TWI776343B - Ceramic composition, ceramic sintered body, capacitor and capacitor manufacturing method - Google Patents
Ceramic composition, ceramic sintered body, capacitor and capacitor manufacturing method Download PDFInfo
- Publication number
- TWI776343B TWI776343B TW109147190A TW109147190A TWI776343B TW I776343 B TWI776343 B TW I776343B TW 109147190 A TW109147190 A TW 109147190A TW 109147190 A TW109147190 A TW 109147190A TW I776343 B TWI776343 B TW I776343B
- Authority
- TW
- Taiwan
- Prior art keywords
- ceramic
- main component
- powder
- component powder
- main
- Prior art date
Links
Images
Landscapes
- Ceramic Capacitors (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本發明提供一種陶瓷組成物,包含主混合物和副混合物,其中該主混合物包含第一主成分粉、第二主成分粉和第三主成分粉,且該第一主成分粉包含BaTiO3,該第二主成分粉包含SrTiO3、Ba0.95Ca0.05TiO3、BaZr0.1Ti0.9O3之任一或其組合,該第三主成分粉為CaZrO3,以及該副混合物包含稀土氧化物、矽氧化物和鹼土金屬氧化物。本發明另提供一種由上述陶瓷組成物燒結而得之陶瓷燒結體,以及包含該陶瓷燒結體之電容及電容製法;其中,該電容符合EIA-X8R標準,並具有高介電常數。 The present invention provides a ceramic composition comprising a main mixture and a sub-mix, wherein the main mixture includes a first main component powder, a second main component powder and a third main component powder, and the first main component powder includes BaTiO 3 , the The second main component powder includes any one or a combination of SrTiO 3 , Ba 0.95 Ca 0.05 TiO 3 , BaZr 0.1 Ti 0.9 O 3 , the third main component powder is CaZrO 3 , and the auxiliary mixture includes rare earth oxide, silicon oxide and alkaline earth metal oxides. The present invention further provides a ceramic sintered body obtained by sintering the above-mentioned ceramic composition, and a capacitor including the ceramic sintered body and a capacitor manufacturing method; wherein, the capacitor conforms to the EIA-X8R standard and has a high dielectric constant.
Description
本發明有關於陶瓷組成物,尤其是電容用之陶瓷組成物。本發明另有關於包含陶瓷燒結體之電容與電容製法,尤其是積層陶瓷電容器及其製法。 The present invention relates to ceramic compositions, especially ceramic compositions for capacitors. The present invention further relates to a capacitor comprising a ceramic sintered body and a method for producing the capacitor, especially a multilayer ceramic capacitor and a method for producing the same.
電容器種類繁多,其中積層陶瓷電容器(Multi-layer Ceramic Capacitor,MLCC)係以鈦酸鋇(BaTiO3)作為介電材料;其中MLCC由於體積小且易於晶片化,故廣泛應用於消費性電子產品,例如:手機。此外,MLCC亦具有運作溫度範圍廣之優點,故需承受劇烈溫度變化的車輛亦大量仰賴MLCC。目前市場上廣泛使用MLCC的規格為EIA-X7R;其中,EIA指電子工業聯盟(Electronic Industries Alliance,EIA),X表示MLCC運作溫度之下限值為-55℃,7表示MLCC運作溫度之上限值為+125℃,R表示在MLCC運作溫度範圍內之電容值變化率需落於±15%之範圍內。 There are many types of capacitors, among which Multi-layer Ceramic Capacitor (MLCC) uses barium titanate (BaTiO 3 ) as the dielectric material; MLCC is widely used in consumer electronic products due to its small size and easy chip formation. For example: mobile phone. In addition, MLCC also has the advantage of a wide operating temperature range, so vehicles that need to withstand severe temperature changes also rely heavily on MLCC. At present, the specification of MLCC widely used in the market is EIA-X7R; among them, EIA refers to Electronic Industries Alliance (EIA), X indicates that the lower limit of MLCC operating temperature is -55℃, and 7 indicates the upper limit of MLCC operating temperature The value is +125℃, and R indicates that the capacitance value change rate within the operating temperature range of MLCC should fall within the range of ±15%.
然而,隨著科技進步,市場對於MLCC之規格要求亦將提升,而有將MLCC規格提升至X8R之需求,亦即MLCC運作溫度範圍為-55℃至+150℃,且電容值變化率需落於±15%之範圍內。目前雖有文獻提出借助鉍(Pb)和鉛(Pb)來取代鈦酸鋇之鋇,使居禮溫度往高溫移動,來提升MLCC的運作溫度上限,但卻因此須配合金(Au)和銀(Ag)等貴金屬作為內電極,以防止鉍和鉛與卑金屬電極共同於還原氣氛下燒結後,還原為導體,進而導致MLCC的絕緣阻抗下降。基於積層陶瓷電容器內部需設多層內電極,如採用金銀等貴金屬者,將大幅提升生產成本,故降低生產成本且符合EIA-X8R規格之MLCC製造技術仍有待開發。 However, with the advancement of technology, the market requirements for MLCC specifications will also increase, and there is a need to upgrade the MLCC specifications to X8R, that is, the MLCC operating temperature range is -55°C to +150°C, and the capacitance value change rate needs to be lower than within ±15%. At present, although some literatures propose to use bismuth (Pb) and lead (Pb) to replace barium titanate to move the Curie temperature to a high temperature to increase the upper limit of the operating temperature of MLCC, but it is necessary to combine gold (Au) and silver (Ag) and other noble metals are used as internal electrodes to prevent bismuth and lead from being reduced to conductors after being sintered together with base metal electrodes in a reducing atmosphere, which in turn leads to a decrease in the insulation resistance of MLCCs. Because multilayer ceramic capacitors need to be equipped with multi-layer internal electrodes, if using precious metals such as gold and silver, the production cost will be greatly increased, so the MLCC manufacturing technology that reduces the production cost and meets the EIA-X8R specification still needs to be developed.
為解決上述問題,本發明提供一種陶瓷組成物,包含主混合物和副混合物,其中該主混合物包含第一主成分粉、第二主成分粉和第三主成分粉,且該第一主成分粉包含BaTiO3,該第二主成分粉包含SrTiO3、BaxCa(1-x)TiO3和BaZryTi(1-y)O3之任一或其組合,其中x為0.91至0.99,且y為0.05至0.2,該第三主成分粉為CaZrO3;以及該副混合物包含稀土氧化物、矽氧化物和鹼土金屬氧化物。 In order to solve the above problems, the present invention provides a ceramic composition comprising a main mixture and a sub-mix, wherein the main mixture includes a first main component powder, a second main component powder and a third main component powder, and the first main component powder comprising BaTiO 3 , the second main component powder comprising any one or a combination of SrTiO 3 , Ba x Ca (1-x) TiO 3 and BaZry Ti ( 1-y) O 3 , wherein x is 0.91 to 0.99, and y is 0.05 to 0.2, the third main component powder is CaZrO 3 ; and the sub-mixture contains rare earth oxides, silicon oxides, and alkaline earth metal oxides.
較佳的,x為0.92、0.93、0.94、0.95、0.96、0.97、0.98或0.99。 Preferably, x is 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98 or 0.99.
較佳的,y為0.05、0.07、0.09、0.1、0.11、0.13、0.15、0.17或0.2。 Preferably, y is 0.05, 0.07, 0.09, 0.1, 0.11, 0.13, 0.15, 0.17 or 0.2.
更佳的,該第二主成分粉包含SrTiO3、Ba0.95Ca0.05TiO3、BaZr0.1Ti0.9O3之任一或其組合。 More preferably, the second main component powder comprises any one of SrTiO 3 , Ba 0.95 Ca 0.05 TiO 3 , BaZr 0.1 Ti 0.9 O 3 or a combination thereof.
上述陶瓷組成物作為積層陶瓷電容器(Multi-layer Ceramic Capacitor,MLCC)的材料,即便搭配卑金屬電極,仍可製得符合EIA-X8R標準之MLCC;其中,因該陶瓷組成物不以鉍和鉛作為必要材料,故該陶瓷組成物將不會使介電層於燒結過程中還原成導體,從而亦無需搭配金、銀、鈀等貴金屬作為內電極來防止MLCC的絕緣阻抗下降,故可降低生產成本。 The above-mentioned ceramic composition is used as the material of Multi-layer Ceramic Capacitor (MLCC), even with base metal electrodes, MLCCs that meet the EIA-X8R standard can still be produced; among them, the ceramic composition does not contain bismuth and lead. As a necessary material, the ceramic composition will not reduce the dielectric layer to a conductor during the sintering process, so there is no need to use gold, silver, palladium and other precious metals as internal electrodes to prevent the insulation resistance of MLCC from decreasing, so it can reduce production. cost.
在一實施態樣中,該稀土氧化物包含銪(Eu)氧化物、釓(Gd)氧化物、釔(Y)氧化物、鋱(Tb)氧化物、鏑(Dy)氧化物、鈥(Ho)氧化物、鉺(Er)氧化物、銩(Tm)氧化物和鐿(Tb)氧化物之任一或其組合,但不限於此。較佳的,該稀土氧化物包含Y2O3、Yb2O3和Dy2O3之任一或其組合。 In one embodiment, the rare earth oxides comprise europium (Eu) oxide, gadolinium (Gd) oxide, yttrium (Y) oxide, abium (Tb) oxide, dysprosium (Dy) oxide, γ (Ho) ) oxide, erbium (Er) oxide, tin (Tm) oxide, and ytterbium (Tb) oxide, or any combination thereof, but not limited thereto. Preferably, the rare earth oxide comprises any one or a combination of Y 2 O 3 , Yb 2 O 3 and Dy 2 O 3 .
依據本發明,添加稀土氧化物有助於提升電容之介電常數,以及改善電容之損耗因數。 According to the present invention, adding rare earth oxide helps to increase the dielectric constant of the capacitor and improve the dissipation factor of the capacitor.
在一實施態樣中,該矽氧化物包含氧化矽、矽酸鹽玻璃或矽凝膠,但不限於此:較佳的,該矽氧化物包含SiO2。 In one embodiment, the silicon oxide comprises silicon oxide, silicate glass or silicon gel, but not limited thereto: preferably, the silicon oxide comprises SiO 2 .
在一實施態樣中,該鹼土金屬氧化物包含MgO、CaO、SrO和BaO之任一或其組合,但不限於此。 In one embodiment, the alkaline earth metal oxide includes any one or a combination of MgO, CaO, SrO, and BaO, but is not limited thereto.
本發明藉由添加矽氧化物和鹼土金屬氧化物來調整陶瓷燒結體之燒結特性。 The present invention adjusts the sintering characteristics of the ceramic sintered body by adding silicon oxide and alkaline earth metal oxide.
在一實施態樣中,以該主混合物為100莫耳百分比為基準,該副混合物之含量為1.1莫耳百分比至13.5莫耳百分比。 In one embodiment, the content of the auxiliary mixture is 1.1 mol% to 13.5 mol% based on 100 mol% of the main mixture.
在一實施態樣中,以該主混合物為100莫耳百分比為基準,該稀土氧化物、該矽氧化物和該鹼土金屬氧化物之含量為0.3莫耳百分比至8莫耳百分比:0.01莫耳百分比至1.5莫耳百分比:0.1莫耳百分比至5.5莫耳百分比。 In one embodiment, the rare earth oxide, the silicon oxide and the alkaline earth metal oxide are contained in a range of 0.3 mol% to 8 mol% based on 100 mol% of the main mixture: 0.01 mol% Percent to 1.5 mole percent: 0.1 mole percent to 5.5 mole percent.
較佳的,以該主混合物為100莫耳百分比為基準,該稀土氧化物、該矽氧化物和該鹼土金屬氧化物之含量為0.3莫耳百分比至6.5莫耳百分比:0.3莫耳百分比至1.5莫耳百分比:0.5莫耳百分比至5.5莫耳百分比。 Preferably, the content of the rare earth oxide, the silicon oxide and the alkaline earth metal oxide is 0.3 mol% to 6.5 mol% based on 100 mol% of the main mixture: 0.3 mol% to 1.5 Molar percent: 0.5 molar percent to 5.5 molar percent.
依據本發明,添加CaZrO3有助於改善電容之損耗因數,以及降低電容值變化率。 According to the present invention, adding CaZrO 3 helps to improve the dissipation factor of the capacitor and reduce the change rate of the capacitance value.
在一實施態樣中,以該主混合物之總重為基準,該第一主成分粉之含量為45重量百分比至75重量百分比,該第二主成分粉之含量為15重量百分比至25重量百分比,且該第三主成分粉之含量為5重量百分比至35重量百分比。 In one embodiment, based on the total weight of the main mixture, the content of the first main component powder is 45 to 75 percent by weight, and the content of the second main component powder is 15 to 25 percent by weight , and the content of the third main component powder is 5 to 35 weight percent.
較佳的,該第二主成分粉為SrTiO3,並以該主混合物之總重為基準,該第一主成分粉之含量為45重量百分比至75重量百分比,該第二主成分粉之含量為15重量百分比至25重量百分比,且該第三主成分粉之含量為5重量百分比至35重量百分比。 Preferably, the second main component powder is SrTiO 3 , and based on the total weight of the main mixture, the content of the first main component powder is 45 to 75 weight percent, and the content of the second main component powder is It is 15 to 25 weight percent, and the content of the third main component powder is 5 to 35 weight percent.
較佳的,該第二主成分粉為Ba0.95Ca0.05TiO3,並以該主混合物之總重為基準,該第一主成分粉之含量為45重量百分比至75重量百分比,該第二主成分粉之含量為15重量百分比至25重量百分比,且該第三主成分粉之含量為5重量百分比至35重量百分比。 Preferably, the second main component powder is Ba 0.95 Ca 0.05 TiO 3 , and based on the total weight of the main mixture, the content of the first main component powder is 45 to 75 percent by weight, and the second main component powder is 45 to 75 percent by weight. The content of the component powder is 15 to 25 percent by weight, and the content of the third main component powder is 5 to 35 percent by weight.
較佳的,該第二主成分粉為BaZr0.1Ti0.9O3,並以該主混合物之總重為基準,該第一主成分粉之含量為45重量百分比至75重量百分比,該第二主成分粉之含量為15重量百分比至25重量百分比,且該第三主成分粉之含量為5重量百分比至35重量百分比。 Preferably, the second main component powder is BaZr 0.1 Ti 0.9 O 3 , and based on the total weight of the main mixture, the content of the first main component powder is 45 to 75 percent by weight, and the second main component powder is 45 to 75 percent by weight. The content of the component powder is 15 to 25 percent by weight, and the content of the third main component powder is 5 to 35 percent by weight.
較佳的,該第二主成分粉為SrTiO3,以該主混合物為100莫耳百分比為基準,該副混合物之含量為1.6莫耳百分比至8.3莫耳百分比。 Preferably, the second main component powder is SrTiO 3 , and the content of the auxiliary mixture is 1.6 mol% to 8.3 mol% based on 100 mol% of the main mixture.
較佳的,該第二主成分粉為Ba0.95Ca0.05TiO3,以該主混合物為100莫耳百分比為基準,該副混合物之含量為3莫耳百分比至4莫耳百分比。 Preferably, the second main component powder is Ba 0.95 Ca 0.05 TiO 3 , and the content of the auxiliary mixture is 3 to 4 mol % based on 100 mol % of the main mixture.
較佳的,該第二主成分粉為BaZr0.1Ti0.9O3,以該主混合物為100莫耳百分比為基準,該副混合物之含量為3.9莫耳百分比至5.1莫耳百分比。 Preferably, the second main component powder is BaZr 0.1 Ti 0.9 O 3 , and the content of the auxiliary mixture is 3.9 mol% to 5.1 mol% based on 100 mol% of the main mixture.
較佳的,該第二主成分粉為SrTiO3,以該主混合物為100莫耳百分比為基準,該稀土氧化物、該矽氧化物和該鹼土金屬氧化物之含量為0.4莫耳百分比至6.5莫耳百分比:0.4莫耳百分比至0.6莫耳百分比:0.8莫耳百分比至1.2莫耳百分比。 Preferably, the second main component powder is SrTiO 3 , and the content of the rare earth oxide, the silicon oxide and the alkaline earth metal oxide is 0.4 to 6.5 mole percent based on 100 mole percent of the main mixture. Molar percent: 0.4 molar percent to 0.6 molar percent: 0.8 molar percent to 1.2 molar percent.
較佳的,該第二主成分粉為Ba0.95Ca0.05TiO3,以該主混合物為100莫耳百分比為基準,該稀土氧化物、該矽氧化物和該鹼土金屬氧化物之含量為1.8莫耳百分比至2.2莫耳百分比:0.4莫耳百分比至0.6莫耳百分比:0.8莫耳百分比至1.2莫耳百分比。 Preferably, the second main component powder is Ba 0.95 Ca 0.05 TiO 3 , and the content of the rare earth oxide, the silicon oxide and the alkaline earth metal oxide is 1.8 mol based on 100 mole percent of the main mixture. Ear % to 2.2 mol %: 0.4 mol % to 0.6 mol %: 0.8 mol % to 1.2 mol %.
較佳的,該第二主成分粉為BaZr0.1Ti0.9O3,以該主混合物為100莫耳百分比為基準,該稀土氧化物、該矽氧化物和該鹼土金屬氧化物之含量為 2.7莫耳百分比至3.3莫耳百分比:0.4莫耳百分比至0.6莫耳百分比:0.8莫耳百分比至1.2莫耳百分比。 Preferably, the second main component powder is BaZr 0.1 Ti 0.9 O 3 , and the content of the rare earth oxide, the silicon oxide and the alkaline earth metal oxide is 2.7 moles based on 100 mole percent of the main mixture. Ear % to 3.3 mol %: 0.4 mol % to 0.6 mol %: 0.8 mol % to 1.2 mol %.
較佳的,該主混合物之平均粒徑為150奈米至600奈米,例如:150奈米、200奈米、250奈米、300奈米、350奈米、400奈米、450奈米、500奈米、550奈米或600奈米。更佳的,該主混合物之平均粒徑為250奈米至400奈米。在本發明之具體實施例中,該主混合物之平均粒徑係指第一主成分粉及第二主成分粉之平均粒徑。在本發明之具體實施例中,該主混合物之平均粒徑係指第一主成分粉、第二主成分粉及第三主成分粉之平均粒徑。 Preferably, the average particle size of the main mixture is 150 nm to 600 nm, for example: 150 nm, 200 nm, 250 nm, 300 nm, 350 nm, 400 nm, 450 nm, 500nm, 550nm or 600nm. More preferably, the average particle size of the main mixture is 250 nm to 400 nm. In a specific embodiment of the present invention, the average particle size of the main mixture refers to the average particle size of the first main component powder and the second main component powder. In a specific embodiment of the present invention, the average particle size of the main mixture refers to the average particle size of the first main component powder, the second main component powder and the third main component powder.
較佳的,該第一主成分粉之平均粒徑為150奈米至600奈米,例如:150奈米、200奈米、250奈米、300奈米、350奈米、400奈米、450奈米、500奈米、550奈米或600奈米。更佳的,該第一主成分粉之平均粒徑為250奈米至400奈米。 Preferably, the average particle size of the first main component powder is 150 nm to 600 nm, for example: 150 nm, 200 nm, 250 nm, 300 nm, 350 nm, 400 nm, 450 nm nanometer, 500 nanometer, 550 nanometer or 600 nanometer. More preferably, the average particle size of the first main component powder is 250 nm to 400 nm.
上述第一主成分粉可由固態法、草酸法或水熱法製得。本發明可採用多種不同第一主成分粉之製備方法,而得不同平均粒徑尺寸之第一主成分粉。 The above-mentioned first main component powder can be prepared by solid state method, oxalic acid method or hydrothermal method. The present invention can adopt a variety of different preparation methods for the first main component powder to obtain the first main component powder with different average particle size.
本發明另提供一種陶瓷燒結體,其係由上述之陶瓷組成物燒結而得,並具有彼此相連的複數顆粒;其中,該等顆粒各別具有核與殼,且該殼位於該核之外表面;其中,該核包含該第一主成分粉之粉粒、該第二主成分粉之粉粒或該第三主成分粉之粉粒,且該殼包含該稀土氧化物、該矽氧化物和該鹼土金屬氧化物。 The present invention further provides a ceramic sintered body, which is obtained by sintering the above-mentioned ceramic composition, and has a plurality of particles connected to each other; wherein, the particles have a core and a shell respectively, and the shell is located on the outer surface of the core ; wherein, the core comprises the powder of the first main component powder, the powder of the second main component powder or the powder of the third main component powder, and the shell comprises the rare earth oxide, the silicon oxide and the the alkaline earth metal oxide.
在一實施態樣中,該等顆粒之核各自獨立地包含第一主成分粉之粉粒、該第二主成分粉之粉粒或該第三主成分粉之粉粒之任一。 In one embodiment, the cores of the particles each independently comprise any one of the particles of the first main ingredient powder, the particles of the second main ingredient powder, or the particles of the third main ingredient powder.
在一實施態樣中,該殼包含該核之部分外表面,故該核,即第一主成分粉之粉粒、該第二主成分粉之粉粒或該第三主成分粉之粉粒可有部分 表面彼此直接接觸;在另一實施態樣中,該殼完全包覆該核之外表面,故該核,即第一主成分粉之粉粒、該第二主成分粉之粉粒或該第三主成分粉之粉粒各別被該殼隔開,故彼此不直接接觸。 In one embodiment, the shell includes part of the outer surface of the core, so the core is the powder of the first main component powder, the powder of the second main component powder, or the powder of the third main component powder. may have part The surfaces are in direct contact with each other; in another embodiment, the shell completely covers the outer surface of the core, so the core is the powder of the first main component powder, the powder of the second main component powder or the first main component powder. The powder particles of the three main component powders are separated by the shell respectively, so they are not in direct contact with each other.
上述殼係該陶瓷燒結體於燒結過程中,因該副混合物粉至少部分熔融而形成液相後,因液相遷移速率高於固相之擴散,故可填補第一主成分粉之粉粒、該第二主成分粉之粉粒或該第三主成分粉之粉粒間之孔隙,並分別包覆各核,即第一主成分粉之粉粒、該第二主成分粉之粉粒或該第三主成分粉之粉粒,而形成於該核之部分或全部外表面,而使陶瓷燒結體更為緻密化。 The above-mentioned shell is that during the sintering process of the ceramic sintered body, after the auxiliary mixture powder is at least partially melted to form a liquid phase, since the liquid phase migration rate is higher than the diffusion of the solid phase, it can fill the particles of the first main component powder, The pores between the particles of the second main ingredient powder or the particles of the third main ingredient powder respectively cover the cores, namely the particles of the first main ingredient powder, the particles of the second main ingredient powder or the The powder particles of the third main component powder are formed on part or all of the outer surface of the core, so that the ceramic sintered body is more densified.
本發明再提供一種電容,其包括:一介電陶瓷本體,其包含複數上述之陶瓷燒結體和複數內電極,且該等陶瓷燒結體與該等內電極互相交疊以形成該介電陶瓷本體;以及二外電極,其各別設於該介電陶瓷本體的相對兩側面,並與該等內電極電性連接。 The present invention further provides a capacitor, which includes: a dielectric ceramic body, which includes a plurality of the above-mentioned ceramic sintered bodies and a plurality of internal electrodes, and the ceramic sintered bodies and the internal electrodes overlap each other to form the dielectric ceramic body ; and two external electrodes, which are respectively disposed on opposite sides of the dielectric ceramic body and electrically connected with the internal electrodes.
較佳的,所述複數內電極各別與外電極約呈垂直(90度夾角)。 Preferably, each of the plurality of inner electrodes is approximately perpendicular (90° included angle) to the outer electrodes.
較佳的,該介電陶瓷本體之頂面和底面皆為陶瓷燒結體。 Preferably, both the top surface and the bottom surface of the dielectric ceramic body are ceramic sintered bodies.
較佳的,該電容之介電常數為1200以上,例如:1200以上、1500以上、2000以上、2500以上、3000以上、3500以上或4000以上。 Preferably, the dielectric constant of the capacitor is above 1200, for example: above 1200, above 1500, above 2000, above 2500, above 3000, above 3500 or above 4000.
在一實施態樣中,該電容之介電常數為1200至3500。 In one embodiment, the dielectric constant of the capacitor is 1200-3500.
較佳的,該電容符合EIA-X8R標準或EIA-X9R標準。 Preferably, the capacitor conforms to the EIA-X8R standard or the EIA-X9R standard.
較佳的,該內電極包含鎳和銅之任一或其組合。 Preferably, the inner electrode contains any one or a combination of nickel and copper.
較佳的,該外電極包含銅、鎳和錫之任一或其組合。 Preferably, the external electrode contains any one or a combination of copper, nickel and tin.
本發明之電極可採用卑金屬,故可降低生產成本。 The electrode of the present invention can use base metal, so the production cost can be reduced.
較佳的,本發明之電容為積層陶瓷電容器。 Preferably, the capacitor of the present invention is a multilayer ceramic capacitor.
更佳的,本發明之電容可應用於傳統燃油車之電子化、新能源車、自動駕駛或車聯網。 More preferably, the capacitor of the present invention can be applied to the electronicization of traditional fuel vehicles, new energy vehicles, automatic driving or Internet of Vehicles.
本發明再提供一種電容之製備方法,其包括:混合上述陶瓷組成物,以獲得一陶瓷漿料;將該陶瓷漿料製成一陶瓷薄帶;於該陶瓷薄帶之表面設一內電極,以獲得一具有內電極之陶瓷薄帶;層疊該具有內電極之陶瓷薄帶,獲得一積層陶瓷胚;燒結該積層陶瓷胚,以獲得一介電陶瓷本體,其中該介電陶瓷本體包含該陶瓷薄帶經所述燒結而形成之複數陶瓷燒結體和複數所述之內電極彼此交疊所形成之層疊結構;以及於該介電陶瓷本體的相對兩側面分別設一外電極,以獲得該電容。 The present invention further provides a method for preparing a capacitor, which includes: mixing the above-mentioned ceramic composition to obtain a ceramic slurry; making the ceramic slurry into a ceramic thin strip; disposing an inner electrode on the surface of the ceramic thin strip, to obtain a ceramic thin strip with internal electrodes; lamination of the ceramic thin strips with internal electrodes to obtain a laminated ceramic green; sintering the laminated ceramic green to obtain a dielectric ceramic body, wherein the dielectric ceramic body contains the ceramic A laminated structure formed by a plurality of ceramic sintered bodies formed by sintering the thin strip and a plurality of the inner electrodes overlapped with each other; and an outer electrode is respectively provided on the opposite two sides of the dielectric ceramic body to obtain the capacitor .
較佳的,在層疊該具有內電極之陶瓷薄帶,獲得一積層陶瓷胚之步驟中,其中該積層陶瓷胚之頂層為未設內電極之陶瓷薄帶。 Preferably, in the step of laminating the ceramic strips with internal electrodes to obtain a laminated ceramic green sheet, the top layer of the laminated ceramic green sheet is a ceramic thin strip without internal electrodes.
在一實施態樣中,該燒結之溫度為1200℃至1320℃,該燒結之時間為18分鐘至32分鐘,並於一還原氣氛中進行。 In one embodiment, the sintering temperature is 1200°C to 1320°C, the sintering time is 18 minutes to 32 minutes, and is performed in a reducing atmosphere.
在一實施態樣中,該還原氣氛包含氫氣及氮氣。 In one embodiment, the reducing atmosphere includes hydrogen and nitrogen.
在一實施態樣中,該內電極包含鎳電極和銅電極之任一或其組合。 In one embodiment, the inner electrode comprises any one or a combination of a nickel electrode and a copper electrode.
在一實施態樣中,該外電極包含銅層、鎳層及錫層之任一或其組合;較佳的,該外電極包含3層,且依序為銅層、鎳層及錫層。 In one embodiment, the external electrode includes any one of a copper layer, a nickel layer and a tin layer or a combination thereof; preferably, the external electrode includes three layers, which are a copper layer, a nickel layer and a tin layer in sequence.
在一實施態樣中,在混合上述陶瓷組成物,以獲得一陶瓷漿料之步驟中,係包含:先將該主混合物之粉末加入一溶劑,以獲得一主混合漿料;烘乾該主混合漿料,並以900℃至1200℃之溫度進行鍛燒、粉碎及研磨,以獲得一經處理之主混合物粉,如此可提升該經處理之主混合物粉之均勻性。 In one embodiment, in the step of mixing the ceramic composition to obtain a ceramic slurry, the step includes: first adding the powder of the main mixture to a solvent to obtain a main mixing slurry; drying the main mixture The slurry is mixed and calcined, pulverized and ground at a temperature of 900°C to 1200°C to obtain a treated master mix powder, which can improve the uniformity of the treated master mix powder.
綜上,本發明在符合EIA-X8R標準之條件下,除能提升電容的介電常數外,因內電極可採用卑金屬,故能降低生產成本,極具市場競爭力。 To sum up, under the condition that the present invention meets the EIA-X8R standard, in addition to improving the dielectric constant of the capacitor, since base metals can be used for the inner electrode, the production cost can be reduced and the market competitiveness is extremely high.
1:電容 1: Capacitor
10:介電陶瓷本體 10: Dielectric ceramic body
100:陶瓷燒結體 100: Ceramic sintered body
110:內電極 110: Internal electrode
120:側面 120: side
11:外電極 11: External electrode
1000:顆粒 1000: Granules
1001:核 1001: Nuclear
1002:殼 1002: Shell
1003:BaTiO3 1003: BaTiO 3
1004:Ba0.95Ca0.05TiO3 1004: Ba 0.95 Ca 0.05 TiO 3
1005:CaZrO3 1005:CaZrO 3
圖1為本發明電容之剖面圖。 FIG. 1 is a cross-sectional view of the capacitor of the present invention.
圖2為本發明陶瓷燒結體之核與殼之剖面圖。 Fig. 2 is a cross-sectional view of the core and the shell of the ceramic sintered body of the present invention.
圖3為本發明陶瓷燒結體之剖面電子顯微鏡照片。 Fig. 3 is a cross-sectional electron microscope photograph of the ceramic sintered body of the present invention.
以下列舉數種實施例說明本發明之實施方式,熟習此技藝者可經由本說明書之內容輕易地了解本發明所能達成之優點與功效,並且於不悖離本發明之精神下進行各種修飾與變更,以施行或應用本發明之內容。 Several examples are listed below to illustrate the implementation of the present invention. Those skilled in the art can easily understand the advantages and effects that the present invention can achieve through the content of this specification, and make various modifications and effects without departing from the spirit of the present invention. modifications to implement or apply the teachings of the present invention.
製備例1:電容 Preparation Example 1: Capacitor
本發明各實施例與之製備方法相同,流程說明如下:以乙醇和甲苯之混合液作為溶劑,將100莫耳的主混合物粉末加入溶劑,並添加市售分散劑後,以珠磨機進行均勻混合,以獲得主混合漿料;將副混合物粉末加入相同溶劑,以珠磨機進行均勻混合,以獲得副混合漿料;混合主混合漿料和副混合漿料,並添加市售有機黏結劑PVB,以珠磨機進行均勻混合,以獲得陶瓷漿料;將陶瓷漿料以塗佈機製成厚度為10微米的陶瓷薄帶;於陶瓷薄帶之表面以網版印刷方式印刷鎳電極作為內電極,經層疊後,獲得一上下均為陶瓷薄帶的積層陶瓷胚;切割積層陶瓷胚後,以250℃至350℃於一般大氣下加熱12小時至36小時以燒除有機物,再於包含氫氣及氮氣的還原氣氛下,燒結18分鐘至32分鐘,燒結溫度為1200℃至1320℃,以獲得積層陶瓷燒結體;將積層陶瓷燒結體進行導角處理後,於積層陶瓷燒結體兩側面沾附銅液,並於氮氣中以750℃至900℃加熱後,形成銅電極層,再於銅電極層上依序電鍍鎳層及錫層,以形成外電極,並獲得該電容。 Each embodiment of the present invention is the same as its preparation method, and the process description is as follows: using a mixed solution of ethanol and toluene as a solvent, add 100 moles of main mixture powder into the solvent, and add a commercially available dispersant, and use a bead mill to uniformize Mix to obtain the main mixed slurry; add the secondary mixed powder to the same solvent, and mix uniformly with a bead mill to obtain the secondary mixed slurry; mix the main mixed slurry and the auxiliary mixed slurry, and add commercially available organic binders PVB is uniformly mixed with a bead mill to obtain ceramic slurry; the ceramic slurry is formed into a ceramic thin strip with a thickness of 10 microns by a coating machine; nickel electrodes are printed on the surface of the ceramic thin strip by screen printing. After the inner electrode is laminated, a layered ceramic embryo with ceramic thin strips on both sides is obtained; after cutting the layered ceramic embryo, it is heated at 250°C to 350°C for 12 hours to 36 hours in the general atmosphere to burn off the organic matter, and then the layer containing the Under the reducing atmosphere of hydrogen and nitrogen, sinter for 18 minutes to 32 minutes, and the sintering temperature is 1200°C to 1320°C to obtain a laminated ceramic sintered body; Add copper solution and heat it in nitrogen at 750°C to 900°C to form a copper electrode layer, and then sequentially electroplate a nickel layer and a tin layer on the copper electrode layer to form an external electrode and obtain the capacitor.
如圖1所示,電容1包括:一介電陶瓷本體10,其包含複數上述之陶瓷燒結體100和複數內電極110,且該等陶瓷燒結體100與該等內電極110互相交疊以形成該介電陶瓷本體10;以及二外電極11,其各別設於該介電陶瓷本體10的相對兩側面120,並與該等內電極110電性連接。
As shown in FIG. 1 , the capacitor 1 includes: a dielectric
如圖2所示,陶瓷燒結體100係由陶瓷組成物燒結而得,並具有彼此相連的複數顆粒1000;其中,該等顆粒1000各別具有核1001與殼1002,且該殼1002位於該核1001之外表面;其中,該核1001包含該第一主成分粉、該第二主成分粉或該第三主成分粉,且該殼1002包含該稀土氧化物、該矽氧化物和該鹼土金屬氧化物。此外,該核1001彼此不直接接觸。
As shown in FIG. 2 , the ceramic
圖3為陶瓷燒結體100之局部照片,其中1003為BaTiO3;1004為Ba0.95Ca0.05TiO3;以及1005為CaZrO3。
3 is a partial photograph of the ceramic
電容檢測:介電常數、損耗因數和電容溫度係數 Capacitance Detection: Dielectric Constant, Dissipation Factor, and Capacitance Temperature Coefficient
利用電容儀(型號為AGILENT4868A)於1KHz交流信號,及外加偏壓1Vrms下,量測電容的電容值及損耗因數(Dispassion Factor,DF)。電容溫度係數(Temperature-Capacitance Coefficient,TCC),即△C/C,亦在1KHz之交流信號及1Vrms之偏壓下,以室溫25℃所測得之電容值(即C)為基準,量測-55℃至150℃溫度範圍中的電容值變化(即△C),進而獲得各自的△C/C,即-55℃和150℃之電容值變化率(TCC-55℃和TCC150℃)。 Use a capacitance meter (type AGILENT4868A) to measure the capacitance value and the Dispassion Factor (DF) of the capacitor under a 1KHz AC signal and an external bias voltage of 1Vrms. Capacitance temperature coefficient (Temperature-Capacitance Coefficient, TCC), namely △C/C, also under the AC signal of 1KHz and the bias voltage of 1Vrms, based on the capacitance value (ie C) measured at room temperature 25℃, the amount Measure the capacitance value change (ie ΔC) in the temperature range from -55°C to 150°C, and then obtain the respective ΔC/C, that is, the capacitance value change rate at -55°C and 150°C (TCC -55°C and TCC 150°C ). ).
介電常數則由電容公式:C=ε *ε0* A/d換算而得;其中,C為電容值(單位:F);ε為介電層之介電常數,即K value;ε0為真空介電常數(8.86×10-12)(單位:F/m);A為交錯面積(單位:m2);以及d為介電層厚度(單位:m)。本發明之電容採英制編號0805之規格,實際尺寸為2.00mm×1.25mm。 The dielectric constant is converted from the capacitance formula: C=ε *ε 0 * A/d; among them, C is the capacitance value (unit: F); ε is the dielectric constant of the dielectric layer, namely K value; ε 0 is the vacuum dielectric constant (8.86×10 −12 ) (unit: F/m); A is the staggered area (unit: m 2 ); and d is the thickness of the dielectric layer (unit: m). The capacitor of the present invention adopts the specification of inch number 0805, and the actual size is 2.00mm×1.25mm.
實施例1-1、實施例1-2、實施例2-1至實施例2-13 Example 1-1, Example 1-2, Example 2-1 to Example 2-13
實施例1-1、實施例1-2、實施例2-1至實施例2-13之製備方法同製備例1所述;其等之配方與電容介電常數、損耗因數(DF)和電容值變化率(TCC)之檢測結果如表1所示。當該實施例之配方所製得的積層陶瓷電容器符合EIA-X8R標準時,表中以O表示。 The preparation methods of Example 1-1, Example 1-2, and Example 2-1 to Example 2-13 are the same as those described in Preparation Example 1; The test results of the value change rate (TCC) are shown in Table 1. When the multilayer ceramic capacitor prepared by the formulation of this example meets the EIA-X8R standard, it is represented by O in the table.
從表1之實施例1-1與實施例2-1之比較、以及實施例1-2和實施例2-8之比較可知,當陶瓷組成物進一步添加第三主成分粉時,電容之損耗因數皆減半,可知額外添加第三主成分粉有助於改善電容之損耗因數。 From the comparison between Example 1-1 and Example 2-1 in Table 1, and the comparison between Example 1-2 and Example 2-8, it can be seen that when the third main component powder is further added to the ceramic composition, the loss of capacitor The factors are all halved, it can be seen that the addition of the third main component powder can help to improve the dissipation factor of the capacitor.
第二,從實施例2-4至實施例2-7之比較可知,提高稀土氧化物之添加量可於不影響電容值變化率之情況下,改善電容之損耗因數。 Second, from the comparison between Example 2-4 and Example 2-7, it can be seen that increasing the addition amount of rare earth oxide can improve the loss factor of the capacitor without affecting the change rate of the capacitance value.
最後,從實施例2-8至實施例2-10之比較,以及實施例2-11至實施例2-13之比較可知,當第二主成分粉為Ba0.95Ca0.05TiO3時,或是第二主成分粉為BaZr0.1Ti0.9O3時,提高第三主成分粉之添加量皆亦可降低電容值變化率。 Finally, from the comparison of Example 2-8 to Example 2-10, and the comparison of Example 2-11 to Example 2-13, it can be seen that when the second main component powder is Ba 0.95 Ca 0.05 TiO 3 , or When the second main component powder is BaZr 0.1 Ti 0.9 O 3 , increasing the addition amount of the third main component powder can also reduce the capacitance value change rate.
實施例1-2、實施例3-1至實施例3-3 Example 1-2, Example 3-1 to Example 3-3
實施例1-2、實施例3-1至實施例3-3之製備方法同製備例1所述;其中,實施例3-1至實施例3-3之配方同實施例1-2,僅第一主成分粉之平均粒徑尺寸不同,各組第一主成分粉之平均粒徑與電容介電常數、損耗因數(DF)和電容值變化率(TCC)之檢測結果如表2所示。 The preparation methods of Example 1-2, Example 3-1 to Example 3-3 are the same as those described in Preparation Example 1; wherein, the formulations of Example 3-1 to Example 3-3 are the same as those of Example 1-2, only The average particle size of the first main component powder is different. The test results of the average particle size of the first main component powder and the capacitance dielectric constant, dissipation factor (DF) and capacitance change rate (TCC) of each group are shown in Table 2. .
從表2可知,當第一主成分粉之平均粒徑為200奈米至500奈米時,電容可符合EIA-X8R之標準。 It can be seen from Table 2 that when the average particle size of the first main component powder is 200 nm to 500 nm, the capacitor can meet the EIA-X8R standard.
從實施例1-2可知,當第一主成分粉之平均粒徑為400奈米時,其電容值變化率最低,即電容值變化率落於±10%之範圍內。 It can be seen from Example 1-2 that when the average particle size of the first main component powder is 400 nm, the capacitance value change rate is the lowest, that is, the capacitance value change rate falls within the range of ±10%.
綜上可知,第二主成分粉選用SrTiO3、Ba0.95Ca0.05TiO3或BaZr0.1Ti0.9O3,仍可使電容符合EIA-X8R之標準。此外,陶瓷組成物另添加CaZrO3者,可改善電容之損耗因數及降低電容值變化率。最後,控制第一主成分粉之平均粒徑亦有助於降低電容值變化率。 To sum up, it can be seen that SrTiO 3 , Ba 0.95 Ca 0.05 TiO 3 or BaZr 0.1 Ti 0.9 O 3 are selected as the second main component powder, and the capacitor can still meet the EIA-X8R standard. In addition, the addition of CaZrO 3 to the ceramic composition can improve the dissipation factor of the capacitor and reduce the rate of change of the capacitance value. Finally, controlling the average particle size of the first main component powder also helps to reduce the capacitance value change rate.
1:電容 1: Capacitor
10:介電陶瓷本體 10: Dielectric ceramic body
100:陶瓷燒結體 100: Ceramic sintered body
110:內電極 110: Internal electrode
120:側面 120: side
11:外電極 11: External electrode
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109147190A TWI776343B (en) | 2020-12-31 | 2020-12-31 | Ceramic composition, ceramic sintered body, capacitor and capacitor manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109147190A TWI776343B (en) | 2020-12-31 | 2020-12-31 | Ceramic composition, ceramic sintered body, capacitor and capacitor manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202228158A TW202228158A (en) | 2022-07-16 |
TWI776343B true TWI776343B (en) | 2022-09-01 |
Family
ID=83436933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109147190A TWI776343B (en) | 2020-12-31 | 2020-12-31 | Ceramic composition, ceramic sintered body, capacitor and capacitor manufacturing method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI776343B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200814111A (en) * | 2006-06-12 | 2008-03-16 | Tdk Corp | Electronic components, dielectric ceramic composition and method of manufacturing the same |
TW200905704A (en) * | 2007-07-27 | 2009-02-01 | Kyocera Corp | Laminated ceramic capacitor |
TW201704187A (en) * | 2015-07-16 | 2017-02-01 | 國立臺北科技大學 | Ceramic capacitor dielectric material the capacitance change rate of the ceramic capacitor dielectric material under DC bias is improved, and thus can satisfy the X7T dielectric characteristics of EIA. |
TW201728556A (en) * | 2016-02-04 | 2017-08-16 | Holy Stone Enterprise Co Ltd | Dielectric ceramic body tolerant to instantaneous high voltage resisting dielectric damage caused by the instantaneous potential exponential increase |
CN111029142A (en) * | 2018-10-10 | 2020-04-17 | 三星电机株式会社 | Multilayer ceramic electronic component and dielectric ceramic composition |
-
2020
- 2020-12-31 TW TW109147190A patent/TWI776343B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200814111A (en) * | 2006-06-12 | 2008-03-16 | Tdk Corp | Electronic components, dielectric ceramic composition and method of manufacturing the same |
TW200905704A (en) * | 2007-07-27 | 2009-02-01 | Kyocera Corp | Laminated ceramic capacitor |
TW201704187A (en) * | 2015-07-16 | 2017-02-01 | 國立臺北科技大學 | Ceramic capacitor dielectric material the capacitance change rate of the ceramic capacitor dielectric material under DC bias is improved, and thus can satisfy the X7T dielectric characteristics of EIA. |
TW201728556A (en) * | 2016-02-04 | 2017-08-16 | Holy Stone Enterprise Co Ltd | Dielectric ceramic body tolerant to instantaneous high voltage resisting dielectric damage caused by the instantaneous potential exponential increase |
CN111029142A (en) * | 2018-10-10 | 2020-04-17 | 三星电机株式会社 | Multilayer ceramic electronic component and dielectric ceramic composition |
Non-Patent Citations (1)
Title |
---|
期刊 Norhizatol Fashren Muhamad, Rozana Aina Maulat Osman, Mohd Sobri Idris and Mohd Najib Mohd Yasin1, "Physical and electrical properties of SrTiO3 and SrZrO3", The European Physical Journal Conferences, Vol.162, No,01052, InCAPE2017, November 2017, page 1-4 * |
Also Published As
Publication number | Publication date |
---|---|
TW202228158A (en) | 2022-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3743406B2 (en) | Conductive paste, multilayer ceramic electronic component manufacturing method, and multilayer ceramic electronic component | |
TWI402874B (en) | Laminated ceramic capacitors | |
JP4111006B2 (en) | Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor | |
JP4805938B2 (en) | Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor | |
TWI501273B (en) | Laminated ceramic capacitors | |
TWI399766B (en) | Multilayer ceramic capacitor and production method of the same | |
US7061748B2 (en) | Multilayer ceramic capacitor | |
JP5343974B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor | |
JP4100173B2 (en) | Dielectric ceramic and multilayer ceramic capacitors | |
KR20160073121A (en) | Low temperature sintering dielectric composition and multilayer cderamic capacitor | |
JP2018041814A (en) | Multilayer ceramic capacitor and manufacturing method of the same | |
JP3603607B2 (en) | Dielectric ceramic, multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor | |
JP4717302B2 (en) | Dielectric porcelain composition and electronic component | |
JP3961454B2 (en) | Low temperature fired dielectric ceramic composition and multilayer ceramic capacitor using the same | |
KR100790682B1 (en) | Glass compositions for low temperature sintering, glass frit, dielectric compositions and multilayer ceramic capacitor using the same | |
JP5151039B2 (en) | Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor | |
JP4048808B2 (en) | Dielectric ceramic composition and multilayer ceramic electronic component | |
JP3678072B2 (en) | Dielectric ceramic composition and multilayer ceramic component | |
TWI776343B (en) | Ceramic composition, ceramic sintered body, capacitor and capacitor manufacturing method | |
JP7262640B2 (en) | ceramic capacitor | |
JP3678073B2 (en) | Dielectric ceramic composition and multilayer ceramic component | |
JP4549203B2 (en) | Multilayer ceramic capacitor | |
JP4691790B2 (en) | Dielectric ceramic and multilayer ceramic capacitors | |
CN114763304B (en) | Ceramic composition, ceramic sintered body, capacitor and capacitor manufacturing method | |
US12100554B2 (en) | Ceramic composition, ceramic sintered body, capacitor and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |