Nothing Special   »   [go: up one dir, main page]

TWI682466B - Manufacturing method of an oxide layer, manufacturing method of a semiconductor structure using the same and semiconductor structure manufactured thereby - Google Patents

Manufacturing method of an oxide layer, manufacturing method of a semiconductor structure using the same and semiconductor structure manufactured thereby Download PDF

Info

Publication number
TWI682466B
TWI682466B TW104102816A TW104102816A TWI682466B TW I682466 B TWI682466 B TW I682466B TW 104102816 A TW104102816 A TW 104102816A TW 104102816 A TW104102816 A TW 104102816A TW I682466 B TWI682466 B TW I682466B
Authority
TW
Taiwan
Prior art keywords
layer
oxide layer
manufacturing
oxide
semiconductor structure
Prior art date
Application number
TW104102816A
Other languages
Chinese (zh)
Other versions
TW201628091A (en
Inventor
劉瑋鑫
鄧文儀
張家隆
李瑞珉
林育民
劉志建
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW104102816A priority Critical patent/TWI682466B/en
Publication of TW201628091A publication Critical patent/TW201628091A/en
Application granted granted Critical
Publication of TWI682466B publication Critical patent/TWI682466B/en

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

A manufacturing method of an oxide layer, a manufacturing method of a semiconductor structure using the same and a semiconductor structure manufactured thereby are provided. The manufacturing method of an oxide layer comprises the following steps. First, a first oxide layer is formed by atomic layer deposition. Then, a silazane layer is formed on the first oxide layer by flowable chemical vapor deposition. The silazane layer is cured in an ozone atmosphere, and an annealing process is carried out, so as to transform the silazane layer to a second oxide layer.

Description

氧化物層的製造方法、應用其之半導體結構的製造方法及由 此製造出來的半導體結構 Manufacturing method of oxide layer, manufacturing method of semiconductor structure using the same, and by This manufactured semiconductor structure

本發明是有關於一種氧化物層的製造方法、應用其之半導體結構的製造方法及由此製造出來的半導體結構。 The invention relates to a method for manufacturing an oxide layer, a method for manufacturing a semiconductor structure using the same, and a semiconductor structure manufactured therefrom.

隨著裝置體積的縮小,半導體結構中的間隙及溝槽的橫向尺寸也縮小到一定程度。在此同時,間隙及溝槽的深度的變動幅度卻不是那麼的大。於是,在半導體結構中出現了高深寬比的結構。這樣的結構會使得在其中填入材料(例如介電質)的製程難以進行。舉例來說,在間隙及溝槽被完全填滿之前,頂部的開口便已被沉積材料堵住,因而產生中空的結構。對此,一種解決方案是流動式化學氣相沉積(Flowable Chemical Vapor Deposition,FCVD)。藉由將流動性佳的前驅物填入間隙或溝槽中再將之轉換為需要的材料(例如介電質),可得到良好的填充效果。 As the volume of the device shrinks, the lateral dimensions of the gaps and trenches in the semiconductor structure also shrink to a certain extent. At the same time, the variation of the gap and the depth of the groove is not so large. As a result, high aspect ratio structures have appeared in semiconductor structures. Such a structure would make the process of filling materials (such as dielectrics) into it difficult. For example, before the gaps and trenches are completely filled, the opening at the top is blocked by the deposited material, resulting in a hollow structure. One solution to this is Flowable Chemical Vapor Deposition (FCVD). By filling precursors with good fluidity into gaps or trenches and then converting them into required materials (such as dielectrics), a good filling effect can be obtained.

本發明提供一種氧化物層的製造方法、應用其之半 導體結構的製造方法及由此製造出來的半導體結構。這種氧化物層的製造方法是對於流動式化學氣相沉積製程的進一步改良。 The invention provides a method for manufacturing an oxide layer and half of its application Manufacturing method of conductor structure and semiconductor structure manufactured thereby. The manufacturing method of this oxide layer is a further improvement of the flow chemical vapor deposition process.

根據一些實施例,一種氧化物層的製造方法包括下列步驟。首先,以原子層沉積(Atomic Layer Deposition,ALD)方式形成一第一氧化物層。接著,在第一氧化物層上,以流動式化學氣相沉積方式形成一矽氮烷層。在臭氧環境下硬化(curing)該矽氮烷層,並進行退火(annealing)製程,以使矽氮烷層轉化為一第二氧化物層。 According to some embodiments, a method of manufacturing an oxide layer includes the following steps. First, a first oxide layer is formed by Atomic Layer Deposition (ALD). Next, a silazane layer is formed on the first oxide layer by flow chemical vapor deposition. Curing the silazane layer under an ozone environment and performing an annealing process to convert the silazane layer into a second oxide layer.

根據一些實施例,一種半導體結構的製造方法包括下列步驟。首先,在一基板上形成複數鰭條(fin)。在鰭條及基板上,以原子層沉積方式形成與鰭條共形(conformal)的一第一氧化物層。第一氧化物層具有實質上均一的厚度。接著,在第一氧化物層上,以流動式化學氣相沉積方式形成一矽氮烷層。矽氮烷層填入鰭條之間的複數溝槽中。在臭氧環境下硬化該矽氮烷層,並進行退火製程,以使矽氮烷層轉化為一第二氧化物層。 According to some embodiments, a method of manufacturing a semiconductor structure includes the following steps. First, a plurality of fins are formed on a substrate. On the fin strip and the substrate, a first oxide layer conformal with the fin strip is formed by atomic layer deposition. The first oxide layer has a substantially uniform thickness. Next, a silazane layer is formed on the first oxide layer by flow chemical vapor deposition. The silazane layer fills the grooves between the fins. The silazane layer is hardened under an ozone environment, and an annealing process is performed to convert the silazane layer into a second oxide layer.

根據一些實施例,一種半導體結構包括一基板、複數鰭條、一第一氧化物層及一第二氧化物層。鰭條位於基板上。第一氧化物層位於鰭條的一部份及基板上。第一氧化物層與鰭條共形,並具有實質上均一的厚度。第二氧化物層位於鰭條之間的溝槽中,且位於第一氧化物層上。第一氧化物層的矽/氧比小於第二氧化物層的矽/氧比。 According to some embodiments, a semiconductor structure includes a substrate, a plurality of fins, a first oxide layer, and a second oxide layer. The fin bar is located on the substrate. The first oxide layer is located on a part of the fin bar and the substrate. The first oxide layer is conformal with the fin strip and has a substantially uniform thickness. The second oxide layer is located in the trench between the fins and on the first oxide layer. The silicon/oxygen ratio of the first oxide layer is smaller than the silicon/oxygen ratio of the second oxide layer.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to have a better understanding of the above and other aspects of the present invention, the preferred embodiments are described below in conjunction with the attached drawings, which are described in detail as follows:

102‧‧‧基板 102‧‧‧ substrate

104‧‧‧鰭條 104‧‧‧fin

106‧‧‧氧化物襯墊層 106‧‧‧oxide liner layer

108‧‧‧氮化物襯墊層 108‧‧‧Nitride liner

110‧‧‧氧化物保護層 110‧‧‧oxide protective layer

112‧‧‧層 112‧‧‧ storey

114‧‧‧第一氧化物層 114‧‧‧First oxide layer

116‧‧‧矽氮烷層 116‧‧‧ Silazane layer

118‧‧‧第二氧化物層 118‧‧‧Second oxide layer

120‧‧‧介電層 120‧‧‧dielectric layer

122‧‧‧電極層 122‧‧‧electrode layer

t1‧‧‧厚度 t1‧‧‧thickness

t2‧‧‧厚度 t2‧‧‧thickness

第1A~1G圖繪示根據本發明實施例的半導體結構製造方法。 FIGS. 1A-1G illustrate a method of manufacturing a semiconductor structure according to an embodiment of the invention.

以下將配合圖式說明根據本發明實施例的半導體結構製造方法。這種半導體結構製造方法應用了一種氧化物層的製造方法。在該氧化物層的製造方法中,先以原子層沉積方式形成一第一氧化物層。接著,才在第一氧化物層上,以流動式化學氣相沉積方式形成一矽氮烷層。在臭氧環境下硬化該矽氮烷層,並進行退火製程,以使矽氮烷層轉化為一第二氧化物層。在此一過程中,位於下方的第一氧化物層也會提供氧給矽氮烷層,從而可提升第二氧化物層的品質。 The method of manufacturing a semiconductor structure according to an embodiment of the present invention will be described below with reference to the drawings. This semiconductor structure manufacturing method uses an oxide layer manufacturing method. In the method of manufacturing the oxide layer, a first oxide layer is first formed by atomic layer deposition. Then, a silazane layer is formed on the first oxide layer by flow chemical vapor deposition. The silazane layer is hardened under an ozone environment, and an annealing process is performed to convert the silazane layer into a second oxide layer. In this process, the first oxide layer located below also provides oxygen to the silazane layer, thereby improving the quality of the second oxide layer.

請參照第1A圖,在一基板102上形成複數鰭條104。基板102例如是矽基板。在一實施例中,鰭條104可由基板102所形成。 Referring to FIG. 1A, a plurality of fin bars 104 are formed on a substrate 102. The substrate 102 is, for example, a silicon substrate. In an embodiment, the fin bar 104 may be formed by the substrate 102.

請參照第1B圖,在形成鰭條104時,可選擇性地在鰭條104上方依序形成一氧化物襯墊層106、一氮化物襯墊層108及一氧化物保護層110,並可選擇性地在鰭條104的側壁上形成一層112,層112可包括氧化物修補層、氧化物體積維持層及非晶矽體積補償層的至少一者。氧化物修補層例如是以臨場蒸氣產生技術(In-Situ Steam Generation,ISSG)形成的氧化物層,氧化物體積維持層則例如是以原子層沉積方式形成的氧化物層。 Referring to FIG. 1B, when forming the fins 104, an oxide liner layer 106, a nitride liner layer 108, and an oxide protection layer 110 may be selectively formed on the fins 104 in sequence, and A layer 112 is selectively formed on the sidewall of the fin 104. The layer 112 may include at least one of an oxide repair layer, an oxide volume maintenance layer, and an amorphous silicon volume compensation layer. The oxide repair layer is, for example, an oxide layer formed by In-Situ Steam Generation (ISSG), and the oxide volume maintenance layer is, for example, an oxide layer formed by atomic layer deposition.

接著,以原子層沉積方式形成一第一氧化物層 114。具體來說,在鰭條104及基板102上,以原子層沉積方式形成與鰭條104共形的第一氧化物層114。第一氧化物層114具有實質上均一的厚度t1。第一氧化物層114的厚度不宜過薄,以免供氧量不足。在一實施例中,第一氧化物層114的厚度大於3Å,例如大於5Å,例如約15Å。另外,第一氧化物層114的厚度如果太厚,可能會導致製程時間過於拉長。 Next, a first oxide layer is formed by atomic layer deposition 114. Specifically, on the fin bar 104 and the substrate 102, a first oxide layer 114 conformal to the fin bar 104 is formed by atomic layer deposition. The first oxide layer 114 has a substantially uniform thickness t1. The thickness of the first oxide layer 114 should not be too thin to avoid insufficient oxygen supply. In one embodiment, the thickness of the first oxide layer 114 is greater than 3Å, such as greater than 5Å, such as about 15Å. In addition, if the thickness of the first oxide layer 114 is too thick, the process time may be too long.

在一實施例中,以原子層沉積方式形成第一氧化物層114的步驟,係包括交替提供一含矽的前驅物及一氧源的步驟,並終止於一提供氧源的步驟,終止的該步驟的持續時間(例如可能長至10秒)較之前提供含矽的前驅物的步驟及提供氧源的步驟的持續時間(例如可能分別只有1秒或更短)長。含矽的前驅物例如包括有機矽烷,比如說是H2Si[N(C2H5)2]2、四甲氧矽烷(tetramethoxysilane,TMOS)或四氯矽烷(tetrachlorosilane,TCS)。氧源例如包括氧氣(O2)、氧電漿、水氣(H2O)、臭氧(O3)或過氧化氫(H2O2)。 In one embodiment, the step of forming the first oxide layer 114 by atomic layer deposition includes the steps of alternately providing a silicon-containing precursor and an oxygen source, and terminating in a step of providing an oxygen source, terminated The duration of this step (eg, may be as long as 10 seconds) is longer than the duration of the previous step of providing the silicon-containing precursor and the step of providing the oxygen source (eg, may be only 1 second or less, respectively). The silicon-containing precursor includes, for example, organosilane, such as H 2 Si[N(C 2 H 5 ) 2 ] 2 , tetramethoxysilane (TMOS), or tetrachlorosilane (TCS). The oxygen source includes, for example, oxygen (O 2 ), oxygen plasma, water vapor (H 2 O), ozone (O 3 ), or hydrogen peroxide (H 2 O 2 ).

請參照第1C圖,在第一氧化物層114上,以流動式化學氣相沉積方式形成一矽氮烷層116。具體來說,矽氮烷層116填入鰭條104之間的複數溝槽中。 Referring to FIG. 1C, a silazane layer 116 is formed on the first oxide layer 114 by flow chemical vapor deposition. Specifically, the silazane layer 116 fills the plurality of trenches between the fins 104.

請參照第1D圖,在臭氧環境下硬化矽氮烷層116,並進行退火製程,以使矽氮烷層116轉化為一第二氧化物層118。在一實施例中,第二氧化物層118的厚度t2為2000Å~8000Å,例如為3000Å~5000Å。這種厚度的第二氧化物層118,在硬化及退火過程中,如果下方沒有第一氧化物層114補充供氧,而只依賴臭氧環境供氧,底部便可能因氧量不足而造成結構鬆散,甚至產 生裂痕。在一實施例中,經過退火製程後,第一氧化物層114及第二氧化物層118之間可能已無明顯界線。 Referring to FIG. 1D, the silazane layer 116 is hardened under an ozone environment, and an annealing process is performed to convert the silazane layer 116 into a second oxide layer 118. In one embodiment, the thickness t2 of the second oxide layer 118 is 2000Å~8000Å, for example, 3000Å~5000Å. During the hardening and annealing process of the second oxide layer 118 of this thickness, if there is no first oxide layer 114 to supplement oxygen underneath and only rely on the ozone environment for oxygen supply, the bottom may be loose due to insufficient oxygen content. And even produce Cracks. In one embodiment, after the annealing process, there may be no obvious boundary between the first oxide layer 114 and the second oxide layer 118.

請參照第1E圖,在使矽氮烷層116轉化為第二氧化物層118後,移除大部分的第二氧化物層118,只留下一部分位於溝槽中。並且,移除鰭條104上方的氧化物襯墊層106、氮化物襯墊層108及氧化物保護層110。 Referring to FIG. 1E, after the silazane layer 116 is converted into the second oxide layer 118, most of the second oxide layer 118 is removed, leaving only a portion in the trench. And, the oxide liner layer 106, the nitride liner layer 108, and the oxide protection layer 110 above the fins 104 are removed.

請參照第1F圖,在暴露出的鰭條104上,共形地形成一介電層120。介電層120例如是由一般常見的閘極介電材料所形成,如氧化矽層與高介電常數介電層的疊層。請參照第1G圖,在介電層120上形成一電極層122。電極層122的延伸方向不同於鰭條104的延伸方向,並由介電層120與鰭條104分離。電極層122可例如是由多層金屬所形成。 Referring to FIG. 1F, a dielectric layer 120 is conformally formed on the exposed fins 104. The dielectric layer 120 is formed of, for example, a common gate dielectric material, such as a stack of a silicon oxide layer and a high dielectric constant dielectric layer. Referring to FIG. 1G, an electrode layer 122 is formed on the dielectric layer 120. The extending direction of the electrode layer 122 is different from the extending direction of the fin bar 104 and is separated from the fin bar 104 by the dielectric layer 120. The electrode layer 122 may be formed of multiple layers of metal, for example.

至此已對根據本發明實施例的半導體結構製造方法完成說明。由這樣的製造方法所製造出的半導體結構包括一基板102、複數鰭條104、一第一氧化物層114及一第二氧化物層118。鰭條104位於基板102上。第一氧化物層114位於鰭條104的一部份及基板102上。第一氧化物層114與鰭條104共形,並具有實質上均一的厚度。在一實施例中,第一氧化物層114的厚度大於3Å。第二氧化物層118位於鰭條104之間的溝槽中,且位於第一氧化物層114上。由於第一氧化物層114及第二氧化物層118的製程所帶來的特性,第一氧化物層114的矽/氧比小於第二氧化物層118的矽/氧比。並且,第一氧化物層114的密度可能大於第二氧化物層118的密度,第一氧化物層114的蝕刻率可能小於第二氧化物層118的蝕刻率。 So far, the method for manufacturing a semiconductor structure according to an embodiment of the present invention has been described. The semiconductor structure manufactured by such a manufacturing method includes a substrate 102, a plurality of fins 104, a first oxide layer 114, and a second oxide layer 118. The fin bar 104 is located on the substrate 102. The first oxide layer 114 is located on a part of the fin bar 104 and the substrate 102. The first oxide layer 114 is conformal with the fin bar 104 and has a substantially uniform thickness. In one embodiment, the thickness of the first oxide layer 114 is greater than 3Å. The second oxide layer 118 is located in the trench between the fins 104 and on the first oxide layer 114. Due to the characteristics brought about by the manufacturing process of the first oxide layer 114 and the second oxide layer 118, the silicon/oxygen ratio of the first oxide layer 114 is smaller than that of the second oxide layer 118. Also, the density of the first oxide layer 114 may be greater than the density of the second oxide layer 118, and the etch rate of the first oxide layer 114 may be less than the etch rate of the second oxide layer 118.

半導體結構還可包括一介電層120及一電極層122。介電層120位於鰭條104上,介電層120與鰭條104共形。電極層122位於介電層120上,電極層122的延伸方向不同於鰭條104的延伸方向,並由介電層120與鰭條104分離。鰭條104在電極層122的二側的部分可分別作為源極及汲極,電極層122可作為閘極。 The semiconductor structure may further include a dielectric layer 120 and an electrode layer 122. The dielectric layer 120 is located on the fin bar 104, and the dielectric layer 120 and the fin bar 104 are conformal. The electrode layer 122 is located on the dielectric layer 120. The extending direction of the electrode layer 122 is different from the extending direction of the fin bar 104, and is separated from the fin bar 104 by the dielectric layer 120. The portions of the fin bars 104 on both sides of the electrode layer 122 can be used as source and drain respectively, and the electrode layer 122 can be used as a gate.

綜上所述,根據本發明的氧化物層的製造方法、及應用其之半導體結構的製造方法,係在藉由流動式化學氣相沉積方式形成氧化物層之前,先以原子層沉積方式形成位於下方的一層氧化物層。如此一來,在流動式化學氣相沉積製程的硬化及退火過程中,於層的上方及下方都存在著氧源。藉此,所製造而成的半導體結構可具有更為均勻且品質良好的氧化物層。 In summary, the method for manufacturing an oxide layer according to the present invention and the method for manufacturing a semiconductor structure using the same are formed by atomic layer deposition before forming the oxide layer by flow chemical vapor deposition An oxide layer below. In this way, during the hardening and annealing processes of the flow chemical vapor deposition process, oxygen sources are present above and below the layer. In this way, the manufactured semiconductor structure can have a more uniform and good-quality oxide layer.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs can make various modifications and retouching without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be deemed as defined by the scope of the attached patent application.

102‧‧‧基板 102‧‧‧ substrate

104‧‧‧鰭條 104‧‧‧fin

112‧‧‧層 112‧‧‧ storey

114‧‧‧第一氧化物層 114‧‧‧First oxide layer

118‧‧‧第二氧化物層 118‧‧‧Second oxide layer

120‧‧‧介電層 120‧‧‧dielectric layer

122‧‧‧電極層 122‧‧‧electrode layer

Claims (15)

一種氧化物層的製造方法,包括:以原子層沉積(ALD)方式形成一第一氧化物層;在該第一氧化物層上,以流動式化學氣相沉積(FCVD)方式形成一矽氮烷層;以及在臭氧環境下硬化(curing)該矽氮烷層,並進行退火(annealing)製程,以使該矽氮烷層轉化為一第二氧化物層。 A method for manufacturing an oxide layer includes: forming a first oxide layer by atomic layer deposition (ALD); forming a silicon nitride on the first oxide layer by flow chemical vapor deposition (FCVD) An alkane layer; and curing the silazane layer in an ozone environment and performing an annealing process to convert the silazane layer into a second oxide layer. 如申請專利範圍第1項所述之氧化物層的製造方法,其中以原子層沉積方式形成該第一氧化物層的步驟,係包括交替提供一含矽的前驅物及一氧源的步驟,並終止於一提供氧源的步驟,終止的該步驟的持續時間較之前提供含矽的前驅物的步驟及提供氧源的步驟的持續時間長。 The method for manufacturing an oxide layer as described in Item 1 of the patent application, wherein the step of forming the first oxide layer by atomic layer deposition includes the step of alternately providing a silicon-containing precursor and an oxygen source, And it terminates in a step of providing an oxygen source, the duration of the terminated step is longer than that of the step of providing a silicon-containing precursor and the step of providing an oxygen source. 如申請專利範圍第2項所述之氧化物層的製造方法,其中該含矽的前驅物包括有機矽烷,該氧源包括氧氣(O2)、氧電漿、水氣(H2O)、臭氧(O3)或過氧化氫(H2O2)。 The method for manufacturing an oxide layer as described in item 2 of the patent application scope, wherein the silicon-containing precursor includes organic silane, and the oxygen source includes oxygen (O 2 ), oxygen plasma, water vapor (H 2 O), Ozone (O 3 ) or hydrogen peroxide (H 2 O 2 ). 如申請專利範圍第3項所述之氧化物層的製造方法,其中該含矽的前驅物包括H2Si[N(C2H5)2]2、四甲氧矽烷(tetramethoxysilane,TMOS)或四氯矽烷(tetrachlorosilane,TCS)。 The method for manufacturing an oxide layer as described in item 3 of the patent application scope, wherein the silicon-containing precursor includes H 2 Si[N(C 2 H 5 ) 2 ] 2 , tetramethoxysilane (TMOS) or Tetrachlorosilane (tetrachlorosilane, TCS). 如申請專利範圍第1項所述之氧化物層的製造方法,其中該第一氧化物層的厚度大於3Å。 The method for manufacturing an oxide layer as described in item 1 of the patent application, wherein the thickness of the first oxide layer is greater than 3Å. 如申請專利範圍第1項所述之氧化物層的製造方法,其中該第二氧化物層的厚度為2000Å~8000Å。 The method for manufacturing an oxide layer as described in item 1 of the patent application, wherein the thickness of the second oxide layer is 2000Å~8000Å. 一種半導體結構的製造方法,包括:在一基板上形成複數鰭條; 在該些鰭條及該基板上,以原子層沉積(ALD)方式形成與該些鰭條共形的一第一氧化物層,該第一氧化物層具有實質上均一的厚度;在該第一氧化物層上,以流動式化學氣相沉積(FCVD)方式形成一矽氮烷層,該矽氮烷層填入該些鰭條之間的複數溝槽中;以及在臭氧環境下硬化(curing)該矽氮烷層,並進行退火(annealing)製程,以使該矽氮烷層轉化為一第二氧化物層。 A method for manufacturing a semiconductor structure, comprising: forming a plurality of fins on a substrate; On the fins and the substrate, a first oxide layer conformal to the fins is formed by atomic layer deposition (ALD), the first oxide layer has a substantially uniform thickness; On an oxide layer, a silazane layer is formed by flow chemical vapor deposition (FCVD), and the silazane layer is filled into the plurality of grooves between the fins; and hardened in an ozone environment ( curing) the silazane layer and performing an annealing process to convert the silazane layer into a second oxide layer. 如申請專利範圍第7項所述之半導體結構的製造方法,其中以原子層沉積方式形成該第一氧化物層的步驟,係包括交替提供一含矽的前驅物及一氧源的步驟,並終止於一提供氧源的步驟,終止的該步驟的持續時間較之前提供含矽的前驅物的步驟及提供氧源的步驟的持續時間長。 The method for manufacturing a semiconductor structure as described in item 7 of the patent application scope, wherein the step of forming the first oxide layer by atomic layer deposition includes the step of alternately providing a silicon-containing precursor and an oxygen source, and Terminating in a step of providing an oxygen source, the duration of the terminated step is longer than the previous step of providing a silicon-containing precursor and the step of providing an oxygen source. 如申請專利範圍第8項所述之半導體結構的製造方法,其中該含矽的前驅物包括有機矽烷,該氧源包括氧氣(O2)、氧電漿、水氣(H2O)、臭氧(O3)或過氧化氫(H2O2)。 The method for manufacturing a semiconductor structure as described in item 8 of the patent application scope, wherein the silicon-containing precursor includes organic silane, and the oxygen source includes oxygen (O 2 ), oxygen plasma, water vapor (H 2 O), ozone (O 3 ) or hydrogen peroxide (H 2 O 2 ). 如申請專利範圍第9項所述之半導體結構的製造方法,其中該含矽的前驅物包括H2Si[N(C2H5)2]2、四甲氧矽烷(tetramethoxysilane,TMOS)或四氯矽烷(tetrachlorosilane,TCS)。 The method for manufacturing a semiconductor structure as described in item 9 of the patent application scope, wherein the silicon-containing precursor includes H 2 Si[N(C 2 H 5 ) 2 ] 2 , tetramethoxysilane (TMOS) or tetra Chlorosilane (tetrachlorosilane, TCS). 如申請專利範圍第7項所述之半導體結構的製造方法,其中該第一氧化物層的厚度大於3Å。 The method for manufacturing a semiconductor structure as described in item 7 of the patent application, wherein the thickness of the first oxide layer is greater than 3Å. 如申請專利範圍第7項所述之半導體結構的製造方法,更包括:在形成該些鰭條後、形成該第一氧化物層前,在該些鰭條上 方依序形成一氧化物襯墊層、一氮化物襯墊層及一氧化物保護層,並在該些鰭條的側壁上形成氧化物修補層、氧化物體積維持層及非晶矽體積補償層的至少一者。 The method for manufacturing a semiconductor structure as described in item 7 of the patent application scope further includes: after forming the fins and before forming the first oxide layer, on the fins An oxide liner layer, a nitride liner layer and an oxide protective layer are formed in this order, and an oxide repair layer, an oxide volume maintenance layer and an amorphous silicon volume compensation layer are formed on the side walls of the fins At least one of the layers. 如申請專利範圍第12項所述之半導體結構的製造方法,更包括:在使該矽氮烷層轉化為該第二氧化物層後,移除大部分的該第二氧化物層,只留下一部分位於該些溝槽中,並移除該些鰭條上方的該氧化物襯墊層、該氮化物襯墊層及該氧化物保護層。 The method for manufacturing a semiconductor structure as described in item 12 of the patent application scope further includes: after converting the silazane layer into the second oxide layer, removing most of the second oxide layer, leaving only The next part is located in the trenches and removes the oxide liner layer, the nitride liner layer and the oxide protective layer above the fins. 如申請專利範圍第7項所述之半導體結構的製造方法,其中該第二氧化物層的厚度為2000Å~8000Å。 The method for manufacturing a semiconductor structure as described in item 7 of the patent application, wherein the thickness of the second oxide layer is 2000Å~8000Å. 如申請專利範圍第7項所述之半導體結構的製造方法,更包括:在使該矽氮烷層轉化為該第二氧化物層後,移除大部分的該第二氧化物層,只留下一部分位於該些溝槽中;在暴露出的該些鰭條上,共形地形成一介電層;以及在該介電層上形成一電極層,該電極層的延伸方向不同於該些鰭條的延伸方向,並由該介電層與該些鰭條分離。 The method for manufacturing a semiconductor structure as described in item 7 of the patent application scope further includes: after converting the silazane layer into the second oxide layer, removing most of the second oxide layer, leaving only The next part is located in the trenches; on the exposed fins, a dielectric layer is conformally formed; and an electrode layer is formed on the dielectric layer, the extension direction of the electrode layer is different from those The extending direction of the fin bars is separated from the fin bars by the dielectric layer.
TW104102816A 2015-01-28 2015-01-28 Manufacturing method of an oxide layer, manufacturing method of a semiconductor structure using the same and semiconductor structure manufactured thereby TWI682466B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104102816A TWI682466B (en) 2015-01-28 2015-01-28 Manufacturing method of an oxide layer, manufacturing method of a semiconductor structure using the same and semiconductor structure manufactured thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104102816A TWI682466B (en) 2015-01-28 2015-01-28 Manufacturing method of an oxide layer, manufacturing method of a semiconductor structure using the same and semiconductor structure manufactured thereby

Publications (2)

Publication Number Publication Date
TW201628091A TW201628091A (en) 2016-08-01
TWI682466B true TWI682466B (en) 2020-01-11

Family

ID=57181849

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104102816A TWI682466B (en) 2015-01-28 2015-01-28 Manufacturing method of an oxide layer, manufacturing method of a semiconductor structure using the same and semiconductor structure manufactured thereby

Country Status (1)

Country Link
TW (1) TWI682466B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230009981A1 (en) * 2021-07-09 2023-01-12 Taiwan Semiconductor Manufacturing Company Limited Conductive structures and methods of formation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200807717A (en) * 2006-06-29 2008-02-01 Ibm Bulk finFET device
TW201428887A (en) * 2013-01-07 2014-07-16 United Microelectronics Corp Shallow trench isolation and method of forming the same
US20140225219A1 (en) * 2013-02-08 2014-08-14 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with Reduced Parasitic Capacitance and Methods of Forming the Same
TW201434108A (en) * 2013-02-18 2014-09-01 Taiwan Semiconductor Mfg Fin deformation modulation
US20140264608A1 (en) * 2013-03-13 2014-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. Ditches near semiconductor fins and methods for forming the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200807717A (en) * 2006-06-29 2008-02-01 Ibm Bulk finFET device
TW201428887A (en) * 2013-01-07 2014-07-16 United Microelectronics Corp Shallow trench isolation and method of forming the same
US20140225219A1 (en) * 2013-02-08 2014-08-14 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with Reduced Parasitic Capacitance and Methods of Forming the Same
TW201434108A (en) * 2013-02-18 2014-09-01 Taiwan Semiconductor Mfg Fin deformation modulation
US20140264608A1 (en) * 2013-03-13 2014-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. Ditches near semiconductor fins and methods for forming the same

Also Published As

Publication number Publication date
TW201628091A (en) 2016-08-01

Similar Documents

Publication Publication Date Title
US11776846B2 (en) Methods for depositing gap filling fluids and related systems and devices
KR102618370B1 (en) Bottom-up growth of silicon oxide and silicon nitride using sequential deposition-etch-treat processing
JP2021082817A (en) Method for providing semiconductor device with silicon filled gaps
USRE47170E1 (en) Method of forming semiconductor patterns
CN108475695A (en) Method of the manufacture for the nano wire of the horizontal gated device of circulating type of semiconductor application
CN106653751B (en) Semiconductor devices and its manufacturing method
US9786542B2 (en) Mechanisms for forming semiconductor device having isolation structure
JP2014527315A (en) Non-reactive dry removal process for semiconductor integration
JP2017537455A (en) Tuning flowable membrane properties using injection
US10727064B2 (en) Post UV cure for gapfill improvement
TW201330103A (en) Methods of reducing substrate dislocation during gapfill processing
CN104779147B (en) A kind of metal gate structure and preparation method thereof
TW201735170A (en) Semiconductor device and manufacturing method thereof
US10096512B2 (en) Gapfill film modification for advanced CMP and recess flow
JP2018531518A6 (en) Gaps filling film modification for advanced CMP and recess flow
US9312167B1 (en) Air-gap structure formation with ultra low-k dielectric layer on PECVD low-k chamber
TWI682466B (en) Manufacturing method of an oxide layer, manufacturing method of a semiconductor structure using the same and semiconductor structure manufactured thereby
JP2024503439A (en) CD dependent gap filling and conformal membranes
KR102317440B1 (en) Method for manufacturing of semiconductor device
US20240258101A1 (en) Substrate processing method
KR20240118671A (en) Substrate processing method
KR20090103197A (en) Method for forming interlayer dielectric of semiconductor device
CN106558497A (en) Semiconductor device manufacturing method
KR101204664B1 (en) Method for fabricating interlayer dielectric in semiconductor device
CN104979207B (en) The production method of MOS transistor