TWI742675B - 攝像用光學鏡頭組、取像裝置及電子裝置 - Google Patents
攝像用光學鏡頭組、取像裝置及電子裝置 Download PDFInfo
- Publication number
- TWI742675B TWI742675B TW109116712A TW109116712A TWI742675B TW I742675 B TWI742675 B TW I742675B TW 109116712 A TW109116712 A TW 109116712A TW 109116712 A TW109116712 A TW 109116712A TW I742675 B TWI742675 B TW I742675B
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- imaging
- optical axis
- image
- object side
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0055—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0055—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
- G02B13/0065—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/04—Reversed telephoto objectives
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/22—Telecentric objectives or lens systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/64—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一種攝像用光學鏡頭組,包含九片透鏡。九片透鏡沿光路由物側至像側依序為第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡、第七透鏡、第八透鏡以及第九透鏡。第一透鏡具有正屈折力。第八透鏡具有正屈折力,且第八透鏡像側表面於近光軸處為凸面。第九透鏡像側表面於近光軸處為凹面,且第九透鏡像側表面於離軸處具有至少一凸臨界點。當滿足特定條件時,攝像用光學鏡頭組能同時滿足小型化及高成像品質的需求。
Description
本發明係關於一種攝像用光學鏡頭組、取像裝置及電子裝置,特別是一種適用於電子裝置的攝像用光學鏡頭組及取像裝置。
隨著半導體製程技術更加精進,使得電子感光元件性能有所提升,畫素可達到更微小的尺寸,因此,具備高成像品質的光學鏡頭儼然成為不可或缺的一環。
而隨著科技日新月異,配備光學鏡頭的電子裝置的應用範圍更加廣泛,對於光學鏡頭的要求也是更加多樣化。由於往昔之光學鏡頭較不易在成像品質、敏感度、光圈大小、體積或視角等需求間取得平衡,故本發明提供了一種光學鏡頭以符合需求。
本發明提供一種攝像用光學鏡頭組、取像裝置以及電子裝置。其中,攝像用光學鏡頭組沿光路由物側至像側依序包含九片透鏡。攝像用光學鏡頭組的透鏡總數為九片。當滿足特定條件時,本發明提供的攝像用光學鏡頭組能同時滿足小型化及高成像品質的需求。
本發明提供一種攝像用光學鏡頭組,包含九片透鏡。九片透鏡沿光路由物側至像側依序為第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡、第七透鏡、第八透鏡以及第九透鏡。攝像用光學鏡頭組的透鏡總數為九片。第一透鏡具有正屈折力。第八透鏡具有正屈折力,且第八透鏡像側表面於近光軸處為凸面。第九透鏡像側表面於近光軸處為凹面,且第九透鏡像側表面於離軸處具有至少一凸臨界點。第八透鏡物側表面的曲率半徑為
R15,第八透鏡像側表面的曲率半徑為R16,攝像用光學鏡頭組的光圈值為Fno,其滿足下列條件:-0.75<(R15+R16)/(R15-R16);以及Fno<2.60。
本發明另提供一種攝像用光學鏡頭組,包含九片透鏡。九片透鏡沿光路由物側至像側依序為第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡、第七透鏡、第八透鏡以及第九透鏡。攝像用光學鏡頭組的透鏡總數為九片。第一透鏡像側表面於近光軸處為凹面。第二透鏡具有正屈折力。第八透鏡具有正屈折力,且第八透鏡像側表面於近光軸處為凸面。第九透鏡具有負屈折力,第九透鏡像側表面於近光軸處為凹面,且第九透鏡像側表面於離軸處具有至少一凸臨界點。第八透鏡物側表面的曲率半徑為R15,第八透鏡像側表面的曲率半徑為R16,攝像用光學鏡頭組的光圈值為Fno,其滿足下列條件:-0.50<(R15+R16)/(R15-R16);以及Fno<2.60。
本發明提供一種取像裝置,其包含前述的攝像用光學鏡頭組以及電子感光元件,其中電子感光元件設置於攝像用光學鏡頭組的成像面上。
本發明提供一種電子裝置,其包含至少二取像裝置,且所述至少二取像裝置皆位於電子裝置的同一側。所述至少二取像裝置包含一個前述的取像裝置。所述至少二取像裝置各自的最大視角皆不相同,且所述至少二取像裝置之間的最大視角相差至少20度。
當(R15+R16)/(R15-R16)滿足上述條件時,有助於提供第八透鏡足夠結構強度的形狀配置,亦有助於強化成像品質。
當Fno滿足上述條件時,可進一步加強光圈配置,讓攝像用光學鏡頭組能提供充足的進光量。
10、10a、10b、10c、10d、10e、10f、10g、10h、10i、10j、10k、10m、10n:取像裝置
11:成像鏡頭
12:驅動裝置
13:電子感光元件
14:影像穩定模組
20、30、40、50:電子裝置
21:顯示裝置
C:臨界點
IM:成像面
OA1:第一光軸
OA2:第二光軸
OA3:第三光軸
LF:光路轉折元件
LF1:第一光路轉折元件
LF2:第二光路轉折元件
LG:透鏡群
100、200、300、400、500、600、700、800、900、1000、1100:光圈
301、401、501、801、802、901、902、1001、1002:光闌
110、210、310、410、510、610、710、810、910、1010、1110:第一透鏡
111、211、311、411、511、611、711、811、911、1011、1111:物側表面
112、212、312、412、512、612、712、812、912、1012、1112:像側表面
120、220、320、420、520、620、720、820、920、1020、1120:第二透鏡
121、221、321、421、521、621、721、821、921、1021、1121:物側表面
122、222、322、422、522、622、722、822、922、1022、1122:像側表面
130、230、330、430、530、630、730、830、930、1030、1130:第三透鏡
131、231、331、431、531、631、731、831、931、1031、1131:物側表面
132、232、332、432、532、632、732、832、932、1032、1132:像側表面
140、240、340、440、540、640、740、840、940、1040、1140:第四透鏡
141、241、341、441、541、641、741、841、941、1041、1141:物側表面
142、242、342、442、542、642、742、842、942、1042、1142:像側表面
150、250、350、450、550、650、750、850、950、1050、1150:第五透鏡
151、251、351、451、551、651、751、851、951、1051、1151:物側表面
152、252、352、452、552、652、752、852、952、1052、1152:像側表面
160、260、360、460、560、660、760、860、960、1060、1160:第六透鏡
161、261、361、461、561、661、761、861、961、1061、1161:物側表面
162、262、362、462、562、662、762、862、962、1062、1162:像側表面
170、270、370、470、570、670、770、870、970、1070、1170:第七透鏡
171、271、371、471、571、671、771、871、971、1071、1171:物側表面
172、272、372、472、572、672、772、872、972、1072、1172:像側表面
180、280、380、480、580、680、780、880、980、1080、1180:第八透鏡
181、281、381、481、581、681、781、881、981、1081、1181:物側表面
182、282、382、482、582、682、782、882、982、1082、1182:像側表面
190、290、390、490、590、690、790、890、990、1090、1190:第九透鏡
191、291、391、491、591、691、791、891、991、1091、1191:物側表面
192、292、392、492、592、692、792、892、992、1092、1192:像側表面
193、293、393、493、593、693、793、893、993、1093、1193:紅外線濾除濾光元件
196、296、396、496、596、696、796、896、996、1096、1196:成像面
199、299、399、499、599、699、799、899、999、1099、1199:電子感光元件
ΣCT:攝像用光學鏡頭組中所有透鏡於光軸上的厚度總和
BL:第九透鏡像側表面至成像面於光軸上的距離
CR:主光線
CRA:攝像用光學鏡頭組於最大成像高度位置的主光線入射角度
ET9:第九透鏡物側表面的最大有效半徑位置與第九透鏡像側表面的最
大有效半徑位置之間平行於光軸的距離
f:攝像用光學鏡頭組的焦距
f1:第一透鏡的焦距
f2:第二透鏡的焦距
f3:第三透鏡的焦距
f4:第四透鏡的焦距
f5:第五透鏡的焦距
f6:第六透鏡的焦距
f7:第七透鏡的焦距
f8:第八透鏡的焦距
f9:第九透鏡的焦距
Fno:攝像用光學鏡頭組的光圈值
FOV:攝像用光學鏡頭組中最大視角
ImgH:攝像用光學鏡頭組的最大成像高度
MaxET9:第九透鏡物側表面與第九透鏡像側表面之間最大有效半徑範圍內平行於光軸的最大距離
N1:第一透鏡的折射率
N2:第二透鏡的折射率
N3:第三透鏡的折射率
N4:第四透鏡的折射率
N5:第五透鏡的折射率
N6:第六透鏡的折射率
N7:第七透鏡的折射率
N8:第八透鏡的折射率
N9:第九透鏡的折射率
Ni:第i透鏡的折射率
R15:第八透鏡物側表面的曲率半徑
R16:第八透鏡像側表面的曲率半徑
R17:第九透鏡物側表面的曲率半徑
R18:第九透鏡像側表面的曲率半徑
Td:第一透鏡物側表面至第九透鏡像側表面於光軸上的距離
TL:第一透鏡物側表面至成像面於光軸上的距離
V1:第一透鏡的阿貝數
V2:第二透鏡的阿貝數
V3:第三透鏡的阿貝數
V4:第四透鏡的阿貝數
V5:第五透鏡的阿貝數
V6:第六透鏡的阿貝數
V7:第七透鏡的阿貝數
V8:第八透鏡的阿貝數
V9:第九透鏡的阿貝數
Vi:第i透鏡的阿貝數
Vmin:攝像用光學鏡頭組所有透鏡中的阿貝數最小值
V20:攝像用光學鏡頭組中阿貝數小於20的透鏡數量
V26:攝像用光學鏡頭組中阿貝數小於26的透鏡數量
V40:攝像用光學鏡頭組中阿貝數小於40的透鏡數量
Y_MaxET9:第九透鏡物側表面與第九透鏡像側表面之間最大有效半徑範圍內平行於光軸的最大距離處與光軸間的垂直距離
Y11:第一透鏡物側表面的最大有效半徑
Y92:第九透鏡像側表面的最大有效半徑
Yc11:第一透鏡物側表面的臨界點與光軸間的垂直距離
Yc81:第八透鏡物側表面的臨界點與光軸間的垂直距離
Yc92:第九透鏡像側表面的臨界點與光軸間的垂直距離
Ymax:攝像用光學鏡頭組中各透鏡表面之最大有效半徑中的最大值
Ymin:攝像用光學鏡頭組中各透鏡表面之最大有效半徑中的最小值
圖1繪示依照本發明第一實施例的取像裝置示意圖。
圖2由左至右依序為第一實施例的球差、像散以及畸變曲線圖。
圖3繪示依照本發明第二實施例的取像裝置示意圖。
圖4由左至右依序為第二實施例的球差、像散以及畸變曲線圖。
圖5繪示依照本發明第三實施例的取像裝置示意圖。
圖6由左至右依序為第三實施例的球差、像散以及畸變曲線圖。
圖7繪示依照本發明第四實施例的取像裝置示意圖。
圖8由左至右依序為第四實施例的球差、像散以及畸變曲線圖。
圖9繪示依照本發明第五實施例的取像裝置示意圖。
圖10由左至右依序為第五實施例的球差、像散以及畸變曲線圖。
圖11繪示依照本發明第六實施例的取像裝置示意圖。
圖12由左至右依序為第六實施例的球差、像散以及畸變曲線圖。
圖13繪示依照本發明第七實施例的取像裝置示意圖。
圖14由左至右依序為第七實施例的球差、像散以及畸變曲線圖。
圖15繪示依照本發明第八實施例的取像裝置示意圖。
圖16由左至右依序為第八實施例的球差、像散以及畸變曲線圖。
圖17繪示依照本發明第九實施例的取像裝置示意圖。
圖18由左至右依序為第九實施例的球差、像散以及畸變曲線圖。
圖19繪示依照本發明第十實施例的取像裝置示意圖。
圖20由左至右依序為第十實施例的球差、像散以及畸變曲線圖。
圖21繪示依照本發明第十一實施例的取像裝置示意圖。
圖22由左至右依序為第十一實施例的球差、像散以及畸變曲線圖。
圖23繪示依照本發明第十二實施例的一種取像裝置的立體示意圖。
圖24繪示依照本發明第十三實施例的一種電子裝置之一側的立體示意圖。
圖25繪示依照本發明第十四實施例的一種電子裝置之一側的立體示意圖。
圖26繪示依照本發明第十五實施例的一種電子裝置之一側的立體示意圖。
圖27繪示依照本發明第十六實施例的一種電子裝置之一側的立體示意圖。
圖28繪示依照本發明第一實施例中參數Y11、Y92、Yc11、Yc81、Yc92以及部分透鏡之臨界點的示意圖。
圖29繪示依照本發明第六實施例中參數Y92、ET9、MaxET9以及Y_MaxET9的示意圖。
圖30繪示依照本發明第一實施例中參數CRA的示意圖。
圖31繪示依照本發明的光路轉折元件在攝像用光學鏡頭組中的一種配置關係示意圖。
圖32繪示依照本發明的光路轉折元件在攝像用光學鏡頭組中的另一種配置關係示意圖。
圖33繪示依照本發明的二個光路轉折元件在攝像用光學鏡頭組中的一種配置關係示意圖。
攝像用光學鏡頭組包含九片透鏡,且九片透鏡沿光路由物側至像側依序為第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡、第七透鏡、第八透鏡以及第九透鏡。攝像用光學鏡頭組的透鏡總數為九片。
攝像用光學鏡頭組之第一透鏡至第九透鏡中各二相鄰透鏡之間於光軸上可皆具有一空氣間隔,亦即第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡、第七透鏡、第八透鏡與第九透鏡可為九片單一非黏合透鏡。由於黏合透鏡的製程較非黏合透鏡複雜,特別在兩透鏡的黏合面需擁有高準度的曲面,以便達到兩透鏡黏合時的高密合度,且在黏合的過程中,也
可能因偏位而造成密合度不佳,影響整體光學成像品質。因此,本發明的攝像用光學鏡頭組中,任二相鄰的透鏡之間於光軸上可皆具有一空氣間隔,可有效避免黏合透鏡所產生的問題,並可讓各透鏡面形於設計時可具有更多彈性,有助於縮減體積並修正像差。
第一透鏡可具有正屈折力;藉此,可提供主要的匯聚能力,以有效壓縮攝像用光學鏡頭組的總長,達到小型化的需求。第一透鏡物側表面於近光軸處可為凹面;藉此,可調整攝像用光學鏡頭組的入射光路,以加強成像品質。第一透鏡像側表面於近光軸處可為凹面;藉此,有助於調整第一透鏡的屈折力與修正離軸像差。在第一透鏡物側表面與第一透鏡像側表面二者中,至少其中一表面於離軸處可具有至少一臨界點;藉此,有助於進一步控制第一透鏡表面的變化程度,以提升周邊影像品質。其中,第一透鏡物側表面於離軸處可具有至少一凸臨界點;藉此,有助於在廣視角的配置下縮小第一透鏡的有效半徑,以進一步縮小攝像用光學鏡頭組的體積,進而配置於更多種電子裝置或是空間限制更嚴苛的裝置內。請參照圖28,係繪示有依照本發明第一實施例中第一透鏡物側表面111之凸臨界點C的示意圖。
第二透鏡可具有正屈折力。藉此,可配合或修正第一透鏡後的光路。
第八透鏡具有正屈折力;藉此,可提供主要的正屈折力,並有效於成像面前收縮光束。第八透鏡像側表面於近光軸處為凸面;藉此,可調整後焦距的長度,並進一步縮短攝像用光學鏡頭組的總長。在第八透鏡物側表面與第八透鏡像側表面二者中,至少其中一表面於離軸處可具有至少一臨界點;藉此,有助於提升成像面周邊的照度並修正周邊影像的像差。請參照圖28,係繪示有依照本發明第一實施例中第八透鏡物側表面181和第八透鏡像側表面182之臨界點C的示意圖。
第九透鏡可具有負屈折力;藉此,可調整主點以及後焦距,並使光線以較佳的角度入射於成像面。第九透鏡像側表面於近光軸處為凹面;藉
此,有助於進一步調整後焦距,以滿足小型化的需求。第九透鏡像側表面於離軸處具有至少一凸臨界點;藉此,可控制中心與周邊光路的搭配,使攝像用光學鏡頭組具有適當的後焦距長度。請參照圖28,係繪示有依照本發明第一實施例中第九透鏡物側表面191和第九透鏡像側表面192之臨界點C的示意圖。圖28繪示第一實施例中第一透鏡物側表面、第八透鏡物側表面、第八透鏡像側表面、第九透鏡物側表面和第九透鏡像側表面的臨界點作為示例性說明,然本發明各實施例中除了第一透鏡、第八透鏡和第九透鏡外,其他的透鏡也可具有一個或多個臨界點。
第八透鏡物側表面的曲率半徑為R15,第八透鏡像側表面的曲率半徑為R16,其滿足下列條件:-0.75<(R15+R16)/(R15-R16)。藉此,有助於提供第八透鏡足夠結構強度的形狀配置,亦有助於強化成像品質。其中,亦可滿足下列條件:-0.50<(R15+R16)/(R15-R16)。其中,亦可滿足下列條件:-0.30<(R15+R16)/(R15-R16)<4.0。其中,亦可滿足下列條件:0.0<(R15+R16)/(R15-R16)<3.50。其中,亦可滿足下列條件:0.30<(R15+R16)/(R15-R16)<3.0。
攝像用光學鏡頭組的光圈值(F-number)為Fno,其滿足下列條件:Fno<2.60。藉此,可進一步加強光圈配置,讓攝像用光學鏡頭組能提供充足的進光量。其中,亦可滿足下列條件:1.0<Fno<2.30。其中,亦可滿足下列條件:1.20<Fno<2.10。
攝像用光學鏡頭組的焦距為f,第八透鏡物側表面的曲率半徑為R15,第八透鏡像側表面的曲率半徑為R16,其可滿足下列條件:1.0<|f/R15|+|f/R16|。藉此,第八透鏡的形狀配置有助於修正像差,以提升成像品質。其中,亦可滿足下列條件:1.33<|f/R15|+|f/R16|<8.0。
第一透鏡物側表面至成像面於光軸上的距離為TL,攝像用光學鏡頭組的最大成像高度為ImgH(即電子感光元件之有效感測區域對角線總長的一半),其可滿足下列條件:TL/ImgH<3.0。藉此,有助於確保攝像用光學鏡頭組能夠在小型化與模組製造性之間取得適當的平衡。其中,亦可滿足下列條件:
TL/ImgH<2.0。其中,亦可滿足下列條件:1.0<TL/ImgH<1.50。
攝像用光學鏡頭組的焦距為f,第八透鏡像側表面的曲率半徑為R16,第九透鏡物側表面的曲率半徑為R17,其可滿足下列條件:1.20<|f/R16|+|f/R17|。藉此,可進一步縮短後焦距,以更妥善地利用有限的空間。其中,亦可滿足下列條件:1.60<|f/R16|+|f/R17|<8.0。
第八透鏡物側表面的臨界點與光軸間的垂直距離為Yc81,第九透鏡像側表面的臨界點與光軸間的垂直距離為Yc92,其可滿足下列條件:0.50<Yc92/Yc81<2.30。藉此,有助於修正像側端的離軸像差,同時控制系統後焦距。其中,亦可滿足下列條件:0.50<Yc92/Yc81<1.75。請參照圖28,係繪示有依照本發明第一實施例中參數Yc81和Yc92的示意圖。
攝像用光學鏡頭組中阿貝數小於40的透鏡數量為V40,其可滿足下列條件:4V40。藉此,有助於加強修正色差。其中,攝像用光學鏡頭組中阿貝數小於26的透鏡數量為V26,其可滿足下列條件:3V26。其中,攝像用光學鏡頭組中阿貝數小於20的透鏡數量為V20,其可滿足下列條件:2V20。
第一透鏡物側表面至成像面於光軸上的距離為TL,攝像用光學鏡頭組的焦距為f,其可滿足下列條件:TL/f<4.0。藉此,可有效控制攝像用光學鏡頭組的總長,以配置於更多元用途的裝置中。其中,亦可滿足下列條件:TL/f<1.40。其中,亦可滿足下列條件:1.40<TL/f<3.50。
攝像用光學鏡頭組中最大視角為FOV,其可滿足下列條件:90[度]<FOV<150[度]。藉此,可使攝像用光學鏡頭組擷取最普遍使用的影像範圍,以滿足多數的產品需求。其中,亦可滿足下列條件:70[度]<FOV<105[度]。
第九透鏡像側表面的曲率半徑為R18,攝像用光學鏡頭組的最大成像高度為ImgH,其可滿足下列條件:R18/ImgH<1.0。藉此,可進一步縮短後焦距,以縮短攝像用光學鏡頭組的總長。其中,亦可滿足下列條件:R18/ImgH<0.75。其中,亦可滿足下列條件:R18/ImgH<0.70。
第一透鏡物側表面至成像面於光軸上的距離為TL,攝像用光學
鏡頭組的最大成像高度為ImgH,攝像用光學鏡頭組於最大成像高度位置的主光線入射角度為CRA,其可滿足下列條件:TL/[ImgH×tan(CRA)]<3.0。藉此,有助於攝像用光學鏡頭組在小型化與成像品質之間取得適當的平衡。其中,亦可滿足下列條件:TL/[ImgH×tan(CRA)]<2.30。請參照圖30,係繪示有依照本發明第一實施例中參數CRA的示意圖,其中有一主光線CR入射於成像面196的最大成像高度之位置,且成像面196的法線方向與主光線CR之間的夾角即為主光線入射角度(CRA)。
第九透鏡物側表面與第九透鏡像側表面之間平行於光軸的最大距離為MaxET9,第九透鏡物側表面的最大有效半徑位置與第九透鏡像側表面的最大有效半徑位置之間平行於光軸的距離為ET9,其可滿足下列條件:1.25<MaxET9/ET9<4.0。藉此,有助於確保第九透鏡的厚度較均勻,以提供足夠的結構強度。其中,亦可滿足下列條件:1.60<MaxET9/ET9<3.50。請參照圖29,係繪示有依照本發明第六實施例中參數MaxET9和ET9的示意圖。
第九透鏡像側表面的最大有效半徑為Y92,第九透鏡像側表面至成像面於光軸上的距離為BL,其可滿足下列條件:2.0<Y92/BL<20。藉此,有助於後焦距能夠在小型化與成像品質之間取得適當的平衡。其中,亦可滿足下列條件:3.0<Y92/BL<15。其中,亦可滿足下列條件:4.0<Y92/BL<10。請參照圖28,係繪示有依照本發明第一實施例中參數Y92的示意圖。
第一透鏡物側表面至第九透鏡像側表面於光軸上的距離為Td,攝像用光學鏡頭組中所有透鏡於光軸上的厚度總和為ΣCT,其可滿足下列條件:Td/ΣCT<2.0。藉此,可避免透鏡間距過小或過大,以最佳化透鏡的空間使用效率。其中,亦可滿足下列條件:Td/ΣCT<1.80。其中,亦可滿足下列條件:1.20<Td/ΣCT<1.70。
攝像用光學鏡頭組所有透鏡中的阿貝數最小值為Vmin,其可滿足下列條件:Vmin<20。藉此,有助於加強修正色差。
第一透鏡的阿貝數為V1,第二透鏡的阿貝數為V2,第三透鏡
的阿貝數為V3,第四透鏡的阿貝數為V4,第五透鏡的阿貝數為V5,第六透鏡的阿貝數為V6,第七透鏡的阿貝數為V7,第八透鏡的阿貝數為V8,第九透鏡的阿貝數為V9,第i透鏡的阿貝數為Vi,第一透鏡的折射率為N1,第二透鏡的折射率為N2,第三透鏡的折射率為N3,第四透鏡的折射率為N4,第五透鏡的折射率為N5,第六透鏡的折射率為N6,第七透鏡的折射率為N7,第八透鏡的折射率為N8,第九透鏡的折射率為N9,第i透鏡的折射率為Ni,攝像用光學鏡頭組中可有至少一片透鏡滿足下列條件:6.0<Vi/Ni<12.0,其中i=1、2、3、4、5、6、7、8或9。藉此,可調整透鏡材質,有助於修正色差。其中,攝像用光學鏡頭組中亦可有至少一片透鏡滿足下列條件:6.0<Vi/Ni<11.2,其中i=1、2、3、4、5、6、7、8或9。其中,攝像用光學鏡頭組中亦可有至少一片透鏡滿足下列條件:7.5<Vi/Ni<10,其中i=1、2、3、4、5、6、7、8或9。
第一透鏡物側表面的臨界點與光軸間的垂直距離為Yc11,第一透鏡物側表面的最大有效半徑為Y11,其可滿足下列條件:Yc11/Y11<0.75。藉此,有助於在廣視角的配置下縮小第一透鏡的有效半徑,進而有效縮小攝像用光學鏡頭組的體積,以應用於更多種或是空間限制更嚴苛的裝置內。其中,亦可滿足下列條件:0.05<Yc11/Y11<0.60。請參照圖28,係繪示有依照本發明第一實施例中參數Yc11和Y11的示意圖。
攝像用光學鏡頭組的焦距為f,第一透鏡的焦距為f1,第二透鏡的焦距為f2,第三透鏡的焦距為f3,第四透鏡的焦距為f4,第五透鏡的焦距為f5,第六透鏡的焦距為f6,第七透鏡的焦距為f7,第八透鏡的焦距為f8,第九透鏡的焦距為f9,其可滿足下列條件:-1.5<f/f1<4.0;-3.0<f/f2<2.0;-3.0<f/f3<3.0;-3.0<f/f4<3.0;-3.0<f/f5<3.0;-3.0<f/f6<3.0;-3.0<f/f7<3.0;0<f/f8<4.0;以及-4.0<f/f9<2.0。藉此,可確保各個透鏡之間的屈折力差異不致過大,進而避免影像修正過度或因透鏡表面形狀極端變化而產生過多鬼影等現象。其中,亦可滿足下列條件:-1.0<f/f1<2.50;-1.50<f/f2<1.0;-2.0<f/f3<2.0;-2.0<f/f4<2.0;-2.0<f/f5<2.0;-2.0<f/f6<2.0;-2.0<f/f7<2.0;0.50<f/f8<
3.50;以及-4.0<f/f9<0.0。其中,亦可滿足下列條件:1.0<f/f8<3.0。其中,亦可滿足下列條件:-3.50<f/f9<-0.50。其中,亦可滿足下列條件:-3.0<f/f9<-1.0。
第九透鏡物側表面與第九透鏡像側表面之間平行於光軸的最大距離處與光軸間的垂直距離為Y_MaxET9(也就是說,第九透鏡物側表面與第九透鏡像側表面之間平行於光軸的最大距離為MaxET9,第九透鏡滿足MaxET9之位置與光軸間的垂直距離為Y_MaxET9),第九透鏡像側表面的最大有效半徑為Y92,其可滿足下列條件:0.40<Y_MaxET9/Y92<0.80。藉此,有助於第九透鏡具備足夠的結構強度。其中,亦可滿足下列條件:0.50<Y_MaxET9/Y92<0.75。請參照圖29,係繪示有依照本發明第六實施例中參數MaxET9、Y_MaxET9和Y92的示意圖。
上述本發明攝像用光學鏡頭組中的各技術特徵皆可組合配置,而達到對應之功效。
本發明所揭露的攝像用光學鏡頭組中,透鏡的材質可為玻璃或塑膠。若透鏡的材質為玻璃,則可增加攝像用光學鏡頭組屈折力配置的自由度,並降低外在環境溫度變化對成像的影響,而玻璃透鏡可使用研磨或模造等技術製作而成。若透鏡材質為塑膠,則可以有效降低生產成本。其中,本發明所揭露的攝像用光學鏡頭組中,可有至少一半數量的透鏡為塑膠材質;藉此,可增加透鏡形狀設計的自由度,有利於透鏡製造與修正像差。此外,可於鏡面上設置球面或非球面(ASP),其中球面透鏡可減低製造難度,而若於鏡面上設置非球面,則可藉此獲得較多的控制變數,用以消減像差、縮減透鏡數目,並可有效降低本發明攝像用光學鏡頭組的總長。進一步地,非球面可以塑膠射出成型或模造玻璃透鏡等方式製作而成。
本發明所揭露的攝像用光學鏡頭組中,若透鏡表面為非球面,則表示該透鏡表面光學有效區全部或其中一部分為非球面。
本發明所揭露的攝像用光學鏡頭組中,可選擇性地在任一(以上)
透鏡材料中加入添加物,以改變透鏡對於特定波段光線的穿透率,進而減少雜散光與色偏。例如:添加物可具備濾除系統中600奈米至800奈米波段光線的功能,以助於減少多餘的紅光或紅外光;或可濾除350奈米至450奈米波段光線,以減少多餘的藍光或紫外光,因此,添加物可避免特定波段光線對成像造成干擾。此外,添加物可均勻混和於塑料中,並以射出成型技術製作成透鏡。
本發明所揭露的攝像用光學鏡頭組中,若透鏡表面係為凸面且未界定該凸面位置時,則表示該凸面可位於透鏡表面近光軸處;若透鏡表面係為凹面且未界定該凹面位置時,則表示該凹面可位於透鏡表面近光軸處。若透鏡之屈折力或焦距未界定其區域位置時,則表示該透鏡之屈折力或焦距可為透鏡於近光軸處之屈折力或焦距。
本發明所揭露的攝像用光學鏡頭組中,所述透鏡表面的臨界點(Critical Point),係指垂直於光軸的平面與透鏡表面相切之切線上的切點,且臨界點並非位於光軸上。
本發明所揭露的攝像用光學鏡頭組中,攝像用光學鏡頭組之成像面依其對應的電子感光元件之不同,可為一平面或有任一曲率之曲面,特別是指凹面朝往物側方向之曲面。
本發明所揭露的攝像用光學鏡頭組中,於成像光路上最靠近成像面的透鏡與成像面之間可選擇性配置一片以上的成像修正元件(平場元件等),以達到修正影像的效果(像彎曲等)。該成像修正元件的光學性質,比如曲率、厚度、折射率、位置、面型(凸面或凹面、球面或非球面、繞射表面及菲涅爾表面等)可配合取像裝置需求而做調整。一般而言,較佳的成像修正元件配置為將具有朝往物側方向為凹面的薄型平凹元件設置於靠近成像面處。
本發明所揭露的攝像用光學鏡頭組中,亦可於成像光路上在被攝物至成像面間選擇性設置至少一具有轉折光路功能的元件,如稜鏡或反射鏡等,以提供攝像用光學鏡頭組較高彈性的空間配置,使電子裝置的輕薄化不受制於攝像用光學鏡頭組之光學總長度。進一步說明,請參照圖31和圖32,其中
圖31係繪示依照本發明的光路轉折元件在攝像用光學鏡頭組中的一種配置關係示意圖,且圖32係繪示依照本發明的光路轉折元件在攝像用光學鏡頭組中的另一種配置關係示意圖。如圖31及圖32所示,攝像用光學鏡頭組可沿光路由被攝物(未繪示)至成像面IM,依序具有第一光軸OA1、光路轉折元件LF與第二光軸OA2,其中光路轉折元件LF可以如圖31所示係設置於被攝物與攝像用光學鏡頭組的透鏡群LG之間,或者如圖32所示係設置於攝像用光學鏡頭組的透鏡群LG與成像面IM之間。此外,請參照圖33,係繪示依照本發明的二個光路轉折元件在攝像用光學鏡頭組中的一種配置關係示意圖。如圖33所示,攝像用光學鏡頭組亦可沿光路由被攝物(未繪示)至成像面IM,依序具有第一光軸OA1、第一光路轉折元件LF1、第二光軸OA2、第二光路轉折元件LF2與第三光軸OA3,其中第一光路轉折元件LF1係設置於被攝物與攝像用光學鏡頭組的透鏡群LG之間,第二光路轉折元件LF2係設置於攝像用光學鏡頭組的透鏡群LG與成像面IM之間,且光線在第一光軸OA1的行進方向可以如圖33所示係與光線在第三光軸OA3的行進方向為相同方向。攝像用光學鏡頭組亦可選擇性配置三個以上的光路轉折元件,本發明不以圖式所揭露之光路轉折元件的種類、數量與位置為限。
本發明所揭露的攝像用光學鏡頭組中,可設置有至少一光闌,其可位於第一透鏡之前、各透鏡之間或最後一透鏡之後,該光闌的種類如耀光光闌(Glare Stop)或視場光闌(Field Stop)等,可用以減少雜散光,有助於提升影像品質。
本發明所揭露的攝像用光學鏡頭組中,光圈之配置可為前置光圈或中置光圈。其中前置光圈意即光圈設置於被攝物與第一透鏡間,中置光圈則表示光圈設置於第一透鏡與成像面間。若光圈為前置光圈,可使出射瞳(Exit Pupil)與成像面產生較長的距離,使其具有遠心(Telecentric)效果,並可增加電子感光元件的CCD或CMOS接收影像的效率;若為中置光圈,係有助於擴大攝像用光學鏡頭組的視場角。
本發明可適當設置一可變孔徑元件,該可變孔徑元件可為機械構件或光線調控元件,其可以電或電訊號控制孔徑的尺寸與形狀。該機械構件可包含葉片組、屏蔽板等可動件;該光線調控元件可包含濾光元件、電致變色材料、液晶層等遮蔽材料。該可變孔徑元件可藉由控制影像的進光量或曝光時間,強化影像調節的能力。此外,該可變孔徑元件亦可為本發明之光圈,可藉由改變光圈值以調節影像品質,如景深或曝光速度等。
根據上述實施方式,以下提出具體實施例並配合圖式予以詳細說明。
<第一實施例>
請參照圖1至圖2,其中圖1繪示依照本發明第一實施例的取像裝置示意圖,圖2由左至右依序為第一實施例的球差、像散以及畸變曲線圖。由圖1可知,取像裝置包含攝像用光學鏡頭組(未另標號)與電子感光元件199。攝像用光學鏡頭組沿光路由物側至像側依序包含第一透鏡110、第二透鏡120、光圈100、第三透鏡130、第四透鏡140、第五透鏡150、第六透鏡160、第七透鏡170、第八透鏡180、第九透鏡190、紅外線濾除濾光元件(IR-cut Filter)193與成像面196。其中,光圈100貼附於第三透鏡130物側表面131。其中,電子感光元件199設置於成像面196上。攝像用光學鏡頭組包含九片透鏡(110、120、130、140、150、160、170、180、190),並且各透鏡之間無其他內插的透鏡。其中,九片透鏡中各二相鄰透鏡間於光軸上皆具有一空氣間隔。
第一透鏡110具有負屈折力,且為塑膠材質,其物側表面111於近光軸處為凹面,其像側表面112於近光軸處為凹面,其兩表面皆為非球面,其物側表面111於離軸處具有至少一凸臨界點。
第二透鏡120具有正屈折力,且為塑膠材質,其物側表面121於近光軸處為凸面,其像側表面122於近光軸處為凹面,其兩表面皆為非球面。
第三透鏡130具有正屈折力,且為塑膠材質,其物側表面131於近光軸處為凸面,其像側表面132於近光軸處為凹面,其兩表面皆為非球面。
第四透鏡140具有負屈折力,且為塑膠材質,其物側表面141於近光軸處為凸面,其像側表面142於近光軸處為凹面,其兩表面皆為非球面。
第五透鏡150具有正屈折力,且為塑膠材質,其物側表面151於近光軸處為凸面,其像側表面152於近光軸處為凸面,其兩表面皆為非球面。
第六透鏡160具有正屈折力,且為塑膠材質,其物側表面161於近光軸處為凸面,其像側表面162於近光軸處為凸面,其兩表面皆為非球面。
第七透鏡170具有負屈折力,且為塑膠材質,其物側表面171於近光軸處為凹面,其像側表面172於近光軸處為凸面,其兩表面皆為非球面。
第八透鏡180具有正屈折力,且為塑膠材質,其物側表面181於近光軸處為凸面,其像側表面182於近光軸處為凸面,其兩表面皆為非球面,其物側表面181於離軸處具有至少一臨界點,且其像側表面182於離軸處具有至少一臨界點。
第九透鏡190具有負屈折力,且為塑膠材質,其物側表面191於近光軸處為凸面,其像側表面192於近光軸處為凹面,其兩表面皆為非球面,其像側表面192於離軸處具有至少一凸臨界點。
紅外線濾除濾光元件193的材質為玻璃,其設置於第九透鏡190及成像面196之間,並不影響攝像用光學鏡頭組的焦距。
X:非球面與光軸的交點至非球面上距離光軸為Y的點平行於光軸的位移;Y:非球面曲線上的點與光軸的垂直距離;R:曲率半徑;k:錐面係數;以及Ai:第i階非球面係數。
第一實施例的攝像用光學鏡頭組中,攝像用光學鏡頭組的焦距為f,攝像用光學鏡頭組的光圈值為Fno,攝像用光學鏡頭組中最大視角的一半為HFOV,其數值如下:f=3.52公釐(mm),Fno=2.05,HFOV=61.2度(deg.)。
攝像用光學鏡頭組中最大視角為FOV,其滿足下列條件:FOV=122.4[度]。
第一透鏡110的阿貝數為V1,第二透鏡120的阿貝數為V2,第三透鏡130的阿貝數為V3,第四透鏡140的阿貝數為V4,第五透鏡150的阿貝數為V5,第六透鏡160的阿貝數為V6,第七透鏡170的阿貝數為V7,第八透鏡180的阿貝數為V8,第九透鏡190的阿貝數為V9,第一透鏡110的折射率為N1,第二透鏡120的折射率為N2,第三透鏡130的折射率為N3,第四透鏡140的折射率為N4,第五透鏡150的折射率為N5,第六透鏡160的折射率為N6,第七透鏡170的折射率為N7,第八透鏡180的折射率為N8,第九透鏡190的折射率為N9,其滿足下列條件:V1/N1=37.34;V2/N2=19.74;V3/N3=36.26;V4/N4=10.90;V5/N5=36.26;V6/N6=36.26;V7/N7=12.84;V8/N8=36.26;以及V9/N9=36.46。
攝像用光學鏡頭組中阿貝數小於20的透鏡數量為V20,其滿足下列條件:V20=1。
攝像用光學鏡頭組中阿貝數小於26的透鏡數量為V26,其滿足下列條件:V26=2。
攝像用光學鏡頭組中阿貝數小於40的透鏡數量為V40,其滿足下列條件:V40=3。
攝像用光學鏡頭組所有透鏡中的阿貝數最小值為Vmin,其滿足下列條件:Vmin=18.4。在本實施例中,在第一透鏡110至第九透鏡190當中,第四透鏡140的阿貝數小於其餘透鏡的阿貝數,因此Vmin等於第四透鏡140的阿貝數。
第一透鏡物側表面111至第九透鏡像側表面192於光軸上的距
離為Td,攝像用光學鏡頭組中所有透鏡於光軸上的厚度總和為ΣCT,其滿足下列條件:Td/ΣCT=1.66。在本實施例中,ΣCT為第一透鏡110、第二透鏡120、第三透鏡130、第四透鏡140、第五透鏡150、第六透鏡160、第七透鏡170、第八透鏡180與第九透鏡190於光軸上之厚度的總和。
第一透鏡物側表面111至成像面196於光軸上的距離為TL,攝像用光學鏡頭組的焦距為f,其滿足下列條件:TL/f=3.13。
第一透鏡物側表面111至成像面196於光軸上的距離為TL,攝像用光學鏡頭組的最大成像高度為ImgH,其滿足下列條件:TL/ImgH=1.80。
第一透鏡物側表面111至成像面196於光軸上的距離為TL,攝像用光學鏡頭組的最大成像高度為ImgH,攝像用光學鏡頭組於最大成像高度位置的主光線入射角度為CRA,其滿足下列條件:TL/[ImgH×tan(CRA)]=2.67。
第八透鏡物側表面181的曲率半徑為R15,第八透鏡像側表面182的曲率半徑為R16,其滿足下列條件:(R15+R16)/(R15-R16)=-0.20。
攝像用光學鏡頭組的焦距為f,第八透鏡物側表面181的曲率半徑為R15,第八透鏡像側表面182的曲率半徑為R16,其滿足下列條件:|f/R15|+|f/R16|=1.64。
攝像用光學鏡頭組的焦距為f,第八透鏡像側表面182的曲率半徑為R16,第九透鏡物側表面191的曲率半徑為R17,其滿足下列條件:|f/R16|+|f/R17|=1.94。
第九透鏡像側表面192的曲率半徑為R18,攝像用光學鏡頭組的最大成像高度為ImgH,其滿足下列條件:R18/ImgH=0.21。
第九透鏡像側表面192的最大有效半徑為Y92,第九透鏡像側表面192至成像面196於光軸上的距離為BL,其滿足下列條件:Y92/BL=3.25。
第一透鏡物側表面111的臨界點與光軸間的垂直距離為Yc11,第一透鏡物側表面111的最大有效半徑為Y11,其滿足下列條件:Yc11/Y11=0.35。
第八透鏡物側表面181的臨界點與光軸間的垂直距離為Yc81,第九透鏡像側表面192的臨界點與光軸間的垂直距離為Yc92,其滿足下列條件:Yc92/Yc81=0.95。
第九透鏡物側表面191與第九透鏡像側表面192之間平行於光軸的最大距離為MaxET9,第九透鏡物側表面191的最大有效半徑位置與第九透鏡像側表面192的最大有效半徑位置之間平行於光軸的距離為ET9,其滿足下列條件:MaxET9/ET9=2.39。
第九透鏡物側表面191與第九透鏡像側表面192之間平行於光軸的最大距離處與光軸間的垂直距離為Y_MaxET9,第九透鏡像側表面192的最大有效半徑為Y92,其滿足下列條件:Y_MaxET9/Y92=0.90。
攝像用光學鏡頭組的焦距為f,第一透鏡110的焦距為f1,第二透鏡120的焦距為f2,第三透鏡130的焦距為f3,第四透鏡140的焦距為f4,第五透鏡150的焦距為f5,第六透鏡160的焦距為f6,第七透鏡170的焦距為f7,第八透鏡180的焦距為f8,第九透鏡190的焦距為f9,其滿足下列條件:f/f1=-0.61;f/f2=0.34;f/f3=0.23;f/f4=-0.17;f/f5=0.64;f/f6=0.44;f/f7=-0.59;f/f8=0.86;以及f/f9=-0.71。
請配合參照下列表一以及表二。
表一為圖1第一實施例詳細的結構數據,其中曲率半徑、厚度及焦距的單位為公釐(mm),且表面0到21依序表示由物側至像側的表面。表二為第一實施例中的非球面數據,其中,k為非球面曲線方程式中的錐面係數,A4到A24則表示各表面第4到24階非球面係數。此外,以下各實施例表格乃對應各實施例的示意圖與像差曲線圖,表格中數據的定義皆與第一實施例的表一及表二的定義相同,在此不加以贅述。
<第二實施例>
請參照圖3至圖4,其中圖3繪示依照本發明第二實施例的取像裝置示意圖,圖4由左至右依序為第二實施例的球差、像散以及畸變曲線圖。由圖3可知,取像裝置包含攝像用光學鏡頭組(未另標號)與電子感光元件299。攝像用光學鏡頭組沿光路由物側至像側依序包含第一透鏡210、第二透鏡220、光圈200、第三透鏡230、第四透鏡240、第五透鏡250、第六透鏡260、第七透
鏡270、第八透鏡280、第九透鏡290、紅外線濾除濾光元件293與成像面296。其中,光圈200貼附於第三透鏡230物側表面231。其中,電子感光元件299設置於成像面296上。攝像用光學鏡頭組包含九片透鏡(210、220、230、240、250、260、270、280、290),並且各透鏡之間無其他內插的透鏡。其中,九片透鏡中各二相鄰透鏡間於光軸上皆具有一空氣間隔。
第一透鏡210具有負屈折力,且為塑膠材質,其物側表面211於近光軸處為凹面,其像側表面212於近光軸處為凹面,其兩表面皆為非球面,其物側表面211於離軸處具有至少一凸臨界點。
第二透鏡220具有正屈折力,且為塑膠材質,其物側表面221於近光軸處為凸面,其像側表面222於近光軸處為凹面,其兩表面皆為非球面。
第三透鏡230具有正屈折力,且為塑膠材質,其物側表面231於近光軸處為凸面,其像側表面232於近光軸處為凹面,其兩表面皆為非球面。
第四透鏡240具有負屈折力,且為塑膠材質,其物側表面241於近光軸處為凹面,其像側表面242於近光軸處為凹面,其兩表面皆為非球面。
第五透鏡250具有正屈折力,且為塑膠材質,其物側表面251於近光軸處為凸面,其像側表面252於近光軸處為凸面,其兩表面皆為非球面。
第六透鏡260具有正屈折力,且為塑膠材質,其物側表面261於近光軸處為凸面,其像側表面262於近光軸處為凸面,其兩表面皆為非球面。
第七透鏡270具有負屈折力,且為塑膠材質,其物側表面271於近光軸處為凹面,其像側表面272於近光軸處為凸面,其兩表面皆為非球面。
第八透鏡280具有正屈折力,且為塑膠材質,其物側表面281於近光軸處為凸面,其像側表面282於近光軸處為凸面,其兩表面皆為非球面,其物側表面281於離軸處具有至少一臨界點,且其像側表面282於離軸處具有至少一臨界點。
第九透鏡290具有負屈折力,且為塑膠材質,其物側表面291於近光軸處為凸面,其像側表面292於近光軸處為凹面,其兩表面皆為非球面,
其像側表面292於離軸處具有至少一凸臨界點。
紅外線濾除濾光元件293的材質為玻璃,其設置於第九透鏡290及成像面296之間,並不影響攝像用光學鏡頭組的焦距。
請配合參照下列表三以及表四。
第二實施例中,非球面的曲線方程式表示如第一實施例的形
式。此外,下表所述的定義皆與第一實施例相同,在此不加以贅述。
<第三實施例>
請參照圖5至圖6,其中圖5繪示依照本發明第三實施例的取像裝置示意圖,圖6由左至右依序為第三實施例的球差、像散以及畸變曲線圖。由圖5可知,取像裝置包含攝像用光學鏡頭組(未另標號)與電子感光元件399。攝像用光學鏡頭組沿光路由物側至像側依序包含第一透鏡310、第二透鏡320、光圈300、第三透鏡330、第四透鏡340、光闌301、第五透鏡350、第六透鏡360、第七透鏡370、第八透鏡380、第九透鏡390、紅外線濾除濾光元件393與成像面396。其中,電子感光元件399設置於成像面396上。攝像用光學鏡頭組包含九片透鏡(310、320、330、340、350、360、370、380、390),並且各透鏡之間無其他內插的透鏡。其中,九片透鏡中各二相鄰透鏡間於光軸上皆具有一空氣間隔。
第一透鏡310具有正屈折力,且為塑膠材質,其物側表面311
於近光軸處為凹面,其像側表面312於近光軸處為凸面,其兩表面皆為非球面,其物側表面311於離軸處具有至少一凸臨界點,且其像側表面312於離軸處具有至少一臨界點。
第二透鏡320具有正屈折力,且為塑膠材質,其物側表面321於近光軸處為凸面,其像側表面322於近光軸處為凹面,其兩表面皆為非球面。
第三透鏡330具有負屈折力,且為塑膠材質,其物側表面331於近光軸處為凸面,其像側表面332於近光軸處為凹面,其兩表面皆為非球面。
第四透鏡340具有正屈折力,且為塑膠材質,其物側表面341於近光軸處為凹面,其像側表面342於近光軸處為凸面,其兩表面皆為非球面。
第五透鏡350具有正屈折力,且為塑膠材質,其物側表面351於近光軸處為凹面,其像側表面352於近光軸處為凸面,其兩表面皆為非球面。
第六透鏡360具有負屈折力,且為塑膠材質,其物側表面361於近光軸處為凹面,其像側表面362於近光軸處為凹面,其兩表面皆為非球面。
第七透鏡370具有負屈折力,且為塑膠材質,其物側表面371於近光軸處為凹面,其像側表面372於近光軸處為凸面,其兩表面皆為非球面。
第八透鏡380具有正屈折力,且為塑膠材質,其物側表面381於近光軸處為凹面,其像側表面382於近光軸處為凸面,其兩表面皆為非球面,其物側表面381於離軸處具有至少一臨界點。
第九透鏡390具有負屈折力,且為塑膠材質,其物側表面391於近光軸處為凸面,其像側表面392於近光軸處為凹面,其兩表面皆為非球面,其像側表面392於離軸處具有至少一凸臨界點。
紅外線濾除濾光元件393的材質為玻璃,其設置於第九透鏡390及成像面396之間,並不影響攝像用光學鏡頭組的焦距。
請配合參照下列表五以及表六。
第三實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表所述的定義皆與第一實施例相同,在此不加以贅述。
<第四實施例>
請參照圖7至圖8,其中圖7繪示依照本發明第四實施例的取像裝置示意圖,圖8由左至右依序為第四實施例的球差、像散以及畸變曲線圖。由圖7可知,取像裝置包含攝像用光學鏡頭組(未另標號)與電子感光元件499。攝像用光學鏡頭組沿光路由物側至像側依序包含第一透鏡410、第二透鏡420、光圈400、第三透鏡430、第四透鏡440、光闌401、第五透鏡450、第六透鏡460、第七透鏡470、第八透鏡480、第九透鏡490、紅外線濾除濾光元件493與成像面496。其中,電子感光元件499設置於成像面496上。攝像用光學鏡頭組包含九片透鏡(410、420、430、440、450、460、470、480、490),並且各透鏡之間無其他內插的透鏡。其中,九片透鏡中各二相鄰透鏡間於光軸上皆具有一空氣間隔。
第一透鏡410具有正屈折力,且為塑膠材質,其物側表面411於近光軸處為凹面,其像側表面412於近光軸處為凸面,其兩表面皆為非球面,其物側表面411於離軸處具有至少一凸臨界點,且其像側表面412於離軸處具有至少一臨界點。
第二透鏡420具有正屈折力,且為塑膠材質,其物側表面421於近光軸處為凸面,其像側表面422於近光軸處為凹面,其兩表面皆為非球面。
第三透鏡430具有負屈折力,且為塑膠材質,其物側表面431於近光軸處為凸面,其像側表面432於近光軸處為凹面,其兩表面皆為非球面。
第四透鏡440具有正屈折力,且為塑膠材質,其物側表面441於近光軸處為凸面,其像側表面442於近光軸處為凸面,其兩表面皆為非球面。
第五透鏡450具有正屈折力,且為塑膠材質,其物側表面451於近光軸處為凸面,其像側表面452於近光軸處為凸面,其兩表面皆為非球面。
第六透鏡460具有負屈折力,且為塑膠材質,其物側表面461於近光軸處為凹面,其像側表面462於近光軸處為凹面,其兩表面皆為非球面。
第七透鏡470具有負屈折力,且為塑膠材質,其物側表面471於近光軸處為凹面,其像側表面472於近光軸處為凸面,其兩表面皆為非球面。
第八透鏡480具有正屈折力,且為塑膠材質,其物側表面481於近光軸處為凹面,其像側表面482於近光軸處為凸面,其兩表面皆為非球面。
第九透鏡490具有負屈折力,且為塑膠材質,其物側表面491於近光軸處為凸面,其像側表面492於近光軸處為凹面,其兩表面皆為非球面,其像側表面492於離軸處具有至少一凸臨界點。
紅外線濾除濾光元件493的材質為玻璃,其設置於第九透鏡490及成像面496之間,並不影響攝像用光學鏡頭組的焦距。
請配合參照下列表七以及表八。
第四實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表所述的定義皆與第一實施例相同,在此不加以贅述。
<第五實施例>
請參照圖9至圖10,其中圖9繪示依照本發明第五實施例的取像裝置示意圖,圖10由左至右依序為第五實施例的球差、像散以及畸變曲線圖。由圖9可知,取像裝置包含攝像用光學鏡頭組(未另標號)與電子感光元件599。攝像用光學鏡頭組沿光路由物側至像側依序包含第一透鏡510、第二透鏡520、光圈500、第三透鏡530、第四透鏡540、光闌501、第五透鏡550、第六透鏡560、第七透鏡570、第八透鏡580、第九透鏡590、紅外線濾除濾光元件593與成像面596。其中,電子感光元件599設置於成像面596上。攝像用光學鏡頭組包含九片透鏡(510、520、530、540、550、560、570、580、590),並且各透鏡之間無其他內插的透鏡。其中,九片透鏡中各二相鄰透鏡間於光軸上皆具有一空氣間隔。
第一透鏡510具有負屈折力,且為塑膠材質,其物側表面511於近光軸處為凹面,其像側表面512於近光軸處為凹面,其兩表面皆為非球面,其物側表面511於離軸處具有至少一凸臨界點。
第二透鏡520具有正屈折力,且為塑膠材質,其物側表面521於近光軸處為凸面,其像側表面522於近光軸處為凹面,其兩表面皆為非球面。
第三透鏡530具有負屈折力,且為塑膠材質,其物側表面531於近光軸處為凸面,其像側表面532於近光軸處為凹面,其兩表面皆為非球面。
第四透鏡540具有正屈折力,且為塑膠材質,其物側表面541於近光軸處為凸面,其像側表面542於近光軸處為凸面,其兩表面皆為非球面。
第五透鏡550具有正屈折力,且為塑膠材質,其物側表面551於近光軸處為凹面,其像側表面552於近光軸處為凸面,其兩表面皆為非球面。
第六透鏡560具有負屈折力,且為塑膠材質,其物側表面561於近光軸處為凹面,其像側表面562於近光軸處為凹面,其兩表面皆為非球面。
第七透鏡570具有負屈折力,且為塑膠材質,其物側表面571於近光軸處為凹面,其像側表面572於近光軸處為凸面,其兩表面皆為非球面。
第八透鏡580具有正屈折力,且為塑膠材質,其物側表面581
於近光軸處為凹面,其像側表面582於近光軸處為凸面,其兩表面皆為非球面,其物側表面581於離軸處具有至少一臨界點,且其像側表面582於離軸處具有至少一臨界點。
第九透鏡590具有負屈折力,且為塑膠材質,其物側表面591於近光軸處為凸面,其像側表面592於近光軸處為凹面,其兩表面皆為非球面,其像側表面592於離軸處具有至少一凸臨界點。
紅外線濾除濾光元件593的材質為玻璃,其設置於第九透鏡590及成像面596之間,並不影響攝像用光學鏡頭組的焦距。
請配合參照下列表九以及表十。
第五實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表所述的定義皆與第一實施例相同,在此不加以贅述。
<第六實施例>
請參照圖11至圖12,其中圖11繪示依照本發明第六實施例的取像裝置示意圖,圖12由左至右依序為第六實施例的球差、像散以及畸變曲線圖。由圖11可知,取像裝置包含攝像用光學鏡頭組(未另標號)與電子感光元件699。攝像用光學鏡頭組沿光路由物側至像側依序包含第一透鏡610、第二透鏡620、光圈600、第三透鏡630、第四透鏡640、第五透鏡650、第六透鏡660、第七透鏡670、第八透鏡680、第九透鏡690、紅外線濾除濾光元件693與成像
面696。其中,電子感光元件699設置於成像面696上。攝像用光學鏡頭組包含九片透鏡(610、620、630、640、650、660、670、680、690),並且各透鏡之間無其他內插的透鏡。其中,九片透鏡中各二相鄰透鏡間於光軸上皆具有一空氣間隔。
第一透鏡610具有負屈折力,且為塑膠材質,其物側表面611於近光軸處為凸面,其像側表面612於近光軸處為凹面,其兩表面皆為非球面。
第二透鏡620具有正屈折力,且為塑膠材質,其物側表面621於近光軸處為凸面,其像側表面622於近光軸處為凹面,其兩表面皆為非球面。
第三透鏡630具有負屈折力,且為塑膠材質,其物側表面631於近光軸處為凸面,其像側表面632於近光軸處為凹面,其兩表面皆為非球面。
第四透鏡640具有正屈折力,且為塑膠材質,其物側表面641於近光軸處為凸面,其像側表面642於近光軸處為凸面,其兩表面皆為非球面。
第五透鏡650具有正屈折力,且為塑膠材質,其物側表面651於近光軸處為凹面,其像側表面652於近光軸處為凸面,其兩表面皆為非球面。
第六透鏡660具有負屈折力,且為塑膠材質,其物側表面661於近光軸處為凹面,其像側表面662於近光軸處為凹面,其兩表面皆為非球面。
第七透鏡670具有正屈折力,且為塑膠材質,其物側表面671於近光軸處為凹面,其像側表面672於近光軸處為凸面,其兩表面皆為非球面。
第八透鏡680具有正屈折力,且為塑膠材質,其物側表面681於近光軸處為凹面,其像側表面682於近光軸處為凸面,其兩表面皆為非球面,其物側表面681於離軸處具有至少一臨界點,且其像側表面682於離軸處具有至少一臨界點。
第九透鏡690具有負屈折力,且為塑膠材質,其物側表面691於近光軸處為凸面,其像側表面692於近光軸處為凹面,其兩表面皆為非球面,其像側表面692於離軸處具有至少一凸臨界點。
紅外線濾除濾光元件693的材質為玻璃,其設置於第九透鏡690
及成像面696之間,並不影響攝像用光學鏡頭組的焦距。
請配合參照下列表十一以及表十二。
第六實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表所述的定義皆與第一實施例相同,在此不加以贅述。
<第七實施例>
請參照圖13至圖14,其中圖13繪示依照本發明第七實施例的取像裝置示意圖,圖14由左至右依序為第七實施例的球差、像散以及畸變曲線圖。由圖13可知,取像裝置包含攝像用光學鏡頭組(未另標號)與電子感光元件799。攝像用光學鏡頭組沿光路由物側至像側依序包含光圈700、第一透鏡710、第二透鏡720、第三透鏡730、第四透鏡740、光闌701、第五透鏡750、第六透鏡760、第七透鏡770、第八透鏡780、第九透鏡790、紅外線濾除濾光元件793與成像面796。其中,電子感光元件799設置於成像面796上。攝像用光學鏡頭組包含九片透鏡(710、720、730、740、750、760、770、780、790),並且各透鏡之間無其他內插的透鏡。其中,九片透鏡中各二相鄰透鏡間於光軸上皆具有一空氣間隔。
第一透鏡710具有正屈折力,且為塑膠材質,其物側表面711於近光軸處為凸面,其像側表面712於近光軸處為凹面,其兩表面皆為非球面。
第二透鏡720具有負屈折力,且為塑膠材質,其物側表面721於近光軸處為凸面,其像側表面722於近光軸處為凹面,其兩表面皆為非球面。
第三透鏡730具有負屈折力,且為塑膠材質,其物側表面731於近光軸處為凸面,其像側表面732於近光軸處為凹面,其兩表面皆為非球面。
第四透鏡740具有正屈折力,且為塑膠材質,其物側表面741於近光軸處為凸面,其像側表面742於近光軸處為凸面,其兩表面皆為非球面。
第五透鏡750具有正屈折力,且為塑膠材質,其物側表面751於近光軸處為凹面,其像側表面752於近光軸處為凸面,其兩表面皆為非球面。
第六透鏡760具有負屈折力,且為塑膠材質,其物側表面761於近光軸處為凹面,其像側表面762於近光軸處為凹面,其兩表面皆為非球面。
第七透鏡770具有負屈折力,且為塑膠材質,其物側表面771於近光軸處為凸面,其像側表面772於近光軸處為凹面,其兩表面皆為非球面。
第八透鏡780具有正屈折力,且為塑膠材質,其物側表面781於近光軸處為凸面,其像側表面782於近光軸處為凸面,其兩表面皆為非球面,其物側表面781於離軸處具有至少一臨界點。
第九透鏡790具有負屈折力,且為塑膠材質,其物側表面791於近光軸處為凹面,其像側表面792於近光軸處為凹面,其兩表面皆為非球面,其像側表面792於離軸處具有至少一凸臨界點。
紅外線濾除濾光元件793的材質為玻璃,其設置於第九透鏡790及成像面796之間,並不影響攝像用光學鏡頭組的焦距。
請配合參照下列表十三以及表十四。
第七實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表所述的定義皆與第一實施例相同,在此不加以贅述。
<第八實施例>
請參照圖15至圖16,其中圖15繪示依照本發明第八實施例的取像裝置示意圖,圖16由左至右依序為第八實施例的球差、像散以及畸變曲線圖。由圖15可知,取像裝置包含攝像用光學鏡頭組(未另標號)與電子感光元件899。攝像用光學鏡頭組沿光路由物側至像側依序包含光圈800、第一透鏡810、第二透鏡820、第三透鏡830、光闌801、第四透鏡840、光闌802、第五透鏡850、第六透鏡860、第七透鏡870、第八透鏡880、第九透鏡890、紅外線濾除濾光元件893與成像面896。其中,電子感光元件899設置於成像面896上。攝像用光學鏡頭組包含九片透鏡(810、820、830、840、850、860、870、880、890),並且各透鏡之間無其他內插的透鏡。其中,九片透鏡中各二相鄰透鏡間於光軸上皆具有一空氣間隔。
第一透鏡810具有正屈折力,且為塑膠材質,其物側表面811於近光軸處為凸面,其像側表面812於近光軸處為凹面,其兩表面皆為非球面。
第二透鏡820具有負屈折力,且為塑膠材質,其物側表面821於近光軸處為凸面,其像側表面822於近光軸處為凹面,其兩表面皆為非球面。
第三透鏡830具有負屈折力,且為塑膠材質,其物側表面831於近光軸處為凸面,其像側表面832於近光軸處為凹面,其兩表面皆為非球面。
第四透鏡840具有正屈折力,且為塑膠材質,其物側表面841於近光軸處為凸面,其像側表面842於近光軸處為凸面,其兩表面皆為非球面。
第五透鏡850具有正屈折力,且為塑膠材質,其物側表面851於近光軸處為凹面,其像側表面852於近光軸處為凸面,其兩表面皆為非球面。
第六透鏡860具有負屈折力,且為塑膠材質,其物側表面861於近光軸處為凹面,其像側表面862於近光軸處為凸面,其兩表面皆為非球面。
第七透鏡870具有正屈折力,且為塑膠材質,其物側表面871
於近光軸處為凸面,其像側表面872於近光軸處為凹面,其兩表面皆為非球面。
第八透鏡880具有正屈折力,且為塑膠材質,其物側表面881於近光軸處為凸面,其像側表面882於近光軸處為凸面,其兩表面皆為非球面,其物側表面881於離軸處具有至少一臨界點,且其像側表面882於離軸處具有至少一臨界點。
第九透鏡890具有負屈折力,且為塑膠材質,其物側表面891於近光軸處為凹面,其像側表面892於近光軸處為凹面,其兩表面皆為非球面,其像側表面892於離軸處具有至少一凸臨界點。
紅外線濾除濾光元件893的材質為玻璃,其設置於第九透鏡890及成像面896之間,並不影響攝像用光學鏡頭組的焦距。
請配合參照下列表十五以及表十六。
第八實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表所述的定義皆與第一實施例相同,在此不加以贅述。
<第九實施例>
請參照圖17至圖18,其中圖17繪示依照本發明第九實施例的取像裝置示意圖,圖18由左至右依序為第九實施例的球差、像散以及畸變曲線圖。由圖17可知,取像裝置包含攝像用光學鏡頭組(未另標號)與電子感光元件999。攝像用光學鏡頭組沿光路由物側至像側依序包含光圈900、第一透鏡910、
第二透鏡920、第三透鏡930、光闌901、第四透鏡940、光闌902、第五透鏡950、第六透鏡960、第七透鏡970、第八透鏡980、第九透鏡990、紅外線濾除濾光元件993與成像面996。其中,電子感光元件999設置於成像面996上。攝像用光學鏡頭組包含九片透鏡(910、920、930、940、950、960、970、980、990),並且各透鏡之間無其他內插的透鏡。其中,九片透鏡中各二相鄰透鏡間於光軸上皆具有一空氣間隔。
第一透鏡910具有正屈折力,且為塑膠材質,其物側表面911於近光軸處為凸面,其像側表面912於近光軸處為凹面,其兩表面皆為非球面。
第二透鏡920具有負屈折力,且為塑膠材質,其物側表面921於近光軸處為凸面,其像側表面922於近光軸處為凹面,其兩表面皆為非球面。
第三透鏡930具有負屈折力,且為塑膠材質,其物側表面931於近光軸處為凸面,其像側表面932於近光軸處為凹面,其兩表面皆為非球面。
第四透鏡940具有正屈折力,且為塑膠材質,其物側表面941於近光軸處為凹面,其像側表面942於近光軸處為凸面,其兩表面皆為非球面。
第五透鏡950具有正屈折力,且為塑膠材質,其物側表面951於近光軸處為凹面,其像側表面952於近光軸處為凸面,其兩表面皆為非球面。
第六透鏡960具有負屈折力,且為塑膠材質,其物側表面961於近光軸處為凹面,其像側表面962於近光軸處為凸面,其兩表面皆為非球面。
第七透鏡970具有正屈折力,且為塑膠材質,其物側表面971於近光軸處為凸面,其像側表面972於近光軸處為凹面,其兩表面皆為非球面。
第八透鏡980具有正屈折力,且為塑膠材質,其物側表面981於近光軸處為凹面,其像側表面982於近光軸處為凸面,其兩表面皆為非球面,其物側表面981於離軸處具有至少一臨界點。
第九透鏡990具有負屈折力,且為塑膠材質,其物側表面991於近光軸處為凹面,其像側表面992於近光軸處為凹面,其兩表面皆為非球面其像側表面992於離軸處具有至少一凸臨界點。
紅外線濾除濾光元件993的材質為玻璃,其設置於第九透鏡990及成像面996之間,並不影響攝像用光學鏡頭組的焦距。
請配合參照下列表十七以及表十八。
第九實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表所述的定義皆與第一實施例相同,在此不加以贅述。
<第十實施例>
請參照圖19至圖20,其中圖19繪示依照本發明第十實施例的取像裝置示意圖,圖20由左至右依序為第十實施例的球差、像散以及畸變曲線圖。由圖19可知,取像裝置包含攝像用光學鏡頭組(未另標號)與電子感光元件1099。攝像用光學鏡頭組沿光路由物側至像側依序包含光圈1000、第一透鏡1010、第二透鏡1020、第三透鏡1030、光闌1001、第四透鏡1040、光闌1002、第五透鏡1050、第六透鏡1060、第七透鏡1070、第八透鏡1080、第九透鏡1090、紅外線濾除濾光元件1093與成像面1096。其中,電子感光元件1099設置於成像面1096上。攝像用光學鏡頭組包含九片透鏡(1010、1020、1030、1040、1050、1060、1070、1080、1090),並且各透鏡之間無其他內插的透鏡。其中,九片透鏡中各二相鄰透鏡間於光軸上皆具有一空氣間隔。
第一透鏡1010具有正屈折力,且為塑膠材質,其物側表面1011
於近光軸處為凸面,其像側表面1012於近光軸處為凹面,其兩表面皆為非球面。
第二透鏡1020具有負屈折力,且為塑膠材質,其物側表面1021於近光軸處為凸面,其像側表面1022於近光軸處為凹面,其兩表面皆為非球面。
第三透鏡1030具有負屈折力,且為塑膠材質,其物側表面1031於近光軸處為凸面,其像側表面1032於近光軸處為凹面,其兩表面皆為非球面。
第四透鏡1040具有正屈折力,且為塑膠材質,其物側表面1041於近光軸處為凹面,其像側表面1042於近光軸處為凸面,其兩表面皆為非球面。
第五透鏡1050具有正屈折力,且為塑膠材質,其物側表面1051於近光軸處為凹面,其像側表面1052於近光軸處為凸面,其兩表面皆為非球面。
第六透鏡1060具有負屈折力,且為塑膠材質,其物側表面1061於近光軸處為凹面,其像側表面1062於近光軸處為凸面,其兩表面皆為非球面。
第七透鏡1070具有正屈折力,且為塑膠材質,其物側表面1071於近光軸處為凸面,其像側表面1072於近光軸處為凹面,其兩表面皆為非球面。
第八透鏡1080具有正屈折力,且為塑膠材質,其物側表面1081於近光軸處為凸面,其像側表面1082於近光軸處為凸面,其兩表面皆為非球面,其物側表面1081於離軸處具有至少一臨界點。
第九透鏡1090具有負屈折力,且為塑膠材質,其物側表面1091於近光軸處為凹面,其像側表面1092於近光軸處為凹面,其兩表面皆為非球面,其像側表面1092於離軸處具有至少一凸臨界點。
紅外線濾除濾光元件1093的材質為玻璃,其設置於第九透鏡1090及成像面1096之間,並不影響攝像用光學鏡頭組的焦距。
請配合參照下列表十九以及表二十。
第十實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表所述的定義皆與第一實施例相同,在此不加以贅述。
<第十一實施例>
請參照圖21至圖22,其中圖21繪示依照本發明第十一實施例的取像裝置示意圖,圖22由左至右依序為第十一實施例的球差、像散以及畸變曲線圖。由圖21可知,取像裝置包含攝像用光學鏡頭組(未另標號)與電子感光元件1199。攝像用光學鏡頭組沿光路由物側至像側依序包含第一透鏡1110、第二透鏡1120、光圈1100、第三透鏡1130、第四透鏡1140、第五透鏡1150、第六透鏡1160、第七透鏡1170、第八透鏡1180、第九透鏡1190、紅外線濾除濾光元件1193與成像面1196。其中,電子感光元件1199設置於成像面1196上。攝像用光學鏡頭組包含九片透鏡(1110、1120、1130、1140、1150、1160、1170、1180、1190),並且各透鏡之間無其他內插的透鏡。其中,九片透鏡中各二相鄰透鏡間於光軸上皆具有一空氣間隔。
第一透鏡1110具有負屈折力,且為塑膠材質,其物側表面1111於近光軸處為凸面,其像側表面1112於近光軸處為凹面,其兩表面皆為非球面。
第二透鏡1120具有正屈折力,且為塑膠材質,其物側表面1121於近光軸處為凸面,其像側表面1122於近光軸處為凹面,其兩表面皆為非球面。
第三透鏡1130具有負屈折力,且為塑膠材質,其物側表面1131於近光軸處為凸面,其像側表面1132於近光軸處為凹面,其兩表面皆為非球面。
第四透鏡1140具有正屈折力,且為塑膠材質,其物側表面1141
於近光軸處為凹面,其像側表面1142於近光軸處為凸面,其兩表面皆為非球面。
第五透鏡1150具有正屈折力,且為塑膠材質,其物側表面1151於近光軸處為凹面,其像側表面1152於近光軸處為凸面,其兩表面皆為非球面。
第六透鏡1160具有負屈折力,且為塑膠材質,其物側表面1161於近光軸處為凹面,其像側表面1162於近光軸處為凹面,其兩表面皆為非球面。
第七透鏡1170具有正屈折力,且為塑膠材質,其物側表面1171於近光軸處為凹面,其像側表面1172於近光軸處為凸面,其兩表面皆為非球面。
第八透鏡1180具有正屈折力,且為塑膠材質,其物側表面1181於近光軸處為凹面,其像側表面1182於近光軸處為凸面,其兩表面皆為非球面,其物側表面1181於離軸處具有至少一臨界點,且其像側表面1182於離軸處具有至少一臨界點。
第九透鏡1190具有負屈折力,且為塑膠材質,其物側表面1191於近光軸處為凸面,其像側表面1192於近光軸處為凹面,其兩表面皆為非球面,其像側表面1192於離軸處具有至少一凸臨界點。
紅外線濾除濾光元件1193的材質為玻璃,其設置於第九透鏡1190及成像面1196之間,並不影響攝像用光學鏡頭組的焦距。
請配合參照下列表二十一以及表二十二。
第十一實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表所述的定義皆與第一實施例相同,在此不加以贅述。
<第十二實施例>
請參照圖23,係繪示依照本發明第十二實施例的一種取像裝置的立體示意圖。在本實施例中,取像裝置10為一相機模組。取像裝置10包含成像鏡頭11、驅動裝置12、電子感光元件13以及影像穩定模組14。成像鏡頭11包含上述第一實施例的攝像用光學鏡頭組、用於承載攝像用光學鏡頭組的鏡筒(未另標號)以及支持裝置(Holder Member,未另標號),成像鏡頭11亦可改為配置其他實施例的攝像用光學鏡頭組,本發明並不以此為限。取像裝置10利用成像鏡頭11聚光產生影像,並配合驅動裝置12進行影像對焦,最後成像於電子感光元件13並且能作為影像資料輸出。
驅動裝置12可具有自動對焦(Auto-Focus)功能,其驅動方式可使用如音圈馬達(Voice Coil Motor,VCM)、微機電系統(Micro Electro-Mechanical Systems,MEMS)、壓電系統(Piezoelectric)、以及記憶金屬(Shape Memory Alloy)等驅動系統。驅動裝置12可讓成像鏡頭11取得較佳的成像位置,可提供被攝物於不同物距的狀態下,皆能拍攝清晰影像。此外,取像裝置10搭載一感光度佳及低雜訊的電子感光元件13(如CMOS、CCD)設置於攝像用光學鏡頭組的成像面,可真實呈現攝像用光學鏡頭組的良好成像品質。
影像穩定模組14例如為加速計、陀螺儀或霍爾元件(Hall Effect Sensor)。驅動裝置12可搭配影像穩定模組14而共同作為一光學防手震裝置(Optical Image Stabilization,OIS),藉由調整成像鏡頭11不同軸向的變化以補償拍攝瞬間因晃動而產生的模糊影像,或利用影像軟體中的影像補償技術,來提供電子防手震功能(Electronic Image Stabilization,EIS),進一步提升動態以及低照度場景拍攝的成像品質。
<第十三實施例>
請參照圖24,係繪示依照本發明第十三實施例的一種電子裝置之一側的立體示意圖。
在本實施例中,電子裝置20為一智慧型手機。電子裝置20包含取像裝置10a、取像裝置10b以及顯示裝置21,其中取像裝置10a包含上述第二實施例的攝像用光學鏡頭組。圖24中的取像裝置10a、取像裝置10b與顯示裝置21係皆配置於電子裝置20的同一側,以使取像裝置10a及取像裝置10b可作為前置鏡頭以提供自拍功能,但本發明並不以此為限。
取像裝置10a為一標準取像裝置,且取像裝置10b為一飛時測距(Time of Flight,ToF)取像裝置。其中,取像裝置10b係可取得影像的深度資訊。上述電子裝置20以包含多個取像裝置10a、10b為例,但取像裝置的數量與配置並非用以限制本發明。
<第十四實施例>
請參照圖25,係繪示依照本發明第十四實施例的一種電子裝置之一側的立體示意圖。
在本實施例中,電子裝置30為一智慧型手機。電子裝置30包含第十二實施例之取像裝置10、取像裝置10c、取像裝置10d以及顯示裝置(未另標號),其中取像裝置10c包含上述第九實施例的攝像用光學鏡頭組。圖25中的取像裝置10、取像裝置10c與取像裝置10d係皆配置於電子裝置30的同一側,而顯示裝置則配置於電子裝置30的另一側。
取像裝置10為一廣角取像裝置,取像裝置10c為一標準取像裝置,且取像裝置10d為一望遠取像裝置。本實施例之取像裝置10、取像裝置10c與取像裝置10d具有相異的視角。其中,在取像裝置10、取像裝置10c與取像裝置10d當中,各二取像裝置的最大視角可相差至少20度。如此一來,使電子裝置30可提供不同的放大倍率,以達到光學變焦的拍攝效果。其中,在取像裝置10、取像裝置10c與取像裝置10d當中,各二取像裝置的最大視角亦可相差至少30度。其中,在取像裝置10、取像裝置10c與取像裝置10d當中,各二取像裝置的最大視角亦可相差至少40度。其中,在取像裝置10、取像裝置10c與取像裝置10d當中,各二取像裝置的最大視角亦可相差至少60度。其中,取像
裝置10的最大視角為122.4度,取像裝置10c的最大視角為80.0度,取像裝置10d的最大視角可位於15度至45度之間。上述電子裝置30以包含多個取像裝置10、10c、10d為例,但取像裝置的數量與配置並非用以限制本發明。
<第十五實施例>
請參照圖26,係繪示依照本發明第十五實施例的一種電子裝置之一側的立體示意圖。
在本實施例中,電子裝置40為一智慧型手機。電子裝置40包含第十二實施例之取像裝置10、取像裝置10e以及顯示裝置(未另標號),其中取像裝置10e包含上述第九實施例的攝像用光學鏡頭組。圖26中的取像裝置10與取像裝置10e係皆配置於電子裝置40的同一側,而顯示裝置則配置於電子裝置40的另一側。
取像裝置10為一廣角取像裝置,且取像裝置10e為一標準取像裝置。本實施例之取像裝置10與取像裝置10e具有相異的視角。其中,取像裝置10的最大視角及取像裝置10e的最大視角可相差至少20度。如此一來,使電子裝置40可提供不同的放大倍率,以達到光學變焦的拍攝效果。其中,取像裝置10的最大視角及取像裝置10e的最大視角亦可相差至少30度。其中,取像裝置10的最大視角及取像裝置10e的最大視角亦可相差至少40度。具體來說,取像裝置10的最大視角為122.4度,取像裝置10e的最大視角為80.0度,且取像裝置10的最大視角與取像裝置10e的最大視角相差42.4度。上述電子裝置40以包含多個取像裝置10、10e為例,但取像裝置的數量與配置並非用以限制本發明。
<第十六實施例>
請參照圖27,係繪示依照本發明第十六實施例的一種電子裝置之一側的立體示意圖。
在本實施例中,電子裝置50為一智慧型手機。電子裝置50包含取像裝置10f、取像裝置10g、取像裝置10h、取像裝置10i、取像裝置10j、取
像裝置10k、取像裝置10m、取像裝置10n以及顯示裝置(未另標號)。取像裝置10f、10g、10h、10i、10j、10k、10m、10n皆配置於電子裝置50的同一側,而顯示裝置則配置於電子裝置50的另一側。其中,取像裝置10h或10i包含上述第七實施例的攝像用光學鏡頭組。
取像裝置10f、10g為超廣角取像裝置,取像裝置10h、10i為廣角取像裝置,取像裝置10j、10k為望遠取像裝置,且取像裝置10m、10n為具有轉折光路配置的望遠取像裝置。其中,取像裝置10m、10n的轉折光路配置可例如分別具有類似圖31至圖33的結構,可參閱前述對應圖31至圖33之說明,於此不加以贅述。本實施例之取像裝置10f、10g、10h、10i、10j、10k、10m、10n具有相異的視角,使得電子裝置50可提供不同的放大倍率,以達到光學變焦的拍攝效果。上述電子裝置50以包含多個取像裝置10f、10g、10h、10i、10j、10k、10m、10n為例,但取像裝置的數量與配置並非用以限制本發明。
本發明的取像裝置10並不以應用於智慧型手機為限。取像裝置10、10a、10c、10e更可視需求應用於移動對焦的系統,並兼具優良像差修正與良好成像品質的特色。舉例來說,取像裝置10、10a、10c、10e可多方面應用於三維(3D)影像擷取、數位相機、行動裝置、數位平板、智慧型電視、網路監控設備、行車記錄器、倒車顯影裝置、多鏡頭裝置、辨識系統、體感遊戲機與穿戴式裝置等電子裝置中。前揭電子裝置僅是示範性地說明本發明的實際運用例子,並非限制本發明之取像裝置的運用範圍。
雖然本發明以前述之較佳實施例揭露如上,然其並非用以限定本發明,任何熟習相像技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。
100:光圈
110:第一透鏡
111:物側表面
112:像側表面
120:第二透鏡
121:物側表面
122:像側表面
130:第三透鏡
131:物側表面
132:像側表面
140:第四透鏡
141:物側表面
142:像側表面
150:第五透鏡
151:物側表面
152:像側表面
160:第六透鏡
161:物側表面
162:像側表面
170:第七透鏡
171:物側表面
172:像側表面
180:第八透鏡
181:物側表面
182:像側表面
190:第九透鏡
191:物側表面
192:像側表面
193:紅外線濾除濾光元件
196:成像面
199:電子感光元件
Claims (17)
- 一種攝像用光學鏡頭組,包含九片透鏡,該九片透鏡沿光路由物側至像側依序為第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡、第七透鏡、第八透鏡以及第九透鏡,且該攝像用光學鏡頭組的透鏡總數為九片;其中,該第一透鏡具有正屈折力,該第八透鏡具有正屈折力,該第八透鏡像側表面於近光軸處為凸面,該第九透鏡像側表面於近光軸處為凹面,且該第九透鏡像側表面於離軸處具有至少一凸臨界點;其中,該第八透鏡物側表面的曲率半徑為R15,該第八透鏡像側表面的曲率半徑為R16,該攝像用光學鏡頭組的光圈值為Fno,該第一透鏡物側表面至一成像面於光軸上的距離為TL,該攝像用光學鏡頭組的最大成像高度為ImgH,其滿足下列條件:-0.75<(R15+R16)/(R15-R16);Fno<2.60;以及TL/ImgH<2.0。
- 如請求項1所述之攝像用光學鏡頭組,其中該第八透鏡物側表面的曲率半徑為R15,該第八透鏡像側表面的曲率半徑為R16,其滿足下列條件:-0.30<(R15+R16)/(R15-R16)<4.0。
- 如請求項1所述之攝像用光學鏡頭組,其中該攝像用光學鏡頭組的焦距為f,該第八透鏡物側表面的曲率半徑為R15,該第八透鏡像側表面的曲率半徑為R16,其滿足下列條件: 1.0<|f/R15|+|f/R16|。
- 如請求項1所述之攝像用光學鏡頭組,其中該攝像用光學鏡頭組中各二相鄰透鏡之間於光軸上皆具有一空氣間隔;其中,該攝像用光學鏡頭組的光圈值為Fno,其滿足下列條件:1.0<Fno<2.30。
- 如請求項1所述之攝像用光學鏡頭組,其中該攝像用光學鏡頭組的焦距為f,該第八透鏡像側表面的曲率半徑為R16,該第九透鏡物側表面的曲率半徑為R17,其滿足下列條件:1.20<|f/R16|+|f/R17|。
- 如請求項1所述之攝像用光學鏡頭組,其中該第一透鏡物側表面與該第一透鏡像側表面中至少其中一表面於離軸處具有至少一臨界點。
- 如請求項1所述之攝像用光學鏡頭組,其中該第八透鏡物側表面與該第八透鏡像側表面中至少其中一表面於離軸處具有至少一臨界點。
- 如請求項7所述之攝像用光學鏡頭組,其中該第八透鏡物側表面的臨界點與光軸間的垂直距離為Yc81,該第九透鏡像側表面的臨界點與光軸間的垂直距離為Yc92,其滿足下列條件:0.50<Yc92/Yc81<2.30。
- 如請求項1所述之攝像用光學鏡頭組,其中該攝像用光學鏡頭組中至少一半數量的透鏡為塑膠材質; 其中,該第一透鏡物側表面至該成像面於光軸上的距離為TL,該攝像用光學鏡頭組的焦距為f,其滿足下列條件:TL/f<4.0。
- 如請求項10所述之攝像用光學鏡頭組,其中該第一透鏡物側表面至該成像面於光軸上的距離為TL,該攝像用光學鏡頭組的焦距為f,該攝像用光學鏡頭組中最大視角為FOV,其滿足下列條件:TL/f<1.40;以及70[度]<FOV<105[度]。
- 如請求項1所述之攝像用光學鏡頭組,其中該第九透鏡像側表面的曲率半徑為R18,該攝像用光學鏡頭組的最大成像高度為ImgH,其滿足下列條件:R18/ImgH<1.0。
- 如請求項1所述之攝像用光學鏡頭組,其中該第一透鏡物側表面至該成像面於光軸上的距離為TL,該攝像用光學鏡頭組的最大成像高度為ImgH,該攝像用光學鏡頭組於最大成像高度位置的主光線入射角度為CRA,其滿足下列條件:TL/[ImgH×tan(CRA)]<3.0。
- 如請求項1所述之攝像用光學鏡頭組,其中該第九透鏡物側表面與該第九透鏡像側表面之間平行於光軸的最大距離為MaxET9,該第九透鏡物側表面的最大有效半徑位置與該第九透鏡像側表面的最大有效半徑位置之間平行於光軸的距離為ET9,其滿足下列條件:1.25<MaxET9/ET9<4.0。
- 一種取像裝置,包含:如請求項1所述之攝像用光學鏡頭組;以及一電子感光元件,設置於該攝像用光學鏡頭組的該成像面上。
- 一種電子裝置,包含至少二取像裝置,且該至少二取像裝置皆位於該電子裝置的同一側,其中該至少二取像裝置包含一個如請求項15所述之取像裝置,該至少二取像裝置各自的最大視角皆不相同,且該至少二取像裝置之間的最大視角相差至少20度。
- 如請求項16所述之電子裝置,其中該至少二取像裝置之間的最大視角相差至少40度。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109116712A TWI742675B (zh) | 2020-05-20 | 2020-05-20 | 攝像用光學鏡頭組、取像裝置及電子裝置 |
CN202310103331.7A CN116047721A (zh) | 2020-05-20 | 2020-06-22 | 一种摄像用光学镜头组、取像装置及电子装置 |
CN202310135170.XA CN116047722A (zh) | 2020-05-20 | 2020-06-22 | 一种摄像用光学镜头组、取像装置及电子装置 |
CN202010575753.0A CN113703129B (zh) | 2020-05-20 | 2020-06-22 | 一种摄像用光学镜头组、取像装置及电子装置 |
US16/991,973 US11598935B2 (en) | 2020-05-20 | 2020-08-12 | Imaging optical lens assembly including nine lenses of −++−++−+−, ++−++−−+−, −+−++−−+−, −+−++−++−, +−−++−−+− or +−−++−++− refractive powers, image capturing unit and electronic device |
US18/101,029 US11947088B2 (en) | 2020-05-20 | 2023-01-24 | Imaging optical lens assembly including nine lenses of -++-++-, ++-++--+-, -+-++--+-, -+-++-++-, +--++--+- or +--++-++-++—refractive powers, image capturing unit and electronic device |
US18/586,107 US20240201473A1 (en) | 2020-05-20 | 2024-02-23 | Imaging optical lens assembly, image capturing unit and electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109116712A TWI742675B (zh) | 2020-05-20 | 2020-05-20 | 攝像用光學鏡頭組、取像裝置及電子裝置 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI742675B true TWI742675B (zh) | 2021-10-11 |
TW202144846A TW202144846A (zh) | 2021-12-01 |
Family
ID=78608855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109116712A TWI742675B (zh) | 2020-05-20 | 2020-05-20 | 攝像用光學鏡頭組、取像裝置及電子裝置 |
Country Status (3)
Country | Link |
---|---|
US (3) | US11598935B2 (zh) |
CN (3) | CN113703129B (zh) |
TW (1) | TWI742675B (zh) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109040553B (zh) | 2013-06-13 | 2021-04-13 | 核心光电有限公司 | 双孔径变焦数字摄影机 |
US9857568B2 (en) | 2013-07-04 | 2018-01-02 | Corephotonics Ltd. | Miniature telephoto lens assembly |
CN108388005A (zh) | 2013-07-04 | 2018-08-10 | 核心光电有限公司 | 小型长焦透镜套件 |
US9392188B2 (en) | 2014-08-10 | 2016-07-12 | Corephotonics Ltd. | Zoom dual-aperture camera with folded lens |
EP3553580A1 (en) | 2017-02-23 | 2019-10-16 | Corephotonics Ltd. | Folded camera lens designs |
CN114615399A (zh) | 2019-01-03 | 2022-06-10 | 核心光电有限公司 | 双重相机 |
CN114578518A (zh) | 2019-08-21 | 2022-06-03 | 核心光电有限公司 | 镜头组件 |
US12072609B2 (en) | 2019-09-24 | 2024-08-27 | Corephotonics Ltd. | Slim pop-out cameras and lenses for such cameras |
US11656538B2 (en) | 2019-11-25 | 2023-05-23 | Corephotonics Ltd. | Folded zoom camera module with adaptive aperture |
US11689708B2 (en) | 2020-01-08 | 2023-06-27 | Corephotonics Ltd. | Multi-aperture zoom digital cameras and methods of using same |
EP4411475A2 (en) | 2020-05-30 | 2024-08-07 | Corephotonics Ltd. | Systems and methods for obtaining a super macro image |
US11914117B2 (en) | 2020-07-31 | 2024-02-27 | Corephotonics Ltd. | Folded macro-tele camera lens designs including six lenses of ++−+−+ or +−++−+, seven lenses of ++−++−+, or eight lenses of ++−++−++ refractive powers |
WO2022058807A1 (en) | 2020-09-18 | 2022-03-24 | Corephotonics Ltd. | Pop-out zoom camera |
CN111913285B (zh) * | 2020-09-29 | 2020-12-15 | 瑞泰光学(常州)有限公司 | 摄像光学镜头 |
CN111929849B (zh) * | 2020-09-29 | 2020-12-18 | 瑞泰光学(常州)有限公司 | 摄像光学镜头 |
CN112014949B (zh) * | 2020-10-12 | 2021-01-05 | 瑞泰光学(常州)有限公司 | 摄像光学镜头 |
CN112014950B (zh) * | 2020-10-12 | 2021-01-01 | 瑞泰光学(常州)有限公司 | 摄像光学镜头 |
CN111929853B (zh) * | 2020-10-12 | 2020-12-18 | 瑞泰光学(常州)有限公司 | 摄像光学镜头 |
CN112014951B (zh) * | 2020-10-13 | 2020-12-29 | 瑞泰光学(常州)有限公司 | 摄像光学镜头 |
CN112014953B (zh) * | 2020-10-13 | 2021-01-01 | 瑞泰光学(常州)有限公司 | 摄像光学镜头 |
CN112014952B (zh) * | 2020-10-13 | 2020-12-29 | 瑞泰光学(常州)有限公司 | 摄像光学镜头 |
KR20220079874A (ko) | 2020-12-01 | 2022-06-14 | 코어포토닉스 리미티드 | 연속적으로 적응하는 줌 팩터를 갖는 폴디드 카메라 |
CN112505888A (zh) * | 2020-12-09 | 2021-03-16 | 江西晶超光学有限公司 | 光学镜头、摄像模组及电子设备 |
KR20220165823A (ko) | 2021-01-25 | 2022-12-15 | 코어포토닉스 리미티드 | 슬림 팝-아웃 와이드 카메라 렌즈 |
CN118210137A (zh) | 2021-03-22 | 2024-06-18 | 核心光电有限公司 | 具有连续自适应缩放因子的相机和移动设备 |
KR102685591B1 (ko) | 2021-09-23 | 2024-07-15 | 코어포토닉스 리미티드 | 큰 애퍼처 연속 줌 폴디드 텔레 카메라 |
KR102610118B1 (ko) | 2021-11-02 | 2023-12-04 | 코어포토닉스 리미티드 | 컴팩트형 더블 폴디드 텔레 카메라 |
CN114355569B (zh) * | 2022-01-12 | 2024-10-22 | 玉晶光电(厦门)有限公司 | 光学成像镜头 |
CN114355568A (zh) * | 2022-01-12 | 2022-04-15 | 玉晶光电(厦门)有限公司 | 光学成像镜头 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5973848A (en) * | 1995-01-31 | 1999-10-26 | Mitsubishi Denki Kabushiki Kaisha | Retrofocus projection lens system and multivision projection display apparatus |
US6476981B1 (en) * | 1999-07-02 | 2002-11-05 | Mistubishi Denki Kabushiki Kaisha | Retrofocus lens system and projection display apparatus |
US20160266350A1 (en) * | 2014-09-25 | 2016-09-15 | Panasonic Intellectual Property Management Co., Ltd. | Lens system and imaging device |
CN110308541A (zh) * | 2019-08-06 | 2019-10-08 | 厦门力鼎光电股份有限公司 | 一种光学成像镜头 |
TWI691751B (zh) * | 2019-06-14 | 2020-04-21 | 大立光電股份有限公司 | 光學攝影鏡頭組、取像裝置及電子裝置 |
WO2020080053A1 (ja) * | 2018-10-17 | 2020-04-23 | ソニーセミコンダクタソリューションズ株式会社 | 撮像レンズおよび撮像装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4005300A1 (de) | 1990-02-20 | 1991-08-22 | Leica Camera Gmbh | Kameraobjektiv |
JPH0933811A (ja) | 1995-07-24 | 1997-02-07 | Sony Corp | ズームレンズ |
JP3946245B1 (ja) | 2007-03-08 | 2007-07-18 | マイルストーン株式会社 | 撮像レンズ |
JP3976782B1 (ja) | 2007-05-17 | 2007-09-19 | マイルストーン株式会社 | 撮像レンズ |
JP5675575B2 (ja) * | 2011-12-15 | 2015-02-25 | オリンパスイメージング株式会社 | インナーフォーカスレンズ系及びそれを備えた撮像装置 |
CN106324796B (zh) * | 2015-06-17 | 2018-12-07 | 浙江大华技术股份有限公司 | 一种光学镜头 |
JP6388853B2 (ja) | 2015-07-10 | 2018-09-12 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置 |
US9971132B2 (en) | 2016-04-25 | 2018-05-15 | Young Optics Inc. | Zoom lens |
JP6858466B2 (ja) | 2018-12-29 | 2021-04-14 | カンタツ株式会社 | 撮像レンズ |
TWI684807B (zh) | 2019-06-14 | 2020-02-11 | 大立光電股份有限公司 | 光學透鏡系統、取像裝置及電子裝置 |
-
2020
- 2020-05-20 TW TW109116712A patent/TWI742675B/zh active
- 2020-06-22 CN CN202010575753.0A patent/CN113703129B/zh active Active
- 2020-06-22 CN CN202310135170.XA patent/CN116047722A/zh active Pending
- 2020-06-22 CN CN202310103331.7A patent/CN116047721A/zh active Pending
- 2020-08-12 US US16/991,973 patent/US11598935B2/en active Active
-
2023
- 2023-01-24 US US18/101,029 patent/US11947088B2/en active Active
-
2024
- 2024-02-23 US US18/586,107 patent/US20240201473A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5973848A (en) * | 1995-01-31 | 1999-10-26 | Mitsubishi Denki Kabushiki Kaisha | Retrofocus projection lens system and multivision projection display apparatus |
US6476981B1 (en) * | 1999-07-02 | 2002-11-05 | Mistubishi Denki Kabushiki Kaisha | Retrofocus lens system and projection display apparatus |
US20160266350A1 (en) * | 2014-09-25 | 2016-09-15 | Panasonic Intellectual Property Management Co., Ltd. | Lens system and imaging device |
WO2020080053A1 (ja) * | 2018-10-17 | 2020-04-23 | ソニーセミコンダクタソリューションズ株式会社 | 撮像レンズおよび撮像装置 |
TWI691751B (zh) * | 2019-06-14 | 2020-04-21 | 大立光電股份有限公司 | 光學攝影鏡頭組、取像裝置及電子裝置 |
CN110308541A (zh) * | 2019-08-06 | 2019-10-08 | 厦门力鼎光电股份有限公司 | 一种光学成像镜头 |
Also Published As
Publication number | Publication date |
---|---|
CN113703129B (zh) | 2023-01-20 |
US20240201473A1 (en) | 2024-06-20 |
US11947088B2 (en) | 2024-04-02 |
CN113703129A (zh) | 2021-11-26 |
US11598935B2 (en) | 2023-03-07 |
CN116047721A (zh) | 2023-05-02 |
TW202144846A (zh) | 2021-12-01 |
US20230161139A1 (en) | 2023-05-25 |
US20210364746A1 (en) | 2021-11-25 |
CN116047722A (zh) | 2023-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI742675B (zh) | 攝像用光學鏡頭組、取像裝置及電子裝置 | |
TWI709777B (zh) | 攝像鏡頭組、取像裝置及電子裝置 | |
TWI712830B (zh) | 攝影用光學鏡頭組、取像裝置及電子裝置 | |
TWI699574B (zh) | 成像透鏡系統、取像裝置及電子裝置 | |
TWI714368B (zh) | 攝像用光學系統、取像裝置及電子裝置 | |
TWI701474B (zh) | 光學成像鏡頭組、取像裝置及電子裝置 | |
TWI712816B (zh) | 取像用光學鏡頭組、取像裝置及電子裝置 | |
TW202045973A (zh) | 光學透鏡系統、取像裝置及電子裝置 | |
TW202045974A (zh) | 光學攝影鏡頭組、取像裝置及電子裝置 | |
TW202030517A (zh) | 光學攝影透鏡組、取像裝置及電子裝置 | |
TWI745057B (zh) | 光學影像鏡片組、取像裝置及電子裝置 | |
TWI687713B (zh) | 光學鏡頭組、取像裝置及電子裝置 | |
TW202045977A (zh) | 攝影鏡頭組、取像裝置及電子裝置 | |
TW202129328A (zh) | 攝影用光學透鏡組、取像裝置及電子裝置 | |
TWI685675B (zh) | 成像鏡頭組、取像裝置及電子裝置 | |
TWI737458B (zh) | 光學影像透鏡組、取像裝置及電子裝置 | |
TW202104966A (zh) | 取像鏡頭組、取像裝置及電子裝置 | |
TWI707156B (zh) | 光學取像鏡頭組、取像裝置及電子裝置 | |
TWI721904B (zh) | 影像擷取鏡片組、取像裝置及電子裝置 | |
TWI703364B (zh) | 攝影用光學鏡片組及電子裝置 | |
TWI768876B (zh) | 攝像用光學鏡頭組、取像裝置及電子裝置 | |
TWI735299B (zh) | 影像透鏡組、取像裝置及電子裝置 | |
TWI776274B (zh) | 光學影像鏡頭、取像裝置及電子裝置 | |
TWI721888B (zh) | 成像用光學鏡片組、取像裝置及電子裝置 | |
TWI816366B (zh) | 攝影光學系統鏡組、取像裝置及電子裝置 |