TWI705316B - Boiler operation support device, boiler operation support method, and boiler learning model creation method - Google Patents
Boiler operation support device, boiler operation support method, and boiler learning model creation method Download PDFInfo
- Publication number
- TWI705316B TWI705316B TW108114798A TW108114798A TWI705316B TW I705316 B TWI705316 B TW I705316B TW 108114798 A TW108114798 A TW 108114798A TW 108114798 A TW108114798 A TW 108114798A TW I705316 B TWI705316 B TW I705316B
- Authority
- TW
- Taiwan
- Prior art keywords
- aforementioned
- boiler
- value
- process value
- actual
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 199
- 230000008569 process Effects 0.000 claims abstract description 187
- 230000002093 peripheral effect Effects 0.000 claims abstract description 51
- 238000011156 evaluation Methods 0.000 claims abstract description 35
- 239000007789 gas Substances 0.000 claims abstract description 30
- 230000007613 environmental effect Effects 0.000 claims abstract description 25
- 230000033228 biological regulation Effects 0.000 claims abstract description 16
- 230000001105 regulatory effect Effects 0.000 claims abstract description 16
- 239000007788 liquid Substances 0.000 claims abstract description 11
- 239000007787 solid Substances 0.000 claims abstract description 11
- 239000012467 final product Substances 0.000 claims abstract description 9
- 238000004088 simulation Methods 0.000 claims description 33
- 238000006243 chemical reaction Methods 0.000 claims description 30
- 238000002485 combustion reaction Methods 0.000 claims description 21
- 238000004364 calculation method Methods 0.000 claims description 16
- 230000001186 cumulative effect Effects 0.000 claims description 14
- 238000012546 transfer Methods 0.000 claims description 8
- 238000012552 review Methods 0.000 claims description 7
- 239000007921 spray Substances 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 238000012423 maintenance Methods 0.000 abstract description 6
- 238000005457 optimization Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 17
- 239000003245 coal Substances 0.000 description 14
- 238000013075 data extraction Methods 0.000 description 11
- 238000003860 storage Methods 0.000 description 11
- 239000000446 fuel Substances 0.000 description 9
- 238000001704 evaporation Methods 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- 239000000567 combustion gas Substances 0.000 description 5
- 238000013500 data storage Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000004449 solid propellant Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 239000002817 coal dust Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229910002089 NOx Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011022 operating instruction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Quality & Reliability (AREA)
- Regulation And Control Of Combustion (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
針對工廠,綜合性考慮經濟性、安全性、設備保全等各式各樣的觀點,來進行運轉的預測、調整或指示。取得適用於工廠的實際運轉的實際運轉條件、及使用其來運轉後的結果所得的實際製程值,使用將實際運轉條件及實際製程值的關係進行機械學習而得的學習模型來算出預測製程值,且算出預測製程值滿足預定的評估條件的最適運轉條件。在實際製程值係有:例如由在工廠所生成的最終成果物的品質指標值、及有關環境規制值的指標所成的主控制製程值;及例如由有關工廠內的機器的溫度或壓力的指標、有關由工廠內的機器被排出的氣體、液體或固體之中未成為環境規制值的對象的成分及濃度的指標、及有關工廠的操作端的開度的指標所成的周邊製程值。 For factories, comprehensively consider various viewpoints such as economy, safety, and equipment maintenance to predict, adjust or instruct operations. Obtain the actual operating conditions suitable for the actual operation of the factory, and the actual process value obtained after the results of the operation are used, and use the learning model obtained by mechanically learning the relationship between the actual operating conditions and the actual process value to calculate the predicted process value , And calculate the optimal operating condition that the predicted process value meets the predetermined evaluation condition. The actual process value includes: for example, the main control process value formed by the quality index value of the final product produced in the factory and the index related to the environmental regulation value; and for example, the temperature or pressure of the machine in the factory Peripheral process value based on indicators, indicators related to components and concentrations of gases, liquids, or solids discharged from machines in the factory that are not subject to environmental regulatory values, and indicators related to the opening of the operating end of the factory.
Description
本發明係關於工廠之運轉支援技術。 The present invention relates to the operation support technology of factories.
在發電廠的運轉,尤其大型鍋爐的運轉中,操作作為運轉條件的多數輸入參數,例如調整各燃燒器中的燃燒用空氣流量的阻風門(damper)的開度、燃燒器噴嘴角度、煤等固體燃料的粉碎機的分級旋轉速度等,取得NOx、CO的濃度、傳熱管表面溫度(金屬溫度)、蒸氣溫度等製程值,作為其結果的輸出(監視項目)。在鍋爐的燃燒調整中,係必須以各製程值成為適當範圍內的方式控制輸入參數。但是,輸入參數有數10項目以上之多數,並且相對於輸入參數的變化,取得各製程值作為複雜相互關係的結果,因此有製程值改善或惡化者,在輸入參數的操作係必須要有非常複雜的順序。 In the operation of power plants, especially large-scale boilers, many input parameters are operated as operating conditions, such as the opening of the damper to adjust the combustion air flow rate in each burner, the angle of the burner nozzle, coal, etc. Process values such as the concentration of NOx and CO, the surface temperature of the heat transfer tube (metal temperature), and the vapor temperature of the solid fuel pulverizer, etc., are obtained as the resultant output (monitoring item). In the combustion adjustment of the boiler, the input parameters must be controlled in such a way that the process values are within the appropriate range. However, the input parameters have a majority of more than 10 items, and relative to the change of the input parameters, each process value is obtained as a result of complex correlation. Therefore, if the process value is improved or deteriorated, the operating system of the input parameter must be very complicated Order.
因此,在大型的鍋爐中,根據試運轉(燃燒 調整)的結果,在特定條件中設定經最適化的控制邏輯,根據該控制邏輯,控制輸入參數。但是,有無法應對機器的狀況或燃料等的微細變化,而未形成為最適運轉的可能性。 Therefore, in a large boiler, according to the test operation (combustion As a result of adjustment), an optimized control logic is set in a specific condition, and the input parameters are controlled according to the control logic. However, it may not be able to cope with minute changes in the condition of the equipment or fuel, and may not be optimally operated.
因此,有適於運轉最適化而事前使用輸入參數來模擬鍋爐的燃燒動作,且使用該結果而欲進行鍋爐的自動運轉的期望。在專利文獻1中係揭示修正工廠的模擬的模型建構資料,根據該結果來進行鍋爐控制的構成。此外,在模型輸出(最適化對象)係例示有排放氣體所包含的NOx、CO、及H2S濃度。
Therefore, it is desirable to use input parameters to simulate the combustion operation of the boiler in advance for optimal operation, and to use the result to perform automatic operation of the boiler.
[專利文獻1]日本特開2011-210215號公報 [Patent Document 1] JP 2011-210215 A
鍋爐係不僅主控制對象(有關鍋爐出口蒸氣溫度、排放氣體的環境規制值的值等),必須按照各個特性,綜合性考慮經濟性、安全性、設備保全等各要素來進行控制。關於此點,在專利文獻1中,即使在主控制對象之中可對應環境規制值,亦未記載對其他要素的考量,並未滿足上述期望。
The boiler system is not only the main control object (values related to the boiler outlet steam temperature, the environmental regulation value of the exhaust gas, etc.), it must be controlled according to various characteristics and comprehensively considering various factors such as economy, safety, and equipment maintenance. Regarding this point, in
本發明係解決上述課題者,目的在提供針對 鍋爐,可綜合性考慮經濟性、安全性、設備保全等各式各樣的觀點來進行運轉的預測、調整或指示的鍋爐之運轉支援裝置、鍋爐之運轉支援方法、及鍋爐之學習模型之作成方法。 The present invention solves the above-mentioned problems, and aims to provide Boiler, the operation support device of the boiler, the operation support method of the boiler, and the creation of the learning model of the boiler that can predict, adjust or instruct the operation of various viewpoints such as economy, safety, equipment maintenance, etc. method.
為達成上述目的,具備申請專利範圍所記載的構成。若列舉其一例,為一種鍋爐之運轉支援裝置,其特徵為:具備:資料取得部,其係取得適用於鍋爐的實際運轉的實際運轉條件、及適用該實際運轉條件來將前述鍋爐運轉後的結果所得的實際製程值;模型記憶部,其係記憶將前述實際運轉條件及前述實際製程值的關係進行機械學習而得的學習模型;運轉資料記憶部,其係記憶包含前述實際運轉條件及前述實際製程值的運轉資料;及運轉條件算出部,其係算出在所記憶的前述學習模型適用前述運轉資料而算出的預測製程值滿足預定的評估條件的最適運轉條件,前述實際製程值係包含:有關前述鍋爐的主控制對象的主控制製程值、及有關周邊資訊的周邊製程值之雙方,前述主控制製程值係在前述鍋爐所生成的最終成果物的品質指標值、及有關環境規制值的指標的任一者或其組合,前述周邊製程值係有關前述鍋爐內的機器的溫度或壓力的指標、有關由前述鍋爐內的機器被排出的氣體、液體或固體之中未成為環境規制值的對象的成分及濃度的指 標、及有關前述鍋爐的操作端的開度的指標之中的任一者或任意組合。 In order to achieve the above purpose, it has the composition described in the scope of the patent application. If one example is given, it is an operation support device for a boiler, which is characterized by having: a data acquisition unit that obtains the actual operating conditions suitable for the actual operation of the boiler, and applies the actual operating conditions to operate the aforementioned boiler The actual process value obtained as a result; the model memory unit, which memorizes the learning model obtained by mechanically learning the relationship between the foregoing actual operating conditions and the foregoing actual process value; the operating data memory unit, which memory includes the foregoing actual operating conditions and the foregoing Operating data of actual process values; and an operating condition calculation unit, which calculates the optimal operating conditions under which the predicted process values calculated by applying the foregoing operating data to the memorized learning model meets the predetermined evaluation conditions, and the foregoing actual process values include: Regarding both the main control process value of the main control object of the boiler and the peripheral process value related to the peripheral information, the main control process value is the value of the quality index of the final product produced by the boiler and the relevant environmental regulation value Any one or a combination of indicators, the aforementioned peripheral process value is an indicator related to the temperature or pressure of the equipment in the boiler, and the gas, liquid or solid discharged from the equipment in the boiler does not become an environmental regulatory value Index of the composition and concentration of the object Any one or any combination of the indicators related to the opening of the operating end of the aforementioned boiler.
藉由本發明,針對鍋爐,可綜合性考慮經濟性、安全性、設備保全等各式各樣的觀點來進行運轉的預測、調整或指示。上述之外的課題、構成及效果係藉由以下實施形態的說明清楚可知。 According to the present invention, it is possible to predict, adjust or instruct the operation of the boiler by comprehensively considering various viewpoints such as economy, safety, and equipment maintenance. The problems, constitution, and effects other than the above are clearly clarified from the description of the following embodiments.
以下參照所附圖示,詳加說明本發明之較適實施形態。其中,並非為藉由該實施形態來限定本發明者,此外,若有複數實施形態,亦包含將各實施形態組合而構成者。以下係以列舉設置在火力發電所的鍋爐為例,作為工廠之例來進行說明。Hereinafter, a more suitable embodiment of the present invention will be explained in detail with reference to the attached drawings. However, the present invention is not limited by this embodiment, and if there are a plurality of embodiments, it also includes those constructed by combining each embodiment. The following is an example of a boiler installed in a thermal power plant as an example of a factory.
參照圖1,說明鍋爐1的運轉支援裝置100的概略構成。圖1係使用預測模型的運轉支援裝置100的全體構成圖。1, the schematic configuration of the
如圖1所示,鍋爐1係包含:M個感測器1、2、…、M、及N個操作端1、2、…、N。As shown in Figure 1, the
運轉控制裝置120係連接於N個操作端1、2、…、N的各個,對各操作端1、2、…、N設定構成運轉條件的輸入參數(相當於實際輸入參數)。以該輸入參數而言,包含例如:空氣阻風門的開度、空氣流量、燃料流量、排放氣體再循環流量之中至少1個。The
圖2係鍋爐1的概略構成圖。本實施形態的鍋爐1係作為使固體燃料燃燒者,使用將煤粉碎的粉煤作為粉煤燃料(固體燃料),使該粉煤藉由火爐11的燃燒器燃燒,可將藉由該燃燒所發生的熱與供水或蒸氣作熱交換而生成蒸氣的燒煤鍋爐。其中,燃料並非侷限於煤,亦可為生物質(biomass)等可在鍋爐燃燒的其他燃料。亦可另外混合使用多種燃料。FIG. 2 is a schematic configuration diagram of the
鍋爐1係具有:火爐11、燃燒裝置12、及煙道13。火爐11係例如呈四角筒的中空形狀而沿著鉛直方向作設置。火爐11係壁面由蒸發管(傳熱管)、及連接蒸發管的散熱片所構成,藉由在蒸發管內流通的供水或蒸氣與火爐內的燃燒氣體作熱交換,抑制火爐壁的溫度上升。具體而言,在火爐11的側壁面,例如沿著鉛直方向配置有複數蒸發管,且以水平方向排列配置。散熱片係將蒸發管與蒸發管之間閉塞。火爐11係在爐底設有傾斜面62,在傾斜面62設有爐底蒸發管70而成為底面。The
燃燒裝置12係設在構成該火爐11的火爐壁的鉛直下部側。在本實施形態中,該燃燒裝置12係具有被裝設在火爐壁的複數燃燒器(例如21、22、23、24、25)。例如,該燃燒器(burner)21、22、23、24、25係沿著火爐11的周方向,以均等間隔配設複數。但是,火爐的形狀、燃燒器的配置或一層中的燃燒器的數量、層數並非為限定於該實施形態者。The
該各燃燒器21、22、23、24、25係透過粉煤供給管26、27、28、29、30而連結於粉碎機(粉煤機/磨機)31、32、33、34、35。煤以未圖示的搬送系統予以搬送,若被投入至該粉碎機31、32、33、34、35,在此被粉碎為預定的微粉大小,可連同搬送用空氣(1次空氣)一起,由粉煤供給管26、27、28、29、30,將經粉碎的煤(粉煤)供給至燃燒器21、22、23、24、25。The
此外,火爐11係在各燃燒器21、22、23、24、25的裝設位置設有風箱36,在該風箱36連結空氣導管37b的一端部,另一端部係在連結點37d被連結在供給空氣的空氣導管37a。In addition, the
此外,在火爐11的鉛直方向上方係連結有煙道13,在該煙道13配置有用以生成蒸氣的複數熱交換器(41、42、43、44、45、46、47)。因此,燃燒器21、22、23、24、25在火爐11內噴射粉煤燃料與燃燒用空氣的混合氣,藉此形成火焰,生成燃燒氣體而流至煙道13。接著,藉由燃燒氣體,將在火爐壁及熱交換器(41~47)流動的供水或蒸氣加熱而生成過熱蒸氣,供給所生成的過熱蒸氣而使未圖示的蒸氣渦輪機旋轉驅動,可旋轉驅動與蒸氣渦輪機的旋轉軸相連結之未圖示的發電機來進行發電。此外,該煙道13係連結排放氣體通路48,設有:用以進行燃燒氣體之淨化的脫硝裝置50、在由送風機38對空氣導管37a送氣的空氣與在排放氣體通路48送氣的排放氣體之間進行熱交換的空氣加熱器49、煤塵處理裝置51、誘引送風機52等,在下游端部設有煙囪53。其中,脫硝裝置50若可滿足排放氣體基準,亦可不設置。In addition, a
本實施形態的火爐11係所謂2段燃燒方式的火爐,其係藉由粉煤的搬送用空氣(1次空氣)及由風箱36被投入至火爐11的燃燒用空氣(2次空氣)所為之燃料過剩燃燒後,重新投入燃燒用空氣(燃盡風(after air))而使其進行燃料稀薄燃燒。因此,在火爐11係配備有燃盡風口39,在燃盡風口39連結空氣導管37c的一端部,另一端部係在連結點37d被連結在供給空氣的空氣導管37a。其中,若未採用2段燃燒方式,亦可未設置燃盡風口39。The
由送風機38被送氣至空氣導管37a的空氣係分歧為:在空氣加熱器49,藉由與燃燒氣體熱交換而被加溫,在連結點37d經由空氣導管37b而被導至風箱36的2次空氣;及經由空氣導管37c而被導至燃盡風口39的燃盡風。The air sent to the
返回至圖1,說明運轉支援裝置100。運轉支援裝置100主要包含:資料取得部110、運轉資料記憶部130、累積值計算部131、資料抽出轉換部133、RTC(Real-Time Clock,即時時脈)140、工廠規格記憶部211、製程值候補記憶部212、運轉條件算出部220、模型作成部231、評估條件檢討部232、評估條件記憶部233、模型記憶部241、運轉指示部250、及輸出入部260。Returning to FIG. 1, the
資料取得部110係取得各感測器1、2、…、M在實際運轉中所計測到的實際製程值、及運轉控制裝置120在各操作端1、2、…、N的各個所設定的實際輸入參數。此外,資料取得部110係在實際輸入參數及實際製程值的各個附加來自RTC140的時刻資訊而輸出至運轉資料記憶部130。The
該等實際製程值係有例如由火力發電工廠被排出的氣體所包含的氮氧化物濃度、一氧化碳濃度、硫化氫濃度、金屬溫度。此外,實際輸入參數係包含例如閥/阻風門開度等操作端資訊等。The actual process values include, for example, the nitrogen oxide concentration, the carbon monoxide concentration, the hydrogen sulfide concentration, and the metal temperature contained in the gas discharged from the thermal power plant. In addition, the actual input parameters include operating terminal information such as valve/choke opening.
在本實施形態中,將適用於鍋爐1的實際運轉的至少一個以上的實際輸入參數總括稱為運轉條件。另一方面,在運轉支援裝置100中,將使用假想設定的運轉條件(臨時輸入參數),進行鍋爐1的運轉模擬所運算出的製程值稱為預測製程值。In the present embodiment, at least one or more actual input parameters applicable to the actual operation of the
累積值計算部131係計算資料取得部110所取得的至少一個以上的實際製程值的累積值,且將累積值記憶在運轉資料記憶部130。The cumulative
資料抽出轉換部133係介在於模型作成部231及運轉條件算出部220與運轉資料記憶部130之間,對於由運轉資料記憶部130所抽出的運轉資料,視需要進行雜訊去除等轉換之後,在模型作成部231及運轉條件算出部220的各個進行收授。The data extraction and
工廠規格記憶部211係記憶表示由輸出入部260被輸入的鍋爐1的規格的工廠規格資料。The factory
圖3係顯示工廠規格資料例的圖。在工廠規格資料中,係規定出關於各工廠A、工廠B、工廠C的各個的工廠的構造規格與性能規格。以構造規格之一例而言,有「火爐尺寸」。此外,以「性能規格」而言,有「氣體溫度」、「蒸氣溫度」。Figure 3 is a diagram showing an example of factory specification data. In the factory specification data, the structural specifications and performance specifications of each of the factories A, B, and C are specified. As an example of structural specifications, there is "stove size". In addition, in terms of "performance specifications", there are "gas temperature" and "vapor temperature".
製程值候補記憶部212係記憶表示由輸出入部260被輸入的製程值候補的資料。The process value
說明製程值候補時,由在本實施形態中所使用的製程值的種類進行說明。在本實施形態中所使用的製程值係有:有關鍋爐1的主控制對象的主控制製程值、及有關周邊資訊的周邊製程值。主控制製程值係使用計測值,因此若計測主控制製程值的感測器故障,鍋爐1係以運轉停止為原則。但是,在計測作為主控制製程值之一的NOX
濃度的NOX
感測器之中,被設置在鍋爐1的煙囪入口的感測器以外係即使在故障的情形下亦可繼續運轉。When describing the process value candidates, the description will be based on the type of process value used in this embodiment. The process values used in this embodiment include: the main control process value of the main control object of the
主控制製程值係以下任一者或其組合。 (1)在工廠所生成的最終成果物的品質指標值 (2)有關環境規制值的指標The main control process value is any one or a combination of the following. (1) The quality index value of the final product produced in the factory (2) Indicators related to environmental regulation values
此外,周邊製程值係以下任一者或其組合。 (3)有關工廠內的機器的溫度或壓力的指標 (4)有關由工廠內的機器被排出的氣體、液體或固體之中未成為環境規制值的對象的成分及濃度的指標 (5)有關工廠的操作端的開度的指標In addition, the peripheral process value is any one or a combination of the following. (3) Indicators related to the temperature or pressure of the machines in the factory (4) Indicators on the components and concentrations of gases, liquids, or solids discharged from equipment in factories that are not subject to environmental regulatory values (5) Indicators related to the opening of the operating side of the factory
在本實施形態中,係使用鍋爐1作為工廠,因此使用鍋爐出口蒸氣溫度,作為主控制製程值之(1)有關最終成果物的品質的指標,使用NOX
值作為(2)有關環境規制值及環境外規制值的指標。此外,在周邊製程值中,使用傳熱管的表面溫度、鍋爐壓力差,作為(3)有關工廠內的機器的溫度或壓力的指標,使用燃燒用空氣或排放氣體中的氧濃度,作為(4)有關由工廠內的機器被排出的氣體、液體或固體之中未成為環境規制值的對象的成分及濃度的指標,使用噴霧閥開度,作為(5)有關操作閥的開度的指標。其中,此外,亦可使用噴霧量,作為(3)有關工廠內的機器的溫度或壓力的指標,使用一氧化碳濃度作為(4)有關由工廠內的機器被排出的氣體、液體或固體之中未成為環境規制值的對象的成分及濃度的指標。In this embodiment,
周邊參數的選定與目的係如下所述。可藉由使用金屬(傳熱管)溫度作為溫度,進行以鍋爐1的燃燒特性(平衡)、安全性、耐久性、及保全為目的的運轉支援。此外,藉由使用鍋爐壓力差作為壓力,可進行考慮到有關鍋爐1的運轉的安全性的運轉支援。藉由使用燃燒用空氣或排放氣體的氧濃度作為氣體成分濃度,可進行考慮到鍋爐1的燃燒特性(平衡)、效率的運轉支援。此外,藉由使用噴霧閥開度作為閥開度,可進行考慮到鍋爐1的閥的作用(閥開度的通常使用範圍)、煤特性的對應(火爐的髒污等)、熱吸收量分布(平衡、每個傳熱面)的運轉支援。The selection and purpose of peripheral parameters are as follows. By using the metal (heat transfer tube) temperature as the temperature, operation support for the purpose of the combustion characteristics (balance), safety, durability, and maintenance of the
周邊製程值係有:必須周邊製程值、及任意周邊製程值。The peripheral process value system includes: required peripheral process value, and any peripheral process value.
必須周邊製程值係原則上在模型作成時被選定作為運轉資料的周邊製程值。但是,在鍋爐1的規格上,無計測值或對象機器的情形除外。The required peripheral process value is in principle the peripheral process value selected as the operating data when the model is created. However, in the specifications of the
任意周邊製程值係模型作成時被任意選定的周邊製程值。任意周邊製程值係若在鍋爐1中實際製程值表示異常值時,即由成為警報對象的製程值之中予以選定。在鍋爐1的模型作成,雖然非為必須,但是選定成為鍋爐1的警報對象的製程值作為任意周邊製程值,且作成模型,藉此可在至發出警報之前的最適階段抑制變動。結果,可期待在鍋爐1中抑制發出警報的運轉支援。The arbitrary peripheral process value is the peripheral process value arbitrarily selected when the model is created. Any peripheral process value is selected from the process values that are the target of the alarm if the actual process value in the
圖4係顯示製程值候補資料的圖。在製程值候補資料中,使包含主控制製程值及周邊製程值的製程值候補的種類、與各製程值候補的資料取得方法、及各製程值候補的屬性(記入在備註欄)建立關連而予以規定。在「資料取得方法」係規定取得某時點的計測值、或設為累積值。「備註」欄所記入的屬性係記載在模型作成時為成為必須選定對象或任意選定對象的製程值候補、及其理由。Figure 4 is a diagram showing candidate data for process values. In the process value candidate data, the types of process value candidates including the main control process value and peripheral process values, the data acquisition method of each process value candidate, and the attributes of each process value candidate (entry in the remarks column) are linked to each other. Be prescribed. In the "data acquisition method", it is stipulated to obtain the measured value at a certain point in time or set it as a cumulative value. The attribute entered in the "Remarks" column describes the process value candidates that must be selected or arbitrarily selected at the time of model creation, and their reasons.
模型作成部231係將鍋爐1的運轉條件與製程值的關係進行機械學習而作成學習模型,且記憶在模型記憶部241。The
模型作成部231係參照工廠規格資料及製程值候補資料,從由資料抽出轉換部133所取得的運轉資料之中,按照工廠規格或使用者需求,任意選定周邊製程值。The
圖5係顯示模型作成部231所作成的學習模型之例的圖。學習模型係按每個實際製程值而設。在本實施形態中,以成為鍋爐1的主控制對象的主控制製程值而言,有「鍋爐出口蒸氣溫度」及「排放氣體的環境規制值」,模型作成部231係作成對應各主控制製程值的學習模型1、學習模型2。此外,以構成鍋爐1的周邊資訊的周邊製程值而言,有「鍋爐1內的溫度(金屬溫度)」、「鍋爐1內的壓力(鍋爐壓力差)」、「氣體成分濃度(燃燒用空氣或排放氣體的氧濃度)」、及「閥開度(噴霧閥開度)」,模型作成部231係作成對應各周邊製程值的學習模型3、學習模型4、學習模型5、學習模型6。FIG. 5 is a diagram showing an example of a learning model created by the
運轉條件算出部220係包含:模擬部221及最適化部225。The operating
模擬部221係在模型記憶部241所記憶的學習模型,適用由資料抽出轉換部133所取得的運轉資料而實施模擬,且算出預測製程值。The
最適化部225係使用在模擬部221所算出的預測製程值,來算出推薦運轉條件。若所被算出的推薦運轉條件與實際運轉資料所包含的實際運轉條件的差異超過預定的基準,對運轉指示部250提示模型學習用的運轉資料的追加取得。The
評估條件檢討部232係根據由輸出入部260被輸入的操作人員的指示及/或鍋爐1的運轉資料,更新周邊製程值的第2評估條件(最適範圍)。詳細內容後述。The evaluation
運轉指示部250係若由最適化部225、或輸出入部260取得運轉條件,即輸出至運轉控制裝置120。The
運轉控制裝置120係將由運轉指示部250所取得的運轉條件設定在操作端1、2、…、N。此外,運轉指示部250亦可將由最適化部225所取得的運轉條件輸出至輸出入部260。接著,亦可在構成輸出入部260的顯示裝置顯示由最適化部225所取得的運轉條件。The
輸出入部260係藉由滑鼠、鍵盤、觸控面板等輸入裝置(相當於輸入部)、及由LCD等所成的顯示裝置所構成。輸入裝置及顯示裝置亦可一體形成。輸出入部260係顯示來自運轉指示部250的指示,且等待操作人員的指示。The input/
圖6係顯示運轉支援裝置100的硬體構成的圖。運轉支援裝置100係包含:CPU(Central Processing Unit,中央處理單元)301、RAM(Random Access Memory,隨機存取記憶體)302、ROM(Read Only Memory,唯讀記憶體)303、HDD(Hard Disk Drive,硬碟驅動機)304、輸入I/F305、及輸出I/F306,使用該等透過匯流排307而彼此相連接的電腦而構成。其中,運轉支援裝置100的硬體構成並非限定於上述,亦可藉由控制電路與記憶裝置的組合而構成。此外,運轉支援裝置100係藉由電腦(硬體)執行實現運轉支援裝置100的各功能的運轉支援程式而構成。FIG. 6 is a diagram showing the hardware configuration of the
圖7係顯示藉由運轉支援裝置100所為之學習模型的作成處理的流程的流程圖。FIG. 7 is a flowchart showing the flow of the learning model creation process performed by the
模型作成部231係讀入由資料抽出轉換部133所取得的運轉資料(S101)。模型作成部231係由工廠規格記憶部211讀入符合鍋爐1的工廠規格資料(S102)。The
此外,模型作成部231係由製程值候補記憶部212讀入製程值候補(S103),且選定製程值(S104)。In addition, the
模型作成部231係從由資料抽出轉換部133所取得的運轉資料中選定說明變數(輸入參數)(S105),且作成學習模型(S106)。具體而言,模型作成部231係對按照各製程值的各學習模型,亦即學習模型1~學習模型6的各個,輸入所選定出的全部說明變數,且算出各製程值。該算出值係相當於預測製程值。The
模型作成部231係將由資料抽出轉換部133所取得的運轉資料所包含的實際製程值、與在步驟S106中所算出的預測製程值進行比較,若誤差在容許範圍內,預測製程值係可視為與實際製程值為大致相同。其中,蓄積預定時間的資料而亦考慮誤差的傾向。有即使因暫時性的要因而僅在短期間產生誤差,亦不成問題的情形之故。若誤差在容許範圍內,判斷學習模型為妥適(S107/Yes),在模型記憶部241記憶所作成的學習模型而結束處理。The
模型作成部231亦可將由全部學習模型所得的預測製程值與實際製程值在容許範圍內設為條件,來作為學習模型的妥適性判斷條件。The
圖8係顯示第1容許誤差及第2容許誤差的大小的圖。對於主控制製程值的容許誤差(第1容許誤差)係小於針對周邊製程值的容許誤差(第2容許誤差)。結果,可使對應主控制製程值的學習模型更加追隨鍋爐1而設定妥適性判斷條件。FIG. 8 is a diagram showing the magnitude of the first allowable error and the second allowable error. The allowable error for the main control process value (the first allowable error) is smaller than the allowable error for the peripheral process value (the second allowable error). As a result, the learning model corresponding to the main control process value can more follow the
模型作成部231係若判斷學習模型非為妥適(S107/No),返回至步驟106,使用由資料抽出轉換部133所取得的運轉資料、與製程值候補記憶部212所記憶的製程值候補,藉由以神經網路所代表的統計手法,修正/更新學習模型。若更新後的學習模型為妥適(S107/Yes),即記憶在模型記憶部241。If the
圖9係顯示藉由運轉支援裝置100所為之使用預測模型的運轉支援方法的流程的流程圖。FIG. 9 is a flowchart showing the flow of an operation support method using a predictive model by the
模擬部221係由模型記憶部241讀出學習模型,最適化部225係由評估條件記憶部233讀出評估條件(後述之計分換算基準)(S201)。此外,模擬部221係設定由資料抽出轉換部133所取得的運轉資料作為模擬條件(S202)。模擬部221係在學習模型適用運轉資料所包含的實際輸入參數而實施模擬(S203),且算出預測製程值。The
模擬部221係將預測製程值輸出至最適化部225,且最適化部225將模擬結果進行計分換算來進行評估(S204)。最適化部225係根據圖10、圖11所示之計分換算基準,將預測製程值換算成計分,來判斷模擬結果是否為最適。The
圖10及圖11係顯示計分換算基準之一例的圖。圖10、圖11的縱軸的計分係以由虛線為紙面上方向成為正值、由虛線為紙面下方向成為負值。容許範圍的係數的絕對值係設為大於目標範圍的絕對值的值。亦即,容許範圍的計分換算線的斜率係設定為大於目標範圍的計分換算線的斜率。Figures 10 and 11 are diagrams showing an example of a scoring conversion criterion. The scoring system of the vertical axis of FIG. 10 and FIG. 11 is such that the dashed line indicates a positive value on the paper surface direction, and the dashed line indicates a negative value on the paper surface direction. The absolute value of the coefficient of the allowable range is set to a value larger than the absolute value of the target range. That is, the slope of the scoring conversion line of the allowable range is set to be larger than the slope of the scoring conversion line of the target range.
圖10係對以最小化為目的的製程值所定義的計分換算基準,設定上限值、及由比其為更小的值所成的目標值。小於目標值的範圍係設為目標範圍,且分配由正值所成的係數。由目標值至上限值的範圍係設為容許範圍,且分配由負值所成的係數。比上限值為更大的範圍係設為非容許範圍,且分配由具有比容許範圍的係數的絕對值為更大的絕對值的負值所成的係數。亦即,非容許範圍的計分換算線的斜率係設定為大於容許範圍的計分換算線的斜率。Fig. 10 is a scoring conversion standard defined for the process value for the purpose of minimization, and the upper limit is set, and the target value formed by a value smaller than it is set. The range smaller than the target value is set as the target range, and a coefficient formed by a positive value is assigned. The range from the target value to the upper limit is set as the allowable range, and coefficients formed by negative values are assigned. A range larger than the upper limit value is set as a non-allowable range, and a coefficient formed by a negative value having an absolute value larger than the absolute value of the coefficient of the allowable range is allocated. That is, the slope of the scoring conversion line of the non-allowable range is set to be greater than the slope of the scoring conversion line of the allowable range.
圖11係對以最大化為目的的製程值所定義的計分換算基準,設定下限值、及由比其為更大的值所成的目標值。大於目標值的範圍係設為目標範圍,且分配由正值所成的係數。由目標值至下限值的範圍係設為容許範圍,且分配由負值所成的係數。比下限值為更小的範圍係設為非容許範圍,且分配由具有比容許範圍的係數的絕對值為更大的絕對值的負值所成的係數。亦即,非容許範圍的計分換算線的斜率係設定為大於容許範圍的計分換算線的斜率。Fig. 11 is a scoring conversion standard defined for the process value for maximization, setting the lower limit value and the target value formed by a value larger than it. The range larger than the target value is set as the target range, and a coefficient formed by a positive value is assigned. The range from the target value to the lower limit is set as the allowable range, and a coefficient formed by a negative value is assigned. A range smaller than the lower limit value is set as an unallowable range, and a coefficient formed by a negative value having an absolute value larger than the absolute value of the coefficient of the allowable range is allocated. That is, the slope of the scoring conversion line of the non-allowable range is set to be greater than the slope of the scoring conversion line of the allowable range.
最適化部225係針對各預測製程值,例如圖10所示設定目標值、及由比其為更大的值所成的上限值者係使用下式(1),如圖11所示設定目標值、及由比其為更小的值所成的下限值者係使用下式(2),算出各預測製程值的計分(S106)。
SAi=CAi×(上限值-預測製程值)…(1)
SAi=CAi×(預測製程值-下限值)…(2)
其中,
SAi:測試編號i的預測製程值Ai的計分
CAi:預測製程值Ai所被分配的係數The
評估條件檢討部232係藉由變更計分換算基準的斜率、反曲點,來變更評估條件。評估條件的變更係按照鍋爐1的劣化(腐蝕)等狀況、或周邊製程值的影響度,覆查評估條件(計分換算基準的非容許範圍、目標範圍之雙方),用以可進行按照實際狀態的精度佳的運轉支援而進行。其中,由主控制製程值的目標範圍所成的第1評估條件係原則上一設定即不更新。尤其,計分換算基準的非容許範圍並未改變。為根據工廠規格或法規者之故。但是,目標範圍係有在運轉模式設定時(NOX
優先等)等產生變化的情形。The evaluation
最適化部225係根據所算出的計分,判斷模擬結果是否滿足最適條件。最適化部225亦可以1次模擬,將關於使用模型1~模型7所得的全部預測製程值的計分進行合計,且將該合計值作為其模擬結果。若成為為了判斷計分的合計值為最適而預先設定的最適計分臨限值以上的模擬結果有至少1個以上(S205/Yes),最適化部225係選定最適條件(S206),對運轉指示部250輸出所選定出的最適條件而結束處理。The
在此最適亦可指將各個的預測製程值(NOX 值或蒸氣溫度等)以預定的換算係數換算成計分(無次元),該計分的合計值成為預定值以上的情形。或者,亦可形成為以複數案例(模擬條件)進行模擬,且該等結果之中為計分最高時、或上位數案例之中,操作人員判斷為最適時。此外,亦可使用遺傳演算法或粒子群最適化的手法,自動探索計分為更高的案例,由該結果來判斷是否為最適。Optimum here can also mean that each predicted process value (NO X value or steam temperature, etc.) is converted into a score (non-dimensional) with a predetermined conversion factor, and the total value of the score becomes a predetermined value or more. Alternatively, it can also be formed as a simulation with a plurality of cases (simulation conditions), and among these results, when the score is the highest, or among the cases in the upper digits, the operator judges the most appropriate time. In addition, genetic algorithms or particle swarm optimization techniques can also be used to automatically explore and score higher cases, and the results can be used to determine whether they are optimal.
此外,最適化部225亦可使主控制製程值滿足第1評估條件,比周邊製程值滿足第2評估條件,亦即滿足主控制製程值包含在目標範圍(第1評估條件)係比滿足周邊製程值包含在其目標範圍(第2評估條件)更為優先,來算出最適運轉條件。In addition, the optimizing
在此所謂的「優先」係指在有關主控制對象的製程值,必定防止超過容許範圍,此外使周邊製程值接近容許範圍或目標範圍。具體而言,計分換算基準之中,主控制參數亦可使非容許範圍的負斜率極大化。The so-called "priority" here means that the process value of the main control object must be prevented from exceeding the allowable range, and in addition, the peripheral process value is brought close to the allowable range or target range. Specifically, in the scoring conversion criterion, the main control parameter may maximize the negative slope of the non-allowable range.
此外,最適化部225亦可算出預測製程值的累積值滿足預定的評估條件的最適運轉條件。周邊製程值之中,關於機器的溫度等,係可藉由使用累積值,轉換成可正確評估溫度履歷等經年劣化的指標。此時,在過去的製程值(運轉資料)的累積值,加算製程值(藉由學習模型所得的預測值)來算定預測累積值。使用對該預測累積值的計分換算基準來進行計分評估。In addition, the
若無滿足最適條件的模擬結果(S205/No),最適化部225係對模擬部221變更模擬條件,輸出用以實施再度模擬的指示。接受此,模擬部221係變更模擬條件所包含的臨時輸入參數,且再度實施模擬。If there is no simulation result that satisfies the optimal condition (S205/No), the
說明本實施形態的作用效果。藉由本實施形態,在工廠之運轉支援所使用的製程值,不僅有關工廠的主控制對象的主控制製程值,藉由使用周邊製程值,可綜合性考慮工廠的經濟性、安全性、設備保全等各式各樣觀點而進行運轉的預測、調整或指示。The effect of this embodiment will be explained. With this embodiment, the process value used in the operation support of the factory is not only related to the main control process value of the main control object of the factory, but by using peripheral process values, the economy, safety, and equipment maintenance of the factory can be comprehensively considered Forecast, adjust, or instruct operations based on various viewpoints.
此外,藉由本實施形態,在運轉條件算出部220包含:模擬部221、及最適化部225,可在最適化部225評估模擬結果來選定最適運轉條件、或由最適化部225對模擬部221催促再度的模擬,且可按照一連串流程,效率佳地算出最適運轉條件。In addition, according to the present embodiment, the operating
此外,藉由本實施形態,藉由使主控制製程值應滿足的第1評估條件優先於周邊製程值應滿足的第2評估條件而算出最適運轉條件,可反映主控制製程值的重要度而算出最適運轉條件。In addition, with this embodiment, the optimal operating condition is calculated by making the first evaluation condition that the main control process value meets priority over the second evaluation condition that the peripheral process value should meet, and can reflect the importance of the main control process value. Optimal operating conditions.
此外,藉由本實施形態,作成學習模型時,預先準備製程值候補,藉此可有效率地選定對應工廠規格的最適製程值。此外,藉由限定作成學習模型的對象(製程值),可輕易沿用學習模型。In addition, with this embodiment, when the learning model is created, process value candidates are prepared in advance, so that the most suitable process value corresponding to the factory specifications can be selected efficiently. In addition, by limiting the objects (process values) to be made into the learning model, the learning model can be easily used.
上述實施形態並非為限定本發明者,有在未脫離本發明之要旨的範圍內的各種變更態樣。例如,在上述運轉支援裝置100中,學習模型的修正係在誤差超過預定範圍時進行,但是亦可除此之外,定期進行修正。The above-mentioned embodiment is not intended to limit the present invention, and there are various modifications within the scope not departing from the gist of the present invention. For example, in the
1‧‧‧鍋爐 11‧‧‧火爐 12‧‧‧燃燒裝置 13‧‧‧煙道 21、22、23、24、25‧‧‧燃燒器 26、27、28、29、30‧‧‧粉煤供給管 31、32、33、34、35‧‧‧粉碎機(粉煤機/磨機) 36‧‧‧風箱 37a‧‧‧空氣導管 37b‧‧‧空氣導管 37c‧‧‧空氣導管 37d‧‧‧連結點 38‧‧‧送風機 39‧‧‧燃盡風口 41、42、43、44、45、46、47‧‧‧熱交換器 48‧‧‧排放氣體通路 49‧‧‧空氣加熱器 50‧‧‧脫硝裝置 51‧‧‧煤塵處理裝置 52‧‧‧誘引送風機 53‧‧‧煙囪 62‧‧‧傾斜面 70‧‧‧爐底蒸發管 100‧‧‧運轉支援裝置 110‧‧‧資料取得部 120‧‧‧運轉控制裝置 130‧‧‧運轉資料記憶部 131‧‧‧累積值計算部 133‧‧‧資料抽出轉換部 140‧‧‧RTC(Real-Time Clock,即時時脈) 211‧‧‧工廠規格記憶部 212‧‧‧製程值候補記憶部 220‧‧‧運轉條件算出部 221‧‧‧模擬部 225‧‧‧最適化部 231‧‧‧模型作成部 232‧‧‧評估條件檢討部 233‧‧‧評估條件記憶部 241‧‧‧模型記憶部 250‧‧‧運轉指示部 260‧‧‧輸出入部(輸入部) 301‧‧‧CPU 302‧‧‧RAM 303‧‧‧ROM 304‧‧‧HDD 305‧‧‧輸入I/F 306‧‧‧輸出I/F 307‧‧‧匯流排1‧‧‧Boiler 11‧‧‧Stove 12‧‧‧Combustion device 13‧‧‧ Flue 21, 22, 23, 24, 25‧‧‧Burner 26, 27, 28, 29, 30‧‧‧Pulverized coal supply pipe 31, 32, 33, 34, 35‧‧‧Crusher (pulverizer/mill) 36‧‧‧Blowers 37a‧‧‧Air duct 37b‧‧‧Air duct 37c‧‧‧Air duct 37d‧‧‧Connecting point 38‧‧‧Air blower 39‧‧‧Out of Burning Outlet 41, 42, 43, 44, 45, 46, 47‧‧‧ Heat exchanger 48‧‧‧Exhaust gas passage 49‧‧‧Air heater 50‧‧‧Denitration device 51‧‧‧Coal dust treatment device 52‧‧‧Induction blower 53‧‧‧Chimney 62‧‧‧inclined surface 70‧‧‧Bottom evaporation tube 100‧‧‧Operation support device 110‧‧‧Data Acquisition Department 120‧‧‧Operation control device 130‧‧‧Operating data memory 131‧‧‧Cumulative value calculation unit 133‧‧‧Data Extraction and Conversion Department 140‧‧‧RTC (Real-Time Clock, real-time clock) 211‧‧‧Factory Specification Memory Department 212‧‧‧Process value candidate memory 220‧‧‧Operating condition calculation unit 221‧‧‧Analog Department 225‧‧‧Optimization Department 231‧‧‧Model Making Department 232‧‧‧ Evaluation Condition Review Department 233‧‧‧Evaluation Condition Memory 241‧‧‧Model Memory 250‧‧‧Operation instruction department 260‧‧‧I/O (input) 301‧‧‧CPU 302‧‧‧RAM 303‧‧‧ROM 304‧‧‧HDD 305‧‧‧Input I/F 306‧‧‧Output I/F 307‧‧‧Bus
圖1係使用預測模型的運轉支援裝置的全體構成圖 Figure 1 is the overall configuration diagram of the operation support device using the predictive model
圖2係鍋爐的概略構成圖 Figure 2 Schematic diagram of the boiler
圖3係顯示工廠規格資料例的圖 Figure 3 is a diagram showing an example of factory specification data
圖4係顯示製程值候補資料例的圖 Figure 4 is a diagram showing an example of candidate data for process values
圖5係顯示模型作成部所作成的學習模型之例的圖 Figure 5 is a diagram showing an example of a learning model created by the model creation section
圖6係顯示運轉支援裝置的硬體構成的圖 Figure 6 is a diagram showing the hardware configuration of the operation support device
圖7係顯示藉由運轉支援裝置所為之學習模型的作成處理的流程的流程圖 Fig. 7 is a flowchart showing the flow of the learning model creation process by the operation support device
圖8係顯示第1容許誤差及第2容許誤差的大小的圖 Fig. 8 is a diagram showing the magnitude of the first allowable error and the second allowable error
圖9係顯示藉由運轉支援裝置所為之使用預測模型的運轉支援方法的流程的流程圖 9 is a flowchart showing the flow of the operation support method using the predictive model by the operation support device
圖10係顯示計分換算基準之一例的圖 Figure 10 is a diagram showing an example of scoring conversion criteria
圖11係顯示計分換算基準之一例的圖Figure 11 is a diagram showing an example of a scoring conversion criterion
1:鍋爐 1: boiler
100:運轉支援裝置 100: Operation support device
110:資料取得部 110: Data Acquisition Department
120:運轉控制裝置 120: Operation control device
131:累積值計算部 131: Cumulative value calculation section
133:資料抽出轉換部 133: Data Extraction and Conversion Department
140:RTC(Real-Time Clock,即時時脈) 140: RTC (Real-Time Clock, real-time clock)
211:工廠規格記憶部 211: Factory Specification Memory Department
212:製程值候補記憶部 212: Process value candidate memory
220:運轉條件算出部 220: Operating condition calculation unit
221;模擬部 221; Simulation Department
225:最適化部 225: Optimum Department
231:模型作成部 231: Model Making Department
232:評估條件檢討部 232: Evaluation Condition Review Department
233:評估條件記憶部 233: Evaluation Condition Memory Department
241:模型記憶部 241: Model Memory Department
250:運轉指示部 250: Operation instruction department
260:輸出入部(輸入部) 260: I/O section (input section)
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018086878 | 2018-04-27 | ||
JP2018-086878 | 2018-04-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202001462A TW202001462A (en) | 2020-01-01 |
TWI705316B true TWI705316B (en) | 2020-09-21 |
Family
ID=68295529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108114798A TWI705316B (en) | 2018-04-27 | 2019-04-26 | Boiler operation support device, boiler operation support method, and boiler learning model creation method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2019208773A1 (en) |
TW (1) | TWI705316B (en) |
WO (1) | WO2019208773A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102094288B1 (en) * | 2018-11-30 | 2020-03-27 | 두산중공업 주식회사 | System and method for optimizing boiler combustion |
KR102106827B1 (en) * | 2018-11-30 | 2020-05-06 | 두산중공업 주식회사 | System and method for optimizing boiler combustion |
KR102108015B1 (en) * | 2018-11-30 | 2020-05-08 | 두산중공업 주식회사 | System and method for controlling boiler operation |
JP7412150B2 (en) * | 2019-11-29 | 2024-01-12 | 東京エレクトロン株式会社 | Prediction device, prediction method and prediction program |
JP7426240B2 (en) * | 2020-01-10 | 2024-02-01 | 三菱重工業株式会社 | Boiler operation simulator, boiler operation support device, boiler operation control device, boiler operation simulation method, boiler operation simulation program, and recording medium recording the boiler operation simulation program |
JP7059346B1 (en) | 2020-12-22 | 2022-04-25 | 東芝プラントシステム株式会社 | Plant simulation equipment and plant simulation system |
JP2022157180A (en) * | 2021-03-31 | 2022-10-14 | 三菱重工業株式会社 | Device, remote monitoring system, method for controlling device, and method for controlling remote monitoring system |
WO2024095319A1 (en) * | 2022-10-31 | 2024-05-10 | 日本電気株式会社 | Information processing apparatus, information processing method, and recording medium |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101612605A (en) * | 2009-07-28 | 2009-12-30 | 义马环保电力有限公司 | Be applied to the programmed control method and the device of coal fired power generation unit boiler pulverized coal preparation system |
CN201383106Y (en) * | 2009-03-04 | 2010-01-13 | 福州福大自动化科技有限公司 | Novel control system |
JP2011210215A (en) * | 2010-03-31 | 2011-10-20 | Hitachi Ltd | Control device for plant and control device for thermal power plant |
TW201250176A (en) * | 2010-12-07 | 2012-12-16 | Alstom Technology Ltd | Optimized integrated controls for oxy-fuel combustion power plant |
CN1877198B (en) * | 2005-06-06 | 2013-03-06 | 艾默生过程管理电力和水力解决方案有限公司 | Method and apparatus for controlling soot blowing using statiscical process control |
TW201610383A (en) * | 2014-09-04 | 2016-03-16 | 台灣塑膠工業股份有限公司 | Control system for controlling a power plant system |
CN206322002U (en) * | 2016-12-14 | 2017-07-11 | 北京神雾环境能源科技集团股份有限公司 | The denitration automatic control system of heat accumulating gas boiler |
CN207115165U (en) * | 2017-08-29 | 2018-03-16 | 杭州法恩电气自动化有限公司 | A kind of novel gas fired steam boiler specific PLC control system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10160142A (en) * | 1996-11-26 | 1998-06-19 | Kubota Corp | Waste gas property estimation system and operation training system |
JP4188859B2 (en) * | 2004-03-05 | 2008-12-03 | 株式会社荏原製作所 | Operation control method and operation control apparatus for waste treatment plant equipment |
JP2006057595A (en) * | 2004-08-23 | 2006-03-02 | Hitachi Ltd | Gas turbine performance diagnosing system and its method |
JP5155690B2 (en) * | 2008-02-25 | 2013-03-06 | 株式会社日立製作所 | Coal-fired boiler gas concentration estimation device and gas concentration estimation method |
JP5503563B2 (en) * | 2011-01-05 | 2014-05-28 | 株式会社日立製作所 | Plant control device and thermal power plant control device |
-
2019
- 2019-04-26 TW TW108114798A patent/TWI705316B/en active
- 2019-04-26 JP JP2020515607A patent/JPWO2019208773A1/en active Pending
- 2019-04-26 WO PCT/JP2019/017953 patent/WO2019208773A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1877198B (en) * | 2005-06-06 | 2013-03-06 | 艾默生过程管理电力和水力解决方案有限公司 | Method and apparatus for controlling soot blowing using statiscical process control |
CN201383106Y (en) * | 2009-03-04 | 2010-01-13 | 福州福大自动化科技有限公司 | Novel control system |
CN101612605A (en) * | 2009-07-28 | 2009-12-30 | 义马环保电力有限公司 | Be applied to the programmed control method and the device of coal fired power generation unit boiler pulverized coal preparation system |
JP2011210215A (en) * | 2010-03-31 | 2011-10-20 | Hitachi Ltd | Control device for plant and control device for thermal power plant |
TW201250176A (en) * | 2010-12-07 | 2012-12-16 | Alstom Technology Ltd | Optimized integrated controls for oxy-fuel combustion power plant |
TW201610383A (en) * | 2014-09-04 | 2016-03-16 | 台灣塑膠工業股份有限公司 | Control system for controlling a power plant system |
CN206322002U (en) * | 2016-12-14 | 2017-07-11 | 北京神雾环境能源科技集团股份有限公司 | The denitration automatic control system of heat accumulating gas boiler |
CN207115165U (en) * | 2017-08-29 | 2018-03-16 | 杭州法恩电气自动化有限公司 | A kind of novel gas fired steam boiler specific PLC control system |
Also Published As
Publication number | Publication date |
---|---|
WO2019208773A1 (en) | 2019-10-31 |
TW202001462A (en) | 2020-01-01 |
JPWO2019208773A1 (en) | 2020-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI705316B (en) | Boiler operation support device, boiler operation support method, and boiler learning model creation method | |
CN101063872B (en) | System for optimizing oxygen in a boiler | |
CN109376945A (en) | A kind of coal mixing combustion optimization system based on more coals | |
JP4876057B2 (en) | Plant control device and thermal power plant control device | |
JP2008146371A (en) | Controller of boiler plant | |
TW201937441A (en) | Model creation method, plant operation support method, model creating device, model, program, and recording medium having program recorded thereon | |
TWI677771B (en) | Apparatus and method for evaluating simulation results | |
Xia et al. | An online case-based reasoning system for coal blends combustion optimization of thermal power plant | |
JP2009222332A (en) | Control device for plant equipped with boiler and control method for plant equipped with boiler | |
JP5521918B2 (en) | Incinerator operation control method | |
TWI691821B (en) | Operating condition evaluation device, operating condition evaluation method, and boiler control system | |
JP2022125756A (en) | Operation support method and operation support device for thermal power plant | |
CN116776770B (en) | CFD numerical simulation coupling BP neural network based method for relieving high-temperature corrosion of boiler | |
JP2021176047A (en) | Control device | |
TWI735042B (en) | Plant operation support device and plant operation support method | |
JP2022157118A (en) | Operation support device for boiler, operation control system for boiler, operation support method for boiler, and operation support program for boiler | |
KR102627013B1 (en) | Boiler operation support device and boiler operation support system | |
JP2022157124A (en) | Boiler operation support device, boiler operation control system, boiler operation support method, and boiler operation support program | |
Sanaullah et al. | A Review on Optimization of Steam Generator in Thermal Power Plants by Reduction of Unburned Carbon | |
Lähteenmäki | Operational and financial effects of fluidized bed process electrification | |
Liu et al. | Introduction to Improving Thermal Power Plant Efficiency | |
Leithner | Steam generators and steam distribution networks | |
Storm | How stealth combustion losses lower plant efficiency | |
Raj | Technical/Technological Advances for Optimizing Heat Rate | |
Madsen | Advanced Plant Upgrades Using Modern Technology and Design Tools: Increasing the Combustion Capacity and the Performance of Existing Waste to Energy Plants |