TWI792239B - Method of manufacturing gate dielectrid layer - Google Patents
Method of manufacturing gate dielectrid layer Download PDFInfo
- Publication number
- TWI792239B TWI792239B TW110110413A TW110110413A TWI792239B TW I792239 B TWI792239 B TW I792239B TW 110110413 A TW110110413 A TW 110110413A TW 110110413 A TW110110413 A TW 110110413A TW I792239 B TWI792239 B TW I792239B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- material layer
- substrate
- barrier
- forming
- Prior art date
Links
Images
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Thyristors (AREA)
Abstract
Description
本發明是有關於一種半導體製程,且特別是有關於一種閘介電層的製造方法。The present invention relates to a semiconductor manufacturing process, and in particular to a method for manufacturing a gate dielectric layer.
目前,非低壓元件區(如,中壓元件區或高壓元件區)的閘介電層的形成方法會先同時在非低壓元件區與低壓元件區中形成介電層,再移除低壓元件區中的介電層,而形成非低壓元件區中的閘介電層。At present, the formation method of the gate dielectric layer in the non-low voltage component area (such as the medium voltage component area or the high voltage component area) first forms the dielectric layer in the non-low voltage component area and the low voltage component area at the same time, and then removes the low voltage component area The dielectric layer in the non-low voltage device area is formed as the gate dielectric layer.
非低壓元件區的閘介電層通常具有較厚的厚度,因此在用於形成非低壓元件區的閘介電層的氧化製程中,會在低壓元件區中形成較厚的介電層,而使得低壓元件區中的主動區產生較大的角圓化(corner rounding)效應,進而造成低壓元件區的主動區的平坦區域(flat area)變小。此外,在後續移除低壓元件區中的較厚的介電層時,由於蝕刻量較大,因此會在低壓元件區附近的隔離結構上形成較深的凹陷(divot),進而使得隔離結構上的凹陷具有較大的變異(variation)。The gate dielectric layer in the non-low voltage device region usually has a thicker thickness, so in the oxidation process used to form the gate dielectric layer in the non-low voltage device region, a thicker dielectric layer will be formed in the low voltage device region, while The active region in the low-voltage device region produces a relatively large corner rounding effect, thereby reducing the flat area of the active region in the low-voltage device region. In addition, when the thicker dielectric layer in the low-voltage device region is subsequently removed, due to the large amount of etching, a deep recess (divot) will be formed on the isolation structure near the low-voltage device region, thereby making the isolation structure The depressions of have a large variation.
如此一來,由於低壓元件區的主動區的平坦區域變小且低壓元件區附近的隔離結構上的凹陷具有較大的變異,因此會使得低壓元件的電性表現(electrical performance)變差。In this way, since the flat area of the active region of the low-voltage device region becomes smaller and the depressions on the isolation structure near the low-voltage device region have greater variation, the electrical performance of the low-voltage device will be deteriorated.
本發明提供一種閘介電層的製造方法,其可提升低壓元件的電性表現。The invention provides a method for manufacturing a gate dielectric layer, which can improve the electrical performance of low-voltage components.
本發明提出一種閘介電層的製造方法,包括以下步驟。提供基底。基底包括低壓元件區與非低壓元件區。在基底上形成阻擋層。阻擋層覆蓋低壓元件區中的基底,且暴露出非低壓元件區中的基底。在形成阻擋層之後,藉由氧化製程在非低壓元件區中的基底上形成第一介電層。移除阻擋層,而暴露出低壓元件區中的基底。在低壓元件區中的基底上形成第二介電層。The invention provides a method for manufacturing a gate dielectric layer, which includes the following steps. Provide the base. The base includes a low-voltage component area and a non-low-voltage component area. A barrier layer is formed on the substrate. The blocking layer covers the substrate in the low voltage device area and exposes the substrate in the non-low voltage device area. After forming the blocking layer, a first dielectric layer is formed on the substrate in the non-low voltage device region by an oxidation process. The barrier layer is removed to expose the substrate in the low voltage device area. A second dielectric layer is formed on the substrate in the low voltage element region.
依照本發明的一實施例所述,在上述閘介電層的製造方法中,阻擋層可為單層結構。According to an embodiment of the present invention, in the method for manufacturing the gate dielectric layer, the barrier layer may be a single-layer structure.
依照本發明的一實施例所述,在上述閘介電層的製造方法中,阻擋層可為多層結構。According to an embodiment of the present invention, in the method for manufacturing the gate dielectric layer, the barrier layer may be a multi-layer structure.
依照本發明的一實施例所述,在上述閘介電層的製造方法中,阻擋層的形成方法可包括以下步驟。在基底上形成阻擋材料層。在阻擋材料層上形成圖案化罩幕層。圖案化罩幕層覆蓋低壓元件區中的阻擋材料層,且暴露出非低壓元件區中的阻擋材料層。利用圖案化罩幕層作為罩幕,移除非低壓元件區中的阻擋材料層,而在基底上形成阻擋層。According to an embodiment of the present invention, in the above-mentioned manufacturing method of the gate dielectric layer, the forming method of the barrier layer may include the following steps. A barrier material layer is formed on the substrate. A patterned mask layer is formed on the barrier material layer. The patterned mask layer covers the barrier material layer in the low voltage device area and exposes the barrier material layer in the non-low voltage device area. Using the patterned mask layer as a mask, the barrier material layer in the non-low voltage device area is removed to form a barrier layer on the substrate.
依照本發明的一實施例所述,在上述閘介電層的製造方法中,阻擋材料層可為氧化物材料層。According to an embodiment of the present invention, in the method for manufacturing the gate dielectric layer, the barrier material layer may be an oxide material layer.
依照本發明的一實施例所述,在上述閘介電層的製造方法中,阻擋材料層的形成方法可包括以下步驟。在基底上形成第一氧化物材料層。在第一氧化物材料層上形成第二氧化物材料層。According to an embodiment of the present invention, in the method for manufacturing the gate dielectric layer, the method for forming the barrier material layer may include the following steps. A first oxide material layer is formed on the substrate. A second oxide material layer is formed on the first oxide material layer.
依照本發明的一實施例所述,在上述閘介電層的製造方法中,阻擋材料層的形成方法更可包括以下步驟。在第二氧化物材料層上形成氮化物材料層。According to an embodiment of the present invention, in the method for manufacturing the gate dielectric layer, the method for forming the barrier material layer may further include the following steps. A nitride material layer is formed on the second oxide material layer.
依照本發明的一實施例所述,在上述閘介電層的製造方法中,阻擋層的形成方法可包括以下步驟。在基底上形成氧化物材料層。在氧化物材料層上形成氮化物材料層。According to an embodiment of the present invention, in the above-mentioned manufacturing method of the gate dielectric layer, the forming method of the barrier layer may include the following steps. A layer of oxide material is formed on the substrate. A nitride material layer is formed on the oxide material layer.
依照本發明的一實施例所述,在上述閘介電層的製造方法中,氮化物材料層的形成方法例如是化學氣相沉積法或對氧化物材料層進行氮化製程。According to an embodiment of the present invention, in the method for manufacturing the gate dielectric layer, the method for forming the nitride material layer is, for example, chemical vapor deposition or performing a nitriding process on the oxide material layer.
依照本發明的一實施例所述,在上述閘介電層的製造方法中,在氮化製程中,10%至30%的氧化物材料層可被氮化成氮化物材料層。According to an embodiment of the present invention, in the method for manufacturing the gate dielectric layer, in the nitridation process, 10% to 30% of the oxide material layer can be nitrided into a nitride material layer.
基於上述,在本發明所提出的閘介電層的製造方法中,在藉由氧化製程在非低壓元件區中的基底上形成第一介電層的步驟中,由於阻擋層覆蓋低壓元件區中的基底,所以可抑制在低壓元件區中的基底上形成第一介電層。因此,可降低用於形成第一介電層的氧化製程對低壓元件區所造成的影響,藉此可獨立且自由地調整低壓元件區中的主動區的角圓化程度,且可降低低壓元件區附近的隔離結構上的凹陷深度。如此一來,低壓元件區的主動區可維持足夠的平坦區域,且可防止低壓元件區附近的隔離結構上的凹陷產生較大的變異,因此可提升後續形成在低壓元件區中的低壓元件的電性表現。Based on the above, in the manufacturing method of the gate dielectric layer proposed by the present invention, in the step of forming the first dielectric layer on the substrate in the non-low-voltage device region by oxidation process, since the barrier layer covers the low-voltage device region The substrate, so the formation of the first dielectric layer on the substrate in the low-voltage element region can be suppressed. Therefore, the influence of the oxidation process for forming the first dielectric layer on the low-voltage device region can be reduced, thereby independently and freely adjusting the corner rounding degree of the active region in the low-voltage device region, and reducing the low-voltage device region. The depth of the recess on the isolation structure near the region. In this way, the active region of the low-voltage device region can maintain a sufficient flat area, and can prevent large variations in the depressions on the isolation structure near the low-voltage device region, thereby improving the quality of the low-voltage device subsequently formed in the low-voltage device region. electrical performance.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.
圖1A至圖1G為根據本發明一實施例的閘介電層的製造流程剖面圖。圖2A、圖3A與圖4A為根據本發明另一些實施例的阻擋材料層的剖面圖。圖2B、圖3B與圖4B為根據本發明另些一實施例的阻擋層的剖面圖。1A to 1G are cross-sectional views of a manufacturing process of a gate dielectric layer according to an embodiment of the present invention. 2A , 3A and 4A are cross-sectional views of barrier material layers according to other embodiments of the present invention. 2B , 3B and 4B are cross-sectional views of barrier layers according to other embodiments of the present invention.
請參照圖1A,提供基底100。基底100包括低壓元件區R1與非低壓元件區R2。基底100可為半導體基底,如矽基底。非低壓元件區R2可為中壓元件區或高壓元件區。在本實施例中,非低壓元件區R2是以中壓元件區為例,但本發明並不以此為限。此外,低壓元件區R1中的主動區AA1與非低壓元件區R2中的主動區AA2可分別由位在基底100中隔離結構(如,淺溝渠隔離結構(shallow trench isolation,STI))(未示出)所定義。Referring to FIG. 1A , a
接著,可在基底100上形成阻擋材料層102。阻擋材料層102可為單層結構或多層結構。在本實施例中,阻擋材料層102可為單層的氧化物材料層104,但本發明並不以此為限。氧化物材料層104可藉由對基底100進行氧化製程所形成。氧化製程例如是熱氧化製程。在一些實施例中,在對基底100進行氧化製程的過程中,部分基底100可被氧化而形成氧化物材料層104。在一些實施例中,氧化物材料層104可為犧牲氧化物層。在藉由離子植入製程於基底100中形成所需的摻雜區(如,井區)(未示出)時,犧牲氧化物層可用以控制離子植入深度,且可用以保護基底100表面。氧化物材料層104的材料例如是氧化矽。Next, a
在另一些實施例中,如圖2A、圖3A與圖4A所示,阻擋材料層102可為多層結構。請參照圖2A,阻擋材料層102可包括依序位在基底100上的氧化物材料層104與氧化物材料層106。此外,相較於圖1A的阻擋材料層102的形成方法,圖2A的阻擋材料層102的形成方法除了包括在基底100上形成氧化物材料層104的步驟之外,更可包括以下步驟。在氧化物材料層104上形成氧化物材料層106。氧化物材料層106的形成方法例如是化學氣相沉積法。氧化物材料層106的材料例如是氧化矽。In some other embodiments, as shown in FIG. 2A , FIG. 3A and FIG. 4A , the
請參照圖3A,阻擋材料層102可包括依序位在基底100上的氧化物材料層104、氧化物材料層106與氮化物材料層108。此外,相較於圖2A的阻擋材料層102的形成方法,圖3A的阻擋材料層102的形成方法更可包括以下步驟。在氧化物材料層106上形成氮化物材料層108。氮化物材料層108的形成方法例如是化學氣相沉積法或對氧化物材料層106進行氮化製程。在氮化製程中,10%至30%的氧化物材料層106可被氮化成氮化物材料層108。氮化物材料層108的材料例如是氮化矽或氮氧化矽。Referring to FIG. 3A , the
請參照圖4A,阻擋材料層102可包括依序位在基底100上的氧化物材料層104與氮化物材料層108。此外,相較於圖1A的阻擋材料層102的形成方法,圖4A的阻擋材料層102的形成方法除了包括在基底100上形成氧化物材料層104的步驟之外,更可包括以下步驟。在氧化物材料層104上形成氮化物材料層108。氮化物材料層108的形成方法例如是化學氣相沉積法或對氧化物材料層104進行氮化製程。在氮化製程中,10%至30%的氧化物材料層104可被氮化成氮化物材料層108。氮化物材料層108的材料例如是氮化矽或氮氧化矽。Referring to FIG. 4A , the
請參照圖1B,可在阻擋材料層102上形成圖案化罩幕層110。圖案化罩幕層110覆蓋低壓元件區R1中的阻擋材料層102,且暴露出非低壓元件區R2中的阻擋材料層102。在一些實施例中,圖案化罩幕層110可為圖案化光阻層,且圖案化光阻層可藉由微影製程所形成。Referring to FIG. 1B , a patterned
請參照圖1C,可利用圖案化罩幕層110作為罩幕,移除非低壓元件區R2中的阻擋材料層102,而在基底100上形成阻擋層102a。阻擋層102a覆蓋低壓元件區R1中的基底100,且暴露出非低壓元件區R2中的基底100。非低壓元件區R2中的阻擋材料層102的移除方法例如是濕式蝕刻法。Referring to FIG. 1C , the patterned
接著,可移除圖案化罩幕層110。在圖案化罩幕層110為圖案化光阻層的情況下,圖案化罩幕層110的移除方法例如是乾式剝離法(dry stripping)或濕式剝離法(wet stripping)。Then, the patterned
此外,阻擋層102a可為單層結構或多層結構。在本實施例中,阻擋層102a可為單層的氧化物層104a(圖1C),但本發明並不以此為限。在另一些實施例中,阻擋層102a可為多層結構。舉例來說,如圖2B、圖3B與圖4B所示,在對圖2A、圖3A與圖4A的阻擋材料層102進行上述步驟而形成的阻擋層102a可為多層結構。請參照圖2B,阻擋層102a可包括依序位在基底100上的氧化物層104a與氧化物層106a。請參照圖3B,阻擋層102a可包括依序位在基底100上的氧化物層104a、氧化物層106a與氮化物層108a。請參照圖4B,阻擋層102a可包括依序位在基底100上的氧化物層104a與氮化物層108a。In addition, the
請參照圖1D,在形成阻擋層102a之後,藉由氧化製程在非低壓元件區R2中的基底100上形成介電層112。非低壓元件區R2中的介電層112可作為非低壓元件的閘介電層。在藉由氧化製程在非低壓元件區R2中的基底100上形成介電層112的步驟中,由於阻擋層102a覆蓋低壓元件區R1中的基底100,所以可抑制在低壓元件區R1中的基底100上形成介電層112。在一些實施例中,在對基底100進行氧化製程的過程中,部分基底100可被氧化而形成介電層112。氧化製程例如是熱氧化製程。介電層112的材料例如是氧化物,如氧化矽。Referring to FIG. 1D, after forming the
請參照圖1E,可在非低壓元件區R2中形成圖案化罩幕層114。圖案化罩幕層114覆蓋非低壓元件區R2中的介電層112,且暴露出阻擋層102a。圖案化罩幕層114可為圖案化光阻層,且圖案化光阻層可藉由微影製程所形成。Referring to FIG. 1E , a patterned
請參照圖1F,可利用圖案化罩幕層114作為罩幕,移除阻擋層102a,而暴露出低壓元件區R1中的基底100。阻擋層102a的移除方法例如是濕式蝕刻法。Referring to FIG. 1F , the patterned
接著,可移除圖案化罩幕層114。在圖案化罩幕層114為圖案化光阻層的情況下,圖案化罩幕層114的移除方法例如是乾式剝離法或濕式剝離法。Next, the patterned
請參照圖1G,在低壓元件區R1中的基底100上形成介電層116。低壓元件區R1中的介電層116可作為低壓元件的閘介電層。在一些實施例中,介電層116的厚度可小於介電層112的厚度。介電層116的材料例如是氧化物,如氧化矽。介電層116可藉由對基底100進行氧化製程所形成。氧化製程例如是熱氧化製程。在一些實施例中,在對基底100進行氧化製程的過程中,部分基底100可被氧化而形成介電層116。Referring to FIG. 1G , a
基於上述實施例可知,在上述閘介電層的製造方法中,在藉由氧化製程在非低壓元件區R2中的基底100上形成介電層112的步驟中,由於阻擋層102a覆蓋低壓元件區R1中的基底100,所以可抑制在低壓元件區R1中的基底100上形成介電層112。因此,可降低用於形成介電層112的氧化製程對低壓元件區R1所造造成的影響,藉此可獨立且自由地調整低壓元件區R1中的主動區AA1的角圓化程度,且可降低低壓元件區R1附近的隔離結構上的凹陷深度。舉例來說,可藉由用於形成氧化物材料層104的氧化製程來控制低壓元件區R1中的主動區AA1的角圓化程度。如此一來,低壓元件區R1的主動區AA1可維持足夠的平坦區域,且可防止低壓元件區R1附近的隔離結構上的凹陷產生較大的變異,因此可提升後續形成在低壓元件區R1中的低壓元件的電性表現。Based on the above embodiment, it can be seen that in the above method of manufacturing the gate dielectric layer, in the step of forming the
此外,藉由上述實施例的閘介電層的製造方法,可個別地調整低壓元件與非低壓元件的特性。舉例來說,在低壓元件區R1中,由於主動區AA1可維持足夠的平坦區域(即,主動區AA1的角圓化程度較小),且可防止主動區AA1附近的隔離結構上的凹陷產生較大的變異,因此可獲得高飽和電流(saturation current),且可降低臨界電壓(threshold voltage,Vt)的變異。同時,在非低壓元件區R2中,由於主動區AA2可具有足夠的角圓化程度,因此可抑制次臨界駝峰效應(subthreshold hump effect)。In addition, the characteristics of the low-voltage device and the non-low-voltage device can be individually adjusted by the method for manufacturing the gate dielectric layer of the above-mentioned embodiment. For example, in the low-voltage device region R1, since the active region AA1 can maintain a sufficient flat area (that is, the corner rounding degree of the active region AA1 is small), and can prevent the generation of depressions on the isolation structure near the active region AA1 Larger variation, so high saturation current (saturation current) can be obtained, and the variation of threshold voltage (threshold voltage, Vt) can be reduced. Meanwhile, in the non-low voltage device region R2 , since the active region AA2 can have a sufficient degree of corner rounding, the subthreshold hump effect can be suppressed.
綜上所述,在上述實施例的閘介電層的製造方法中,在在用於形成非低壓元件區中的閘介電層的氧化製程中,由於阻擋層覆蓋低壓元件區中的基底,因此可降低上述氧化製程對低壓元件區所造成的影響。藉此,可獨立且自由地調整低壓元件區中的主動區的角圓化程度,且可降低低壓元件區附近的隔離結構上的凹陷深度。如此一來,低壓元件區的主動區可維持足夠的平坦區域,且可防止低壓元件區附近的隔離結構上的凹陷產生較大的變異,進而提升後續形成在低壓元件區中的低壓元件的電性表現。To sum up, in the method for manufacturing the gate dielectric layer in the above embodiment, in the oxidation process for forming the gate dielectric layer in the non-low voltage device region, since the barrier layer covers the substrate in the low voltage device region, Therefore, the impact of the oxidation process on the low-voltage device area can be reduced. Thereby, the degree of corner rounding of the active region in the low-voltage device region can be independently and freely adjusted, and the recess depth on the isolation structure near the low-voltage device region can be reduced. In this way, the active area of the low-voltage element region can maintain a sufficient flat area, and can prevent large variations in the depressions on the isolation structure near the low-voltage element region, thereby improving the electrical resistance of the low-voltage element subsequently formed in the low-voltage element region. sexual performance.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention should be defined by the scope of the appended patent application.
100:基底
102:阻擋材料層
102a:阻擋層
104, 106:氧化物材料層
104a, 106a:氧化物層
108:氮化物材料層
108a:氮化物層
110, 114:圖案化罩幕層
112, 116:介電層
AA1, AA2:主動區
R1:低壓元件區
R2:非低壓元件區
100: base
102:
圖1A至圖1G為根據本發明一實施例的閘介電層的製造流程剖面圖。 圖2A、圖3A與圖4A為根據本發明另一些實施例的阻擋材料層的剖面圖。 圖2B、圖3B與圖4B為根據本發明另些一實施例的阻擋層的剖面圖。 1A to 1G are cross-sectional views of a manufacturing process of a gate dielectric layer according to an embodiment of the present invention. 2A , 3A and 4A are cross-sectional views of barrier material layers according to other embodiments of the present invention. 2B , 3B and 4B are cross-sectional views of barrier layers according to other embodiments of the present invention.
100:基底 100: base
102a:阻擋層 102a: barrier layer
104a:氧化物層 104a: oxide layer
112:介電層 112: dielectric layer
AA1,AA2:主動區 AA1,AA2: active area
R1:低壓元件區 R1: low voltage component area
R2:非低壓元件區 R2: Non-low voltage component area
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110110413A TWI792239B (en) | 2021-03-23 | 2021-03-23 | Method of manufacturing gate dielectrid layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110110413A TWI792239B (en) | 2021-03-23 | 2021-03-23 | Method of manufacturing gate dielectrid layer |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202238822A TW202238822A (en) | 2022-10-01 |
TWI792239B true TWI792239B (en) | 2023-02-11 |
Family
ID=85460324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110110413A TWI792239B (en) | 2021-03-23 | 2021-03-23 | Method of manufacturing gate dielectrid layer |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI792239B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW426894B (en) * | 1999-07-02 | 2001-03-21 | United Microelectronics Corp | Method for producing gate structure with different thickness |
TWI520223B (en) * | 2009-07-10 | 2016-02-01 | 新加坡格羅方德半導體製造私人有限公司 | Method of forming a high voltage device |
TW201614766A (en) * | 2014-10-15 | 2016-04-16 | Powerchip Technology Corp | Method for fabricating semiconductor device |
-
2021
- 2021-03-23 TW TW110110413A patent/TWI792239B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW426894B (en) * | 1999-07-02 | 2001-03-21 | United Microelectronics Corp | Method for producing gate structure with different thickness |
TWI520223B (en) * | 2009-07-10 | 2016-02-01 | 新加坡格羅方德半導體製造私人有限公司 | Method of forming a high voltage device |
TW201614766A (en) * | 2014-10-15 | 2016-04-16 | Powerchip Technology Corp | Method for fabricating semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
TW202238822A (en) | 2022-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4149095B2 (en) | Manufacturing method of semiconductor integrated circuit device | |
JP2008527692A (en) | Semiconductor forming process including recess type source / drain regions in SOI wafer | |
JP2007036116A (en) | Semiconductor device manufacturing method | |
JP3727299B2 (en) | Manufacturing method of semiconductor device | |
JP3548512B2 (en) | Method for manufacturing semiconductor device | |
KR101054320B1 (en) | Method for manufacturing semiconductor device | |
WO2004017418A1 (en) | Semiconductor integrated circuit device and method for fabricating the same | |
TWI792239B (en) | Method of manufacturing gate dielectrid layer | |
JP2004356575A (en) | Manufacturing method of semiconductor device | |
KR100814372B1 (en) | Method of manufacturing a semiconductor device | |
JP4082280B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2004349627A (en) | Manufacturing method of semiconductor device | |
JP5148814B2 (en) | Semiconductor device having field effect transistor and passive capacitor with reduced leakage current and improved capacitance per unit area | |
JP2009140967A (en) | Method of manufacturing semiconductor device | |
KR100946041B1 (en) | Method of manufacturing dual gate oxide film | |
JP2005093530A (en) | Method of manufacturing semiconductor device | |
JP2008135765A (en) | Semiconductor device | |
JP2009111091A (en) | Method for manufacturing semiconductor device | |
KR100680972B1 (en) | Transistor and method for forming thereof | |
JP4951585B2 (en) | Manufacturing method of semiconductor integrated circuit device | |
JP2005209836A (en) | Method for manufacturing semiconductor device | |
JP2008047691A (en) | Semiconductor device manufacturing method | |
JP2005093816A (en) | Semiconductor device manufacturing method and the semiconductor device | |
JP2000340644A (en) | Manufacture of semiconductor device | |
KR100588641B1 (en) | Method for improving the trench corner rounding |