TWI611602B - Light-emitting element having a reflective structure with high efficiency - Google Patents
Light-emitting element having a reflective structure with high efficiency Download PDFInfo
- Publication number
- TWI611602B TWI611602B TW106101995A TW106101995A TWI611602B TW I611602 B TWI611602 B TW I611602B TW 106101995 A TW106101995 A TW 106101995A TW 106101995 A TW106101995 A TW 106101995A TW I611602 B TWI611602 B TW I611602B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- light
- light transmissive
- transmissive layer
- oxide
- Prior art date
Links
Landscapes
- Led Devices (AREA)
Abstract
一發光元件,包含一反射層;一第一透光層,位於反射層之上;一發光疊層,包含一主動層,位於該第一透光層之上;以及一孔洞,形成於該第一透光層之中。a light-emitting element comprising a reflective layer; a first light-transmissive layer on the reflective layer; a light-emitting layer comprising an active layer on the first light-transmissive layer; and a hole formed in the first In a light transmissive layer.
Description
本發明關於一種發光元件,特別是關於一種具有高效率反射結構之發光元件。The present invention relates to a light-emitting element, and more particularly to a light-emitting element having a highly efficient reflective structure.
光電元件,例如發光二極體(Light-emitting Diode;LED),目前已經廣泛地使用在光學顯示裝置、交通號誌、資料儲存裝置、通訊裝置、照明裝置與醫療器材上。此外,上述之LED可與其他元件組合連接以形成一發光裝置。第1圖為習知之發光裝置結構示意圖,如第1圖所示,一發光裝置1包含一具有一電路14之次載體(submount)12;一焊料16(solder)位於上述次載體12上,藉由此焊料16將LED 11固定於次載體12上並使LED 11與次載體12上之電路14形成電連接;以及一電性連接結構18,以電性連接LED 11之電極15與次載體12上之電路14;其中,上述之次載體12可以是導線架(lead frame)或大尺寸鑲嵌基底(mounting substrate)。Photoelectric elements, such as light-emitting diodes (LEDs), have been widely used in optical display devices, traffic signs, data storage devices, communication devices, lighting devices, and medical devices. In addition, the LEDs described above can be combined with other components to form a light emitting device. 1 is a schematic structural view of a conventional illuminating device. As shown in FIG. 1, a illuminating device 1 includes a submount 12 having a circuit 14; a solder 16 is located on the subcarrier 12, The solder 16 thus fixes the LED 11 to the sub-carrier 12 and electrically connects the LED 11 to the circuit 14 on the sub-carrier 12; and an electrical connection structure 18 for electrically connecting the electrode 15 of the LED 11 with the sub-carrier 12. The circuit 14 above; wherein the secondary carrier 12 can be a lead frame or a large mounting substrate.
一發光元件,包含︰一發光疊層包含一主動層,其中該發光疊層具有依第一表面以及一第二表面相對於該第一表面;一第一透光層位於該第二表面上;複數個孔洞,形成於該第一透光層之中;以及一單一層位於該第一透光層上;其中,該第一透光層包含氧化物。a light-emitting element comprising: an light-emitting layer comprising an active layer, wherein the light-emitting layer has a first surface and a second surface opposite to the first surface; a first light-transmissive layer is located on the second surface; a plurality of holes formed in the first light transmissive layer; and a single layer on the first light transmissive layer; wherein the first light transmissive layer comprises an oxide.
本發明之實施例會被詳細地描述,並且繪製於圖式中,相同或類似的部分會以相同的號碼在各圖式以及說明出現。 The embodiments of the present invention will be described in detail, and in the drawings, the same or the like
第2圖為本申請案一實施例之發光元件之剖面圖。如第2圖所示,一發光元件2具有一基板20;一黏結層22,位於基板20之上;一反射結構24,位於黏結層22之上;一發光疊層26,位於反射結構24之上;一第一電極21,位於基板20之下;以及一第二電極23,位於發光疊層26之上。發光疊層26具有一第一半導體層262,位於反射結構24之上;一主動層264,位於第一半導體層262之上;以及一第二半導體層266,位於主動層264之上。 Fig. 2 is a cross-sectional view showing a light-emitting element of an embodiment of the present application. As shown in FIG. 2, a light-emitting element 2 has a substrate 20; a bonding layer 22 is disposed on the substrate 20; a reflective structure 24 is disposed on the bonding layer 22; and a light-emitting layer 26 is disposed on the reflective structure 24. A first electrode 21 is disposed under the substrate 20; and a second electrode 23 is disposed above the light emitting laminate 26. The light emitting laminate 26 has a first semiconductor layer 262 over the reflective structure 24, an active layer 264 over the first semiconductor layer 262, and a second semiconductor layer 266 over the active layer 264.
第一電極21及/或第二電極23用以接受外部電壓,可由透明導電材料或金屬材料所構成。透明導電材料包含但不限於氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)、磷化鎵(GaP)、氧化銦鋅(IZO)、類鑽碳薄膜(DLC)、氧化銦鎵(IGO)、氧化鎵鋁鋅(GAZO)或上述材料之化合物。金屬材料包含但不限於鋁(Al)、鉻(Cr)、銅(Cu)、錫(Sn)、金(Au)、鎳(Ni)、鈦(Ti)、鉑(Pt)、鉛(Pb)、鋅(Zn)、鎘(Cd)、銻(Sb)、鈷(Co)或上述材料之合金等。The first electrode 21 and/or the second electrode 23 are for receiving an external voltage and may be composed of a transparent conductive material or a metal material. Transparent conductive materials include, but are not limited to, indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), zinc tin oxide. (ZTO), gallium zinc oxide (GZO), zinc oxide (ZnO), gallium phosphide (GaP), indium zinc oxide (IZO), diamond-like carbon film (DLC), indium gallium oxide (IGO), gallium aluminum zinc oxide (GAZO) or a compound of the above materials. Metal materials include, but are not limited to, aluminum (Al), chromium (Cr), copper (Cu), tin (Sn), gold (Au), nickel (Ni), titanium (Ti), platinum (Pt), lead (Pb) , zinc (Zn), cadmium (Cd), antimony (Sb), cobalt (Co) or an alloy of the above materials.
發光疊層26具有一粗化上表面261與一粗化下表面263,可降低全反射的機率,提高出光效率。粗化上表面具有一平坦部265,第二電極23可位於平坦部265之上,提升第二電極23與發光疊層26之間的黏著性,降低第二電極23因後續製程,例如打線,而自發光疊層26上剝離的機率。發光疊層26之材料可為半導體材料,包含一種以上之元素,此元素可選自鎵(Ga)、鋁(Al)、銦(In)、磷(P)、氮(N)、鋅(Zn)、鎘(Cd)與硒(Se)所構成之群組。第一半導體層262與第二半導體層266的電性相異,用以產生電子或電洞。主動層124可發出一種或多種色光,可為可見光或不可見光,其結構可為單異質結構、雙異質結構、雙側雙異質結構、多層量子井或量子點。The light emitting laminate 26 has a roughened upper surface 261 and a roughened lower surface 263, which reduces the probability of total reflection and improves light extraction efficiency. The roughened upper surface has a flat portion 265, and the second electrode 23 can be located above the flat portion 265 to enhance the adhesion between the second electrode 23 and the light emitting laminate 26, and reduce the second electrode 23 due to subsequent processes, such as wire bonding. The probability of peeling off from the light-emitting laminate 26 is also high. The material of the light-emitting layer 26 may be a semiconductor material containing more than one element selected from the group consisting of gallium (Ga), aluminum (Al), indium (In), phosphorus (P), nitrogen (N), and zinc (Zn). ), a group of cadmium (Cd) and selenium (Se). The first semiconductor layer 262 is electrically different from the second semiconductor layer 266 for generating electrons or holes. The active layer 124 may emit one or more colored lights, either visible or invisible, and may be of a single heterostructure, a double heterostructure, a double-sided double heterostructure, a multilayer quantum well or a quantum dot.
反射結構24自黏結層22往發光疊層26之方向具有一反射層242、一第一透光層244與一窗戶層248。窗戶層248具有一粗化下表面,粗化下表面具有複數個凸部241與凹部243。其中,粗化下表面更具有一平坦部位於第二電極23之正下方,用以與第一透光層244形成歐姆接觸。至少一孔洞245形成於第一透光層244之中,孔洞245可自窗戶層248之粗化下表面向下延伸至反射層242。另一實施例中,孔洞245可自凸部241向下延伸至反射層242。其中,孔洞245之折射率小於窗戶層248與第一透光層244之折射率。由於孔洞245之折射率小於窗戶層248與第一透光層244之折射率,窗戶層248與孔洞245之間介面之臨界角小於窗戶層248與第一透光層244之間介面的臨界角,所以發光疊層26所發之光射向孔洞245後,在窗戶層248與孔洞245之間的介面形成全反射的機率增加。此外,原本在窗戶層248與第一透光層244介面未形成全反射而進入第一透光層244之光,在第一透光層244與孔洞245之間的介面亦會形成全反射,因而提升發光元件2的出光效率。孔洞245由剖面圖觀之可以為上寬下窄的漏斗狀。反射結構24可更包含一第二透光層246,第二透光層246位於部分第一透光層244與窗戶層248之間,以增加第一透光層244與窗戶層248之間的歐姆接觸。另一實施例中,第二透光層246可具有孔洞245,其中孔洞245之折射率小於窗戶層248與第二透光層246之折射率。由於孔洞245之折射率小於窗戶層248與第二透光層246之折射率,第二透光層246與孔洞245之間介面之臨界角小於窗戶層248與第二透光層246之間介面的臨界角,所以發光疊層26所發之光射向孔洞245後,在第二透光層246與孔洞245之間的介面形成全反射的機率增加。又一實施例中,反射結構24可不具有窗戶層248,第一透光層244形成於發光疊層26之下。此時,發光疊層26之粗化下表面263具有複數個凸部與凹部,利於孔洞245之形成。The reflective structure 24 has a reflective layer 242, a first light transmissive layer 244 and a window layer 248 from the adhesive layer 22 toward the light emitting stack 26. The window layer 248 has a roughened lower surface having a plurality of convex portions 241 and recesses 243. The roughened lower surface further has a flat portion directly under the second electrode 23 for forming an ohmic contact with the first light transmissive layer 244. At least one hole 245 is formed in the first light transmissive layer 244, and the hole 245 may extend downward from the roughened lower surface of the window layer 248 to the reflective layer 242. In another embodiment, the holes 245 may extend downward from the protrusions 241 to the reflective layer 242. The refractive index of the hole 245 is smaller than the refractive index of the window layer 248 and the first light transmissive layer 244. Since the refractive index of the hole 245 is smaller than the refractive index of the window layer 248 and the first light transmissive layer 244, the critical angle of the interface between the window layer 248 and the hole 245 is smaller than the critical angle of the interface between the window layer 248 and the first light transmissive layer 244. Therefore, after the light emitted by the light-emitting layer 26 is directed toward the hole 245, the probability of total reflection at the interface between the window layer 248 and the hole 245 is increased. In addition, the light that is not totally reflected by the window layer 248 and the first light transmissive layer 244 and enters the first light transmissive layer 244, the interface between the first light transmissive layer 244 and the hole 245 also forms total reflection. Thus, the light extraction efficiency of the light-emitting element 2 is improved. The hole 245 may have a funnel shape that is wide and narrow from the cross-sectional view. The reflective structure 24 can further include a second light transmissive layer 246 between the portion of the first light transmissive layer 244 and the window layer 248 to increase the gap between the first light transmissive layer 244 and the window layer 248. Ohmic contact. In another embodiment, the second light transmissive layer 246 can have a hole 245, wherein the hole 245 has a refractive index smaller than that of the window layer 248 and the second light transmissive layer 246. Since the refractive index of the hole 245 is smaller than the refractive index of the window layer 248 and the second light transmissive layer 246, the critical angle between the interface between the second transparent layer 246 and the hole 245 is smaller than the interface between the window layer 248 and the second transparent layer 246. The critical angle is such that after the light emitted by the light-emitting layer 26 is directed toward the hole 245, the probability of total reflection forming at the interface between the second light-transmitting layer 246 and the hole 245 is increased. In yet another embodiment, the reflective structure 24 may have no window layer 248 formed below the light emitting stack 26. At this time, the roughened lower surface 263 of the light-emitting layer 26 has a plurality of convex portions and concave portions to facilitate the formation of the holes 245.
窗戶層248對於發光疊層26所發之光為透明,用以提升出光效率,其材料可為導電材料,包含但不限於氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)、磷化鎵(GaP)、氧化銦鈰(ICO)、氧化銦鎢(IWO)、氧化銦鈦(ITiO)、氧化銦鋅(IZO)、氧化銦鎵(IGO)、氧化鎵鋁鋅(GAZO)或上述材料之組合。粗化下表面之凹部243與凸部241之間的高度差h約為窗戶層厚度t的1/3至2/3,利於孔洞245的形成。The window layer 248 is transparent to the light emitted by the light-emitting layer 26 for enhancing the light-emitting efficiency, and the material thereof may be a conductive material, including but not limited to indium tin oxide (ITO), indium oxide (InO), and tin oxide (SnO). , cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO), zinc oxide (ZnO), gallium phosphide (GaP), oxidation Indium bismuth (ICO), indium tungsten oxide (IWO), indium titanium oxide (ITiO), indium zinc oxide (IZO), indium gallium oxide (IGO), gallium aluminum oxide (GAZO), or a combination thereof. The height difference h between the concave portion 243 and the convex portion 241 of the roughened lower surface is about 1/3 to 2/3 of the thickness t of the window layer, which facilitates the formation of the hole 245.
第一透光層244及/或第二透光層246之材料對於發光疊層26所發之光為透明,以增加窗戶層248與反射層242之間的歐姆接觸以及電流傳導與擴散,並與反射層242形成全方位反射鏡(Omni-Directional Reflector,ODR)。其材料可為透明導電材料,包含但不限於氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)、磷化鎵(GaP)、氧化銦鈰(ICO)、氧化銦鎢(IWO)、氧化銦鈦(ITiO)、氧化銦鋅(IZO)、氧化銦鎵(IGO)、氧化鎵鋁鋅(GAZO)或上述材料之組合。其中第一透光層244之材料較佳為氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)、氧化銦鋅(IZO)或上述材料之組合。形成第一透光層244及/或第二透光層246之方法包含物理氣相沉積法,例如電子束蒸鍍或濺鍍。反射層242可反射來自發光疊層26之光,其材料可為金屬材料,包含但不限於銅(Cu)、鋁(Al)、錫(Sn)、金(Au)、銀(Ag)、鉛(Pb)、鈦(Ti)、鎳(Ni)、鉑(Pt)、鎢(W)或上述材料之合金等。The material of the first light transmissive layer 244 and/or the second light transmissive layer 246 is transparent to the light emitted by the light emitting layer 26 to increase ohmic contact and current conduction and diffusion between the window layer 248 and the reflective layer 242, and An Omni-Directional Reflector (ODR) is formed with the reflective layer 242. The material may be a transparent conductive material including, but not limited to, indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum oxide zinc (AZO). ), zinc tin oxide (ZTO), gallium zinc oxide (GZO), zinc oxide (ZnO), gallium phosphide (GaP), indium lanthanum oxide (ICO), indium tungsten oxide (IWO), indium titanium oxide (ITiO), Indium zinc oxide (IZO), indium gallium oxide (IGO), gallium aluminum oxide (GAZO) or a combination of the above. The material of the first light transmissive layer 244 is preferably aluminum zinc oxide (AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO), zinc oxide (ZnO), indium zinc oxide (IZO) or a combination thereof. . The method of forming the first light transmissive layer 244 and/or the second light transmissive layer 246 includes physical vapor deposition, such as electron beam evaporation or sputtering. The reflective layer 242 can reflect light from the light emitting stack 26, and the material thereof can be a metal material including, but not limited to, copper (Cu), aluminum (Al), tin (Sn), gold (Au), silver (Ag), lead. (Pb), titanium (Ti), nickel (Ni), platinum (Pt), tungsten (W) or an alloy of the above materials.
黏結層22可連接基板20與反射結構24,可具有複數個從屬層(未顯示)。黏結層22之材料可為透明導電材料或金屬材料,透明導電材料包含但不限於氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)、磷化鎵(GaP)、氧化銦鈰(ICO)、氧化銦鎢(IWO)、氧化銦鈦(ITiO)、氧化銦鋅(IZO)、氧化銦鎵(IGO)、氧化鎵鋁鋅(GAZO)或上述材料之組合。金屬材料包含但不限於銅(Cu)、鋁(Al)、錫(Sn)、金(Au)、銀(Ag)、鉛(Pb)、鈦(Ti)、鎳(Ni)、鉑(Pt)、鎢(W)或上述材料之合金等。The bonding layer 22 can connect the substrate 20 to the reflective structure 24 and can have a plurality of subordinate layers (not shown). The material of the bonding layer 22 may be a transparent conductive material or a metal material, and the transparent conductive material includes, but is not limited to, indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide. (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO), zinc oxide (ZnO), gallium phosphide (GaP), indium oxide oxide (ICO), indium oxide tungsten (IWO) ), indium titanium oxide (ITiO), indium zinc oxide (IZO), indium gallium oxide (IGO), gallium aluminum oxide (GAZO), or a combination thereof. Metal materials include, but are not limited to, copper (Cu), aluminum (Al), tin (Sn), gold (Au), silver (Ag), lead (Pb), titanium (Ti), nickel (Ni), platinum (Pt) , tungsten (W) or an alloy of the above materials.
基板20可用以支持位於其上之發光疊層26與其它層或結構,其材料可為透明材料或導電材料。透明材料包含但不限於藍寶石(Sapphire)、鑽石(Diamond)、玻璃(Glass)、環氧樹脂(Epoxy)、石英(Quartz)、壓克力(Acryl)、氧化鋁(Al2O3)、氧化鋅(ZnO)或氮化鋁(AlN)等。導電材料包含但不限於銅(Cu)、鋁(Al)、鉬(Mo)、錫(Sn)、鋅(Zn)、鎘(Cd)、鎳(Ni)、鈷(Co)、類鑽碳薄膜(Diamond Like Carbon;DLC)、石墨(Graphite)、碳纖維(Carbon fiber)、金屬基複合材料(Metal Matrix Composite;MMC)、陶瓷基複合材料(Ceramic Matrix Composite;CMC)、矽(Si)、磷化碘(IP)、硒化鋅(ZnSe)、砷化鎵(GaAs)、碳化矽(SiC)、磷化鎵(GaP)、磷砷化鎵(GaAsP)、硒化鋅(ZnSe)、磷化銦(InP)、鎵酸鋰(LiGaO2)或鋁酸鋰(LiAlO2)。The substrate 20 can be used to support the light-emitting laminate 26 and other layers or structures thereon, the material of which can be a transparent material or a conductive material. Transparent materials include, but are not limited to, Sapphire, Diamond, Glass, Epoxy, Quartz, Acryl, Al2O3, Zinc Oxide (ZnO) ) or aluminum nitride (AlN) or the like. Conductive materials include, but are not limited to, copper (Cu), aluminum (Al), molybdenum (Mo), tin (Sn), zinc (Zn), cadmium (Cd), nickel (Ni), cobalt (Co), diamond-like carbon film (Diamond Like Carbon; DLC), Graphite, Carbon Fiber, Metal Matrix Composite (MMC), Ceramic Matrix Composite (CMC), Germanium (Si), Phosphating Iodine (IP), zinc selenide (ZnSe), gallium arsenide (GaAs), tantalum carbide (SiC), gallium phosphide (GaP), gallium arsenide (GaAsP), zinc selenide (ZnSe), indium phosphide (InP), lithium gallate (LiGaO2) or lithium aluminate (LiAlO2).
第3圖為本申請案另一實施例之發光元件之剖面圖。一發光元件3具有上述發光元件2類似之結構,但反射結構24之第二透光層246具有複數個孔洞30,以致第二透光層246之折射率小於1.4,較佳為1.35。如第4圖所示,孔洞30的形成是將晶圓4固定,以特定的方向,例如與垂直於晶圓的法線夾角θ的方向D,以物理氣相法沉積第二透光層246之材料於晶圓上。因為沉積方向D的調整使材料無法沉積到部分區域而形成孔洞30。其中,夾角θ約為60度。有孔洞30形成之第二透光層246之折射率較不具有孔洞之透光層之折射率低,可增加第二透光層246與其他層介面間的產生全反射的機率,提升發光元件3的出光效率。第一透光層244可用物理氣相法或化學氣相法形成於第二透光層246之下,其厚度大於第二透光層246之厚度,可防止反射層242之材料擴散至第二透光層246。第一透光層244不具有孔洞,可避免反射層242之材料擴散至孔洞之中,破壞反射層242的結構,導致反射層242的反射率降低。第一透光層244具有一第一下表面247,第一下表面247可用化學機械研磨法(Chemical Mechanical Polishing,CMP)研磨,使其中心線平均粗糙度(Ra)約為1nm~40nm。當反射層242形成於第一下表面247之下時,反射層242可形成一中心線平均粗糙度較低的表面,因而提高反射層242的反射率。Figure 3 is a cross-sectional view showing a light-emitting element of another embodiment of the present application. A light-emitting element 3 has a similar structure to the above-described light-emitting element 2, but the second light-transmissive layer 246 of the reflective structure 24 has a plurality of holes 30 such that the second light-transmissive layer 246 has a refractive index of less than 1.4, preferably 1.35. As shown in FIG. 4, the hole 30 is formed by fixing the wafer 4 and depositing the second light-transmissive layer 246 by physical vapor deposition in a specific direction, for example, in a direction D perpendicular to the normal angle of the wafer. The material is on the wafer. The hole 30 is formed because the adjustment of the deposition direction D prevents the material from being deposited to a partial region. Among them, the angle θ is about 60 degrees. The refractive index of the second light transmissive layer 246 formed by the hole 30 is lower than that of the light transmissive layer having no holes, which increases the probability of total reflection between the second light transmissive layer 246 and other layer interfaces, and improves the light emitting element. 3 light output efficiency. The first light transmissive layer 244 may be formed under the second light transmissive layer 246 by a physical vapor phase method or a chemical vapor phase method, and the thickness thereof is greater than the thickness of the second light transmissive layer 246, thereby preventing the material of the reflective layer 242 from diffusing to the second layer. Light transmissive layer 246. The first light transmissive layer 244 does not have holes, and the material of the reflective layer 242 is prevented from diffusing into the holes, and the structure of the reflective layer 242 is destroyed, resulting in a decrease in the reflectance of the reflective layer 242. The first light transmissive layer 244 has a first lower surface 247, and the first lower surface 247 can be ground by chemical mechanical polishing (CMP) to have a center line average roughness (Ra) of about 1 nm to 40 nm. When the reflective layer 242 is formed under the first lower surface 247, the reflective layer 242 can form a surface having a lower centerline average roughness, thereby increasing the reflectivity of the reflective layer 242.
發光元件3更具有至少一導電部32位於發光疊層26與反射層242之間。另一實施例中,導電部32可位於窗戶層248與反射層242之間。導電部32用以傳導電流,其材料可為透明導電材料或金屬材料,透明導電材料包含但不限於氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)、磷化鎵(GaP)、氧化銦鈰(ICO)、氧化銦鎢(IWO)、氧化銦鈦(ITiO)、氧化銦鋅(IZO)、氧化銦鎵(IGO)、氧化鎵鋁鋅(GAZO)或上述材料之組合。金屬材料包含但不限於銅(Cu)、鋁(Al)、錫(Sn)、金(Au)、銀(Ag)、鉛(Pb)、鈦(Ti)、鎳(Ni)、鉑(Pt)、鎢(W)、鍺(Ge)或上述材料之合金等。The light-emitting element 3 further has at least one conductive portion 32 between the light-emitting layer 26 and the reflective layer 242. In another embodiment, the conductive portion 32 can be located between the window layer 248 and the reflective layer 242. The conductive portion 32 is used to conduct current, and the material thereof may be a transparent conductive material or a metal material, and the transparent conductive material includes, but is not limited to, indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), and cadmium tin oxide (CTO). ), antimony tin oxide (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO), zinc oxide (ZnO), gallium phosphide (GaP), indium oxide oxide (ICO), Indium oxide tungsten (IWO), indium titanium oxide (ITiO), indium zinc oxide (IZO), indium gallium oxide (IGO), gallium aluminum oxide (GAZO), or a combination thereof. Metal materials include, but are not limited to, copper (Cu), aluminum (Al), tin (Sn), gold (Au), silver (Ag), lead (Pb), titanium (Ti), nickel (Ni), platinum (Pt) , tungsten (W), germanium (Ge) or an alloy of the above materials.
此實施例中,第一透光層244及/或第二透光層246之材料可為絕緣材料,例如為聚亞醯胺(PI)、苯并環丁烯(BCB)、過氟環丁烷(PFCB)、氧化鎂(MgO)、Su8、環氧樹脂(Epoxy)、丙烯酸樹脂(Acrylic Resin)、環烯烴聚合物(COC)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚醚醯亞胺(Polyetherimide)、氟碳聚合物(Fluorocarbon Polymer)、玻璃(Glass)、氧化鋁(Al2O3)、氧化矽(SiOx)、氧化鈦(TiO2)、氧化鉭(Ta2O5)、氮化矽(SiNx)、氟化鎂(MgF2)、旋塗玻璃(SOG)或四乙氧基矽烷(TEOS)。In this embodiment, the material of the first light transmissive layer 244 and/or the second light transmissive layer 246 may be an insulating material, such as polybenzamine (PI), benzocyclobutene (BCB), perfluorocyclohexane. Alkane (PFCB), Magnesium Oxide (MgO), Su8, Epoxy, Acrylic Resin, Cyclic Olefin Polymer (COC), Polymethyl Methacrylate (PMMA), Polyterephthalic Acid Ethylene glycol (PET), polycarbonate (PC), polyetherimide, fluorocarbon polymer, glass, alumina (Al2O3), cerium oxide (SiOx), oxidation Titanium (TiO2), lanthanum oxide (Ta2O5), tantalum nitride (SiNx), magnesium fluoride (MgF2), spin-on glass (SOG) or tetraethoxydecane (TEOS).
第5圖為本申請案另一實施例之發光元件之剖面圖。如第5圖所示,一發光元件5具有一基板50;一發光疊層52,位於基板50之上;一反射結構54,位於發光疊層52之上;以及一電極56,位於反射結構54之上。發光疊層52具有一第一半導體層522,位於基板50之上;一主動層524,位於第一半導體層522之上;以及一第二半導體層526,位於主動層524之上,其中部分第二半導體層526與主動層524被移除以裸露第一半導體層522。Figure 5 is a cross-sectional view showing a light-emitting element of another embodiment of the present application. As shown in FIG. 5, a light-emitting element 5 has a substrate 50; a light-emitting layer 52 on the substrate 50; a reflective structure 54 on the light-emitting layer 52; and an electrode 56 on the reflective structure 54. Above. The light emitting layer 52 has a first semiconductor layer 522 over the substrate 50, an active layer 524 over the first semiconductor layer 522, and a second semiconductor layer 526 over the active layer 524. The second semiconductor layer 526 and the active layer 524 are removed to expose the first semiconductor layer 522.
反射結構54具有一窗戶層540,位於發光疊層52之上;一第一透光層542,位於窗戶層540之上;一反射層544,位於第一透光層542之上;以及一第一絕緣層546,位於反射層544之上。窗戶層540具有一粗化上表面541,粗化上表面具有複數個凸部543與凹部545。至少一孔洞547形成於第一透光層542之中,且位於粗化上表面541之上,孔洞547之折射率小於窗戶層540與第一透光層542之折射率。另一實施例中,孔洞547可自凹部545向上延伸。由於孔洞547之折射率小於窗戶層540與第一透光層542之折射率,在窗戶層540與孔洞547之間介面之臨界角小於窗戶層540與第一透光層542之間介面的臨界角,所以發光疊層52所發之光射向孔洞547後,在窗戶層540與孔洞547之間的介面形成全反射的機率增加。此外,原本在窗戶層540與第一透光層542介面未形成全反射而進入第一透光層542之光,在第一透光層542與孔洞547之間的介面亦會形成全反射,因而提升發光元件5的出光效率,孔洞547由剖面圖觀之可以為下寬上窄的倒漏斗狀。因為發光疊層52所發之光在窗戶層540與孔洞547之間的介面和第一透光層542與孔洞547之間的介面形成全反射的機率增加,降低光到達電極56而被電極56吸收的機率,提升發光元件5之發光效率。第一絕緣層546可包覆反射層544以使反射層544不與電極56直接接觸,避免反射層544之材料擴散至電極56,降低反射層544之反射率。反射結構54更包含複數個通道549形成於第一透光層542與第一絕緣層546之中,電極56可經由通道549與發光疊層52電連結。反射結構54可更包含一第二透光層548,第二透光層548位於部分第一透光層542與反射層544之間,第二透光層548不具有孔洞,可避免反射層544之材料擴散至孔洞之中,破壞反射層544的結構,導致反射層544的反射率降低。The reflective structure 54 has a window layer 540 on the light emitting layer 52; a first light transmissive layer 542 on the window layer 540; a reflective layer 544 on the first light transmissive layer 542; An insulating layer 546 is located above the reflective layer 544. The window layer 540 has a roughened upper surface 541 having a plurality of convex portions 543 and recesses 545. At least one hole 547 is formed in the first light transmissive layer 542 and is located above the roughened upper surface 541. The refractive index of the hole 547 is smaller than the refractive index of the window layer 540 and the first light transmissive layer 542. In another embodiment, the aperture 547 can extend upward from the recess 545. Since the refractive index of the hole 547 is smaller than the refractive index of the window layer 540 and the first light transmissive layer 542, the critical angle of the interface between the window layer 540 and the hole 547 is smaller than the interface between the window layer 540 and the first light transmissive layer 542. The angle, so that the light emitted by the light-emitting layer 52 is directed toward the hole 547, the probability of total reflection forming at the interface between the window layer 540 and the hole 547 is increased. In addition, the light that is not totally reflected by the window layer 540 and the first light transmissive layer 542 and enters the first light transmissive layer 542, the interface between the first light transmissive layer 542 and the hole 547 also forms total reflection. Therefore, the light-emitting efficiency of the light-emitting element 5 is improved, and the hole 547 can be an inverted funnel shape having a narrow width and a narrow shape as viewed in cross section. Because the light emitted by the light-emitting layer 52 increases the probability of total reflection at the interface between the window layer 540 and the hole 547 and the interface between the first light-transmissive layer 542 and the hole 547, the light is reduced to the electrode 56 and is replaced by the electrode 56. The probability of absorption increases the luminous efficiency of the light-emitting element 5. The first insulating layer 546 can coat the reflective layer 544 such that the reflective layer 544 does not directly contact the electrode 56, and the material of the reflective layer 544 is prevented from diffusing to the electrode 56, reducing the reflectivity of the reflective layer 544. The reflective structure 54 further includes a plurality of channels 549 formed in the first light transmissive layer 542 and the first insulating layer 546, and the electrodes 56 can be electrically connected to the light emitting stack 52 via the vias 549. The reflective structure 54 further includes a second light transmissive layer 548. The second light transmissive layer 548 is located between the portion of the first light transmissive layer 542 and the reflective layer 544. The second light transmissive layer 548 has no holes, and the reflective layer 544 can be avoided. The material diffuses into the holes, destroying the structure of the reflective layer 544, resulting in a decrease in the reflectivity of the reflective layer 544.
電極56具有一第一導電層562與一第二導電層564,其中第一導電層562與第二導電層564彼此不直接接觸。第一導電層562經由通道549與第一半導體層522連接,第二導電層564經由通道549與窗戶層540連接。另一實施例中,發光元件5更包含一第一接觸層51位於第一導電層562與第一半導體層522之間,增加第一導電層562與第一半導體層522之間的歐姆接觸;一第二接觸層53位於第二導電層564與窗戶層540之間,增加第二導電層564與窗戶層540之間的歐姆接觸,降低發光元件5的操作電壓,以提升效率。其中,第一接觸層51與第二接觸層53之材料和上述電極之材料相同。The electrode 56 has a first conductive layer 562 and a second conductive layer 564, wherein the first conductive layer 562 and the second conductive layer 564 are not in direct contact with each other. The first conductive layer 562 is connected to the first semiconductor layer 522 via the via 549, and the second conductive layer 564 is connected to the window layer 540 via the via 549. In another embodiment, the light-emitting element 5 further includes a first contact layer 51 between the first conductive layer 562 and the first semiconductor layer 522 to increase ohmic contact between the first conductive layer 562 and the first semiconductor layer 522; A second contact layer 53 is located between the second conductive layer 564 and the window layer 540, increasing the ohmic contact between the second conductive layer 564 and the window layer 540, reducing the operating voltage of the light-emitting element 5 to improve efficiency. The material of the first contact layer 51 and the second contact layer 53 is the same as the material of the above electrode.
第6圖係繪示出一燈泡分解示意圖,一燈泡6具有一燈罩61;一透鏡62,置於燈罩61之中;一照明模組64,位於透鏡62之下;一燈座65,具有一散熱槽66,用以承載照明模組64;一連結部67;以及一電連結器68,其中連結部67連結燈座65與電連接器68。照明模組66具有一載體63;以及複數個前述任一實施例之發光元件60,位於載體63之上。Figure 6 is a schematic exploded view of a bulb, a bulb 6 having a lamp cover 61; a lens 62 disposed in the lamp cover 61; a lighting module 64 located below the lens 62; and a lamp holder 65 having a The heat dissipation slot 66 is configured to carry the lighting module 64; a connecting portion 67; and an electrical connector 68. The connecting portion 67 connects the socket 65 and the electrical connector 68. The illumination module 66 has a carrier 63; and a plurality of light-emitting elements 60 of any of the foregoing embodiments are located above the carrier 63.
惟上述實施例僅為例示性說明本申請案之原理及其功效,而非用於限制本申請案。任何本申請案所屬技術領域中具有通常知識者均可在不違背本申請案之技術原理及精神的情況下,對上述實施例進行修改及變化。因此本申請案之權利保護範圍如後述之申請專利範圍所列。However, the above embodiments are merely illustrative of the principles and effects of the present application, and are not intended to limit the present application. Modifications and variations of the above-described embodiments can be made without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present application is as set forth in the scope of the patent application described below.
1‧‧‧發光裝置1‧‧‧Lighting device
11‧‧‧LED11‧‧‧LED
12‧‧‧次載體12‧‧‧ times carrier
13、20、50‧‧‧基板13, 20, 50‧‧‧ substrates
14‧‧‧電路14‧‧‧ Circuitry
15、56‧‧‧電極15, 56‧‧‧ electrodes
16‧‧‧焊料16‧‧‧ solder
18‧‧‧電性連接結構18‧‧‧Electrical connection structure
2、3、40、5‧‧‧發光元件2, 3, 40, 5‧‧‧Lighting elements
21‧‧‧第一電極21‧‧‧First electrode
22‧‧‧黏結層22‧‧‧Bonded layer
23‧‧‧第二電極23‧‧‧second electrode
24、54‧‧‧反射結構24, 54‧‧‧reflective structure
241、543‧‧‧凸部241, 543‧‧ ‧ convex
242、544‧‧‧反射層242, 544‧‧‧reflective layer
243、545‧‧‧凹部243, 545‧‧ ‧ recess
244、542‧‧‧第一透光層244, 542‧‧‧ first light transmission layer
245、30、547‧‧‧孔洞245, 30, 547‧‧ holes
246‧‧‧第二透光層246‧‧‧Second light transmission layer
247‧‧‧第一下表面247‧‧‧First lower surface
248、540‧‧‧窗戶層248, 540‧‧‧ window layer
26‧‧‧發光疊層26‧‧‧Lighting laminate
261、541‧‧‧粗化上表面261, 541‧‧ ‧ rough upper surface
262、522‧‧‧第一半導體層262, 522‧‧‧ first semiconductor layer
263‧‧‧粗化下表面263‧‧‧ roughening the lower surface
264、524‧‧‧主動層264, 524‧‧‧ active layer
265‧‧‧平坦部265‧‧‧flat
266、526‧‧‧第二半導體層266, 526‧‧‧ second semiconductor layer
32‧‧‧導電部32‧‧‧Electrical Department
41‧‧‧燈罩41‧‧‧shade
42‧‧‧透鏡42‧‧‧ lens
43‧‧‧載體43‧‧‧ Carrier
44‧‧‧照明模組44‧‧‧Lighting module
45‧‧‧燈座45‧‧‧ lamp holder
46‧‧‧散熱槽46‧‧‧heat sink
47‧‧‧連結部47‧‧‧Connecting Department
48‧‧‧電連結器48‧‧‧Electrical connector
51‧‧‧第一接觸層51‧‧‧First contact layer
53‧‧‧第二接觸層53‧‧‧Second contact layer
546‧‧‧第一絕緣層546‧‧‧First insulation
548‧‧‧第三透光層548‧‧‧The third light transmission layer
549‧‧‧通道549‧‧‧ channel
562‧‧‧第一導電層562‧‧‧First conductive layer
564‧‧‧第二導電層564‧‧‧Second conductive layer
h‧‧‧高度H‧‧‧height
t‧‧‧厚度T‧‧‧thickness
第1圖為習知之發光裝置結構示意圖。 Figure 1 is a schematic view showing the structure of a conventional light-emitting device.
第2圖繪示本申請案一實施例之發光元件之剖面示意圖。 FIG. 2 is a cross-sectional view showing a light-emitting element according to an embodiment of the present application.
第3圖繪示本申請案另一實施例之發光元件之剖面示意圖。 FIG. 3 is a cross-sectional view showing a light-emitting element according to another embodiment of the present application.
第4圖繪示第3圖之實施例之第二透光層之材料沉積方向示意圖。 4 is a schematic view showing a material deposition direction of the second light transmissive layer of the embodiment of FIG. 3.
第5圖繪示本申請案另一實施例之發光元件之剖面示意圖。 FIG. 5 is a cross-sectional view showing a light-emitting element according to another embodiment of the present application.
第6圖為本申請案一實施例之燈泡分解示意圖。Figure 6 is a schematic exploded view of a light bulb according to an embodiment of the present application.
2‧‧‧發光元件 2‧‧‧Lighting elements
20‧‧‧基板 20‧‧‧Substrate
21‧‧‧第一電極 21‧‧‧First electrode
22‧‧‧黏結層 22‧‧‧Bonded layer
23‧‧‧第二電極 23‧‧‧second electrode
24‧‧‧反射結構 24‧‧‧Reflective structure
241‧‧‧凸部 241‧‧‧ convex
242‧‧‧反射層 242‧‧‧reflective layer
243‧‧‧凹部 243‧‧‧ recess
244‧‧‧第一透光層 244‧‧‧First light transmission layer
245‧‧‧孔洞 245‧‧‧ hole
246‧‧‧第二透光層 246‧‧‧Second light transmission layer
248‧‧‧窗戶層 248‧‧‧Window layer
26‧‧‧發光疊層 26‧‧‧Lighting laminate
261‧‧‧粗化上表面 261‧‧‧ roughening the upper surface
262‧‧‧第一半導體層 262‧‧‧First semiconductor layer
263‧‧‧粗化下表面 263‧‧‧ roughening the lower surface
264‧‧‧主動層 264‧‧‧ active layer
265‧‧‧平坦部 265‧‧‧flat
266‧‧‧第二半導體層 266‧‧‧second semiconductor layer
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106101995A TWI611602B (en) | 2013-05-24 | 2013-05-24 | Light-emitting element having a reflective structure with high efficiency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106101995A TWI611602B (en) | 2013-05-24 | 2013-05-24 | Light-emitting element having a reflective structure with high efficiency |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201712896A TW201712896A (en) | 2017-04-01 |
TWI611602B true TWI611602B (en) | 2018-01-11 |
Family
ID=59256887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106101995A TWI611602B (en) | 2013-05-24 | 2013-05-24 | Light-emitting element having a reflective structure with high efficiency |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI611602B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI671558B (en) * | 2019-02-21 | 2019-09-11 | 友達光電股份有限公司 | Light emitting device and liquid crystal display device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090267092A1 (en) * | 2006-03-10 | 2009-10-29 | Matsushita Electric Works, Ltd. | Light-emitting device |
US20100032699A1 (en) * | 2008-08-05 | 2010-02-11 | Dicon Fiberoptics Inc. | System for High Efficiency Solid-State Light Emissions and Method of Manufacture |
US20100193812A1 (en) * | 2009-02-05 | 2010-08-05 | Lin-Chieh Kao | Light-emitting diode |
US20100224898A1 (en) * | 2009-03-04 | 2010-09-09 | Stanley Electric Co., Ltd. | Optical semiconductor device having air gap forming reflective mirror and its manufacturing method |
US20110241056A1 (en) * | 2007-12-19 | 2011-10-06 | Koninklijke Philips Electronics N.V. | Semiconductor light emitting device with light extraction structures |
US20120138980A1 (en) * | 2010-12-02 | 2012-06-07 | Epistar Corporation | Optoelectronic device and method for manufacturing the same |
-
2013
- 2013-05-24 TW TW106101995A patent/TWI611602B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090267092A1 (en) * | 2006-03-10 | 2009-10-29 | Matsushita Electric Works, Ltd. | Light-emitting device |
US20110241056A1 (en) * | 2007-12-19 | 2011-10-06 | Koninklijke Philips Electronics N.V. | Semiconductor light emitting device with light extraction structures |
US20100032699A1 (en) * | 2008-08-05 | 2010-02-11 | Dicon Fiberoptics Inc. | System for High Efficiency Solid-State Light Emissions and Method of Manufacture |
US20100193812A1 (en) * | 2009-02-05 | 2010-08-05 | Lin-Chieh Kao | Light-emitting diode |
US20100224898A1 (en) * | 2009-03-04 | 2010-09-09 | Stanley Electric Co., Ltd. | Optical semiconductor device having air gap forming reflective mirror and its manufacturing method |
US20120138980A1 (en) * | 2010-12-02 | 2012-06-07 | Epistar Corporation | Optoelectronic device and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
TW201712896A (en) | 2017-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI525855B (en) | Light-emitting element having a plurality of contact parts | |
TWI597864B (en) | Light-emitting element having a plurality of light-emitting structures | |
TWI577045B (en) | Light-emitting element | |
TWI604633B (en) | Light-emitting element | |
US9318663B2 (en) | Light-emitting element | |
TWI590488B (en) | Light-emitting element having a reflective structure with high efficiency | |
CN110265517B (en) | Light-emitting element | |
TWI575776B (en) | Light-emitting element having a reflective structure with high efficiency | |
TWI591855B (en) | Light-emitting element with window layers sandwiching distributed bragg reflector | |
TWI754617B (en) | Light-emitting element | |
TWI701847B (en) | Light-emitting element having a reflective structure with high efficiency | |
TWI611602B (en) | Light-emitting element having a reflective structure with high efficiency | |
CN104218128B (en) | Light-emitting component with high efficiency catoptric arrangement | |
TWI632700B (en) | Light-emitting element having a reflective structure with high efficiency | |
TWI605615B (en) | Light-emitting element | |
JP2015026656A (en) | Light-emitting device | |
JP2018037690A (en) | Light-emitting element | |
TWI644451B (en) | Light-emitting element | |
TWI633683B (en) | Light-emitting element having a plurality of light-emitting structures | |
CN110047865B (en) | Light-emitting element with multiple light-emitting structures | |
TW201836170A (en) | Light-emitting element having a plurality of light-emitting structures | |
TW201907582A (en) | Light-emitting element | |
KR20150012820A (en) | Light-emitting element |