TWI752045B - Polishing device - Google Patents
Polishing device Download PDFInfo
- Publication number
- TWI752045B TWI752045B TW106120827A TW106120827A TWI752045B TW I752045 B TWI752045 B TW I752045B TW 106120827 A TW106120827 A TW 106120827A TW 106120827 A TW106120827 A TW 106120827A TW I752045 B TWI752045 B TW I752045B
- Authority
- TW
- Taiwan
- Prior art keywords
- sectional shape
- cross
- wafer
- workpiece
- shape
- Prior art date
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 47
- 238000012545 processing Methods 0.000 claims abstract description 52
- 238000000034 method Methods 0.000 claims description 29
- 230000003287 optical effect Effects 0.000 claims description 16
- 238000007517 polishing process Methods 0.000 claims description 11
- 238000003860 storage Methods 0.000 claims description 10
- 238000003754 machining Methods 0.000 claims description 9
- 235000012431 wafers Nutrition 0.000 description 158
- 238000005259 measurement Methods 0.000 description 16
- 230000002093 peripheral effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B49/00—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
- B24B49/02—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
- B24B49/04—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/005—Control means for lapping machines or devices
- B24B37/013—Devices or means for detecting lapping completion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B49/00—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
- B24B49/12—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
Abstract
Description
此發明係關於例如研磨矽晶圓等工件表面的研磨裝置。This invention relates to a polishing apparatus for polishing the surface of workpieces such as silicon wafers.
已知有一種雙面研磨裝置,用以使保持晶圓的遊星輪板進行自轉及公轉以研磨晶圓的雙面(參考專利文獻1)。There is known a double-side polishing apparatus for polishing both sides of a wafer by rotating and revolving a planetary plate holding a wafer (refer to Patent Document 1).
如此的雙面研磨裝置係具備:厚度測量器,可測量研磨加工中之晶圓的厚度;上定盤與下定盤,具有測量用的貫通孔;太陽齒輪;內齒輪;遊星輪板等;其中,在以上定盤與下定盤夾住遊星輪板的同時將此遊星輪板咬合至太陽齒輪及內齒輪,並旋轉此太陽齒輪及內齒輪,藉此使遊星輪板進行自轉及公轉,且進一步藉由使上定盤及下定盤旋轉的方式,研磨被保持在遊星輪板之晶圓的雙面。Such a double-sided polishing device is provided with: a thickness measuring device, which can measure the thickness of the wafer being polished; the upper platen and the lower platen, which have through-holes for measurement; a sun gear; an internal gear; a planetary wheel plate, etc.; , While the upper plate and the lower plate clamp the pinwheel plate, the pinion plate is engaged with the sun gear and the inner gear, and the sun gear and the inner gear are rotated, thereby making the pinwheel plate rotate and revolve, and further By rotating the upper platen and the lower platen, both sides of the wafer held on the planetary plate are polished.
此外,此雙面研磨裝置係具有:研磨步驟,僅在使遊星輪板進行自轉時研磨晶圓的雙面;其中在此研磨步驟中具有:測量步驟,測量晶圓在預定位置的厚度;以及判定步驟,根據此測量步驟的測量結果來判斷研磨結束時期。 先行技術文獻 專利文獻In addition, the double-sided polishing apparatus has: a polishing step of polishing both sides of the wafer only when the planetary wheel is rotated; wherein in the polishing step, there is a measuring step of measuring the thickness of the wafer at a predetermined position; and In the determination step, the polishing end time is determined according to the measurement result of the measurement step. Prior art documents Patent documents
專利文獻1:日本國特開2015-47656號公報Patent Document 1: Japanese Patent Laid-Open No. 2015-47656
發明欲解決的課題The problem to be solved by the invention
然而,在如此之研磨裝置,由於僅在研磨步驟中測量晶圓於預定位置的厚度來判斷研磨結束時期,因此會有無法因應研磨加工中之晶圓的剖面形狀來將晶圓研磨成目標剖面形狀的問題。However, in such a polishing apparatus, since only the thickness of the wafer at a predetermined position is measured in the polishing step to determine the polishing end period, there is a possibility that the wafer cannot be polished to a target profile according to the cross-sectional shape of the wafer being polished. shape problem.
在研磨加工中,不僅要將晶圓研磨成期望的厚度,亦被要求要研磨成被當作目標之期望的剖面形狀。晶圓之剖面形狀係以SFQR或GBIR等指標進行評價,而藉由獲得具有滿足此等指標條件的所期望之剖面形狀的晶圓,可提高在之後的半導體裝置製造步驟中所製造之半導體裝置的產率。 然而,僅測量晶圓的厚度並無法判斷晶圓的剖面形狀是否被加工成期望的剖面形狀。在此,為了獲得具有期望之剖面形狀的晶圓,需要如以下的研磨裝置,其係可在研磨加工中測量晶圓的剖面形狀,並因應所測量之晶圓的剖面形狀以會成為期望之剖面形狀的方式設定加工條件,將晶圓進行研磨加工。In the polishing process, not only the wafer is polished to a desired thickness, but it is also required to be polished to a desired cross-sectional shape to be targeted. The cross-sectional shape of a wafer is evaluated by indexes such as SFQR or GBIR, and by obtaining a wafer with a desired cross-sectional shape that satisfies these index conditions, the semiconductor device manufactured in the subsequent semiconductor device manufacturing steps can be improved. yield. However, it is not possible to judge whether the cross-sectional shape of the wafer is processed into a desired cross-sectional shape only by measuring the thickness of the wafer. Here, in order to obtain a wafer having a desired cross-sectional shape, a polishing apparatus such as the following is required, which can measure the cross-sectional shape of the wafer during the polishing process, and which can become the desired cross-sectional shape according to the measured cross-sectional shape of the wafer. The processing conditions are set according to the cross-sectional shape, and the wafer is polished.
此外,晶圓的剖面形狀係因以下的因素而變化,其因素為:上定盤、下定盤、太陽齒輪及內齒輪的旋轉速度、加工負荷、研磨漿供給量或溫度等可任意設定的加工條件;以及上定盤及下定盤等加工面的狀態(溫度變化或磨損造成的形狀變化)、研磨漿的實際溫度、晶圓的自轉狀態等伴隨研磨進行而隨時變動的加工狀態。因此,即使在相同的加工條件下對晶圓進行研磨加工,加工狀態也不一定相同。亦即,由於即使在相同的加工條件下對晶圓進行研磨加工,也會因為加工狀態的變動導致無法穩定地獲得具有期望之剖面形狀的晶圓。因此,有必要在研磨加工中測量晶圓的剖面形狀,並於其為非期望之剖面形狀時變更加工條件。In addition, the cross-sectional shape of the wafer is changed by the following factors, which can be set arbitrarily, such as the rotation speed of the upper surface plate, the lower surface plate, the sun gear and the internal gear, the processing load, the slurry supply amount, and the temperature. conditions; and the state of the machined surfaces such as the upper platen and lower platen (shape change due to temperature change or wear), the actual temperature of the polishing slurry, and the state of wafer rotation, which fluctuate at any time as polishing progresses. Therefore, even if the wafer is polished under the same processing conditions, the processing state is not necessarily the same. That is, even if the wafer is polished under the same processing conditions, a wafer having a desired cross-sectional shape cannot be stably obtained due to fluctuations in the processing state. Therefore, it is necessary to measure the cross-sectional shape of the wafer during the polishing process, and to change the processing conditions when the cross-sectional shape is not desired.
在此,為了獲得具有期望之剖面形狀的晶圓,需要如以下的研磨裝置,其係可在研磨加工中測量晶圓的剖面形狀,並因應所測量之晶圓的剖面形狀以會成為期望之剖面形狀的方式設定加工條件,將晶圓進行研磨加工。Here, in order to obtain a wafer having a desired cross-sectional shape, a polishing apparatus such as the following is required, which can measure the cross-sectional shape of the wafer during the polishing process, and which can become the desired cross-sectional shape according to the measured cross-sectional shape of the wafer. The processing conditions are set according to the cross-sectional shape, and the wafer is polished.
本發明之目的在於提供一種研磨裝置,其係可在研磨加工中測量晶圓的剖面形狀,並因應所測量之晶圓的剖面形狀,以會成為目標之剖面形狀的方式對晶圓進行研磨加工。 用以解決課題的手段An object of the present invention is to provide a polishing apparatus capable of measuring the cross-sectional shape of a wafer during polishing, and polishing the wafer in such a manner that the cross-sectional shape of the wafer becomes a target according to the measured cross-sectional shape of the wafer. . means to solve the problem
本發明係提供一種研磨裝置,藉由具有可旋轉之定盤的研磨機來研磨工件,其係具備:形狀測定裝置,測量研磨加工中之前述工件的剖面形狀;以及控制裝置,根據前述形狀測量裝置測量之工件的剖面形狀,以使前述剖面形狀成為目標剖面形狀的方式控制研磨加工。 發明效果The present invention provides a grinding device for grinding a workpiece by a grinding machine having a rotatable platen, comprising: a shape measuring device for measuring the cross-sectional shape of the workpiece during grinding; and a control device for measuring the shape according to the shape The cross-sectional shape of the workpiece measured by the apparatus controls the grinding process so that the above-mentioned cross-sectional shape becomes the target cross-sectional shape. Invention effect
根據本發明,可在研磨加工中測量晶圓的剖面形狀,並因應所測量之晶圓的剖面形狀,以會成為目標之剖面形狀的方式對晶圓進行研磨加工。因此,可在把握工件之剖面形狀是否被加工成目標剖面形狀的同時進行研磨加工,並可在不是目標剖面形狀時於研磨加工中變更加工條件。藉此,可穩定地獲得具有目標剖面形狀的工件。According to the present invention, the cross-sectional shape of the wafer can be measured during the polishing process, and the wafer can be polished so that the desired cross-sectional shape can be obtained in accordance with the measured cross-sectional shape of the wafer. Therefore, the grinding process can be performed while grasping whether or not the cross-sectional shape of the workpiece is processed into the target cross-sectional shape, and the processing conditions can be changed during the grinding process when the workpiece is not in the target cross-sectional shape. Thereby, a workpiece having a target cross-sectional shape can be stably obtained.
以下,根據圖式說明關於本發明之研磨裝置之實施形態的實施例。Hereinafter, the Example concerning embodiment of the grinding|polishing apparatus of this invention is demonstrated based on drawing.
[第1實施例] 圖1所示之研磨裝置10係具備研磨機20、形狀測定裝置100以及控制裝置300等,其中,研磨機20研磨作為工件之一之晶圓(矽晶圓)W的雙面;形狀測定裝置100測量研磨加工中之晶圓W的直徑方向之剖面形狀;控制裝置300根據此形狀測量裝置100所測量之晶圓W的直徑方向之剖面形狀,以使前述剖面形狀成為目標剖面形狀的方式來控制後述的驅動裝置M1至M5等。200係儲存部,儲存有表示可因應晶圓W的直徑方向之剖面形狀,使此剖面形狀成為目標剖面形狀之適當加工條件的處方。[First Embodiment] The
[研磨機] 研磨機20係具備:上定盤21及下定盤22;太陽齒輪23,以可自由旋轉的方式配置於此上定盤21及下定盤22的中心部;內齒輪24,配置於上定盤21及下定盤22的外周側;以及遊星輪板30,配置於上定盤21與下定盤22之間且設置有工件保持孔30A(參照圖2)。此外,在上定盤21的下面設置有研磨構件25,在下定盤22的上面設置有研磨構件26。[Lapping Machine] The
遊星輪板30係如圖2所示咬合至太陽齒輪23及內齒輪24,並藉由此太陽齒輪23及內齒輪24的旋轉而變得可自轉及公轉。藉由此遊星輪板30的自轉及公轉,可藉由研磨構件25、26來研磨被配置於此遊星輪板30之工件保持孔30A內之晶圓W的雙面。The
上定盤21係如圖1所示,透過支撐螺柱40及安裝構件41被固定至桿42。桿42藉由驅動裝置M1上下移動,上定盤21係藉由桿42的上下移動而一體地上下移動。The
另一方面,在驅動軸43的上部43A貫通太陽齒輪23之中心部的孔23A的同時,太陽齒輪23被固定在此上部43A,太陽齒輪23與驅動軸43成為一體而旋轉。驅動軸43係藉由驅動裝置M4進行旋轉,太陽齒輪23係藉由驅動裝置M4與驅動軸43成為一體而旋轉。On the other hand, the
在驅動軸43的孔內,貫穿有藉由驅動裝置M2旋轉的驅動軸44,此驅動軸44的上端部44A自驅動軸43的上端突出。在此上端部44A固定有驅動器45,驅動器45與驅動軸44成為一體而旋轉。設置在上定盤21的鉤46接合在驅動器45的外周面上,使上定盤21藉由驅動器45的旋轉而一體地旋轉。此外,鉤46係可往相對於驅動器45之外周面的上下方向移動,藉此上定盤21可往相對於驅動器45的上下方向移動。In the hole of the
亦即,上定盤21係藉由桿42的上下移動進行上下移動,並藉由驅動軸44的旋轉進行旋轉。也就是說,上定盤21係藉由驅動裝置M2與驅動軸44成為一體而旋轉。That is, the
在下定盤22之中心部的下部形成有驅動軸49,在此驅動軸49中配置有可自由旋轉的驅動軸43。驅動軸49係藉由驅動裝置M3進行旋轉,下定盤22係藉由驅動裝置M3與驅動軸49成為一體而旋轉。A
在內齒輪24形成有驅動軸47,在此驅動軸47中配置有可自由旋轉的驅動軸49。驅動軸47係藉由驅動裝置M5進行旋轉,內齒輪24係藉由驅動裝置M5與驅動軸47成為一體而旋轉。A
在上定盤21上,於上定盤21之中心沿直徑方向間隔預定距離的位置形成有測量孔50。測量孔50係貫通上定盤21及研磨構件25而形成,並安裝有作為測量光之紅外線雷射可穿透的窗構件51。此外,在上定盤21設置有供給研磨漿的供給孔(未圖示)。On the
[形狀測量裝置] 形狀測量裝置100係如圖1所示,具有:光學頭101,透過安裝在上定盤21之測量孔50的窗構件51朝晶圓W照射作為測量光之紅外線雷射,並同時接收晶圓W反射的反射光;雷射振盪器102,用以自光學頭101照射紅外線雷射;以及演算裝置110,用以求得晶圓W的直徑方向之剖面形狀。另外,光學頭101係設置在上定盤21,與上定盤21一起旋轉。[Shape Measuring Apparatus] As shown in FIG. 1, the
演算裝置110係具有:厚度演算部111,根據光學頭101接收的反射光求得晶圓W的測量厚度;位置演算部112,自太陽齒輪23及內齒輪24的旋轉位置求得晶圓W之測量厚度被求得時的面內位置;以及剖面形狀演算部113,自厚度演算部111所求得之晶圓W的測量厚度與位置演算部112所求得的面內位置求得晶圓W的直徑方向之剖面形狀。The
[厚度演算部] 厚度演算部111係例如以光反射干涉法進行測量的元件,其根據光學頭101接收的反射光,求得用於高速波長掃描之可調變波長雷射在晶圓W表面上的反射強度,並藉由自此反射強度重新構築反射的波長色散(在晶圓W的表面與背面反射之光干涉的狀態)來分析頻率的方式,求得晶圓W的測量厚度。[Thickness Calculation Unit] The
[位置演算部] 位置演算部112係根據太陽齒輪23及內齒輪24的旋轉位置,求得遊星輪板30的位置與旋轉數。亦即,求得遊星輪板30之公轉位置與自轉位置,並根據此公轉位置與自轉位置求得晶圓W的面內位置。藉此,可求得藉由厚度演算部111所確定之晶圓W之測量厚度所測量到的面內位置。[Position Calculation Unit] The
[剖面形狀演算部] 剖面形狀演算部113係根據厚度演算部111所求得之晶圓W的測量厚度,與位置演算部112所求得之晶圓W的面內位置,求得晶圓W的直徑方向之剖面形狀。[Cross-sectional shape calculation unit] The cross-sectional
晶圓W的直徑方向之剖面形狀係可藉由任意的方法求得。在此,例如如圖5所示,在晶圓W的直徑為300mm的情況下,求得0至150mm之部分(相當於晶圓W的半徑)的形狀,並以150mm的地點為中心將此部分的形狀進行鏡面反轉,求得晶圓W的直徑方向之剖面形狀。此外,亦可不進行鏡面反轉,求得0至300mm之部分(相當於晶圓W的直徑)的形狀,當作晶圓W的直徑方向之剖面形狀。接著,自所求得之晶圓W的直徑方向之剖面形狀求得晶圓W之判斷形狀及P-V值。晶圓W的「判斷形狀」,係指根據晶圓W的直徑方向之剖面形狀的傾向進行分類的類型。在所求得之晶圓W的直徑方向之剖面形狀中的晶圓W的半徑部分之剖面形狀分割成任意的部分,並根據分割後部分之剖面形狀的傾向,如圖5所示,自凹凸與倒V形、W形、M形、U形等組合中選擇相應的類型,將此類型作為晶圓W的「判斷形狀」。P-V值係指如圖5所示之晶圓W的最大測量厚度P與最小測量厚度V的差。另外,P-V值亦可由控制裝置300求得。The cross-sectional shape in the diameter direction of the wafer W can be obtained by any method. Here, for example, as shown in FIG. 5 , when the diameter of the wafer W is 300 mm, the shape of the portion of 0 to 150 mm (equivalent to the radius of the wafer W) is obtained, and the shape of the portion of 150 mm is taken as the center. The shape of the part is mirror-inverted, and the cross-sectional shape in the diameter direction of the wafer W is obtained. In addition, without performing mirror inversion, the shape of the portion (corresponding to the diameter of the wafer W) from 0 to 300 mm may be obtained and taken as the cross-sectional shape of the wafer W in the diameter direction. Next, the judgment shape and P-V value of the wafer W are obtained from the obtained cross-sectional shape of the wafer W in the diameter direction. The "judgment shape" of the wafer W refers to a type of classification based on the tendency of the cross-sectional shape of the wafer W in the diameter direction. In the obtained cross-sectional shape in the diameter direction of the wafer W, the cross-sectional shape of the radial portion of the wafer W is divided into arbitrary parts, and according to the tendency of the cross-sectional shape of the divided part, as shown in FIG. Select the corresponding type in combination with the inverted V shape, W shape, M shape, U shape, etc., and use this type as the "judgment shape" of the wafer W. The P-V value refers to the difference between the maximum measured thickness P and the minimum measured thickness V of the wafer W shown in FIG. 5 . In addition, the P-V value may also be obtained by the
[控制裝置] 控制裝置300係將所求得之晶圓W的直徑方向之剖面形狀與目標之晶圓W的剖面形狀進行比較。亦即,將所求得之晶圓W的判斷形狀及P-V值與目標之晶圓W的判斷形狀及P-V值進行比較,並自儲存部200所儲存之表示於圖3的表1中讀取因應其比較結果的處方,進一步自表示於圖4的表2讀取出因應讀取出之處方的加工條件,並根據此讀取出之加工條件來進行研磨加工的控制,此研磨加工的控制為各驅動裝置M1至M5的驅動的控制等。此外,控制裝置300亦會控制演算裝置110。[Control Device] The
[儲存部] 儲存部200係如圖3所示,儲存有表示最適合之處方的表1,其結果為因應將所求得之晶圓W的直徑方向之剖面形狀與目標之剖面形狀進行比較而得。[Storage Unit] As shown in FIG. 3 , the
此外,儲存部200係如圖4所示,儲存有表示各處方之加工條件的表2。Moreover, as shown in FIG. 4, the
加工條件係上定盤21及下定盤22的旋轉速度、太陽齒輪23及內齒輪24的旋轉速度、上定盤21之加工負荷及單位壓力、負荷斜率、上定盤21及下定盤22的加速時間、上定盤21及下定盤22的減速時間、遊星輪板30之自轉及公轉的旋轉速度等。The processing conditions are the rotation speeds of the upper and
最適合之加工條件係藉由實驗預先求得,其可有效率地將所求得之晶圓W的直徑方向之剖面形狀進行研磨加工成為目標之剖面形狀。此外,加工條件亦可加入研磨漿的種類、供給量及溫度等。可藉由在研磨加工中變更此等加工條件來控制研磨加工。The most suitable processing conditions are obtained in advance through experiments, and it is possible to efficiently grind the obtained cross-sectional shape of the wafer W in the diameter direction into a target cross-sectional shape. In addition, the processing conditions may also include the type, supply amount, temperature, and the like of the abrasive slurry. The grinding process can be controlled by changing these processing conditions during the grinding process.
[運轉] 接著,根據如圖6至圖8所示之流程圖,對關於如上述方式構成之研磨裝置10的運轉進行說明。 在步驟S1選擇基本加工條件。基本加工條件係指在自晶圓W之研磨加工開始到根據後述之測量結果實施回饋處理為止的期間,成為進行研磨加工之基礎的加工條件。首先,藉由預先設定之基礎的基本加工條件,開始進行晶圓W的研磨加工。[Operation] Next, the operation of the polishing
在步驟S2,將晶圓W裝填至遊星輪板30的工件保持孔30A(參照圖2)。然後,讓位於待避位置的上定盤21降下,以下定盤22與上定盤21夾住晶圓W。In step S2 , the wafer W is loaded into the
在步驟S3,透過基本加工條件開始進行雙面研磨加工。 在步驟S4,進行初期加工步驟動作。亦即,在藉由以控制裝置300控制驅動裝置M2、M3使上定盤21及下定盤22進行低速旋轉的同時,藉由控制驅動裝置M1,使上定盤21以低負荷朝下方按壓。據此,上定盤21以低負荷按壓晶圓W。此外,藉由以控制裝置300控制驅動裝置M4、M5,太陽齒輪23及內齒輪24會低速旋轉,遊星輪板30以低速進行自轉及公轉。In step S3, the double-sided polishing process is started under the basic machining conditions. In step S4, the initial processing step operation is performed. That is, the
藉由上定盤21及下定盤22的低速旋轉及上定盤21的低負荷來研磨晶圓W的雙面。此外,藉由遊星輪板30以低速進行自轉及公轉來研磨晶圓W的雙面。 另外,在進行研磨的期間,自設置於上定盤21的供給孔(未圖示)以預定的時機供給研磨漿。Both sides of the wafer W are polished by the low-speed rotation of the
當步驟S4的處理動作進行預定時間後進入步驟S5。 在步驟S5,低速旋轉中的上定盤21及下定盤22慢慢提升旋轉速度進入中速旋轉。此外,上定盤21以中負荷進一步朝下方按壓。藉此,上定盤21以中負荷按壓晶圓W。此外,低速旋轉中的太陽齒輪23及內齒輪24慢慢提升旋轉速度進入中速旋轉,遊星輪板30以中速進行自轉及公轉。然後,藉由上定盤21及下定盤22的中速旋轉及上定盤21的中負荷來研磨晶圓W的雙面。此外,藉由遊星輪板30以中速進行自轉及公轉來研磨晶圓W的雙面。然後,與步驟S4一樣,當步驟S5的處理動作進行了預定時間後進入步驟S20。When the processing action of step S4 is performed for a predetermined time, the process proceeds to step S5. In step S5, the
步驟S20係進行主要加工步驟處理,此主要加工步驟處理係如圖7所示,由步驟S21至步驟S26的處理動作來進行,亦即由回饋處理來進行。以下說明關於各步驟S21至步驟S26的處理動作。The step S20 is to perform the main processing step processing, and the main processing step processing is performed by the processing actions of the step S21 to the step S26 as shown in FIG. 7 , that is, the feedback processing is performed. Hereinafter, the processing operation of each of steps S21 to S26 will be described.
在步驟S21,中速旋轉中的上定盤21及下定盤22慢慢提升旋轉速度進入高速旋轉。此外,上定盤21以高負荷朝下方按壓。藉此,上定盤21以高負荷按壓晶圓W。此外,中速旋轉中的太陽齒輪23及內齒輪24慢慢提升旋轉速度進入高速旋轉,遊星輪板30以高速進行自轉及公轉。然後,藉由上定盤21及下定盤22的高速旋轉及上定盤21的高負荷來研磨晶圓W的雙面。此外,藉由遊星輪板30以高速進行自轉及公轉來研磨晶圓W的雙面。In step S21, the
另一方面,紅外線雷射藉由雷射振盪器102自光學頭101朝下方照射,並透過測量孔50的窗構件51照射晶圓W,被此晶圓W的表面與背面反射的反射光透過測量孔50的窗構件51入射至光學頭101。On the other hand, the infrared laser is irradiated downward from the
在步驟S22,每當光學頭101接收到反射光,厚度演算部111便會根據接收到之晶圓W的表面與背面之反射光的干涉光求得晶圓W的測量厚度。另一方面,演算裝置110之位置演算部112係分別求得其測量厚度被求得時之晶圓W的面內位置。In step S22, every time the
演算裝置110之剖面形狀演算部113係根據厚度演算部111所求得晶圓W之個別的測量厚度,與此等測量厚度被求得時晶圓W之個別的面內位置,求得晶圓W的直徑方向之剖面形狀。亦即,晶圓W的直徑方向之剖面形狀係自晶圓W個別之面內位置的測量厚度求得。此外,根據所求得之晶圓W的直徑方向之剖面形狀求得P-V值。再者,根據所求得之晶圓W的測量厚度求得晶圓W的厚度。在此,「晶圓W的測量厚度」係指各個被測量到的厚度,資料數為多個且被使用於描繪剖面形狀。此外,「晶圓W的厚度」係指根據被測量到之晶圓W的測量厚度所求得之當時晶圓W測量厚度的代表值(移動平均值等),資料數為單個且被使用於與目標厚度的比較。The cross-sectional
亦即,在步驟S22,於晶圓W之雙面研磨加工中即時求得晶圓W的直徑方向之剖面形狀、圖5所示之P-V值、晶圓W的厚度等。That is, in step S22, the cross-sectional shape in the diameter direction of the wafer W, the P-V value shown in FIG.
在步驟S221,將所求得之晶圓W的直徑方向之剖面形狀與預訂基準的判斷形狀進行比較,決定所求得之晶圓W的直徑方向之剖面形狀相應於哪一個判斷形狀。亦即,將所求得之晶圓W的半徑部分之剖面形狀分割成任意區塊,例如分割成晶圓W的外周部、內周部、外周部與內周部之間的中間周部等,根據此等分割後區塊之剖面形狀的傾向,如圖5所示,自凹凸與倒V形、W形、M形、U形等組合中將相應的類型決定為晶圓W的判斷形狀。In step S221 , the obtained sectional shape in the diameter direction of the wafer W is compared with the judgment shape of the predetermined reference, and it is determined which judgment shape the obtained sectional shape in the diameter direction of the wafer W corresponds to. That is, the obtained cross-sectional shape of the radial portion of the wafer W is divided into arbitrary blocks, for example, the outer peripheral portion of the wafer W, the inner peripheral portion, the intermediate peripheral portion between the outer peripheral portion and the inner peripheral portion, and the like. , according to the tendency of the cross-sectional shape of the divided blocks, as shown in FIG. 5, the corresponding type is determined as the judgment shape of the wafer W from the combination of the concavity and convexity and the inverted V shape, W shape, M shape, U shape, etc. .
在步驟S23,判斷步驟S22及步驟S221所求得之晶圓W的直徑方向之剖面形狀是否有達到目標剖面形狀。亦即,判斷步驟S22及步驟S221所求得之晶圓W的判斷形狀是否有達到目標判斷形狀,且判斷P-V值是否有達到目標P-V值,如果判斷為“否”則進入步驟S24。In step S23, it is determined whether the cross-sectional shape in the diameter direction of the wafer W obtained in steps S22 and S221 has reached the target cross-sectional shape. That is, it is judged whether the judged shape of the wafer W obtained in steps S22 and S221 has reached the target judged shape, and whether the P-V value has reached the target P-V value is judged, and if it is judged "No", the process proceeds to step S24.
在步驟S24,判斷步驟S22所求得之晶圓W的厚度是否為目標厚度的下限以下,在目標厚度的下限以下時,由於有晶圓W破損的疑慮,因此在步驟S24判斷為“是”而使其進行至步驟S6,進入結束研磨加工的處理步驟。 在晶圓W的厚度並非為目標厚度之下限以下的情況,在步驟S24判斷為“否”而進入步驟S25。In step S24, it is determined whether or not the thickness of the wafer W obtained in step S22 is below the lower limit of the target thickness. And it progresses to step S6, and it progresses to the process step of finishing the grinding|polishing process. When the thickness of the wafer W is not equal to or less than the lower limit of the target thickness, the determination in step S24 is NO, and the process proceeds to step S25 .
在步驟S25,控制裝置300將在步驟S22及步驟S221中所求得之晶圓W的直徑方向之剖面形狀與目標之晶圓W的剖面形狀進行比較,根據其比較結果自被儲存於儲存部200的表1(參照圖3)讀取處方,自表2(參照圖4)讀取此被讀取出之處方所示的加工條件,根據此被讀取出的加工條件控制各驅動裝置M1至M5的運作等。然後,回到步驟S22。In step S25, the
在步驟S22,再次以如上述方式求得晶圓W的直徑方向之剖面形狀,亦即晶圓W的判斷形狀與P-V值等。重複進行步驟S22至步驟S25的處理動作,直到此求得之晶圓W的直徑方向之剖面形狀達到目標剖面形狀為止,由於在晶圓W的雙面被研磨的同時,加工條件(處方)會因應其晶圓W的直徑方向之剖面形狀而變更,因此可確實地將晶圓W的直徑方向之剖面形狀研磨成目標剖面形狀。In step S22 , the cross-sectional shape in the diameter direction of the wafer W, that is, the judgment shape of the wafer W, the P-V value, and the like are obtained again in the above-mentioned manner. The processing operations from Step S22 to Step S25 are repeated until the obtained cross-sectional shape in the diameter direction of the wafer W reaches the target cross-sectional shape. Since both sides of the wafer W are polished, the processing conditions (recipe) will vary. Since the cross-sectional shape in the diameter direction of the wafer W is changed, the cross-sectional shape in the diameter direction of the wafer W can be polished to a target cross-sectional shape with certainty.
若晶圓W的直徑方向之剖面形狀達到目標剖面形狀,則在步驟S23判斷為“是”而進入步驟S26。 在步驟S26,判斷晶圓W的厚度是否在目標厚度的上限以下,若為“否”則回到步驟S21,重複步驟S21至步驟S26的處理動作直到晶圓W的厚度成為目標厚度的上限以下為止。若晶圓W的厚度成為目標厚度的上限以下,則判斷為“是”而進入步驟S6。If the cross-sectional shape of the wafer W in the radial direction reaches the target cross-sectional shape, the determination in step S23 is YES, and the process proceeds to step S26 . In step S26, it is determined whether the thickness of the wafer W is below the upper limit of the target thickness, and if "No", the process returns to step S21, and the processing operations from steps S21 to S26 are repeated until the thickness of the wafer W is below the upper limit of the target thickness until. When the thickness of the wafer W is equal to or less than the upper limit of the target thickness, the determination is YES, and the process proceeds to step S6.
在步驟S6進行減速加工步驟動作,亦即,藉由控制裝置300控制驅動裝置M1至M5的運作,使高速旋轉中的上定盤21及下定盤22、太陽齒輪23、內齒輪24減速成中速旋轉,同時上定盤21對下方的負荷減少成中負荷。在此步驟S6的處理動作進行預定時間後進入步驟S7。In step S6, a deceleration processing step operation is performed, that is, the
在步驟S7進行純水洗淨步驟動作。亦即,在自設置於上定盤21的供給孔供給純水的同時,上定盤21及下定盤22、太陽齒輪23、內齒輪24減速成低速旋轉。此外,上定盤21對下方的負荷減少成低負荷。然後,用純水洗淨晶圓W的雙面。在此步驟S7的處理動作進行預定時間後進入步驟S8,結束加工運轉。In step S7, the pure water washing step operation is performed. That is, while the pure water is supplied from the supply hole provided in the
在步驟S9使上定盤21上升並回收研磨後的晶圓W,在步驟S10藉由外部測量器測量晶圓W的剖面形狀。In step S9, the
如上述,由於本發明係測量在研磨加工中之晶圓W的剖面形狀,並變更加工條件(處方)使此剖面形狀成為目標的剖面形狀,因此可有效率地將晶圓W研磨加工成目標的剖面形狀。此外,如上述在步驟S24可與目標厚度進行比較,因此可確實防止晶圓W受到過度研磨而產生不良品的情形。As described above, in the present invention, the cross-sectional shape of the wafer W being polished is measured, and the processing conditions (recipes) are changed so that the cross-sectional shape becomes the desired cross-sectional shape, so that the wafer W can be efficiently polished to the desired cross-sectional shape. sectional shape. In addition, as described above in step S24 , the thickness can be compared with the target thickness, so that the wafer W can be reliably prevented from being over-polished, resulting in defective products.
再者,由於本發明係測定晶圓W的剖面形狀,並因應剖面形狀來變更加工條件,因此可防止只有晶圓W的一部分變得太薄或變得太厚的情形。再者,由於可在進行研磨加工的同時把握研磨加工中之晶圓W的剖面形狀是否被加工成目標剖面形狀,並在不是目標之剖面形狀時於研磨加工中變更加工條件,因此可穩定地獲得具有目標之剖面形狀的晶圓W。Furthermore, since the present invention measures the cross-sectional shape of the wafer W and changes the processing conditions according to the cross-sectional shape, it is possible to prevent only a part of the wafer W from becoming too thin or too thick. In addition, since it is possible to determine whether the cross-sectional shape of the wafer W being polished has been processed into the target cross-sectional shape at the same time as the grinding process, and if the cross-sectional shape is not the target, the processing conditions can be changed during the grinding process, so that it is possible to stably perform the grinding process. A wafer W having a target cross-sectional shape is obtained.
[第2實施例] 圖8係表示第2實施例的流程圖。在此第2實施例中,於步驟S5後增設進行主要加工步驟處理1的步驟S20’與進行主要加工步驟處理2的步驟S30。[Second Embodiment] FIG. 8 is a flowchart showing a second embodiment. In this second embodiment, after step S5, a step S20' for performing the main
步驟S20’的主要加工步驟處理1係進行圖7所示之步驟S21至步驟S26的處理,但將步驟S23的「達到目標剖面形狀」變更為「達到第1目標剖面形狀」。此第1目標剖面形狀係表示達到目標剖面形狀之前一階段的剖面形狀。其他與第1實施例相同而省略說明。The main
步驟S30的主要加工步驟處理2係進行與圖7所示之步驟S21至步驟S26的處理動作相同而省略其說明。The main
根據此第2實施例,由於藉由增設步驟S20’、步驟S30,可分成多個階段研磨加工成目標的剖面形狀,因此可更確實地將晶圓W的剖面形狀研磨成目標的剖面形狀。亦即,可更確實地防止過度研磨晶圓W而產生不良品的情形,且可確實防止只有晶圓W的一部分變得太薄或變得太厚的情形。再者,由於可在進行研磨加工的同時把握研磨加工中之晶圓W的剖面形狀是否被加工成目標剖面形狀,並在不是目標之剖面形狀時於研磨加工中變更加工條件,因此可穩定地獲得具有目標之剖面形狀的晶圓W。According to the second embodiment, by adding steps S20' and S30, the polishing process can be divided into a plurality of stages to obtain the target cross-sectional shape, so that the cross-sectional shape of the wafer W can be more reliably ground into the target cross-sectional shape. That is, it is possible to more reliably prevent the occurrence of defective products due to excessive polishing of the wafer W, and to reliably prevent only a part of the wafer W from becoming too thin or too thick. In addition, since it is possible to determine whether the cross-sectional shape of the wafer W being polished has been processed into the target cross-sectional shape at the same time as the grinding process, and if the cross-sectional shape is not the target, the processing conditions can be changed during the grinding process, so that it is possible to stably perform the grinding process. A wafer W having a target cross-sectional shape is obtained.
雖然在上述實施例中於上定盤21設置測量孔50,但亦可於下定盤22設置測量孔,從下方對晶圓W的下面照射紅外線雷射來測量晶圓W的剖面形狀。Although the measurement holes 50 are provided in the
此外,雖然說明的是在使用1個遊星輪板30來研磨1個晶圓W的情況,但亦可適用於將多個遊星輪板30配置在上定盤21與下定盤22之間同時研磨多個晶圓W的情況,或在1個遊星輪板30配置多個晶圓W的情況。In addition, although the case where one wafer W is polished using one
再者,雖然在上述實施例中光學頭101係設置於上定盤21,但亦可將光學頭設置於自上定盤21之中心沿直徑方向間隔預定距離的位置上方,每當測量孔50藉由上定盤21的旋轉來到光學頭正下方時,使照射自光學頭之紅外線雷射透過窗構件51照射晶圓W,測量晶圓W的剖面形狀。測量孔50至少有一個即可,但亦可沿著上述間隔預定距離之位置的圓周方向以等間隔形成多個。在形成多個測量孔50的情況下,於各測量孔50安裝有窗構件51。Furthermore, although the
上述實施例中任一者皆說明關於研磨晶圓W之雙面的研磨裝置,但亦可適用於僅研磨晶圓W之單面的研磨裝置。Any one of the above-mentioned embodiments is described with respect to a polishing apparatus for polishing both sides of the wafer W, but it can also be applied to a polishing apparatus for polishing only one side of the wafer W. FIG.
此外,雖然在上述實施例中進行步驟S20、S20’、S30時,進行步驟S21至步驟S26的處理動作,但並不限於此,即使在進行其他加工步驟動作時,亦可進行與步驟S21至S26相同的處理動作。此外,雖然在上述實施例中說明關於研磨矽晶圓的情況,但並不限於此,亦可為玻璃、陶瓷、水晶等的薄板狀的工件。In addition, although in the above-mentioned embodiment, when steps S20, S20', and S30 are performed, the processing operations from steps S21 to S26 are performed, but this is not a limitation. S26 is the same processing operation. In addition, although the case of polishing a silicon wafer has been described in the above-mentioned embodiment, it is not limited to this, and may be a thin plate-shaped workpiece such as glass, ceramics, crystal, or the like.
本發明並不受上述實施例所限制,只要不脫離關於申請專利範圍之請求項的發明要點,則允許設計變更或追加等。The present invention is not limited to the above-mentioned embodiments, and design changes or additions are allowed as long as they do not deviate from the gist of the invention as claimed in the scope of the patent application.
10‧‧‧研磨裝置
20‧‧‧研磨機
21‧‧‧上定盤(定盤)
22‧‧‧下定盤(定盤)
23‧‧‧太陽齒輪
23A‧‧‧孔
24‧‧‧內齒輪
25、26‧‧‧研磨構件
30‧‧‧遊星輪板
30A‧‧‧工件保持孔
40‧‧‧支撐螺柱
41‧‧‧安裝構件
42‧‧‧桿
43、44、47、49‧‧‧驅動軸
43A‧‧‧上部
44A‧‧‧上端部
45‧‧‧驅動器
46‧‧‧鉤
50‧‧‧測量孔
51‧‧‧窗構件
100‧‧‧形狀測量裝置
101‧‧‧光學頭
102‧‧‧雷射振盪器
110‧‧‧演算裝置
111‧‧‧厚度演算部
112‧‧‧位置演算部
113‧‧‧剖面形狀演算部
200‧‧‧儲存部
300‧‧‧控制裝置
M1-M5‧‧‧驅動裝置
W‧‧‧晶圓(工件)
10‧‧‧grinding
圖1係表示關於本發明之研磨裝置之實施例結構的說明圖。 圖2係表示圖1所示之太陽齒輪、內齒輪、及遊星輪板之位置關係的說明圖。 圖3係因應比較所測量之晶圓的剖面形狀與作為目標的晶圓的剖面形狀所得的結果表示最適合處方之表的說明圖。 圖4係表示各處方之加工條件之表的說明圖。 圖5係表示晶圓的剖面形狀及根據剖面形狀之判斷形狀與P-V值的說明圖。 圖6係表示第1實施例之運轉的流程圖。 圖7係表示圖6主要加工步驟處理的流程圖。 圖8係表示第2實施例之運轉的流程圖。FIG. 1 is an explanatory diagram showing the structure of an embodiment of the polishing apparatus according to the present invention. FIG. 2 is an explanatory diagram showing the positional relationship of the sun gear, the internal gear, and the pinion plate shown in FIG. 1 . FIG. 3 is an explanatory diagram showing a table that is most suitable for a recipe based on the result of comparing the cross-sectional shape of the wafer to be measured and the cross-sectional shape of the target wafer. FIG. 4 is an explanatory diagram showing a table of processing conditions for each recipe. 5 is an explanatory diagram showing a cross-sectional shape of a wafer, a shape determined from the cross-sectional shape, and a P-V value. Fig. 6 is a flowchart showing the operation of the first embodiment. FIG. 7 is a flowchart showing the processing of the main processing steps of FIG. 6 . Fig. 8 is a flowchart showing the operation of the second embodiment.
10‧‧‧研磨裝置 10‧‧‧grinding device
20‧‧‧研磨機 20‧‧‧grinding machine
21‧‧‧上定盤(定盤) 21‧‧‧Fixing (Fixing)
22‧‧‧下定盤(定盤) 22‧‧‧Fixing Order (Fixing Order)
23‧‧‧太陽齒輪 23‧‧‧Sun Gear
23A‧‧‧孔 23A‧‧‧hole
24‧‧‧內齒輪 24‧‧‧Internal gear
25、26‧‧‧研磨構件 25, 26‧‧‧Abrasive components
30‧‧‧遊星輪板 30‧‧‧Star Wheel Plate
40‧‧‧支撐螺柱 40‧‧‧Support Stud
41‧‧‧安裝構件 41‧‧‧Installation components
42‧‧‧桿 42‧‧‧Rod
43、44、47、49‧‧‧驅動軸 43, 44, 47, 49‧‧‧Drive shaft
43A‧‧‧上部 43A‧‧‧Top
44A‧‧‧上端部 44A‧‧‧Top
45‧‧‧驅動器 45‧‧‧Drive
46‧‧‧鉤 46‧‧‧Hook
50‧‧‧測量孔 50‧‧‧Measuring hole
51‧‧‧窗構件 51‧‧‧Window Components
100‧‧‧形狀測量裝置 100‧‧‧Shape measuring device
101‧‧‧光學頭 101‧‧‧Optical head
102‧‧‧雷射振盪器 102‧‧‧Laser oscillator
110‧‧‧演算裝置 110‧‧‧Calculator
111‧‧‧厚度演算部 111‧‧‧Thickness Calculation Department
112‧‧‧位置演算部 112‧‧‧Location Calculation Department
113‧‧‧剖面形狀演算部 113‧‧‧Cross-section Shape Calculation Department
200‧‧‧儲存部 200‧‧‧Storage
300‧‧‧控制裝置 300‧‧‧Controls
M1-M5‧‧‧驅動裝置 M1-M5‧‧‧Driver
W‧‧‧晶圓(工件) W‧‧‧Wafer (Workpiece)
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016143436A JP6765887B2 (en) | 2016-07-21 | 2016-07-21 | Polishing equipment |
JP2016-143436 | 2016-07-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201803690A TW201803690A (en) | 2018-02-01 |
TWI752045B true TWI752045B (en) | 2022-01-11 |
Family
ID=61019872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106120827A TWI752045B (en) | 2016-07-21 | 2017-06-22 | Polishing device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6765887B2 (en) |
KR (1) | KR102395405B1 (en) |
CN (1) | CN107639528B (en) |
TW (1) | TWI752045B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7046358B2 (en) * | 2018-04-17 | 2022-04-04 | スピードファム株式会社 | Polishing equipment |
JP7010166B2 (en) | 2018-07-24 | 2022-01-26 | 株式会社Sumco | Work double-sided polishing device and double-sided polishing method |
CN109141324A (en) * | 2018-08-30 | 2019-01-04 | 杭州中芯晶圆半导体股份有限公司 | A kind of method of precise measurement silicon wafer top and bottom removal amount |
JP7566293B2 (en) * | 2019-08-29 | 2024-10-15 | スピードファム株式会社 | Workpiece shape measurement method |
CN116018497A (en) * | 2020-09-10 | 2023-04-25 | 东京毅力科创株式会社 | Thickness measuring device and thickness measuring method |
CN113245973B (en) * | 2021-06-08 | 2022-07-22 | 唐山国芯晶源电子有限公司 | Method for detecting grinding thickness of quartz wafer polishing loose pulley |
JP7464088B2 (en) | 2022-08-31 | 2024-04-09 | 株式会社Sumco | Double-sided polishing method for semiconductor wafers, manufacturing method for polished wafers, and double-sided polishing apparatus for semiconductor wafers |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10146751A (en) * | 1996-11-15 | 1998-06-02 | Canon Inc | Chemical machine polishing device |
JP2001060572A (en) * | 1999-07-09 | 2001-03-06 | Applied Materials Inc | Closed loop control for polishing wafer by chemical- mechanical polisher |
TW462907B (en) * | 1999-07-09 | 2001-11-11 | Applied Materials Inc | Closed-loop control of wafer polishing in a chemical mechanical polishing system |
JP2006082169A (en) * | 2004-09-15 | 2006-03-30 | Toshiba Corp | Polishing method and device |
TWI467645B (en) * | 2010-08-25 | 2015-01-01 | Macronix Int Co Ltd | Chemical mechanical polishing method and system |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5679055A (en) * | 1996-05-31 | 1997-10-21 | Memc Electronic Materials, Inc. | Automated wafer lapping system |
JPH1114305A (en) * | 1997-06-26 | 1999-01-22 | Mitsutoyo Corp | In-process light interference type measuring apparatus for working and working device equipped with the same, and working tool suitable for in-process light measurement |
US6301009B1 (en) * | 1997-12-01 | 2001-10-09 | Zygo Corporation | In-situ metrology system and method |
JP3506114B2 (en) * | 2000-01-25 | 2004-03-15 | 株式会社ニコン | MONITOR DEVICE, POLISHING APPARATUS HAVING THE MONITOR DEVICE, AND POLISHING METHOD |
JP2004047876A (en) * | 2002-07-15 | 2004-02-12 | Tokyo Seimitsu Co Ltd | Polishing device and polishing process |
US7118451B2 (en) * | 2004-02-27 | 2006-10-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | CMP apparatus and process sequence method |
US8129279B2 (en) * | 2008-10-13 | 2012-03-06 | Taiwan Semiconductor Manufacturing Co., Ltd. | Chemical mechanical polish process control for improvement in within-wafer thickness uniformity |
JP5917994B2 (en) * | 2012-04-23 | 2016-05-18 | スピードファム株式会社 | Measuring window structure for polishing equipment |
JP5896884B2 (en) * | 2012-11-13 | 2016-03-30 | 信越半導体株式会社 | Double-side polishing method |
KR20150047656A (en) | 2013-10-23 | 2015-05-06 | 오성우 | Wireless Safety Management System and method using RFID |
CN105081957A (en) * | 2014-05-14 | 2015-11-25 | 和舰科技(苏州)有限公司 | Chemical mechanical polishing method for wafer planarization production |
-
2016
- 2016-07-21 JP JP2016143436A patent/JP6765887B2/en active Active
-
2017
- 2017-06-22 TW TW106120827A patent/TWI752045B/en active
- 2017-06-27 KR KR1020170081242A patent/KR102395405B1/en active IP Right Grant
- 2017-07-14 CN CN201710576177.XA patent/CN107639528B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10146751A (en) * | 1996-11-15 | 1998-06-02 | Canon Inc | Chemical machine polishing device |
JP2001060572A (en) * | 1999-07-09 | 2001-03-06 | Applied Materials Inc | Closed loop control for polishing wafer by chemical- mechanical polisher |
TW462907B (en) * | 1999-07-09 | 2001-11-11 | Applied Materials Inc | Closed-loop control of wafer polishing in a chemical mechanical polishing system |
JP2006082169A (en) * | 2004-09-15 | 2006-03-30 | Toshiba Corp | Polishing method and device |
TWI467645B (en) * | 2010-08-25 | 2015-01-01 | Macronix Int Co Ltd | Chemical mechanical polishing method and system |
Also Published As
Publication number | Publication date |
---|---|
CN107639528A (en) | 2018-01-30 |
KR20180010977A (en) | 2018-01-31 |
KR102395405B1 (en) | 2022-05-10 |
JP6765887B2 (en) | 2020-10-07 |
CN107639528B (en) | 2021-01-12 |
JP2018012166A (en) | 2018-01-25 |
TW201803690A (en) | 2018-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI752045B (en) | Polishing device | |
KR101669491B1 (en) | Apparatus and method for double-side polishing of work | |
TWI648778B (en) | Double-sided grinding method for semiconductor wafer | |
KR101587226B1 (en) | Wafer polishing method and double side polishing apparatus | |
JP6650341B2 (en) | Sectional shape measurement method | |
JP6605395B2 (en) | Sectional shape measurement method | |
US10744616B2 (en) | Wafer polishing method and apparatus | |
WO2010062910A2 (en) | Using optical metrology for feed back and feed forward process control | |
WO2014185008A1 (en) | Method for double-sided polishing of wafer, and double-sided-polishing system | |
JP2008198906A (en) | Manufacturing method of silicon wafer | |
JP5028354B2 (en) | Wafer polishing method | |
JP2020131218A (en) | Laser-irradiating restoration device for silicon wafer surface after grinding and restoration method | |
JP4955624B2 (en) | Double-side polishing equipment | |
KR102102719B1 (en) | Silicon wafer single side polishing method | |
CN109643650B (en) | Polishing method for semiconductor wafer and semiconductor wafer | |
JP6539467B2 (en) | Grinding machine | |
JP2002100594A (en) | Method and device for grinding plane | |
KR20150053049A (en) | Double Side Polishing Method for Wafer | |
JP2007130690A (en) | Carrier for planetary gear type polishing device | |
JP5428214B2 (en) | Semiconductor wafer manufacturing method, semiconductor wafer, and semiconductor wafer crystal evaluation method | |
JP2010003847A (en) | Manufacturing method of semiconductor wafer | |
JP2004306232A (en) | Polishing method and polishing device of workpiece to be polished | |
JP2000033557A (en) | Control method for polishing panel and device therefor | |
JP2013123763A (en) | Polishing method for object to be polished | |
WO2014076955A1 (en) | Device for polishing both surfaces of semiconductor wafer and production method for semiconductor wafer |