚充電,將電動車分成不同優先權而錯開電動車的充電時期可使得該充電站所能提供的該最大供給電功率在每一時期都盡可能滿足停放於該充電站之所有電動車的充電需求,以避免所有電動車都集中在某一特定時期進行充電,因而導致該充電站所能提供的該最大供給電功率無法支援欲在該特定時期充電之電動車的充電需求。 Since the electricity price data corresponding to electric vehicles with different priority weights are also different, in the linear programming, in order to make The value of Cost(t) is minimized, corresponding to the electric vehicle with the first priority, because its electricity price data indicates that the charging price is the lowest in the initial period of the first period C1, the second period C2 and the third period C3 Therefore, the linear programming result will try to allow the electric vehicle corresponding to the first priority to be charged in the first period C1, the second period C2, and the third period C3. Similarly, for the electric vehicle corresponding to the second priority weight, since its electricity price data indicates that the charging price is the lowest in the first period C1, the second period C2, and the third period C3, the linear programming result is As far as possible, the electric vehicle corresponding to the second priority will be charged in the middle of the first period C1, the second period C2, and the third period C3, and so on. In this way, ideally, electric vehicles with the first priority will enjoy the advantage of being charged first, and the electric vehicles with the third priority will be charged at the latest. The electric vehicles are divided into different priorities and the charging of electric vehicles is staggered. The period can make the maximum supply power provided by the charging station meet the charging demand of all electric vehicles parked at the charging station as much as possible in each period, so as to avoid all electric vehicles being charged in a specific period. As a result, the maximum supply electric power that the charging station can provide cannot support the charging demand of the electric vehicle to be charged in the specific period.
綜上所述,本發明電動車充電站電能管理方法,藉由該處理單元13同時考量該電能儲存裝置於前一時間點t-1的荷電狀
態、該最小荷電狀態與該最大荷電狀態,及該充電站的最大供給電功率來進行線性規劃,可使所規劃出之充放電策略不僅符合電動車用戶的需求,也使該電能儲存裝置可自電網買電以儲存電能,或提供電能給電網以賣電,更進一步符合充電站業者之需求,且所規劃出之 Cost(t)的值近似或等同一最小值,而能在滿足該充電站的最大供給電功率的條件下,使每一電動車與該電能儲存裝置盡量在電價低時充電,而在電價高時放電,以讓電動車用戶與充電站業者的獲利最大化,故確實能達成本發明的目的。
In summary, the electric vehicle charging station electric energy management method of the present invention simultaneously considers the state of charge of the electric energy storage device at the previous time point t-1, the minimum state of charge, and the maximum state of charge through the
惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。 However, the above are only examples of the present invention. When the scope of implementation of the present invention cannot be limited by this, all simple equivalent changes and modifications made in accordance with the scope of the patent application of the present invention and the content of the patent specification still belong to Within the scope of the patent for the present invention.
201~202:步驟 201~202: steps
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108129199A TWI706366B (en) | 2019-08-16 | 2019-08-16 | Electric vehicle charging station power management method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108129199A TWI706366B (en) | 2019-08-16 | 2019-08-16 | Electric vehicle charging station power management method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI706366B true TWI706366B (en) | 2020-10-01 |
TW202109435A TW202109435A (en) | 2021-03-01 |
Family
ID=74103630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108129199A TWI706366B (en) | 2019-08-16 | 2019-08-16 | Electric vehicle charging station power management method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI706366B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112389255A (en) * | 2019-08-16 | 2021-02-23 | 江苏万帮德和新能源科技股份有限公司 | Electric energy management method for electric vehicle charging station |
TWI769074B (en) * | 2021-09-01 | 2022-06-21 | 大陸商國創移動能源創新中心(江蘇)有限公司 | A method of managing electric vehicle charging based on blockchain |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201615454A (en) * | 2014-10-21 | 2016-05-01 | 行政院原子能委員會核能研究所 | Device of optimizing schedule of charging electric vehicle |
WO2019082482A1 (en) * | 2017-10-24 | 2019-05-02 | 東芝メモリ株式会社 | Information processing device, information processing method and information processing program |
US20190160958A1 (en) * | 2017-11-28 | 2019-05-30 | International Business Machines Corporation | Electric vehicle charging infrastructure |
TW201926236A (en) * | 2017-11-30 | 2019-07-01 | 瑞典商安伊萊德公司 | Battery pack optimization transport planning method |
JP2019113998A (en) * | 2017-12-22 | 2019-07-11 | ダイムラー・アクチェンゲゼルシャフトDaimler AG | Power feeding vehicle operation management system |
US20190217737A1 (en) * | 2018-01-18 | 2019-07-18 | Nader Lotfy | Autonomous robotic chargers and electric vehicle charging system |
CN110046773A (en) * | 2019-05-30 | 2019-07-23 | 东北大学 | Integrated energy system multiagent cooperation optimization operation and cost-effectiveness distribution method |
CN110097237A (en) * | 2019-06-14 | 2019-08-06 | 广东电网有限责任公司 | A kind of main distribution coordinated scheduling optimization method based on electric car and multiple-energy-source |
CN110110941A (en) * | 2019-05-20 | 2019-08-09 | 浙江工商大学 | The orderly charging management system of alternating-current charging pile and orderly charging method |
-
2019
- 2019-08-16 TW TW108129199A patent/TWI706366B/en active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201615454A (en) * | 2014-10-21 | 2016-05-01 | 行政院原子能委員會核能研究所 | Device of optimizing schedule of charging electric vehicle |
WO2019082482A1 (en) * | 2017-10-24 | 2019-05-02 | 東芝メモリ株式会社 | Information processing device, information processing method and information processing program |
US20190160958A1 (en) * | 2017-11-28 | 2019-05-30 | International Business Machines Corporation | Electric vehicle charging infrastructure |
TW201926236A (en) * | 2017-11-30 | 2019-07-01 | 瑞典商安伊萊德公司 | Battery pack optimization transport planning method |
JP2019113998A (en) * | 2017-12-22 | 2019-07-11 | ダイムラー・アクチェンゲゼルシャフトDaimler AG | Power feeding vehicle operation management system |
US20190217737A1 (en) * | 2018-01-18 | 2019-07-18 | Nader Lotfy | Autonomous robotic chargers and electric vehicle charging system |
CN110110941A (en) * | 2019-05-20 | 2019-08-09 | 浙江工商大学 | The orderly charging management system of alternating-current charging pile and orderly charging method |
CN110046773A (en) * | 2019-05-30 | 2019-07-23 | 东北大学 | Integrated energy system multiagent cooperation optimization operation and cost-effectiveness distribution method |
CN110097237A (en) * | 2019-06-14 | 2019-08-06 | 广东电网有限责任公司 | A kind of main distribution coordinated scheduling optimization method based on electric car and multiple-energy-source |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112389255A (en) * | 2019-08-16 | 2021-02-23 | 江苏万帮德和新能源科技股份有限公司 | Electric energy management method for electric vehicle charging station |
CN112389255B (en) * | 2019-08-16 | 2024-04-16 | 万帮数字能源股份有限公司 | Electric energy management method for electric vehicle charging station |
TWI769074B (en) * | 2021-09-01 | 2022-06-21 | 大陸商國創移動能源創新中心(江蘇)有限公司 | A method of managing electric vehicle charging based on blockchain |
Also Published As
Publication number | Publication date |
---|---|
TW202109435A (en) | 2021-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11993171B2 (en) | Method and apparatus for charging a battery using local power grid topology information | |
Li et al. | An energy management strategy with renewable energy and energy storage system for a large electric vehicle charging station | |
Zhang et al. | A Monte Carlo simulation approach to evaluate service capacities of EV charging and battery swapping stations | |
Mukherjee et al. | A review of charge scheduling of electric vehicles in smart grid | |
Heilmann et al. | Factors influencing the economic success of grid-to-vehicle and vehicle-to-grid applications—A review and meta-analysis | |
Zheng et al. | A novel real-time scheduling strategy with near-linear complexity for integrating large-scale electric vehicles into smart grid | |
CN105871029B (en) | A kind of electric vehicle orderly charges intelligent management system and orderly charge control method | |
Li et al. | Optimizing the performance of vehicle-to-grid (V2G) enabled battery electric vehicles through a smart charge scheduling model | |
US11498450B2 (en) | Forecast of electric vehicle state of charge and energy storage capacity | |
JP6740505B2 (en) | Energy system, energy management server, energy management method, and program | |
Cheng et al. | Electric bus fast charging station resource planning considering load aggregation and renewable integration | |
Graber et al. | Two-stage stochastic sizing and packetized energy scheduling of BEV charging stations with quality of service constraints | |
US12038726B2 (en) | Methods and systems for managing vehicle-grid integration | |
CN110110895A (en) | The method and terminal device of electric car Optimized Operation | |
TWI706366B (en) | Electric vehicle charging station power management method | |
Gjelaj et al. | Multifunctional applications of batteries within fast‐charging stations based on EV demand‐prediction of the users’ behaviour | |
KR20120074458A (en) | Intelligent power source charging system and control method thereof | |
US20240070572A1 (en) | Notification method, vehicle managment system | |
Wang et al. | Electric vehicle dispatching strategy considering time cost and risk of operating distribution network | |
US20230069004A1 (en) | Electric vehicle charging station management method using blockchain | |
Rahman et al. | Making a Virtual Power Plant out of Privately Owned Electric Vehicles: From Contract Design to Scheduling | |
Zhang et al. | Schedulable capacity assessment method for PV and storage integrated fast charging stations with V2G | |
CN112389255B (en) | Electric energy management method for electric vehicle charging station | |
CN111262326A (en) | Centralized direct-current charging device for pure electric vehicle and control method | |
Karmaker et al. | The Necessity of Stakeholder-Centric Dynamic Operating Envelopes in Distribution Networks |