TWI745720B - System and method for enhancing accuracy of body surface temperature measurement - Google Patents
System and method for enhancing accuracy of body surface temperature measurement Download PDFInfo
- Publication number
- TWI745720B TWI745720B TW108125879A TW108125879A TWI745720B TW I745720 B TWI745720 B TW I745720B TW 108125879 A TW108125879 A TW 108125879A TW 108125879 A TW108125879 A TW 108125879A TW I745720 B TWI745720 B TW I745720B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- user
- sensor
- body surface
- temperature data
- Prior art date
Links
Images
Landscapes
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
本揭露實施例是有關於一種用於增強體表溫度量測的精確度的系統,且特別是有關於一種用於增強體表溫度量測的精確度的系統與方法。 The embodiment of the disclosure relates to a system for enhancing the accuracy of body surface temperature measurement, and more particularly to a system and method for enhancing the accuracy of body surface temperature measurement.
體溫變化是諸多傳染疾病的重要表徵,因此人體的體表溫度(body surface temperature)之量測的精確度相當重要。一般而言,人體的體表溫度會受到許多因素影響而導致測量上的精確度受到干擾,這些因素可區分為內在因素(endogenous factors)與外在因素(exogenous factors),內在因素例如為:年齡、性別、身體質量指數(Body Mass Index,BMI)、生理時鐘、身體活動、量測位置點等等,外在因素例如為環境室溫、環境濕度等等。 Body temperature change is an important indicator of many infectious diseases, so the accuracy of the measurement of the body surface temperature of the human body is very important. Generally speaking, the body surface temperature of the human body will be affected by many factors, which will interfere with the accuracy of the measurement. These factors can be divided into endogenous factors and exogenous factors. The internal factors are, for example, age. , Gender, Body Mass Index (BMI), physiological clock, physical activity, measurement location, etc. External factors such as ambient room temperature, ambient humidity, etc.
傳統上,在測量人體的體表溫度時,並未將上述會影響量測的精確度的生理指標與環境因子一併納入考量,從而導致體表溫度量測的精確度不佳,因此需要開發一 種用於增強體表溫度量測的精確度的系統與方法。 Traditionally, when measuring the body surface temperature of the human body, the above-mentioned physiological indicators and environmental factors that affect the accuracy of the measurement are not taken into consideration, resulting in poor accuracy of the body surface temperature measurement, so development is needed one A system and method for enhancing the accuracy of body surface temperature measurement.
本揭露之目的在於提出一種用於增強體表溫度量測的精確度的系統包含:核心溫度感測器、心率感測器、生理指標感測器、體表溫度感測器、環境溫度感測器、濕度感測器與運算單元。核心溫度感測器用以取得使用者之核心溫度資料。心率感測器用以取得使用者之心率資料。生理指標感測器用以取得使用者之至少一生理指標。體表溫度感測器用以取得使用者之體表溫度資料。環境溫度感測器用以取得使用者所處環境之環境溫度資料。濕度感測器用以取得使用者所處環境之環境濕度資料。運算單元電性連接核心溫度感測器、心率感測器、生理指標感測器、體表溫度感測器、環境溫度感測器與濕度感測器。其中,運算單元用以根據核心溫度資料、心率資料、至少一生理指標、體表溫度資料、環境溫度資料與環境濕度資料來運算出使用者之代表性特徵溫度資料。 The purpose of this disclosure is to propose a system for enhancing the accuracy of body surface temperature measurement, including: core temperature sensor, heart rate sensor, physiological index sensor, body surface temperature sensor, and ambient temperature sensor Calculator, humidity sensor and computing unit. The core temperature sensor is used to obtain the user's core temperature data. The heart rate sensor is used to obtain the user's heart rate data. The physiological index sensor is used to obtain at least one physiological index of the user. The body surface temperature sensor is used to obtain the user's body surface temperature data. The environmental temperature sensor is used to obtain the environmental temperature data of the user's environment. The humidity sensor is used to obtain the environmental humidity data of the user's environment. The computing unit is electrically connected to the core temperature sensor, the heart rate sensor, the physiological index sensor, the body surface temperature sensor, the environmental temperature sensor, and the humidity sensor. The computing unit is used to compute representative characteristic temperature data of the user based on core temperature data, heart rate data, at least one physiological index, body surface temperature data, environmental temperature data, and environmental humidity data.
在一些實施例中,上述生理指標包含:卡路里消耗量、移動步數和/或由重力感測器所提供之速度和位移資訊。 In some embodiments, the aforementioned physiological indicators include: calorie consumption, number of moving steps, and/or speed and displacement information provided by a gravity sensor.
在一些實施例中,上述運算單元係採用統計模型來運算出代表性特徵溫度資料,其中運算單元所採用之統計模型與統計模型所包含之多個參數係與使用者的基本資料相關聯。 In some embodiments, the arithmetic unit uses a statistical model to calculate the representative characteristic temperature data, wherein the statistical model used by the arithmetic unit and the multiple parameters included in the statistical model are related to the user's basic data.
在一些實施例中,上述使用者的基本資料包含以下至少一者:使用者之年齡、使用者之性別、使用者之染病族群。 In some embodiments, the basic data of the user includes at least one of the following: the age of the user, the gender of the user, and the affected ethnic group of the user.
在一些實施例中,上述運算單元係採用線性回歸模型來運算出代表性特徵溫度資料。 In some embodiments, the aforementioned computing unit uses a linear regression model to compute representative characteristic temperature data.
本揭露之目的在於另提出一種用於增強體表溫度量測的精確度的方法包含:取得使用者之核心溫度資料、心率資料、至少一生理指標與體表溫度資料;取得使用者所處環境之環境溫度資料;取得使用者所處環境之環境濕度資料;根據核心溫度資料、心率資料、至少一生理指標、體表溫度資料、環境溫度資料與環境濕度資料來運算出使用者之代表性特徵溫度資料。 The purpose of this disclosure is to provide another method for enhancing the accuracy of body surface temperature measurement. The method includes: obtaining the user’s core temperature data, heart rate data, at least one physiological index and body surface temperature data; and obtaining the user’s environment Ambient temperature data; obtain the environmental humidity data of the user’s environment; calculate the user’s representative characteristics based on core temperature data, heart rate data, at least one physiological index, body surface temperature data, environmental temperature data, and environmental humidity data Temperature information.
在一些實施例中,上述生理指標包含:卡路里消耗量、移動步數和/或由重力感測器所提供之速度和位移資訊。 In some embodiments, the aforementioned physiological indicators include: calorie consumption, number of moving steps, and/or speed and displacement information provided by a gravity sensor.
在一些實施例中,上述代表性特徵溫度資料係藉由採用統計模型來運算出,其中所採用之統計模型與統計模型所包含之多個參數係與使用者的基本資料相關聯。 In some embodiments, the above-mentioned representative characteristic temperature data is calculated by using a statistical model, wherein the used statistical model and the multiple parameters included in the statistical model are related to the user's basic data.
在一些實施例中,上述使用者的基本資料包含以下至少一者:使用者之年齡、使用者之性別、使用者之染病族群。 In some embodiments, the basic data of the user includes at least one of the following: the age of the user, the gender of the user, and the affected ethnic group of the user.
在一些實施例中,上述代表性特徵溫度資料係藉由採用線性回歸模型來算出。 In some embodiments, the above-mentioned representative characteristic temperature data is calculated by using a linear regression model.
為讓本揭露的上述特徵和優點能更明顯易懂, 下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of this disclosure more obvious and understandable, The following specific examples are given in conjunction with the accompanying drawings to describe in detail as follows.
100‧‧‧用於增強體表溫度量測的精確度的系統 100‧‧‧System for enhancing the accuracy of body surface temperature measurement
110‧‧‧核心溫度感測器 110‧‧‧Core temperature sensor
120‧‧‧心率感測器 120‧‧‧Heart rate sensor
130‧‧‧生理指標感測器 130‧‧‧Physiological Index Sensor
140‧‧‧體表溫度感測器 140‧‧‧Body Surface Temperature Sensor
150‧‧‧環境溫度感測器 150‧‧‧Ambient temperature sensor
160‧‧‧濕度感測器 160‧‧‧Humidity Sensor
170‧‧‧運算單元 170‧‧‧Computer unit
1000‧‧‧用於增強體表溫度量測的精確度的方法 1000‧‧‧Method for enhancing the accuracy of body surface temperature measurement
1100、1200、1300‧‧‧步驟 1100, 1200, 1300‧‧‧step
從以下結合所附圖式所做的詳細描述,可對本揭露之態樣有更佳的了解。 From the following detailed description in conjunction with the accompanying drawings, a better understanding of the aspect of the present disclosure can be obtained.
[圖1]係根據本揭露的實施例之用於增強體表溫度量測的精確度的系統的示意圖。 [Figure 1] is a schematic diagram of a system for enhancing the accuracy of body surface temperature measurement according to an embodiment of the present disclosure.
[圖2]係根據本揭露的實施例之用於增強體表溫度量測的精確度的方法的流程圖。 [Fig. 2] is a flowchart of a method for enhancing the accuracy of body surface temperature measurement according to an embodiment of the present disclosure.
以下仔細討論本揭露的實施例。然而,可以理解的是,實施例提供許多可應用的概念,其可實施於各式各樣的特定內容中。所討論、揭示之實施例僅供說明,並非用以限定本揭露之範圍。 The embodiments of the present disclosure are discussed in detail below. However, it can be understood that the embodiments provide many applicable concepts, which can be implemented in various specific contents. The discussed and disclosed embodiments are for illustration only, and are not intended to limit the scope of this disclosure.
圖1係根據本揭露的實施例之用於增強體表溫度量測的精確度的系統100的示意圖。用於增強體表溫度量測的精確度的系統100包含:核心溫度感測器110、心率感測器120、生理指標感測器130、體表溫度感測器140、環境溫度感測器150、濕度感測器160與運算單元170。如圖1所示,運算單元170電性連接核心溫度感測器110、心率感測器120、生理指標感測器130、體表溫度感測器140、環境溫度感測器150與濕度感測器160。
FIG. 1 is a schematic diagram of a
在本揭露的實施例中,核心溫度感測器110、心率感測器120、生理指標感測器130與體表溫度感測器140係設置於使用者所配戴的穿戴裝置(例如智慧手環等)之中。核心溫度感測器110用以取得使用者之核心溫度(core body temperature)資料。心率感測器120用以取得使用者之心率(heart rate)資料。生理指標感測器130用以取得使用者之至少一生理指標(physical indicator),在本揭露的實施例中,生理指標例如但不限為:卡路里消耗量、移動步數和/或重力感測器(G sensor)所提供之速度和位移資訊等等。體表溫度感測器140用以取得使用者之體表溫度(body surface temperature)資料。
In the embodiment of the present disclosure, the
在本揭露的一實施例中,核心溫度感測器110所取得之核心溫度資料包含透過連續量測所得之多筆核心溫度。在本揭露的另一實施例中,核心溫度感測器110所取得之核心溫度資料為當前時點所量測得之單筆核心溫度。在本揭露的一實施例中,心率感測器120所取得之心率資料包含透過連續量測所得之多筆心率。在本揭露的另一實施例中,心率感測器120所取得之心率資料為當前時點所量測得之單筆心率。在本揭露的一實施例中,生理指標感測器130所取得之生理指標為透過連續量測所得。舉例來說,生理指標可為連續量測所得之多筆卡路里消耗量、連續量測所得之多筆移動步數和/或連續量測所得之多筆由重力感測器所提供之速度和位移資訊。在本揭露的另一實施例中,生理指標感測器130所取得之生理指標為當前時點所取得之生理指
標。舉例來說,生理指標可為所給定的時間間隔內所累積的卡路里消耗量、所給定的時間間隔內所累積的移動步數和/或所給定的時間間隔內之重力感測器所累積之速度和位移資訊。在本揭露的一實施例中,體表溫度感測器140所取得之體表溫度資料包含透過連續量測所得之多筆體表溫度。在本揭露的另一實施例中,體表溫度感測器140所取得之體表溫度資料為當前時點所量測得之單筆體表溫度。
In an embodiment of the present disclosure, the core temperature data obtained by the
在本揭露的實施例中,環境溫度感測器150可設置於使用者所配戴的穿戴裝置之中或者也可設置於電性連接運算單元170的其他感測裝置之中。環境溫度感測器150用以取得使用者所處環境之環境溫度資料。在本揭露的一實施例中,環境溫度感測器150所取得之環境溫度資料包含透過連續量測所得之多筆環境溫度。在本揭露的另一實施例中,環境溫度感測器150所取得之環境溫度資料為當前時點所量測得之單筆環境溫度。
In the embodiment of the present disclosure, the
在本揭露的實施例中,濕度感測器160可設置於使用者所配戴的穿戴裝置之中或者也可設置於電性連接運算單元170的其他感測裝置之中。濕度感測器160用以取得使用者所處環境之環境濕度資料。在本揭露的一實施例中,濕度感測器160所取得之環境濕度資料包含透過連續量測所得之多筆環境濕度。在本揭露的另一實施例中,濕度感測器160所取得之環境濕度資料為當前時點所量測得之單筆環境濕度。
In the embodiment of the present disclosure, the
在本揭露的實施例中,運算單元170用以根據
從核心溫度感測器110所取得的核心溫度資料、從心率感測器120所取得的心率資料、從生理指標感測器130所取得的至少一生理指標、從體表溫度感測器140所取得的體表溫度資料、從環境溫度感測器150所取得的環境溫度資料、從濕度感測器160所取得的環境濕度資料來運算出使用者之代表性特徵溫度資料(representative feature temperature data)。具體而言,由於人體的體表溫度會受到許多因素影響,因此本揭露已將會影響體表溫度量測的精確度的多個因素一併納入考量,從而能夠增強體表溫度量測的精確度。
In the embodiment of the present disclosure, the
在本揭露的實施例中,運算單元170係採用統計模型來運算出代表性特徵溫度資料,運算公式如下式(1):Z=F(T core ,HR,PI,T surface ,T room ,H room ) (1)於式(1)中,Z為使用者之代表性特徵溫度資料,T core 為核心溫度資料,HR為心率資料,PI為生理指標,T surface 為體表溫度資料,T room 為環境溫度資料,H room 為環境濕度資料,F為統計模型。在本揭露的實施例中,運算單元170所採用之統計模型可為線性回歸(linear regression)模型或其他統計模型。具體而言,運算單元170所採用之統計模型與統計模型所包含之多個參數與使用者的基本資料相關聯。在本揭露的實施例中,前述之使用者的基本資料包含以下至少一者:使用者之年齡、使用者之性別、使用者之染病族群。值得一提的是,運算單元170所採用之統計模型與統計模型所包含之多個參數會因使用者之染病族群(不同疾病)而有所不同,運算單元170所採用之統計模型與統計模型所包含之
多個參數也會因健康族群之使用者於活動狀態或於休息(無活動)狀態而有所不同。舉例來說,在本揭露的一實施例中,對於休息(無活動)狀態之健康族群的使用者而言,代表性特徵溫度資料可以下式運算而得:Z=T surface +0.64×sex-0.03×age+0.71×T room +0.31×H room -0.17×T core -0.01×HR。其中,age為使用者之年齡,sex為使用者之性別,且當使用者之性別為男性時,sex=1,而當使用者之性別為女性時,sex=0。
In the disclosed embodiment, the
圖2係根據本揭露的實施例之用於增強體表溫度量測的精確度的方法1000的流程圖。請一併參照圖1與圖2,方法1000包含步驟1100、1200與1300。於步驟1100,藉由核心溫度感測器110來取得使用者之核心溫度資料、藉由心率感測器120來取得使用者之心率資料、藉由生理指標感測器130來取得使用者之至少一生理指標、藉由體表溫度感測器140來取得使用者之體表溫度資料。於步驟1200,藉由環境溫度感測器150來取得使用者所處環境之環境溫度資料,藉由濕度感測器160來取得使用者所處環境之環境濕度資料。於步驟1300,運算單元170根據核心溫度資料、心率資料、至少一生理指標、體表溫度資料、環境溫度資料與環境濕度資料來運算出使用者之代表性特徵溫度資料。關於步驟1100、1200與1300之細節已於上述關於用於增強體表溫度量測的精確度的系統100的說明當中詳細討論過,因此不再贅述。
FIG. 2 is a flowchart of a
綜合上述,本揭露提出一種用於增強體表溫度 量測的精確度的系統與方法,透過將會影響量測的精確度的生理指標與環境因子一併納入體表溫度之運算的考量,從而能夠增強體表溫度量測的精確度。 In summary, this disclosure proposes a method for enhancing body surface temperature The system and method of measurement accuracy can enhance the accuracy of body surface temperature measurement by incorporating physiological indicators and environmental factors that affect the accuracy of measurement into the calculation of body surface temperature.
以上概述了數個實施例的特徵,因此熟習此技藝者可以更了解本揭露的態樣。熟習此技藝者應了解到,其可輕易地把本揭露當作基礎來設計或修改其他的製程與結構,藉此實現和在此所介紹的這些實施例相同的目標及/或達到相同的優點。熟習此技藝者也應可明白,這些等效的建構並未脫離本揭露的精神與範圍,並且他們可以在不脫離本揭露精神與範圍的前提下做各種的改變、替換與變動。 The features of several embodiments are summarized above, so those who are familiar with the art can better understand the aspect of the present disclosure. Those who are familiar with this technique should understand that they can easily use the present disclosure as a basis to design or modify other processes and structures, thereby achieving the same goals and/or the same advantages as the embodiments described herein. . Those who are familiar with this art should also understand that these equivalent constructions do not depart from the spirit and scope of this disclosure, and they can make various changes, substitutions and alterations without departing from the spirit and scope of this disclosure.
100‧‧‧用於增強體表溫度量測的精確度的系統 100‧‧‧System for enhancing the accuracy of body surface temperature measurement
110‧‧‧核心溫度感測器 110‧‧‧Core temperature sensor
120‧‧‧心率感測器 120‧‧‧Heart rate sensor
130‧‧‧生理指標感測器 130‧‧‧Physiological Index Sensor
140‧‧‧體表溫度感測器 140‧‧‧Body Surface Temperature Sensor
150‧‧‧環境溫度感測器 150‧‧‧Ambient temperature sensor
160‧‧‧濕度感測器 160‧‧‧Humidity Sensor
170‧‧‧運算單元 170‧‧‧Computer unit
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/596,744 US20200205675A1 (en) | 2018-12-28 | 2019-10-08 | System and method for enhancing accuracy of body surface temperature measurement |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862785698P | 2018-12-28 | 2018-12-28 | |
US62/785,698 | 2018-12-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202025961A TW202025961A (en) | 2020-07-16 |
TWI745720B true TWI745720B (en) | 2021-11-11 |
Family
ID=73004895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108125879A TWI745720B (en) | 2018-12-28 | 2019-07-22 | System and method for enhancing accuracy of body surface temperature measurement |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI745720B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1734858B1 (en) * | 2004-03-22 | 2014-07-09 | BodyMedia, Inc. | Non-invasive temperature monitoring device |
CN106798545A (en) * | 2017-03-03 | 2017-06-06 | 董云鹏 | Thermometer System |
-
2019
- 2019-07-22 TW TW108125879A patent/TWI745720B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1734858B1 (en) * | 2004-03-22 | 2014-07-09 | BodyMedia, Inc. | Non-invasive temperature monitoring device |
CN106798545A (en) * | 2017-03-03 | 2017-06-06 | 董云鹏 | Thermometer System |
Also Published As
Publication number | Publication date |
---|---|
TW202025961A (en) | 2020-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6945383B2 (en) | Evaluation request program, evaluation request method, and computer equipment | |
JP6277716B2 (en) | Biological information measuring device, biological information processing method, and program | |
KR100612864B1 (en) | Method and apparatus for calculating calory | |
US9848825B2 (en) | Wearable sensing band | |
US10448928B2 (en) | Method and device for detecting physiological index | |
US20160220122A1 (en) | Physiological characteristics determinator | |
JP5767833B2 (en) | Saddle position estimation apparatus, heel position estimation system, and heel position estimation method | |
US20200205675A1 (en) | System and method for enhancing accuracy of body surface temperature measurement | |
TWI655928B (en) | Physiological monitoring device, physiological monitoring method and computer readable recording medium for implementing the physiological monitoring method | |
JP2017046960A (en) | Sleep management device, sleep management system, sleep management method and program thereof | |
JP2016164525A (en) | Temperature measurement device and temperature measurement method | |
JP2008250967A (en) | Health management system | |
US20230355103A1 (en) | Methods, Systems, and Devices for Improved Skin Temperature Monitoring | |
JP6720093B2 (en) | User terminal | |
CN114364958A (en) | Deep body temperature estimation device, deep body temperature estimation method, and deep body temperature estimation program | |
TWI745720B (en) | System and method for enhancing accuracy of body surface temperature measurement | |
JP2002312754A (en) | Pedometer | |
CN113598721A (en) | Wearable terminal, core body temperature monitoring method thereof and computer readable storage medium | |
US20170308677A1 (en) | Snacking control system, wearable device, snacking control method, and program | |
JP6746508B2 (en) | User terminal device and data transmission method | |
US20240071624A1 (en) | Techniques for identifying polycystic ovary syndrome and endometriosis from wearable-based physiological data | |
JP3132791U (en) | Mobile phone that can measure multiple physical data | |
US20230248246A1 (en) | Apparatus and method for estimating body temperature | |
JP6861033B2 (en) | Operation method and status data generation method of user terminal, server, improvement proposal creation device | |
US20190304331A1 (en) | Electronic biometric monitoring |