TWI767484B - Dual sensor imaging system and depth map calculation method thereof - Google Patents
Dual sensor imaging system and depth map calculation method thereof Download PDFInfo
- Publication number
- TWI767484B TWI767484B TW109146922A TW109146922A TWI767484B TW I767484 B TWI767484 B TW I767484B TW 109146922 A TW109146922 A TW 109146922A TW 109146922 A TW109146922 A TW 109146922A TW I767484 B TWI767484 B TW I767484B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- color
- infrared
- images
- sensor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/45—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/64—Computer-aided capture of images, e.g. transfer from script file into camera, check of taken image quality, advice or proposal for image composition or decision on when to take image
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/743—Bracketing, i.e. taking a series of images with varying exposure conditions
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Human Computer Interaction (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Studio Devices (AREA)
- Color Television Image Signal Generators (AREA)
- Image Processing (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Traffic Control Systems (AREA)
- Cameras In General (AREA)
- Measurement Of Optical Distance (AREA)
- Radar Systems Or Details Thereof (AREA)
- Burglar Alarm Systems (AREA)
- Air Bags (AREA)
Abstract
Description
本發明是有關於一種攝像系統及方法,且特別是有關於一種雙感測器攝像系統及其深度圖計算方法。The present invention relates to a camera system and method, and more particularly, to a dual-sensor camera system and a depth map calculation method thereof.
相機的曝光條件(包括光圈、快門、感光度)會影響所拍攝影像的品質,因此許多相機在拍攝影像的過程中會自動調整曝光條件,以獲得清晰且明亮的影像。然而,在低光源或是背光等高反差的場景中,相機調整曝光條件的結果可能會產生雜訊過高或是部分區域過曝的結果,無法兼顧所有區域的影像品質。The camera's exposure conditions (including aperture, shutter, and sensitivity) affect the quality of the images captured, so many cameras automatically adjust exposure conditions during image capture to obtain clear and bright images. However, in scenes with high contrast such as low light source or backlight, the result of camera adjustment of exposure conditions may result in excessive noise or overexposure in some areas, and the image quality in all areas cannot be balanced.
對此,目前技術有採用一種新的影像感測器架構,其是利用紅外線(IR)感測器高光敏感度的特性,在影像感測器的色彩像素中穿插配置IR像素,以輔助亮度偵測。舉例來說,圖1是習知使用影像感測器擷取影像的示意圖。請參照圖1,習知的影像感測器10中除了配置有紅(R)、綠(G)、藍(B)等顏色像素外,還穿插配置有紅外線(I)像素。藉此,影像感測器10能夠將R、G、B顏色像素所擷取的色彩資訊12與I像素所擷取的亮度資訊14結合,而獲得色彩及亮度適中的影像16。In this regard, the current technology adopts a new image sensor architecture, which utilizes the characteristics of high light sensitivity of infrared (IR) sensors to intersperse and configure IR pixels among the color pixels of the image sensor to assist brightness detection. Measurement. For example, FIG. 1 is a schematic diagram of conventionally using an image sensor to capture images. Referring to FIG. 1 , in addition to red (R), green (G), blue (B) and other color pixels, the
然而,在上述單一影像感測器的架構下,影像感測器中每個像素的曝光條件相同,因此只能選擇較適用於顏色像素或紅外線像素的曝光條件來擷取影像,結果仍無法有效地利用兩種像素的特性來改善所擷取影像的影像品質。However, in the above-mentioned single image sensor structure, the exposure conditions of each pixel in the image sensor are the same, so only the exposure conditions that are more suitable for color pixels or infrared pixels can be selected to capture images, and the result is still ineffective. The characteristics of the two pixels are used to improve the image quality of the captured image.
本發明提供一種雙感測器攝像系統及其深度圖計算方法,可精確地算出攝像場景的深度圖。The invention provides a dual-sensor camera system and a depth map calculation method thereof, which can accurately calculate the depth map of a camera scene.
本發明的雙感測器攝像系統包括至少一個色彩感測器、至少一個紅外線感測器、儲存裝置以及耦接所述色彩感測器、紅外光感測器及儲存裝置的處理器。所述處理器經配置以載入並執行儲存在儲存裝置中的電腦程式以:控制色彩感測器及紅外線感測器採用適用於攝像場景下的多個曝光條件分別擷取多張色彩影像及多張紅外線影像;從多張色彩影像及多張紅外線影像中適應性選擇出彼此可對比的色彩影像及紅外線影像的組合;以及使用所選擇的色彩影像及紅外線影像計算攝像場景的深度圖。The dual-sensor camera system of the present invention includes at least one color sensor, at least one infrared sensor, a storage device, and a processor coupled to the color sensor, the infrared light sensor, and the storage device. The processor is configured to load and execute a computer program stored in the storage device to: control the color sensor and the infrared sensor to respectively capture a plurality of color images and multiple infrared images; adaptively selecting a combination of color images and infrared images that are comparable to each other from the multiple color images and the multiple infrared images; and calculating a depth map of the camera scene using the selected color images and infrared images.
本發明的雙感測器攝像系統的深度圖計算方法,適用於包括至少一個色彩感測器、至少一個紅外線感測器及處理器的雙感測器攝像系統。所述方法包括下列步驟:控制色彩感測器及紅外線感測器採用適用於攝像場景下的多個曝光條件分別擷取多張色彩影像及多張紅外線影像;從多張色彩影像及多張紅外線影像中適應性選擇出彼此可對比的色彩影像及紅外線影像的組合;以及使用所選擇的色彩影像及紅外線影像計算攝像場景的深度圖。The depth map calculation method of the dual-sensor camera system of the present invention is suitable for a dual-sensor camera system comprising at least one color sensor, at least one infrared sensor and a processor. The method includes the following steps: controlling a color sensor and an infrared sensor to capture a plurality of color images and a plurality of infrared images respectively using a plurality of exposure conditions suitable for a shooting scene; A combination of color images and infrared images that are comparable to each other is adaptively selected in the images; and a depth map of the camera scene is calculated using the selected color images and infrared images.
基於上述,本發明的雙感測器攝像系統及其深度圖計算方法,藉由在獨立配置的色彩感測器及紅外線感測器上採用適於當前攝像場景的不同曝光條件來擷取多張影像,並從中選擇出彼此可對比的色彩及紅外線影像來計算攝像場景的深度圖,藉此可精確地算出攝像場景的深度圖。Based on the above, the dual-sensor camera system and the depth map calculation method of the present invention capture multiple images by adopting different exposure conditions suitable for the current camera scene on the independently configured color sensor and infrared sensor. image, and select the color and infrared images that can be compared with each other to calculate the depth map of the shooting scene, so that the depth map of the shooting scene can be accurately calculated.
本發明實施例適用在獨立配置有色彩感測器及紅外線感測器的雙感測器攝像系統。其中,由於色彩感測器及紅外線感測器之間具有像差(parallex),其所擷取的色彩影像及紅外線影像可用以計算攝像場景的深度圖。針對色彩感測器所擷取的色彩影像可能會因為攝像場景中的光線反射、陰影、高反差等因素的影響而有過曝或曝光不足的情況,本發明實施例利用紅外線影像具有較佳的訊噪比(Signal to noise ratio,SNR)且包含較多的攝像場景的紋理細節的優點,使用紅外線影像所提供的紋理資訊來輔助缺陷區域的深度值的計算,從而可獲得精確的攝像場景的深度圖。The embodiments of the present invention are applicable to a dual-sensor camera system independently configured with a color sensor and an infrared sensor. The color image and the infrared image captured by the color sensor and the infrared sensor can be used to calculate the depth map of the camera scene due to the parallax between the color sensor and the infrared sensor. In view of the situation that the color image captured by the color sensor may be overexposed or underexposed due to the influence of light reflection, shadow, high contrast and other factors in the shooting scene, the embodiment of the present invention uses the infrared image to have better The signal-to-noise ratio (SNR) has the advantage of containing more texture details of the camera scene. The texture information provided by the infrared image is used to assist the calculation of the depth value of the defect area, so as to obtain accurate camera scenes. depth map.
圖2是依照本發明一實施例所繪示的使用影像感測器擷取影像的示意圖。請參照圖2,本發明實施例的影像感測器20採用獨立配置色彩感測器22與紅外線(IR)感測器24的雙感測器架構,利用色彩感測器22與紅外線感測器24各自的特性,採用適於當前拍攝場景的多個曝光條件分別擷取多張影像,並從中選擇曝光條件適當的色彩影像22a與紅外線影像24a。在一些實施例中,透過影像融合的方式,可使用紅外線影像24a來補足色彩影像22a中缺乏的紋理細節,從而獲得色彩及紋理細節均佳的場景影像26。而在一些實施例中,則可使用色彩影像22a與紅外線影像24a來計算攝像場景的深度圖,並利用紅外線影像24a所提供的紋理細節來補償色彩影像中缺乏的紋理細節,並輔助計算缺陷區域的深度值。FIG. 2 is a schematic diagram of capturing an image using an image sensor according to an embodiment of the present invention. Referring to FIG. 2 , the
圖3是依照本發明一實施例所繪示的雙感測器攝像系統的方塊圖。請參照圖3,本實施例的雙感測器攝像系統30可配置於手機、平板電腦、筆記型電腦、導航裝置、行車紀錄器、數位相機、數位攝影機等電子裝置中,用以提供攝像功能。雙感測器攝像系統30包括至少一個色彩感測器32、至少一個紅外線感測器34、儲存裝置36及處理器38,其功能分述如下:FIG. 3 is a block diagram of a dual-sensor camera system according to an embodiment of the present invention. Please refer to FIG. 3 , the dual-
色彩感測器32例如包括電荷耦合元件(Charge Coupled Device,CCD)、互補性氧化金屬半導體(Complementary Metal-Oxide Semiconductor,CMOS)元件或其他種類的感光元件,而可感測光線強度以產生攝像場景的影像。色彩感測器32例如是紅綠藍(RGB)影像感測器,其中包括紅(R)、綠(G)、藍(B)顏色像素,用以擷取攝像場景中的紅光、綠光、藍光等色彩資訊,並將這些色彩資訊合成以生成攝像場景的色彩影像。The
紅外線感測器34例如包括CCD、CMOS元件或其他種類的感光元件,其經由調整感光元件的波長感測範圍,而能夠感測紅外光。紅外線感測器34例如是以上述感光元件作為像素來擷取攝像場景中的紅外光資訊,並將這些紅外光資訊合成以生成攝像場景的紅外線影像。The
儲存裝置36例如是任意型式的固定式或可移動式隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)、快閃記憶體(Flash memory)、硬碟或類似元件或上述元件的組合,而用以儲存可由處理器38執行的電腦程式。在一些實施例中,儲存裝置36例如還可儲存由色彩感測器32所擷取的色彩影像及紅外線感測器34所擷取的紅外線影像。The
處理器38例如是中央處理單元(Central Processing Unit,CPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、微控制器(Microcontroller)、數位訊號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits,ASIC)、可程式化邏輯裝置(Programmable Logic Device,PLD)或其他類似裝置或這些裝置的組合,本發明不在此限制。在本實施例中,處理器38可從儲存裝置36載入電腦程式,以執行本發明實施例的雙感測器攝像系統的深度圖計算方法。The
圖4是依照本發明一實施例所繪示的雙感測器攝像系統的深度圖計算方法的流程圖。請同時參照圖3及圖4,本實施例的方法適用於上述的雙感測器攝像系統30,以下即搭配雙感測器攝像系統30的各項元件說明本實施例的深度圖計算方法的詳細步驟。FIG. 4 is a flowchart of a method for calculating a depth map of a dual-sensor camera system according to an embodiment of the present invention. Please refer to FIG. 3 and FIG. 4 at the same time, the method of this embodiment is applicable to the above-mentioned dual-
在步驟S402中,由處理器38控制色彩感測器32及紅外線感測器34採用適用於所識別之攝像場景下的多個曝光條件分別擷取多張色彩影像及多張紅外線影像。In step S402 , the
在一些實施例中,處理器38例如是以標準曝光條件中的曝光時間為基準,控制色彩感測器32及紅外線感測器34擷取曝光時間較短或較長的色彩影像,這些色彩影像彼此的曝光時間的差例如為介於-3至3的曝光值(Exposure Value,EV)中的任意值,在此不設限。舉例來說,若A影像比B影像亮一倍,則可將B影像的EV加1,以此類推,曝光值可以有小數(例如+0.3EV),在此不設限。In some embodiments, the
在一些實施例中,處理器38例如是控制色彩感測器32及紅外線感測器34中的至少一者採用標準曝光條件來擷取攝像場景的至少一張標準影像,並使用這些標準影像來識別攝像場景。所述標準曝光條件例如包括採用既有測光技術所決定的光圈、快門、感光度等參數,而處理器38則根據在此曝光條件下所擷取之影像的色相(Hue)、明度(Value)、彩度(Chroma)、白平衡等影像參數的強弱或分佈來識別攝像場景,包括攝像場景的位置(室內或室外)、光源(高光源或低光源)、反差(高反差或低反差)、攝像物的種類(物品或人像)或狀態(動態或靜態)等。在其他實施例中,處理器38亦可採用定位方式來識別攝像場景或是直接接收使用者操作來設定攝像場景,在此不設限。In some embodiments, the
在步驟S404中,由處理器38從多張色彩影像及多張紅外線影像中適應性選擇出彼此可對比的色彩影像及紅外線影像的組合。在一些實施例中,處理器38例如會根據各張色彩影像的顏色細節和各張紅外線影像的紋理細節來選擇彼此可對比的色彩影像及紅外線影像的組合。在一些實施例中,處理器38則會以色彩影像或紅外線影像作為基準,來比較各張色彩影像和紅外線影像的影像直方圖,藉此確定彼此可對比的色彩影像及紅外線影像的組合。In step S404, the
在步驟S406中,由處理器38使用所選擇的述色彩影像及紅外線影像計算攝像場景的深度圖。在一些實施例中,處理器38例如會擷取所選擇的色彩影像及紅外線影像中特徵強健的多個特徵點,並根據色彩影像及紅外線影像中彼此相對應的特徵點的位置,計算攝像場景的深度圖。In step S406, the
藉由上述方法,雙感測器攝像系統30可選擇出顏色細節較佳的色彩影像及紋理細節較佳的紅外線影像來計算攝像場景的深度圖,並利用紅外線影像來補償或取代色彩影像中所缺乏的紋理細節來計算深度值,藉此可精確地算出攝像場景的深度圖。Through the above method, the dual-
在一些實施例中,處理器38例如會先根據各張色彩影像的顏色細節,選擇其中一張色彩影像作為基準影像,接著辨識基準影像中缺乏紋理細節的至少一個缺陷區域,然後再根據各張紅外線影像中對應於這些缺陷區域的影像的紋理細節,選擇其中一張紅外線影像作為可與基準影像彼此對比的影像,一同用於深度圖的計算。In some embodiments, the
詳言之,基於色彩感測器32每次只能採用單一曝光條件擷取色彩影像,在攝像場景為低光源或高反差的情況下,每一張色彩影像都可能會出現高雜訊、過曝或曝光不足的區域(即上述的缺陷區域)。此時,處理器38即可利用紅外線感測器34高光敏感度的特性,針對上述的缺陷區域,從先前擷取的多張紅外線影像中,選擇具備該缺陷區域的紋理細節的紅外線影像,而可用以補足色彩影像中缺陷區域的紋理細節。To be more specific, because the
圖5是依照本發明一實施例所繪示的雙感測器攝像系統的深度圖計算方法的流程圖。請同時參照圖3及圖5,本實施例的方法適用於上述的雙感測器攝像系統30,以下即搭配雙感測器攝像系統30的各項元件說明本實施例的深度圖計算方法的詳細步驟。FIG. 5 is a flowchart of a method for calculating a depth map of a dual-sensor camera system according to an embodiment of the present invention. Please refer to FIG. 3 and FIG. 5 at the same time. The method of this embodiment is applicable to the above-mentioned dual-
在步驟S502中,由處理器38從多張色彩影像中選擇能顯露出攝像場景的顏色細節的色彩影像作為基準影像。In step S502, the
在一些實施例中,處理器38例如是根據各張色彩影像的顏色細節,從多張色彩影像中選擇顏色細節最多的色彩影像作為基準影像。所述顏色細節的多寡例如可由色彩影像中過曝或曝光不足區域的大小來決定。In some embodiments, the
詳細而言,過曝區域像素的顏色趨近白色、曝光不足區域像素的顏色趨近黑色,因此這些區域的顏色細節會較少。因此,若色彩影像中包括較多的這類區域,代表其顏色細節較少,處理器38據此即可判斷出哪一張色彩影像的顏色細節最多,而用以作為基準影像。在其他實施例中,處理器38也可依據各張色彩影像的對比度、飽和度或其他影像參數來分辨其顏色細節的多寡,在此不設限。In detail, the color of the pixels in the overexposed areas tends to be white, and the color of the pixels in the underexposed areas tends to be black, so the color details of these areas will be less. Therefore, if the color image includes more such regions, it means that the color details are less, and the
在步驟S504中,由處理器38辨識基準影像中缺乏紋理細節的至少一個缺陷區域。所述的缺陷區域例如是上述的過曝區域或曝光不足區域,或是在低光源下所擷取的具較高雜訊的區域,在此不設限。In step S504, the
在步驟S506中,由處理器38根據各張紅外線影像中對應於所述缺陷區域的影像的紋理細節,選擇其中一張紅外線影像,而用以作為與基準影像彼此對比的組合。In step S506 , the
在一些實施例中,處理器38例如是選擇對應於所述缺陷區域的影像的紋理細節最多的紅外線影像作為與基準影像彼此對比的組合。其中,處理器38例如是依據各張紅外線影像的對比度或其他影像參數來分辨其紋理細節的多寡,在此不設限。In some embodiments, the
在步驟S508中,由處理器38執行特徵擷取演算法,從基準影像及所選擇的紅外線影像中擷取特徵強健的多個特徵點。In step S508, the
在一些實施例中,所述的特徵擷取演算法例如是哈里斯邊角偵測(Harris corner detector)、海森仿射區域偵測(Hessian-affine region detector)、最大穩定極值區域(Maximally Stable Extremal Regions,MSER)、尺度不變特徵變換(Scale invariant feature transform,SIFT)或加速穩健特徵(Speeded up robust features,SURF),所述特徵點例如是影像中的邊緣或角落像素,在此不設限。在一些實施例中,處理器38還可根據所擷取特徵之間的對應關係將色彩影像及紅外線影像對齊。In some embodiments, the feature extraction algorithm is, for example, Harris corner detector, Hessian-affine region detector, Maximally stable extremum region Stable Extremal Regions, MSER), Scale invariant feature transform (SIFT) or Speeded up robust features (SURF), the feature points are, for example, edge or corner pixels in the image, not here set limits. In some embodiments, the
在步驟S510中,由處理器38根據基準影像及紅外線影像中彼此相對應的特徵點的位置,計算攝像場景的深度圖。In step S510, the
在一些實施例中,處理器38例如是直接計算基準影像及紅外線影像中相對應的各個像素的像差,並依據雙感測器攝像系統30的色彩感測器及紅外線感測器34拍攝影像時的焦距、兩個感測器的間距以及各個像素的像差,估測各個像素的深度。其中,處理器38例如是依據各個像素在基準影像及紅外線影像中的位置,計算各個像素在基準影像及紅外線影像之間的位移,以作為像差。In some embodiments, the
詳細而言,雙感測器攝像系統30所拍攝的基準影像及紅外線影像中相對應像素的像差是由焦距(決定影像大小)、感測器間距(決定影像重疊範圍)以及該像素對應物件與感測器間的距離(即深度值,決定影像中物件的大小)來決定,其中存在著某種比例關係,而記載此比例關係的關係表可藉由在雙感測器攝像系統30出廠前預先測試而得。因此,當使用者使用雙感測器攝像系統30拍攝影像,而處理器38在計算影像中各個像素的像差時,即可利用預先建立的關係表查詢而獲得各個像素的深度值。In detail, the aberration of the corresponding pixels in the reference image and the infrared image captured by the dual-
藉由上述方法,雙感測器攝像系統30即可利用色彩影像及紅外線影像中相對應像素的位置關係來計算各個像素的深度值,從而獲得精確的攝像場景的深度圖。Through the above method, the dual-
舉例來說,圖6是依照本發明一實施例所繪示的雙感測器攝像系統的深度圖計算方法的範例。請參照圖6,本實施例是通過上述圖5的深度圖計算方法,選擇出顏色細節最多的色彩影像62作為基準影像,並針對色彩影像62中缺乏紋理細節的缺陷區域(例如人臉區域62a),從採用不同曝光條件擷取的多張紅外線影像中選擇出該缺陷區域的紋理細節最多的紅外線影像64,用以與色彩影像62進行對比,從而計算出精確的攝像場景的深度圖66。For example, FIG. 6 is an example of a depth map calculation method of a dual-sensor camera system according to an embodiment of the present invention. Referring to FIG. 6 , in this embodiment, the
在一些實施例中,處理器38例如會在使用者啟動即時顯示(live view)模式時,控制色彩感測器32拍攝多張色彩影像,以執行自動對焦(auto focus),藉此獲得所拍攝物體的焦距,並根據此焦距來決定可顯露出物體顏色細節最多的色彩影像。In some embodiments, the
在即時顯示模式中,處理器38例如會以此可顯露出物體顏色細節最多的色彩影像對應的曝光時間為基準,控制色彩感測器32以較此曝光時間為長或短的多個曝光時間拍攝多張色彩影像,藉此監測攝像場景的環境變化。類似地,處理器38也可以可顯露出物體紋理細節最多的紅外線影像對應的曝光時間為基準,控制紅外線感測器34以較此曝光時間為長或短的多個曝光時間拍攝多張紅外線影像。最後,處理器38可從這些由色彩感測器32及紅外線感測器34所拍攝的影像中,選擇彼此最能夠對比的色彩影像及紅外線影像的組合,而用以計算攝像場景的深度圖。In the real-time display mode, the
舉例來說,在一些實施例中,處理器38會計算這些色彩影像及紅外線影像中每張影像的影像直方圖,並選擇以色彩影像或紅外線影像作為基準,來比較各張色彩影像和紅外線影像的影像直方圖,藉此確定彼此最能夠對比的色彩影像及紅外線影像的組合,並用以計算攝像場景的深度圖。For example, in some embodiments, the
詳細而言,在一些實施例中,處理器38例如是選擇色彩影像其中之一(例如是選擇可顯露出物體顏色細節最多的色彩影像)作為基準影像,並選擇紅外線影像其中之一(例如是選擇可顯露出物體紋理細節最多的色彩影像)來與基準影像比較,而依據這些影像的影像直方圖判斷所選擇的紅外線影像的亮度是否高於基準影像的亮度。其中,若判斷結果為是,則處理器38會從紅外線感測器34預先擷取的多張紅外線影像中選擇曝光時間較所選擇的紅外線影像的曝光時間短的紅外線影像,或控制紅外線感測器34採用較所選擇的紅外線影像的曝光時間短的曝光時間擷取紅外線影像,用以作為與基準影像彼此對比的組合。反之,若判斷結果為否,則處理器38會從紅外線感測器34預先擷取的多張紅外線影像中選擇曝光時間較所選擇的紅外線影像的曝光時間長的紅外線影像,或控制紅外線感測器34採用較所選擇的紅外線影像的曝光時間長的曝光時間擷取紅外線影像,用以作為與基準影像彼此對比的組合。Specifically, in some embodiments, the
另一方面,在一些實施例中,處理器38例如是選擇紅外線影像其中之一(例如是選擇可顯露出物體紋理細節最多的色彩影像)作為基準影像,並選擇色彩影像其中之一(例如是選擇可顯露出物體顏色細節最多的色彩影像)來與基準影像比較,依據這些影像的影像直方圖,判斷所選擇的色彩影像的亮度是否高於基準影像的亮度。其中,若判斷結果為是,則處理器38會從色彩感測器32預先擷取的多張色彩影像中選擇曝光時間較所選擇的色彩影像的曝光時間短的色彩影像,或控制色彩感測器32採用較所選擇的色彩影像的曝光時間短的曝光時間擷取色彩影像,用以作為與基準影像彼此對比的組合。反之,若判斷結果為否,則處理器38會從色彩感測器32預先擷取的多張色彩影像中選擇曝光時間較所選擇的色彩影像的曝光時間長的色彩影像,或控制色彩感測器32採用較所選擇的色彩影像的曝光時間長的曝光時間擷取色彩影像,用以作為與基準影像彼此對比的組合。On the other hand, in some embodiments, the
藉由上述方法,雙感測器攝像系統30即可從多張色彩影像及紅外線影像中適應性選擇出彼此最能夠對比的色彩影像及紅外線影像的組合,並用以算出精確的攝像場景的深度圖。Through the above method, the dual-
在一些實施例中,即便是選擇彼此最能夠對比的色彩影像及紅外線影像的組合來計算攝像場景的深度圖,所選擇的色彩影像仍有可能會因為反射或色彩感測器32的動態範圍不足等因素,而具有許多缺乏顏色及/或紋理細節不足的缺陷區域,此即所謂的遮擋(occlusion)。在此情況下,可使用由紅外線影像提供的紋理細節作為參考依據,而從遮擋周圍像素的深度值來估測該遮擋的深度值。In some embodiments, even if the combination of the most comparable color image and infrared image is selected to calculate the depth map of the camera scene, the selected color image may still be due to reflection or insufficient dynamic range of the
詳細而言,圖7是依照本發明一實施例所繪示的雙感測器攝像系統的深度圖計算方法的流程圖。請同時參照圖3及圖7,本實施例的方法適用於上述的雙感測器攝像系統30,並額外在雙感測器攝像系統30中配置如紅外線發光二極體(Light emitting diode,LED)等紅外線投射器(IR projector)(未繪示),用以加強所擷取的紅外線影像的紋理細節。以下即搭配雙感測器攝像系統30的各項元件說明本實施例的深度圖計算方法的詳細步驟。In detail, FIG. 7 is a flowchart of a method for calculating a depth map of a dual-sensor camera system according to an embodiment of the present invention. Please refer to FIG. 3 and FIG. 7 at the same time. The method of this embodiment is applicable to the above-mentioned dual-
在步驟S702中,由處理器38偵測所選擇的色彩影像中缺乏顏色細節或紋理細節的至少一個遮擋,並在步驟S704中,判斷是否偵測到遮擋。In step S702, the
若在步驟S704中有偵測到遮擋,則在步驟S706中,處理器38會控制紅外線投射器投射紅外線至攝像場景,並控制紅外線感測器34擷取攝像場景的紅外線影像。其中,藉由投射紅外線至攝像場景,可增強紅外線感測器34所擷取的攝像場景中暗部區域的紋理細節,而用以輔助後續深度圖的計算。If blocking is detected in step S704, in step S706, the
在步驟S708中,處理器38會根據紅外線感測器34所擷取的紅外線影像所提供的各個遮擋周圍的紋理細節,由各個遮擋周圍的多個像素的深度值決定遮擋的深度值。詳細而言,由於紅外線影像可提供遮擋周圍像素的精確的紋理細節,因此可利用與遮擋具有同質性(homogeneity)的周圍像素的深度值,來填補深度圖中空洞的深度值,使得深度圖中的空洞得以經由紅外線影像的輔助而填補正確的深度值。In step S708 , the
另一方面,若在步驟S704中沒有偵測到遮擋,則在步驟S710中,處理器38會根據基準影像及紅外線影像中彼此相對應的特徵點的位置,計算攝像場景的深度圖。此步驟與前述實施例的步驟S510相同或相似,故其詳細內容在此不再贅述。On the other hand, if no occlusion is detected in step S704, then in step S710, the
藉由上述方法,雙感測器攝像系統30可有效地填補所計算的深度圖中的空洞,從而獲得完整且精確的攝像場景的深度圖。Through the above method, the dual-
綜上所述,本發明的雙感測器攝像系統及其深度圖計算方法藉由獨立配置色彩感測器與紅外線感測器,並採用適於當前拍攝場景的多個曝光條件分別擷取多張影像,從中選擇彼此可對比的色彩影像及紅外線影像來進行深度圖的計算,藉此可精確地算出各種攝像場景的深度圖。而藉由使用紅外線影像所提供的紋理細節來輔助計算深度圖中空洞的深度值,藉此可生成完整的攝像場景的深度圖。To sum up, the dual-sensor camera system and the depth map calculation method of the present invention configure the color sensor and the infrared sensor independently, and use multiple exposure conditions suitable for the current shooting scene to capture multiple A color image and an infrared image that are comparable to each other are selected to calculate the depth map, so that the depth map of various camera scenes can be accurately calculated. By using the texture details provided by the infrared image to assist in calculating the depth value of the holes in the depth map, a complete depth map of the camera scene can be generated.
10、20:影像感測器
12:色彩資訊
14:亮度資訊
16:影像
22:色彩感測器
22a、62:色彩影像
24:紅外線感測器
24a、64:紅外線影像
26:場景影像
30:雙感測器攝像系統
32:色彩感測器
34:紅外線感測器
36:儲存裝置
38:處理器
62a:人臉區域
66:深度圖
R、G、B、I:像素
S402~S406、S502~S510、S702~S710:步驟10, 20: Image sensor
12: Color Information
14: Brightness information
16: Video
22:
圖1是習知使用影像感測器擷取影像的示意圖。 圖2是依照本發明一實施例所繪示的使用影像感測器擷取影像的示意圖。 圖3是依照本發明一實施例所繪示的雙感測器攝像系統的方塊圖。 圖4是依照本發明一實施例所繪示的雙感測器攝像系統的深度圖計算方法的流程圖。 圖5是依照本發明一實施例所繪示的雙感測器攝像系統的深度圖計算方法的流程圖。 圖6是依照本發明一實施例所繪示的雙感測器攝像系統的深度圖計算方法的範例。 圖7是依照本發明一實施例所繪示的雙感測器攝像系統的深度圖計算方法的流程圖。FIG. 1 is a schematic diagram of conventionally using an image sensor to capture images. FIG. 2 is a schematic diagram of capturing an image using an image sensor according to an embodiment of the present invention. FIG. 3 is a block diagram of a dual-sensor camera system according to an embodiment of the present invention. FIG. 4 is a flowchart of a method for calculating a depth map of a dual-sensor camera system according to an embodiment of the present invention. FIG. 5 is a flowchart of a method for calculating a depth map of a dual-sensor camera system according to an embodiment of the present invention. FIG. 6 is an example of a depth map calculation method of a dual-sensor camera system according to an embodiment of the present invention. 7 is a flowchart of a method for calculating a depth map of a dual-sensor camera system according to an embodiment of the present invention.
S402~S406:步驟S402~S406: Steps
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/214,946 US11496660B2 (en) | 2020-09-04 | 2021-03-29 | Dual sensor imaging system and depth map calculation method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063074477P | 2020-09-04 | 2020-09-04 | |
US63/074,477 | 2020-09-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202211165A TW202211165A (en) | 2022-03-16 |
TWI767484B true TWI767484B (en) | 2022-06-11 |
Family
ID=80438521
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109145614A TWI778476B (en) | 2020-09-04 | 2020-12-23 | Dual sensor imaging system and imaging method thereof |
TW109145632A TWI767468B (en) | 2020-09-04 | 2020-12-23 | Dual sensor imaging system and imaging method thereof |
TW109146764A TWI764484B (en) | 2020-09-04 | 2020-12-30 | Dual sensor imaging system and calibration method thereof |
TW109146831A TWI797528B (en) | 2020-09-04 | 2020-12-30 | Dual sensor imaging system and privacy protection imaging method thereof |
TW109146922A TWI767484B (en) | 2020-09-04 | 2020-12-30 | Dual sensor imaging system and depth map calculation method thereof |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109145614A TWI778476B (en) | 2020-09-04 | 2020-12-23 | Dual sensor imaging system and imaging method thereof |
TW109145632A TWI767468B (en) | 2020-09-04 | 2020-12-23 | Dual sensor imaging system and imaging method thereof |
TW109146764A TWI764484B (en) | 2020-09-04 | 2020-12-30 | Dual sensor imaging system and calibration method thereof |
TW109146831A TWI797528B (en) | 2020-09-04 | 2020-12-30 | Dual sensor imaging system and privacy protection imaging method thereof |
Country Status (2)
Country | Link |
---|---|
CN (5) | CN114143418B (en) |
TW (5) | TWI778476B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116091341B (en) * | 2022-12-15 | 2024-04-02 | 南京信息工程大学 | Exposure difference enhancement method and device for low-light image |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM458748U (en) * | 2012-12-26 | 2013-08-01 | Chunghwa Telecom Co Ltd | Image type depth information retrieval device |
CN110462686A (en) * | 2017-02-06 | 2019-11-15 | 弗托斯传感与算法公司 | For obtaining the device and method of depth information from scene |
CN111540003A (en) * | 2020-04-27 | 2020-08-14 | 浙江光珀智能科技有限公司 | Depth image generation method and device |
Family Cites Families (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004246252A (en) * | 2003-02-17 | 2004-09-02 | Takenaka Komuten Co Ltd | Apparatus and method for collecting image information |
JP2005091434A (en) * | 2003-09-12 | 2005-04-07 | Noritsu Koki Co Ltd | Position adjusting method and image reader with damage compensation function using the same |
JP4244018B2 (en) * | 2004-03-25 | 2009-03-25 | ノーリツ鋼機株式会社 | Defective pixel correction method, program, and defective pixel correction system for implementing the method |
JP4341680B2 (en) * | 2007-01-22 | 2009-10-07 | セイコーエプソン株式会社 | projector |
US9307212B2 (en) * | 2007-03-05 | 2016-04-05 | Fotonation Limited | Tone mapping for low-light video frame enhancement |
US8902321B2 (en) * | 2008-05-20 | 2014-12-02 | Pelican Imaging Corporation | Capturing and processing of images using monolithic camera array with heterogeneous imagers |
US8866920B2 (en) * | 2008-05-20 | 2014-10-21 | Pelican Imaging Corporation | Capturing and processing of images using monolithic camera array with heterogeneous imagers |
CN101404060B (en) * | 2008-11-10 | 2010-06-30 | 北京航空航天大学 | Human face recognition method based on visible light and near-infrared Gabor information amalgamation |
US8749635B2 (en) * | 2009-06-03 | 2014-06-10 | Flir Systems, Inc. | Infrared camera systems and methods for dual sensor applications |
US8681216B2 (en) * | 2009-03-12 | 2014-03-25 | Hewlett-Packard Development Company, L.P. | Depth-sensing camera system |
EP2471258B1 (en) * | 2009-08-25 | 2017-05-24 | Dual Aperture International Co. Ltd. | Reducing noise in a color image |
US8478123B2 (en) * | 2011-01-25 | 2013-07-02 | Aptina Imaging Corporation | Imaging devices having arrays of image sensors and lenses with multiple aperture sizes |
JP2013115679A (en) * | 2011-11-30 | 2013-06-10 | Fujitsu General Ltd | Imaging apparatus |
US10848731B2 (en) * | 2012-02-24 | 2020-11-24 | Matterport, Inc. | Capturing and aligning panoramic image and depth data |
TW201401186A (en) * | 2012-06-25 | 2014-01-01 | Psp Security Co Ltd | System and method for identifying human face |
JP5934375B2 (en) * | 2012-09-25 | 2016-06-15 | 日本電信電話株式会社 | Image encoding method, image decoding method, image encoding device, image decoding device, image encoding program, image decoding program, and recording medium |
KR102086509B1 (en) * | 2012-11-23 | 2020-03-09 | 엘지전자 주식회사 | Apparatus and method for obtaining 3d image |
WO2014100783A1 (en) * | 2012-12-21 | 2014-06-26 | Flir Systems, Inc. | Time spaced infrared image enhancement |
JP6055681B2 (en) * | 2013-01-10 | 2016-12-27 | 株式会社 日立産業制御ソリューションズ | Imaging device |
CN104661008B (en) * | 2013-11-18 | 2017-10-31 | 深圳中兴力维技术有限公司 | The treating method and apparatus that color image quality is lifted under low light conditions |
CN104021548A (en) * | 2014-05-16 | 2014-09-03 | 中国科学院西安光学精密机械研究所 | Method for acquiring scene 4D information |
US9516295B2 (en) * | 2014-06-30 | 2016-12-06 | Aquifi, Inc. | Systems and methods for multi-channel imaging based on multiple exposure settings |
JP6450107B2 (en) * | 2014-08-05 | 2019-01-09 | キヤノン株式会社 | Image processing apparatus, image processing method, program, and storage medium |
US10462390B2 (en) * | 2014-12-10 | 2019-10-29 | Sony Corporation | Image pickup apparatus, image pickup method, program, and image processing apparatus |
CN107431760B (en) * | 2015-03-31 | 2018-08-28 | 富士胶片株式会社 | The image processing method and storage medium of photographic device, photographic device |
WO2016192437A1 (en) * | 2015-06-05 | 2016-12-08 | 深圳奥比中光科技有限公司 | 3d image capturing apparatus and capturing method, and 3d image system |
JP2017011634A (en) * | 2015-06-26 | 2017-01-12 | キヤノン株式会社 | Imaging device, control method for the same and program |
CN105049829B (en) * | 2015-07-10 | 2018-12-25 | 上海图漾信息科技有限公司 | Optical filter, imaging sensor, imaging device and 3-D imaging system |
CN105069768B (en) * | 2015-08-05 | 2017-12-29 | 武汉高德红外股份有限公司 | A kind of visible images and infrared image fusion processing system and fusion method |
US10523855B2 (en) * | 2015-09-24 | 2019-12-31 | Intel Corporation | Infrared and visible light dual sensor imaging system |
TW201721269A (en) * | 2015-12-11 | 2017-06-16 | 宏碁股份有限公司 | Automatic exposure system and auto exposure method thereof |
JP2017112401A (en) * | 2015-12-14 | 2017-06-22 | ソニー株式会社 | Imaging device, apparatus and method for image processing, and program |
CN206117865U (en) * | 2016-01-16 | 2017-04-19 | 上海图漾信息科技有限公司 | Range data monitoring device |
JP2017163297A (en) * | 2016-03-09 | 2017-09-14 | キヤノン株式会社 | Imaging apparatus |
KR101747603B1 (en) * | 2016-05-11 | 2017-06-16 | 재단법인 다차원 스마트 아이티 융합시스템 연구단 | Color night vision system and operation method thereof |
CN106815826A (en) * | 2016-12-27 | 2017-06-09 | 上海交通大学 | Night vision image Color Fusion based on scene Recognition |
CN108280807A (en) * | 2017-01-05 | 2018-07-13 | 浙江舜宇智能光学技术有限公司 | Monocular depth image collecting device and system and its image processing method |
CN111988587B (en) * | 2017-02-10 | 2023-02-07 | 杭州海康威视数字技术股份有限公司 | Image fusion apparatus and image fusion method |
CN109474770B (en) * | 2017-09-07 | 2021-09-14 | 华为技术有限公司 | Imaging device and imaging method |
CN109712102B (en) * | 2017-10-25 | 2020-11-27 | 杭州海康威视数字技术股份有限公司 | Image fusion method and device and image acquisition equipment |
CN107846537B (en) * | 2017-11-08 | 2019-11-26 | 维沃移动通信有限公司 | A kind of CCD camera assembly, image acquiring method and mobile terminal |
CN109951646B (en) * | 2017-12-20 | 2021-01-15 | 杭州海康威视数字技术股份有限公司 | Image fusion method and device, electronic equipment and computer readable storage medium |
US10748247B2 (en) * | 2017-12-26 | 2020-08-18 | Facebook, Inc. | Computing high-resolution depth images using machine learning techniques |
US10757320B2 (en) * | 2017-12-28 | 2020-08-25 | Waymo Llc | Multiple operating modes to expand dynamic range |
TWI661726B (en) * | 2018-01-09 | 2019-06-01 | 呂官諭 | Image sensor with enhanced image recognition and application |
CN110136183B (en) * | 2018-02-09 | 2021-05-18 | 华为技术有限公司 | Image processing method and device and camera device |
CN108965654B (en) * | 2018-02-11 | 2020-12-25 | 浙江宇视科技有限公司 | Double-spectrum camera system based on single sensor and image processing method |
CN110572583A (en) * | 2018-05-18 | 2019-12-13 | 杭州海康威视数字技术股份有限公司 | method for shooting image and camera |
CN108961195B (en) * | 2018-06-06 | 2021-03-23 | Oppo广东移动通信有限公司 | Image processing method and device, image acquisition device, readable storage medium and computer equipment |
JP6574878B2 (en) * | 2018-07-19 | 2019-09-11 | キヤノン株式会社 | Image processing apparatus, image processing method, imaging apparatus, program, and storage medium |
JP7254461B2 (en) * | 2018-08-01 | 2023-04-10 | キヤノン株式会社 | IMAGING DEVICE, CONTROL METHOD, RECORDING MEDIUM, AND INFORMATION PROCESSING DEVICE |
CN109035193A (en) * | 2018-08-29 | 2018-12-18 | 成都臻识科技发展有限公司 | A kind of image processing method and imaging processing system based on binocular solid camera |
US11689785B2 (en) * | 2018-09-14 | 2023-06-27 | Zhejiang Uniview Technologies Co., Ltd. | Dual-spectrum image automatic exposure method and apparatus, and dual-spectrum image camera and machine storage medium |
JP2020052001A (en) * | 2018-09-28 | 2020-04-02 | パナソニックIpマネジメント株式会社 | Depth acquisition device, depth acquisition method, and program |
US11176694B2 (en) * | 2018-10-19 | 2021-11-16 | Samsung Electronics Co., Ltd | Method and apparatus for active depth sensing and calibration method thereof |
CN109636732B (en) * | 2018-10-24 | 2023-06-23 | 深圳先进技术研究院 | Hole repairing method of depth image and image processing device |
CN110248105B (en) * | 2018-12-10 | 2020-12-08 | 浙江大华技术股份有限公司 | Image processing method, camera and computer storage medium |
US11120536B2 (en) * | 2018-12-12 | 2021-09-14 | Samsung Electronics Co., Ltd | Apparatus and method for determining image sharpness |
CN113170048A (en) * | 2019-02-19 | 2021-07-23 | 华为技术有限公司 | Image processing device and method |
US10972649B2 (en) * | 2019-02-27 | 2021-04-06 | X Development Llc | Infrared and visible imaging system for device identification and tracking |
JP7316809B2 (en) * | 2019-03-11 | 2023-07-28 | キヤノン株式会社 | Image processing device, image processing device control method, system, and program |
CN110349117B (en) * | 2019-06-28 | 2023-02-28 | 重庆工商大学 | Infrared image and visible light image fusion method and device and storage medium |
CN110706178B (en) * | 2019-09-30 | 2023-01-06 | 杭州海康威视数字技术股份有限公司 | Image fusion device, method, equipment and storage medium |
CN111524175A (en) * | 2020-04-16 | 2020-08-11 | 东莞市东全智能科技有限公司 | Depth reconstruction and eye movement tracking method and system for asymmetric multiple cameras |
CN111586314B (en) * | 2020-05-25 | 2021-09-10 | 浙江大华技术股份有限公司 | Image fusion method and device and computer storage medium |
CN111383206B (en) * | 2020-06-01 | 2020-09-29 | 浙江大华技术股份有限公司 | Image processing method and device, electronic equipment and storage medium |
IN202021032940A (en) * | 2020-07-31 | 2020-08-28 | .Us Priyadarsan |
-
2020
- 2020-12-23 CN CN202011541300.2A patent/CN114143418B/en active Active
- 2020-12-23 TW TW109145614A patent/TWI778476B/en active
- 2020-12-23 CN CN202011540274.1A patent/CN114143443B/en active Active
- 2020-12-23 TW TW109145632A patent/TWI767468B/en active
- 2020-12-30 TW TW109146764A patent/TWI764484B/en active
- 2020-12-30 CN CN202011625552.3A patent/CN114143421B/en active Active
- 2020-12-30 TW TW109146831A patent/TWI797528B/en active
- 2020-12-30 CN CN202011625515.2A patent/CN114143420B/en active Active
- 2020-12-30 CN CN202011622478.XA patent/CN114143419B/en active Active
- 2020-12-30 TW TW109146922A patent/TWI767484B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM458748U (en) * | 2012-12-26 | 2013-08-01 | Chunghwa Telecom Co Ltd | Image type depth information retrieval device |
CN110462686A (en) * | 2017-02-06 | 2019-11-15 | 弗托斯传感与算法公司 | For obtaining the device and method of depth information from scene |
US20200134849A1 (en) * | 2017-02-06 | 2020-04-30 | Photonic Sensors & Algorithms, S.L. | Device and method for obtaining depth information from a scene |
CN111540003A (en) * | 2020-04-27 | 2020-08-14 | 浙江光珀智能科技有限公司 | Depth image generation method and device |
Also Published As
Publication number | Publication date |
---|---|
TWI767468B (en) | 2022-06-11 |
CN114143420B (en) | 2024-05-03 |
CN114143421B (en) | 2024-04-05 |
TWI764484B (en) | 2022-05-11 |
CN114143419B (en) | 2023-12-26 |
TW202211165A (en) | 2022-03-16 |
TWI778476B (en) | 2022-09-21 |
TW202211674A (en) | 2022-03-16 |
CN114143421A (en) | 2022-03-04 |
CN114143420A (en) | 2022-03-04 |
TW202211673A (en) | 2022-03-16 |
CN114143443B (en) | 2024-04-05 |
TWI797528B (en) | 2023-04-01 |
TW202211160A (en) | 2022-03-16 |
CN114143443A (en) | 2022-03-04 |
TW202211161A (en) | 2022-03-16 |
CN114143419A (en) | 2022-03-04 |
CN114143418A (en) | 2022-03-04 |
CN114143418B (en) | 2023-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7551797B2 (en) | White balance adjustment | |
CN107948538B (en) | Imaging method, imaging device, mobile terminal and storage medium | |
CN107846556B (en) | Imaging method, imaging device, mobile terminal and storage medium | |
US11496694B2 (en) | Dual sensor imaging system and imaging method thereof | |
US11689822B2 (en) | Dual sensor imaging system and privacy protection imaging method thereof | |
TW202021339A (en) | Infrared pre-flash for camera | |
JP5782311B2 (en) | Imaging apparatus and control method thereof | |
US11838648B2 (en) | Image processing device, imaging apparatus, image processing method, and program for determining a condition for high dynamic range processing | |
JP2017152866A (en) | Image processing system and image processing method | |
TWI767484B (en) | Dual sensor imaging system and depth map calculation method thereof | |
US11496660B2 (en) | Dual sensor imaging system and depth map calculation method thereof | |
US11418719B2 (en) | Dual sensor imaging system and calibration method which includes a color sensor and an infrared ray sensor to perform image alignment and brightness matching | |
US11568526B2 (en) | Dual sensor imaging system and imaging method thereof | |
US11405598B2 (en) | Image processing apparatus, image processing method, and storage medium | |
JP2002196389A (en) | Photometric device and camera | |
WO2022061908A1 (en) | Method for photographing panoramic image, photographing device, and mobile platform | |
TWI405458B (en) | Digital camera sensitivity adjustment method | |
JP6616674B2 (en) | Image processing apparatus and method, and imaging apparatus | |
TW201643777A (en) | Image capture method and image capture apparatus | |
JP2015118320A (en) | Imaging apparatus, image processing method, and program | |
JP2013219561A (en) | Imaging device, control method therefor, and program |