Nothing Special   »   [go: up one dir, main page]

TWI604286B - Holographic exposure system - Google Patents

Holographic exposure system Download PDF

Info

Publication number
TWI604286B
TWI604286B TW104103034A TW104103034A TWI604286B TW I604286 B TWI604286 B TW I604286B TW 104103034 A TW104103034 A TW 104103034A TW 104103034 A TW104103034 A TW 104103034A TW I604286 B TWI604286 B TW I604286B
Authority
TW
Taiwan
Prior art keywords
light
arm
polarization
fiber
light source
Prior art date
Application number
TW104103034A
Other languages
Chinese (zh)
Other versions
TW201627784A (en
Inventor
李三良
洪勇智
吳偉泓
謝志華
Original Assignee
國立臺灣科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣科技大學 filed Critical 國立臺灣科技大學
Priority to TW104103034A priority Critical patent/TWI604286B/en
Publication of TW201627784A publication Critical patent/TW201627784A/en
Application granted granted Critical
Publication of TWI604286B publication Critical patent/TWI604286B/en

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

全像曝光系統Holographic exposure system

本發明是有關於一種全像曝光系統。The present invention is directed to a holographic exposure system.

全像術曝光系統可以形成固定週期的光柵圖案於基板上,光柵圖案的面積與週期取決於入射光的角度與反射鏡的尺寸。此系統可以在矽基板上進行干涉圖紋曝光,並透過乾、濕式蝕刻技術產生二維週期性結構,而此結構在光電領域上有許多成功的應用。The holographic exposure system can form a fixed period grating pattern on the substrate, the area and period of the grating pattern being dependent on the angle of the incident light and the size of the mirror. The system can perform interference pattern exposure on the germanium substrate and generate a two-dimensional periodic structure through dry and wet etching techniques, and this structure has many successful applications in the field of optoelectronics.

目前的全像術曝光系統大多使用Lloyd-mirror方式進行干涉曝光。傳統式全像術曝光系統因反射鏡的尺寸限制等因素,通常只能在2吋以內的矽晶片上形成週期介於240奈米至700奈米間的奈米結構,而無法達成在6至8吋的矽晶片上進行大面積曝光與週期為1微米的圖案化目標。Most current photographic exposure systems use Lloyd-mirror for interference exposure. The traditional holographic exposure system usually only forms a nanostructure with a period between 240 nm and 700 nm on a ruthenium wafer within 2 Å due to the size limitation of the mirror, and cannot be achieved at 6 to A large area exposure and a patterned target with a period of 1 micron were performed on a 8 inch germanium wafer.

本發明之一技術態樣是在提供一種全像曝光系統,使全像曝光系統便能在自由調整干涉條紋週期的同時,對於樣品進行大面積的曝光。One aspect of the present invention is to provide a holographic exposure system that allows a holographic exposure system to perform large-area exposure of a sample while freely adjusting the period of the interference fringes.

根據本發明一實施方式,一種全像曝光系統,包含光源模組、光纖模組、平台以及方向控制置具。光源模組用以提供至少一光源光線。光纖模組具有第一出光口與第二出光口,用以與光源光線耦合,並以第一出光口與第二出光口分別提供偏振方向相同之第一偏振光線與第二偏振光線。平台用以放置樣品。方向控制置具包含第一支臂、第二支臂以及方向控制模組。第一出光口固定於第一支臂,第二出光口固定於第二支臂。第一支臂與第二支臂可轉動地連接於方向控制模組,方向控制模組用以轉動第一支臂與第二支臂,使第一偏振光線與第二偏振光線入射於樣品的入射角度相同。According to an embodiment of the invention, a holographic exposure system includes a light source module, a fiber optic module, a platform, and a direction control device. The light source module is configured to provide at least one light source. The optical fiber module has a first light exiting port and a second light emitting port for coupling with the light source, and providing the first polarized light and the second polarized light having the same polarization direction respectively by the first light exit port and the second light exit port. The platform is used to place samples. The direction control device includes a first arm, a second arm, and a direction control module. The first light exit port is fixed to the first arm, and the second light exit port is fixed to the second arm. The first arm and the second arm are rotatably connected to the direction control module, and the direction control module is configured to rotate the first arm and the second arm to make the first polarized light and the second polarized light are incident on the sample The angle of incidence is the same.

於本發明之一或多個實施方式中,光源模組包含光源與分光鏡,光源光線包含第一分支光線與第二分支光線,光源用以提供起始光線,分光鏡用以將起始光線分為第一分支光線與第二分支光線,光纖模組包含第一光纖與第二光纖,第一出光口設置於第一光纖上,第二出光口設置於第二光纖上,第一光纖用以與第一分支光線耦合,第二光纖用以與第二分支光線耦合。In one or more embodiments of the present invention, the light source module includes a light source and a beam splitter, the light source light includes a first branch light and a second branch light, the light source is used to provide the starting light, and the beam splitter is used to start the light. Dividing into a first branch light and a second branch light, the optical fiber module includes a first optical fiber and a second optical fiber, the first optical output port is disposed on the first optical fiber, and the second optical output port is disposed on the second optical fiber, where the first optical fiber is used The second fiber is coupled to the second branch ray for coupling with the first branch ray.

於本發明之一或多個實施方式中,光纖模組更包含第一偏振旋轉器與第二偏振旋轉器,第一偏振旋轉器與第二偏振旋轉器分別設置於第一出光口與第二出光口前方,第一偏振旋轉器與第二偏振旋轉器分別用以改變從第一出光口與第二出光口射出之光線的偏振方向,而分別形成偏振方向相同之第一偏振光線與第二偏振光線。In one or more embodiments of the present invention, the optical fiber module further includes a first polarization rotator and a second polarization rotator, and the first polarization rotator and the second polarization rotator are respectively disposed at the first light exit port and the second light output port In front of the light exit port, the first polarization rotator and the second polarization rotator respectively change the polarization directions of the light beams emitted from the first light exit port and the second light exit port, and respectively form the first polarized light having the same polarization direction and the second Polarized light.

於本發明之一或多個實施方式中,第一光纖與第二光纖為偏振保持光纖(Polarization Maintaining Fiber),光纖模組更包含第一偏振旋轉器與第二偏振旋轉器,第一偏振旋轉器設置於光源模組與第一光纖之間,第二偏振旋轉器設置於光源模組與第二光纖之間,第一偏振旋轉器與第二偏振旋轉器分別用以改變第一分支光線與第二分支光線的偏振方向,進而使第一偏振光線與第二偏振光線之偏振方向相同。In one or more embodiments of the present invention, the first optical fiber and the second optical fiber are polarization maintaining fibers (Polarization Maintaining Fiber), and the optical fiber module further includes a first polarization rotator and a second polarization rotator, and the first polarization rotation The second polarization rotator is disposed between the light source module and the second optical fiber, and the first polarization rotator and the second polarization rotator respectively change the first branch light and The polarization direction of the second branch light is such that the polarization directions of the first polarized light and the second polarized light are the same.

於本發明之一或多個實施方式中,光纖模組包含定向耦合光纖(Directional Coupling Fiber),定向耦合光纖具有入光口,第一出光口與第二出光口設置於定向耦合光纖上,光源光線由入光口進入定向耦合光纖而與定向耦合光纖耦合。In one or more embodiments of the present invention, the optical fiber module includes a Directional Coupling Fiber, the directional coupling fiber has an optical entrance port, and the first optical outlet and the second optical outlet are disposed on the directional coupling optical fiber. Light is coupled to the directional coupling fiber by the entrance port into the directional coupling fiber.

於本發明之一或多個實施方式中,光纖模組更包含第一偏振旋轉器與第二偏振旋轉器,第一偏振旋轉器與第二偏振旋轉器分別設置於第一出光口與第二出光口前方,第一偏振旋轉器與第二偏振旋轉器分別用以改變從第一出光口與第二出光口射出之光線的偏振方向,而分別形成偏振方向相同之第一偏振光線與第二偏振光線。In one or more embodiments of the present invention, the optical fiber module further includes a first polarization rotator and a second polarization rotator, and the first polarization rotator and the second polarization rotator are respectively disposed at the first light exit port and the second light output port In front of the light exit port, the first polarization rotator and the second polarization rotator respectively change the polarization directions of the light beams emitted from the first light exit port and the second light exit port, and respectively form the first polarized light having the same polarization direction and the second Polarized light.

於本發明之一或多個實施方式中,定向耦合光纖為偏振保持光纖,光纖模組更包含偏振旋轉器,偏振旋轉器設置於光源模組與定向耦合光纖之間,偏振旋轉器用以改變光源光線的偏振方向,進而使第一偏振光線與第二偏振光線之偏振方向相同。In one or more embodiments of the present invention, the directional coupling fiber is a polarization maintaining fiber, the fiber module further includes a polarization rotator, the polarization rotator is disposed between the light source module and the directional coupling fiber, and the polarization rotator is used to change the light source. The direction of polarization of the light, which in turn causes the polarization directions of the first polarized light and the second polarized light to be the same.

於本發明之一或多個實施方式中,方向控制模組包含中央支柱、中央抵頂件、第一抵頂支架以及第二抵頂支架。第一支臂具有第一端、第二端與位於第一端與第二端之間的連接部。第二支臂具有第一端、第二端與位於第一端與第二端之間的連接部。中央支柱具有連接部,第一支臂的第一端與第二支臂的第一端可轉動地連接於中央支柱的連接部。中央抵頂件可滑動地設置於中央支柱上,且中央抵頂件較中央支柱的連接部靠近第一支臂的第二端與第二支臂的第二端。第一抵頂支架的其中一端與第二抵頂支架的其中一端固定於中央抵頂件,第一抵頂支架的另一端與第二抵頂支架的另一端分別樞接於第一支臂的連接部與第二支臂的連接部。第一出光口設置於第一支臂的第二端,第二出光口設置於第二支臂的第二端。In one or more embodiments of the present invention, the direction control module includes a center pillar, a center abutment, a first abutment bracket, and a second abutment bracket. The first arm has a first end, a second end and a connection between the first end and the second end. The second arm has a first end, a second end and a connection between the first end and the second end. The central post has a connecting portion, and the first end of the first arm and the first end of the second arm are rotatably coupled to the connecting portion of the central post. The central abutting member is slidably disposed on the central post, and the central abutting member is closer to the second end of the first arm and the second end of the second arm than the connecting portion of the central post. One end of the first abutting bracket and one end of the second abutting bracket are fixed to the central abutting member, and the other end of the first abutting bracket and the other end of the second abutting bracket are respectively pivotally connected to the first arm. a connecting portion of the connecting portion and the second arm. The first light exit port is disposed at the second end of the first arm, and the second light exit port is disposed at the second end of the second arm.

於本發明之一或多個實施方式中,光源光線為雷射。In one or more embodiments of the invention, the source light is a laser.

於本發明之一或多個實施方式中,光源模組包含光源與快門。光源用以提供起始光線,快門設置於光源與光纖模組之間。In one or more embodiments of the present invention, the light source module includes a light source and a shutter. The light source is used to provide the starting light, and the shutter is disposed between the light source and the fiber optic module.

本發明上述實施方式藉由使第一出光口、第二出光口與樣品之間的距離夠大,進而使第一偏振光線與第二偏振光線可以延展成所欲大小的光束,並且使第一偏振光線與第二偏振光線干涉而形成所欲面積的干涉曝光區域於平台上,同時干涉曝光區域的面積大小不會受限於第一偏振光線與第二偏振光線入射於樣品的入射角度。如此一來,全像曝光系統便能在自由調整干涉條紋週期的同時,對於樣品進行大面積的曝光。In the above embodiment, the distance between the first light exit port and the second light exit port and the sample is sufficiently large, so that the first polarized light and the second polarized light can be extended into a desired beam, and the first The polarized light interferes with the second polarized light to form an interference exposure area of the desired area on the platform, and the size of the area of the interference exposed area is not limited by the incident angle of the first polarized light and the second polarized light incident on the sample. In this way, the holographic exposure system can perform large-area exposure of the sample while freely adjusting the period of the interference fringe.

以下將以圖式揭露本發明之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。The embodiments of the present invention are disclosed in the following drawings, and the details of However, it should be understood that these practical details are not intended to limit the invention. That is, in some embodiments of the invention, these practical details are not necessary. In addition, some of the conventional structures and elements are shown in the drawings in a simplified schematic manner in order to simplify the drawings.

第1圖繪示依照本發明一實施方式之全像曝光系統100的立體示意圖。本發明不同實施方式提供一種全像曝光系統100,全像曝光系統100藉由提供兩個具相干性(Coherence)的偏振光線230、240,偏振光線230、240以不同方向但相同入射角度入射樣品300,因而形成固定週期的干涉條紋,並曝光樣品300而形成固定週期的光柵圖案於樣品300上。需要注意的是,全像曝光系統100在曝光樣品300時不需使用光罩。FIG. 1 is a perspective view of a holographic exposure system 100 in accordance with an embodiment of the present invention. Various embodiments of the present invention provide a holographic exposure system 100 that provides incident light at different incident angles but at the same angle of incidence by providing two coherent polarized rays 230, 240. 300, thus forming a fixed period of interference fringes, and exposing the sample 300 to form a fixed period grating pattern on the sample 300. It should be noted that the holographic exposure system 100 does not require the use of a reticle when exposing the sample 300.

全像曝光系統100包含光源模組110、光纖模組120、方向控制置具140以及平台190。光源模組110用以提供至少一光源光線220。光纖模組120具有出光口121、 122,用以與光源光線220耦合,並以出光口121、122分別提供偏振方向相同之偏振光線230、240。平台190用以放置樣品300。具體而言,樣品300放置於偏振光線230、240所形成的干涉曝光區域400中。方向控制置具140包含支臂141、145以及方向控制模組150。出光口121固定於支臂141,出光口122固定於支臂145。支臂141、145可轉動地連接於方向控制模組150。方向控制模組150用以轉動支臂141、145,使偏振光線230、240入射於樣品300的入射角度相同。The holographic exposure system 100 includes a light source module 110, a fiber optic module 120, a directional control device 140, and a platform 190. The light source module 110 is configured to provide at least one light source 220. The fiber optic module 120 has light exiting ports 121 and 122 for coupling with the light source light 220, and the polarized light beams 230 and 240 having the same polarization direction are respectively provided by the light exit ports 121 and 122. Platform 190 is used to place sample 300. Specifically, the sample 300 is placed in the interference exposure region 400 formed by the polarized light rays 230, 240. The direction control fixture 140 includes arms 141, 145 and a direction control module 150. The light exit port 121 is fixed to the arm 141, and the light exit port 122 is fixed to the arm 145. The arms 141, 145 are rotatably coupled to the direction control module 150. The direction control module 150 is configured to rotate the arms 141, 145 such that the incident angles of the polarized rays 230, 240 incident on the sample 300 are the same.

偏振光線230、240自出光口121與出光口122射出後,偏振光線230、240會擴散而產生光束延展的現象。由於出光口121、122與置於平台190上的樣品300的距離可以自由調整,因此出光口121、122與樣品300之間的距離可以調整至夠大,進而使偏振光線230、240延展成所欲大小的光束,並且使偏振光線230、240干涉而形成所欲面積的干涉曝光區域400於平台190上,同時干涉曝光區域400的面積大小不會受限於偏振光線230、240入射於樣品300的入射角度。如此一來,全像曝光系統100便能在自由調整干涉條紋的週期的同時,對於樣品300進行大面積的曝光。After the polarized light rays 230 and 240 are emitted from the light exit port 121 and the light exit port 122, the polarized light beams 230 and 240 are diffused to cause a phenomenon in which the light beam is extended. Since the distance between the light exit ports 121, 122 and the sample 300 placed on the platform 190 can be freely adjusted, the distance between the light exit ports 121, 122 and the sample 300 can be adjusted to be large enough to extend the polarized light 230, 240 into a The beam of the desired size, and the polarized light 230, 240 interfere to form an interference exposure region 400 of the desired area on the platform 190, while the size of the area of the interference exposure region 400 is not limited by the incident light 300, 240 being incident on the sample 300. Angle of incidence. As a result, the holographic exposure system 100 can perform large-area exposure of the sample 300 while freely adjusting the period of the interference fringes.

具體而言,光源模組110包含光源111、快門112以及分光鏡113。光源111用以提供起始光線210。快門112設置於光源111與光纖模組120之間。在操作全像曝光系統100時,光源111通常一直是處於開啟的狀態,因此在光源111前方設置快門112,將能有效控制光線通過快門112的時間,因而控制曝光時間。更具體地說,快門112設置於光源111與分光鏡113之間。Specifically, the light source module 110 includes a light source 111, a shutter 112, and a beam splitter 113. The light source 111 is used to provide the starting light 210. The shutter 112 is disposed between the light source 111 and the fiber optic module 120. When operating the holographic exposure system 100, the light source 111 is normally always on, so providing the shutter 112 in front of the light source 111 will effectively control the time that light passes through the shutter 112, thus controlling the exposure time. More specifically, the shutter 112 is disposed between the light source 111 and the beam splitter 113.

分光鏡113用以將通過快門112的起始光線210分為分支光線221、222(分支光線221、222組成光源光線220)。分支光線221、222的強度基本上相同。The beam splitter 113 is used to split the starting ray 210 passing through the shutter 112 into branch rays 221, 222 (the branch rays 221, 222 constitute the source ray 220). The intensity of the branch rays 221, 222 is substantially the same.

具體而言,起始光線210為雷射,因此起始光線210具有良好的相干特性。由於起始光線210通過分光鏡113後形成光源光線220,因此光源光線220亦為雷射。In particular, the starting ray 210 is a laser, so the starting ray 210 has good coherence characteristics. Since the starting light 210 passes through the beam splitter 113 to form the source light 220, the source light 220 is also a laser.

具體而言,光纖模組120包含光纖123、124。出光口121設置於光纖123上,出光口122設置於光纖124上,光纖123用以與分支光線221耦合,光纖124用以與分支光線222耦合。Specifically, the fiber optic module 120 includes optical fibers 123, 124. The light exit port 121 is disposed on the optical fiber 123. The light exit port 122 is disposed on the optical fiber 124. The optical fiber 123 is coupled to the branch light 221, and the optical fiber 124 is coupled to the branch light 222.

光纖123更具有入光口125,光纖124更具有入光口126。分支光線221由入光口125進入光纖123而與光纖123耦合。分支光線222由入光口126進入光纖124而與光纖124耦合。入光口125、126的開口大小可以設置較大,方便分支光線221、222對準進入入光口125、126。The optical fiber 123 further has an optical entrance 125, and the optical fiber 124 further has an optical entrance 126. The branch light 221 enters the optical fiber 123 from the light entrance 125 and is coupled to the optical fiber 123. Branched light 222 enters fiber 124 from light entrance 126 and is coupled to fiber 124. The opening size of the light entrances 125, 126 can be set to be large, so that the branch light rays 221, 222 are aligned to enter the light entrance ports 125, 126.

光源模組110更可包含至少一反射鏡114,用以調整光源111與光纖模組120之間的光路。在本實施方式中,反射鏡114用以反射分支光線222,以使分支光線222得以進入入光口126。The light source module 110 further includes at least one mirror 114 for adjusting the optical path between the light source 111 and the optical fiber module 120. In the present embodiment, the mirror 114 is configured to reflect the branched light 222 to allow the branched light 222 to enter the light entrance 126.

具體而言,光纖模組120更包含偏振旋轉器127、128,偏振旋轉器127、128分別設置於出光口121、122的前方,偏振旋轉器127、128分別用以改變從出光口121、122射出之光線的偏振方向,而分別形成偏振方向相同之偏振光線230、240,以使偏振光線230、240具有良好相干性。具體而言,偏振旋轉器127、128將光線改變為具有線偏振的偏振光線230、240。Specifically, the optical fiber module 120 further includes polarization rotators 127 and 128. The polarization rotators 127 and 128 are respectively disposed in front of the light exit ports 121 and 122, and the polarization rotators 127 and 128 are respectively used to change the light exit ports 121 and 122. The polarization directions of the emitted light rays are respectively formed into polarized light beams 230 and 240 having the same polarization direction, so that the polarized light beams 230 and 240 have good coherence. In particular, polarization rotators 127, 128 change the light into polarized light rays 230, 240 having linear polarization.

光纖模組120更可包含聚光模組129a、129b,聚光模組129a、129b分別設置於出光口121、122的前方。聚光模組129a、129b用以內聚由出光口121、122射出的光線,使這些光線的擴展角度不會太大,甚至使這些光線成為平行光,以使這些光線具有良好的相干性。更具體地說,聚光模組129a、129b為設置於偏振旋轉器127、128的前方,但並不限於此。在其他實施方式中,聚光模組129a可以設置於出光口121與偏振旋轉器127之間,聚光模組129b可以設置於出光口122與偏振旋轉器128之間。The optical fiber module 120 further includes concentrating modules 129a and 129b, and the concentrating modules 129a and 129b are respectively disposed in front of the light exiting openings 121 and 122. The concentrating modules 129a and 129b are used for coherently illuminating the light emitted by the light exiting openings 121 and 122 so that the angles of expansion of the light rays are not too large, and even the light rays become parallel light, so that the light rays have good coherence. More specifically, the concentrating modules 129a and 129b are disposed in front of the polarization rotators 127 and 128, but are not limited thereto. In other embodiments, the concentrating module 129a may be disposed between the light exit port 121 and the polarization rotator 127, and the concentrating module 129b may be disposed between the light exit port 122 and the polarization rotator 128.

出光口121、122與聚光模組129a、129b之間的距離可以調整,從而調整由出光口121、122射出的光線最終所形成的光束大小。需要注意的是,聚光模組129a、129b並非必要,即使沒有聚光模組129a、129b,偏振光線230、240仍然具有足夠的相干性以形成干涉條紋(雖然干涉條紋的週期可能會有誤差,然而這通常會在許可範圍之內)。The distance between the light exit ports 121 and 122 and the concentrating modules 129a and 129b can be adjusted to adjust the beam size finally formed by the light emitted from the light exit ports 121 and 122. It should be noted that the concentrating modules 129a, 129b are not necessary. Even without the concentrating modules 129a, 129b, the polarized rays 230, 240 still have sufficient coherence to form interference fringes (although the period of the interference fringes may have errors) However, this is usually within the scope of the license).

具體而言,樣品300的位置為固定。於是,方向控制模組150轉動支臂141、145的轉動角度大小相同且轉動方向相反,進而使偏振光線230、240入射於樣品300的入射角度相同。本發明並不限制於此,在本發明其他實施方式中,平台190與置於其上之樣品300的位置可以移動。具體而言,平台190與樣品300的位置設計成可隨著支臂141、145的張開角度而移動到適當的位置。當支臂141、145的張開角度越大,平台190與樣品300的位置越靠近方向控制模組150;反之,則遠離。Specifically, the position of the sample 300 is fixed. Therefore, the rotation angles of the rotation arms 141 and 145 of the direction control module 150 are the same and the rotation directions are opposite, so that the incident angles of the polarized rays 230 and 240 incident on the sample 300 are the same. The invention is not limited thereto, and in other embodiments of the invention, the position of the platform 190 and the sample 300 placed thereon may be moved. Specifically, the position of the platform 190 and the sample 300 is designed to be moved to an appropriate position with the opening angle of the arms 141, 145. When the opening angle of the arms 141, 145 is larger, the position of the platform 190 and the sample 300 is closer to the direction control module 150; otherwise, it is far away.

第2圖繪示第1圖的方向控制置具140的上視示意圖。如第2圖所繪示,方向控制模組150包含中央支柱151、中央抵頂件153、抵頂支架154、 157。支臂141具有第一端142、第二端143與位於第一端142與第二端143之間的連接部144。支臂145具有第一端146、第二端147與位於第一端146與第二端147之間的連接部148。中央支柱151具有連接部152。支臂141的第一端142與支臂145的第一端146可轉動地連接於中央支柱151的連接部152。中央抵頂件153可滑動地設置於中央支柱151上,且中央抵頂件153較中央支柱151的連接部152靠近支臂141的第二端143與支臂145的第二端147。抵頂支架154的其中一端155與抵頂支架157的其中一端158固定於中央抵頂件153,抵頂支架154的另一端156與抵頂支架157的另一端159分別樞接於支臂141的連接部144與支臂145的連接部148。出光口121設置於支臂141的第二端143,出光口122設置於支臂145的第二端147。FIG. 2 is a top plan view of the direction control device 140 of FIG. 1 . As shown in FIG. 2, the direction control module 150 includes a central pillar 151, a central abutment 153, and abutment brackets 154, 157. The arm 141 has a first end 142, a second end 143 and a connecting portion 144 between the first end 142 and the second end 143. The arm 145 has a first end 146, a second end 147 and a connection 148 between the first end 146 and the second end 147. The center pillar 151 has a connecting portion 152. The first end 142 of the arm 141 and the first end 146 of the arm 145 are rotatably coupled to the connecting portion 152 of the center post 151. The central abutting member 153 is slidably disposed on the center post 151, and the central abutting member 153 is closer to the second end 143 of the arm 141 and the second end 147 of the arm 145 than the connecting portion 152 of the center post 151. One end 155 of the abutment bracket 154 and one end 158 of the abutment bracket 157 are fixed to the central abutting member 153, and the other end 156 of the abutting bracket 154 and the other end 159 of the abutting bracket 157 are respectively pivotally connected to the arm 141. The connecting portion 144 is connected to the connecting portion 148 of the arm 145. The light exit port 121 is disposed at the second end 143 of the arm 141, and the light exit port 122 is disposed at the second end 147 of the arm 145.

如第1圖與第2圖所繪示,藉由前述結構,當想要將使偏振光線230、240入射於樣品300的入射角度增大時,僅要將中央抵頂件153沿著中央支柱151朝著連接部152移動,中央抵頂件153便會抵頂抵頂支架154、157,而抵頂支架154、157便會抵頂支臂141、145,並使支臂141、145與中央支柱151之間的夾角增大。當想要將使偏振光線230、240入射於樣品300的入射角度減少時,僅要將中央抵頂件153沿著中央支柱151遠離連接部152移動,中央抵頂件153便會帶動抵頂支架154、157的其中一端155、158遠離連接部152,並使抵頂支架154、157帶動抵頂支臂141、145朝向中央支柱151內縮,進而使支臂141、145與中央支柱151之間的夾角減少。由於方向控制置具140為對稱結構,因此支臂141、145與中央支柱151之間的夾角為相同,於是由出光口121、122射出的偏振光線230、240入射於樣品300的入射角度將會相同。As shown in FIGS. 1 and 2, with the foregoing structure, when it is desired to increase the incident angle at which the polarized light rays 230, 240 are incident on the sample 300, only the central abutting member 153 is to be along the central pillar. 151 moves toward the connecting portion 152, the central abutting member 153 abuts against the abutting brackets 154, 157, and the abutting brackets 154, 157 abut the arms 141, 145 and the arms 141, 145 and the center The angle between the pillars 151 is increased. When it is desired to reduce the incident angle at which the polarized light rays 230, 240 are incident on the sample 300, only the central abutting member 153 is moved away from the connecting portion 152 along the central post 151, and the central abutting member 153 drives the abutting bracket. One end 155, 158 of 154, 157 is away from the connecting portion 152, and the abutting brackets 154, 157 are caused to move the abutting arms 141, 145 toward the central strut 151, thereby causing the arms 141, 145 and the central strut 151 to be between The angle of the angle is reduced. Since the directional control device 140 has a symmetrical structure, the angle between the arms 141, 145 and the central struts 151 is the same, so that the incident angles of the polarized rays 230, 240 emitted by the light exits 121, 122 incident on the sample 300 will be the same.

此處需要注意的是,方向控制模組150並不一定要是此處描述的結構。方向控制模組150可以為任意結構,只要可以使偏振光線230、240入射於樣品300的入射角度相同即可,進一步來說,在樣品300的位置為固定的情況下,只要可以使方向控制模組150轉動支臂141、145的轉動角度大小相同且轉動方向相反即可。It should be noted here that the direction control module 150 does not have to be the structure described herein. The direction control module 150 may have any configuration as long as the incident angles of the polarized light rays 230 and 240 incident on the sample 300 can be the same. Further, in the case where the position of the sample 300 is fixed, as long as the direction control mode can be made The rotation angles of the group 150 rotation arms 141, 145 are the same and the rotation directions are opposite.

如第1圖所繪示,方向控制置具140更可以包含控制模組149,控制模組149電連接方向控制模組150並用以控制方向控制模組150,使方向控制模組150轉動支臂141、145。As shown in FIG. 1 , the direction control device 140 can further include a control module 149 . The control module 149 is electrically connected to the direction control module 150 and used to control the direction control module 150 to rotate the arm of the direction control module 150. 141, 145.

如第1圖所繪示,平台190可以旋轉,並且全像曝光系統100可以在平台190可以旋轉特定角度(舉例來說,90度)後再次曝光樣品300,於是全像曝光系統100將能形成固定週期的二維光柵圖案於樣品300上。As depicted in FIG. 1, the platform 190 can be rotated, and the holographic exposure system 100 can re-expose the sample 300 after the platform 190 can be rotated at a particular angle (eg, 90 degrees), such that the holographic exposure system 100 will be formed. A fixed-period two-dimensional grating pattern is placed on the sample 300.

第3圖繪示依照本發明另一實施方式之全像曝光系統100的立體示意圖。本實施方式的全像曝光系統100與前述之全像曝光系統100大致相同,以下主要描述其相異處。FIG. 3 is a perspective view of a holographic exposure system 100 in accordance with another embodiment of the present invention. The holographic exposure system 100 of the present embodiment is substantially the same as the holographic exposure system 100 described above, and the differences will be mainly described below.

如第3圖所繪示,光纖123、124為偏振保持光纖(Polarization Maintaining Fiber),光纖模組120更包含偏振旋轉器127、128。偏振旋轉器127設置於光源模組110與光纖123之間,偏振旋轉器128設置於光源模組110與光纖124之間。偏振旋轉器127、128分別用以改變分支光線221、222的偏振方向,以使分支光線221、222的偏振方向相同。分支光線221、222進入光纖123、124後,因為偏振方向將會維持,於是由出光口121、122射出的光線(即偏振光線230、240)的偏振方向仍會相同。As shown in FIG. 3, the optical fibers 123 and 124 are Polarization Maintaining Fibers, and the optical fiber module 120 further includes polarization rotators 127 and 128. The polarization rotator 127 is disposed between the light source module 110 and the optical fiber 123, and the polarization rotator 128 is disposed between the light source module 110 and the optical fiber 124. The polarization rotators 127, 128 are respectively used to change the polarization directions of the branch rays 221, 222 such that the polarization directions of the branch rays 221, 222 are the same. After the branch rays 221, 222 enter the fibers 123, 124, since the polarization direction will be maintained, the polarization directions of the rays (i.e., the polarized rays 230, 240) emitted by the exit ports 121, 122 will remain the same.

第4圖繪示依照本發明又一實施方式之全像曝光系統100的立體示意圖。本實施方式的全像曝光系統100與第1圖的全像曝光系統100大致相同,以下主要描述其相異處。4 is a perspective view of a holographic exposure system 100 in accordance with yet another embodiment of the present invention. The holographic exposure system 100 of the present embodiment is substantially the same as the holographic exposure system 100 of Fig. 1, and the differences will be mainly described below.

光纖模組120包含定向耦合光纖(Directional Coupling Fiber)130,定向耦合光纖130具有入光口131,出光口121、122設置於定向耦合光纖130上,光源光線220由入光口131進入定向耦合光纖130而與定向耦合光纖130耦合。The fiber optic module 120 includes a directional coupling fiber 130. The directional coupling fiber 130 has an optical port 131. The illuminating ports 121 and 122 are disposed on the directional coupling fiber 130. The illuminating light 220 enters the directional coupling fiber through the optical port 131. 130 is coupled to the directional coupling fiber 130.

光源模組110包含光源111與快門112。光源111用以提供光源光線220。快門112設置於光源111與光纖模組120之間。在光源光線220通過快門112之後,光源光線220由入光口131進入定向耦合光纖130而與定向耦合光纖130耦合。接著,耦合後之光源光線220在定向耦合光纖130中被分為兩道光,並從出光口121、122射出。The light source module 110 includes a light source 111 and a shutter 112. The light source 111 is used to provide the light source light 220. The shutter 112 is disposed between the light source 111 and the fiber optic module 120. After the source ray 220 passes through the shutter 112, the source ray 220 is coupled to the directional coupling fiber 130 by the illuminating port 131 into the directional coupling fiber 130. Then, the coupled light source ray 220 is split into two lights in the directional coupling fiber 130 and emitted from the light exit ports 121 and 122.

具體而言,光纖模組120更包含偏振旋轉器127、128,偏振旋轉器127、128分別設置於出光口121、122的前方,偏振旋轉器127、128分別用以改變從出光口121、122射出之光線的偏振方向,而分別形成偏振方向相同之偏振光線230、240。Specifically, the optical fiber module 120 further includes polarization rotators 127 and 128. The polarization rotators 127 and 128 are respectively disposed in front of the light exit ports 121 and 122, and the polarization rotators 127 and 128 are respectively used to change the light exit ports 121 and 122. The polarization directions of the emitted light rays form polarized light beams 230 and 240 having the same polarization direction, respectively.

第5圖繪示依照本發明再一實施方式之全像曝光系統100的立體示意圖。本實施方式的全像曝光系統100與第4圖的全像曝光系統100大致相同,以下主要描述其相異處。FIG. 5 is a perspective view of a holographic exposure system 100 in accordance with still another embodiment of the present invention. The holographic exposure system 100 of the present embodiment is substantially the same as the holographic exposure system 100 of Fig. 4, and the differences will be mainly described below.

定向耦合光纖130為偏振保持光纖。光纖模組120更包含偏振旋轉器129,偏振旋轉器129設置於光源模組110與定向耦合光纖130之間,偏振旋轉器129用以改變光源光線220的偏振方向,以使光源光線220的偏振方向成為所欲方向(舉例來說,光源光線220改變成為線偏振,且偏振方向為水平方向)。光源光線220進入定向耦合光纖130後,因為偏振方向將會維持,於是由出光口121、122射出的光線(即偏振光線230、240)的偏振方向仍會相同。The directional coupling fiber 130 is a polarization maintaining fiber. The fiber optic module 120 further includes a polarization rotator 129 disposed between the light source module 110 and the directional coupling fiber 130. The polarization rotator 129 is used to change the polarization direction of the source ray 220 to polarize the source ray 220. The direction is the desired direction (for example, the source ray 220 changes to linear polarization and the polarization direction is horizontal). After the light source ray 220 enters the directional coupling fiber 130, since the polarization direction will be maintained, the polarization directions of the light rays emitted from the light exit ports 121, 122 (i.e., the polarized light rays 230, 240) will remain the same.

本發明上述實施方式藉由使出光口121、122與樣品300之間的距離夠大,進而使偏振光線230、240可以延展成所欲大小的光束,並且使偏振光線230、240干涉而形成所欲面積的干涉曝光區域400於平台190上,同時干涉曝光區域400的面積大小不會受限於偏振光線230、240入射於樣品300的入射角度。如此一來,全像曝光系統100便能在自由調整干涉條紋週期的同時,對於樣品300進行大面積的曝光。In the above embodiment of the present invention, by making the distance between the light exit ports 121, 122 and the sample 300 large enough, the polarized light rays 230, 240 can be extended into a desired light beam, and the polarized light rays 230, 240 are interfered to form a light source. The interference exposure area 400 of the desired area is on the platform 190 while the area of the interference exposure area 400 is not limited by the angle of incidence of the polarized light 230, 240 incident on the sample 300. As a result, the holographic exposure system 100 can perform large-area exposure of the sample 300 while freely adjusting the period of the interference fringes.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

100‧‧‧全像曝光系統
110‧‧‧光源模組
111‧‧‧光源
112‧‧‧快門
113‧‧‧分光鏡
114‧‧‧反射鏡
120‧‧‧光纖模組
121、122‧‧‧出光口
123、124‧‧‧光纖
125、126‧‧‧入光口
127、128、129‧‧‧偏振旋轉器
130‧‧‧定向耦合光纖
131‧‧‧入光口
129a、129b‧‧‧聚光模組
140‧‧‧方向控制置具
141、145‧‧‧支臂
142、146‧‧‧第一端
143、147‧‧‧第二端
144、148‧‧‧連接部
149‧‧‧控制模組
150‧‧‧方向控制模組
151‧‧‧中央支柱
152‧‧‧連接部
153‧‧‧中央抵頂件
154、157‧‧‧抵頂支架
155、156、158、159‧‧‧端
190‧‧‧平台
210‧‧‧起始光線
220‧‧‧光源光線
221、222‧‧‧分支光線
230、240‧‧‧偏振光線
300‧‧‧樣品
400‧‧‧干涉曝光區域
100‧‧‧Full image exposure system
110‧‧‧Light source module
111‧‧‧Light source
112‧‧ ‧Shutter
113‧‧‧beam splitter
114‧‧‧Mirror
120‧‧‧Optical module
121, 122‧‧‧ light exit
123, 124‧‧‧ fiber
125, 126‧‧‧ into the light port
127, 128, 129‧‧‧ Polarization rotator
130‧‧‧Directional coupling fiber
131‧‧‧Into the light port
129a, 129b‧‧‧ concentrating module
140‧‧‧ Directional Control Set
141, 145‧‧ arm
142, 146‧‧‧ first end
143, 147‧‧‧ second end
144, 148‧‧‧ Connections
149‧‧‧Control Module
150‧‧‧ Directional Control Module
151‧‧‧Central pillar
152‧‧‧Connecting Department
153‧‧‧Central abutment
154, 157‧‧‧Abutment bracket
155, 156, 158, 159‧‧‧
190‧‧‧ platform
210‧‧‧Starting light
220‧‧‧Light source
221, 222‧‧‧ branch light
230, 240‧‧‧ polarized light
300‧‧‧ samples
400‧‧‧Interference exposure area

第1圖繪示依照本發明一實施方式之全像曝光系統的立體示意圖。 第2圖繪示第1圖的方向控制置具的上視示意圖。 第3圖繪示依照本發明另一實施方式之全像曝光系統的立體示意圖。 第4圖繪示依照本發明又一實施方式之全像曝光系統的立體示意圖。 第5圖繪示依照本發明再一實施方式之全像曝光系統的立體示意圖。1 is a perspective view of a holographic exposure system in accordance with an embodiment of the present invention. Fig. 2 is a top plan view showing the direction control device of Fig. 1. 3 is a perspective view of a holographic exposure system in accordance with another embodiment of the present invention. 4 is a perspective view of a holographic exposure system according to still another embodiment of the present invention. FIG. 5 is a perspective view of a holographic exposure system according to still another embodiment of the present invention.

100‧‧‧全像曝光系統 100‧‧‧Full image exposure system

110‧‧‧光源模組 110‧‧‧Light source module

111‧‧‧光源 111‧‧‧Light source

112‧‧‧快門 112‧‧ ‧Shutter

113‧‧‧分光鏡 113‧‧‧beam splitter

114‧‧‧反射鏡 114‧‧‧Mirror

120‧‧‧光纖模組 120‧‧‧Optical module

121、122‧‧‧出光口 121, 122‧‧‧ light exit

123、124‧‧‧光纖 123, 124‧‧‧ fiber

125、126‧‧‧入光口 125, 126‧‧‧ into the light port

127、128‧‧‧偏振旋轉器 127, 128‧‧‧ Polarization rotator

129a、129b‧‧‧聚光模組 129a, 129b‧‧‧ concentrating module

140‧‧‧方向控制置具 140‧‧‧ Directional Control Set

141、145‧‧‧支臂 141, 145‧‧ arm

149‧‧‧控制模組 149‧‧‧Control Module

150‧‧‧方向控制模組 150‧‧‧ Directional Control Module

190‧‧‧平台 190‧‧‧ platform

210‧‧‧起始光線 210‧‧‧Starting light

220‧‧‧光源光線 220‧‧‧Light source

221、222‧‧‧分支光線 221, 222‧‧‧ branch light

230、240‧‧‧偏振光線 230, 240‧‧‧ polarized light

300‧‧‧樣品 300‧‧‧ samples

400‧‧‧干涉曝光區域 400‧‧‧Interference exposure area

Claims (10)

一種全像曝光系統,包含: 一光源模組,用以提供至少一光源光線; 一光纖模組,具有一第一出光口與一第二出光口,用以與該光源光線耦合,並以該第一出光口與該第二出光口分別提供偏振方向相同之一第一偏振光線與一第二偏振光線; 一平台,用以放置一樣品;以及 一方向控制置具,包含: 一第一支臂,其中該第一出光口固定於該第一支臂; 一第二支臂,其中該第二出光口固定於該第二支臂;以及 一方向控制模組,其中該第一支臂與該第二支臂可轉動地連接於該方向控制模組,該方向控制模組用以轉動該第一支臂與該第二支臂,使該第一偏振光線與該第二偏振光線入射於該樣品的入射角度相同。A holographic exposure system includes: a light source module for providing at least one light source; a fiber optic module having a first light exit port and a second light exit port for coupling with the light source of the light source The first light exit port and the second light exit port respectively provide one of the first polarized light and the second polarized light having the same polarization direction; a platform for placing a sample; and a directional control device comprising: a first branch An arm, wherein the first light exit is fixed to the first arm; a second arm, wherein the second light exit is fixed to the second arm; and a directional control module, wherein the first arm is The second arm is rotatably coupled to the directional control module, and the directional control module is configured to rotate the first arm and the second arm to cause the first polarized ray and the second polarized ray to be incident on The sample has the same angle of incidence. 如請求項1所述之全像曝光系統,其中該光源模組包含一光源與一分光鏡,該光源光線包含一第一分支光線與一第二分支光線,該光源用以提供一起始光線,該分光鏡用以將該起始光線分為該第一分支光線與該第二分支光線,該光纖模組包含一第一光纖與一第二光纖,該第一出光口設置於該第一光纖上,該第二出光口設置於該第二光纖上,該第一光纖用以與該第一分支光線耦合,該第二光纖用以與該第二分支光線耦合。The holographic exposure system of claim 1, wherein the light source module comprises a light source and a beam splitter, the light source light comprises a first branch light and a second branch light, wherein the light source is used to provide a starting light. The beam splitter is configured to divide the initial light into the first branch light and the second branch light, the fiber module includes a first fiber and a second fiber, and the first light port is disposed on the first fiber The second optical port is disposed on the second optical fiber, the first optical fiber is coupled to the first branch light, and the second optical fiber is coupled to the second branch light. 如請求項2所述之全像曝光系統,其中該光纖模組更包含一第一偏振旋轉器與一第二偏振旋轉器,該第一偏振旋轉器與該第二偏振旋轉器分別設置於該第一出光口與該第二出光口前方,該第一偏振旋轉器與該第二偏振旋轉器分別用以改變從該第一出光口與該第二出光口射出之光線的偏振方向,而分別形成偏振方向相同之該第一偏振光線與該第二偏振光線。The holographic exposure system of claim 2, wherein the fiber optic module further comprises a first polarization rotator and a second polarization rotator, wherein the first polarization rotator and the second polarization rotator are respectively disposed on the The first light emitting rotator and the second light emitting rotator respectively change a polarization direction of the light emitted from the first light exit port and the second light exit port, respectively, in front of the first light exit port and the second light exit port, respectively The first polarized light and the second polarized light having the same polarization direction are formed. 如請求項2所述之全像曝光系統,其中該第一光纖與該第二光纖為偏振保持光纖(Polarization Maintaining Fiber),該光纖模組更包含一第一偏振旋轉器與一第二偏振旋轉器,該第一偏振旋轉器設置於該光源模組與該第一光纖之間,該第二偏振旋轉器設置於該光源模組與該第二光纖之間,該第一偏振旋轉器與該第二偏振旋轉器分別用以改變該第一分支光線與該第二分支光線的偏振方向,進而使該第一偏振光線與該第二偏振光線之偏振方向相同。The holographic exposure system of claim 2, wherein the first optical fiber and the second optical fiber are Polarization Maintaining Fibers, the optical fiber module further comprising a first polarization rotator and a second polarization rotation The first polarization rotator is disposed between the light source module and the first optical fiber, and the second polarization rotator is disposed between the light source module and the second optical fiber, the first polarization rotator and the The second polarization rotator is configured to change the polarization directions of the first branch light and the second branch light, respectively, so that the polarization directions of the first polarized light and the second polarized light are the same. 如請求項1所述之全像曝光系統,其中該光纖模組包含一定向耦合光纖(Directional Coupling Fiber),該定向耦合光纖具有一入光口,該第一出光口與該第二出光口設置於該定向耦合光纖上,該光源光線由該入光口進入該定向耦合光纖而與該定向耦合光纖耦合。The omni-directional exposure system of claim 1, wherein the optical fiber module comprises a Directional Coupling Fiber, the directional coupling fiber has an optical inlet, and the first optical outlet and the second optical outlet are disposed. On the directional coupling fiber, the light source light enters the directional coupling fiber from the light entrance port and is coupled to the directional coupling fiber. 如請求項5所述之全像曝光系統,其中該光纖模組更包含一第一偏振旋轉器與一第二偏振旋轉器,該第一偏振旋轉器與該第二偏振旋轉器分別設置於該第一出光口與該第二出光口前方,該第一偏振旋轉器與該第二偏振旋轉器分別用以改變從該第一出光口與該第二出光口射出之光線的偏振方向,而分別形成偏振方向相同之該第一偏振光線與該第二偏振光線。The holographic exposure system of claim 5, wherein the fiber optic module further comprises a first polarization rotator and a second polarization rotator, wherein the first polarization rotator and the second polarization rotator are respectively disposed on the The first light emitting rotator and the second light emitting rotator respectively change a polarization direction of the light emitted from the first light exit port and the second light exit port, respectively, in front of the first light exit port and the second light exit port, respectively The first polarized light and the second polarized light having the same polarization direction are formed. 如請求項5所述之全像曝光系統,其中該定向耦合光纖為偏振保持光纖,該光纖模組更包含一偏振旋轉器,該偏振旋轉器設置於該光源模組與該定向耦合光纖之間,該偏振旋轉器用以改變該光源光線的偏振方向,進而使該第一偏振光線與該第二偏振光線之偏振方向相同。The omnidirectional exposure system of claim 5, wherein the directional coupling fiber is a polarization maintaining fiber, the fiber module further comprising a polarization rotator disposed between the light source module and the directional coupling fiber The polarization rotator is configured to change a polarization direction of the light of the light source, so that the polarization directions of the first polarized light and the second polarized light are the same. 如請求項1所述之全像曝光系統,其中該方向控制模組包含一中央支柱、一中央抵頂件、一第一抵頂支架以及一第二抵頂支架,該第一支臂具有一第一端、一第二端與位於該第一端與該第二端之間的一連接部,該第二支臂具有一第一端、一第二端與位於該第一端與該第二端之間的一連接部,該中央支柱具有一連接部,該第一支臂的該第一端與該第二支臂的該第一端可轉動地連接於該中央支柱的該連接部,該中央抵頂件可滑動地設置於該中央支柱上,且該中央抵頂件較該中央支柱的該連接部靠近該第一支臂的該第二端與該第二支臂的該第二端,該第一抵頂支架的其中一端與該第二抵頂支架的其中一端固定於該中央抵頂件,該第一抵頂支架的另一端與該第二抵頂支架的另一端分別樞接於該第一支臂的該連接部與該第二支臂的該連接部,該第一出光口設置於該第一支臂的該第二端,該第二出光口設置於該第二支臂的該第二端。The holographic exposure system of claim 1, wherein the directional control module comprises a central pillar, a central abutting member, a first abutting bracket and a second abutting bracket, the first arm having a a first end, a second end, and a connecting portion between the first end and the second end, the second arm having a first end, a second end, and the first end and the first end a connecting portion between the two ends, the central leg having a connecting portion, the first end of the first arm and the first end of the second arm being rotatably connected to the connecting portion of the central leg The central abutting member is slidably disposed on the central strut, and the central abutting member is closer to the second end of the first arm and the second arm than the connecting portion of the central strut One end of the first abutting bracket and one end of the second abutting bracket are fixed to the central abutting member, and the other end of the first abutting bracket and the other end of the second abutting bracket are respectively The first light outlet is disposed at the connecting portion of the connecting portion of the first arm and the second arm And at the second end of the first arm, the second light exit port is disposed at the second end of the second arm. 如請求項1所述之全像曝光系統,其中該光源光線為雷射。The holographic exposure system of claim 1, wherein the source of light is a laser. 如請求項1所述之全像曝光系統,其中該光源模組包含一光源與一快門,該光源用以提供一起始光線,該快門設置於該光源與該光纖模組之間。The holographic exposure system of claim 1, wherein the light source module comprises a light source and a shutter, the light source is configured to provide a starting light, and the shutter is disposed between the light source and the fiber optic module.
TW104103034A 2015-01-29 2015-01-29 Holographic exposure system TWI604286B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104103034A TWI604286B (en) 2015-01-29 2015-01-29 Holographic exposure system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104103034A TWI604286B (en) 2015-01-29 2015-01-29 Holographic exposure system

Publications (2)

Publication Number Publication Date
TW201627784A TW201627784A (en) 2016-08-01
TWI604286B true TWI604286B (en) 2017-11-01

Family

ID=57181775

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104103034A TWI604286B (en) 2015-01-29 2015-01-29 Holographic exposure system

Country Status (1)

Country Link
TW (1) TWI604286B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW591351B (en) * 2002-09-13 2004-06-11 Univ Nat Central Device and method for manufacturing disc-shaped exhibitive hologram
US20140028629A1 (en) * 2012-07-24 2014-01-30 Rapt Ip Limited Augmented optical waveguide for use in an optical touch sensitive device
JP2014519060A (en) * 2011-06-06 2014-08-07 シーリアル テクノロジーズ ソシエテ アノニム Method and apparatus for stacking thin volume grating stacks and beam combiner for holographic display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW591351B (en) * 2002-09-13 2004-06-11 Univ Nat Central Device and method for manufacturing disc-shaped exhibitive hologram
JP2014519060A (en) * 2011-06-06 2014-08-07 シーリアル テクノロジーズ ソシエテ アノニム Method and apparatus for stacking thin volume grating stacks and beam combiner for holographic display
US20140028629A1 (en) * 2012-07-24 2014-01-30 Rapt Ip Limited Augmented optical waveguide for use in an optical touch sensitive device

Also Published As

Publication number Publication date
TW201627784A (en) 2016-08-01

Similar Documents

Publication Publication Date Title
US9025133B2 (en) Laser interference lithography apparatus using fiber as spatial filter and beam expander
CN101916042A (en) Multi-beam semiconductor laser interference nanolithography technology and system
JP2011507293A5 (en)
US10042173B2 (en) Laser interference lithography system with flat-top intensity profile
CN101566793A (en) Double-beam holographic interference multiple exposure method for preparing two-dimensional photonic crystal
JP2010541234A5 (en)
CN102087481B (en) Method for adjusting real-time monitor device in exposure path of concave holographic grating
CN108227063B (en) An integrated polarization grating preparation system and method
US10101652B2 (en) Exposure method, method of fabricating periodic microstructure, method of fabricating grid polarizing element and exposure apparatus
US9904176B2 (en) Interference lithography device
CN105242499A (en) Laser interferometric lithography system with application of blazed grating
TWI604286B (en) Holographic exposure system
CN102540475A (en) Holographic exposure optical path adjusting method for preparing intermediate infrared distribution feedback grating
US10133007B2 (en) All fiber laser interference lithography setup and methods
JP6510979B2 (en) Optical system of microlithography projection exposure apparatus
JP2015170780A (en) Exposure method, method for manufacturing fine periodic structure, method for manufacturing grid polarizing element, and exposure apparatus
JP2016503186A5 (en)
TWI547770B (en) Holographic exposure system
CN105446089B (en) The multi-beam interference photoetching method that digital micromirror device is combined with multifaceted prism
JP6140290B2 (en) Optical system for microlithography projection exposure apparatus and microlithography exposure method
JP2015534653A5 (en)
JP2013130649A (en) Interference exposure device and interference exposure method
CN108037641A (en) A kind of moth ocular structure preparation system based on efficient intensity distribution and preparation method thereof
CN205608390U (en) Multiple -beam interference photoetching system that digit micro mirror equipment and multiaspect prism combine
JP6454380B2 (en) Interference exposure apparatus and interference exposure method