TWI682466B - Manufacturing method of an oxide layer, manufacturing method of a semiconductor structure using the same and semiconductor structure manufactured thereby - Google Patents
Manufacturing method of an oxide layer, manufacturing method of a semiconductor structure using the same and semiconductor structure manufactured thereby Download PDFInfo
- Publication number
- TWI682466B TWI682466B TW104102816A TW104102816A TWI682466B TW I682466 B TWI682466 B TW I682466B TW 104102816 A TW104102816 A TW 104102816A TW 104102816 A TW104102816 A TW 104102816A TW I682466 B TWI682466 B TW I682466B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- oxide layer
- manufacturing
- oxide
- semiconductor structure
- Prior art date
Links
Images
Landscapes
- Formation Of Insulating Films (AREA)
Abstract
Description
本發明是有關於一種氧化物層的製造方法、應用其之半導體結構的製造方法及由此製造出來的半導體結構。 The invention relates to a method for manufacturing an oxide layer, a method for manufacturing a semiconductor structure using the same, and a semiconductor structure manufactured therefrom.
隨著裝置體積的縮小,半導體結構中的間隙及溝槽的橫向尺寸也縮小到一定程度。在此同時,間隙及溝槽的深度的變動幅度卻不是那麼的大。於是,在半導體結構中出現了高深寬比的結構。這樣的結構會使得在其中填入材料(例如介電質)的製程難以進行。舉例來說,在間隙及溝槽被完全填滿之前,頂部的開口便已被沉積材料堵住,因而產生中空的結構。對此,一種解決方案是流動式化學氣相沉積(Flowable Chemical Vapor Deposition,FCVD)。藉由將流動性佳的前驅物填入間隙或溝槽中再將之轉換為需要的材料(例如介電質),可得到良好的填充效果。 As the volume of the device shrinks, the lateral dimensions of the gaps and trenches in the semiconductor structure also shrink to a certain extent. At the same time, the variation of the gap and the depth of the groove is not so large. As a result, high aspect ratio structures have appeared in semiconductor structures. Such a structure would make the process of filling materials (such as dielectrics) into it difficult. For example, before the gaps and trenches are completely filled, the opening at the top is blocked by the deposited material, resulting in a hollow structure. One solution to this is Flowable Chemical Vapor Deposition (FCVD). By filling precursors with good fluidity into gaps or trenches and then converting them into required materials (such as dielectrics), a good filling effect can be obtained.
本發明提供一種氧化物層的製造方法、應用其之半 導體結構的製造方法及由此製造出來的半導體結構。這種氧化物層的製造方法是對於流動式化學氣相沉積製程的進一步改良。 The invention provides a method for manufacturing an oxide layer and half of its application Manufacturing method of conductor structure and semiconductor structure manufactured thereby. The manufacturing method of this oxide layer is a further improvement of the flow chemical vapor deposition process.
根據一些實施例,一種氧化物層的製造方法包括下列步驟。首先,以原子層沉積(Atomic Layer Deposition,ALD)方式形成一第一氧化物層。接著,在第一氧化物層上,以流動式化學氣相沉積方式形成一矽氮烷層。在臭氧環境下硬化(curing)該矽氮烷層,並進行退火(annealing)製程,以使矽氮烷層轉化為一第二氧化物層。 According to some embodiments, a method of manufacturing an oxide layer includes the following steps. First, a first oxide layer is formed by Atomic Layer Deposition (ALD). Next, a silazane layer is formed on the first oxide layer by flow chemical vapor deposition. Curing the silazane layer under an ozone environment and performing an annealing process to convert the silazane layer into a second oxide layer.
根據一些實施例,一種半導體結構的製造方法包括下列步驟。首先,在一基板上形成複數鰭條(fin)。在鰭條及基板上,以原子層沉積方式形成與鰭條共形(conformal)的一第一氧化物層。第一氧化物層具有實質上均一的厚度。接著,在第一氧化物層上,以流動式化學氣相沉積方式形成一矽氮烷層。矽氮烷層填入鰭條之間的複數溝槽中。在臭氧環境下硬化該矽氮烷層,並進行退火製程,以使矽氮烷層轉化為一第二氧化物層。 According to some embodiments, a method of manufacturing a semiconductor structure includes the following steps. First, a plurality of fins are formed on a substrate. On the fin strip and the substrate, a first oxide layer conformal with the fin strip is formed by atomic layer deposition. The first oxide layer has a substantially uniform thickness. Next, a silazane layer is formed on the first oxide layer by flow chemical vapor deposition. The silazane layer fills the grooves between the fins. The silazane layer is hardened under an ozone environment, and an annealing process is performed to convert the silazane layer into a second oxide layer.
根據一些實施例,一種半導體結構包括一基板、複數鰭條、一第一氧化物層及一第二氧化物層。鰭條位於基板上。第一氧化物層位於鰭條的一部份及基板上。第一氧化物層與鰭條共形,並具有實質上均一的厚度。第二氧化物層位於鰭條之間的溝槽中,且位於第一氧化物層上。第一氧化物層的矽/氧比小於第二氧化物層的矽/氧比。 According to some embodiments, a semiconductor structure includes a substrate, a plurality of fins, a first oxide layer, and a second oxide layer. The fin bar is located on the substrate. The first oxide layer is located on a part of the fin bar and the substrate. The first oxide layer is conformal with the fin strip and has a substantially uniform thickness. The second oxide layer is located in the trench between the fins and on the first oxide layer. The silicon/oxygen ratio of the first oxide layer is smaller than the silicon/oxygen ratio of the second oxide layer.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to have a better understanding of the above and other aspects of the present invention, the preferred embodiments are described below in conjunction with the attached drawings, which are described in detail as follows:
102‧‧‧基板 102‧‧‧ substrate
104‧‧‧鰭條 104‧‧‧fin
106‧‧‧氧化物襯墊層 106‧‧‧oxide liner layer
108‧‧‧氮化物襯墊層 108‧‧‧Nitride liner
110‧‧‧氧化物保護層 110‧‧‧oxide protective layer
112‧‧‧層 112‧‧‧ storey
114‧‧‧第一氧化物層 114‧‧‧First oxide layer
116‧‧‧矽氮烷層 116‧‧‧ Silazane layer
118‧‧‧第二氧化物層 118‧‧‧Second oxide layer
120‧‧‧介電層 120‧‧‧dielectric layer
122‧‧‧電極層 122‧‧‧electrode layer
t1‧‧‧厚度 t1‧‧‧thickness
t2‧‧‧厚度 t2‧‧‧thickness
第1A~1G圖繪示根據本發明實施例的半導體結構製造方法。 FIGS. 1A-1G illustrate a method of manufacturing a semiconductor structure according to an embodiment of the invention.
以下將配合圖式說明根據本發明實施例的半導體結構製造方法。這種半導體結構製造方法應用了一種氧化物層的製造方法。在該氧化物層的製造方法中,先以原子層沉積方式形成一第一氧化物層。接著,才在第一氧化物層上,以流動式化學氣相沉積方式形成一矽氮烷層。在臭氧環境下硬化該矽氮烷層,並進行退火製程,以使矽氮烷層轉化為一第二氧化物層。在此一過程中,位於下方的第一氧化物層也會提供氧給矽氮烷層,從而可提升第二氧化物層的品質。 The method of manufacturing a semiconductor structure according to an embodiment of the present invention will be described below with reference to the drawings. This semiconductor structure manufacturing method uses an oxide layer manufacturing method. In the method of manufacturing the oxide layer, a first oxide layer is first formed by atomic layer deposition. Then, a silazane layer is formed on the first oxide layer by flow chemical vapor deposition. The silazane layer is hardened under an ozone environment, and an annealing process is performed to convert the silazane layer into a second oxide layer. In this process, the first oxide layer located below also provides oxygen to the silazane layer, thereby improving the quality of the second oxide layer.
請參照第1A圖,在一基板102上形成複數鰭條104。基板102例如是矽基板。在一實施例中,鰭條104可由基板102所形成。
Referring to FIG. 1A, a plurality of
請參照第1B圖,在形成鰭條104時,可選擇性地在鰭條104上方依序形成一氧化物襯墊層106、一氮化物襯墊層108及一氧化物保護層110,並可選擇性地在鰭條104的側壁上形成一層112,層112可包括氧化物修補層、氧化物體積維持層及非晶矽體積補償層的至少一者。氧化物修補層例如是以臨場蒸氣產生技術(In-Situ Steam Generation,ISSG)形成的氧化物層,氧化物體積維持層則例如是以原子層沉積方式形成的氧化物層。
Referring to FIG. 1B, when forming the
接著,以原子層沉積方式形成一第一氧化物層
114。具體來說,在鰭條104及基板102上,以原子層沉積方式形成與鰭條104共形的第一氧化物層114。第一氧化物層114具有實質上均一的厚度t1。第一氧化物層114的厚度不宜過薄,以免供氧量不足。在一實施例中,第一氧化物層114的厚度大於3Å,例如大於5Å,例如約15Å。另外,第一氧化物層114的厚度如果太厚,可能會導致製程時間過於拉長。
Next, a first oxide layer is formed by
在一實施例中,以原子層沉積方式形成第一氧化物層114的步驟,係包括交替提供一含矽的前驅物及一氧源的步驟,並終止於一提供氧源的步驟,終止的該步驟的持續時間(例如可能長至10秒)較之前提供含矽的前驅物的步驟及提供氧源的步驟的持續時間(例如可能分別只有1秒或更短)長。含矽的前驅物例如包括有機矽烷,比如說是H2Si[N(C2H5)2]2、四甲氧矽烷(tetramethoxysilane,TMOS)或四氯矽烷(tetrachlorosilane,TCS)。氧源例如包括氧氣(O2)、氧電漿、水氣(H2O)、臭氧(O3)或過氧化氫(H2O2)。
In one embodiment, the step of forming the
請參照第1C圖,在第一氧化物層114上,以流動式化學氣相沉積方式形成一矽氮烷層116。具體來說,矽氮烷層116填入鰭條104之間的複數溝槽中。
Referring to FIG. 1C, a
請參照第1D圖,在臭氧環境下硬化矽氮烷層116,並進行退火製程,以使矽氮烷層116轉化為一第二氧化物層118。在一實施例中,第二氧化物層118的厚度t2為2000Å~8000Å,例如為3000Å~5000Å。這種厚度的第二氧化物層118,在硬化及退火過程中,如果下方沒有第一氧化物層114補充供氧,而只依賴臭氧環境供氧,底部便可能因氧量不足而造成結構鬆散,甚至產
生裂痕。在一實施例中,經過退火製程後,第一氧化物層114及第二氧化物層118之間可能已無明顯界線。
Referring to FIG. 1D, the
請參照第1E圖,在使矽氮烷層116轉化為第二氧化物層118後,移除大部分的第二氧化物層118,只留下一部分位於溝槽中。並且,移除鰭條104上方的氧化物襯墊層106、氮化物襯墊層108及氧化物保護層110。
Referring to FIG. 1E, after the
請參照第1F圖,在暴露出的鰭條104上,共形地形成一介電層120。介電層120例如是由一般常見的閘極介電材料所形成,如氧化矽層與高介電常數介電層的疊層。請參照第1G圖,在介電層120上形成一電極層122。電極層122的延伸方向不同於鰭條104的延伸方向,並由介電層120與鰭條104分離。電極層122可例如是由多層金屬所形成。
Referring to FIG. 1F, a
至此已對根據本發明實施例的半導體結構製造方法完成說明。由這樣的製造方法所製造出的半導體結構包括一基板102、複數鰭條104、一第一氧化物層114及一第二氧化物層118。鰭條104位於基板102上。第一氧化物層114位於鰭條104的一部份及基板102上。第一氧化物層114與鰭條104共形,並具有實質上均一的厚度。在一實施例中,第一氧化物層114的厚度大於3Å。第二氧化物層118位於鰭條104之間的溝槽中,且位於第一氧化物層114上。由於第一氧化物層114及第二氧化物層118的製程所帶來的特性,第一氧化物層114的矽/氧比小於第二氧化物層118的矽/氧比。並且,第一氧化物層114的密度可能大於第二氧化物層118的密度,第一氧化物層114的蝕刻率可能小於第二氧化物層118的蝕刻率。
So far, the method for manufacturing a semiconductor structure according to an embodiment of the present invention has been described. The semiconductor structure manufactured by such a manufacturing method includes a
半導體結構還可包括一介電層120及一電極層122。介電層120位於鰭條104上,介電層120與鰭條104共形。電極層122位於介電層120上,電極層122的延伸方向不同於鰭條104的延伸方向,並由介電層120與鰭條104分離。鰭條104在電極層122的二側的部分可分別作為源極及汲極,電極層122可作為閘極。
The semiconductor structure may further include a
綜上所述,根據本發明的氧化物層的製造方法、及應用其之半導體結構的製造方法,係在藉由流動式化學氣相沉積方式形成氧化物層之前,先以原子層沉積方式形成位於下方的一層氧化物層。如此一來,在流動式化學氣相沉積製程的硬化及退火過程中,於層的上方及下方都存在著氧源。藉此,所製造而成的半導體結構可具有更為均勻且品質良好的氧化物層。 In summary, the method for manufacturing an oxide layer according to the present invention and the method for manufacturing a semiconductor structure using the same are formed by atomic layer deposition before forming the oxide layer by flow chemical vapor deposition An oxide layer below. In this way, during the hardening and annealing processes of the flow chemical vapor deposition process, oxygen sources are present above and below the layer. In this way, the manufactured semiconductor structure can have a more uniform and good-quality oxide layer.
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs can make various modifications and retouching without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be deemed as defined by the scope of the attached patent application.
102‧‧‧基板 102‧‧‧ substrate
104‧‧‧鰭條 104‧‧‧fin
112‧‧‧層 112‧‧‧ storey
114‧‧‧第一氧化物層 114‧‧‧First oxide layer
118‧‧‧第二氧化物層 118‧‧‧Second oxide layer
120‧‧‧介電層 120‧‧‧dielectric layer
122‧‧‧電極層 122‧‧‧electrode layer
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104102816A TWI682466B (en) | 2015-01-28 | 2015-01-28 | Manufacturing method of an oxide layer, manufacturing method of a semiconductor structure using the same and semiconductor structure manufactured thereby |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104102816A TWI682466B (en) | 2015-01-28 | 2015-01-28 | Manufacturing method of an oxide layer, manufacturing method of a semiconductor structure using the same and semiconductor structure manufactured thereby |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201628091A TW201628091A (en) | 2016-08-01 |
TWI682466B true TWI682466B (en) | 2020-01-11 |
Family
ID=57181849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104102816A TWI682466B (en) | 2015-01-28 | 2015-01-28 | Manufacturing method of an oxide layer, manufacturing method of a semiconductor structure using the same and semiconductor structure manufactured thereby |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI682466B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230009981A1 (en) * | 2021-07-09 | 2023-01-12 | Taiwan Semiconductor Manufacturing Company Limited | Conductive structures and methods of formation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200807717A (en) * | 2006-06-29 | 2008-02-01 | Ibm | Bulk finFET device |
TW201428887A (en) * | 2013-01-07 | 2014-07-16 | United Microelectronics Corp | Shallow trench isolation and method of forming the same |
US20140225219A1 (en) * | 2013-02-08 | 2014-08-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFETs with Reduced Parasitic Capacitance and Methods of Forming the Same |
TW201434108A (en) * | 2013-02-18 | 2014-09-01 | Taiwan Semiconductor Mfg | Fin deformation modulation |
US20140264608A1 (en) * | 2013-03-13 | 2014-09-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Ditches near semiconductor fins and methods for forming the same |
-
2015
- 2015-01-28 TW TW104102816A patent/TWI682466B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200807717A (en) * | 2006-06-29 | 2008-02-01 | Ibm | Bulk finFET device |
TW201428887A (en) * | 2013-01-07 | 2014-07-16 | United Microelectronics Corp | Shallow trench isolation and method of forming the same |
US20140225219A1 (en) * | 2013-02-08 | 2014-08-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFETs with Reduced Parasitic Capacitance and Methods of Forming the Same |
TW201434108A (en) * | 2013-02-18 | 2014-09-01 | Taiwan Semiconductor Mfg | Fin deformation modulation |
US20140264608A1 (en) * | 2013-03-13 | 2014-09-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Ditches near semiconductor fins and methods for forming the same |
Also Published As
Publication number | Publication date |
---|---|
TW201628091A (en) | 2016-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11776846B2 (en) | Methods for depositing gap filling fluids and related systems and devices | |
KR102618370B1 (en) | Bottom-up growth of silicon oxide and silicon nitride using sequential deposition-etch-treat processing | |
JP2021082817A (en) | Method for providing semiconductor device with silicon filled gaps | |
USRE47170E1 (en) | Method of forming semiconductor patterns | |
CN108475695A (en) | Method of the manufacture for the nano wire of the horizontal gated device of circulating type of semiconductor application | |
CN106653751B (en) | Semiconductor devices and its manufacturing method | |
US9786542B2 (en) | Mechanisms for forming semiconductor device having isolation structure | |
JP2014527315A (en) | Non-reactive dry removal process for semiconductor integration | |
JP2017537455A (en) | Tuning flowable membrane properties using injection | |
US10727064B2 (en) | Post UV cure for gapfill improvement | |
TW201330103A (en) | Methods of reducing substrate dislocation during gapfill processing | |
CN104779147B (en) | A kind of metal gate structure and preparation method thereof | |
TW201735170A (en) | Semiconductor device and manufacturing method thereof | |
US10096512B2 (en) | Gapfill film modification for advanced CMP and recess flow | |
JP2018531518A6 (en) | Gaps filling film modification for advanced CMP and recess flow | |
US9312167B1 (en) | Air-gap structure formation with ultra low-k dielectric layer on PECVD low-k chamber | |
TWI682466B (en) | Manufacturing method of an oxide layer, manufacturing method of a semiconductor structure using the same and semiconductor structure manufactured thereby | |
JP2024503439A (en) | CD dependent gap filling and conformal membranes | |
KR102317440B1 (en) | Method for manufacturing of semiconductor device | |
US20240258101A1 (en) | Substrate processing method | |
KR20240118671A (en) | Substrate processing method | |
KR20090103197A (en) | Method for forming interlayer dielectric of semiconductor device | |
CN106558497A (en) | Semiconductor device manufacturing method | |
KR101204664B1 (en) | Method for fabricating interlayer dielectric in semiconductor device | |
CN104979207B (en) | The production method of MOS transistor |