TWI602055B - Semiconductor memory device and programming method thereof - Google Patents
Semiconductor memory device and programming method thereof Download PDFInfo
- Publication number
- TWI602055B TWI602055B TW105104424A TW105104424A TWI602055B TW I602055 B TWI602055 B TW I602055B TW 105104424 A TW105104424 A TW 105104424A TW 105104424 A TW105104424 A TW 105104424A TW I602055 B TWI602055 B TW I602055B
- Authority
- TW
- Taiwan
- Prior art keywords
- programming
- programmed
- bits
- selected page
- page
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/10—Programming or data input circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/38—Response verification devices
- G11C29/42—Response verification devices using error correcting codes [ECC] or parity check
Landscapes
- Read Only Memory (AREA)
- For Increasing The Reliability Of Semiconductor Memories (AREA)
Description
本發明涉及一種半導體儲存裝置,尤其涉及一種反及(NAND)型快閃記憶體及其編程方法。The present invention relates to a semiconductor storage device, and more particularly to a reverse (NAND) type flash memory and a programming method thereof.
在NAND型快閃記憶體中,通過反覆進行資料的編程或抹除,因穿隧絕緣膜的劣化而導致電荷保持特性惡化,或因由穿隧絕緣膜所捕獲的電荷而產生閾值變動,從而引起位元差錯(bit error)。日本專利特開2010-152989號公報中作為此種位元差錯對策而搭載有差錯檢測校正(Error Checking Correction,ECC)電路。另外,日本專利特開2008-165805號公報,揭示有一種關於在一個儲存胞元儲存多位元(multibit)的資料的NAND型快閃記憶體的多位元的資料的差錯校正方案。進而,日本專利特開2010-79486號公報,揭示有一種快閃記憶體,將校正的差錯數為閾值以上的物理塊作為警告塊(warning block)而登記至表(table),在資料寫入時降低警告塊的選擇的優先位次。In the NAND type flash memory, by repeatedly programming or erasing data, the charge retention characteristics are deteriorated due to the deterioration of the tunnel insulating film, or the threshold value is changed due to the charge trapped by the tunnel insulating film, thereby causing Bit error. An error detection correction (ECC) circuit is mounted as a countermeasure against such a bit error in Japanese Patent Laid-Open Publication No. 2010-152989. In addition, Japanese Patent Laid-Open Publication No. 2008-165805 discloses an error correction scheme for a multi-bit data of a NAND type flash memory in which a memory cell stores multibit data. Further, Japanese Laid-Open Patent Publication No. 2010-79486 discloses a flash memory in which a physical block having a corrected number of errors equal to or greater than a threshold is registered as a warning block to a table, and data is written. Lowers the priority order of the selection of the warning block.
圖1表示以晶片搭載ECC電路的NAND型快閃記憶體的主要部分。將自外部輸入/輸出端子輸入的編程資料載入至頁面緩衝器/讀出(sense)電路10,經載入的編程資料經由轉送電路20而轉送至ECC電路30。轉送電路20包含能夠進行雙向的資料轉送的多個電晶體,各電晶體通過共用連接於閘極的控制信號TG而驅動。ECC電路30進行經轉送的編程資料的運算,並生成用以差錯檢測·校正的差錯校正符號,將差錯校正符號寫回至頁面緩衝器/讀出電路10的規定區域。其次,在記憶體陣列的選擇頁對由頁面緩衝器/讀出電路10所保持的編程資料及差錯校正符號進行編程。Fig. 1 shows a main part of a NAND type flash memory in which an ECC circuit is mounted on a wafer. The programming data input from the external input/output terminal is loaded into the page buffer/sense circuit 10, and the loaded programming data is transferred to the ECC circuit 30 via the transfer circuit 20. The transfer circuit 20 includes a plurality of transistors capable of bidirectional data transfer, and each transistor is driven by a common control signal TG connected to the gate. The ECC circuit 30 performs an operation of the transferred program data, generates an error correction symbol for error detection and correction, and writes the error correction symbol back to a predetermined area of the page buffer/readout circuit 10. Next, the programming data and error correction symbols held by the page buffer/readout circuit 10 are programmed on the select page of the memory array.
圖2為習知的編程動作的流程。對選擇頁面的字元線施加編程脈衝,對位元線設定與編程資料相應的電壓,且對選擇頁面施加編程脈衝(S10)。其次,進行選擇頁面的編程校驗(verify)(S20),從而判定選擇頁面的所有儲存胞元的編程是否合格(S30)。在判定所有儲存胞元的編程為合格的情況下,編程結束。於存在編程為不合格的儲存胞元的情況下,判定編程脈衝的施加次數是否達到NMAX(S40)。此處,所謂NMAX,是指編程所容許的最大時間或編程所容許的最大編程脈衝的施加次數。在達到NMAX的情況下,將編程失敗的狀態告知於外部的控制器,且將所述塊作為壞塊(bad block)而進行管理。另一方面,若未達到NMAX,則依據增量步進編程脈衝(Incremental Step Program Pulse,ISPP),生成比上一次的編程脈衝大DV的具有步進電壓(step voltage)的編程脈衝(S50),從而將該編程脈衝施加至選擇頁面。2 is a flow chart of a conventional programming action. A program pulse is applied to the word line of the selected page, a voltage corresponding to the program material is set to the bit line, and a program pulse is applied to the selected page (S10). Next, a program verify (verify) of the selection page is performed (S20), thereby judging whether or not the programming of all the storage cells of the selected page is acceptable (S30). In the case where it is determined that the programming of all the storage cells is acceptable, the programming ends. In the case where there is a storage cell programmed to be unacceptable, it is determined whether the number of application of the program pulse reaches NMAX (S40). Here, NMAX refers to the maximum time allowed for programming or the number of times the maximum programming pulse is allowed to be programmed. In the case where NMAX is reached, the state of the program failure is notified to the external controller, and the block is managed as a bad block. On the other hand, if NMAX is not reached, a stepping pulse (Incremental Step Program Pulse, ISPP) is generated to generate a step pulse having a step voltage greater than the previous programming pulse (S50). , thereby applying the programming pulse to the selection page.
在未利用搭載於外部的控制器等的ECC功能、或者未搭載ECC的快閃記憶體中,編程校驗的合格是以所有位元的合格為前提。與此相對,在利用搭載於外部的控制器等的ECC功能、或者晶片搭載有ECC的快閃記憶體中,即便在校驗中存在一部分的不合格位元(“0”編程不合格的儲存胞元),也能夠通過以ECC修復所述情況來視作疑似合格。例如,若能夠通過ECC來進行m位元的差錯檢測·校正,則理論上可最大修復m位元的不合格位元。當將可通過ECC來修復的最大位元數設為Ncc、將在校驗中可視作疑似合格的最大的不合格位元數設為Np、將實際的不合格的位元數設為Nf時,將Np以Ncc≧Np的方式進行設定,優選的是設定為Ncc>Np。當Np≧Nf時,選擇頁面包含不合格位元,但不合格位元能夠通過ECC來修復,故將校驗判定為疑似合格。而且,當進行選擇頁面的讀出時,選擇頁面中所包含的不合格位元作為差錯而被檢測出,對該資料進行校正。In an ECC function that does not use an external controller or the like, or a flash memory that does not have an ECC, the pass of the program check is based on the acceptance of all the bits. On the other hand, in the ECC function of the controller mounted on the outside or the flash memory in which the ECC is mounted on the chip, even if there is a part of the defective bit in the verification (the storage of the "0" programming failure) The cell can also be considered as qualified by repairing the condition with ECC. For example, if error detection and correction of m bits can be performed by ECC, it is theoretically possible to repair the defective bits of m bits at the maximum. When the maximum number of bits that can be repaired by ECC is set to Ncc, the maximum number of defective bits that can be regarded as qualified in the verification is Np, and the number of actual unqualified bits is set to Nf. Np is set in the manner of Ncc≧Np, and is preferably set to Ncc>Np. When Np≧Nf, the selection page contains the unqualified bit, but the unqualified bit can be repaired by the ECC, so the verification is judged to be suspected. Further, when the reading of the selected page is performed, the defective bit included in the selected page is detected as an error, and the data is corrected.
通過進行疑似合格的判定,減少編程失敗或壞塊,使良率提高,進而通過抑制編程脈衝的施加次數,可減少編程干擾。By making a suspected pass judgment, the program failure or bad block is reduced, the yield is improved, and the program disturb can be reduced by suppressing the number of times the program pulse is applied.
然而,利用疑似合格的習知的編程方法存在如下所述般的課題。例如,當將直至k位元的不合格位元視作疑似合格時(Np=k),若在編程脈衝的施加次數達到NMAX之前,則校驗時,在實際的不合格位元數Nf小於可視作疑似合格的最大的不合格位元數Np的時間點,編程自動結束。換言之,即便編程脈衝的施加次數充分小於NMAX,在可施加的次數方面仍存在餘地,若Nf≦Np,則判定為疑似合格,編程結束。但是,在將編程設為不合格的儲存胞元中,也存在可通過下一次的編程脈衝的施加而合格者,本來的話,此種儲存胞元理想的是並非判定為不合格位元,而是判定為合格位元。若疑似合格中不合格位元數多,則ECC的其他功能受到很大限制。However, there is a problem as described below using a conventional programming method that is suspected to be qualified. For example, when the unqualified bit up to the k-bit is regarded as suspected to be qualified (Np=k), if the number of times the application pulse is applied before NMAX, the actual number of defective bits Nf is less than that at the time of verification. The programming is automatically terminated when it can be regarded as the time point of the largest number of unqualified bits Np that is suspected to be qualified. In other words, even if the number of times the programming pulse is applied is sufficiently smaller than NMAX, there is still room for the number of times that can be applied, and if Nf ≦ Np, it is judged to be suspected and the programming is completed. However, in a memory cell in which the programming is set to fail, there is also a pass that can be passed by the application of the next programming pulse. In the original case, such a memory cell is preferably not determined to be a defective bit. It is judged as a qualified bit. If there are many unqualified bits in the suspected pass, the other functions of the ECC are greatly limited.
本發明為解決此種習知的課題的發明,且目的在於提供一種可改善編程不良的良率且進行不合格儲存胞元的修復的半導體儲存裝置。The present invention has been made to solve such a conventional problem, and an object of the invention is to provide a semiconductor storage device capable of improving the yield of a programming failure and performing repair of defective storage cells.
本發明的NAND型快閃記憶體的編程方法具有以下步驟:對選擇頁面施加編程脈衝;判定選擇頁面的編程的合格與否;以及當判定為不合格時,在編程脈衝的施加次數未達到小於編程的容許最大值的最佳值的情況下,對選擇頁面進一步施加編程脈衝,在編程脈衝的施加次數達到所述最佳值的情況下,若選擇頁面為預先指定的不合格位元數,則判定為疑似合格。The programming method of the NAND type flash memory of the present invention has the following steps: applying a program pulse to the selected page; determining whether the programming of the selected page is qualified or not; and when the determination is unqualified, the number of times the programming pulse is applied is not less than In the case of programming the optimum value of the allowable maximum value, a programming pulse is further applied to the selected page, and if the number of times the programming pulse is applied reaches the optimal value, if the selected page is a pre-specified number of defective bits, Then it is judged to be suspected to be qualified.
本發明的NAND型快閃記憶體的編程方法包括以下步驟:接收應編程的資料;判定利用所述應編程的資料而進行編程的位元數是否為能夠利用差錯檢測·校正部件而修復的修復位元數以下;利用所述差錯檢測·校正部件來生成所述應編程的資料的差錯校正符號;以及當判定利用所述應編程的資料而進行編程的位元數為所述修復位元數以下時,通過不在選擇頁面的普通區域進行編程,而在備用區域對所述差錯校正符號進行編程來結束針對選擇頁面的編程。The programming method of the NAND type flash memory of the present invention comprises the steps of: receiving data to be programmed; determining whether the number of bits programmed by using the material to be programmed is a repair that can be repaired by using an error detecting and correcting component The number of bits is below; the error correction symbol is generated by the error detection and correction component; and the number of bits to be programmed when the data to be programmed is determined is the number of the repair bits In the following, programming for the selected page is ended by programming the normal error area of the selected page without programming the error correction symbol in the spare area.
本發明的半導體儲存裝置包括:記憶體陣列;差錯檢測·校正部件,生成應編程的資料的差錯校正符號;以及編程部件,在所述記憶體陣列的選擇頁面,對所述應編程的資料及所述差錯校正符號進行編程,且所述編程部件執行如下處理:對選擇頁面施加編程脈衝,當判定選擇頁面的編程為不合格時,在編程脈衝的施加次數未達到小於編程的容許最大值的最佳值的情況下,對選擇頁面進一步施加編程脈衝,在編程脈衝的施加次數達到所述最佳值的情況下,若選擇頁面為預先指定的不合格位元數,則判定為疑似合格。The semiconductor storage device of the present invention includes: a memory array; an error detection and correction unit that generates an error correction symbol of the material to be programmed; and a programming component that reads the information to be programmed on the selection page of the memory array and The error correction symbol is programmed, and the programming component performs a process of applying a programming pulse to the selected page, and when it is determined that the programming of the selected page is unacceptable, the number of application of the programming pulse does not reach less than the allowable maximum of the programming. In the case of the optimum value, a program pulse is further applied to the selected page, and when the number of times the program pulse is applied reaches the optimum value, if the selected page is a predetermined number of defective bits, it is determined to be a pass.
本發明的半導體儲存裝置包括:記憶體陣列;差錯檢測·校正部件,生成應編程的資料的差錯校正符號;以及編程部件,在所述記憶體陣列的選擇頁面,對應編程的資料及所述差錯校正符號進行編程,且所述編程部件在利用應編程的資料而進行編程的位元數為能夠利用所述差錯檢測·校正部件而修復的修復位元數以下時,通過不在選擇頁面的普通區域進行編程,而在備用區域對所述差錯校正符號進行編程來結束選擇頁面的編程。The semiconductor storage device of the present invention includes: a memory array; an error detecting and correcting unit that generates an error correction symbol of the material to be programmed; and a programming component that corresponds to the programmed data and the error on the selected page of the memory array The correction symbol is programmed, and the number of bits of the programming component programmed by using the material to be programmed is less than the number of repair bits that can be repaired by the error detection/correction component, and is not in the normal area of the selected page. Programming is performed and the error correction symbols are programmed in the spare area to end programming of the selected page.
根據本發明,執行如下處理:當在編程的校驗中判定為不合格時,在編程脈衝的施加次數未達到小於容許最大值的最佳值的情況下,進而施加編程脈衝,在編程脈衝的施加次數達到最佳值的情況下,若選擇頁面為預先指定的不合格位元數,則判定為疑似合格,故至少直至編程脈衝達到最佳值為止,所有位元的合格與否判定得到保證。由此,可自不合格判定將本來可合格的記憶體胞元修復。According to the present invention, the following processing is performed: when it is judged to be unacceptable in the verification of the program, in the case where the number of application of the program pulse does not reach the optimum value smaller than the allowable maximum value, the program pulse is further applied, in the case of the programming pulse When the number of times of application reaches the optimum value, if the selected page is the number of unqualified bits specified in advance, it is determined that the page is suspected to be qualified. Therefore, at least until the programming pulse reaches the optimum value, the pass or fail determination of all the bits is guaranteed. . As a result, it is possible to repair a memory cell that is otherwise acceptable from the failure determination.
其次,參照附圖來詳細說明本發明的實施形態。此處,例示NAND型的快閃記憶體作為優選形態。再者,應留意的是,附圖中,為了便於理解而強調表示了各部分,與實際元件的比例並不相同。Next, embodiments of the present invention will be described in detail with reference to the drawings. Here, a NAND type flash memory is exemplified as a preferred embodiment. In addition, it should be noted that in the drawings, the parts are emphasized in order to facilitate understanding, and the ratio to the actual elements is not the same.
將本發明的實施例中的快閃記憶體的典型構成示於圖3。但是,此處所示的快閃記憶體的構成為例示,本發明未必限定於此種構成。本實施例的快閃記憶體100包含以下而構成:記憶體陣列110,其中多個儲存胞元排列成矩陣狀;輸入/輸出緩衝器120,連接於外部輸入/輸出端子I/O,保持輸入/輸出資料;ECC電路130,進行在記憶體陣列110中進行編程的資料或自記憶體陣列110讀出的資料的差錯檢測·校正;位址暫存器140,接收來自輸入/輸出緩衝器120的位址資料;控制部150,接收來自輸入/輸出緩衝器120的命令資料或來自外部的控制信號來控制各部;字元線選擇電路160,自位址暫存器140接收列位址資訊Ax,對列位址資訊Ax進行解碼,並基於解碼結果來進行塊的選擇及字元線的選擇等;頁面緩衝器/讀出電路170,保持自由字元線選擇電路160所選擇的頁面讀出的資料,或保持針對所選擇的頁面的寫入資料;行選擇電路180,自位址暫存器140接收行位址資訊Ay,對行位址資訊Ay進行解碼,並基於該解碼結果來進行頁面緩衝器/讀出電路170內的資料的選擇等;以及內部電壓產生電路190,生成資料的讀出、編程及抹除等所需的各種電壓(寫入電壓Vpgm、通過電壓Vpass、讀出通過電壓Vread、抹除電壓Vers等)。A typical configuration of the flash memory in the embodiment of the present invention is shown in Fig. 3. However, the configuration of the flash memory shown here is an example, and the present invention is not necessarily limited to such a configuration. The flash memory 100 of the present embodiment comprises the following: a memory array 110 in which a plurality of memory cells are arranged in a matrix; an input/output buffer 120 connected to an external input/output terminal I/O, holding input /output data; ECC circuit 130, performing error detection and correction of data programmed in the memory array 110 or data read from the memory array 110; the address register 140 is received from the input/output buffer 120 The address data; the control unit 150 receives the command data from the input/output buffer 120 or a control signal from the outside to control each part; the word line selection circuit 160 receives the column address information Ax from the address register 140. Decoding the column address information Ax, selecting a block and selecting a word line based on the decoding result, etc.; the page buffer/readout circuit 170, holding the page read by the free word line selection circuit 160 Data, or keep the write data for the selected page; the row selection circuit 180 receives the row address information Ay from the address register 140, decodes the row address information Ay, and based on the decoding node The selection of data in the page buffer/readout circuit 170 is performed, and the internal voltage generating circuit 190 generates various voltages required for reading, programming, and erasing of data (write voltage Vpgm, pass voltage Vpass). , read voltage Vread, erase voltage Vers, etc.).
記憶體陣列110具有沿行方向配置的m個儲存塊BLK(0)、BLK(1)、…、BLK(m-1)。接近塊BLK(0)而配置有頁面緩衝器/讀出電路170。除此種構成以外,頁面緩衝器/讀出電路170也可配置於塊的另一個端部或者兩側的端部。The memory array 110 has m memory blocks BLK(0), BLK(1), ..., BLK(m-1) arranged in the row direction. A page buffer/readout circuit 170 is disposed close to the block BLK(0). In addition to such a configuration, the page buffer/readout circuit 170 may be disposed at the other end of the block or at the ends on both sides.
在一個儲存塊中,如圖4所示,形成多個將多個儲存胞元串聯連接而成的NAND串單元NU,在一個儲存塊內沿列方向排列有n+1個串單元NU。串單元NU包含:串聯連接的多個儲存胞元MCi(i=0、1、…、31);連接於作為其中一個端部的儲存胞元MC31的汲極側的選擇電晶體TD;以及連接於作為其中另一個端部的儲存胞元MC0的源極側的選擇電晶體TS,選擇電晶體TD的汲極連接於相對應的一條位元線GBL,選擇電晶體TS的源極連接於共用的源極線SL。In one memory block, as shown in FIG. 4, a plurality of NAND string units NU in which a plurality of memory cells are connected in series are formed, and n+1 string units NU are arranged in a column direction in one memory block. The string unit NU includes: a plurality of storage cells MCi (i = 0, 1, ..., 31) connected in series; a selection transistor TD connected to the drain side of the storage cell MC31 as one of the ends; and a connection In the selection transistor TS as the source side of the memory cell MC0 at the other end, the drain of the selection transistor TD is connected to the corresponding one of the bit lines GBL, and the source of the selection transistor TS is connected to the common source. Source line SL.
儲存胞元MCi的控制閘極連接於字元線WLi,選擇電晶體TD、選擇電晶體TS的閘極連接於與字元線WL並排的選擇閘極線SGD、選擇閘極線SGS。當字元線選擇電路160基於列位址資訊Ax或經轉換的位址資訊來選擇塊時,經由塊的選擇閘極線SGS、選擇閘極線SGD而選擇性地對選擇電晶體TD、選擇電晶體TS進行驅動。圖4表示典型的串單元的構成,但串單元也可在NAND串內包含一個或多個虛設胞元。The control gate of the memory cell MCi is connected to the word line WLi, and the gate of the selection transistor TD, the selection transistor TS is connected to the selection gate line SGD and the selection gate line SGS which are arranged in parallel with the word line WL. When the word line selection circuit 160 selects a block based on the column address information Ax or the converted address information, the selection transistor TD is selectively selected via the selection gate line SGS of the block, the selection gate line SGD. The transistor TS is driven. Figure 4 shows the construction of a typical string unit, but the string unit can also contain one or more dummy cells within the NAND string.
典型的是,儲存胞元具有金屬氧化物半導體結構,該MOS結構包括:作為N型擴散區域的源極/汲極,形成在P阱內;穿隧氧化膜,形成在源極/汲極間的溝道上;浮動閘極(電荷蓄積層),形成在穿隧氧化膜上;以及控制閘極,經由電介質膜而形成在浮動閘極上。當在浮動閘極中未蓄積電荷時,即寫入有資料“1”時,閾值處於負狀態,儲存胞元為常通(normally on)。當浮動閘極中蓄積有電荷時,即寫入有資料“0”時,閾值轉變(shift)為正,儲存胞元為常關(normally off)。但是,儲存胞元可為儲存1位元(二進位資料)的單層胞元(Single Level Cell,SLC)型,也可為儲存多位元的多層胞元(Multi-level Cell,MLC)型。Typically, the memory cell has a metal oxide semiconductor structure including: a source/drain as an N-type diffusion region, formed in the P-well; tunneling an oxide film formed between the source/drain On the channel; a floating gate (charge accumulation layer) formed on the tunnel oxide film; and a control gate formed on the floating gate via the dielectric film. When no charge is accumulated in the floating gate, that is, when the data "1" is written, the threshold is in a negative state, and the storage cell is normally on. When a charge is accumulated in the floating gate, that is, when the data "0" is written, the threshold shift is positive, and the memory cell is normally off. However, the storage cell may be a single-level cell (SLC) type that stores 1-bit (binary data), or a multi-level cell (MLC) type in which multiple bits are stored. .
表1為表示在快閃記憶體進行各動作時施加的偏電壓的一例的表。在讀出動作時,對位元線施加某正電壓,對所選擇的字元線施加某電壓(例如0 V),對非選擇字元線施加通過電壓Vpass(例如4.5 V),對選擇閘極線SGD、選擇閘極線SGS施加正電壓(例如4.5 V),使位元線選擇電晶體TD、源極線選擇電晶體TS導通,對共用源極線施加0 V。在編程(寫入)動作時,對所選擇的字元線施加高電壓的編程電壓Vprog(15 V~20 V),對非選擇的字元線施加中間電位(例如10 V),使位元線選擇電晶體TD導通,使源極線選擇電晶體TS斷開,將與資料“0”或“1”相應的電位供給至位元線GBL。在抹除動作時,對塊內的所選擇的字元線施加0 V,對P阱施加高電壓(例如20 V),將浮動閘極的電子抽出至基板,由此以塊為單位來抹除數據。 Table 1 is a table showing an example of a bias voltage applied when each operation of the flash memory is performed. In the read operation, a positive voltage is applied to the bit line, a certain voltage (for example, 0 V) is applied to the selected word line, and a pass voltage Vpass (for example, 4.5 V) is applied to the unselected word line to select the gate. A positive voltage (for example, 4.5 V) is applied to the gate line SGD and the selection gate line SGS, so that the bit line selection transistor TD and the source line selection transistor TS are turned on, and 0 V is applied to the common source line. In the programming (write) operation, a high voltage programming voltage Vprog (15 V to 20 V) is applied to the selected word line, and an intermediate potential (for example, 10 V) is applied to the unselected word line to make the bit The line selection transistor TD is turned on to disconnect the source line selection transistor TS, and the potential corresponding to the material "0" or "1" is supplied to the bit line GBL. In the erasing action, 0 V is applied to the selected word line in the block, a high voltage (for example, 20 V) is applied to the P well, and the electrons of the floating gate are extracted to the substrate, thereby being wiped in units of blocks. In addition to data.
當在編程動作時經由輸入/輸出緩衝器120而輸入資料Di被載入至頁面緩衝器/讀出電路170時,ECC電路130對自頁面緩衝器/讀出電路170轉送的輸入資料Di進行運算,來生成輸入資料Di的差錯檢測校正所需的差錯校正符號或奇偶檢驗位元(parity bit)。ECC的運算例如利用漢明碼(Hamming code)或裡德·索羅門(Reed-Solomon)等公知的方法來進行,將所輸入的k位元或k位元組的輸入資料Di轉換為p=k+q。在本說明書中,將“q”稱為輸入資料Di的差錯檢測校正所需的差錯校正符號或奇偶檢驗位元。在一優選例中,ECC電路130將差錯校正符號設置於頁面緩衝器/讀出電路170的備用區域。如此,在記憶體陣列110的選擇頁面對頁面緩衝器/讀出電路170中所設置的輸入資料Di與差錯校正符號進行編程。When the input data Di is loaded to the page buffer/readout circuit 170 via the input/output buffer 120 during the programming operation, the ECC circuit 130 operates on the input data Di transferred from the page buffer/readout circuit 170. To generate an error correction symbol or a parity bit required for error detection correction of the input data Di. The calculation of the ECC is performed by, for example, a well-known method such as Hamming code or Reed-Solomon, and the input data Di of the input k-bit or k-byte is converted into p=k. +q. In the present specification, "q" is referred to as an error correction symbol or a parity bit required for error detection correction of the input data Di. In a preferred embodiment, the ECC circuit 130 sets the error correction symbols to the spare area of the page buffer/readout circuit 170. Thus, the input data Di and the error correction symbols set in the page buffer/readout circuit 170 are programmed on the selection page of the memory array 110.
當在讀出動作時自記憶體陣列110的選擇頁面讀出的資料由頁面緩衝器/讀出電路170保持時,ECC電路130基於自頁面緩衝器/讀出電路170轉送的差錯校正符號來進行讀出資料的差錯的檢測、校正,在檢測出差錯的情況下,將校正的資料設置於頁面緩衝器/讀出電路170。而且,頁面緩衝器/讀出電路170中所保持的資料經由輸入/輸出緩衝器120而輸出。When the material read from the selected page of the memory array 110 at the time of the read operation is held by the page buffer/readout circuit 170, the ECC circuit 130 performs based on the error correction symbol transferred from the page buffer/readout circuit 170. When the error of the read data is detected or corrected, when the error is detected, the corrected data is set in the page buffer/readout circuit 170. Moreover, the material held in the page buffer/readout circuit 170 is output via the input/output buffer 120.
其次,參照圖5的流程來對本發明的第1實施例中的編程動作進行說明。當控制部150經由輸入/輸出緩衝器120而接收編程命令時,開始用以編程的序列。經由輸入/輸出緩衝器120而輸入資料Di被載入至頁面緩衝器/讀出電路170,繼而,利用ECC電路130來進行輸入資料Di的ECC處理(S100)。Next, the programming operation in the first embodiment of the present invention will be described with reference to the flow of Fig. 5 . When the control section 150 receives a program command via the input/output buffer 120, a sequence for programming is started. The input data Di is loaded into the page buffer/readout circuit 170 via the input/output buffer 120, and then the ECC processing of the input material Di is performed by the ECC circuit 130 (S100).
在圖6中表示ECC處理的一例。當快閃記憶體100具有×8的外部輸入/輸出端子時,資料自外部輸入/輸出端子P-0~外部輸入/輸出端子P-7經由各I/O緩衝器110-1~I/O緩衝器110-7而被載入至頁面緩衝器/讀出電路170。頁面緩衝器/讀出電路170例如具有被分割為扇區0~扇區7這八個扇區的普通區域300,以及被分割為備用0、備用1、備用2、備用3這四個扇區的備用區域310。An example of ECC processing is shown in FIG. When the flash memory 100 has an external input/output terminal of ×8, data from the external input/output terminal P-0 to the external input/output terminal P-7 via the respective I/O buffers 110-1 to I/O The buffer 110-7 is loaded into the page buffer/readout circuit 170. The page buffer/readout circuit 170 has, for example, a normal area 300 divided into eight sectors of sector 0 to sector 7, and is divided into four sectors of spare 0, spare 1, spare 2, and spare 3 Spare area 310.
普通區域300的一個扇區例如由256位元組構成,在該情況下,普通區域300的八個扇區整體可保持約2K位元組的編程資料。備用區域310的一個扇區例如由16位元組構成,在該情況下,四個扇區(備用0~備用3)整體可保持64位元組的資料。備用區域310的一個扇區例如具有:區域311,儲存對包含不良儲存胞元的壞塊進行辨別的資訊;區域312,儲存與使用者資料有關的資訊;區域313、區域314,儲存關於普通區域300的兩個扇區的差錯校正符號(奇偶檢驗位元);以及區域315,儲存對備用區域310進行ECC運算時的差錯校正符號(奇偶檢驗位元)。備用區域310的備用0的區域313、區域314分別儲存普通區域300的扇區0、扇區1的差錯校正符號(奇偶檢驗位元),備用區域310的備用1的區域313、區域314儲存普通區域300的扇區2、扇區3的差錯校正符號(奇偶檢驗位元)。同樣地,備用區域310的備用2儲存普通區域300的扇區4、扇區5的奇偶檢驗位元,備用區域310的備用3儲存普通區域300的扇區6、扇區7的奇偶檢驗位元。One sector of the normal area 300 is composed of, for example, 256 bytes, in which case the eight sectors of the normal area 300 as a whole can hold programming data of about 2K bytes. One sector of the spare area 310 is composed of, for example, 16 bytes, and in this case, four sectors (alternate 0 to spare 3) as a whole can hold 64-bit data. One sector of the spare area 310 has, for example, an area 311 for storing information for identifying bad blocks containing bad storage cells, an area 312 for storing information related to user data, and an area 313, area 314 for storing common areas. An error correction symbol (parity check bit) of two sectors of 300; and an area 315 stores an error correction symbol (parity check bit) when the ECC operation is performed on the spare area 310. The area 313 and the area 314 of the spare 0 of the spare area 310 respectively store the sector 0 of the normal area 300, the error correction symbol (parity bit) of the sector 1, and the area 313 and the area 314 of the spare area 310 of the spare area 310 are stored in the normal area. Error correction symbols (parity bits) for sector 2 and sector 3 of region 300. Similarly, the spare 2 of the spare area 310 stores the sector 4 of the normal area 300, the parity bit of the sector 5, the spare 3 of the spare area 310 stores the sector 6 of the normal area 300, and the parity bit of the sector 7. .
在普通區域300的一個扇區中分配有輸入/輸出緩衝器110-0~輸入/輸出緩衝器110-7,即,在一個外部輸入/輸出端子中分配有256位元(256 bit×8=1扇區)。行選擇電路180對編程動作時所接收的行位址資訊Ay進行解碼,並基於該解碼結果來選擇載入有外部輸入/輸出端子P-0~外部輸入/輸出端子P-7中所輸入的資料的扇區。圖6表示外部輸入/輸出端子P-0~外部輸入/輸出端子P-7所接收的資料依據行位址資訊Ay而載入至扇區0的例子。An input/output buffer 110-0 to an input/output buffer 110-7 are allocated in one sector of the normal area 300, that is, 256 bits are allocated in one external input/output terminal (256 bit × 8 = 1 sector). The row selection circuit 180 decodes the row address information Ay received during the program operation, and selects the input from the external input/output terminal P-0 to the external input/output terminal P-7 based on the decoding result. The sector of the data. Fig. 6 shows an example in which the data received by the external input/output terminal P-0 to the external input/output terminal P-7 is loaded to the sector 0 in accordance with the row address information Ay.
在此處所示的例子中,ECC電路130包含用以寫入差錯校正符號的寫入電路。優選的是,ECC電路130可對與普通區域300的一個扇區相等的位元組數的資料進行ECC運算。若普通區域300的一個扇區為256位元組,則ECC電路對256位元組的資料進行ECC運算,來生成對4位元的差錯進行校正的差錯校正符號。In the example shown here, ECC circuit 130 includes a write circuit to write error correction symbols. Preferably, the ECC circuit 130 can perform an ECC operation on the data of the number of bytes equal to one sector of the normal area 300. If one sector of the normal area 300 is 256 bytes, the ECC circuit performs an ECC operation on the data of the 256-bit tuple to generate an error correction symbol that corrects the error of the 4-bit element.
ECC電路130將所生成的差錯校正符號寫入至備用區域310的相對應的扇區的區域313或區域314。在圖6所示的例子中,編程資料被載入至普通區域300的扇區0,故將差錯校正符號寫入至儲存備用0的奇偶的區域313。The ECC circuit 130 writes the generated error correction symbols to the region 313 or region 314 of the corresponding sector of the spare region 310. In the example shown in FIG. 6, the program material is loaded to the sector 0 of the normal area 300, so the error correction symbol is written to the area 313 in which the parity of the spare 0 is stored.
圖7中例示備用區域310的資料的ECC處理。當對普通區域300的各扇區而結束ECC處理時,繼而,對備用區域310的各扇區進行ECC處理。進行備用區域310的一個扇區內所包含的哪個資料的ECC處理是任意的,但在本例中,設為對區域312至區域314的資料進行ECC處理。因此,備用0的區域312至區域314的資料被轉送至ECC電路130,通過ECC處理而生成的差錯校正符號利用ECC電路130而被寫入至備用0的區域315。對其他的備用1至備用3也進行同樣的處理。The ECC processing of the data of the spare area 310 is illustrated in FIG. When the ECC processing is ended for each sector of the normal area 300, then each sector of the spare area 310 is subjected to ECC processing. The ECC processing for which material included in one sector of the spare area 310 is performed is arbitrary, but in this example, the data of the area 312 to the area 314 is subjected to ECC processing. Therefore, the data of the area 312 to the area 314 of the spare 0 is transferred to the ECC circuit 130, and the error correction symbol generated by the ECC processing is written to the area 315 of the spare 0 by the ECC circuit 130. The same processing is performed for the other spare 1 to standby 3.
再次參照圖5,當ECC處理結束時(S100),開始針對記憶體陣列110的編程。利用字元線選擇電路160而選擇記憶體陣列110的字元線,對位元線供給與由頁面緩衝器/讀出電路170所保持的資料相應的電壓,並對選擇頁面施加編程脈衝(S110)。其次,進行編程校驗(S120),檢查(check)編程有資料“0”的儲存胞元的閾值是否為固定值以上。校驗的結果為,若選擇頁面的所有位元合格,則編程結束。另一方面,在所有位元為不合格的情況下,控制部150判定編程脈衝的施加次數是否達到最佳次數Nop(S130)。Referring again to FIG. 5, when the ECC processing ends (S100), programming for the memory array 110 is started. The word line of the memory array 110 is selected by the word line selection circuit 160, the voltage corresponding to the material held by the page buffer/readout circuit 170 is supplied to the bit line, and a program pulse is applied to the selected page (S110) ). Next, program verification is performed (S120), and it is checked whether the threshold of the memory cell programmed with the data "0" is a fixed value or more. The result of the check is that if all the bits of the selected page pass, the programming ends. On the other hand, when all the bits are unsatisfactory, the control unit 150 determines whether or not the number of times the program pulse is applied reaches the optimum number Nop (S130).
此處,所謂最佳次數Nop,為小於編程中所容許的編程脈衝的最大施加次數或最大編程時間、即NMAX的值,優選的是,在將儲存胞元判定為編程不合格的情況下為應最小限度地施加的編程脈衝的次數。例如,在編程所容許的最大時間為700 μs且將施加一次編程脈衝所需的時間設為50 μs的情況下,NMAX=700 μs或NMAX=14次。最佳次數Nop可基於典型的儲存胞元為編程合格時的編程脈衝的施加次數而決定。例如,當利用統計的方法來算出施加至編程合格的儲存胞元的編程脈衝的平均次數Nav時,最佳次數Nop可設定為Nop=Nav。該最佳次數Nop例如能夠利用自外部的控制器收到的命令等進行設定,所設定的值由控制部150的暫存器等保持。Here, the optimal number of times Nop is less than the maximum number of application times or the maximum programming time allowed for programming, that is, the value of NMAX. Preferably, when the memory cell is determined to be unsatisfactory in programming, The number of programming pulses that should be applied minimally. For example, if the maximum time allowed for programming is 700 μs and the time required to apply a programming pulse is set to 50 μs, NMAX = 700 μs or NMAX = 14 times. The optimal number of times, Nop, can be determined based on the number of times a typical memory cell is programmed to be programmed. For example, when a statistical method is used to calculate the average number of times Nav of programming pulses applied to a programmed qualified storage cell, the optimal number of times Nop can be set to Nop=Nav. The optimal number of times Nop can be set by, for example, a command received from an external controller, and the set value is held by a register or the like of the control unit 150.
控制部150在編程脈衝的施加次數未達到最佳次數Nop的情況下(S140),依據ISPP,使比上一次大DV的編程脈衝施加至選擇頁面(S150)。另一方面,在編程脈衝的施加次數達到最佳次數Nop的情況下(S140),控制部150進行判定選擇頁面是否為疑似合格的步驟(S160)。視作疑似合格的最大的不合格位元數Np如上所述,為可通過ECC而修復的最大位元數Ncc以下,若校驗時的不合格位元數、即在選擇頁面實際產生的不合格位元數Nf為疑似合格的最大的不合格位元數Np以下(Nf≦Np),則判定為疑似合格(S160)。當判定為疑似合格時,編程動作結束,“0”不良的不合格位元直接被儲存於選擇頁面。When the number of times the application pulse is applied does not reach the optimal number Nop (S140), the control unit 150 applies a programming pulse larger than the previous large DV to the selection page in accordance with ISPP (S150). On the other hand, when the number of times the application pulse is applied reaches the optimal number of times Nop (S140), the control unit 150 performs a step of determining whether or not the selected page is suspected to be qualified (S160). As described above, the maximum number of defective bits Np that is considered to be qualified is less than the maximum number of bits that can be repaired by ECC, and the number of defective bits at the time of verification, that is, the actual number generated on the selected page. When the number of qualified bits Nf is equal to or less than the maximum number of defective bits Np (Nf ≦ Np) which is suspected to be acceptable, it is determined that the number of qualified bits is equal (S160). When it is determined that the test is successful, the programming operation ends, and the defective bits of "0" are directly stored in the selection page.
另一方面,當判定為未實現疑似合格時(S160),控制部150判定編程脈衝的施加次數是否達到NMAX(S170),若未達到,則依據ISPP進而將編程脈衝施加至選擇頁面(S150、S110)。在編程脈衝的施加次數達到NMAX的情況下,將編程失敗的狀態告知於外部的控制器,且將包含該選擇頁面的塊作為壞塊而進行管理。在該情況下,將作為壞塊的辨別資訊儲存於備用區域的區域311。On the other hand, when it is determined that the suspected pass is not achieved (S160), the control unit 150 determines whether the number of times the application pulse is applied reaches NMAX (S170), and if not, applies the program pulse to the selection page in accordance with the ISPP (S150, S110). In the case where the number of application of the program pulse reaches NMAX, the state of the program failure is notified to the external controller, and the block including the selected page is managed as a bad block. In this case, the discrimination information as a bad block is stored in the area 311 of the spare area.
其次,參照圖8的流程來對自根據疑似合格而編程的頁面讀出資料時的動作進行說明。首先,選擇記憶體陣列110的頁面,並由頁面緩衝器/讀出電路170讀出該選擇頁面的資料(S200)。其次,由頁面緩衝器/讀出電路170的備用區域所保持的資料被轉送至ECC電路130(S210)。例如,當進行扇區0的差錯檢測·校正時,圖6所示的備用0的資料被轉送至ECC電路130。ECC電路130首先基於由區域315所保持的差錯校正符號(奇偶)來進行由區域313、區域314所保持的資料的差錯檢測·校正。Next, an operation when reading data from a page programmed according to the suspected qualification will be described with reference to the flow of FIG. First, the page of the memory array 110 is selected, and the material of the selected page is read by the page buffer/readout circuit 170 (S200). Next, the material held by the spare area of the page buffer/readout circuit 170 is transferred to the ECC circuit 130 (S210). For example, when the error detection and correction of the sector 0 is performed, the data of the spare 0 shown in FIG. 6 is transferred to the ECC circuit 130. The ECC circuit 130 first performs error detection and correction of the material held by the area 313 and the area 314 based on the error correction symbols (parity) held by the area 315.
其次,頁面緩衝器/讀出電路170的普通區域的資料被轉送至ECC電路130(S220)。例如,圖6所示的扇區0的資料被轉送至ECC電路130。ECC電路130基於備用0的區域313中所儲存的差錯校正符號來進行扇區0的資料的差錯檢測(S230)。假如在扇區0中包含疑似合格時的不合格位元數,則該不合格位元作為差錯而被檢測出。在ECC電路130檢測出差錯的情況下,將其校正為正確的資料,並將校正的資料設置於頁面緩衝器/讀出電路170(S240)。此種處理是以扇區為單位來進行(S250)。Next, the material of the normal area of the page buffer/readout circuit 170 is transferred to the ECC circuit 130 (S220). For example, the data of sector 0 shown in FIG. 6 is transferred to the ECC circuit 130. The ECC circuit 130 performs error detection of the material of the sector 0 based on the error correction symbols stored in the area 313 of the spare 0 (S230). If the number of failed bits in the case of a suspected pass is included in the sector 0, the defective bit is detected as an error. In the case where the ECC circuit 130 detects an error, it is corrected to the correct material, and the corrected data is set to the page buffer/readout circuit 170 (S240). This processing is performed in units of sectors (S250).
如上所述,根據本實施例,當編程脈衝的施加次數達到最佳次數Nop時判定是否實現疑似合格,故不進行疑似合格直至最佳次數Nop,期間選擇頁面的所有位元合格的判定得到保證。由此,習知的判定為不合格的儲存胞元以合格的方式被修復的可能性高,通過ECC處理可確保以其他處理修復的位元數的範圍(margin),同時可使編程成功的良率提高。As described above, according to the present embodiment, when the number of times the application pulse is applied reaches the optimal number of times Nop, it is determined whether or not the suspect is qualified, so that the determination is not performed until the optimal number of times Nop, and the determination that all the bits of the selected page are qualified is guaranteed. . Thus, the conventionally determined storage cells that are unqualified are highly likely to be repaired in an acceptable manner, and the ECC process can ensure the margin of the number of bits repaired by other processes, and the programming can be successful. The yield is improved.
其次,參照圖9的流程來對本發明的第2實施例的編程動作進行說明。第2實施例為在圖2的流程中新追加步驟S300、步驟S310、步驟S320而成者。在編程動作時,控制部150基於所輸入的編程資料來判定是否為疑似合格(S300)。此處,設為對均處於抹除的狀態的儲存胞元(資料均為“1”)進行選擇頁面的編程。在一個扇區的編程資料中所包含的資料“0”的位元數為能夠視作疑似合格的最大的不合格位元數Np以下的情況下,控制部150判定為疑似合格,在並非如此的情況下,執行與圖2的流程同樣的處理。Next, the programming operation of the second embodiment of the present invention will be described with reference to the flow of Fig. 9 . In the second embodiment, steps S300, S310, and S320 are newly added to the flow of Fig. 2 . At the time of the programming operation, the control unit 150 determines whether or not it is suspected to be qualified based on the input programming data (S300). Here, it is assumed that the selection page is programmed for the storage cells (the data are all "1") which are all in the erased state. When the number of bits of the data "0" included in the programming data of one sector is equal to or less than the maximum number of defective bits Np that can be regarded as qualified, the control unit 150 determines that the number of the bits is suspected to be acceptable, and is not the case. In the case of the same procedure as in the flow of FIG. 2 is performed.
在判定為疑似合格的情況下,由頁面緩衝器/讀出電路170所保持的編程資料被轉送至ECC電路130,在此處實施ECC處理(S310)。ECC電路130將通過運算而生成的差錯校正符號寫入至頁面緩衝器/讀出電路的備用區域。其次,在選擇頁面的備用區域對由頁面緩衝器/讀出電路170所保持的差錯校正符號進行編程。此時,選擇頁面的普通區域的儲存胞元均保持資料“1”,對選擇頁面的普通區域的位元線供給禁止編程的電壓。當在備用區域對差錯校正符號進行編程時,編程動作結束。因普通區域均為禁止編程,故鄰接的位元線間的耦合的影響等消失,與存在經編程的位元線般的通常的編程相比,編程干擾特性得到改善。When it is determined that the authentication is successful, the program data held by the page buffer/readout circuit 170 is transferred to the ECC circuit 130, where the ECC processing is performed (S310). The ECC circuit 130 writes an error correction symbol generated by the operation to the spare area of the page buffer/readout circuit. Next, the error correction symbols held by the page buffer/readout circuit 170 are programmed in the spare area of the selection page. At this time, the storage cells of the normal area of the selected page hold the data "1", and the bit line of the normal area of the selected page is supplied with the voltage prohibiting programming. When the error correction symbol is programmed in the spare area, the programming action ends. Since the normal area is forbidden to program, the influence of the coupling between adjacent bit lines disappears, and the program disturb characteristics are improved as compared with the conventional programming in which the programmed bit lines exist.
視作疑似合格的頁面的讀出是與第1實施例時的讀出同樣地進行。即,自選擇頁面讀出的資料由頁面緩衝器/讀出電路170保持。普通區域的資料均為“1”,編程資料具有不合格位元數Np以下的資料“0”。ECC電路130接收頁面緩衝器/讀出電路170的備用區域的資料,基於其中所包含的差錯校正符號,自普通區域的所有資料“1”中檢測出差錯位元、即、應編程資料“0”的位元,從而將資料“1”校正為資料“0”,並將其設置於頁面緩衝器/讀出電路170。The reading of the page regarded as the eligibility is performed in the same manner as the reading in the first embodiment. That is, the material read from the selection page is held by the page buffer/readout circuit 170. The data of the normal area is "1", and the programming data has the data "0" below the number of unqualified bits Np. The ECC circuit 130 receives the data of the spare area of the page buffer/readout circuit 170, and detects the error bit from all the data "1" of the normal area based on the error correction symbols contained therein, that is, the program data "0" should be programmed. The bit is thus corrected to the material "1" to the material "0" and set in the page buffer/readout circuit 170.
如上所述,根據第2實施例,在應編程的資料為能夠利用ECC電路130而修復的位元數以下的情況下,與通常的編程序列不同,通過不在普通區域對編程資料進行編程,而在備用區域僅對差錯校正符號進行編程,普通區域中的編程干擾特性得到改善,同時可縮短編程時間。再者,在圖9的步驟S320中,當在備用區域對差錯校正符號進行編程時,與通常的編程同樣地,也執行校驗步驟,在該情況下,如圖9的虛線K所示,也能夠執行利用ISPP的編程常式。As described above, according to the second embodiment, in the case where the data to be programmed is equal to or less than the number of bits that can be repaired by the ECC circuit 130, unlike the normal programming sequence, programming data is not programmed in the normal area. Only the error correction symbols are programmed in the spare area, the program disturb characteristics in the normal area are improved, and the programming time can be shortened. Furthermore, in step S320 of FIG. 9, when the error correction symbol is programmed in the spare area, the verification step is also performed as in the normal programming, in which case, as shown by the broken line K of FIG. It is also possible to execute a programming routine using ISPP.
其次,對本發明的第3實施例進行說明。第3實施例為將第1實施例與第2實施例組合而成者,將其動作流程示於圖10。圖10的流程為在圖5的流程中追加第2實施例的步驟S300、步驟S310、步驟S320而成的,其動作與第1實施例及第2實施例時的動作同樣,故省略說明。在圖10的步驟S320中,當在備用區域對差錯校正符號進行編程時,與圖9的情況同樣地,也能夠進行利用ISPP的編程序列,在該情況下,期望差錯校正符號全部合格,故將最佳次數Nop設定為大於未實現疑似合格時的最佳次數Nop,能夠提高判定為所有位元合格的可能性,從而也能夠使步驟S160中的疑似合格難以實現。Next, a third embodiment of the present invention will be described. The third embodiment is a combination of the first embodiment and the second embodiment, and the operation flow thereof is shown in Fig. 10. The flow of FIG. 10 is the same as the operation of the first embodiment and the second embodiment, and the steps S300, S310, and S320 of the second embodiment are added to the flow of FIG. In step S320 of FIG. 10, when the error correction symbol is programmed in the spare area, as in the case of FIG. 9, the programming sequence using ISPP can also be performed, in which case the error correction symbols are all qualified, so By setting the optimal number Nop to be larger than the optimal number Nop when the suspected pass is not achieved, it is possible to increase the possibility of determining that all the bits are qualified, and it is also possible to make the suspected pass in step S160 difficult to achieve.
再者,NAND型快閃記憶體以頁面為單位進行編程,但所輸入的編程資料的尺寸未必需要等於1頁面,即,未必需要與圖6所示的普通區域300的八個扇區的尺寸相等。例如編程資料的尺寸可為一個扇區的尺寸。通常,就編程干擾的觀點而言,於容許在同一頁面連續地進行編程的次數(編程數量(Number of Program,NOP))方面存在限制,能夠與該NOP相應地分割一頁面資料來進行編程。當NOP為4時,能夠將一頁面資料分為例如2扇區、1扇區、3扇區、2扇區而輸入至快閃記憶體10。Furthermore, the NAND type flash memory is programmed in units of pages, but the size of the input programming material does not necessarily need to be equal to one page, that is, the size of eight sectors of the normal area 300 shown in FIG. 6 is not necessarily required. equal. For example, the size of the programming material can be one sector size. Generally, from the viewpoint of program disturb, there is a limit in the number of times of programming (No. of Programs) that is allowed to be continuously performed on the same page, and it is possible to divide a page of data in accordance with the NOP for programming. When the NOP is 4, one page of data can be divided into, for example, 2 sectors, 1 sector, 3 sectors, and 2 sectors, and input to the flash memory 10.
對本發明的優選實施形態進行了詳述,但本發明並不限定於特定的實施形態,在權利要求書所記載的發明的主旨的範圍內,能夠進行各種變形、變更。The preferred embodiments of the present invention have been described in detail. The present invention is not limited to the specific embodiments, and various modifications and changes can be made without departing from the spirit and scope of the invention.
10‧‧‧頁面緩衝器/讀出電路
20‧‧‧轉送電路
30‧‧‧ECC電路10‧‧‧Page Buffer/Readout Circuit
20‧‧‧Transfer circuit
30‧‧‧ECC circuit
100‧‧‧快閃記憶體 100‧‧‧flash memory
110‧‧‧記憶體陣列 110‧‧‧Memory array
120‧‧‧輸入/輸出緩衝器 120‧‧‧Input/Output Buffer
130‧‧‧ECC電路 130‧‧‧ECC circuit
140‧‧‧位址暫存器 140‧‧‧ address register
150‧‧‧控制部 150‧‧‧Control Department
160‧‧‧字元線選擇電路 160‧‧‧Word line selection circuit
170‧‧‧頁面緩衝器/讀出電路 170‧‧‧Page buffer/readout circuit
180‧‧‧行選擇電路 180‧‧‧ row selection circuit
190‧‧‧內部電壓產生電路 190‧‧‧Internal voltage generation circuit
300‧‧‧普通區域 300‧‧‧Common area
310‧‧‧備用區域 310‧‧‧ spare area
311、312、313、314、315‧‧‧區域 311, 312, 313, 314, 315‧‧‧ areas
Ax‧‧‧列位址資訊 Ax‧‧‧Listing address information
Ay‧‧‧行位址資訊 Ay‧‧‧ Location Information
BLK(0)、BLK(1)、…、BLK(m-1)‧‧‧儲存塊 BLK (0), BLK (1), ..., BLK (m-1) ‧ ‧ storage blocks
Di‧‧‧輸入資料 Di‧‧‧ Input data
GBL‧‧‧位元線 GBL‧‧‧ bit line
K‧‧‧虛線 K‧‧‧ dotted line
MC0~MC31‧‧‧儲存胞元 MC0~MC31‧‧‧ storage cells
NU‧‧‧串單元 NU‧‧‧string unit
P-0~P-7‧‧‧外部輸入/輸出端子 P-0~P-7‧‧‧ external input/output terminals
110-0~110-7‧‧‧I/O緩衝器 110-0~110-7‧‧‧I/O buffer
S10、S20、S30、S40、S50、S100、S110、S120、S130、S140、S150、S160、S170、S200、S210、S220、S230、S240、S250、S300、S310、S320‧‧‧步驟 S10, S20, S30, S40, S50, S100, S110, S120, S130, S140, S150, S160, S170, S200, S210, S220, S230, S240, S250, S300, S310, S320‧‧
SGD、SGS‧‧‧選擇閘極線 SGD, SGS‧‧‧ select gate line
SL‧‧‧源極線 SL‧‧‧ source line
TD‧‧‧位元線選擇電晶體 TD‧‧‧ bit line selection transistor
TS‧‧‧源極線選擇電晶體 TS‧‧‧Source line selection transistor
TG‧‧‧控制信號 TG‧‧‧ control signal
Vers‧‧‧抹除電壓 Vers‧‧‧ erase voltage
Vpass‧‧‧通過電壓 Vpass‧‧‧ pass voltage
Vpgm‧‧‧寫人電壓 Vpgm‧‧‧ write voltage
Vread‧‧‧讀出通過電壓 Vread‧‧‧ readout voltage
WL‧‧‧字元線 WL‧‧‧ character line
圖1為對習知的快閃記憶體的ECC動作進行說明的圖。 圖2為對習知的快閃記憶體的編程動作進行說明的流程圖。 圖3為表示本發明的實施例中的NAND型快閃記憶體的整體的概略構成的圖。 圖4為表示本發明的實施例中的儲存胞元陣列的NAND串的構成的電路圖。 圖5為對本發明的第1實施例中的快閃記憶體的編程動作進行說明的流程圖。 圖6為對本發明的第1實施例的編程動作時的普通區域的ECC處理進行說明的圖。 圖7為對本發明的第1實施例的編程動作時的備用區域的ECC處理進行說明的圖。 圖8為對本發明的第1實施例的讀出動作進行說明的流程圖。 圖9為對本發明的第2實施例中的快閃記憶體的編程動作進行說明的流程圖。 圖10為對本發明的第3實施例中的快閃記憶體的編程動作進行說明的流程圖。FIG. 1 is a view for explaining an ECC operation of a conventional flash memory. 2 is a flow chart for explaining a conventional programming operation of a flash memory. 3 is a view showing an overall schematic configuration of a NAND flash memory in an embodiment of the present invention. 4 is a circuit diagram showing a configuration of a NAND string of a memory cell array in an embodiment of the present invention. Fig. 5 is a flow chart for explaining a programming operation of the flash memory in the first embodiment of the present invention. Fig. 6 is a view for explaining ECC processing in a normal area in the programming operation of the first embodiment of the present invention. FIG. 7 is a view for explaining ECC processing of the spare area in the programming operation of the first embodiment of the present invention. Fig. 8 is a flow chart for explaining a reading operation of the first embodiment of the present invention. Fig. 9 is a flow chart for explaining a programming operation of the flash memory in the second embodiment of the present invention. Fig. 10 is a flow chart for explaining a programming operation of the flash memory in the third embodiment of the present invention.
S100、S110、S120、S130、S140、S150、S160、S170‧‧‧步驟 S100, S110, S120, S130, S140, S150, S160, S170‧‧ steps
Claims (15)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015246083A JP6115740B1 (en) | 2015-12-17 | 2015-12-17 | Semiconductor memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201723840A TW201723840A (en) | 2017-07-01 |
TWI602055B true TWI602055B (en) | 2017-10-11 |
Family
ID=58666812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105104424A TWI602055B (en) | 2015-12-17 | 2016-02-16 | Semiconductor memory device and programming method thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6115740B1 (en) |
CN (1) | CN106898378B (en) |
TW (1) | TWI602055B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6115740B1 (en) * | 2015-12-17 | 2017-04-19 | ウィンボンド エレクトロニクス コーポレーション | Semiconductor memory device |
KR20190007252A (en) * | 2017-07-12 | 2019-01-22 | 에스케이하이닉스 주식회사 | Memory system and operation method thereof |
KR102490104B1 (en) | 2017-10-30 | 2023-01-19 | 삼성전자주식회사 | Apparatus and Method for accessing In-Band Memory using data protection |
KR102524916B1 (en) * | 2018-03-13 | 2023-04-26 | 에스케이하이닉스 주식회사 | Storage device and operating method thereof |
CN114047880B (en) * | 2021-11-16 | 2023-07-04 | 深圳忆联信息系统有限公司 | NAND write power consumption optimization method and device for multi-Pass programming and computer equipment |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7304893B1 (en) * | 2006-06-30 | 2007-12-04 | Sandisk Corporation | Method of partial page fail bit detection in flash memory devices |
US20080184094A1 (en) * | 2007-01-26 | 2008-07-31 | Micron Technology, Inc. | Programming management data for NAND memories |
US20100046301A1 (en) * | 2007-06-21 | 2010-02-25 | Yupin Fong | Intelligent control of program pulse for non-volatile storage |
TWI460588B (en) * | 2009-07-17 | 2014-11-11 | Toshiba Kk | Memory management device and memory information processing device |
TWI476590B (en) * | 2012-05-31 | 2015-03-11 | Phison Electronics Corp | Memory management method, and memory controller and memory storage device using the same |
TW201535399A (en) * | 2014-03-14 | 2015-09-16 | Winbond Electronics Corp | Semiconductor memory device and programming method of NAND flash memory |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003036693A (en) * | 2001-05-16 | 2003-02-07 | Fujitsu Ltd | Error detecting/correcting method for multi-level semiconductor memory, and multi-level semiconductor memory having error detecting/correcting function |
JP2007066386A (en) * | 2005-08-30 | 2007-03-15 | Toshiba Corp | Semiconductor memory device |
JP4994112B2 (en) * | 2007-05-22 | 2012-08-08 | ルネサスエレクトロニクス株式会社 | Semiconductor integrated circuit device and memory control method |
JP2012069180A (en) * | 2010-09-21 | 2012-04-05 | Toshiba Corp | Semiconductor storage device |
JP5703939B2 (en) * | 2011-04-28 | 2015-04-22 | 株式会社バッファロー | Storage device, computer device, computer control method, and computer program |
JP5768022B2 (en) * | 2012-03-19 | 2015-08-26 | 株式会社東芝 | Memory controller, storage device, error correction device, and error correction method |
US9053819B2 (en) * | 2012-07-11 | 2015-06-09 | Sandisk Technologies Inc. | Programming method to tighten threshold voltage width with avoiding program disturb |
CN104951405B (en) * | 2014-03-28 | 2019-09-06 | 三星电子株式会社 | Storage system and the method that storage system is executed and verifies write-protect |
JP6115740B1 (en) * | 2015-12-17 | 2017-04-19 | ウィンボンド エレクトロニクス コーポレーション | Semiconductor memory device |
-
2015
- 2015-12-17 JP JP2015246083A patent/JP6115740B1/en active Active
-
2016
- 2016-02-16 TW TW105104424A patent/TWI602055B/en active
- 2016-03-11 CN CN201610140202.5A patent/CN106898378B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7304893B1 (en) * | 2006-06-30 | 2007-12-04 | Sandisk Corporation | Method of partial page fail bit detection in flash memory devices |
US20080184094A1 (en) * | 2007-01-26 | 2008-07-31 | Micron Technology, Inc. | Programming management data for NAND memories |
US20100046301A1 (en) * | 2007-06-21 | 2010-02-25 | Yupin Fong | Intelligent control of program pulse for non-volatile storage |
TWI460588B (en) * | 2009-07-17 | 2014-11-11 | Toshiba Kk | Memory management device and memory information processing device |
TWI476590B (en) * | 2012-05-31 | 2015-03-11 | Phison Electronics Corp | Memory management method, and memory controller and memory storage device using the same |
TW201535399A (en) * | 2014-03-14 | 2015-09-16 | Winbond Electronics Corp | Semiconductor memory device and programming method of NAND flash memory |
Also Published As
Publication number | Publication date |
---|---|
TW201723840A (en) | 2017-07-01 |
CN106898378B (en) | 2021-03-02 |
JP6115740B1 (en) | 2017-04-19 |
JP2017111846A (en) | 2017-06-22 |
CN106898378A (en) | 2017-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8189386B2 (en) | Non-volatile memory device and associated programming method using error checking and correction (ECC) | |
US7508704B2 (en) | Non-volatile semiconductor storage system | |
US9117530B2 (en) | Preserving data from adjacent word lines while programming binary non-volatile storage elements | |
JP4901348B2 (en) | Semiconductor memory device and control method thereof | |
TWI625727B (en) | Semiconductor memory device, erasing method and programing method thereof | |
JP6249504B1 (en) | Semiconductor memory device | |
KR101368375B1 (en) | Erased sector detection mechanisms | |
US10395753B2 (en) | Semiconductor memory device and programming method thereof | |
TWI602055B (en) | Semiconductor memory device and programming method thereof | |
JP6131207B2 (en) | Semiconductor memory device | |
JP2009140564A (en) | Nand flash memory and memory system | |
US20160012916A1 (en) | Semiconductor memory device and memory system | |
TWI614602B (en) | Non-volatile semiconductor memory device | |
US8713406B2 (en) | Erasing a non-volatile memory (NVM) system having error correction code (ECC) | |
CN107305786B (en) | Nonvolatile semiconductor memory device | |
KR101651573B1 (en) | Semiconductor memory device and programming method thereof | |
JP6293846B2 (en) | Semiconductor memory device | |
KR20100027787A (en) | Operating method of non volatile memory device | |
JP5710815B1 (en) | Semiconductor memory device | |
TWI521530B (en) | Semiconductor memory device and programming method thereof |