TWI653333B - 跨物種專一性之PSMAxCD3雙專一性單鏈抗體 - Google Patents
跨物種專一性之PSMAxCD3雙專一性單鏈抗體 Download PDFInfo
- Publication number
- TWI653333B TWI653333B TW100105628A TW100105628A TWI653333B TW I653333 B TWI653333 B TW I653333B TW 100105628 A TW100105628 A TW 100105628A TW 100105628 A TW100105628 A TW 100105628A TW I653333 B TWI653333 B TW I653333B
- Authority
- TW
- Taiwan
- Prior art keywords
- cdr
- identification number
- sequence identification
- chain antibody
- bispecific single
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2809—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/08—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
- A61K49/10—Organic compounds
- A61K49/14—Peptides, e.g. proteins
- A61K49/16—Antibodies; Immunoglobulins; Fragments thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/10—Drugs for disorders of the urinary system of the bladder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/22—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/3069—Reproductive system, e.g. ovaria, uterus, testes, prostate
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
- C07K16/468—Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/33—Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Reproductive Health (AREA)
- Pregnancy & Childbirth (AREA)
- Gynecology & Obstetrics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Toxicology (AREA)
- Microbiology (AREA)
- Radiology & Medical Imaging (AREA)
- Mycology (AREA)
- Urology & Nephrology (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
本發明是有關於一種雙專一性單鏈抗體分子,其包含有一能夠結合至人類與非黑猩猩靈長類CD3 ε鏈的一表位之第一結合領域,其中該表位是一被包含在由序列辨識編號2、4、6以及8所構成的群組中的胺基酸序列的部分,以及一能夠結合至前列腺-專一性膜抗原(PSMA)的第二結合領域。本發明亦提供編碼該雙專一性單鏈抗體分子的核酸以及載體與宿主細胞和一種用於它的生產的方法。本發明進一步有關於包含有該雙專一性單鏈抗體分子的藥學組成物以及該雙專一性單鏈抗體分子的醫學用途。
Description
本發明是有關於一種雙專一性單鏈抗體分子(bispecific single chain antibody molecule),其包含有一能夠結合至人類與非黑猩猩靈長類(non-chimpanzee primate) CD3 ε鏈(CD3 epsilon chain)的一表位之第一結合領域(first binding domain),其中該表位是一被包含在由序列辨識編號2、4、6以及8所構成的群組中的胺基酸序列的部分,以及一能夠結合至前列腺-專一性膜抗原(prostate-specific membrane antigen,PSMA)的第二結合領域。本發明亦提供編碼該雙專一性單鏈抗體分子的核酸以及載體(vectors)與宿主細胞和一種用於它的生產的方法。本發明進一步有關於包含有該雙專一性單鏈抗體分子的藥學組成物以及該雙專一性單鏈抗體分子的醫學用途。
T細胞辨識是藉由與胜肽MHC(pMHC)的胜肽負載分子(peptide-loaded molecules)相互作用的純系型地分佈的αβ(alpha beta)以及γδ(gamma delta) T細胞受體(T cell receptors,TcR)而被調節(Davis & Bjorkman,Nature 334(1988),395-402)。TcR的抗原-專一性鏈沒有擁有信號領域(signalling domains)但卻被偶合至保守的多次單位信號裝置(conserved multisubunit signaling apparatus) CD3中(Call,Cell 111 (2002),967-979,Alarcon,Immunol. Rev. 191(2003),38-46,Malissen Immunol. Rev. 191(2003),7-27)。TcR接合(ligation)直接地傳達至信號裝置的機制在T細胞生物學中仍然是一基本的疑問(Alarcon,上述引用文;Davis,Cell 110(2002),285-287)。看起來清楚的是:持續的T細胞反應涉及共受體接合(coreceptor engagement)、TcR寡聚合(oligomerization)以及一在免疫學的突觸(immunological synapse)中TcR-pMHC複合物的較高次序排列(Davis & van der Merwe,Curr. Biol. 11(2001),R289-R291,Davis,Nat. Immunol. 4(2003),217-224)。然而,非常早的TcR信號發生在這些事件缺乏時,並且可涉及一在CD3 ε的配位子誘發的構型改變(ligand-induced conformational change)(Alarcon,上述引用文、Davis(2002),上述引用文、Gil,J. Biol. Chem. 276(2001),11174-11179、Gil,Cell 109(2002),901-912)。信號複合物的ε、γ、δ以及ζ(zeta)次單位(subunits)互相結合以形成一CD3ε-γ異質二聚體(heterodimer)、一CD3 ε-δ異質二聚體以及一CD3 ζ-ζ同質二聚體(homodimer)(Call,上述引用文)。各種不同的研究已揭示:CD3分子對於αβ TcR的適當細胞表面表現以及正常的T細胞發育是重要的(Berkhout,J. Biol. Chem. 263(1988),8528-8536,Wang,J. Exp. Med. 188(1998),1375-1380,Kappes,Curr. Opin. Immunol. 7(1995),441-447)。小鼠CD3 εγ異質二聚體的外領域片段(ectodomain fragments)的溶液結構顯示:εγ次單位是互相交互作用以形成一獨特的邊-對-邊的二聚體組態(configuration)的C2-套(C2-set)Ig領域這兩者(Sun,Cell 105(2001),913-923)。雖然半胱胺酸富含的柄(cysteine-rich stalk)似乎在驅使CD3二聚合(dimerization)上扮演一重要的角色(Su,上述引用文、Borroto,J. Biol. Chem. 273(1998),12807-12816),藉由CD3 ε以及CD3 γ的外細胞領域的交互作用足以組合這些蛋白質與TcR β(Manolios,Eur. J. Immunol. 24(1994),84-92,Manolios & Li,Immunol. Cell Biol. 73(1995),532-536)。雖然仍是爭論的,TcR的主要化學計量學(stoichiometry)可能包含有一αβ TcR、一CD3 εγ異質二聚體、一CD3 εδ異質二聚體以及一CD3 ζζ同質二聚體(Call,上述引用文)。提供人類CD3 εγ異質二聚體在免疫反應上的中心角色,被結合至治療性抗體OKT3的這個複合物的結晶結構最近已被闡明(Kjer-Nielsen,PNAS 101,(2004),7675-7680)。
許多治療策略藉由標靶TcR信號調整T細胞免疫(immunity),特別地被臨床地廣泛使用在免疫抑制攝生法(immunosuppressive regimes)中的抗人類CD3單株抗體(monoclonal antibodies,mAbs)。CD3-專一性小鼠mAb OKT3是第一個被許可使用在人類的mAb(Sgro,Toxicology 105(1995),23-29),並且在移植(Chatenoud,Clin. Transplant 7(1993),422-430,Chatenoud,Nat. Rev. Immunol. 3(2003),123-132,Kumar,Transplant. Proc. 30(1998),1351-1352)、第1型糖尿病(type 1 diabetes)(Chatenoud(2003),上述引用文)以及牛皮癬(psoriasis)(Utset,J. Rheumatol. 29(2002),1907-1913)中被臨床地廣泛使用作為一免疫抑制劑(immunosuppressive agent)。再者,抗-CD3 mAb可誘發部分的T細胞信號以及克隆無反應性(clonal anergy)(Smith,J. Exp. Med. 185(1997),1413-1422)。OKT3已被描述在文獻中作為一有效的T細胞致裂物質(mitogen)(Van Wauve,J. Immunol. 124(1980),2708-18)以及一有效的T細胞殺手(T cell killer)(Wong,Transplantation 50(1990),683-9)。OKT3以一時間依賴的方式(time-dependent fashion)展現這些活性這兩者;隨著T細胞的早期活化導致細胞激素(cytokine)釋放,在進一步投藥OKT3時較晚阻斷所有已知的T細胞功能。由於這個T細胞功能的較晚阻斷,OKT3已發現此廣泛的應用在治療攝生法中作為一免疫抑制劑用以降低或甚至廢除同種移植(allograft)的組織排斥(tissue rejection)。
OKT3最可能地藉由阻斷所有T細胞的功能(在急性排斥中扮演一重要角色)來改變同種移植的組織排斥。OKT3與在人類T細胞的膜上的CD3複合物反應並且阻斷CD3複合物的功能,CD3複合物與T細胞的抗原辨識結構(TCR)結合並且對於信號傳遞(signal transduction)是必要的。哪一個TCR/CD3的次單位是由OKT3所結合已經是許多研究的主題。雖然一些證據已指出OKT3對TCR/CD3複合物的ε-次單位的一專一性(Tunnacliffe,Int. Immunol. 1(1989),546-50;Kjer-Nielsen,PNAS 101,(2004),7675-7680)。進一步的證據已顯示:OKT3結合TCR/CD3複合物需要這個複合物的其他次單位存在(Salmeron,J. Immunol. 147(1991),3047-52)。
其他熟知的對CD3分子專一性的抗體已被例示在Tunnacliffe,Int. Immunol. 1(1989),546-50。如上面所指出的,此等CD3專一性抗體能夠誘發各種不同的T細胞反應,諸如淋巴介質(lymphokine)生產(Von Wussow,J. Immunol. 127(1981),1197;Palacious,J. Immunol. 128(1982),337)、增生(proliferation)(Van Wauve,J. Immunol. 124(1980),2708-18)以及抑制子(suppressor)-T細胞誘導(Kunicka,in“Lymphocyte Typing II”1(1986),223)。那是,視實驗條件而定,CD3專一性單株抗體可抑制或誘發細胞毒性(cytotoxicity)(Leewenberg,J. Immunol. 134(1985),3770;Phillips,J. Immunol. 136(1986) 1579;Platsoucas,Proc. Natl. Acad. Sci. USA 78(1981),4500;Itoh,Cell. Immunol. 108(1987),283-96;Mentzer,J. Immunol. 135(1985),34;Landegren,J. Exp. Med. 155(1982),1579;Choi(2001),Eur. J. Immunol. 31,94-106;Xu(2000),Cell Immunol. 200,16-26;Kimball(1995),Transpl. Immunol. 3,212-221)。
雖然許多被描述在本技藝的CD3抗體已被報導辨識CD3複合物的CD3 ε次單位,事實上它們多數結合至構形的表位,並且因此僅辨識在TCR的天然環境中的CD3 ε。構形表位(conformational epitopes)的特徵在於存在2或多個在一級序列(primary sequence)中被分開的分離的胺基酸殘基(residues),但是當多肽折疊成天然蛋白質(native protein)/抗原時在分子的表面上變成在一起的(Sela,(1969) Science 166,1365 and Laver,(1990) Cell 61,553-6)。本技藝所描述的由CD3 ε抗體所結合的構形表位可被分成2個族群。在主要的族群中,該等表位是由2個CD3次單位(例如,CD3 ε鏈以及CD3 γ或CD3 δ鏈)所形成。例如,在一些研究中已發現:最被廣泛使用的CD3 ε單株抗體OKT3、WT31、UCHT1、7D6以及Leu-4不結合至單獨被轉染以CD3-ε鏈的細胞。然而,這些抗體沾汙被雙重地轉染以一為CD3 ε加上CD3 γ或CD3 δ的組合的細胞(在上述引用文中的Tunnacliffe;Law,Int. Immunol. 14(2002),389-400;Salmeron,J. Immunol. 147(1991),3047-52;Coulie,Eur. J. Immunol. 21(1991),1703-9)。在一第二較小族群中,構形表位是被形成在CD3 ε次單位本身。許多這個族群例如已出現對抗變性的CD3 ε的mAb APA 1/1(Risueno,Blood 106(2005),601-8)。一並考慮,多數在本技藝中被描述的CD3 ε抗體辨識位在CD3的2或多個次單位的構形表位。形成這些表位的3-維結構的分離的胺基酸殘基可因此被坐落在CD3 ε次單位本身或在CD3 ε次單位或其他CD3次單位(諸如CD3 γ或CD3 δ)。
關於CD3抗體的另一個問題是許多CD3抗體已被發現是物種專一性的。抗-CD3單株抗體-如一般而言適用於任何其他的單株抗體-藉由高專一性辨識它們的標靶分子而作用。它們僅辨識在它們的標靶CD3分子上的一單一位址或表位。例如,對CD3複合物專一性的最被廣泛使用以及被最佳特徵化的單株抗體之一者是OKT-3。這個抗體與黑猩猩CD3反應但不與其它靈長類[諸如獼猴(macaques)]的CD3同源物(homolog)或與狗的CD3反應(Sandusky et al.,J. Med. Primatol. 15(1986),441-451)。相似地,WO2005/118635或WO2007/033230描述與人類CD3 ε但不與小鼠、大鼠、兔子或非黑猩猩靈長類[諸如恆河猴(rhesus monkey)、石蟹獼猴(cynomolgus monkey)或狒狒猴(baboon monkey)]反應的人類單株CD3 ε抗體。抗-CD3單株抗體UCHT-1亦與來自黑猩猩的CD3反應但不與來自獼猴的CD3反應(固有數據)。另一方面,亦有辨識獼猴抗原但不辨識牠們的人類對應體(counterparts)的單株抗體的實例。這個族群的一實例是針對來自獼猴的CD3的單株抗體FN-18(Uda et al.,J. Med. Primatol. 30(2001),141-147)。有趣地,已發現來自大約12%石蟹獼猴的周圍淋巴球(peripheral lymphocytes)由於一在獼猴的CD3抗原的多型性(polymorphism)而缺乏與抗-恆河猴的單株抗體(FN-18)反應的活性。Uda等人描述相較於與FN-18抗體反應的衍生自動物的CD3,一在不與FN-18抗體反應的石蟹獼猴的CD3序列中的2個胺基酸的取代(Uda et al.,J Med Primatol. 32(2003),105-10;Uda et al.,J Med Primatol. 33(2004),34-7)。
識別能力(discriminatory ability)[亦即,不僅CD3單株抗體(以及它們的片段)而且一般的單株抗體固有的物種專一性(species specificity)]對於它們作為用於治療人類疾病的治療試劑的發展是一顯著的阻礙。為了獲得市場認可,任何新的候選藥物必須經過嚴格的測試。這個測試可細分成臨床前以及臨床階段:鑒於後者-進一步被細分成一般已知的臨床階段I、II以及III-被執行在人類病患中,前者被執行在動物中。臨床前測試的目的是證明藥物候選物具有所欲的活性並且最重要地是安全的。僅當在動物的安全性以及該藥物候選物的可能效用已在臨床前測試被建立時,這個藥物候選物將被認可藉由個別的管理權限用於人類的臨床測試。藥物候選物可以下列3種方式在動物中被測試安全性:(i)在一相關物種,亦即藥物候選物可辨識同源物(ortholog)抗原,(ii)在一含有人類抗原的基因轉殖動物以及(iii)藉由使用可結合存在於動物的同源物抗原的藥物候選物的一代理物。基因轉殖動物的限制是這個技術典型地被限制至囓齒動物(rodents)。在囓齒動物與人之間,在生理學(physiology)上有顯著的不同並且安全性結果不可容易被推斷至人類。一用於藥物候選物的代理物的限制是相較於實際的藥物候選物不同的物質組成並且被使用的動物時常是具有如上面所討論的限制的囓齒動物。因此,在嚙齒動物中所產生的臨床前數據具有關於藥物候選物的限制性預測力。用於安全性測試的選擇的方法是使用一相關的物種,較佳地一較低等的靈長類。本技藝所描述的適合於在男人中治療干預的單株抗體的現今限制是:相關物種是較高等的靈長類(特別是黑猩猩)。黑猩猩被認為是瀕臨絕種的物種,並且由於它們類似人類的本質,此等動物用於藥物安全性測試的使用已在歐洲被禁止並且在其他地方被高度限制。為了再引導細胞毒性T細胞至病理細胞(pathological cells),CD3已成功地被使用作為一用於雙專一性單鏈抗體的標靶,導致消滅來自個別生物(organism)的害病細胞(WO 99/54440;WO 04/106380)。例如,Bargou等人(Science 321(2008):974-7)現今已報導一被稱為貝林莫單抗(blinatumomab)的CD19xCD3雙專一性抗體建構物的臨床活性,貝林莫單抗具有接合在人類病患中的所有細胞毒性T細胞用以溶解癌細胞的潛力。在非何杰金氏淋巴瘤(non-Hodgkin's lymphoma)病患中如每天每平方公尺0.005毫克一樣低的劑量導致一在血中的標靶細胞的消除。部分以及完全的腫瘤退化(tumor regressions)在一為0.015毫克的劑量位準首先被觀察到,並且所有在一為0.06毫克的劑量位準下被治療的7位病患經歷一腫瘤退化。貝林莫單抗亦導致來自骨髓以及肝的腫瘤的清除。雖然這個研究建立關於雙專一性單鏈抗體格式在治療血液-細胞衍生的癌症上的治療潛力之臨床證據或概念,治療其他癌症類型的成功概念仍有需要。
在西元2008年,一經估計186,320位男人最近在美國被診斷為前列腺癌,以及大約28,660位男人將因該疾病而死。在癌症死亡率上所獲得的最新報導顯示:在西元2004年,在美國男人中因前列腺癌的總死亡率是每100,000位有25位。在西元1980年後期,廣泛地採用前列腺-專一性抗原(PSA)測試顯示一在前列腺癌的處理上的主要改善。這個測試測量血中PSA蛋白質的數量(時常在具有前列腺癌的病患中被提高)。在西元1986年,美國食品藥物管理局(Food and Drug Administration)核准PSA測試的使用以監測具有前列腺癌的病患,並且在西元1994年另外核准它作為這個疾病的一篩選測試的使用。由於在美國廣泛地實施PSA測試,大概90百分比的所有前列腺癌現在在一早期被診斷,並且因此男人在診斷之後存活更久。然而,2個進行中的臨床試驗[NCI-發起的前列腺、肺、結腸直腸(colorectal)與卵巢(ovarian)(PLCO)篩選試驗以及篩選前列腺癌的歐洲研究(ERSPC)]的結果被需要以決定PSA篩選實際上是否可挽救生命。進行中的臨床試驗在過去25年已研究天然與合成的化合物在預防前列腺癌的效用。例如,登記幾乎19,000位健康男人的前列腺癌預防試驗(Prostate Cancer Prevention Trial,PCPT)發現:菲那雄胺(finasteride)[一種被核准用於治療良性前列腺增生(benign prostatic hyperplasia,BPH)(一種非癌的前列腺腫大)的藥物]降低發展前列腺癌的風險達25百分比。另一個試驗,硒以及維生素E癌症預防試驗(Selenium and Vitamin E Cancer Prevention Trial,SELECT)研究超過35,000位男人以測定每天補充硒以及維生素E是否可降低健康男人的前列腺癌的發生率(incidence)。其他前列腺預防試驗現在評估綜合維生素(mu,tivitamins)(維生素C與D)、大豆、綠茶以及番茄紅素(lycopene)(一種在番茄中被發現的天然化合物)的保護潛力。一篇在西元2005年被報導的研究顯示特殊的基因被融合在60至80百分比的被分析的前列腺腫瘤中。這個研究代表首次觀察到在前列腺癌中非隨機的基因重排。這個基因改變最後可被使用作為一生物標記以幫助這個疾病的診斷以及可能地治療。其他研究已顯示:在一染色體(chromosome)8的特別區域的基因變異(genetic variations)可能增加一男人發展前列腺癌的風險。這些基因變異導致大概25百分比的發生在白種男人的前列腺癌。它們是第一個被確認增加發展前列腺癌風險的基因變異,並且可幫助科學家更佳瞭解這個疾病的基因病因(genetic causes)。亦有進行的研究調查在一病患的血液中循環的蛋白質如何可被使用以改善前列腺以及其他癌症的診斷。在西元2005年,科學家鑑定一群由一病患的免疫系統對前列腺腫瘤反應所產生的專一性蛋白質。這些蛋白質[一自體抗體(autoantibody)的類型]能夠以大於90百分比準確度來偵測血液樣品中的前列腺癌細胞的存在。當組合以PSA而被使用,這些以及其他的血液蛋白質最後可被使用以降低單獨以PSA測試所獲得的偽陽性結果的數目,並且因此降低大數目的由於偽陽性PSA測試結果而每年被執行的不必要的前列腺生物檢體(biopsies)。
除了PSA之外,數種用於前列腺癌的其他標記(markers)已被鑑定,包括例如:前列腺的6-穿膜上皮抗原(six-transmembrane epithelial antigen of the prostate,STEAP)(Hubert et al.,PNAS 96(1999),14523-14528)、前列腺幹細胞抗原(prostate stem cell antigen,PSCA)(Reiter et al.,Proc. Nat. Acad. Sci. 95: 1735-1740,1998)以及前列腺-專一性膜抗原(prostate-specific membrane antigen,PSMA;PSM)(Israeli et al.,Cancer Res. 53(1993)。PSMA起初藉由衍生自與一來自淋巴結前列腺腺癌(lymph node prostatic adenocarcinoma,LNCaP)細胞株的部分純化的膜製備物免疫的單株抗體(MAb) 7E11而被定義(Horoszewicz et al.,Anticancer Res. 7(1987),927-35)。一編碼PSMA蛋白質的2.65-kb cDNA片段被選殖並且隨後被定位(mapped)至染色體(chromosome) 11p11.2(Israeli et al.,上述引用文;O’Keefe et al.,Biochem. Biophys. Acta 1443(1998),113-127)。PSMA的最初分析證明在前列腺的分泌上皮(prostatic secretory epithelium)的細胞內的廣泛表現。免疫組織化學染色(immunohistochemical staining)證明:當惡性組織以最大密度染色時,PSMA缺乏在增生以及良性組織中適度地表現(Horoszewicz et al.,上述引用文)。後續的調查迄今已概括這些結果並且顯示PSMA表現作為一在幾乎每個被調查的前列腺組織中的普遍特徵。這些報導進一步證明PSMA的表現出乎意料地增加腫瘤攻擊性(tumor aggressiveness)的比例(Burger et al.,Int. J. Cancer 100(2002),228-237;Chang et al.,Cancer Res. 59(1999),3192-98;Chang et al.,Urology 57(2001),1179-83),Kawakami and Nakayama,Cancer Res. 57(1997),2321-24;Liu et al.,Cancer Res. 57(1997),3629-34;Lopes et al.,Cancer Res. 50(1990),6423-29;Silver et al.,Clin. Cancer Res. 9(2003),6357-62;Sweat et al.,Urology 52(1998),637-40;Troyer et al.,Int. J. Cancer 62(1995),552-558;Wright et al.,Urology 48(1996),326-334)。與在PSMA表現和腫瘤階段之間的相關性一致,PSMA的增加位準是與雄性激素(androgen)-無依賴的前列腺癌(PCa)有關聯。來自具有前列腺癌的病患的組織樣品的分析已證明在身體去勢(physical castration)或雄性激素剝奪的治療之後被提高的PSMA位準。不像前列腺專一性抗原的表現[在雄性激素消除之後被向下調節(downregulated)],PSMA表現在原發以及轉移的腫瘤樣品這兩者中被顯著地增加(Kawakami et al.、Wright et al.,上述引用文)。與在雄性激素-無依賴的腫瘤中被提高的表現一致,PSMA轉錄(transcription)亦被知曉是由類固醇(steroids)所向下調節,並且投藥睪固酮(testosterone)調節一在PSMA蛋白質以及mRNA位準的戲劇性降低(Israeli et al.,Cancer Res. 54(1994),1807-11;Wright et al.,上述引用文)。PSMA亦被高度表現在次發性前列腺腫瘤(secondary prostatic tumors)以及隱藏的代謝疾病(metastatic disease)。免疫組織化學分析已顯現:相較於良性前列腺組織,在位於淋巴結(lymph nodes)、骨(bone)、軟組織(soft tissue)以及肺的轉移病灶(metastatic lesions)內PSMA的相對強烈以及同質的表現(homogeneous expression)(Chang et al.(2001),上述引用文;Murphy et al.,Cancer 78(1996),809-818;Sweat et al.,上述引用文)。一些報導亦已指出在前列腺外組織(extraprostatic tissues)[包括腎臟的近端小管(proximal tubules)的一子集、腸刷狀緣膜(intestinal brush-border membrane)的一些細胞以及在結腸隱窩(colonic crypts)的稀少細胞]中有限的PSMA表現(Chang et al.(1999)、Horoszewicz et al.、Israeli et al.(1994)、Lopes et al.、Troyer et al.,上述引用文)。然而,在這些組織中PSMA的位準一般而言2至3倍嚴重小於在前列腺被觀察到的那些(Sokoloff et al.,Prostate 43(2000),150-157)。PSMA亦被表現在多數被檢查的固態癌症的腫瘤-有關的新血管分佈(tumor-associated neovasculature),但是在正常的血管內皮(vascular endothelium)中是缺少的(Chang et al.(1999)、Liu et al.、Silver et al.,上述引用文)。雖然在血管分佈(vasculature)內的PSMA表現的顯著性未知,腫瘤-有關的內皮(tumor-associated endothelium)的專一性使PSMA成為一用於治療許多形式的惡性(malignancy)的可能標靶。
雖然已放許多的努力在鑑定用於癌症的治療方法的新穎標靶,癌症仍是最常被診斷的疾病。根據這個,仍有需要用於癌症的有效治療。
本發明提供一種雙專一性單鏈抗體分子,其包含有一能夠結合至人類與非黑猩猩靈長類CD3ε鏈的一表位之第一結合領域,其中該表位是一被包含在由序列辨識編號2、4、6以及8所構成的群組中的胺基酸序列的部分,以及一能夠結合至前列腺-專一性膜抗原(PSMA)的第二結合領域。
雖然本技藝所描述的T細胞-嚙合的雙專一性單鏈抗體對於治療惡性疾病具有大的治療潛力,這些雙專一性分子大多數被限制在:它們是物種專一性並且僅辨識人類抗原,以及由於基因相似性-可能地黑猩猩對應體。本發明的優點是供應一種包含有一對人類以及非黑猩猩靈長類的CD3ε鏈展現出跨物種專一性的雙專一性單鏈抗體。
在本發明中,CD3ε的外細胞領域的一N-端(terminal)1-27個胺基酸殘基多肽片段令人驚訝地被鑑定-相較於本技藝所描述的所有其它已知的CD3ε的表位-當從它在CD3複合物的天然環境中被取出時,維持它的三維結構完整性{並且選擇性地被融合至一異源(heterologous)胺基酸序列[諸如EpCAM或一免疫球蛋白(immunoglobulin)Fc部分])。因此,本發明提供一種雙專一性單鏈抗體分子,其包含有一能夠結合至人類以及至少一非黑猩猩靈長類CD3ε鏈的CD3ε[CD3ε是,例如,從它的天然環境被取出和/或由一T-細胞(存在於表面)所包含]的外細胞領域的一N-端1-27個胺基酸殘基多肽片段的一表位,其中該表位是一被包含在由序列辨識編號2、4、6以及8所構成的群組中的胺基酸序列的部分;以及一能夠結合至前列腺-專一性膜抗原(PSMA)的第二結合領域。較佳的非黑猩猩靈長類在此的其它地方被提及。被選自於白鬢狨(Callithrix jacchus);絨頂檉柳猴(Saguinus Oedipus)、松鼠猴(Saimiri sciureus)以及馬來猴(Macaca fascicularis)(序列辨識631或632或者這兩者)的至少一種(或它們的一篩選或全部)靈長類(等)是(是)特別較佳的。恆河獼猴(Macaca mulatta)(亦被知曉為恆河猴)亦被設想為另一種較佳的靈長類。因此被設想的是:本發明的抗體結合至(能夠結合至)人類以及白鬢狨(Callithrix jacchus);絨頂檉柳猴(Saguinus Oedipus)、松鼠猴(Saimiri sciureus)和馬來猴(序列辨識631或632或者這兩者)(以及亦選擇性地恆河獼猴)的CD3ε的外細胞領域的一N-端1-27個胺基酸殘基多肽片段的環境獨立表位(context independentepitope)。一種包含有一如在此所定義的第一結合領域的雙專一性單鏈抗體分子可依據開始在WO 2008/119567(特別地WO 2008/119567的實施例2)的規程而被獲得(可獲得的)或被製造。為了這個目的,設想(a)以人類和/或松鼠猴的CD3 ε的外細胞領域的一N-端1-27個胺基酸殘基多肽片段免疫小鼠;(b)產生一免疫鼠類(murine)抗體scFv庫(library);(c)藉由測試結合至至少序列辨識編號2、4、6以及8的能力來鑑定CD3 ε專一性結合物(binders)。
本發明所提供的環境獨立的CD3表位對應於CD3ε的最初27個N-端胺基酸或者這27個胺基酸伸展的功能性片段。如此處所用的,關於CD3表位的片語“環境獨立(context-independent)”意指結合在此所描述的發明的結合分子/抗體分子不會導致在抗原決定位或表位周圍的構形、序列或結構的一改變或修飾。相反的,由一常見的CD3結合分子(例如,如被揭示在WO 99/54440或WO 04/106380)所辨識的CD3表位是位在環境獨立表位的CD3 ε鏈C-端至N-端的1-27個胺基酸,其中若它被嵌在ε鏈的座(rest)內並且藉由ε鏈與CD3 γ或δ鏈的異二聚體化(heterodimerization)而被保持在正確的空間位置,它僅接受正確的構形。
如在此所提供的作為一PSMAxCD3雙專一性單鏈分子的部分的抗-CD3結合領域已被描述在WO 2008/119567。這些結合領域被產生(並且定向)對抗一環境獨立的CD3表位提供一關於T細胞再分佈(redistribution)的令人驚訝的臨床改善,並且因此一更有利的安全總則(safety profile)。沒有結合學說,由於CD3表位是環境獨立的,形成一自給自足的次領域而沒有在CD3複合物的座上有許多影響,在此所提供的PSMAxCD3雙專一性單鏈分子的CD3結合領域要比辨識環境獨立的CD3表位的常見CD3結合分子(像在WO 99/54440或WO 04/106380中所提供的分子)在CD3構形上誘發較少的異位變化(allosteric changes)。
在治療以本發明的PSMAxCD3雙專一性單鏈抗體的開始階段的期間,由本發明的PSMAxCD3雙專一性單鏈抗體的CD3結合領域所辨識的環境獨立的CD3表位是與較少或無T細胞再分佈(T細胞再分佈相等於一掉下的初始事件以及完全的T細胞計數的後續回收)相關聯。相較於辨識環境依賴的CD3表位的本技藝已知的常見CD3結合分子,這些導致本發明的PSMAxCD3雙專一性單鏈抗體的一較佳安全總則。特別地,因為在治療以CD3結合分子的開始階段的期間T細胞再分佈是不良事件的一主要風險因子(像CNS不良事件),藉由辨識一環境獨立而不是一環境依賴的CD3表位的本發明的PSMAxCD3雙專一性單鏈抗體具有一實質安全的優點超過本技藝所知曉的CD3結合分子。具有與在治療以常見的CD3結合分子的開始階段的期間T細胞再分佈有關的此等CNS不良事件的病患通常蒙受混淆(confusion)以及迷失方向(disorientation),在一些例子中亦蒙受尿失禁(urinary incontinence)。混淆是一種在精神狀態(mental status)上的改變,其中該病患不能夠以他或她的通常的清晰位準來思考。患者通常難以集中,以及思考不僅模糊不清而且時常顯著地被放慢。具有與在治療以常見的CD3結合分子的開始階段的期間T細胞再分佈有關的CNS不良事件的病患亦可蒙受喪失記憶。頻繁地,混淆導致喪失辨識人、地方、時間或日期的能力。迷失方向的感覺在混淆中是常見的,並且做出判斷的能力受損。與在治療以常見的CD3結合分子的開始階段的期間T細胞再分佈有關的CNS不良事件可進一步包含有模糊不清的言語(blurred speech)和/或單字尋找困難。這種疾患可損害語言的表達與瞭解這兩者以及讀和寫。除了尿失禁之外,在一些病患中眩暈(vertigo)以及頭昏眼花(dizziness)亦可伴隨與在治療以常見的CD3結合分子的開始階段的期間T細胞再分配有關的CNS不良事件。
在所提及的CD3 ε的27個胺基酸N-端多肽片段內的3維結構的維持可被使用於產生具有相同的結合親和力(binding affinity)能夠在活體外結合至N-端CD3 ε多肽片段以及在活體內結合至在T細胞上的天然的CD3複合物(的CD3 ε次單位)的較佳地人類結合領域。這些數據強力地指出:如在此所描述的N-端片段形成一相似於它活體內正常存在的結構之三級構形(tertiary conformation)。一關於CD3ε的N-端多肽片段的胺基酸1-27的結構完整的重要性之非常敏感的測試被執行。CD3 ε的N-端多肽片段的胺基酸1-27的個別胺基酸被改變成丙胺酸(alanine)(丙胺酸掃描)以測試CD3 ε的N-端多肽片段的胺基酸1-27對於較小的分裂的靈敏度。作為本發明的PSMAxCD3雙專一性單鏈抗體的部分的CD3專一性結合領域被使用以測試結合至CD3ε的N-端多肽片段的胺基酸1-27的丙胺酸-突變物(mutants)(參見WO 2008/119567)。在片段的非常N-端末尾的最初5個胺基酸殘基以及在CD3 ε的N-端多肽片段的胺基酸1-27的位置23和25的2個胺基酸的個別互換對於結合該等抗體分子是關鍵的。將在包含有殘基Q[麩醯胺(Glutamine)在位置1]、D[天冬胺酸(Aspartic acid)在位置2]、G[甘胺酸(Glycine)在位置3]、N[天冬醯胺酸(Asparagine)在位置4]以及E[麩胺酸(Glutamic acid)在位置5]的位置1-5的區域中的胺基酸殘基取代成丙胺酸廢除了結合本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體至該片段。然而,對於至少一些本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體時,在所提及的片段T[蘇胺酸(Threonine)在位置23]以及I[異白胺酸(Isoleucine)在位置25]的C-端的2個胺基酸殘基降低對本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體的結合能量(binding energy)。
意外地,已發現被如此分離的本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體不僅辨識CD3 ε的人類N-端片段,而且各種不同的靈長類{包括新世界猴(New-World Monkeys)[狨猴(Marmoset),白鬢狨;絨頂檉柳猴;松鼠猴]以及舊世界猴(Old-World Monkeys)(馬來猴,亦被知曉為石蟹獼猴;或恆河獼猴,亦被知曉為恆河猴)}的CD3 ε的對應同源片段。因此,本發明的PSMAxCD3雙專一性單鏈抗體的多靈長類專一性被偵測。下列的序列分析證實人類以及靈長類共有一高度同源的序列延伸(sequence stretch)在CD3ε的外細胞領域的N-端。
前面所提及的CD3 ε的N-端片段的胺基酸序列被描寫在序列辨識編號2(人類)、序列辨識編號4(白鬢狨);序列辨識編號6(絨頂檉柳猴);序列辨識編號8(松鼠猴);序列辨識編號631 QDGNEEMGSITQTPYQVSISGTTILTC或序列辨識編號632 QDGNEEMGSITQTPYQVSISGTTVILT(馬來猴,亦被知曉為石蟹獼猴)以及序列辨識編號633 QDGNEEMGSITQTPYHVSISGTTVILT(恆河獼猴,亦被知曉為恆河猴)。
本發明的PSMAxCD3雙專一性單鏈抗體的第二結合領域結合至前列腺-專一性膜抗原(PSMA)。較佳地,該PSMAxCD3雙專一性單鏈抗體的第二結合領域結合至人類PSMA或一非黑猩猩靈長類PSMA;更佳的它結合至人類PSMA以及一非黑猩猩靈長類PSMA並且因此是跨物種專一性;甚至更佳的結合至人類PSMA以及獼猴PSMA(並且因此亦是跨物種專一性)。特別較佳的,獼猴PSMA是石蟹獼猴PSMA和/或恆河猴PSMA。然而,不被排除在本發明的範疇外的是:該第二結合領域亦可結合至其他物種的PSMA同源物(homologs)(諸如在囓齒動物的PSMA同源物)。
前列腺癌在男人中是第二大的癌症。在西元2008年,估計在美國有186,320位男人將新近地被診斷以前列腺癌並且大約28,660位男人將死於該疾病。前列腺癌風險強力地與年齡相關:非常少的例子被登記在50以下的男人並且四分之三的例子發生在超過65歲的男人。最大數目的例子被診斷在年齡70-74的那些。目前,較老族群的成長率顯著地高於總族群所具者。在西元2025-2030年的時候,預測指出超過60的族群將向總族群一樣迅速地成長3.5倍。在下半個世紀,世界各地較老的人的比例被預測超過2倍,這意指未來在診斷前列腺癌的發生率上的一進一步增加已被預期。PSMA的高度限制表現和它在前列腺癌的發展階段與轉移疾病中的向上調節(upregulation)以及它在許多不同類型的其他固態腫瘤的腫瘤血管分佈(tumor vasculature)上作為新抗原(neoantigen)的角色使PSMA有資格作為用於抗體-為基礎的癌症治療有吸引力的標靶抗原。如在下列實施例中所顯示的,為了殺死PSMA-表現的人類癌細胞(如由人類前列腺癌細胞株LNCaP所例示),本發明的PSMAxCD3雙專一性單鏈抗體提供一有利的工具。此外,本發明的PSMAxCD3雙專一性單鏈抗體的細胞毒性活性要比本技藝所描述的抗體的細胞毒性活性更高。由於較佳地本發明的PSMAxCD3雙專一性單鏈抗體的CD3以及PSMA結合領域這兩者是跨物種專一性(亦即,與人類以及非黑猩猩靈長類抗原反應),它可被使用於臨床前評估這些結合領域在靈長類的安全性、活性和/或藥物動力學圖譜以及-以同樣的形式-在人類作為藥物。
有利地,本發明亦提供包含有一結合至人類PSMA以及獼猴PSMA同源物(亦即,一非黑猩猩靈長類的同源物)這兩者的第二結合領域之PSMAxCD3雙專一性單鏈抗體。在一個較佳具體例中,該雙專一性單鏈抗體因此包含有一對人類以及一非黑猩猩靈長類PSMA展現出跨物種專一性的第二結合領域。在這個例子中,同樣的雙專一性單鏈抗體分子可被使用於這些結合領域在靈長類的安全性、活性和/或藥物動力學圖譜的臨床前評估以及在人類作為藥物這兩者。換言之,相同分子可被使用在臨床前動物研究以及人類的臨床研究。這導致高度可比較的結果以及動物研究相較於物種-專一性代理物分子的一非常增加的預測力。由於本發明的PSMAxCD3雙專一性單鏈抗體的CD3以及PSMA結合領域這兩者是跨物種專一性(亦即,與人類以及非黑猩猩靈長類的抗原反應),它可被使用於臨床前評估這些結合領域在靈長類的安全性、活性和/或藥物動力學圖譜以及-以同樣的形式-在人類作為藥物這兩者。將被瞭解的是:在一個較佳具體例中,本發明的抗體的第一以及第二結合領域的跨物種專一性是同樣的。
在本發明中已發現可能產生一較佳地人類PSMAxCD3雙專一性單鏈抗體,其中同樣的分子可被使用在臨床前動物測試以及臨床研究和甚至在人類的治療。這起因於該較佳地人類PSMAxCD3雙專一性單鏈抗體意想不到的鑑定,它除了分別結合至人類CD3ε以及PSMA之外,(以及由於可能對黑猩猩對應物的基因相似性)亦即合至該等非黑猩猩靈長類(包括新世界猴以及舊世界猴)的抗原。如在下面得實施例所顯示的,該本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體可被使用作為治療試劑(therapeutic agent)對抗各種不同的疾病(包括但不限於癌症)。該PSMAxCD3雙專一性單鏈抗體特別地對治療癌症[較佳地固態腫瘤、更佳地癌(carcinomas)以及前列腺癌]有利的。鑒於上述,建構一代理物PSMAxCD3雙專一性單鏈抗體用以測試在一親源遠離(人類)物種的需要消失。結果,因為意欲在臨床測試中被投藥給人類以及後續的市場許可以及治療藥物投藥,同樣的分子可被使用在動物臨床前試驗。使用用於臨床前動物試驗的相同分子作為在對人類的較晚投藥中的能力實際上消除或者至少大大地降低在臨床前動物測試所獲得的數據對人類案例具有有限的應用性之危險。總之,使用如將實際被投藥給人類的相同分子在動物中獲得的臨床前安全性數據做出許多以確保該數據對一人類相關方案的應用性。相反的,在常見的方法中使用代理物分子,該等代理物分子必須被分子地適應於被使用於臨床前安全評估的動物測試系統。因此,被使用在人類治療的分子事實上在序列上以及可能地在結構上不同於被使用在臨床前測試藥物動力學參數和/或生物活性的代理物分子,結果在臨床前動物測試中所獲得的數據對於人類案例具有有限的應用性/可轉移性。代理物分子的使用需要建構、生產、純化以及特徵化一全新的建構物。這導致需要獲得那個分子的額外發展費用以及時間。總結,除了被使用於人類治療的實際藥物,代理物必須被個別發展,藉此關於2種分子的2線發展必須被進行。因此,展現出在此所描述的跨物種專一性的本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體的一主要優點是同樣的分子可被使用供在人類以及臨床前動物測試中的治療試劑。
較佳的是:本發明的雙專一性單鏈抗體的該第一或第二結合領域的至少一者是如在下面所更詳細提到的CDR-移植的(grafted)、人類化的(humanized)或人類。較佳地,本發明的雙專一性單鏈抗體的第一以及第二結合領域這兩者是CDR-移植的、人類化的或人類。對於本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體,在投藥該分子給人類病患時,一對抗該結合分子的免疫反應的產生被排除至最大可能程度。
本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體的另一個主要優點是它用於在各種不同的靈長類中臨床前測試的應用性。一藥物候選物在動物中的作用應該理想地指出在投藥給人類時這個藥物候選物的預期作用。結果,從此臨床前測試所獲得的數據因此一般而言應該具有一對人類案例高的預測力。然而,如從在TGN1412(一種CD28單株抗體)上的最近第一期臨床試驗的不幸結果所學到的,一藥物候選物可在一靈長類物種比在人類不同地作用:鑒於在以石蟹獼猴所執行的動物研究中臨床前測試該抗體沒有或僅有限的不良效用已被觀察到,6個人類病患在投藥該抗體時發展出多重器官衰竭(multiple organ failure)(Lancet 368(2006),2206-7)。這些戲劇化、非所欲的負面事件的結果暗示可能不足以限制臨床前試驗至僅一種(非黑猩猩靈長類)物種。本發明的PSMAxCD3雙專一性單鏈抗體結合至一系列的新世界與舊世界猴的事實可幫助克服在上面所提及的例子中所面臨的問題。因此,本發明提供當用於人類治療的藥物被發展以及測試時,將在效用上的物種差異減到最低的手段以及方法。
關於本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體,它亦不再需要使測試動物(諸如,例如,某些基因轉殖動物)適應被意欲投藥給人類的藥物候選物。依據本發明的用途以及方法展現出跨物種專一性的本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體可在非黑猩猩靈長類中直接地被使用於臨床前測試,而沒有基因操作該等動物。如那些熟習此技藝者所熟知的,使測試動物適應於藥物候選物的方法經常承受在臨床前安全性測試中所獲得的結果是較少代表性的以及由於該動物的修飾而預測人類的風險。例如,在基因轉殖動物中,由轉殖基因(transgenes)所編碼的蛋白質經常被過度地表現。因此,一抗體對抗這個蛋白質抗原的生物活性所獲得的數據可能被限制在它們對人類(其中該蛋白質在非常低、更生理學的位準下被表現)的預測值。
展現出跨物種專一性的本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體的用途的進一步優點是作為一瀕臨絕種的物種的黑猩猩被避免用於動物測試的事實。黑猩猩是人類最接近的親屬並且最近根據基因組序列數據而被分群成人科(family of hominids)(Wildman et al.,PNAS 100(2003),7181)。因此,以黑猩猩所獲得的數據一般而言被認為是對人類高預測的。然而,由於它們的狀態有如瀕臨絕種的物種,可被使用於醫學實驗的黑猩猩的數目被高度地限制。如上所陳述的,維持用於動物測試的黑猩猩因此是昂貴和倫理這兩者的問題。本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體的使用避免在臨床前測試的期間的倫理異議以及財政負擔這兩者而沒有損害品質(亦即,所獲得的動物測試數據的應用性)。鑒於這個,本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體的使用提供一在黑猩猩研究上的合理選擇。
本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體的一又進一步的優點是當使用它做為動物臨床前測試(例如在藥物動力學動物研究的過程中)的部分時,萃取多種血液樣品的能力。多種血液萃取以一非黑猩猩靈長類要比以低等動物(例如,一小鼠)可更容易地被獲得。多種血液樣品的萃取容許持續測試血液參數用以測定由本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體所誘發的生物效用。再者,多種血液樣品的萃取使研究者能夠評估如在此所定義的本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體的藥物動力學圖譜。此外,在投藥該抗體的過程的期間,被反射在血液參數中的由本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體所誘發的可能副作用可在所萃取的不同血液樣品中被測量。這容許測定如在此所定義的本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體的可能毒性圖譜。
展現出跨物種專一性的如在此所定義的本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體可被簡短地概述如下:
第一,被使用在臨床前測試的如在此所定義的本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體與被使用在人類治療者是相同的。因此,不再需要發展2種在它們的藥物動力學性質以及生物活性上不同的獨立分子。這在例如藥物動力學結果對人類設定要比例如在常見的代理物方法中更直接轉移以及應用上是高度有利的。
第二,使用如在此所定義的本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體用於製備在人類的治療物要比代理物方法更少花費以及勞動密集的。
第三,如在此所定義的本發明的較佳地人類PSMAxCD3雙專一性單鏈抗體可被使用於臨床前測試不僅在一靈長類物種而且在一系列不同的靈長類物種,藉此限制在靈長類以及人類之間可能的物種差異的風險。
第四,作為一瀕臨絕種物種的黑猩猩用於動物測試若所欲的可被避免。
第五,多種血液樣品可被萃取用於廣泛的藥物動力學研究。
第六,由於依據本發明的一較佳具體例的較佳地人類結合分子的人類起源,當投藥給人類病患時,產生一對抗該等結合分子的免疫反應被降到最低。誘發一種具有對一衍生自一有如例如一小鼠的非人類物種的藥物候選物專一性的抗體之免疫反應導致對抗鼠科來源的治療分子之人類抗小鼠抗體(HAMA)的發育被排除。
最後但並非最不重要的是,本發明的PSMAxCD3雙專一性單鏈抗體的治療用途提供一新穎以及進步的用於癌症(較佳地固態腫瘤,更佳地癌以及前列腺癌)的治療方法。如在下面實施例中所顯示的,為了殺死PSMA-表現的人類前列腺癌細胞,本發明的PSMAxCD3雙專一性單鏈抗體提供一有利的工具。再者,本發明的PSMAxCD3雙專一性單鏈抗體的細胞毒性活性要比本技藝所描述的抗體的活性更高。
在此如上面所注意到的,本發明提供多肽(亦即,雙專一性單鏈抗體),其包含有一能夠結合至一人類與非黑猩猩靈長類CD3 ε鏈的一表位之第一結合領域以及一能夠結合至PSMA的第二結合領域。該第二結合領域較佳地結合至人類PSMA以及一非黑猩猩靈長類PSMA。雙專一性單鏈抗體分子作為滿足本發明的較佳雙專一性單鏈抗體的需求之藥物候選物的優點是使用此等分子在臨床前動物測試以及在臨床研究和甚至用於人類的治療。在本發明的跨物種專一性的雙專一性單鏈抗體的一個較佳具體例中,該結合至PSMA的第二結合領域是人類。在一依據本發明的跨物種專一性之雙專一性分子中,該結合至人類與非黑猩猩靈長類CD3 ε鏈的一表位之結合領域是以VH-VL或VL-VH的次序而被位於該雙專一性分子的N-端或C-端。在該第一和第二結合領域中呈VH-以及VL-鏈不同排列的依據本發明的跨物種專一性之雙專一性分子的實例被描述在檢附的實施例中。
如此處所用的,一“雙專一性單鏈抗體”表示一包含有2個結合領域的單一多肽鏈。各個結合領域包含有一來自一抗體重鏈(heavy chain)(“VH區域”)的可變區域(variable region),其中該第一結合領域的VH區域專一性地結合至CD3ε分子,以及該第二結合領域的VH區域專一性地結合至PSMA。該等2個結合領域藉由一短的多肽間隔子(spacer)而被可操作地連結至彼此。關於一多肽間隔子的一非限制性實例是Gly-Gly-Gly-Gly-Ser(G-G-G-G-S)以及它的重覆。各個結合領域可額外地包含有一來自一抗體輕鏈(light chain)(“VL區域”)的可變區域,在該第一與第二結合領域的各個內的該VH區域以及VL區域經由一多肽連結子(linker)(例如在EP 623679 B1中所揭示以及請求的類型)而被連結至彼此,但在任何例子中長到足以容許該第一結合領域的該VH區域與VL區域以及該第二結合領域的該VH區域與VL區域彼此配對在一起,藉此它們能夠一起專一性地結合至個別的第一以及第二結合領域。
術語“蛋白質”是本技藝所熟知並且描述生物化合物。蛋白質包含有一或多個胺基酸鏈(多肽),藉此胺基酸經由一胜肽鍵在彼此之間結合。如此處所用的,術語“多肽”描述一群由超過30種胺基酸所構成的分子。依據本發明,只要蛋白質由一單一多肽鏈構成,多肽的族群包含有“蛋白質”。亦與定義一致,術語“多肽”描述蛋白質的片段,只要這些片段由超過30個胺基酸所構成。多肽可進一步形成多聚體(multimers),諸如二聚體、三聚體(trimers)以及較高級的寡聚物(oligomers)(亦即,由超過一多肽分子所構成)。形成此等二聚體、三聚體等等的多肽分子可以是同樣的或不同樣的。結果,此等多聚體的對應的較高次序結構被稱為同質-(homo-)或異質二聚體(heterodimers)、同-或異三聚體等等。一關於一異多聚體(hereteromultimer)的實例是一抗體分子,在它的天然發生形式由2個同樣的輕多肽鏈以及2個同樣的重多肽鏈所構成。術語“多肽”以及“蛋白質”亦意指經天然地修飾的多肽/蛋白質,其中該修飾是例如藉由轉譯後修飾(post-translational modifications)[像糖化(glycosylation)、乙醯化(acetylation)、磷酸化(phosphorylation)以及類似之物]而被完成。此等修飾是本技藝所熟知。
依據本發明,術語“結合領域”特徵在於專一性地結合至/與一特定的標靶結構/抗原/表位交互作用的一多肽的一領域。因此,該結合領域是一“抗原交互作用位址(antigen-interaction-site)”。依據本發明,術語“抗原交互作用位址”定義一多肽的一要素(motif),該要素能夠專一性地與一專一性抗原或抗原(例如,在不同物種的同樣抗原)的一專一性族群交互作用。該結合/交互作用亦被瞭解用於定義一“專一性辨識”。依據本發明,術語“專一性地辨識”意指抗體分子能夠專一性地與和/或結合至一抗原(例如,如在此所定義的人類CD3抗原)的至少2個、較佳地至少3個、更佳地至少4個胺基酸。此等結合可由一“鎖鑰原理(lock-and-key-principle)”的專一性所例示。因此,在結合領域的胺基酸序列中的專一性要素(motifs)以及抗原彼此結合導致它們的一級、二級或三級結構以及該結構的二級修飾的結果。抗原交互作用位址與它的專一性抗原的專一性交互作用亦可導致該位址至該抗原的一簡單結合。再者,結合領域/抗原交互作用位址與它的專一性抗原的專一性交互作用可另擇地導致一信號的起始(例如,起因於誘發抗原的構形的一改變、抗原的一寡聚合等等)。一與本發明一致的結合領域的一較佳實施例是一抗體。該結合領域可以是一單株或多株抗體或者衍生自一單株或多株抗體。
術語“抗體”包含有仍然維持結合專一性的衍生物(derivatives)或功能性片段。生產抗體的技術是本技藝所熟知,並且被描述在,例如,Harlow and Lane“Antibodies,A Laboratory Manual”,Cold Spring Harbor Laboratory Press,1988、Harlow and Lane“Using Antibodies: A Laboratory Manual”Cold Spring Harbor Laboratory Press,1999以及Little“Recombinant Antibodies for Immunotherapy”Cambridge University Press 2009。術語“抗體”亦包含有不同類的免疫球蛋白(Ig’s)(亦即,IgA、IgG、IgM、IgD以及IgE)以及子集(subclasses)(諸如IgG1、IgG2等等)。
術語“抗體”的定義亦包括諸如嵌合的(chimeric)單鏈與人類化的抗體以及抗體片段(尤其像Fab片段)的具體例。抗體片段或衍生物進一步包含有F(ab')2、Fv、scFv片段或單一領域抗體、單一可變領域抗體或者僅包含有一可變領域(可以是專一性地結合至一抗原或表位而無關其它V區域或領域的VH或VL)的免疫球蛋白單一可變領域;參見,例如,Harlow and Lane(1988)與(1999)以及Little(2009),上述引用文。此免疫球蛋白單一可變領域包含有不僅一經分離的抗體單一可變領域多肽而且含有一抗體單一可變領域多肽序列的一或多個單體的較大多肽。
各種不同的操作程序是本技藝所知曉並且可被使用於生產此等抗體和/或片段。因此,該等(抗體)衍生物亦可藉由擬胜肽(peptidomimetics)而被生產。進一步,描述生產單鏈抗體的技術(尤其是參見US專利4,946,778)可被採用以生產對被選定的多肽(們)專一性的單鏈抗體。基因轉殖動物亦可被使用以表現對本發明的多肽或融合蛋白質(fusion proteins)專一性的人類化或人類抗體。為了製備單株抗體,任何提供由連續細胞株培養所生產的抗體之技術可被使用。此等技術的實例包括融合瘤技術(hybridoma technique)(Khler and Milstein Nature 256(1975),495-497、三體瘤技術(trioma technique)、人類B-細胞融合瘤技術(Kozbor,Immunology Today 4(1983),72)以及生產人類單株抗體的EBV-融合瘤技術(Cole et al.,Monoclonal Antibodies and Cancer Therapy,Alan R. Liss,Inc.(1985),77-96)。如被採用在BIAcore系統的表面電漿子共振(surface plasmon resonance)可被使用以增加結合至一標靶多肽(諸如CD3 ε或PSMA)的一表位之噬菌體(phage)抗體的效用(Schier,Human Antibodies Hybridomas 7(1996),97-105;Malmborg,J. Immunol. Methods 183(1995),7-13)。在本發明的上下文中亦被設想的是:術語“抗體”包含有可在一如在此下面所描述的宿主中被表現的抗體建構物(constructs)[例如,可經由尤其病毒或質體載體(plasmid vectors)所轉染(transfected)和/或轉導(transduced)的抗體建構物]。
依據本發明,如所使用的術語“專一性交互作用”意指結合領域不是或不是顯著地與多肽交叉反應,該多肽具有如由結合領域所結合的那些的相似結構並且可藉由相同細胞而被表現有如感興趣的多肽。在調查下,一盤(panel)的結合領域的交互反應可例如藉由評估在傳統條件下該盤的結合領域的結合而被測試(參見,例如,Harlow and Lane(1988)與(1999)以及Little(2009),上述引用文。一結合領域與一專一性抗原的專一性交互作用的實例包含有一配位子對它的受體的專一性。該定義特別地包含有在結合至它的專一性受體時誘發一信號的配位子的交互作用。亦由該定義所特別地包含的該交互作用的實例是一抗原決定位(表位)與一抗體的結合領域(抗原結合位址)的交互作用。
如此處所用的,術語“跨物種專一性”或“物種間專一性(interspecies specificity)”意指結合一在此所描述的結合領域至在人類以及非黑猩猩靈長類的相同標靶分子。因此,“跨物種專一性”或“物種間專一性”被瞭解有如一對於被表現在不同物種的相同分子“X”但不是對一不是“X”的分子的物種間反應性。一辨識例如人類CD3 ε至一非黑猩猩靈長類CD3 ε(例如獼猴CD3ε)的單株抗體的跨物種專一性可例如藉由FACS分析而被測定。該FACS分析以個別的單株抗體被測試用於結合至分別表現該人類以及非黑猩猩靈長類CD3 ε抗原的人類以及非黑猩猩靈長類細胞(例如,獼猴細胞)的方式而被進行。一適當的分析被顯示在下面的實施例中。上面所提及的標的做出必要的修正應用於PSMA抗原:一辨識例如人類PSMA至一非黑猩猩靈長類PSMA(例如獼猴PSMA)的單株抗體的跨物種專一性可例如藉由FACS分析而被測定。該FACS分析以個別的單株抗體被測試用以結合至分別表現該人類以及非黑猩猩靈長類PSMA抗原的人類以及非黑猩猩靈長類細胞(例如,獼猴細胞)的方式而被進行。
如此處所用的,CD3 ε代表一被表現有如T細胞受體的部分之分子並且具有如典型地被歸屬在先前技藝的意思。在人類,它包含有個別的或獨立地組合形成所有已知的CD3次單位(例如,CD3 ε、CD3 δ、CD3 γ、CD3 ζ、CD3 α以及CD3 β)。如在此所意指的非黑猩猩靈長類、非人類CD3抗原是例如馬來猴CD3以及恆河獼猴CD3。在馬來猴中,它包含有CD3 ε FN-18陰性(negative)以及CD3 ε FN-18陽性(positive)、CD3 γ以及CD3 δ。在恆河獼猴中,它包含有CD3 ε、CD3 γ以及CD3 δ。較佳地,該如在此所使用的CD3是CD3 ε。
人類CD3 ε被指示在GenBank寄存編號(Accession No.)NM_000733並且包含有序列辨識編號1。人類CD3 γ被指示在GenBank寄存編號NM_000073。人類CD3 δ被指示在GenBank寄存編號NM_000732。
馬來猴的CD3 ε“FN-18陰性”(亦即,因為一如上面所提到的多型性,CD3 ε不由單株抗體FN-18所辨識)被指示在GenBank寄存編號AB073994。
馬來猴的CD3 ε“FN-18陽性”(亦即,CD3 ε由單株抗體FN-18所辨識)被指示在GenBank寄存編號AB073993。馬來猴的CD3 γ被指示在GenBank寄存編號AB073992。馬來猴的CD3 δ被指示在GenBank寄存編號AB073991。
恆河獼猴的個別的CD3 ε、γ以及δ同源物的核酸序列以及胺基酸序列可藉由本技藝所描述的重組技術(Sambrook et al. Molecular Cloning: A Laboratory Manual;Cold Spring Harbor Laboratory Press,3rd edition 2001)而被鑑定以及分離。這個做了適當的修正應用至如在此所定義的其他非黑猩猩靈長類的CD3 ε、γ以及δ同源物。白鬢狨、松鼠猴以及絨頂檉柳猴的胺基酸序列的鑑定被描述在檢附的實施例中。白鬢狨的CD3 ε的外細胞領域的胺基酸序列被描寫在序列辨識編號:3,絨頂檉柳猴的一者被描寫在序列辨識編號:5以及松鼠猴的一者被描寫在序列辨識編號:7。
人類PSMA被指示在GenBank寄存編號'AY101595'。獼猴的PSMA同源物的選殖被證明在下列的實施例中,對應的cDNA以及胺基酸序列分別被顯示在序列辨識編號:223以及224。
與上面一致,術語“表位”定義一由一如在此所定義的結合領域所專一性地結合/鑑定的抗原決定位。該結合領域可專一性地結合至/與構形的或連續的表位[標靶結構(例如,人類和非黑猩猩靈長類CD3ε鏈或者人類和非黑猩猩靈長類PSMA)特有的]交互作用。一構形的或不連續的表位特徵在於:存在2或多個分離的胺基酸殘基之多肽抗原,該等胺基酸殘基在一級序列中被分開,但當該多肽折疊成天然蛋白質/抗原時在該分子的表面變成在一起的(Sela,(1969)Science 166,1365 and Laver,(1990) Cell 61,553-6)。該等貢獻該表位的2或多個分離的胺基酸殘基存在於一或多個多肽鏈(們)的分離部分。當該多肽鏈(們)折疊成一3維結構以構成該表位時,這些殘基在該分子的表面變成在一起的。相反的,一連續或線性的表位由2或多個分離的胺基酸殘基所構成,該等胺基酸殘基存在於一多肽鏈的一單一線性區段(segment)。在本發明內,一“環境依賴(context-dependent)”CD3表位意指該表位的構形。此一位在CD3的ε鏈之環境依賴表位若它被嵌入在ε鏈的座內並且藉由ε鏈與CD3 γ或δ鏈的異二聚體化而被維持在正確位置,僅可發展它的正確構形。相反的,一如在此所提供的環境獨立CD3表位意指CD3 ε的一N-端1-27個胺基酸殘基多肽或它的一功能性片段。這個N-端1-27個胺基酸殘基多肽或它的一功能性片段當除去它在CD3複合物的天然環境,維持它的3維結構完整性以及正確的構形。因此,環境獨立的該N-端1-27個胺基酸殘基多肽或它的一功能性片段(CD3 ε的外細胞領域的部分)代表完全不同於關於在WO 2004/106380的一用於製備人類結合分子的方法中所描述的CD3 ε的表位。該被使用的方法單獨地表現重組的CD3 ε。這個單獨地被表現的重組的CD3 ε的構形不同於以它的天然形式(那是,TCR/CD3複合物的CD3 ε次單位存在有如一具有TCR/CD3複合物的CD3 δ或CD3-γ次單位的非共價複合物的部分之形式)而被採用的那個。當此被單獨表現的重組的CD3 ε蛋白質被使用作為一用於篩選來自一抗體庫的抗體之抗原時,對這個抗原的抗體專一性從該庫被鑑定,雖然此一庫不含有具有對自身抗原(self-antigens)/自體抗原(autoantigens)專一性的抗體。這起因於被單獨表現的重組的CD3 ε蛋白質沒有在活體內存在的事實;它不是一自體抗原。結果,對這個蛋白質表現抗體專一性的B細胞的次族群(subpopulations)在活體內沒有已被耗盡;一從此等B細胞所建構的抗體庫將含有對被單獨表現的重組的CD3 ε蛋白質專一性的抗體之基因材料。
然而,由於該環境獨立的N-端1-27個胺基酸殘基多肽或它的一功能性片段是一以它的天然形式摺疊的表位,與本發明一致的結合領域不能藉由根據被描述在WO 2004/106380的手段之方法而被鑑定。因此,在測試中已證實如被揭示在WO 2004/106380的結合分子不能夠結合至CD3 ε鏈的N-端1-27個胺基酸殘基。因此,傳統的抗-CD3結合分子或抗-CD3抗體分子(例如,如被揭示在WO 99/54440)在一要比該在此提供的環境獨立的N-端1-27個胺基酸殘基多肽或一功能性片段被更C-端地座落的位置結合CD3 ε鏈。先前技藝的抗體分子OKT3以及UCHT-1亦對在胺基酸殘基35至85之間的TCR/CD3複合物的ε-次單位具有一專一性,並且因此這些抗體的表位亦是被更C-端地座落。此外,UCHT-1結合至在胺基酸殘基43至77之間的一區域的CD3 ε(Tunnacliffe,Int. Immunol. 1(1989),546-50;Kjer-Nielsen,PNAS 101,(2004),7675-7680;Salmeron,J. Immunol. 147(1991),3047-52)。因此,先前技藝的抗-CD3分子沒有結合至並且沒有定向對抗該在此所定義的環境獨立的N-端1-27個胺基酸殘基表位(或它的一功能性片段)。特別地,本技藝的狀態無法提供專一性地結合至環境獨立的N-端1-27個胺基酸殘基表位並且是跨物種專一性(亦即,結合至人類以及非黑猩猩靈長類CD3 ε)的抗-CD3分子。
為了產生一被包含在本發明的一雙專一性單鏈抗體分子中的較佳地人類結合領域,例如結合至人類與非黑猩猩靈長類CD3 ε(例如獼猴CD3 ε)這兩者的單株抗體或者結合至人類與非黑猩猩靈長類PSMA這兩者的單株抗體可被使用。
如此處所用的,“人類”以及“男人”意指物種智慧人(Homo sapiens)。就在此所描述的建構物的醫學用途而言,人類病患被治療以相同的分子。
較佳的是本發明的雙專一性單鏈抗體的該第一或第二結合領域的至少一者是CDR-移植的、人類化的或人類。較佳地,本發明的雙專一性單鏈抗體的第一以及第二結合領域這兩者是CDR-移植的、人類化的或人類。
如此處所用的,術語“人類”抗體被瞭解為意指:如在此所定義的雙專一性單鏈抗體包含有在人類生殖系列(germline)抗體群(antibody repertoire)所含有的(一)胺基酸序列(們)。在此為了定義的目的,該雙專一性單鍵抗體因此可被認為是人類,若它由此(一)人類生殖系列胺基酸序列(們)所構成[亦即,若該有問題的雙專一性單鏈抗體的胺基酸序列(們)是(是)相同於(一)被表現的人類生殖系列胺基酸序列(們)。一如在此所定義的雙專一性單鏈抗體亦可被認為是人類,若它由衍生自它的(它們的)最接近的人類生殖系列序列(們)的(一)序列(們)所構成而沒有被預期起因於體細胞高度突變(somatic hypermutation)的痕跡。此外,許多非人類哺乳類動物(例如嚙齒類,諸如小鼠以及大鼠)的抗體包含有亦可被預期存在於被表現的人類抗體群的VH CDR3胺基酸序列。為了本發明的目的,可被預期存在於被表現的人類群的人類或非人類來源的任何序列(們)亦被認為“人類”。
如此處所用的,術語“人類化的”、“人類化”、“像人類”或它語法上相關的變異可被交換地使用以意指一在它的結合領域的至少一者中包含有至少一來自一非人類抗體或它的片段的互補決定區域(complementarity determining region)(“CDR”)的雙專一性單鏈抗體。人類化手段被描述在例如WO 91/09968以及US 6,407,213。如非限制性實例,該術語包含有至少一結合領域的一可變區域包含有一來自另一個非人類動物的單一CDR區域[例如VH的第三CDR區域(CDRH3)]的例子以及1或2個可變區域/們在它們個別的第一、第二以及第三CDR的各個中包含有來自該非人類動物的CDR的例子。在該雙專一性單鏈抗體的一結合領域的所有CDR已由它們的來自例如一嚙齒動物的對應等價物(equivalents)而被替換的事件中,吾人典型地說出“CDR-移植的”,並且這個術語被瞭解有如是由如在此所使用的術語“人類化的”或或它的語法上相關的變異所包含。術語“人類化的”或它的語法上相關的變異亦包含有除了在該第一和/或第二結合領域的一VH和/或VL內替換一或多個CDR區域之外,在CDR之間的框架(framework)(“FR”)區域內的至少一單一胺基酸殘基/們的進一步突變/們已被/己被產生,藉此在那個/那些位置的胺基酸對應於在動物(其中被用於替換的CDR區域被/被衍生)的那個/那些位置的胺基酸/們之例子。如本技藝所知曉的,為了恢復被使用作為一用於它的標靶分子的CDR-供體(donor)的非人類抗體的原始結合親合力,此等個別的突變經常在框架區域被做出接著CDR-移植。除了在如上所描述的框架區域中的胺基酸取代物外,術語“人類化的”可進一步包含有來自一非人類動物的CDR區域的(一)胺基酸取代物(們)至來自一動物抗體的一對應的CDR區域的胺基酸取代物(們)。
如此處所用的,術語“同源物(homolog)”或“同源(homology)”是如下列而被瞭解:在蛋白質以及DNA之間的同源經常根據序列相似性(特別地在生物資訊學)而被斷定。例如,一般而言,若2或多個基因具有高度相似的DNA序列,可能的是它們是同源的。但是序列相似性可從不同的祖先產生:短的序列可能偶然地是相似的,以及序列可能是相似的因為這兩者被選擇結合至一特別的蛋白質(諸如轉錄因子)。此等序列是相似的但不是同源的。同源的序列區域亦被稱為守恆的(conserved)。這沒有與在胺基酸序列的守恆(在一專一性位置的胺基酸已改變但胺基酸的物化性質維持未改變)而被混淆。同源的序列具有2種類型:直系同源(orthologous)以及旁系同源(paralogous)。同源的序列是直系同源,若它們藉由物種形成(speciation)事件而被分開:當一物種分化成2個分開的物種,在所形成的物種中的一單一基因的分化副本(divergent copies)被說是直系同源。直系同源物(orthologs)或直系同源基因是在彼此相似的不同物種中的基因,因為它們源自一相同的祖先。2個相似的基因是直系同源的最強證據是基因譜系(gene lineage)的一系統發生分析的結果。被發現在一進化枝(clade)內的基因是直系同源物(來自一相同的祖先)。直系同源物經常但非總是具有相同的功能。直系同源序列在有機體(organism)的分類的分類研究上提供有用的資訊。基因分化(genetic divergence)的圖譜(pattern)可被使用以追蹤有機體的關係。非常接近相關的2個有機體在2個直系同源物之間可能顯示非常相似的DNA序列。相反地,一進一步進化地遠離另一個有機體的有機體可能顯示一在被研究的直系同源物中的較大分化。同源的序列是旁系同源,若它們藉由一基因複製(gene duplication)事件而被分開:若在一有機體的一基因被複製以佔據相同基因組的2個不同的位置,那麼2個副本是旁系同源。旁系同源的一套序列互相被稱為旁系同源物(paralogs)。旁系同源物典型地具有相同或相似的功能,但有時候沒有:起因於在重複基因(duplicated gene)的一副本(copy)上缺乏原始的篩選壓力,這個副本沒有突變並且獲得新功能。一實例可在囓齒動物(諸如大鼠以及小鼠)中被發現。雖然不清楚是否任何在功能上的分化(divergence)已發生,囓齒動物具有一對旁系同源胰島素基因(insulin genes)。旁系同源基因經常屬於相同的物種,但這不是必須的:例如,人類的血紅蛋白基因(hemoglobin gene)與黑猩猩的肌紅蛋白基因(myoglobin gene)是旁系同源物。這在生物資訊學上是一共同的問題:當不同物種的基因組已被定序並且同源基因已被發現,吾人不可立即地推斷出這些基因具有相同或相似的功能,因為它們可能是功能已分化的旁系同源物。
如此處所用的,一“非黑猩猩靈長類(non-chimpanzee primate)”或“非黑猩猩靈長類(non-chimp primate)”或它們語法上的變異意指不是黑猩猩[亦即,不是一屬於黑猩猩屬(genus Pan)的動物]的任何靈長類動物(亦即,非人類),並且包括侏儒黑猩猩(Pan paniscus)以及黑猩猩(Pan troglodytes)[亦被知曉為黑猩猩(Anthropopithecus troglodytes)或猩猩(Simia satyrus)]物種。然而,被瞭解的是:本發明的抗體亦可以它們的第一和/或第二結合領域結合至該黑猩猩個別的表位/片段等等。若所欲的,本發明僅避免以黑猩猩所進行的動物測試。因此在另一個具體例中被設想的是:本發明的抗體亦以它們的第一和/或第二結合領域結合至黑猩猩的個別表位。一“靈長類(primate)”、“靈長類物種(prim atespecies)”、“靈長類(primates)”或它們語法上的變異代表被分成原猴(prosimians)以及類人猿(anthropoids)的2個亞目(suborders)的真哺乳亞綱哺乳動物(eutherian mammals)的一目(order),並且包含有猿類(apes)、猴子(monkeys)以及狐猴(lemurs)。特別地,如在此所使用的“靈長類”包含有原猴亞目(suborder Strepsirrhini)[非眼鏡猴原猴(non-tarsier prosimians)],包括infraorder Lemuriformes[它本身包括超科(superfamilies)鼠狐猴(Cheirogaleoidea)以及狐猴(Lemuroidea)]、infraorder Chiromyiformes[它本身包括指猴科(Daubentoniidae)]以及(infraorder Lorisiformes)[它本身包括懶猴(Lorisidae)以及嬰猴科(Galagidae)]。如在此所使用的“靈長類”亦包含有簡鼻亞目(suborder Haplorrhini),包括infraorder Tarsiiformes[它本身包括眼鏡猴科(Tarsiidae)]、infraorder Simiiformes{它本身包括廣鼻類(Platyrrhini)或新世界猴以及狹鼻類(Catarrhini)[包括猴科(Cercopithecidea)]或舊世界猴}。
在本發明的意思中,非黑猩猩靈長類物種可被瞭解為是一狐猴、一眼鏡猴、一長臂猴(gibbon)、一絨猿[屬於捲尾猴科(Cebidae)的新世界猴]或一舊世界猴[屬於猴超科(superfamily Cercopithecoidea)]。
如此處所用的,一“舊世界猴”包含有任何落在猴超科的猴子,猴超科本身被細分成科:猴亞科(Cercopithecinae),主要地非洲但包括亞洲和北非的獼猴的分化屬(genus);以及疣猴亞科(Colobinae),它包括大部分的亞洲屬而且非洲疣猴(colobus monkeys)。
特別地,在猴亞科(subfamily Cercopithecinae)內,一有益的非黑猩猩靈長類可來自Tribe Cercopithecini,在短肢猴屬(genus Allenopithecus)[菲氏葉猴(Allen's Swamp Monkey)、短肢猴(Allenopithecus nigroviridis)]內;在侏長尾猴屬(genus Miopithecus)[侏長尾猴(Angolan Talapoin),侏長尾猴(Miopithecus talapoin);加蓬侏長尾猴(Gabon Talapoin),加蓬侏長尾猴(Miopithecus ogouensis)]內;在赤猴屬(genus Erythrocebus)[赤猴(Patas Monkey),斥猴(Erythrocebus patas)]內;在綠猴屬(genus Chlorocebus)[綠猴(Green Monkey),綠猴(Chlorocebus sabaceus);素領猴(Grivet),綠猴(Chlorocebus aethiops);貝爾山綠猴(Bale Mountains Vervet),貝爾山綠猴(Chlorocebus djamdjamensis);坦塔夢斯綠猴(Tantalus Monkey),坦塔夢斯綠猴(Chlorocebus tantalus);黑長尾猴(Vervet Monkey),黑長尾猴(Chlorocebus pygerythrus);布鲁克綠猴(Malbrouck),布鲁克綠猴(Chlorocebus cynosures)]內;或者在長尾猴屬(genus Cercopithecus)[德賴斯長尾猴(Dryas Monkey)或Salongo Monkey,德賴斯長尾猴(Cercopithecus dryas);黛安娜長尾(Diana Monkey),黛安娜長尾(Cercopithecus diana);加納長尾猴(Roloway Monkey),羅洛威鬚長尾猴(Cercopithecus roloway);大白鼻猴(Greater Spot-nosed Monkey),大白鼻長尾猴(Cercopithecus nictitans);藍猴(Blue Monkey),青長尾猴(Cercopithecus mitis);銀長尾猴(Silver Monkey),銀長尾猴(Cercopithecus doggetti);金長尾猴(Golden Monkey),金長尾猴(Cercopithecus kandti);賽克斯猴(Sykes's Monkey),白喉長尾猴(Cercopithecus albogularis);摩那猴(Mona Monkey),白額長尾猴(Cercopithecus mona);坎氏摩那猴(Campbell's Mona Monkey),坎氏長尾猴(Cercopithecus campbelli);洛氏摩那猴(Lowe's Mona Monkey),洛氏長尾猴(Cercopithecus lowei);冠毛長尾猴(Crested Mona Monkey),冠毛長尾猴(Cercopithecus pogonias);狼莫纳猴(Wolf's Mona Monkey),.鄔氏長尾猴(Cercopithecus wolfi);丹氏長尾猴(Dent's Mona Monkey),丹氏長尾猴(Cercopithecus denti);小白鼻長尾猴(Lesser Spot-nosed Monkey),小白鼻長尾猴(Cercopithecus petaurista);白領青長尾猴(White-throated Guenon),赤腹長尾猴(Cercopithecus erythrogaster),斯氏長尾猴(Sclater's Guenon),斯氏長尾猴(Cercopithecus sclateri);紅耳長尾猴(Red-eared Guenon),紅耳長尾猴(Cercopithecus erythrotis);髭長尾猴(Moustached Guenon),髭長尾猴(Cercopithecus cephus);紅尾長尾猴(Red-tailed Monkey),紅尾長尾猴(Cercopithecus ascanius);爾氏長尾猴(L'Hoest's Monkey),爾氏長尾猴(Cercopithecus lhoesti);高山長尾猴(Preuss's Monkey),高山長尾猴(Cercopithecus preussi);陽光長尾猴(Sun-tailed Monkey),陽光長尾猴(Cercopithecus solatus);哈姆林氏猴(Hamlyn's Monkey)或梟面猴(Owl-faced Monkey),梟面長尾猴(Cercopithecus hamlyni);德氏長尾猴(De Brazza's Monkey),白臀長尾猴(Cercopithecus neglectus)]內。
另擇地,一有益的非黑猩猩靈長類[亦在猴亞科以及在Tribe Papionini內]可來自在獼猴屬(genus Macaca)[巴巴利獼猴(Barbary Macaque),巴巴利獼猴(Macaca sylvanus);獅尾猴(Lion-tailed Macaque),獅尾猴(Macaca silenus);南方豚尾獼猴(Southern Pig-tailed Macaque)或豚尾獼猴(Beruk),豚尾獼猴(Macaca nemestrina);北方豚尾猴(Northern Pig-tailed Macaque),北方豚尾獼猴(Macaca leonina);明打威獼猴(Pagai Island Macaque)或明打威獼猴(Bokkoi),明打威獼猴(Macaca pagensis);西比路島獼猴(Siberut Macaque),西比路島獼猴(Macaca siberu);摩爾獼猴(Moor Macaque),摩爾獼猴(Macaca maura);穿靴獼猴(Booted Macaque),穿靴獼猴(Macaca ochreata);通金獼猴(Tonkean Macaque),通金獼猴(Macaca tonkeana);黑克獼猴(Heck's Macaque),黑克獼猴(Macaca hecki);淺黑獼猴(Gorontalo Macaque),淺黑獼猴(Macaca nigriscens);黑冠獼猴(Celebes Crested Macaque)或黑"猴"(Black "Ape"),黑冠獼猴(Macaca nigra);石蟹獼猴或食蟹猴(Crab-eating Macaque)或長尾猴(Long-tailed Macaque)或猴(Kera),馬來猴(Macaca fascicularis);短尾猴(Stump-tailed Macaque)或短尾猴(Bear Macaque),短尾猴(Macaca arctoides);恆河獼猴(Rhesus Macaque),獼猴(Macaque);台灣獼猴(Formosan Rock Macaque),台灣獼猴(Macaca cyclopis);日本獼猴(Japanese Macaque),日本獼猴(Macaca fuscata);斯里蘭卡猴(Toque Macaque),斯里蘭卡猴(Macaca sinica);綺帽獼猴(Bonnet Macaque),冠毛獼猴(Macaca radiata);巴巴利獼猴(Barbary Macaque),巴巴利獼猴(Macaca sylvanmus);熊猴(Assam Macaque),熊猴(Macaca assamensis);藏獼猴(Tibetan Macaque)或藏獼猴(Milne-Edwards' Macaque),藏獼猴(Macaca thibetana);阿魯納卡獼猴(Arunachal Macaque)或阿魯納卡獼猴(Munzala),阿魯納卡獼猴(Macaca munzala)]內;在白臉猴屬(genus Lophocebus)[白頰白眉猴(Gray-cheeked Mangabey),白頰白眉猴(Lophocebus albigena);Lophocebus albigena albigena;Lophocebus albigena osmani;Lophocebus albigena johnstoni;黑毛白眉猴(Black Crested Mangabey),黑毛白眉猴(Lophocebus aterrimus);Opdenbosch's Mangabey,Lophocebus opdenboschi;高地白瞼猴(Highland Mangabey),高地白瞼猴(Lophocebus kipunji)]內;在狒狒屬(genus Papio)[阿拉伯狒狒(Hamadryas Baboon),阿拉伯狒狒(Papio hamadryas);幾內亞狒狒(Guinea Baboon),幾內亞狒狒(Papio papio);綠狒狒(Olive Baboon),獵神狒狒(Papio Anubis);黃狒狒(Yellow Baboon),草原狒狒(Papio cynocephalus);南非大狒(Chacma Baboon),豚尾狒狒(Papio ursinus)]內;在獅尾狒屬(genus Theropithecus)[獅尾狒(Gelada),獅尾狒(Theropithecus gelada)]內;在白眉猴屬(genus Cercocebus)[烏黑白眉猴(Sooty Mangabey),白頂白眉猴(Cercocebus atys);Cercocebus atys atys;Cercocebus atys lunulatus;白領白眼瞼猴(Collared Mangabey),白領白眼瞼猴(Cercocebus torquatus);敏白眉猴(Agile Mangabey),敏白眉猴(Cercocebus agilis);金腹白眉猴(Golden-bellied Mangabey),金腹白眉猴(Cercocebus chrysogaster),塔纳河白眉猴(Tana River Mangabey),冠毛白眉猴(Cercocebus galeritus);猻氏白瞼猴(Sanje Mangabey),猻氏白瞼猴(Cercocebus sanjei)]內;或者在山魈屬(genus Mandrillus)[山魈(Mandrill),山魈(Mandrillus sphinx);鬼狒(Drill),鬼狒(Mandrillus leucophaeus)]內。
最佳的是馬來猴[亦被知曉為石蟹獼猴並且因此在實施例中被命名為“石蟹猴(Cynomolgus)”]以及恆河獼猴[恆河猴,被命名為“羅猴(rhesus)”]。
在疣猴亞科(subfamily Colobinae)內,一有益的非黑猩猩靈長類可來自於非洲族群,在疣猴屬(genus Colobus)[黑疣猴(Black Colobus),黑疣猴(Colobus satanas);安哥拉疣猴(Angola Colobus),安哥拉疣猴(Colobus angolensis);黑白疣猴(King Colobus),黑白疣猴(Colobus polykomos);花斑疣猴(Ursine Colobus),花斑疣猴(Colobus vellerosus);東黑白疣猴(Mantled Guereza),東黑白疣猴(Colobus guereza)]內;在紅疣猴屬(genus Piliocolobus)[西方紅疣猴(Western Red Colobus),西方紅疣猴(Piliocolobus badius);Piliocolobus badius badius;Piliocolobus badius temminckii;紅色殘餘部分猿(Piliocolobus badius waldronae);東方紅疣(Pennant's Colobus),東方紅疣(Piliocolobus pennantii);Piliocolobus pennantii pennantii;尼日爾三角洲紅色疣猴(Piliocolobus pennantii epieni);Piliocolobus pennantii bouvieri;普氏紅疣猴(Preuss's Red Colobus),普氏紅疣猴(Piliocolobus preussi);Thollon's Red Colobus,Piliocolobus tholloni;中非紅疣猴(Central African Red Colobus),中非紅疣猴(Piliocolobus foai);Piliocolobus foai foai;Piliocolobus foai ellioti;Piliocolobus foai oustaleti;Piliocolobus foai semlikiensis;Piliocolobus foai parmentierorum;烏干達紅疣猴(Ugandan Red Colobus),烏干達紅疣猴(Piliocolobus tephrosceles);Uzyngwa Red Colobus,Piliocolobus gordonorum;桑給巴爾紅疣猴(Zanzibar Red Colobus),桑給巴爾紅疣猴(Piliocolobus kirkii);塔那河红疣猴(Tana River Red Colobus),塔那河红疣猴(Piliocolobus rufomitratus)]內;或在綠疣猴屬(genus Procolobus)[綠疣猴(Olive Colobus),綠疣猴(Procolobus verus)]內。
在疣猴亞科(subfamily Colobinae)內,一有益的非黑猩猩靈長類可另擇地來自葉猴(Langur)[葉猴(leaf monkey)]族群,在長尾葉猴屬(genus Semnopithecus)內[尼泊爾長尾葉猴(Nepal Gray Langur),喜山長尾葉猴(Semnopithecus schistaceus);喀什米爾長尾葉猴(Kashmir Gray Langur),喀什米爾長尾葉猴(Semnopithecus ajax);達頓灰葉猴(Tarai Gray Langur),達頓灰葉猴(Semnopithecus hector),哈努曼葉猴(Northern Plains Gray Langur),哈努曼葉猴(Semnopithecus entellus);黑足長尾葉猴(Black-footed Gray Langur),黑足長尾葉猴(Semnopithecus hypoleucos);南平原灰葉猴(Southern Plains Gray Langur),南平原灰葉猴(Semnopithecus dussumieri);(Tufted Gray Langur),毛冠灰葉猴(Semnopithecus priam)]內;在紫臉葉猴(T. vetulus)族群或烏葉猴屬(genus Trachypithecus)[紫臉葉猴(Purple-faced Langur),紫臉葉猴(Trachypithecus vetulus);尼爾吉裡猴(Nilgiri Langur),黑烏葉猴(Trachypithecus johnii)]內;在烏葉猴屬(genus Trachypithecus)的銀色烏葉猴(T. cristatus)族群[爪哇葉猴(Javan Lutung),烏葉猴(Trachypithecus auratus);銀葉猴(Silvery Leaf Monkey)或銀葉猴(Silvery Lutung),銀色烏葉猴(Trachypithecus cristatus);Indochinese Lutung,Trachypithecus germaini;丹那沙林烏葉猴(Tenasserim Lutung),丹那沙林烏葉猴(Trachypithecus barbei)]內;在烏葉猴屬的鬱烏葉猴(T. obscures)族群[眼鏡食葉猴(Dusky Leaf Monkey)或眼鏡食葉猴(Spectacled Leaf Monkey),鬱烏葉猴(Trachypithecus obscurus);菲氏葉猴(Phayre's Leaf Monkey),菲氏葉猴(Trachypithecus phayrei)]內;在烏葉猴屬的戴帽葉猴(T. pileatus)族群[戴帽葉猴(Capped Langur),戴帽葉猴(Trachypithecus pileatus);邵力殊葉猴(Shortridge's Langur),邵力殊葉猴(Trachypithecus shortridgei);金葉猴(Gee's Golden Langur),金葉猴(Trachypithecus geei)]內;在烏葉猴屬的黑葉猴(T. francoisi)族群[黑葉猴(Francois' Langur),黑葉猴(Trachypithecus francoisi);海亭葉猴(Hatinh Langur),海亭葉猴(Trachypithecus hatinhensis);白頭葉猴(White-headed Langur),白頭葉猴(Trachypithecus poliocephalus);老撾葉猴(Laotian Langur),老撾葉猴(Trachypithecus laotum);德氏黑葉猴(Delacour's Langur),德氏黑葉猴(Trachypithecus delacouri);印支黑烏葉猴(Indochinese Black Langur),印支黑烏葉猴(Trachypithecus ebenus)]內;或者在萊猴屬(genus Presbytis)[蘇門答臘葉猴(Sumatran Surili),黑脊葉猴(Presbytis melalophos);印尼葉猴(Banded Surili),印尼葉猴(Presbytis femoralis);沙勞越葉猴(Sarawak Surili),沙勞越葉猴(Presbytis chrysomelas);白腿葉猴(White-thighed Surili),白腿葉猴(Presbytis siamensis);白額葉猴(White-fronted Surili),白額葉猴(Presbytis frontata);爪哇葉猴(Javan Surili),爪哇葉猴(Presbytis comata);托馬斯葉猴(Thomas's Langur),托馬斯葉猴(Presbytis thomasi);何氏葉猴(Hose's Langur),何氏葉猴(Presbytis hosei);紅葉猴(Maroon Leaf Monkey),紅葉猴(Presbytis rubicunda);孟他維島長尾葉猴(Mentawai Langur)或白頰葉猴(Joja),白頰葉猴(Presbytis potenziani);納土納島葉猴(Natuna Island Surili),納土納島葉猴(Presbytis nαtunae)]內。
在疣猴亞科內,一有益的非黑猩猩靈長類可另擇地來自仰鼻族群(Odd-Nosed group),在白臀葉猴屬(genus Pygathrix)[白臀葉猴(Red-shanked Douc),白臀葉猴(Pygathrix nemaeus);黑腿白臀葉猴(Black-shanked Douc),黑腿白臀葉猴(Pygathrix nigripes);灰腿白臀葉猴(Gray-shanked Douc),灰腿白臀葉猴(Pygathrix cinerea)]內;在仰鼻猴屬(genus Rhinopithecus)[川金絲猴(Golden Snub-nosed Monkey),川金絲猴(Rhinopithecus roxellana);滇金絲猴(Black Snub-nosed Monkey),滇金絲猴(Rhinopithecus bieti);黔金絲猴(Gray Snub-nosed Monkey),黔金絲猴(Rhinopithecus brelichi);越南金絲猴(Tonkin Snub-nosed Langur),越南金絲猴(Rhinopithecus avunculus)]內;在長鼻猴屬(genus Nasalis)[象鼻猴(Proboscis Monkey),長鼻猴(Nasalis larvatus)]內;或者在豚尾葉猴屬(genus Simias)[豚尾葉猴(Pig-tailed Langur),豚尾葉猴(Simias concolor)]。
如此處所用的,術語“狨猴(marmoset)”代表任何狨屬(genus Callithrix)的新世界猴,例如屬於狨亞屬(subgenus Callithrix)(原文如此!){普通狨(Common Marmoset),普通狨[Callithrix(Callithrix) jacchus];黑耳狨猴(Black-tufted Marmoset),叢尾狨[Callithrix(Callithrix) penicillata];維氏狨(Wied's Marmoset),維氏狨[Callithrix(Callithrix) kuhlii];白頭狨(White-headed Marmoset),白頭狨[Callithrix(Callithrix) geoffroyi];黃冠狨(Buffy-headed Marmoset),黃冠狨[Callithrix(Callithrix) flaviceps],白耳狨(Buffy-tufted Marmoset),白耳狨[Callithrix(Callithrix) aurita]}的大西洋狨猴(Atlantic marmosets);屬於Mico亞屬{里約狨猴(Rio Acari M armoset),里約狨猴[Callithrix(Mico)acariensis];Manicore Marmoset,Callithrix(Mico)manicorensis;銀毛猴(silvery Marmoset),銀毛猴[Callithrix(Mico)argentata];白狨(White Marmoset),白狨[Callithrix(Mico)leucippe];艾氏狨(Emilia's Marmoset),艾氏狨[Callithrix(Mico)emiliae];黑頭狨(Black-headed Marmoset),黑頭狨[Callithrix(Mico)nigriceps];馬氏狨(Marca's Marmoset),馬氏狨[Callithrix(Mico)marcai];黑尾狨(Black-tailed Marmoset),黑尾狨[Callithrix(Mico)melanura];白肩狨(santarem Marmoset),白肩狨[Callithrix(Mico)humeralifera];Maus Marmoset,Callithrix(Mico)mauesi;黃肢狨(Gold-and-white Marmoset),黃肢狨[Callithrix(Mico)chrysoleuca];賀氏狨(Hershkovitz's Marmoset),賀氏狨[Callithrix(Mico)intermedia];Satr Marmoset,Callithrix(Mico)saterei}的亞馬遜河狨猴(Amazonian marmosets);屬於盧氏亞屬(subgenus Callibella){盧氏倭狨[Callithrix(Callibella)humilis]}的Roosmalens' DWarf Marmoset;或者屬於倭狨亞屬(subgenus Cebuella){倭狨[Callithrix(Cebuella)pygmaea}的侏儒狨猴(Pygmy Marmoset)。
新世界猴的其它屬包含有獠狨屬(genus Saguinus)[包含有絨頂檉柳猴-族群(S. oedipus-group)、絹毛猴族群(S. midas group)、黑須檉柳猴族群(S. nigricollis group)、長須檉柳猴族群(S. mystax group)、斑絹猴族群(S. bicolor group)以及烙印檉柳猴族群(S. inustus group)]的獠狨(tamarins)以及Samiri屬)[亦即,松鼠猴(Saimiri sciureus)、紅背松鼠猴(Saimiri oerstedii)、馬河松鼠(Saimiri ustus)、亞馬遜松鼠猴(Saimiri boliviensis)、黑松鼠猴(Saimiri vanzolini)]的松鼠猴(squirrel monkeys)。
在本發明的雙專一性單鏈抗體分子的一個較佳具體例中,該非黑猩猩靈長類是一舊世界猴。在該多肽的一較佳具體例中,該舊世界猴是一狒狒屬獼猴屬的猴子。最佳地,獼猴屬的猴子是熊猴(Assamese macaque)[熊猴(Macaca assamensis)]、巴巴利獼猴(Barbary macaque)[巴巴利獼猴(Macaca sylvanus)]、綺帽獼猴(Bonnet Macaque)[冠毛獼猴(Macaca radiata)]、穿靴(Booted)或蘇拉威西穿靴獼猴(Sulawesi-Booted macaque)[穿靴獼猴(Macaca ochreata)]、蘇拉威西冠猴(Sulawesi crested macaque)[黑冠獼猴(Macaca nigra)]、台灣獼猴(Formosan rock macaque)[台灣獼猴(Macaca cyclopis)]、日本雪獼猴(Japanese snow Macaque)或日本獼猴(Japanese macaque)[日本獼猴(Macaca fuscata)]、食蟹猴(Cynomologus monkey)或食蟹猴(crab-eating macaque)或長尾猴(Long-tailed macaque)或爪哇獼猴(Java macaque)[馬來猴(Macaca fascicularis)]、獅尾猴(Lion-tailed Macaque)[獅尾猴(Macaca silenus)]、豚尾獼猴(Pigtailed macaque)[豚尾獼猴(Macaca nemestrina)]、恆河獼猴(Rhesus Macaque)[恆河獼猴(Macaca mulatta)]、藏獼猴(Tibetan macaque)[藏獼猴(Macaca thibetana)]、通金獼猴(Tonkean Macaque)[通金獼猴(Macaca tonkeana)]、斯里蘭卡猴(Toque macaque)[斯里蘭卡猴(Macaca sinica)]、短尾猴(Stump-tailed macaque)或胭脂猴(Red-faced macaque)或短尾猴(Bear macaque)[短尾猴(Macaca arctoides)]或者摩爾獼猴(Moor macaque)[摩爾獼猴(Macaca maura)]。最佳地,狒狒屬的猴子是阿拉伯狒狒(Hamadryas Baboon),阿拉伯狒狒(Papio hamadryas);幾內亞狒狒(Guinea Baboon),幾內亞狒狒(Papio papio);綠狒狒(Olive Baboon),獵神狒狒(Papio Anubis);黃狒狒(Yellow Baboon),草原狒狒(Papio cynocephalus);南非大狒(Chacma Baboon),豚尾狒狒(Papio ursinus)。
在本發明的雙專一性單鏈抗體分子的一另擇地較佳具體例中,該非黑猩猩靈長類是一新世界猴。在該多肽的一更佳具體例中,該新世界猴是狨屬(狨猿)、獠狨屬或Samiri屬的一猴子。最佳地,狨屬的猴子是白鬢狨,獠狨屬的猴子是絨頂檉柳猴以及Samiri屬的猴子是松鼠猴。
如此處所用的,術語“細胞表面抗原”代表一被展示在一細胞的表面上的分子。在多數例子中,這個分子將位於或在細胞的原生質膜(plasma membrane)上,藉此這個分子的至少部分以三級形式維持從細胞的外面可進入的。一位於原生質膜(plasma membrane)的細胞表面分子的一非限制性實例是一在它的三級構形包含有親水性(hydrophilicity)以及疏水性(hydrophobicity)的區域之穿膜蛋白(transmembrane protein)。這裡,當親水性區域在原生質膜的任一邊上分別延伸至細胞質以及外細胞間隙(extracellular space)時,至少一疏水性區域容許細胞表面分子被嵌入或者被插在細胞的疏水性原生質膜。位在原生質膜上的細胞表面分子的一非限制性實例是已在一半胱胺酸(cysteine)殘基被修飾以帶有一軟脂醯基團(palmitoyl group)的蛋白質、在一C-端半胱胺酸殘基被修飾以帶有一法呢基團(farnesyl group)的蛋白質或者在C-端已被修飾以帶有一醣基磷脂醯肌醇(glycosyl phosphatidyl inositol,“GPI”)錨(anchor)的蛋白質。這些基團容許共價連接蛋白質至原生質膜的外表面,其中它們維持有由外細胞分子(諸如抗體)可辨識的。細胞表面抗原的實例是CD3 ε以及PSMA。如上面在此所描述的,PSMA是一用於治療癌症(包括但不限於固態腫瘤,較佳地癌以及前列腺癌)的標靶的細胞表面抗原。
按照這個,PSMA亦可被特徵化有如一腫瘤抗原。如此處所用的,術語”腫瘤抗原“可被瞭解有如那些存在於腫瘤細胞上的抗原。這些抗原可與一外細胞部分(時常與該分子的一穿膜或細胞質部分組合)而被存在於細胞表面上。這些抗原有時候僅由腫瘤細胞所呈現,並且從未由正常細胞所呈現。腫瘤抗原可專門地被表現在腫瘤細胞上或者相較於正常細胞可代表一腫瘤專一性突變。在這個例子中,它們被稱為腫瘤-專一性抗原。更常見的是由腫瘤細胞以及正常細胞所呈現的抗原,並且它們被稱為腫瘤相關抗原(tumor-associated antigens)。這些腫瘤相關抗原相較於正常細胞可被過度表現或者由於相較於正常組織腫瘤組織較不緊密的結構而可供抗體結合在腫瘤細胞。一符合本發明的腫瘤抗原的一實例是PSMA。
如上面在此所描述的,本發明的雙專一性單鏈抗體分子以該第一結合領域結合至人類以及非黑猩猩靈長類CD3(ε)鏈的一表位,其中該表位是一被包含在由如被描寫在序列辨識編號2、4、6或8或者它們的一功能性片段的27個胺基酸殘基所構成的族群中之胺基酸序列的部分。
按照本發明,對本發明的雙專一性單鏈抗體分子較佳的是;該表位是一包含有26、25、24、23、22、21、20、19、18、17、16、15、14、13、12、11、10、9、8、7、6或5個胺基酸的胺基酸序列的部分。
更佳地,其中該表位包含有至少胺基酸序列Gln-Asp-Gly-Asn-Glu(Q-D-G-N-E)。
在本發明中,該N-端1-27個胺基酸殘基的一功能性片段意指當除去在該CD3複合物的天然環境時,該功能性片段仍然是一維持它的3維結構完整性的環境-獨立表位[並且被融合至一異源性胺基酸序列,諸如EpCAM或一免疫球蛋白Fc部分(例如,如被顯示在WO 2008/119567的實施例3.1)]。在CD3 ε的27個胺基酸N-端多肽或它的功能性片段內的3維結構的維持可被用於產生具有相同結合親和力的在活體外結合至N-端CD3 ε多肽片段以及在活體內結合至在T細胞上的天然的CD3複合物(的CD3 ε次單位)的結合領域。在本發明內,該N-端1-27的胺基酸殘基的一功能性片段意指在此所提供的CD3結合領域仍然可以一環境獨立的方式結合至此等功能性片段。熟習此技藝者知道用於決定一表位的哪些胺基酸殘基是由此等抗-CD3結合領域所辨識的表位定位(epitope mapping)的方法(例如,丙胺酸篩選;參見WO 2008/119567的實施例)。
在本發明的一個具體例中,本發明的雙專一性單鏈抗體分子包含有一能夠結合至人類以及非黑猩猩靈長類CD3ε鏈的一表位的(第一)結合領域以及一能夠結合至細胞表面抗原PSMA的第二結合領域。
在本發明內,進一步較佳的是:該第二結合領域結合至人類細胞表面抗原PSMA和/或一非黑猩猩靈長類PSMA。特別較佳的,該第二結合領域結合至人類PSMA以及一非黑猩猩靈長類PSMA(較佳地一獼猴PSMA)。被瞭解的是:該第二結合領域結合至至少一非黑猩猩靈長類PSMA,然而,它亦可結合至2、3或多種非黑猩猩靈長類PSMA同源物。例如,該第二結合領域可結合至石蟹獼猴以及恆河猴PSMA。
包括在此所描述的所有方法、用途、套組等等的本發明亦有關於該等第二結合領域本身(亦即,不在一雙專一性單鏈抗體中)。“本身”進一步包括不是如在此所描述的雙專一性單鏈抗體的抗體格式(antibody formats),例如抗體片段(包含有該第二領域)、人類化抗體、包含有該第二領域的融合蛋白質等等。不是本發明的雙專一性單鏈抗體的抗體格式亦在此上面被描述。
為了產生本發明的雙專一性單鏈抗體分子的第二結合領域(例如,如在此所定義的雙專一性單鏈抗體),結合至個別的人類和/或非黑猩猩靈長類細胞表面抗原(諸如PSMA)這兩者的單株抗體可被利用。針對如在此所定義的雙專一性多肽的適當的結合領域例如可藉由本技藝所描述的重組方法而被衍生自跨物種專一性單株抗體。一結合至一人類細胞表面抗原以及至在一黑猩猩靈長類的該細胞表面抗原的同源物之單株抗體可藉由如上所提出的FACS分析而被測試。那些熟習此技藝者顯而易見的是:跨物種專一性抗體亦可由文獻(Milstein and Khler,Nature 256(1975),495-7)中所描述的融合瘤技術而被產生。例如,小鼠可另擇地被免疫以人類以及非黑猩猩靈長類細胞表面抗原(諸如PSMA)。從這些小鼠,生產跨物種專一性抗體的融合瘤細胞經由融合瘤技術而被分離並且藉由如上所提出的FACS而被分析。雙專一性多肽(諸如如在此所描述的展現出跨物種專一性之雙專一性單鏈抗體)的產生以及分析被顯示在下面的實施例中。展現出跨物種專一性之雙專一性單鏈抗體的優點包括在此所列舉的觀點。
關於本發明的雙專一性單鏈抗體分子特別較佳的是:該能夠結合至人類以及非黑猩猩靈長類CD3 ε鏈的一表位的第一結合領域包含有一含有選自於下列的CDR-L1、CDR-L2以及CDR-L3的VL區域:
(a) 如被描寫在序列辨識編號27的CDR-L1、如被描寫在序列辨識編號28的CDR-L2以及如被描寫在序列辨識編號29的CDR-L3;
(b) 如被描寫在序列辨識編號117的CDR-L1、如被描寫在序列辨識編號118的CDR-L2以及如被描寫在序列辨識編號119的CDR-L3;以及
(c) 如被描寫在序列辨識編號153的CDR-L1、如被描寫在序列辨識編號154的CDR-L2以及如被描寫在序列辨識編號155的CDR-L3。
可變區域[亦即,可變輕鏈(“L”或“VL”)以及可變重鏈(“H”或“VH”)]在本技藝中被瞭解提供一抗體的結合領域。這個可變區域含有互補決定區域(complementary determining regions)。
術語“互補決定區域”(CDR)是本技藝所熟知用於指定一抗體的抗原專一性。術語“CDR-L”或“LCDR”或“LCDR”意指在VL的CDR,而術語“CDR-H”或“HCDR”或HCDR”意指在VH的CDR。
在本發明的雙專一性單鏈抗體分子的一另擇地較佳具體例中,該能夠結合至人類以及非黑猩猩靈長類CD3 ε鏈的一表位的第一結合領域包含有一含有選自於下列的CDR-H1、CDR-H2以及CDR-H3的VH區域:
(a) 如被描寫在序列辨識編號12的CDR-H1、如被描寫在序列辨識編號13的CDR-H2以及如被描寫在序列辨識編號14的CDR-H3;
(b) 如被描寫在序列辨識編號30的CDR-H1、如被描寫在序列辨識編號31的CDR-H2以及如被描寫在序列辨識編號32的CDR-H3;
(c) 如被描寫在序列辨識編號48的CDR-H1、如被描寫在序列辨識編號49的CDR-H2以及如被描寫在序列辨識編號50的CDR-H3;
(d) 如被描寫在序列辨識編號66的CDR-H1、如被描寫在序列辨識編號67的CDR-H2以及如被描寫在序列辨識編號68的CDR-H3;
(e) 如被描寫在序列辨識編號84的CDR-H1、如被描寫在序列辨識編號85的CDR-H2以及如被描寫在序列辨識編號86的CDR-H3;
(f) 如被描寫在序列辨識編號102的CDR-H1、如被描寫在序列辨識編號103的CDR-H2以及如被描寫在序列辨識編號104的CDR-H3;
(g) 如被描寫在序列辨識編號120的CDR-H1、如被描寫在序列辨識編號120的CDR-H2以及如被描寫在序列辨識編號122的CDR-H3;
(h) 如被描寫在序列辨識編號138的CDR-H1、如被描寫在序列辨識編號139的CDR-H2以及如被描寫在序列辨識編號140的CDR-H3;
(i) 如被描寫在序列辨識編號156的CDR-H1、如被描寫在序列辨識編號157的CDR-H2以及如被描寫在序列辨識編號158的CDR-H3;以及
(j) 如被描寫在序列辨識編號174的CDR-H1、如被描寫在序列辨識編號175的CDR-H2以及如被描寫在序列辨識編號176的CDR-H3。
進一步較佳的是該能夠結合至人類以及非黑猩猩靈長類CD3 ε鏈的一表位的結合領域包含有一選自於由一如被描寫在序列辨識編號35、39、125、129、161或165的VL區域所構成的群組中的VL區域。
另擇地較佳的是:該能夠結合至人類以及非黑猩猩靈長類CD3 ε鏈的一表位的第一結合領域包含有一選自於由一如被描寫在序列辨識編號15、19、33、37、51、55、69、73、87、91、105、109、123、127、141、145、159、163、177或181的VH區域所構成的群組中的VH區域。
更佳地,本發明的雙專一性單鏈抗體分子的特徵在於該能夠結合至人類以及非黑猩猩靈長類CD3 ε鏈的一表位的第一結合領域,其包含有選自於由下列所構成的群組的一VL區域以及一VH區域:
(a)一如被描述在序列辨識編號17或21的VL區域以及一如被描述在序列辨識編號15或19的VH區域;
(b)一如被描述在序列辨識編號35或39的VL區域以及一如被描述在序列辨識編號33或37的VH區域;
(c)一如被描述在序列辨識編號53或57的VL區域以及一如被描述在序列辨識編號51或55的VH區域;
(d)一如被描述在序列辨識編號71或75的VL區域以及一如被描述在序列辨識編號69或73的VH區域;
(e)一如被描述在序列辨識編號89或93的VL區域以及一如被描述在序列辨識編號87或91的VH區域;
(f)一如被描述在序列辨識編號107或111的VL區域以及一如被描述在序列辨識編號105或109的VH區域;
(g)一如被描述在序列辨識編號125或129的VL區域以及一如被描述在序列辨識編號123或127的VH區域;
(h)一如被描述在序列辨識編號143或147的VL區域以及一如被描述在序列辨識編號141或145的VH區域;
(i)一如被描述在序列辨識編號161或165的VL區域以及一如被描述在序列辨識編號159或163的VH區域;以及
(j)一如被描述在序列辨識編號179或183的VL區域以及一如被描述在序列辨識編號177或181的VH區域。
依據本發明的雙專一性單鏈抗體分子的一較佳具體例,在該結合至CD3 ε的第一結合領域中成對的VH-區域以及VL-區域是呈一單鏈抗體(scFv)的格式。該等VH以及VL區域以VH-VL或VL-VH的次序而被排列。較佳的是該VH-區域被N-端地放置至一連結子序列。該VL-區域被C-端地放於該連結子序列。換句話說,在本發明的雙專一性單鏈抗體分子的CD3結合領域的領域排列較佳地是VH-VL,具有該CD3結合領域C-端地位於該第二(細胞表面抗原,諸如PSMA)結合領域。較佳地該VH-VL包含有或是序列辨識編號185。
本發明的如上所述的雙專一性單鏈抗體分子的一較佳具體例的特徵在於:該能夠結合至人類以及非黑猩猩靈長類CD3 ε鏈的一表位的第一結合領域包含有一選自於由序列辨識編號:23、25、41、43、59、61、77、79、95、97、113、115、131、133,149、151、167、169、185或187所構成的群組中的胺基酸序列。
本發明進一步有關於一上面所描述的雙專一性單鏈抗體,其中該第二結合領域結合至該細胞表面抗原PSMA。
依據本發明的一較佳具體例,一上面所特徵化的雙專一性單鏈抗體分子包含有一下列序列的群組作為在該第二結合領域中的CDR H1、CDR H2、CDR H3、CDR L1、CDR L2以及CDR L3,其選自於由下列所構成的群組:
a) 序列辨識編號:226-228的CDR H1-3以及序列辨識編號:231-233的CDR L1-3;
b) 序列辨識編號:240-242的CDR H1-3以及序列辨識編號:245-247的CDR L1-3;
c) 序列辨識編號:254-256的CDR H1-3以及序列辨識編號:259-261的CDR L1-3;
d) 序列辨識編號:268-270的CDR H1-3以及序列辨識編號:273-275的CDR L1-3;
e) 序列辨識編號:618-620的CDR H1-3以及序列辨識編號:623-625的CDR L1-3;
f) 序列辨識編號:282-284的CDR H1-3以及序列辨識編號:287-289的CDR L1-3;
g) 序列辨識編號:296-298的CDR H1-3以及序列辨識編號:301-303的CDR L1-3;
h) 序列辨識編號:310-312的CDR H1-3以及序列辨識編號:315-317的CDR L1-3;
i) 序列辨識編號:324-326的CDR H1-3以及序列辨識編號:329-331的CDR L1-3;
j) 序列辨識編號:338-340的CDR H1-3以及序列辨識編號:343-345的CDR L1-3;
k) 序列辨識編號:352-354的CDR H1-3以及序列辨識編號:357-359的CDR L1-3;
l) 序列辨識編號:366-368的CDR H1-3以及序列辨識編號:371-373的CDR L1-3;
m) 序列辨識編號:380-382的CDR H1-3以及序列辨識編號:385-387的CDR L1-3;
n) 序列辨識編號:394-396的CDR H1-3以及序列辨識編號:399-401的CDR L1-3;
o) 序列辨識編號:408-410的CDR H1-3以及序列辨識編號:413-415的CDR L1-3;
p) 序列辨識編號:422-424的CDR H1-3以及序列辨識編號:427-429的CDR L1-3;
q) 序列辨識編號:436-438的CDR H1-3以及序列辨識編號:441-443的CDR L1-3;
r) 序列辨識編號:450-452的CDR H1-3以及序列辨識編號:455-457的CDR L1-3;
s) 序列辨識編號:464-466的CDR H1-3以及序列辨識編號:469-471的CDR L1-3;
t) 序列辨識編號:478-480的CDR H1-3以及序列辨識編號:483-485的CDR L1-3;
u) 序列辨識編號:492-494的CDR H1-3以及序列辨識編號:497-499的CDR L1-3;
v) 序列辨識編號:506-508的CDR H1-3以及序列辨識編號:511-513的CDR L1-3;
w) 序列辨識編號:520-522的CDR H1-3以及序列辨識編號:525-527的CDR L1-3;
x) 序列辨識編號:534-536的CDR H1-3以及序列辨識編號:539-541的CDR L1-3;
y) 序列辨識編號:548-550的CDR H1-3以及序列辨識編號:553-555的CDR L1-3;
z) 序列辨識編號:562-564的CDR H1-3以及序列辨識編號:567-569的CDR L1-3;
aa) 序列辨識編號:576-578的CDR H1-3以及序列辨識編號:581-583的CDR L1-3;
ab) 序列辨識編號:590-592的CDR H1-3以及序列辨識編號:595-597的CDR L1-3;以及
ac) 序列辨識編號:604-606的CDR H1-3以及序列辨識編號:609-611的CDR L1-3。
雙專一性單鏈抗體分子的一較佳族群包含有一下列序列的群組作為在該第二結合領域中的CDR H1、CDR H2、CDR H3、CDR L1、CDR L2以及CDR L3,其選自於由下列所構成的群組:
a) 序列辨識編號:226-228的CDR H1-3以及序列辨識編號:231-233的CDR L1-3;
b) 序列辨識編號:240-242的CDR H1-3以及序列辨識編號:245-247的CDR L1-3;
c) 序列辨識編號:254-256的CDR H1-3以及序列辨識編號:259-261的CDR L1-3;
d) 序列辨識編號:268-270的CDR H1-3以及序列辨識編號:273-275的CDR L1-3;以及
e) 序列辨識編號:618-620的CDR H1-3以及序列辨識編號:623-625的CDR L1-3。
這些分子包含有一結合至該細胞表面抗原PSMA由一衍生自一母體PSMA專一性結合分子的VH-鏈以及一衍生自一對於一不同的抗原[亦即,對亦被知曉為CD326的上皮細胞黏著分子(Epithelial cell adhesion molecule,EpCAM)]具有一專一性的結合分子的VL-鏈所構成的第二結合領域。被令人驚訝地發現到:具有一衍生自一母體PSMA專一性結合分子的VH-鏈以及一衍生自一母體EpCAM專一性結合分子的VL-鏈的這個專一性組合之結合分子專有地結合至PSMA而不是EpCAM。這個被包含在本發明的雙專一性單鏈抗體分子中的PSMA專一性結合領域的族群的結合專一性被揭示在檢附的實施例3中。
雙專一性單鏈抗體分子的另一個較佳族群包含有一下列序列的群組作為在該第二結合領域中的CDR H1、CDR H2、CDR H3、CDR L1、CDR L2以及CDR L3,其選自於由下列所構成的群組:
a) 序列辨識編號:282-284的CDR H1-3以及序列辨識編號:287-289的CDR L1-3;
b) 序列辨識編號:296-298的CDR H1-3以及序列辨識編號:301-303的CDR L1-3;
c) 序列辨識編號:310-312的CDR H1-3以及序列辨識編號:315-317的CDR L1-3;
d) 序列辨識編號:324-326的CDR H1-3以及序列辨識編號:329-331的CDR L1-3;
e) 序列辨識編號:338-341的CDR H1-3以及序列辨識編號:343-345的CDR L1-3;
f) 序列辨識編號:352-354的CDR H1-3以及序列辨識編號:357-359的CDR L1-3;以及
g) 序列辨識編號:366-368的CDR H1-3以及序列辨識編號:371-373的CDR L1-3。
雙專一性單鏈抗體分子的又另一個較佳族群包含有一下列序列的群組作為在該第二結合領域中的CDR H1、CDR H2、CDR H3、CDR L1、CDR L2以及CDR L3,其選自於由下列所構成的群組:
a) 序列辨識編號:380-382的CDR H1-3以及序列辨識編號:385-387的CDR L1-3;
b) 序列辨識編號:394-396的CDR H1-3以及序列辨識編號:399-401的CDR L1-3;
c) 序列辨識編號:408-410的CDR H1-3以及序列辨識編號:413-415的CDR L1-3;
d) 序列辨識編號:422-424的CDR H1-3以及序列辨識編號:427-429的CDR L1-3;
e) 序列辨識編號:436-438的CDRH1-3以及序列辨識編號:441-443的CDR L1-3;
f) 序列辨識編號:450-452的CDR H1-3以及序列辨識編號:455-457的CDR L1-3;
g) 序列辨識編號:464-466的CDR H1-3以及序列辨識編號:469-471的CDR L1-3;
h) 序列辨識編號:478-480的CDR H1-3以及序列辨識編號:483-485的CDR L1-3;
i) 序列辨識編號:492-494的CDR H1-3以及序列辨識編號:497-499的CDR L1-3;
j) 序列辨識編號:506-508的CDR H1-3以及序列辨識編號:511-513的CDR L1-3;
k) 序列辨識編號:520-522的CDR H1-3以及序列辨識編號:525-527的CDR L1-3;
l) 序列辨識編號:534-536的CDR H1-3以及序列辨識編號:539-541的CDR L1-3;
m) 序列辨識編號:548-550的CDR H1-3以及序列辨識編號:553-555的CDR L1-3;
n) 序列辨識編號:562-564的CDR H1-3以及序列辨識編號:567-569的CDR L1-3;
o) 序列辨識編號:576-578的CDR H1-3以及序列辨識編號:581-583的CDR L1-3;
p) 序列辨識編號:590-592的CDR H1-3以及序列辨識編號:595-597的CDR L1-3;以及
q) 序列辨識編號:604-606的CDR H1-3以及序列辨識編號:609-611的CDR L1-3。
對於本發明的雙專一性單鏈抗體分子較佳的是:該結合至該細胞表面抗原PSMA的第二結合領域包含有一下列序列的族群作為在該第二結合領域中的VH-以及VL-鏈,其選自於由下列所構成的群組:
a) 一序列辨識編號:225的VH-鏈以及一序列辨識編號:230的VL-鏈;
b) 一序列辨識編號:239的VH-鏈以及一序列辨識編號:244的VL-鏈;
c) 一序列辨識編號:253的VH-鏈以及一序列辨識編號:258的VL-鏈;
d) 一序列辨識編號:267的VH-鏈以及一序列辨識編號:272的VL-鏈;
e) 一序列辨識編號:617的VH-鏈以及一序列辨識編號:622的VL-鏈;
f) 一序列辨識編號:281的VH-鏈以及一序列辨識編號:286的VL-鏈;
g) 一序列辨識編號:295的VH-鏈以及一序列辨識編號:300的VL-鏈;
h) 一序列辨識編號:309的VH-鏈以及一序列辨識編號:314的VL-鏈;
i) 一序列辨識編號:323的VH-鏈以及一序列辨識編號:328的VL-鏈;
j) 一序列辨識編號:337的VH-鏈以及一序列辨識編號:342的VL-鏈;
k) 一序列辨識編號:351的VH-鏈以及一序列辨識編號:356的VL-鏈;
l) 一序列辨識編號:365的VH-鏈以及一序列辨識編號:370的VL-鏈;
m) 一序列辨識編號:379的VH-鏈以及一序列辨識編號:384的VL-鏈;
n) 一序列辨識編號:393的VH-鏈以及一序列辨識編號:398的VL-鏈;
o) 一序列辨識編號:407的VH-鏈以及一序列辨識編號:412的VL-鏈;
p) 一序列辨識編號:421的VH-鏈以及一序列辨識編號:426的VL-鏈;
q) 一序列辨識編號:435的VH-鏈以及一序列辨識編號:440的VL-鏈;
r) 一序列辨識編號:449的VH-鏈以及一序列辨識編號:454的VL-鏈;
s) 一序列辨識編號:463的VH-鏈以及一序列辨識編號:468的VL-鏈;
t) 一序列辨識編號:477的VH-鏈以及一序列辨識編號:482的VL-鏈;
u) 一序列辨識編號:491的VH-鏈以及一序列辨識編號:496的VL-鏈;
v) 一序列辨識編號:505的VH-鏈以及一序列辨識編號:510的VL-鏈;
w) 一序列辨識編號:519的VH-鏈以及一序列辨識編號:524的VL-鏈;
x) 一序列辨識編號:533的VH-鏈以及一序列辨識編號:538的VL-鏈;
y) 一序列辨識編號:547的VH-鏈以及一序列辨識編號:552的VL-鏈;
z) 一序列辨識編號:561的VH-鏈以及一序列辨識編號:566的VL-鏈;
aa) 一序列辨識編號:575的VH-鏈以及一序列辨識編號:580的VL-鏈;
ab) 一序列辨識編號:589的VH-鏈以及一序列辨識編號:594的VL-鏈;以及
ac) 一序列辨識編號:603的VH-鏈以及一序列辨識編號:608的VL-鏈。
上面的VH-以及VL-鏈亦分別被顯示在序列辨識編號:235、249、263、277、627、291、305、319、333、347、361、375、389、403、417、431、445、459、473、487、501、515、529、543、557、571、585、599以及613。
本發明的雙專一性單鏈抗體分子的第二結合領域的對應的VL-與VH-區域以及個別的scFv的序列(胺基酸序列以及核苷酸序列)被顯示在序列表中。
在本發明的雙專一性單鏈抗體分子中,該等結合領域以VL-VH-VH-VL、VL-VH-VL-VH、VH-VL-VH-VL或VH-VL-VL-VH的次序而被排列(如被例示在檢附的實施例中)。較佳地,該等結合領域以VH PSMA-VL PSMA-VH CD3-VL CD3或VL PSMA-VH PSMA-VH CD3-VL CD3的次序而被排列。
本發明的一特別較佳的具體例是有關於一上面所特徵化的多肽,其中該雙專一性單鏈抗體分子包含有一選自下列的序列:
(a) 一如被描寫在序列辨識編號:237、251、265、279、629、293、307、321、335、349、363、377、391、405、419、433、447、461、475、489、503、517、531、545、559、573、587、601或615的任一者中的胺基酸序列;
(b) 一由一如被描寫在序列辨識編號:238、252、266、280、630、294、308、322、336、350、364、378、392、406、420、434、448、462、476、490、504、518、532、546、560、574、588、602或616的任一者中的核酸序列所編碼的胺基酸序列。
本發明是有關於一包含有一如被描寫在序列辨識編號:237、251、265、279、629、293、307、321、335、349、363、377、391、405、419、433、447、461、475、489、503、517、531、545、559、573、587、601或615的任一者中的胺基酸序列以及至少96%相同、較佳地97%、更佳的至少98%相同、最佳的至少99%相同於序列辨識編號:237、251、265、279、629、293、307、321、335、349、363、377、391、405、419、433、447、461、475、489、503、517、531、545、559、573、587、601或615的胺基酸序列的雙專一性單鏈抗體分子。本發明亦有關於如被描寫在序列辨識編號:238、252、266、280、630、294、308、322、336、350、364、378、392、406、420、434、448、462、476、490、504、518、532、546、560、574、588、602或616的任一者中的相對應的核酸序列以及至少96%相同、較佳地97%、更佳的至少98%相同、最佳的至少99%相同於被顯示在序列辨識編號:238、252、266、280、630、294、308、322、336、350、364、378、392、406、420、434、448、462、476、490、504、518、532、546、560、574、588、602或616的核酸序列。被瞭解的是:序列相同性(identity)經由全部的核苷酸或胺基酸序列而被決定。關於序列比對(sequence alignments),例如,程式Gap或BestFit可被使用Needleman and Wunsch J. Mol. Biol. 48(1970),443-453;Smith and Waterman,Adv. Appl. Math 2(1981),482-489),它被包含在GCG軟體套組(Genetics Computer Group,575 Science Drive,Madison,Wisconsin,USA 53711(1991)。藉由使用例如上面所提及的程式來測定以及鑑定一具有例如96%(97%、98%或99%)序列相同於本發明的雙專一性單鏈抗體的核苷酸或胺基酸序列的核苷酸或胺基酸序列對那些熟習此技藝者是一例行的方法。例如,依據克里克的擺動假說(Wobble hypothesis),在反密碼子(anti-codon)上的5'鹼基(base)不是跟其他2個鹼基一樣被空間地局限,並且因此可具有非標準的鹼基配對。換句話說:在一密碼子(codon)三聯體(triplet)的第三位置可變化,藉此2個在這個第三位置不同的三聯體可編碼相同的胺基酸殘基。該假說是熟習此技藝者所熟知(參見例如http://en.wikipedia.org/wiki/Wobble_Hypothesis;Crick,J Mol Biol 19(1966):548-55)。
在本發明的PSMAxCD3雙專一性單鏈抗體建構物中較佳的領域排列被顯示在下面的實施例中。
在本發明的一個較佳具體例中,該等雙專一性單鏈抗體是對CD3 ε以及由它們的第二結合領域所辨識的人類與非黑猩猩靈長類細胞表面抗原PSMA跨物種專一性。
在一另擇的具體例中,本發明提供一編碼一上面描述的本發明的雙專一性單鏈抗體分子之核酸序列。
本發明亦有關於一包含有本發明的核酸分子的載體。
許多適合的載體是那些熟習分子生物學者所知曉的,載體的選擇將視所欲的功能而定,並且包括質體(plasmids)、黏質體(cosmids)、病毒、噬菌體(bacteriophages)以及傳統上被使用在基因工程的其他載體。那些熟習此技藝者所熟知的方法可被使用以建構各種不同的質體以及載體;參見,例如,被描述在Sambrook et al. (loc cit.)and Ausubel,Current Protocols in Molecular Biology,Green Publishing Associates and Wiley Interscience,N.Y. (1989),(1994)的技術。另擇地,本發明的聚核苷酸以及載體可被重新構成脂質體(liposomes)用以遞送至標靶細胞。如在下面所進一步詳細討論的,一選殖載體被使用以分離個別的DNA序列。相關序列可被轉移至表現一特別的多肽所需得的表現載體。典型的選殖載體包括pBluescript SK、pGEM、pUC9、pBR322以及pGBT9。典型的表現載體包括pTRE、pCAL-n-EK、pESP-1、pOP13CAT。
較佳地,該載體包含有一核酸序列,該核酸序列是一被可操作地連結至該在此所定義的核酸序列之調節序列。
術語“調節序列”意指造成它們連結的編碼序列的表現所必須的DNA序列。此等控制序列的本質不同,視宿主有機體而定。在原核生物(prokaryotes)中,控制序列一般而言包括啟動子(promoter)、核醣體結合位址(ribosomal binding site)以及終止子(terminators)。在真核生物(eukaryotes)中,一般而言控制序列包括啟動子、終止子以及在一些例子中,增強子(enhancers)、轉活因子(transactivators)或轉錄因子(transcription factors)。術語“控制序列”被意欲包括最少對表現所需的所有組份,並且亦可包括額外有益的組份。
術語“被可操作地連結”意指一並列位置,其中所描述的組份以一關係允許它們以它們所欲的方式作用。一控制序列“被可操作地連結”至一編碼序列以該編碼序列的表現在與該等控制序列相容的條件下被達成此一方式而被連結。在該控制序列是一啟動子的例子中,對一熟習此技藝者顯而易見的是雙股核酸被較佳地使用。
因此,所引述的載體較佳地是一表現載體。一“表現載體”是一可被使用以轉形一被選擇的宿主並且在該被選擇的宿主中提供一編碼序列的表現之建構物。表現載體可例如是選殖載體、二元載體(binary vectors)或嵌入性載體(integrating vectors)。表現包含有將核酸分子較佳地轉錄成一可轉譯的mRNA。確保在原核和/或真核細胞中表現的調節要素是那些熟習此技藝者所熟知。在真核細胞的例子中,它們正常地包含有確保轉錄起始的啟動子以及選擇性地確保轉錄終止以及轉錄本(transcript)安定的聚-A(poly-A)信號。容許在原核宿主細胞表現的可能的調節要素包含有,例如,在E. coli的PL、lac、trp或tac啟動子,以及容許在真核宿主細胞表現的調節要素的實例是在酵母菌(yeast)的AOX1或GAL1啟動子或者在哺乳動物或其他動物細胞的CMV-、SV40-、RSV-啟動子[勞斯肉瘤病毒(Roussarcoma virus)]、CMV-增強子、SV40-增強子或一血球蛋白內含子(globin intron)。
除了負責轉錄的起始的要素以外,此等調節要素亦可包含有轉錄終止信號,諸如在聚核苷酸下游的SV40-聚-A位址或tk-聚-A位址。再者,視被使用的表現系統而定,能夠指導多肽至一細胞間隔(compartment)或將它分泌至培養基內的前導序列(leader sequences)可被添加至引述的核酸序列的編碼序列中並且是本技藝所熟知的;參見,例如WO 2008/119567。前導序列(們)在適合的階段是(是)與轉譯、起始以及終止序列而被裝配,並且較佳地一前導序列能夠指導被轉譯的蛋白質或它的一部分分泌至細胞間質(periplasmic space)或細胞外培養基內。選擇性地,異源序列可編碼一融合蛋白質[包括一給予所欲特徵(例如,被表現的重組產物的安定性或簡單純化)的N-端鑑定胜肽(identification peptide)];參見,如上述。在這個上下文中,適合的表現載體是本技藝所知曉,諸如Okayama-Berg cDNA表現載體pcDV1(Pharmacia)、pCDM8、pRc/CMV、pcDNA1、pcDNA3(In-vitrogene)、pEF-DHFR、pEF-ADA或pEF-neo(Mack et al. PNAS(1995)92,7021-7025以及Raum et al. Cancer Immunol Immunother(2001) 50(3),141-150)或pSPORT1(GIBCO BRL)。
較佳地,在能夠轉形轉染真核宿主細胞的載體中,該等表現控制序列將是真核啟動子系統,但是用於原核宿主的控制序列亦可被使用。一但該載體已被併入適當的宿主中,該宿主被維持在適合於核苷酸序列的高位準表現的條件下,並且如所欲的,本發明的雙專一性單鏈抗體分子的收集以及純化將跟隨;參見,例如,檢附的實施例。
一可被使用於表現一細胞週期(cell cycle)交互作用蛋白質的另擇的表現系統是一昆蟲系統。在一此系統中,加州苜宿夜蛾核多角體病毒(Autographa californica nuclear polyhedrosis virus,AcNPV)被使用作為一載體以表現在秋行軍蟲(Spodoptera frugiperda)細胞或在粉纹夜蛾(Trichoplusia larvae)中的外來基因。一引述的核酸分子的編碼序列可被選殖至病毒的一非必需區(nonessential region)[諸如,多角體蛋白基因(polyhedrin gene)]內,並且被放置在多角體蛋白啟動子的控制之下。該編碼序列的成功插入將使多角體蛋白基因不活化並且產生缺乏外套蛋白(coat protein)外套的重組病毒。該等重組病毒接著被使用以感染秋行軍蟲細胞或粉纹夜蛾,其中本發明的病毒被表現(Smith,J. Virol. 46(1983),584;Engelhard,Proc. Nat. Acad. Sci. USA 91(1994),3224-3227)。
額外的調節要素可包括轉錄以及轉譯增強子。有利地,上面所描述的本發明的載體包含有一可選擇的和/或可作記號的標記。
對選擇被轉形的細胞以及例如植物組織和植物有用的可選擇的標記基因是那些熟習此技藝者所熟知的,並且包含有,例如,抗代謝物抗性(antimetabolite resistance)作為選擇基礎,關於給予對甲胺喋呤(methotrexate)抗性的dhfr(Reiss,Plant Physiol.(Life Sci. Adv.) 13(1994),143-149);給予對胺基醣苷(aminoglycosides)新黴素(neomycin)、康黴素(kanamycin)以及巴龍黴素(paromycin)抗性的npt(Herrera-Estrella,EMBO J. 2(1983),987-995)以及給予對濕黴素(hygromycin)抗性的hygro(Marsh,Gene 32(1984),481-485)。額外可選擇的基因已被描述,那就是容許細胞利用吲哚(indole)代替色胺酸(tryptophan)的trpB;容許細胞利用組胺醇(histinol)代替組胺酸(histidine)的hisD(Hartman,Proc. Natl. Acad. Sci. USA 85(1988),8047);容許細胞利用甘露糖(mannose)(WO 94/20627)的甘露糖-6-磷酸異構酶(mannose-6-phosphate isomerase)以及給予對鳥胺酸去羧酶(ornithine decarboxylase)抑制劑、2-(二氟甲基)-DL-鳥胺酸、DFMO抗性的ODC[鳥胺酸去羧酶(ornithine decarboxylase)](McConlogue,1987,In: Current Communications in Molecular Biology,Cold Spring Harbor Laboratory ed.)或者給予對殺稻瘟菌素S(Blasticidin S)抗性的來自土麴菌(Aspergillus terreus)的去胺酶(deaminase)(Tamura,Biosci. Biotechnol. Biochem. 59(1995),2336-2338)。
有用的可作記號的標記亦是那些熟習此技藝者所知曉的並且是商業上可獲得的。有利地,該標記是一編碼螢光素酶(luciferase)(Giacomin,Pl. Sci. 116(1996),59-72;Scikantha,J. Bact. 178(1996),121)、綠螢光蛋白質(green fluorescent protein)(Gerdes,FEBS Lett. 389(1996),44-47)或β-葡萄糖醛酸苷酶(β-glucuronidase)(Jefferson,EMBO J. 6(1987),3901-3907)的基因。這個具體例對於簡單以及快速篩選含有一所述的載體的細胞、組織以及有機體是特別有用的。
如上面所描述的,為了例如純化還有基因治療的目的,所述的核酸分子可被單獨使用或作為一載體的部分以在細胞中表現本發明的雙專一性單鏈抗體分子。該等含有編碼本發明的上面所描述的雙專一性單鏈抗體分子的任一者的DNA序列(們)之核酸分子或載體被導入至轉而產生感興趣的多肽的細胞內。根據藉由活體外或活體內技術導入治療基因至細胞內的基因治療是基因轉移(gene transfer)最重要的應用之一。用於活體外或活體內基因治療的適合載體、方法或基因遞送系統(gene-delivery systems)被描述在文獻中並且是熟習此技藝者所知曉的;參見,例如,Giordano,Nature Medicine 2(1996),534-539;Schaper,Circ. Res. 79(1996),911-919;Anderson,Science 256(1992),808-813;Verma,Nature 389(1994),239;Isner,Lancet 348(1996),370-374;Muhlhauser,Circ. Res. 77(1995),1077-1086;Onodera,Blood 91(1998),30-36;Verma,Gene Ther. 5(1998),692-699;Nabel,Ann. N.Y. Acad. Sci. 811(1997),289-292;Verzeletti,Hum. Gene Ther. 9(1998),2243-51;Wang,Nature Medicine 2(1996),714-716;WO 94/29469;WO 97/00957,US 5,580,859;US 5,589,466;或者Schaper,Current Opinion in Biotechnology 7(1996),635-640;dos Santos Coura and Nardi Virol J.(2007),4:99。所述的核酸分子以及載體可被設計用於直接導入或者用於經由脂質體或病毒的[例如,腺病毒的(adenoviral)、反轉錄病毒的(retroviral)]載體導入至細胞內。較佳地,該細胞是一生殖細胞系(germ line)細胞、胚胎細胞(embryonic cell)或卵細胞(egg cell)或者那裡所衍生的,最佳地該細胞是一幹細胞(stem cell)。一胚胎幹細胞的一實例尤其可以是一如被描述在Nagy,Proc. Natl. Acad. Sci. USA 90(1993),8424-8428的幹細胞。
本發明亦提供一被轉形或轉染以一本發明的載體的宿主。該宿主可藉由導入上面所描述的本發明的載體或上面所描述的本發明的核酸分子至該宿主內而被生產。在宿主中至少一載體或至少一核酸分子的存在可調節一編碼上面所描述的單鏈抗體建構物的基因之表現。
在宿主內被導入的本發明所描述的核酸分子或載體可合併至該宿主的基因組內或它可被染色體外地維持。
宿主可以是任何原核或真核細胞。
術語“原核生物”被意指包括所有可被轉形或轉染以表現一本發明的蛋白質的DNA或RNA分子的細菌。原核生物的宿主可包括革蘭氏陰性以及革蘭氏陽性細菌,諸如例如大腸桿菌(E. coli)、鼠傷寒沙門氏菌(S. typhimurium)、黏質沙雷菌(Serratia marcescens)以及枯草桿菌(Bacillus subtilis)。術語“真核生物的”意指包括酵母菌(yeast)、高等植物(higher plant)、昆蟲以及較佳地哺乳動物細胞。視被採用在一重組生產操作程序中的宿主而定,由本發明的聚核苷酸所編碼的蛋白質可被醣苷化(glycosylated)或可被非醣苷化。特別較佳的是使用含有本發明的雙專一性單鏈抗體分子的編碼序列並且一般而言那裡被融合一N-端FLAG-標誌(tag)和/或C-端His-標誌的一質體或一病毒。較佳地,該FLAG-標誌的長度是大約4至8個胺基酸、最佳地8個胺基酸。一上面所描述的聚核苷酸可使用任何那些熟習此技藝者通常已知的技術而被用以轉形或轉染宿主。再者,用於製備融合、可操作地連結的基因以及在哺乳動物細胞和細菌中表現它們的方法是此技藝者所熟知的(Sambrook,上述引文)。
較佳地,該宿主是一細菌或一昆蟲、真菌、植物或動物細胞。
特別被設想的是:所述的宿主可以是一哺乳動物細胞。特別較佳的宿主細胞包含有CHO細胞、COS細胞、骨髓瘤(myeloma)細胞株(像SP2/0或NS/0)。如被例示在WO 2008/119567的實施例中關於相同類的其他分子,特別較佳的是CHO-細胞作為宿主。
更佳地,該宿主細胞是一人類細胞或人類細胞株,例如per.c6(Kroos,Biotechnol.Prog.,2003,19:163-168)。
在一進一步的具體例中,本發明因此有關於一種用於生產本發明的一雙專一性單鏈抗體分子的方法,該方法包含有在容許表現本發明的雙專一性單鏈抗體分子的條件下培養一本發明的宿主以及從該培養回收所生產的多肽。
被轉形的宿主可在發酵槽(fermentors)中生長並且依據本技藝已知的技術被培養以達到最佳的細胞生長。本發明的雙專一性單鏈抗體分子可接著從生長培養基、細胞溶解產物(cellular lysates)或細胞膜分離部分(fractionS)中被分離。例如經微生物表現的雙專一性單鏈抗體分子的分離以及純化可以藉由任何傳統方法,諸如,例如,製備型層析分離(preparative chromatographic separations)以及免疫分離(immunological separations)[諸如涉及使用針對例如對抗本發明的雙專一性單鏈抗體分子的一標誌或如在檢附的實施例中所描述的單株或多株抗體的那些]。
容許表現的培養一宿主的條件是本技藝所知曉會視被使用在此方法中的宿主系統以及表現系統/載體而定。為了達到容許一重組多肽表現的條件而被修飾的參數是本技藝所知曉的。因此,適合的條件可由熟習此技藝者在缺乏進一步的發明輸入下而被決定。
一旦被表現,本發明的雙專一性單鏈抗體分子可依據本技藝的標準操作程序而被純化,包括硫酸銨沉澱(ammonium sulfate precipitation)、親和管柱(affinity columns)、管柱層析(column chromatography)、凝膠電泳(gel electrophoresis)以及類似之物;參見,Scopes,"Protein Purification",Springer-Verlag,N.Y.(1982)。對於藥學用途,至少大約90至95%同質性(homogeneity)的實質上純的多肽是較佳的,以及98至99%或更多的同質性是最佳的。一旦部分地或如所欲的同質性而被純化,本發明的雙專一性單鏈抗體分子可接著被治療地使用或者發展以及執行分析操作程序。再者,用於從一培養中回收本發明的雙專一性單鏈抗體分子的方法的實施例被詳細描述在關於相同類的其他分子的WO 2008/119567檢附的實施例中。該回收亦可藉由一用於分離能夠結合至人類以及非黑猩猩靈長類CD3 ε(CD3 ε的一表位之本發明的雙專一性單鏈抗體分子的方法而被達成,該方法包含有下列步驟:
(a)將該多肽(們)與一包含有胺基酸序列Gln-Asp-Gly-Asn-Glu-Glu-Met-Gly(序列辨識編號211)或Gln-Asp-Gly-Asn-Glu-Glu-Ile-Gly(序列辨識編號212)的最大27個胺基酸的CD3 ε的外細胞領域的N-端片段(經由它的C-端被固定至一固相)接觸;
(b) 洗提從該片段被結合的多肽(們);以及
(c) 從(b)的洗提物(eluate)分離該多肽(們)。
較佳的是該由本發明的上面方法所分離的多肽(們)是具有人類起源。
這個方法或本發明的雙專一性單鏈抗體分子的分離被瞭解有如一用於從一複數個多肽候選物中分離一或多種不同的多肽[對於在它的N-端包含有胺基酸序列Gln-Asp-Gly-Asn-Glu-Glu-Met-Gly(序列辨識編號211)或Gln-Asp-Gly-Asn-Glu-Glu-Ile-Gly(序列辨識編號212)的CD3 ε的外細胞領域的片段具有相同專一性]的方法以及一用於從一溶液純化一多肽的方法。用於從一溶液純化一雙專一性單鏈抗體分子的後者的方法之一非限制性實例是例如從一培養懸浮液或一來自此培養的製備物中純化一被重組地表現的雙專一性單鏈抗體分子。
如上面所陳述的,被使用在這個方法中的片段是靈長類CD3 ε分子的外細胞領域的一N-端片段。不同物種的CD3 ε分子的外細胞領域的胺基酸序列被描寫在序列辨識編號:1、3、5以及7。2種形式的N-端八聚物(octamer)被描寫在序列辨識編號:211以及212。較佳的是這個N-端對於結合該等由本發明的方法所鑑定的多肽是自由地可獲得的。術語“自由地可獲得的”在本發明的上下文中被瞭解為沒有額外的動機(諸如一His-標誌)。此一His-標誌與一在此所描述的結合分子的干擾被描述在WO 2008/119567。
依據這個方法,該片段經由它的C-端被固定至一固體相。熟習此技藝者依賴本發明的方法所使用具體例將容易地並且無發明紛擾的選定一適合的固體相支撐物。一固體支撐物的實例包含有但不限於基質(matrices){像珠粒(beads)[例如瓊脂糖珠粒(agarose beads)、瓊脂糖凝膠珠粒(sepharose beads)、聚苯乙烯珠粒(polystyrol beads)、聚葡萄糖珠粒(dextran beads)}、盤子[培養盤(culture plates)或Multi Well盤]以及晶片(被知曉例如來自)。用於固定(fixation)/固定化(immobilization)該片段至該固體支撐的工具以及方法的選擇視該固體支撐物的選擇而定。一用於固定/固定化的通常被使用的方法是一經由一N-羥基琥珀醯亞胺(N-hydroxysuccinimide,NHS))酯的偶合。這個偶合的化學以及用於固定/固定化的另擇方法是熟習此技藝者所知曉,例如,來自Hermanson“Bioconjugate Techniques”,Academic Press,Inc.(1996)。關於固定至/固定化在層析支撐物上,下列工具通常被使用:NHS-活化的瓊脂糖凝膠(NHS-activated sepharose)(例如GE Life Science-Amersham的HiTrap-NHS)、CnBr-活化的瓊脂糖凝膠(例如,GE Life Science-Amersham)、NHS-活化的聚葡萄醣珠粒(NHS-activated dextran beads)(Sigma)或活化的聚甲基丙烯酸酯(polymethacrylate)。這些試劑亦可被使用在一批次方法中。再者,包含有氧化鐵的聚葡萄醣珠粒(例如,可獲得自Miltenyi)可被使用在一批次方法中。這些珠粒可與一磁鐵組合而被使用俾以從一溶液中分離該等珠粒。多肽可藉由使用NHS活化的羧甲基葡聚糖(carboxymethyldextran)而被固定化在一Biacore晶片(chip)(例如CM5晶片)上。一適當的固體支撐物的進一步實例是胺活化的MultiWell盤(例如Nunc ImmobilizerTM盤)。
依據這個方法,CD3ε的外細胞領域的該片段可直接地或經由一延伸的胺基酸(可以是一連接子或其他蛋白質/多肽部分)而被偶合至該固體支撐物。另擇地,CD3ε的外細胞領域可經由一或多個承接分子(adaptor molecular)(們)而被間接地偶合。
用於洗提一被結合至一被固定化的表位的胜肽或多肽的方式以及方法是本技藝所熟知。同樣適用於用以從洗提物中分離被鑑定的多肽(們)之方法。
一種用於從複數個多肽候選物中分離一或多種不同的雙專一性單鏈抗體分子(們)[對於在它的N-端包含有胺基酸序列Gln-Asp-Gly-Asn-Glu-Glu-X-Gly(具有X是Met或Ile)的CD3ε的外細胞領域的片段具有相同的專一性]的方法可包含有下列用於選擇抗原-專一性實體的方法的一或多個步驟:CD3ε專一性結合領域可被選自於抗體衍生庫(antibody derived repertoires)。一噬菌體呈現庫(phage display library)可根據如例如被描述在“Phage Display: A Laboratory Manual”; Ed. Barbas,Burton,Scott & Silverman; Cold Spring Harbor Laboratory Press,2001的標準操作程序而被建構。在抗體庫的抗體片段的格式可以是scFv,但一般而言亦可以是一Fab片段或甚至一單一領域抗體片段。為了分離抗體片段,天然的抗體片段庫可被使用。為了選擇在較晚的治療使用上潛在低的免疫結合實體,人類抗體片段庫對於直接選擇人類抗體片段是有利的。在一些例子中,它們可形成用於合成抗體庫的基礎(Knappik et al. J Mol. Biol. 2000,296:57 ff)。相對應的格式可以是Fab、scFv(如下面所描述的)或領域抗體(dAbs,如在Holt et al.,Trends Biotechnol. 2003,21:484 ff中所回顧的)。
在本技藝中亦被知曉的是:在許多例子中沒有對抗標靶抗原可用的免疫人類抗體來源。因此動物被免疫以標靶抗原並且個別的抗體庫分離自動物組織(如例如脾臟或PBMC)。N-端片段可被生物素化或共價地連結至蛋白質[像KLH或牛血清白蛋白(bovine serum albumin,BSA)]。依據常見的方法,嚙齒動物被使用於免疫。非-人類起源的一些免疫抗體庫可以因為其他原因[例如衍生自駱駝狀的物種(cameloid species)的單一領域抗體(VHH)的存在]而特別有利的(如被描述在Muyldermans,J Biotechnol. 74:277;De Genst et al. Dev Como Immunol. 2006,30:187 ff)。因此抗體庫的一相對應的格式可以是Fab、scFv(如下面所描述的)或單一領域抗體(VHH)。
在一可能的方法中,來自balb/c x C57black雜交的10週大F1小鼠可被免疫以全部細胞[例如表現穿膜EpCAM N-端呈現有如轉譯的融合成熟的CD3 ε鏈的N-端胺基酸1至27]。另擇地,小鼠可被免疫以1-27 CD3 ε-Fc融合蛋白質(一相對應的方法被描述在WO 2008/119567的實施例)。在加強免疫(bbosterim m unization)(們)之後,血液樣品可被取出並且對抗CD3-陽性T細胞的抗體血清力價(antibody serum titer)可例如在FACS分析中被測試。通常,血清力價在被免疫的動物中要比在未被免疫的動物中是顯著地較高。
被免疫的動物可形成用於建構免疫抗體庫的基礎。此等庫的實例包含有噬菌體呈現庫。此等庫一般而言可根據如例如被揭示在“Phage Display: A Laboratory Manual”;Ed. Barbas,Burton,Scott & Silverman;Cold Spring Harbor Laboratory Press,2001的標準操作程序而被建構。
非-人類抗體亦可經由噬菌體呈現(phage display)而被人類化,因為產生可在選擇的期間隨後被增富用於結合的更多各種不同的抗體庫。
在一噬菌體呈現方法中,呈現抗體庫的噬菌體的集合的任一者形成一基礎以使用個別的抗原作為標靶分子選擇結合實體。抗原專一性的抗原結合的噬菌體被分離的中心步驟被指定為掏洗。由於呈現該等抗體片段在噬菌體的表面上,這個通用的方法被稱為噬菌體呈現。一選擇的較佳方法是使用較小的蛋白質,諸如由噬菌體所呈現的被轉錄地融合至scFv的N-端的絲狀噬菌體N2領域。可被使用以分離結合實體的此技藝所知曉的另一種呈現方法是核醣體呈現方法(在Groves & osbourn,Expert opin Biol Ther. 2005,5:125 ff;Lipovsek & Pluckthun,J Immunol Methods 2004,290:52 ff中所回顧的)。為了證明scFv噬菌體顆粒結合至一1-27 CD3-Fc融合蛋白質,一帶有經選殖的scFv-譜(scFv-repertoire)的噬菌體庫可從由PEG[聚乙二醇(polyethyleneglycole)]的個別培養上清液(supernatant)而被收獲。ScFv噬菌體顆粒可與被固定化的CD3ε Fc融合蛋白質被培育。該被固定化的CD3ε Fc融合蛋白質可被包覆至一固相。結合實體可被洗提並且洗提物可被用以感染新鮮的未被感染的細菌宿主。被成功地轉導以一編碼一人類scFv-片段的噬質體複本(phagemid copy)的細菌宿主可被再次篩選卡本西林(carbenicillin)抗性並且隨後被感染以例如VCMS 13輔助噬菌體(helper phage)以起始第二回合的抗體呈現以及活體外篩選。正常地,一總計4至5回合的篩選被進行。經分離的結合實體的結合可使用一流式細胞分析(flow cytometric assay)在攜帶被融合至表面呈現的EpCAM的N-端CD3 ε序列之CD3 ε陽性Jurkat細胞、HPBall細胞、PBMC或經轉染的真核細胞上而被測試(參見WO 2008/119567)。
較佳地,上面的方法可以是一方法,其中CD3 ε的外細胞領域的片段由一具有一被描寫在序列辨識編號2、4、6或8的任一者的胺基酸序列之多肽的一或多個片段所構成。更佳地,該片段在長度上是8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27個胺基酸殘基。
這個鑑定一雙專一性單鏈抗體分子的方法可以是一種篩選複數個包含有一結合至人類以及非黑猩猩靈長類CD3 ε的一表位的跨物種專一性結合領域之雙專一性單鏈抗體分子的方法。另擇地,鑑定的方法是一種純化/分離一包含有一結合至人類以及非黑猩猩靈長類CD3 ε的一表位的跨物種專一性結合領域之雙專一性單鏈抗體分子的方法。
再者,本發明提供一包含有一本發明的雙專一性單鏈抗體分子或一如由上面所揭示的方法所生產的雙專一性單鏈抗體分子之組成物。較佳地,該組成物是一藥學組成物。
本發明亦提供一如在此所定義或依據如在此所定義的方法所生產的雙專一性單鏈抗體分子,其中該雙專一性單鏈抗體分子供使用在預防、治療或改善癌症。較佳地,該癌症是一固態腫瘤,更佳地一癌或前列腺癌。較佳的是該雙專一性單鏈進一步包含有載劑、安定劑和/或賦形劑的適合配方。再者,較佳的是該雙專一性單鏈抗體分子適合於組合以一額外的藥物而被投藥。該藥物可以是一非蛋白質的化合物或一蛋白質的化合物,並且可與如在此所定義的雙專一性單鏈抗體分子同時地或非同時地被投藥。
依據本發明,術語“藥學組成物”意指一用於投藥給一病患(較佳地一人類病患)的組成物。本發明的特別較佳的藥學組成物包含有被指向對抗以及產生對抗環境-獨立的CD3表位的雙專一性單鏈抗體。較佳地,該藥學組成物包含有載劑、安定劑和/或賦形劑的適合配方。在一個較佳具體例中,該藥學組成物包含有一用於非經腸道的(parenteral)、穿皮的(transdermal)、管腔內的(intraluminal)、動脈內的(intraarterial)、椎管內的(intrathecal)和/或鼻內的投藥(intranasal administration)或者藉由直接注射至組織內的組成物。特別被設想的是該組成物經由注入(infusion)或注射而被投藥給一病患。該等適合的組成物的投藥可由許多方式[例如,藉由靜脈內的(intravenous)、腹膜內的(intraperitoneal)、皮下的(subcutaneous)、肌肉內的(intramuscular)、局部的(topical)或皮內的投藥(intradermal administration)]所產生。特別的,本發明提供該適合的組成物的一不間斷的投藥。如一非限制性的實例,不間斷的亦即連續投藥可藉由一由病患所戴著用以測量治療劑至病患的身體內的流入量的小泵系統而被實現。該包含有被指向對抗以及產生對抗本發明的環境-獨立的CD3表位的雙專一性單鏈抗體之藥學組成物可藉由使用該等泵系統而被投藥。此等泵系統一般而言是此技藝所知曉的,並且通常倚賴週期性的調換含有要被注入的治療劑的匣(cartridges)。當調換在此一泵系統中的匣時,治療劑至病患的身體內的其他不間斷的流動的一暫時中斷可接著發生。在此一例子中,在匣更換之前的投藥階段以及在匣更換之後的投藥階段仍會被認為在藥學手段以及本發明的方法一起構成此治療劑的一“不間斷投藥”的意思內。
這些被指向對抗以及產生對抗本發明的環境-獨立的CD3表位的雙專一性單鏈抗體的連續或不間斷的投藥可經由一流體遞送裝置或小泵系統(包括一用於驅使流體自一儲庫離開的流體驅使機器以及一用於開動該驅使機器的開動機器]而是靜脈內的或皮下的。用於皮下投藥的泵系統可包括用於穿透一病患的皮膚以及遞送適合的組成物至該病患的身體內的一針或一套管(cannula)。該等泵系統可直接地被固定或附著至病患的皮膚無關一靜脈、動脈或血管,藉此容許一在泵系統與病患的皮膚之間的直接的接觸。該泵系統可被附著至病患的皮膚歷時24小時上達數天。該泵系統可以是具有一用於小體積的儲庫的小尺寸。作為一非限制性的實例,用於要被投藥的適合的藥學組成物之儲庫的體積可以是介於0.1與50 ml之間。
連續的投藥可經由一被戴在皮膚上的貼片而是穿皮的並且在間隔被替換。一熟習此技藝者知道貼片系統用於適合這個目的的藥物遞送。注意到的是:穿皮投藥特別地經得起不間斷的投藥,如一第一被用完的貼片的調換可有利地同時以一新的第二貼片的替換而被完成,例如在皮膚的表面上立即毗連至該第一被用完的貼片以及立即在移除該第一被用完的貼片之前。流體中斷或動力電池不足的問題不會產生。
包含有被指向對抗以及產生對抗本發明的環境-獨立的CD3表位的特別的雙專一性單鏈抗體之本發明的組成物可進一步包含有一藥學上可接受的載劑。適合的藥學載劑的實例是本技藝所熟知,並且包括溶液(例如磷酸緩衝鹽溶液)、水、乳劑(emulsions)(諸如油/水乳劑)、各種不同類型的潤濕劑(wetting agents)、無菌溶液、脂質體等等。包含有此等載劑的組成物可由熟知的傳統方法而被配方。配方可包含有碳水化合物(carbohydrates)、緩衝溶液(buffer solutions)、胺基酸和/或表面活性劑(surfactants)。碳水化合物可以是非還原糖(non-reducing sugars),較佳地菌藻糖(trehalose)、蔗糖(sucrose)、八硫酸酯(octasulfate)、山梨糖醇(sorbitol)或木糖醇(xylitol)。此等配方可被用於具有和/或不具有泵系統的靜脈內或皮下的連續投藥。胺基酸可以是帶電胺基酸,較佳地離胺酸(lysine)、醋酸離胺酸(lysine acetate)、精胺酸(arginine)、麩胺酸鹽(glutamate)和/或組胺酸(histidine)。表面活性劑可以是清潔劑(detergents)(較佳地具有一為>1.2 KD的分子量)和/或一聚醚(polyether)(較佳地具有一為>3 KD的分子量)。較佳的清潔劑的非限制性實例是Tween 20、Tween 40、Tween 60、Tween 80或Tween 85。較佳的聚醚的非限制性實例是PEG 3000、PEG 3350、PEG 4000或PEG 5000。被使用在本發明的緩衝液系統可具有一為5-9的較佳pH並且可包含有檸檬酸鹽(citrate)、琥珀酸鹽(succinate)、磷酸鹽(phosphate)、組胺酸(histidine)以及醋酸(acetate)。本發明的組成物可以一適合的劑量而被投藥給個體,該劑量可例如藉由經由投藥增加劑量的對非黑猩猩靈長類(例如,獼猴)展現出如在此所描述的跨物種專一性的本發明的雙專一性單鏈抗體分子的劑量遞增研究而被決定。如上面所陳述的,展現出在此所描述的跨物種專一性得本發明的雙專一性單鏈抗體分子可有利地以同樣的形式而被使用在非黑猩猩靈長類的臨床前測試以及作為在人類的藥物。這些組成物亦可組合以其他蛋白質的以及非蛋白質的藥物而被投藥。這些藥物可與該包含有本發明的雙專一性單鏈抗體分子的組成物同時地被投藥或者在投藥該多肽之前或之後以適時地被定義的間隔以及劑量而被個別地投藥。劑量攝生法(dosage regimen)是由主治醫生以及臨床因素而被決定。如在醫學技藝中所熟知的,關於任何一位病患的劑量視許多因素[包括病患的尺寸、體表面積(body surface area)、年齡、要被投藥的特別化合物、性別、時間以及投藥的途徑、一般健康以及要被並存地投藥的其他藥物]而定。用於非經腸道的投藥的製備物包括無菌水性或非水性溶液、懸浮液以及乳劑。非水性溶液的實例是丙二醇(propylene glycol)、聚乙二醇(polyethylene glycol)、蔬菜油(vegetable oils)(諸如橄欖油)以及可注射的有機酯(injectable organic esters)[諸如油酸乙酯(ethyl oleate)]。水性載劑包括水、醇的/水性溶液、乳劑或懸浮液(包括鹽水以及緩衝基質)。非經腸道的載體(Parenteral vehicles)包括氯化鈉溶液、林格氏聚葡萄糖(Ringer's dextrose)、聚葡萄糖(dextrose)與氯化鈉、乳酸林格氏(lactated Ringer's)或固定油(fixed oils)。靜脈內的載體包括流體以及營養補充物(nutrient replenishers)、電解質補充物(electrolyte replenishers)(諸如以林格氏聚葡萄糖為基礎的那些)以及類似之物。防腐劑以及其他的添加物亦可存在,諸如例如抗菌劑(antimicrobials)、抗氧化劑(anti-oxidants)、螫合劑(chelating agents)、惰性氣體(inert gases)以及類似之物。此外,本發明的組成物可包含有蛋白質的載劑[像,例如,血清白蛋白或免疫球蛋白(較佳地人類起源)]。被設想的是:本發明的組成物可包含有除了在此所定義的本發明的雙專一性單鏈抗體分子之外,進一步的生物活性劑(biologicallyactive agents),視該組成物的所欲使用而定。此等試劑可以是作用在胃腸系統的藥物、作用有如細胞抑制劑(cytostatica)的藥物、預防高尿酸血症(hyperurikemia)的藥物、抑制免疫反應的藥物[例如皮質類固醇(corticosteroids)]、調節發炎反應的藥物、作用在循環系統的藥物和/或本技藝所知曉的試劑[諸如細胞介質(cytokines)]。
在此所定義的藥學組成物的生物活性可例如由細胞毒性分析(cytotoxicity assays)[如被描述在下列實例中:WO 99/54440或Schlereth et al.(Cancer Immunol. Immunother. 20(2005),1-12)]而被測定。如此處所用的,“效力(efficacy)”或“活體內效力(in vivo efficacy)“意指使用例如標準化的NCI反應準則(NCI response criteria)的對由本發明的藥學組成物的治療之反應。使用一本發明的藥學組成物的治療的成功或活體內效力意指該組成物對它所欲的目的的有效性(effectiveness),亦即該組成物引起它所欲的效用[亦即,病理細胞(例如癌細胞)的消滅]的能力。活體內效力可藉由針對個別的疾病實體所建立的標準方法[包括但不限於白血球細胞計數(white blood cell counts)、分類(differentials)、螢光活化細胞分類(Fluorescence Activated Cell Sorting)、骨髓抽吸(bone marrow aspiration)]而被監控。此外,各種不同的疾病專一性臨床化學參數以及其他被建立的標準方法可被使用。再者,電腦腦輔助斷層掃瞄(computer-aided tomography)、X-射線(X-ray)、核磁共振斷層掃描(nuclear magnetic resonance tomography)(例如,關於以美國國家癌症研究所(National Cancer Institute)-準則為基礎的反應評估[Cheson BD,Horning SJ,Coiffier B,Shipp MA,Fisher RI,Connors JM,Lister TA,Vose J,Grillo-Lopez A,Hagenbeek A,Cabanillas F,Klippensten D,Hiddemann W,Castellino R,Harris NL,Armitage JO,Carter W,Hoppe R,Canellos GP。Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999 Apr;17(4):1244])、正電子發射斷層掃描(positron-emission tomography scanning)、白血球細胞計數、分類、螢光活化細胞分類、骨髓抽吸、淋巴結生物檢體(lymph node biopsies)/組織學(histologies)以及各種不同的癌症專一性臨床化學參數[例如,乳酸鹽脫氫酶(lactate dehydrogenase)]以及其他被建立的標準方法可被使用。
在發展藥物(諸如本發明的藥學組成物)的另一個主要挑戰是藥物動力學性質的可預測的調整。為了這個目的,藥物候選物的一藥物動力學圖譜(亦即,造成一特別的藥物治療一特定的病況的能力之藥物動力學參數的一圖譜)被建立。影響一用於治療一特定疾病實體的藥物的能力之藥物的藥物動力學參數包括但不限於:半衰期、分佈的體積、肝臟的首渡代謝(hepatic first-pass metabolism)以及血液血清結合的程度。一特定的藥物試劑的效力可被上面所提到的各個參數所影響。
“半衰期”意指50%的一被投藥的藥物經由生物加工(例如,代謝、排泄等等)而被消除。
藉由“肝臟的首渡代謝”被意指一要被代謝的藥物在與肝臟的第一次接觸(亦即,在它第一次穿過肝臟的期間)時的習性。
“分佈的體積"意指遍及身體的各種不同的隔間(compartments)(像例如內細胞的以及外細胞的間隙、組織以及器官等等)中一藥物的維持程度,以及藥物在這些隔間內的分佈。
“血液血清結合的程度"意指導致藥物的生物活性的一降低或喪失的一藥物與血液血清蛋白質(諸如白蛋白)交互作用以及結合至血液血清蛋白質的傾向。
藥物動力學參數亦包括生物有效性(bioavailability)、延遲時間(lag time,Tlag)、Tmax、吸收速率、關於一特定數量的被投藥的藥物的更多開始(onset)和/或Cmax。
“生物有效性”意指一藥物在血液隔間(blood compartment)的數量。
“延遲時間"意指在藥物的投藥以及它在血液或血漿中的偵測與可測性(measurability)之間的時間延遲。
“Tmax”是在藥物的最大血液濃度被達到之後的時間,以及“Cmax”是以一特定的藥物所最高地獲得的血液濃度。達到它的生物效用所需的一藥物的血液或組織濃度的時間被所有參數所影響。展現出跨物種專一性的雙專一性單鏈抗體的藥物動力學參數(可在非黑猩猩靈長類的臨床前動物測試中被測定)亦在例如Schlereth et al.的刊物(Cancer Immunol. Immunother.20(2005),1-12)中被提出。
如此處所用的,術語“毒性”意指一被顯示在不良事件或嚴重的不良事件中的藥物的毒性效用。這些副事件可意指在投藥之後一般的一藥物的耐受性(tolerability)的缺乏和/或一局部耐受性的缺乏。毒性亦可包括由藥物所引起的畸形的(teratogenic)或致癌的(carcinogenic)效用。
如此處所用的,術語‘‘安全性”、‘‘活體內安全性(invivo safety)”或者‘‘耐受性”定義在投藥(局部耐受性)之後以及在藥物的應用的一較長的期間,一藥物的投藥沒有直接地誘發嚴重的不良事件。“安全性”、“活體內安全性”或者“耐受性”可在治療以及後續的期間在一規率的間隔下被評估。測量包括臨床評估(例如器官表現)以及實驗室異常的篩選。臨床評估可被進行並且脫離依據NCI-CTC和/或MedDRA標準所記錄或編碼的正常發現。器官表現可包括準則,諸如過敏/免疫、血液/骨髓、心律不整(cardiac arrhythmia)、凝固作用(coagulation)以及如在常見不良事件評價標準v3.0(Common Terminology Criteria for adverse events v3.0,CTCAE)中所提出的類似之物。可被測試的實驗室參數包括例如血液學(haematology)、臨床化學(clinical chemistry)、凝固特性(coagulation profile)與尿液分析(urine analysis)以及其他體液(諸如血清、血漿、淋巴或脊髓液、液體)的檢查以及類似之物。安全性因此可例如藉由身體檢查、成像技術[亦即超音波(ultrasound)、x-射線(x-ray)、CT掃描(CTscans)、磁振造影(Magnetic Resonance Imaging,MRI)]、以科技裝置[亦即心電圖(electrocardiogram)]的其他測量、生命徵象(vital signs)、藉由測量實驗室參數以及記錄不良事件而被評估。例如,在依據本發明的用途以及方法中,在非黑猩猩靈長類的不利事件可藉由組織病理學和/或組織化學的方法而被檢查。
如此處所用的,術語“有效且無毒的劑量”意指如在此所定義的雙專一性單鏈抗體的一可耐受的劑量,該劑量是高到足以消滅病理細菌、腫瘤消除(tumor elimination)、腫瘤縮小(tumor shrinkage)或穩定疾病而沒有或實質上沒有主要的毒性效用。此等有效且無毒的劑量可例如藉由本技藝所描述的劑量遞增研究而被測定並且應該低於誘發嚴重不良副事件的劑量[劑量限制毒性(dose limiting toxicity,DLT)]。
上面的術語亦參考例如Preclinical safety evaluation of biotechnology-derived pharmaceuticals S6;ICH Harmonised Tripartite Guideline;ICH Steering Committee meeting on July 16,1997。
再者,本發明有關於一用於預防、治療或改善癌症的包含有這個發明或依據本發明的方法所生產的一雙專一性單鏈抗體分子的藥學組成物。較佳地,該癌症是一固態腫瘤(較佳地一癌或前列腺癌)。較佳地,該藥學組成物進一步包含有載劑、安定劑和/或賦形劑的適合配方。
本發明的一進一步的方面是有關於如在此上面所定義或依據一在此上面所定義的方法所生產的一雙專一性單鏈抗體分子/多肽用於製備一用來預防、治療或改善一疾病的藥學組成物的一用途。較佳地,該疾病是癌症。更佳地,該癌症是一固態腫瘤(較佳地一癌或前列腺癌)。
在本發明的雙專一性單鏈抗體分子的用途的另一個較佳具體例中,該藥學組成物適合於組合以一額外的藥物(亦即,作為一共治療的部分)而被投藥。在該共治療中,一活性劑可如本發明的雙專一性單鏈抗體分子而被選擇性地包括在相同的藥學組成物中或者可被包括在一分開的藥學組成物中。在這個後者的例子中,該分開的藥學組成物適合於在該包含有本發明的雙專一性單鏈抗體分子的藥學組成物的投藥之前、同時地或之後投藥。該額外的藥物或藥學組成物可以是一非蛋白質的化合物或一蛋白質的化合物。在該額外的藥物是一蛋白質的化合物的例子中,有利的是該蛋白質的化合物能夠提供一用於免疫效應細胞(effector cells)的活化信號。
較佳地,該蛋白質的化合物或非蛋白質的化合物可與本發明的雙專一性單鏈抗體分子、一如在上文所定義的核酸分子、一如在上文所定義的載體或一如在上文所定義的宿主而被同時地或非同時地投藥。
本發明的另一個方面是有關於一種用於在一需要它的個體中預防、治療或改善一疾病的方法,該方法包含有投藥一有效量的一本發明的藥學組成物的步驟。較佳地,該級定是癌症。較佳地,該癌症是一固態腫瘤(較佳地一癌或前列腺癌)。
在本發明的方法的另一個較佳具體例中,該藥學組成物適合於組合以一額外的藥物(亦即,作為一共治療的部分)而被投藥。在該共治療中,一活性劑可如本發明的雙專一性單鏈抗體分子被選擇性地包括在相同的藥學組成物中或者可被包括在一分開的藥學組成物中。在這個後者的例子中,該分開的藥學組成物適合於在該包含有本發明的雙專一性單鏈抗體分子的藥學組成物的投藥之前、同時地或之後投藥。該額外的藥物或藥學組成物可以是一非蛋白質的化合物或一蛋白質的化合物。在該額外的藥物是一蛋白質的化合物的例子中,有利的是該蛋白質的化合物能夠提供一用於免疫效應細胞的活化信號。
較佳地,該蛋白質的化合物或非蛋白質的化合物可與本發明的雙專一性單鏈抗體分子、一如在上文所定義的核酸分子、一如在上文所定義的載體或一如在上文所定義的宿主而被同時地或非同時地投藥。
對上面所描述的本發明的方法較佳的是該個體是一人類。
在一進一步的方面,本發明有關於一包含有一本發明的雙專一性單鏈抗體分子、一本發明的核酸分子、一本發明的載體或一本發明的宿主的套組。
這些以及其他的具體例由本發明的描述以及實施例所揭示以及包含。在免疫學上的重組技術以及方法被描述在例如Sambrook et al. Molecular Cloning: A Laboratory Manual;Cold Spring Harbor Laboratory Press,3rd edition 2001;Lefkovits;Immunology Methods Manual;The Comprehensive Sourcebook of Techniques;Academic Press,1997;Golemis;Protein-Protein Interactions: A Molecular Cloning M anual;Cold Spring Laboratory Press,2002。關於依據本發明所採用的抗體、方法、用途以及化合物的進一步文獻可使用例如電子裝置而被檢索自公共的圖書館查詢系統以及資料庫。例如,在網際網路上可獲得的公共資料庫“Medline”可被利用,例如根據http://www.ncbi.nlm.nih.gov/PubMed/medline.html。進一步的資料庫以及網址(諸如http://www.ncbi.nlm.nih.gov/或者根據http://www.embl.de/services/index.html而被列在EMBL_服務首頁)是熟習此技藝者所知曉並且亦可使用例如http://www.google.com而被獲得。
第1(1)-1(4)圖被指定的跨物種專一性之雙專一性單鏈建構物對被轉染以人類PSMA的CHO細胞、人類CD3+T細胞株HPB-ALL、被轉染以獼猴PSMA的CHO細胞以及一獼猴T細胞株4119 LnPx的FACS結合分析。FACS染色有如在實施例2.1所描述的而被執行。粗線代表隨後被培育以抗-his抗體以及PE標定的偵測抗體的被培育以細胞培養上清液的細胞。細直方圖線反映負對照組:僅被培育以抗-his抗體以及偵測抗體的細胞。
第2(1)-2(3)圖:由對所指出的標靶細胞株重新定向的被指定的跨物種專一性之雙專一性單鏈建構物所誘發的細胞毒性活性。經刺激的CD4-/CD56-人類T細胞被使用作為效應細胞,被轉染以人類PSMA的CHO細胞作為標靶細胞。分析有如在實施例2.2所描述的而被執行。
本發明額外地經由提供本發明的一較佳瞭解以及它的許多優點的下列例示的非限制性實施例而被描述。
1. PSMA以及CD3跨物種專一性之雙專一性單鏈抗體分子的產生以及特徵化
1.1 人類PSMA抗原在CHO細胞上的選殖與表現
人類PSMA抗原的序列['AY101595',智慧人前列腺-專一性膜抗原mRNA,完整的cds,美國國家生技資訊中心(National Center for Biotechnology Information),http://www.ncbi.nlm.nih.gov/entrez]藉由依據標準操作程序的基因合成而被使用以獲得一合成的分子。基因合成片段亦被設計為含有一用於建構物的真核表現的Kozak位址以及在DNA的起始以及末端的限制位址(restriction sites)。被導入的限制位址(在5’端的XbaI以及在3’端的SalI)在選殖步驟的期間被利用至如在Mack et al.(Mack M et al.,Proc Natl Acad Sci U S A 1995;92:7021-5以及Raum et al. Cancer Immunol Immunother(2001) 50(3))所描述的被指定為pEFDHFR的表現質體內。在序列確認之後,質體被使用以轉染CHO/dhfr-細胞如下。一經序列確認的質體被使用以轉染CHO/dhfr-細胞{ATCC No. CRL 9096;被培養在從Biochrom AG Berlin,Germany所獲得的具有安定的麩醯胺的RPMI 1640[被補充以10% FCS、1%青黴素(penicillin)/鏈黴素(streptomycin)(全部被獲得自Biochrom AG Berlin,Germany)以及來自一從Sigma-Aldrich Chemie GmbH,Taufkirchen,Germany所獲得的細胞培養等級試劑的母液的核苷(nucleosides)達一為10 μg/ml腺苷(adenosine)、10 μg/ml去氧腺苷(deoxyadenosine)以及10 μg/ml胸苷(thymidine)的最終濃度],在一培養箱(在37℃、95%濕度以及7% CO2)中}。轉染依據製造商的規程使用PolyFect轉染試劑(PolyFect Transfection Reagent)(Qiagen GmbH,Hilden,Germany)以及5 μg的質體DNA而被執行。在一為24小時的培養之後,細胞以PBS予以洗滌一次,並且除了該培養基沒有被補充以核苷以及透析的FCS(從Biochrom AG Berlin,Germany而被獲得)被使用以外,再次被培養在上述的細胞培養基中。因此該細胞培養基沒有含有核苷並且藉此篩選被應用在被轉染的細胞上。在轉染之後大概14天,抗性細胞的過度生長被觀察到。在一額外的7至14天之後,轉染物經由FACS而被測試確實表現建構物。在DHFR缺乏的CHO細胞中真核生物的蛋白質表現如由Kaufmann R.J.(1990) Methods Enzymol. 185,537-566所描述的而被執行。建構物的基因擴增藉由增加甲胺喋呤(MTX)的濃度至一上達20 nM MTX的最終濃度而被誘發
1.2 獼猴PSMA抗原在CHO細胞上的選殖與表現
獼猴PSMA(石蟹獼猴)的cDNA序列藉由在來自依據標準規程所製備的獼猴前列腺的cDNA上的一套5次PCR而被獲得。下列的反應條件:在94℃下歷時2分鐘的1個循環,繼而以94℃歷時1分鐘、52℃歷時1分鐘以及72℃歷時1.5分鐘的40個循環,繼而一為72℃歷時3分鐘的最終循環,並且下面的引子被使用:
‧前向引子:5’-cactgtggcccaggttcgagg-3’(序列辨識編號213)
反向引子:5’-gacataccacacaaattcaatacgg-3’(序列辨識編號214)
‧前向引子:5’-gctctgctcgcgccgagatgtgg-3’(序列辨識編號215)
反向引子:5’-acgctggacaccacctccagg-3’(序列辨識編號216)
‧前向引子:5’-ggttctactgagtgggcagagg-3’(序列辨識編號217)
反向引子:5’-acttgttgtggctgcttggagc-3’(序列辨識編號218)
‧前向引子:5’-gggtgaagtcctatccagatgg-3’(序列辨識編號219)
反向引子:5’-gtgctctgcctgaagcaattcc-3’(序列辨識編號220)
‧前向引子:5’-ctcggcttcctcttcgggtgg-3’(序列辨識編號221)
反向引子:5’-gcatattcatttgctgggtaacctgg-3’(序列辨識編號222)
這些PCR產生依據標準規程使用PCR引子而被分離以及定序的5個重疊片段,並且因此提供編碼獼猴PSMA自密碼子3至成熟蛋白質的最後密碼子的cDNA序列的一部分。為了產生一用於表現獼猴PSMA的建構物,一cDNA片段依據標準規程藉由基因合成而被獲得(建構物的cDNA以及胺基酸序列被例示在序列辨識223以及224)。在這個建構物中,自胺基酸3至成熟的PSMA蛋白質的最後胺基酸的獼猴PSMA的編碼序列繼而一終止密碼子在架構(frame)內被融合至人類PSMA蛋白質的最初2個胺基酸的編碼序列。該基因合成片段亦被設計為含有一用於建構物的真核表現的Kozak位址以及在該含有cDNA的片段的起始以及末端的限制位址。被導入的限制位址(在5’端的XbaI以及在3’端的SalI)被利用在下列選殖操作程序中。基因合成片段跟隨標準規程經由XbaI以及SalI而被選殖至一被指定為pEF-DHFR的質體內。上述的操作程序依據標準的規程(Sambrook,Molecular Cloning;A Laboratory Manual,3rd edition,Cold Spring Harbour Laboratory Press,Cold Spring Harbour,New York(2001))而被進行。一具有被確認的核苷酸序列的克隆(clone)被轉染至DHFR缺乏的CHO細胞內用於建構物的真核表現。在DHFR缺乏的CHO細胞中真核生物的蛋白質表現如由Kaufmann R.J.(1990) Methods Enzymol. 185,537-566所描述的而被執行。建構物的基因擴增藉由增加甲胺喋呤(MTX)的濃度至一上達20 nM MTX的最終濃度而被誘發。
實施例2
2.1 PSMA以及CD3跨物種專一性之雙專一性抗體的流式細胞結合分析
為了測試跨物種專一性之雙專一性抗體建構物關於對人類與獼猴PSMA以及對人類與獼猴CD3的結合能力之功能,一FACS分析被執行。為了這個目的,被轉染以人類PSMA的CHO細胞以及人類CD3陽性T細胞白血病細胞株HPB-ALL(DSMZ,Braunschweig,ACC483)被使用以檢查對人類抗原的結合。對獼猴抗原的結合反應性藉由使用所產生的獼猴PSMA轉染物以及一獼猴T細胞株4119LnPx[由Fickenscher教授(Hygiene Institute,Virology,Erlangen-Nuernbe)所提供;被公開在Knappe A,et al.,and Fickenscher H.,Blood 2000,95,3256-61中]而被測試。
流式細胞分析被執行如下:個別細胞株的200.000個細胞與50 μl的經純化的跨物種專一性之雙專一性抗體建構物的蛋白質(2 μg/ml)或表現跨物種專一性之雙專一性抗體建構物的經轉染的細胞的細胞培養上清液在冰上被培育歷時30分鐘。該等細胞在具有2% FCS的PBS中被洗滌2次並且該建構物的結合以一小鼠抗-His抗體(Penta His抗體;Qiagen;1:20被稀釋在50 μl具有2% FCS的PBS中)而被偵測。在洗滌之後,被結合的抗-His抗體以一被綴合至藻紅素(phycoerythrin)的Fc γ-專一性抗體(Dianova)(1:100被稀釋在具有2% FCS的PBS中)而被偵測。未被轉染的CHO細胞的上清液被使用作為供結合至T細胞株的負對照組。一具有不相關的標靶專一性的單鏈建構物被使用作為供結合至被PSMA轉染的CHO細胞的負對照組。
流動式細胞測量術(flow cytometry)在一FACS-Calibur設備上被執行;CellQuest軟體被使用以獲得以及分析數據(Becton Dickinson biosciences,Heidelberg)。FACS染色以及測量螢光強度如在Current Protocols in Immunology(Coligan,Kruisbeek,Margulies,Shevach and Strober,Wiley-Interscience,2002)中所描述的而被執行。
對PSMA跨物種專一性以及對人類與獼猴CD3跨物種專一性的單鏈分子的雙專一性結合清楚地可偵測的如被顯示在第1圖中。在FACS分析中,所有建構物相較於個別的負對照組顯示出結合至CD3以及PSMA。雙專一性抗體對人類與獼猴CD3以及對人類與獼猴PSMA抗原的跨物種專一性被證明。
2.2 PSMA與CD3跨物種專一性之雙專一性單鏈抗體的生物活性
所產生的雙專一性單鏈抗體的生物活性藉由使用人類PSMA陽性細胞株CHO細胞的鉻51(51Cr)釋放活體外細胞毒性分析而被分析。作為效應細胞的經刺激的人類CD4/CD56缺乏的PBMC被使用。
產生該經刺激的CD4/CD56缺乏的PBMC被執行如下:以呈一為1 μg/ml的最終濃度的一商業上可獲得的抗-CD3專一性抗體(例如OKT3,Othoclone)包覆一培養皿(petri dish)(145 mm直徑,Greiner bio-one GmbH,Frickenhausen)在37℃下被進行歷時1小時。未被結合的蛋白質藉由一以PBS的洗滌步驟而被移除。新鮮的PBMC依據標準規程藉由Ficoll梯度離心(gradient centrifugation)而被分離自末梢血液(peripheral blood)(30-50 ml人類血液)。配於120 ml的具有安定的麩醯胺/10% FCS/IL-2 20 U/ml(Proleukin,Chiron)的RPMI 1640的3-5 x 107 PBMC被添加至被預包覆的培養皿中,並且被刺激歷時2天。在第3天,該等細胞被收集並且以RPMI 1640予以洗滌1次。IL-2被添加至一為20 U/ml的最終濃度,並且該等細胞被再次培養在如上面的相同的細胞培養基中歷時1天。藉由依據標準規程移除CD4+T細胞以及CD56+NK細胞,CD8+細胞毒性T淋巴球(CTL)被增富。
標靶細胞以PBS予以清洗2次並且在37℃下被標定以配於一為100 μl的最終體積的具有50% FCS RPMI中的11.1 MBq 51Cr歷時45分鐘。隨後該等被標定的標靶細胞以5 ml RPMI予以洗滌3次並且接著被使用在細胞毒性分析中。該分析在一為96井盤在一為250 μl總體積的具有一E:T比10:1的補充的RPMI(如上面)中被執行。1 μg/ml的跨物種專一性之雙專一性單鏈抗體分子以及它們的20個3倍稀釋被應用。分析時間是18小時,並且細胞毒性被測量有如在上清液中被釋放的鉻相對於最大溶解(添加Triton-X)與自發性溶解(沒有效應物細胞)的差額的相對值。所有測量以四重覆而被做出。在上清液中的鉻活性的測量以一Wizard 3”γ計數器(Perkin Elmer Life Sciences GmbHlKln,Germany)而被執行。實驗數據的分析以視窗Prism 5(版本5.01,GraphPad Software Inc.,San Diego,California,USA)而被執行。如由軟體所決定的,S形的劑量反應曲線典型地具有R2值>0.90。由分析程式所計算出的EC50值被用於比較生物活性。
如在第2圖中所顯示的,所有被產生的跨物種專一性之雙專一性單鏈抗體建構物證明對抗由經刺激的人類CD4/CD56缺乏的PBMC所引起的PSMA陽性標靶細胞的生物毒性活性。
實施例3:scFv對抗各種不同的細胞株的結合分析
3.1.在E.coli中單鏈抗體建構物的表現
scFv分子EpCAM 4-7(WO 99/25818)、PM74-G3、PM52-H3、PM52-C3、PM75-A10以及PM91-B6藉由使用質體pComb3H5BFlag/His而被表現,其中表現建構物(例如scFv)包括Flag-標誌(DYKDDDDK)以及His6-標誌。各個scFv分子的質體被轉形至100 μl熱休克勝任(competent)E.coli TG1並且被放在卡本西林LB-瓊脂(LB-agar)上。被轉形以含有一VL-以及VH-區段(segment)的pComb3H5BFlag/His的E.coli在以1 mM IPTG誘發之後產生足夠數量的可溶解的scFv。由於一可溶解的信號序列,該scFv-鏈被輸出至它摺疊成一功能性構形的細胞間質(periplasma)內。
來自轉形盤的單一E. coli TG1細菌克隆被挑選用於細胞間質的小規模製備並且被生長在補充以20 mM MgCl2以及卡本西林50μg/ml的SB-培養基(例如10 ml)中,以及在收穫之後被再溶解在PBS(例如1 ml)。藉由4回合的在-70℃冷凍以及在37℃解凍,細菌的外膜藉由溫度衝擊而被破壞,並且可溶解的細胞間質蛋白質(包括scFv)被釋放至上清液中。在藉由離心排除完整的細胞以及細胞碎片之後,含有抗-PSMA scFv的上清液被收集並且被使用於結合至不同細胞株的測定。
3.2 單鏈抗體建構物對各種不同的細胞株的流式細胞結合分析
生產scFv分子EpCAM 4-7、PM74-G3、PM52-H3、PM52-C3、PM75-A10以及PM91-B6的E. coli克隆的細胞間質製備物被使用以檢驗對人類PSMA或人類EpCAM轉染細胞株的專一性結合。未被轉染的CHO細胞被使用作為負對照組。
關於流動式細胞測量術,2,5x105細胞被培育以50 μl的scFv細胞間質製備物。scFv對該等細胞的結合以一呈2 μg/ml配於50 μl具有2% FCS的PBS中的抗-His抗體(Penta-His抗體,沒有BSA,Qiagen GmbH,Hilden,FRG)而被偵測。一作為一第二階段試劑的R-藻紅素-綴和的親和純化的F(ab’)2片段、山羊抗小鼠IgG(goat anti-mouse IgG)(Fc-γ片段專一性)[1:100被稀釋在50 μl具有2% FCS的PBS中(Dianova,Hamburg,FRG)]被使用。樣品在一FACSscan(BD biosciences,Heidelberg,FRG)上被測量。
流動式細胞測量術在一FACS-Calibur攝被上被執行;CellQuest軟體被使用以獲得以及分析數據(Becton Dickinson biosciences,Heidelberg)。FACS染色以及測量螢光強度如在Current Protocols in Immunology(Coligan,Kruisbeek,Margulies,Shevach and Strober,Wiley-Interscience,2002)所描述的而被執行。
scFv EpCAM 4-7顯示對人類EpCAM轉染的CHO細胞有強的結合但對人類PSMA轉染的或未被轉染的細胞無顯著的結合。相反的,scFv PM74-G3、PM52-H3、PM52-C3、PM75-A10以及PM91-B6顯示對人類PSMA轉染的CHO細胞強的結合但沒有對人類EpCAM轉染的CHO細胞或未被轉染的細胞強的結合(個別的scFv的細胞間質細胞萃取物在不同被轉染的細胞株上的結合結果被例示在表1中)。
第1(1)-1(4)圖被指定的跨物種專一性之雙專一性單鏈建構物對被轉染以人類PSMA的CHO細胞、人類CD3+ T細胞株HPB-ALL、被轉染以獼猴PSMA的CHO細胞以及一獼猴T細胞株4119 LnPx的FACS結合分析。FACS染色有如在實施例2.1所描述的而被執行。粗線代表隨後被培育以抗-his抗體以及PE標定的偵測抗體的被培育以細胞培養上清液的細胞。細直方圖線反映負對照組:僅被培育以抗-his抗體以及偵測抗體的細胞。
第2(1)-2(3)圖:由對所指出的標靶細胞株重新定向的被指定的跨物種專一性之雙專一性單鏈建構物所誘發的細胞毒性活性。經刺激的CD4-/CD56-人類T細胞被使用作為效應細胞,被轉染以人類PSMA的CHO細胞作為標靶細胞。分析有如在實施例2.2所描述的而被執行。
<110> Micromet AG
<120> 跨物種專一性之PSMAxCD3雙專一性單鏈抗體
<130> MIM 13602PCT
<150> US 61/320,052
<151> 2010-04-01
<160> 633
<170> PatentIn version 3.5
<210> 1
<211> 105
<212> PRT
<213> 人類
<400> 1
<210> 2
<211> 27
<212> PRT
<213> 人類
<400> 2
<210> 3
<211> 96
<212> PRT
<213> 白鬢狨
<400> 3
<210> 4
<211> 27
<212> PRT
<213> 白鬢狨
<400> 4
<210> 5
<211> 96
<212> PRT
<213> 絨頂檉柳猴
<400> 5
<210> 6
<211> 27
<212> PRT
<213> 絨頂檉柳猴
<400> 6
<210> 7
<211> 96
<212> PRT
<213> 松鼠猴
<400> 7
<210> 8
<211> 27
<212> PRT
<213> 松鼠猴
<400> 8
<210> 9
<211> 14
<212> PRT
<213> 人工的
<220>
<223> F6A的CDR-L1
<400> 9
<210> 10
<211> 7
<212> PRT
<213> 人工的
<220>
<223> F6A的CDR-L2
<400> 10
<210> 11
<211> 9
<212> PRT
<213> 人工的
<220>
<223> F6A的CDR-L3
<400> 11
<210> 12
<211> 5
<212> PRT
<213> 人工的
<220>
<223> F6A的CDR-H1
<400> 12
<210> 13
<211> 19
<212> PRT
<213> 人工的
<220>
<223> F6A的CDR-H2
<400> 13
<210> 14
<211> 14
<212> PRT
<213> 人工的
<220>
<223> CDR-H3的F6A
<400> 14
<210> 15
<211> 125
<212> PRT
<213> 人工的
<220>
<223> 6FA的VH
<400> 15
<210> 16
<211> 375
<212> DNA
<213> 人工的
<220>
<223> 6FA的VH
<400> 16
<210> 17
<211> 109
<212> PRT
<213> 人工的
<220>
<223> 6FA的VL
<400> 17
<210> 18
<211> 327
<212> DNA
<213> 人工的
<220>
<223> 6FA的VL
<400> 18
<210> 19
<211> 125
<212> PRT
<213> 人工的
<220>
<223> 6FA的VH-P
<400> 19
<210> 20
<211> 375
<212> DNA
<213> 人工的
<220>
<223> 6FA的VH-P
<400> 20
<210> 21
<211> 109
<212> PRT
<213> 人工的
<220>
<223> 6FA的VL-P
<400> 21
<210> 22
<211> 327
<212> DNA
<213> 人工的
<220>
<223> 6FA的VL-P
<400> 22
<210> 23
<211> 249
<212> PRT
<213> 人工的
<220>
<223> 6FA的VH-VL
<400> 23
<210> 24
<211> 747
<212> DNA
<213> 人工的
<220>
<223> 6FA的VH-VL
<400> 24
<210> 25
<211> 249
<212> PRT
<213> 人工的
<220>
<223> 6FA的VH-VL-P
<400> 25
<210> 26
<211> 747
<212> DNA
<213> 人工的
<220>
<223> 6FA的VH-VL-P
<400> 26
<210> 27
<211> 14
<212> PRT
<213> 人工的
<220>
<223> H2C的CDR-L1
<400> 27
<210> 28
<211> 7
<212> PRT
<213> 人工的
<220>
<223> H2C的CDR-L2
<400> 28
<210> 29
<211> 9
<212> PRT
<213> 人工的
<220>
<223> H2C的CDR-L3
<400> 29
<210> 30
<211> 5
<212> PRT
<213> 人工的
<220>
<223> H2C的CDR-H1
<400> 30
<210> 31
<211> 19
<212> PRT
<213> 人工的
<220>
<223> H2C的CDR-H2
<400> 31
<210> 32
<211> 14
<212> PRT
<213> 人工的
<220>
<223> H2C的CDR-H3
<400> 32
<210> 33
<211> 125
<212> PRT
<213> 人工的
<220>
<223> H2C的VH
<400> 33
<210> 34
<211> 375
<212> DNA
<213> 人工的
<220>
<223> H2C的VH
<400> 34
<210> 35
<211> 109
<212> PRT
<213> 人工的
<220>
<223> H2C的VL
<400> 35
<210> 36
<211> 327
<212> DNA
<213> 人工的
<220>
<223> H2C的VL
<400> 36
<210> 37
<211> 125
<212> PRT
<213> 人工的
<220>
<223> H2C的VH-P
<400> 37
<210> 38
<211> 375
<212> DNA
<213> 人工的
<220>
<223> H2C的VH-P
<400> 38
<210> 39
<211> 109
<212> PRT
<213> 人工的
<220>
<223> H2C的VL-P
<400> 39
<210> 40
<211> 327
<212> DNA
<213> 人工的
<220>
<223> H2C的VL-P
<400> 40
<210> 41
<211> 249
<212> PRT
<213> 人工的
<220>
<223> H2C的VH-VL
<400> 41
<210> 42
<211> 747
<212> DNA
<213> 人工的
<220>
<223> H2C的VH-VL
<400> 42
<210> 43
<211> 249
<212> PRT
<213> 人工的
<220>
<223> H2C的VH-VL-P
<400> 43
<210> 44
<211> 747
<212> DNA
<213> 人工的
<220>
<223> H2C的VH-VL-P
<400> 44
<210> 45
<211> 14
<212> PRT
<213> 人工的
<220>
<223> H1E的CDR-L1
<400> 45
<210> 46
<211> 7
<212> PRT
<213> 人工的
<220>
<223> H1E的CDR-L2
<400> 46
<210> 47
<211> 9
<212> PRT
<213> 人工的
<220>
<223> H1E的CDR-L3
<400> 47
<210> 48
<211> 5
<212> PRT
<213> 人工的
<220>
<223> H1E的CDR-H1
<400> 48
<210> 49
<211> 19
<212> PRT
<213> 人工的
<220>
<223> H1E的CDR-H2
<400> 49
<210> 50
<211> 14
<212> PRT
<213> 人工的
<220>
<223> H1E的CDR-H3
<400> 50
<210> 51
<211> 125
<212> PRT
<213> 人工的
<220>
<223> H1E的VH
<400> 51
<210> 52
<211> 374
<212> DNA
<213> 人工的
<220>
<223> H1E的VH
<400> 52
<210> 53
<211> 109
<212> PRT
<213> 人工的
<220>
<223> H1E的VL
<400> 53
<210> 54
<211> 327
<212> DNA
<213> 人工的
<220>
<223> H1E的VL
<400> 54
<210> 55
<211> 125
<212> PRT
<213> 人工的
<220>
<223> H1E的VH-P
<400> 55
<210> 56
<211> 375
<212> DNA
<213> 人工的
<220>
<223> H1E的VH-P
<400> 56
<210> 57
<211> 109
<212> PRT
<213> 人工的
<220>
<223> H1E的VL-P
<400> 57
<210> 58
<211> 327
<212> DNA
<213> 人工的
<220>
<223> H1E的VL-P
<400> 58
<210> 59
<211> 249
<212> PRT
<213> 人工的
<220>
<223> H1E的VH-VL
<400> 59
<210> 60
<211> 747
<212> DNA
<213> 人工的
<220>
<223> H1E的VH-VL
<400> 60
<210> 61
<211> 249
<212> PRT
<213> 人工的
<220>
<223> H1E的VH-VL-P
<400> 61
<210> 62
<211> 747
<212> DNA
<213> 人工的
<220>
<223> H1E的VH-VL-P
<400> 62
<210> 63
<211> 14
<212> PRT
<213> 人工的
<220>
<223> G4H的CDR-L1
<400> 63
<210> 64
<211> 7
<212> PRT
<213> 人工的
<220>
<223> G4H的CDR-L2
<400> 64
<210> 65
<211> 9
<212> PRT
<213> 人工的
<220>
<223> G4H的CDR-L3
<400> 65
<210> 66
<211> 5
<212> PRT
<213> 人工的
<220>
<223> G4H的CDR-H1
<400> 66
<210> 67
<211> 19
<212> PRT
<213> 人工的
<220>
<223> G4H的CDR-H2
<400> 67
<210> 68
<211> 14
<212> PRT
<213> 人工的
<220>
<223> G4H的CDR-H3
<400> 68
<210> 69
<211> 125
<212> PRT
<213> 人工的
<220>
<223> G4H的VH
<400> 69
<210> 70
<211> 375
<212> DNA
<213> 人工的
<220>
<223> G4H的VH
<400> 70
<210> 71
<211> 109
<212> PRT
<213> 人工的
<220>
<223> G4H的VL
<400> 71
<210> 72
<211> 327
<212> DNA
<213> 人工的
<220>
<223> G4H的VL
<400> 72
<210> 73
<211> 125
<212> PRT
<213> 人工的
<220>
<223> G4H的VH-P
<400> 73
<210> 74
<211> 375
<212> DNA
<213> 人工的
<220>
<223> G4H的VH-P
<400> 74
<210> 75
<211> 109
<212> PRT
<213> 人工的
<220>
<223> G4H的VL-P
<400> 75
<210> 76
<211> 327
<212> DNA
<213> 人工的
<220>
<223> G4H的VL-P
<400> 76
<210> 77
<211> 249
<212> PRT
<213> 人工的
<220>
<223> G4H的VH-VL
<400> 77
<210> 78
<211> 747
<212> DNA
<213> 人工的
<220>
<223> G4H的VH-VL
<400> 78
<210> 79
<211> 249
<212> PRT
<213> 人工的
<220>
<223> G4H的VH-VL-P
<400> 79
<210> 80
<211> 747
<212> DNA
<213> 人工的
<220>
<223> G4H的VH-VL-P
<400> 80
<210> 81
<211> 14
<212> PRT
<213> 人工的
<220>
<223> A2J的CDR-L1
<400> 81
<210> 82
<211> 7
<212> PRT
<213> 人工的
<220>
<223> A2J的CDR-L2
<400> 82
<210> 83
<211> 9
<212> PRT
<213> 人工的
<220>
<223> A2J的CDR-L3
<400> 83
<210> 84
<211> 5
<212> PRT
<213> 人工的
<220>
<223> A2J的CDR-H1
<400> 84
<210> 85
<211> 19
<212> PRT
<213> 人工的
<220>
<223> A2J的CDR-H2
<400> 85
<210> 86
<211> 14
<212> PRT
<213> 人工的
<220>
<223> A2J的CDR-H3
<400> 86
<210> 87
<211> 125
<212> PRT
<213> 人工的
<220>
<223> A2J的VH
<400> 87
<210> 88
<211> 375
<212> DNA
<213> 人工的
<220>
<223> A2J的VH
<400> 88
<210> 89
<211> 109
<212> PRT
<213> 人工的
<220>
<223> A2J的VL
<400> 89
<210> 90
<211> 327
<212> DNA
<213> 人工的
<220>
<223> A2J的VL
<400> 90
<210> 91
<211> 125
<212> PRT
<213> 人工的
<220>
<223> A2J的VH-P
<400> 91
<210> 92
<211> 375
<212> DNA
<213> 人工的
<220>
<223> A2J的VH-P
<400> 92
<210> 93
<211> 109
<212> PRT
<213> 人工的
<220>
<223> A2J的VL-P
<400> 93
<210> 94
<211> 327
<212> DNA
<213> 人工的
<220>
<223> A2J的VL-P
<400> 94
<210> 95
<211> 249
<212> PRT
<213> 人工的
<220>
<223> A2J的VH-VL
<400> 95
<210> 96
<211> 747
<212> DNA
<213> 人工的
<220>
<223> A2J的VH-VL
<400> 96
<210> 97
<211> 249
<212> PRT
<213> 人工的
<220>
<223> A2J的VH-VL-P
<400> 97
<210> 98
<211> 747
<212> DNA
<213> 人工的
<220>
<223> A2J的VH-VL-P
<400> 98
<210> 99
<211> 14
<212> PRT
<213> 人工的
<220>
<223> E1L的CDR-L1
<400> 99
<210> 100
<211> 7
<212> PRT
<213> 人工的
<220>
<223> E1L的CDR-L2
<400> 100
<210> 101
<211> 9
<212> PRT
<213> 人工的
<220>
<223> E1L的CDR-L3
<400> 101
<210> 102
<211> 5
<212> PRT
<213> 人工的
<220>
<223> E1L的CDR-H1
<400> 102
<210> 103
<211> 19
<212> PRT
<213> 人工的
<220>
<223> E1L的CDR-H2
<400> 103
<210> 104
<211> 14
<212> PRT
<213> 人工的
<220>
<223> E1L的CDR-H3
<400> 104
<210> 105
<211> 125
<212> PRT
<213> 人工的
<220>
<223> E1L的VH
<400> 105
<210> 106
<211> 375
<212> DNA
<213> 人工的
<220>
<223> E1L的VH
<400> 106
<210> 107
<211> 109
<212> PRT
<213> 人工的
<220>
<223> E1L的VL
<400> 107
<210> 108
<211> 327
<212> DNA
<213> 人工的
<220>
<223> E1L的VL
<400> 108
<210> 109
<211> 125
<212> PRT
<213> 人工的
<220>
<223> E1L的VH-P
<400> 109
<210> 110
<211> 375
<212> DNA
<213> 人工的
<220>
<223> E1L的VH-P
<400> 110
<210> 111
<211> 109
<212> PRT
<213> 人工的
<220>
<223> E1L的VL-P
<400> 111
<210> 112
<211> 327
<212> DNA
<213> 人工的
<220>
<223> E1L的VL-P
<400> 112
<210> 113
<211> 249
<212> PRT
<213> 人工的
<220>
<223> E1L的VH-VL
<400> 113
<210> 114
<211> 747
<212> DNA
<213> 人工的
<220>
<223> E1L的VH-VL
<400> 114
<210> 115
<211> 249
<212> PRT
<213> 人工的
<220>
<223> E1L的VH-VL-P
<400> 115
<210> 116
<211> 747
<212> DNA
<213> 人工的
<220>
<223> E1L的VH-VL-P
<400> 116
<210> 117
<211> 14
<212> PRT
<213> 人工的
<220>
<223> E2M的CDR-L1
<400> 117
<210> 118
<211> 7
<212> PRT
<213> 人工的
<220>
<223> E2M的CDR-L2
<400> 118
<210> 119
<211> 9
<212> PRT
<213> 人工的
<220>
<223> E2M的CDR-L3
<400> 119
<210> 120
<211> 5
<212> PRT
<213> 人工的
<220>
<223> E2M的CDR-H1
<400> 120
<210> 121
<211> 19
<212> PRT
<213> 人工的
<220>
<223> E2M的CDR-H2
<400> 121
<210> 122
<211> 14
<212> PRT
<213> 人工的
<220>
<223> E2M的CDR-H3
<400> 122
<210> 123
<211> 125
<212> PRT
<213> 人工的
<220>
<223> E2M的VH
<400> 123
<210> 124
<211> 375
<212> DNA
<213> 人工的
<220>
<223> E2M的VH
<400> 124
<210> 125
<211> 109
<212> PRT
<213> 人工的
<220>
<223> E2M的VL
<400> 125
<210> 126
<211> 327
<212> DNA
<213> 人工的
<220>
<223> E2M的VL
<400> 126
<210> 127
<211> 125
<212> PRT
<213> 人工的
<220>
<223> E2M的VH-P
<400> 127
<210> 128
<211> 375
<212> DNA
<213> 人工的
<220>
<223> E2M的VH-P
<400> 128
<210> 129
<211> 109
<212> PRT
<213> 人工的
<220>
<223> E2M的VL-P
<400> 129
<210> 130
<211> 327
<212> DNA
<213> 人工的
<220>
<223> E2M的VL-P
<400> 130
<210> 131
<211> 249
<212> PRT
<213> 人工的
<220>
<223> E2M的VH-VL
<400> 131
<210> 132
<211> 747
<212> DNA
<213> 人工的
<220>
<223> E2M的VH-VL
<400> 132
<210> 133
<211> 249
<212> PRT
<213> 人工的
<220>
<223> E2M的VH-VL-P
<400> 133
<210> 134
<211> 747
<212> DNA
<213> 人工的
<220>
<223> E2M的V1-VL-P
<400> 134
<210> 135
<211> 14
<212> PRT
<213> 人工的
<220>
<223> F7O的CDR-L1
<400> 135
<210> 136
<211> 7
<212> PRT
<213> 人工的
<220>
<223> F7O的CDR-L2
<400> 136
<210> 137
<211> 9
<212> PRT
<213> 人工的
<220>
<223> F7O的CDR-L3
<400> 137
<210> 138
<211> 5
<212> PRT
<213> 人工的
<220>
<223> F7O的CDR-H1
<400> 138
<210> 139
<211> 19
<212> PRT
<213> 人工的
<220>
<223> F7O的CDR-H2
<400> 139
<210> 140
<211> 14
<212> PRT
<213> 人工的
<220>
<223> F7O的CDR-H3
<400> 140
<210> 141
<211> 125
<212> PRT
<213> 人工的
<220>
<223> F7O的VH
<400> 141
<210> 142
<211> 375
<212> DNA
<213> 人工的
<220>
<223> F7O的VH
<400> 142
<210> 143
<211> 109
<212> PRT
<213> 人工的
<220>
<223> F7O的VL
<400> 143
<210> 144
<211> 327
<212> DNA
<213> 人工的
<220>
<223> F7O的VL
<400> 144
<210> 145
<211> 125
<212> PRT
<213> 人工的
<220>
<223> F7O的VH-P
<400> 145
<210> 146
<211> 375
<212> DNA
<213> 人工的
<220>
<223> F7O的VH-P
<400> 146
<210> 147
<211> 109
<212> PRT
<213> 人工的
<220>
<223> F7O的VL-P
<400> 147
<210> 148
<211> 327
<212> DNA
<213> 人工的
<220>
<223> F7O的VL-P
<400> 148
<210> 149
<211> 249
<212> PRT
<213> 人工的
<220>
<223> F7O的VH-VL
<400> 149
<210> 150
<211> 747
<212> DNA
<213> 人工的
<220>
<223> F7O的VH-VL
<400> 150
<210> 151
<211> 249
<212> PRT
<213> 人工的
<220>
<223> F7O的VH-VL-P
<400> 151
<210> 152
<211> 747
<212> DNA
<213> 人工的
<220>
<223> F7O的VH-VL-P
<400> 152
<210> 153
<211> 14
<212> PRT
<213> 人工的
<220>
<223> F12Q的CDR-L1
<400> 153
<210> 154
<211> 7
<212> PRT
<213> 人工的
<220>
<223> F12Q的CDR-L2
<400> 154
<210> 155
<211> 9
<212> PRT
<213> 人工的
<220>
<223> F12Q的CDR-L3
<400> 155
<210> 156
<211> 5
<212> PRT
<213> 人工的
<220>
<223> F12Q的CDR-H1
<400> 156
<210> 157
<211> 19
<212> PRT
<213> 人工的
<220>
<223> F12Q的CDR-H2
<400> 157
<210> 158
<211> 14
<212> PRT
<213> 人工的
<220>
<223> F12Q的CDR-H3
<400> 158
<210> 159
<211> 125
<212> PRT
<213> 人工的
<220>
<223> F12Q的VH
<400> 159
<210> 160
<211> 375
<212> DNA
<213> 人工的
<220>
<223> F12Q的VH
<400> 160
<210> 161
<211> 109
<212> PRT
<213> 人工的
<220>
<223> F12Q的VL
<400> 161
<210> 162
<211> 327
<212> DNA
<213> 人工的
<220>
<223> F12Q的VL
<400> 162
<210> 163
<211> 125
<212> PRT
<213> 人工的
<220>
<223> F12Q的VH-P
<400> 163
<210> 164
<211> 375
<212> DNA
<213> 人工的
<220>
<223> F12Q的VH-P
<400> 164
<210> 165
<211> 109
<212> PRT
<213> 人工的
<220>
<223> F12Q的VL-P
<400> 165
<210> 166
<211> 327
<212> DNA
<213> 人工的
<220>
<223> F12Q的VL-P
<400> 166
<210> 167
<211> 249
<212> PRT
<213> 人工的
<220>
<223> F12Q的VH-VL
<400> 167
<210> 168
<211> 747
<212> DNA
<213> 人工的
<220>
<223> F12Q的VH-VL
<400> 168
<210> 169
<211> 249
<212> PRT
<213> 人工的
<220>
<223> F12Q的VH-VL-P
<400> 169
<210> 170
<211> 747
<212> DNA
<213> 人工的
<220>
<223> F12Q的VH-VL-P
<400> 170
<210> 171
<211> 14
<212> PRT
<213> 人工的
<220>
<223> I2C的CDR-L1
<400> 171
<210> 172
<211> 7
<212> PRT
<213> 人工的
<220>
<223> I2C的CDR-L2
<400> 172
<210> 173
<211> 9
<212> PRT
<213> 人工的
<220>
<223> I2C的CDR-L3
<400> 173
<210> 174
<211> 5
<212> PRT
<213> 人工的
<220>
<223> I2C的CDR-H1
<400> 174
<210> 175
<211> 19
<212> PRT
<213> 人工的
<220>
<223> I2C的CDR-H2
<400> 175
<210> 176
<211> 14
<212> PRT
<213> 人工的
<220>
<223> I2C的CDR-H3
<400> 176
<210> 177
<211> 125
<212> PRT
<213> 人工的
<220>
<223> I2C的VH
<400> 177
<210> 178
<211> 375
<212> DNA
<213> 人工的
<220>
<223> I2C的VH
<400> 178
<210> 179
<211> 109
<212> PRT
<213> 人工的
<220>
<223> I2C的VL
<400> 179
<210> 180
<211> 327
<212> DNA
<213> 人工的
<220>
<223> I2C的VL
<400> 180
<210> 181
<211> 125
<212> PRT
<213> 人工的
<220>
<223> I2C的VH-P
<400> 181
<210> 182
<211> 375
<212> DNA
<213> 人工的
<220>
<223> I2C的VH-P
<400> 182
<210> 183
<211> 109
<212> PRT
<213> 人工的
<220>
<223> I2C的VL-P
<400> 183
<210> 184
<211> 327
<212> DNA
<213> 人工的
<220>
<223> I2C的VL-P
<400> 184
<210> 185
<211> 249
<212> PRT
<213> 人工的
<220>
<223> I2C的VH-VL
<400> 185
<210> 186
<211> 747
<212> DNA
<213> 人工的
<220>
<223> I2C的VH-VL
<400> 186
<210> 187
<211> 249
<212> PRT
<213> 人工的
<220>
<223> I2C的VH-VL-P
<400> 187
<210> 188
<211> 747
<212> DNA
<213> 人工的
<220>
<223> I2C的VH-VL-P
<400> 188
<210> 189
<211> 267
<212> PRT
<213> 人工的
<220>
<223> 1-27 CD3 ε-Fc
<400> 189
<210> 190
<211> 858
<212> DNA
<213> 人工的
<220>
<223> 1-27 CD3 ε-Fc
<400> 190
<210> 191
<211> 333
<212> PRT
<213> 人工的
<220>
<223> 人類1-27 CD3 ε-Fc-EpCAM
<400> 191
<210> 192
<211> 1056
<212> DNA
<213> 人工的
<220>
<223> 人類1-27 CD3 ε-EpCAM
<400> 192
<210> 193
<211> 333
<212> PRT
<213> 人工的
<220>
<223> 狨猴1-27 CD3 ε-EpCAM
<400> 193
<210> 194
<211> 1056
<212> DNA
<213> 人工的
<220>
<223> 狨猴1-27 CD3 ε-EpCAM
<400> 194
<210> 195
<211> 333
<212> PRT
<213> 人工的
<220>
<223> 獠狨1-27 CD3 ε-EpCAM
<400> 195
<210> 196
<211> 1056
<212> DNA
<213> 人工的
<220>
<223> 獠狨1-27 CD3 ε-EpCAM
<400> 196
<210> 197
<211> 369
<212> PRT
<213> 人工的
<220>
<223> 松鼠猴1-27 CD3 ε-EpCAM
<400> 197
<210> 198
<211> 1056
<212> DNA
<213> 人工的
<220>
<223> 松鼠猴1-27 CD3 ε-EpCAM
<400> 198
<210> 199
<211> 333
<212> PRT
<213> 人工的
<220>
<223> 豬1-27 CD3 ε-EpCAM
<400> 199
<210> 200
<211> 1056
<212> DNA
<213> 人工的
<220>
<223> 豬1-27 CD3 ε-EpCAM
<400> 200
<210> 201
<211> 186
<212> PRT
<213> 人類
<400> 201
<210> 202
<211> 621
<212> DNA
<213> 人類
<400> 202
<210> 203
<211> 19
<212> PRT
<213> 人工的
<220>
<223> 免疫球蛋白前導胜肽(immunoglobulin leader peptide)
<400> 203
<210> 204
<211> 57
<212> DNA
<213> 人工的
<220>
<223> 免疫球蛋白前導胜肽
<400> 204
<210> 205
<211> 324
<212> PRT
<213> 鼠類(murine)
<400> 205
<210> 206
<211> 972
<212> DNA
<213> 鼠類
<400> 206
<210> 207
<211> 106
<212> PRT
<213> 人類
<400> 207
<210> 208
<211> 318
<212> DNA
<213> 人類
<400> 208
<210> 209
<211> 843
<212> DNA
<213> 人工的
<220>
<223> 1-27 CD3-Fc+前導(leader)
<400> 209
<210> 210
<211> 280
<212> PRT
<213> 人工的
<220>
<223> 1-27 CD3-Fc+前導
<400> 210
<210> 211
<211> 8
<212> PRT
<213> 人類
<400> 211
<210> 212
<211> 8
<212> PRT
<213> 松鼠猴
<400> 212
<210> 213
<211> 21
<212> DNA
<213> 人工的
<220>
<223> 前向引子
<400> 213
<210> 214
<211> 25
<212> DNA
<213> 人工的
<220>
<223> 反向引子
<400> 214
<210> 215
<211> 23
<212> DNA
<213> 人工的
<220>
<223> 前向引子
<400> 215
<210> 216
<211> 21
<212> DNA
<213> 人工的
<220>
<223> 反向引子
<400> 216
<210> 217
<211> 22
<212> DNA
<213> 人工的
<220>
<223> 前向引子
<400> 217
<210> 218
<211> 22
<212> DNA
<213> 人工的
<220>
<223> 反向引子
<400> 218
<210> 219
<211> 22
<212> DNA
<213> 人工的
<220>
<223> 前向引子
<400> 219
<210> 220
<211> 22
<212> DNA
<213> 人工的
<220>
<223> 反向引子
<400> 220
<210> 221
<211> 21
<212> DNA
<213> 人工的
<220>
<223> 前向引子
<400> 221
<210> 222
<211> 26
<212> DNA
<213> 人工的
<220>
<223> 反向引子
<400> 222
<210> 223
<211> 2253
<212> DNA
<213> 人工的
<220>
<223> 獼猴PSMA(石蟹)
<400> 223
<210> 224
<211> 750
<212> PRT
<213> 人工的
<220>
<223> 獼猴PSMA(石蟹)
<400> 224
<210> 225
<211> 120
<212> PRT
<213> 人工的
<220>
<223> PM52C3-VH
<400> 225
<210> 226
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PM52C3-HCDR1
<400> 226
<210> 227
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PM52C3-HCDR2
<400> 227
<210> 228
<211> 11
<212> PRT
<213> 人工的
<220>
<223> PM52C3-HCDR3
<400> 228
<210> 229
<211> 360
<212> DNA
<213> 人工的
<220>
<223> PM52C3-VH
<400> 229
<210> 230
<211> 112
<212> PRT
<213> 人工的
<220>
<223> PM52C3-VL
<400> 230
<210> 231
<211> 16
<212> PRT
<213> 人工的
<220>
<223> PM52C3-LCDR1
<400> 231
<210> 232
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PM52C3-LCDR2
<400> 232
<210> 233
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PM52C3-LCDR3
<400> 233
<210> 234
<211> 336
<212> DNA
<213> 人工的
<220>
<223> PM52C3-VL
<400> 234
<210> 235
<211> 247
<212> PRT
<213> 人工的
<220>
<223> PM52C3-VH-VL
<400> 235
<210> 236
<211> 741
<212> DNA
<213> 人工的
<220>
<223> PM52C3-VH-VL
<400> 236
<210> 237
<211> 502
<212> PRT
<213> 人工的
<220>
<223> PM52C3-VH-VL x I2C VH-VL
<400> 237
<210> 238
<211> 1506
<212> DNA
<213> 人工的
<220>
<223> PM52C3-VH-VL x I2C VH-VL
<400> 238
<210> 239
<211> 120
<212> PRT
<213> 人工的
<220>
<223> PM52H3-VH
<400> 239
<210> 240
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PM52H3-HCDR1
<400> 240
<210> 241
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PM52H3-HCDR2
<400> 241
<210> 242
<211> 11
<212> PRT
<213> 人工的
<220>
<223> PM52H3-HCDR3
<400> 242
<210> 243
<211> 360
<212> DNA
<213> 人工的
<220>
<223> PM52H3-VH
<400> 243
<210> 244
<211> 112
<212> PRT
<213> 人工的
<220>
<223> PM52H3-VL
<400> 244
<210> 245
<211> 16
<212> PRT
<213> 人工的
<220>
<223> PM52H3-LCDR1
<400> 245
<210> 246
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PM52H3-LCDR2
<400> 246
<210> 247
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PM52H3-LCDR3
<400> 247
<210> 248
<211> 336
<212> DNA
<213> 人工的
<220>
<223> PM52H3-VL
<400> 248
<210> 249
<211> 247
<212> PRT
<213> 人工的
<220>
<223> PM52H3-VH-VL
<400> 249
<210> 250
<211> 741
<212> DNA
<213> 人工的
<220>
<223> PM52H3-VH-VL
<400> 250
<210> 251
<211> 502
<212> PRT
<213> 人工的
<220>
<223> PM52H3-VH-VL x I2C VH-VL
<400> 251
<210> 252
<211> 1506
<212> DNA
<213> 人工的
<220>
<223> PM52H3-VH-VL x I2C VH-VL
<400> 252
<210> 253
<211> 120
<212> PRT
<213> 人工的
<220>
<223> PM75A10-VH
<400> 253
<210> 254
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PM75A10-HCDR1
<400> 254
<210> 255
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PM75A10-HCDR2
<400> 255
<210> 256
<211> 11
<212> PRT
<213> 人工的
<220>
<223> PM75A10-HCDR3
<400> 256
<210> 257
<211> 360
<212> DNA
<213> 人工的
<220>
<223> PM75A10-VH
<400> 257
<210> 258
<211> 112
<212> PRT
<213> 人工的
<220>
<223> PM75A10-VL
<400> 258
<210> 259
<211> 16
<212> PRT
<213> 人工的
<220>
<223> PM75A10-LCDR1
<400> 259
<210> 260
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PM75A10-LCDR2
<400> 260
<210> 261
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PM75A10-LCDR3
<400> 261
<210> 262
<211> 336
<212> DNA
<213> 人工的
<220>
<223> PM75A10-VL
<400> 262
<210> 263
<211> 247
<212> PRT
<213> 人工的
<220>
<223> PM75A10-VH-VL
<400> 263
<210> 264
<211> 741
<212> DNA
<213> 人工的
<220>
<223> PM75A10-VH-VL
<400> 264
<210> 265
<211> 502
<212> PRT
<213> 人工的
<220>
<223> PM75A10-Vh-VL x I2C VH-VL
<400> 265
<210> 266
<211> 1506
<212> DNA
<213> 人工的
<220>
<223> PM75A10-Vh-VL x I2C VH-VL
<400> 266
<210> 267
<211> 120
<212> PRT
<213> 人工的
<220>
<223> PM91B6-VH
<400> 267
<210> 268
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PM91B6-HCDR1
<400> 268
<210> 269
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PM91B6-HCDR2
<400> 269
<210> 270
<211> 11
<212> PRT
<213> 人工的
<220>
<223> PM91B6-HCDR3
<400> 270
<210> 271
<211> 360
<212> DNA
<213> 人工的
<220>
<223> PM91B6-VH
<400> 271
<210> 272
<211> 112
<212> PRT
<213> 人工的
<220>
<223> PM91B6-VL
<400> 272
<210> 273
<211> 16
<212> PRT
<213> 人工的
<220>
<223> PM91B6-LCDR1
<400> 273
<210> 274
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PM91B6-LCDR2
<400> 274
<210> 275
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PM91B6-LCDR3
<400> 275
<210> 276
<211> 336
<212> DNA
<213> 人工的
<220>
<223> PM91B6-VL
<400> 276
<210> 277
<211> 247
<212> PRT
<213> 人工的
<220>
<223> PM91B6-VH-VL
<400> 277
<210> 278
<211> 741
<212> DNA
<213> 人工的
<220>
<223> PM91B6-VH-VL
<400> 278
<210> 279
<211> 502
<212> PRT
<213> 人工的
<220>
<223> PM91B6-VH-VL x I2C VH-VL
<400> 279
<210> 280
<211> 1506
<212> DNA
<213> 人工的
<220>
<223> PM91B6-VH-VL x I2C VH-VL
<400> 280
<210> 281
<211> 121
<212> PRT
<213> 人工的
<220>
<223> PM83A12-VH
<400> 281
<210> 282
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PM83A12-HCDR1
<400> 282
<210> 283
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PM83A12-HCDR2
<400> 283
<210> 284
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PM83A12-HCDR3
<400> 284
<210> 285
<211> 363
<212> DNA
<213> 人工的
<220>
<223> PM83A12-VH
<400> 285
<210> 286
<211> 107
<212> PRT
<213> 人工的
<220>
<223> PM83A12-VL
<400> 286
<210> 287
<211> 11
<212> PRT
<213> 人工的
<220>
<223> PM83A12-LCDR1
<400> 287
<210> 288
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PM83A12-LCDR2
<400> 288
<210> 289
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PM83A12-LCDR3
<400> 289
<210> 290
<211> 321
<212> DNA
<213> 人工的
<220>
<223> PM83A12-VL
<400> 290
<210> 291
<211> 243
<212> PRT
<213> 人工的
<220>
<223> PM83A12-VH-VL
<400> 291
<210> 292
<211> 729
<212> DNA
<213> 人工的
<220>
<223> PM83A12-VH-VL
<400> 292
<210> 293
<211> 498
<212> PRT
<213> 人工的
<220>
<223> PM83A12-VH-VL x I2C VH-VL
<400> 293
<210> 294
<211> 1494
<212> DNA
<213> 人工的
<220>
<223> PM83A12-VH-VL x I2C VH-VL
<400> 294
<210> 295
<211> 121
<212> PRT
<213> 人工的
<220>
<223> PM07F8MPF-VH
<400> 295
<210> 296
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PM07F8MPF-HCDR1
<400> 296
<210> 297
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PM07F8MPF-HCDR2
<400> 297
<210> 298
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PM07F8MPF-HCDR3
<400> 298
<210> 299
<211> 363
<212> DNA
<213> 人工的
<220>
<223> PM07F8MPF-VH
<400> 299
<210> 300
<211> 107
<212> PRT
<213> 人工的
<220>
<223> PM07F8MPF-VL
<400> 300
<210> 301
<211> 11
<212> PRT
<213> 人工的
<220>
<223> PM07F8MPF-LCDR1
<400> 301
<210> 302
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PM07F8MPF-LCDR2
<400> 302
<210> 303
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PM07F8MPF-LCDR3
<400> 303
<210> 304
<211> 321
<212> DNA
<213> 人工的
<220>
<223> PM07F8MPF-VL
<400> 304
<210> 305
<211> 243
<212> PRT
<213> 人工的
<220>
<223> PM07F8MPF-VH-VL
<400> 305
<210> 306
<211> 729
<212> DNA
<213> 人工的
<220>
<223> PM07F8MPF-VH-VL
<400> 306
<210> 307
<211> 498
<212> PRT
<213> 人工的
<220>
<223> PM07F8MPF-VH-VL x I2C VH-VL
<400> 307
<210> 308
<211> 1494
<212> DNA
<213> 人工的
<220>
<223> PM07F8MPF-VH-VL x I2C VH-VL
<400> 308
<210> 309
<211> 121
<212> PRT
<213> 人工的
<220>
<223> PM07F8L1-VH
<400> 309
<210> 310
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PM07F8L1-HCDR1
<400> 310
<210> 311
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PM07F8L1-HCDR2
<400> 311
<210> 312
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PM07F8L1-HCDR3
<400> 312
<210> 313
<211> 363
<212> DNA
<213> 人工的
<220>
<223> PM07F8L1-VH
<400> 313
<210> 314
<211> 107
<212> PRT
<213> 人工的
<220>
<223> PM07F8L1-VL
<400> 314
<210> 315
<211> 11
<212> PRT
<213> 人工的
<220>
<223> PM07F8L1-LCDR1
<400> 315
<210> 316
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PM07F8L1-LCDR2
<400> 316
<210> 317
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PM07F8L1-LCDR3
<400> 317
<210> 318
<211> 321
<212> DNA
<213> 人工的
<220>
<223> PM07F8L1-VL
<400> 318
<210> 319
<211> 243
<212> PRT
<213> 人工的
<220>
<223> PM07F8L1-VH-VL
<400> 319
<210> 320
<211> 729
<212> DNA
<213> 人工的
<220>
<223> PM07F8L1-VH-VL
<400> 320
<210> 321
<211> 498
<212> PRT
<213> 人工的
<220>
<223> PM07F8L1-VH-VL x I2C VH-VL
<400> 321
<210> 322
<211> 1493
<212> DNA
<213> 人工的
<220>
<223> PM07F8L1-VH-VL x I2C VH-VL
<400> 322
<210> 323
<211> 121
<212> PRT
<213> 人工的
<220>
<223> PM07F8L2-VH
<400> 323
<210> 324
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PM07F8L2-HCDR1
<400> 324
<210> 325
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PM07F8L2-HCDR2
<400> 325
<210> 326
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PM07F8L2-HCDR3
<400> 326
<210> 327
<211> 363
<212> DNA
<213> 人工的
<220>
<223> PM07F8L2-VH
<400> 327
<210> 328
<211> 107
<212> PRT
<213> 人工的
<220>
<223> PM07F8L2-VL
<400> 328
<210> 329
<211> 11
<212> PRT
<213> 人工的
<220>
<223> PM07F8L2-LCDR1
<400> 329
<210> 330
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PM07F8L2-LCDR2
<400> 330
<210> 331
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PM07F8L2-LCDR3
<400> 331
<210> 332
<211> 321
<212> DNA
<213> 人工的
<220>
<223> PM07F8L2-VL
<400> 332
<210> 333
<211> 243
<212> PRT
<213> 人工的
<220>
<223> PM07F8L2-VH-VL
<400> 333
<210> 334
<211> 729
<212> DNA
<213> 人工的
<220>
<223> PM07F8L2-VH-VL
<400> 334
<210> 335
<211> 498
<212> PRT
<213> 人工的
<220>
<223> PM07F8L2-VH-VL x I2C VH-VL
<400> 335
<210> 336
<211> 1493
<212> DNA
<213> 人工的
<220>
<223> PM07F8L2-VH-VL x I2C VH-VL
<400> 336
<210> 337
<211> 121
<212> PRT
<213> 人工的
<220>
<223> PM07F8L3-VH
<400> 337
<210> 338
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PM07F8L3-HCDR1
<400> 338
<210> 339
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PM07F8L3-HCDR2
<400> 339
<210> 340
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PM07F8L3-HCDR3
<400> 340
<210> 341
<211> 363
<212> DNA
<213> 人工的
<220>
<223> PM07F8L3-VH
<400> 341
<210> 342
<211> 107
<212> PRT
<213> 人工的
<220>
<223> PM07F8L3-VL
<400> 342
<210> 343
<211> 11
<212> PRT
<213> 人工的
<220>
<223> PM07F8L3-LCDR1
<400> 343
<210> 344
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PM07F8L3-LCDR2
<400> 344
<210> 345
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PM07F8L3-LCDR3
<400> 345
<210> 346
<211> 321
<212> DNA
<213> 人工的
<220>
<223> PM07F8L3-VL
<400> 346
<210> 347
<211> 243
<212> PRT
<213> 人工的
<220>
<223> PM07F8L3-VH-VL
<400> 347
<210> 348
<211> 729
<212> DNA
<213> 人工的
<220>
<223> PM07F8L3-VH-VL
<400> 348
<210> 349
<211> 498
<212> PRT
<213> 人工的
<220>
<223> PM07F8L3-VH-VL x I2C VH-VL
<400> 349
<210> 350
<211> 1494
<212> DNA
<213> 人工的
<220>
<223> PM07F8L3-VH-VL x I2C VH-VL
<400> 350
<210> 351
<211> 121
<212> PRT
<213> 人工的
<220>
<223> PM07F8H3-VH
<400> 351
<210> 352
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PM07F8H3-HCDR1
<400> 352
<210> 353
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PM07F8H3-HCDR2
<400> 353
<210> 354
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PM07F8H3-HCDR3
<400> 354
<210> 355
<211> 363
<212> DNA
<213> 人工的
<220>
<223> PM07F8H3-VH
<400> 355
<210> 356
<211> 107
<212> PRT
<213> 人工的
<220>
<223> PM07F8H3-VL
<400> 356
<210> 357
<211> 11
<212> PRT
<213> 人工的
<220>
<223> PM07F8H3-LCDR1
<400> 357
<210> 358
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PM07F8H3-LCDR1
<400> 358
<210> 359
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PM07F8H3-LCDR1
<400> 359
<210> 360
<211> 321
<212> DNA
<213> 人工的
<220>
<223> PM07F8H3-VL
<400> 360
<210> 361
<211> 243
<212> PRT
<213> 人工的
<220>
<223> PM07F8H3-VH-VL
<400> 361
<210> 362
<211> 729
<212> DNA
<213> 人工的
<220>
<223> PM07F8H3-VH-VL
<400> 362
<210> 363
<211> 498
<212> PRT
<213> 人工的
<220>
<223> PM07F8H3-VH-VL x I2C VH-VL
<400> 363
<210> 364
<211> 1493
<212> DNA
<213> 人工的
<220>
<223> PM07F8H3-VH-VL x I2C VH-VL
<400> 364
<210> 365
<211> 121
<212> PRT
<213> 人工的
<220>
<223> PM07F8H2-VH
<400> 365
<210> 366
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PM07F8H2-HCDR1
<400> 366
<210> 367
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PM07F8H2-HCDR2
<400> 367
<210> 368
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PM07F8H2-HCDR3
<400> 368
<210> 369
<211> 363
<212> DNA
<213> 人工的
<220>
<223> PM07F8H2-VH
<400> 369
<210> 370
<211> 107
<212> PRT
<213> 人工的
<220>
<223> PM07F8H2-VL
<400> 370
<210> 371
<211> 11
<212> PRT
<213> 人工的
<220>
<223> PM07F8H2-LCDR1
<400> 371
<210> 372
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PM07F8H2-LCDR2
<400> 372
<210> 373
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PM07F8H2-LCDR3
<400> 373
<210> 374
<211> 321
<212> DNA
<213> 人工的
<220>
<223> PM07F8H2-VL
<400> 374
<210> 375
<211> 243
<212> PRT
<213> 人工的
<220>
<223> PM07F8H2-VH-VL
<400> 375
<210> 376
<211> 729
<212> DNA
<213> 人工的
<220>
<223> PM07F8H2-VH-VL
<400> 376
<210> 377
<211> 498
<212> PRT
<213> 人工的
<220>
<223> PM07F8H2-VH-VL x I2C VH-VL
<400> 377
<210> 378
<211> 1494
<212> DNA
<213> 人工的
<220>
<223> PM07F8H2-VH-VL x I2C VH-V
<400> 378
<210> 379
<211> 118
<212> PRT
<213> 人工的
<220>
<223> PMH5A5-VH
<400> 379
<210> 380
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PMH5A5-HCDR1
<400> 380
<210> 381
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PMH5A5-HCDR2
<400> 381
<210> 382
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH5A5-HCDR3
<400> 382
<210> 383
<211> 354
<212> DNA
<213> 人工的
<220>
<223> PMH5A5-VH
<400> 383
<210> 384
<211> 108
<212> PRT
<213> 人工的
<220>
<223> PMH5A5-VL
<400> 384
<210> 385
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PMH5A5-LCDR1
<400> 385
<210> 386
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PMH5A5-LCDR2
<400> 386
<210> 387
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH5A5-LCDR3
<400> 387
<210> 388
<211> 324
<212> DNA
<213> 人工的
<220>
<223> PMH5A5-VL
<400> 388
<210> 389
<211> 241
<212> PRT
<213> 人工的
<220>
<223> PMH5A5-VH-VL
<400> 389
<210> 390
<211> 723
<212> DNA
<213> 人工的
<220>
<223> PMH5A5-VH-VL
<400> 390
<210> 391
<211> 497
<212> PRT
<213> 人工的
<220>
<223> PMH5A5-VH-VL x I2C VH-VL
<400> 391
<210> 392
<211> 1488
<212> DNA
<213> 人工的
<220>
<223> PMH5A5-VH-VL x I2C VH-VL
<400> 392
<210> 393
<211> 118
<212> PRT
<213> 人工的
<220>
<223> PMH8A5-VH
<400> 393
<210> 394
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PMH8A5-HCDR1
<400> 394
<210> 395
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PMH8A5-HCDR2
<400> 395
<210> 396
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8A5-HCDR3
<400> 396
<210> 397
<211> 354
<212> DNA
<213> 人工的
<220>
<223> PMH8A5-VH
<400> 397
<210> 398
<211> 108
<212> PRT
<213> 人工的
<220>
<223> PMH8A5-VL
<400> 398
<210> 399
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PMH8A5-LCDR1
<400> 399
<210> 400
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PMH8A5-LCDR2
<400> 400
<210> 401
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8A5-LCDR3
<400> 401
<210> 402
<211> 324
<212> DNA
<213> 人工的
<220>
<223> PMH8A5-VL
<400> 402
<210> 403
<211> 241
<212> PRT
<213> 人工的
<220>
<223> PMH8A5-VH-VL
<400> 403
<210> 404
<211> 723
<212> DNA
<213> 人工的
<220>
<223> PMH8A5-VH-VL
<400> 404
<210> 405
<211> 497
<212> PRT
<213> 人工的
<220>
<223> PMH8A5-VH-VL x I2C VH-VL
<400> 405
<210> 406
<211> 1487
<212> DNA
<213> 人工的
<220>
<223> PMH8A5-VH-VL x I2C VH-VL
<400> 406
<210> 407
<211> 118
<212> PRT
<213> 人工的
<220>
<223> PMH5B1-VH
<400> 407
<210> 408
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PMH5B1-HCDR1
<400> 408
<210> 409
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PMH5B1-HCDR2
<400> 409
<210> 410
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH5B1-HCDR3
<400> 410
<210> 411
<211> 354
<212> DNA
<213> 人工的
<220>
<223> PMH5B1-VH
<400> 411
<210> 412
<211> 108
<212> PRT
<213> 人工的
<220>
<223> PMH5B1-VL
<400> 412
<210> 413
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PMH5B1-LCDR1
<400> 413
<210> 414
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PMH5B1-LCDR2
<400> 414
<210> 415
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH5B1-LCDR3
<400> 415
<210> 416
<211> 324
<212> DNA
<213> 人工的
<220>
<223> PMH5B1-VL
<400> 416
<210> 417
<211> 241
<212> PRT
<213> 人工的
<220>
<223> PMH5B1-VH-VL
<400> 417
<210> 418
<211> 723
<212> DNA
<213> 人工的
<220>
<223> PMH5B1-VH-VL
<400> 418
<210> 419
<211> 496
<212> PRT
<213> 人工的
<220>
<223> PMH5B1-VL x I2C VH-VL
<400> 419
<210> 420
<211> 1487
<212> DNA
<213> 人工的
<220>
<223> PMH5B1-VL x I2C VH-VL
<400> 420
<210> 421
<211> 118
<212> PRT
<213> 人工的
<220>
<223> PMH8B1-VH
<400> 421
<210> 422
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PMH8B1-HCDR1
<400> 422
<210> 423
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PMH8B1-HCDR2
<400> 423
<210> 424
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8B1-HCDR3
<400> 424
<210> 425
<211> 354
<212> DNA
<213> 人工的
<220>
<223> PMH8B1-VH
<400> 425
<210> 426
<211> 108
<212> PRT
<213> 人工的
<220>
<223> PMH8B1-VL
<400> 426
<210> 427
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PMH8B1-LCDR1
<400> 427
<210> 428
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PMH8B1-LCDR2
<400> 428
<210> 429
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8131-LCDR3
<400> 429
<210> 430
<211> 324
<212> DNA
<213> 人工的
<220>
<223> PMH8B1-VL
<400> 430
<210> 431
<211> 241
<212> PRT
<213> 人工的
<220>
<223> PMH8B1-VH-VL
<400> 431
<210> 432
<211> 723
<212> DNA
<213> 人工的
<220>
<223> PMH8B1-VH-VL
<400> 432
<210> 433
<211> 496
<212> PRT
<213> 人工的
<220>
<223> PMH8B1-VH-VL x I2C VH-VL
<400> 433
<210> 434
<211> 1487
<212> DNA
<213> 人工的
<220>
<223> PMH8B1-VH-VL x I2C VH-VL
<400> 434
<210> 435
<211> 118
<212> PRT
<213> 人工的
<220>
<223> PMH5B45-VH
<400> 435
<210> 436
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PMH5B45-HCDR1
<400> 436
<210> 437
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PMH5B45-HCDR2
<400> 437
<210> 438
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH5B45-HCDR3
<400> 438
<210> 439
<211> 354
<212> DNA
<213> 人工的
<220>
<223> PMH5B45-VH
<400> 439
<210> 440
<211> 108
<212> PRT
<213> 人工的
<220>
<223> PMH5B45-VL
<400> 440
<210> 441
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PMH5B45-LCDR1
<400> 441
<210> 442
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PMH5B45-LCDR2
<400> 442
<210> 443
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH5B45-LCDR3
<400> 443
<210> 444
<211> 324
<212> DNA
<213> 人工的
<220>
<223> PMH5B45-VL
<400> 444
<210> 445
<211> 241
<212> PRT
<213> 人工的
<220>
<223> PMH5B45-VH-VL
<400> 445
<210> 446
<211> 723
<212> PRT
<213> 人工的
<220>
<223> PMH5B45-VH-VL
<400> 446
<210> 447
<211> 496
<212> PRT
<213> 人工的
<220>
<223> PMH5B45-VH-VL x I2C VH-VL
<400> 447
<210> 448
<211> 1488
<212> DNA
<213> 人工的
<220>
<223> PMH5B45-VH-VL x I2C VH-VL
<400> 448
<210> 449
<211> 118
<212> PRT
<213> 人工的
<220>
<223> PMH8B4-VH
<400> 449
<210> 450
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PMH8B4-HCDR1
<400> 450
<210> 451
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PMH8B4-HCDR2
<400> 451
<210> 452
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8B4-HCDR3
<400> 452
<210> 453
<211> 354
<212> DNA
<213> 人工的
<220>
<223> PMH8B4-VH
<400> 453
<210> 454
<211> 108
<212> PRT
<213> 人工的
<220>
<223> PMH8B4-VL
<400> 454
<210> 455
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PMH8B4-LCDR1
<400> 455
<210> 456
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PMH8B4-LCDR2
<400> 456
<210> 457
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8B4-LCDR3
<400> 457
<210> 458
<211> 324
<212> DNA
<213> 人工的
<220>
<223> PMH8B4-VL
<400> 458
<210> 459
<211> 241
<212> PRT
<213> 人工的
<220>
<223> PMH8B4-VH-VL
<400> 459
<210> 460
<211> 723
<212> DNA
<213> 人工的
<220>
<223> PMH8B4-VH-VL
<400> 460
<210> 461
<211> 496
<212> PRT
<213> 人工的
<220>
<223> PMH8B4-VH-VL x I2C VH-VL
<400> 461
<210> 462
<211> 1488
<212> DNA
<213> 人工的
<220>
<223> PMH8B4-VH-VL x I2C VH-VL
<400> 462
<210> 463
<211> 118
<212> PRT
<213> 人工的
<220>
<223> PMH5C2-VH
<400> 463
<210> 464
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PMH5C2-HCDR1
<400> 464
<210> 465
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PMH5C2-HCDR2
<400> 465
<210> 466
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH5C2-HCDR3
<400> 466
<210> 467
<211> 354
<212> DNA
<213> 人工的
<220>
<223> PMH5C2-VH
<400> 467
<210> 468
<211> 108
<212> PRT
<213> 人工的
<220>
<223> PMH5C2-VL
<400> 468
<210> 469
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PMH5C2-LCDR1
<400> 469
<210> 470
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PMH5C2-LCDR2
<400> 470
<210> 471
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH5C2-LCDR3
<400> 471
<210> 472
<211> 324
<212> DNA
<213> 人工的
<220>
<223> PMH5C2-VL
<400> 472
<210> 473
<211> 241
<212> PRT
<213> 人工的
<220>
<223> PMH5C2-VH-VL
<400> 473
<210> 474
<211> 723
<212> DNA
<213> 人工的
<220>
<223> PMH5C2-VH-VL
<400> 474
<210> 475
<211> 496
<212> PRT
<213> 人工的
<220>
<223> PMH5C2-VH-VL x I2C VH-VL
<400> 475
<210> 476
<211> 1488
<212> DNA
<213> 人工的
<220>
<223> PMH5C2-VH-VL x I2C VH-VL
<400> 476
<210> 477
<211> 118
<212> PRT
<213> 人工的
<220>
<223> PMH8C2-VH
<400> 477
<210> 478
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PMH8C2-HCDR1
<400> 478
<210> 479
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PMH8C2-HCDR2
<400> 479
<210> 480
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8C2-HCDR3
<400> 480
<210> 481
<211> 354
<212> DNA
<213> 人工的
<220>
<223> PMH8C2-VH
<400> 481
<210> 482
<211> 108
<212> PRT
<213> 人工的
<220>
<223> PMH8C2-VL
<400> 482
<210> 483
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PMH8C2-LCDR1
<400> 483
<210> 484
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PMH8C2-LCDR2
<400> 484
<210> 485
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8C2-LCDR3
<400> 485
<210> 486
<211> 324
<212> DNA
<213> 人工的
<220>
<223> PMH8C2-VL
<400> 486
<210> 487
<211> 241
<212> PRT
<213> 人工的
<220>
<223> PMH8C2-VH-VL
<400> 487
<210> 488
<211> 723
<212> DNA
<213> 人工的
<220>
<223> PMH8C2-VH-VL
<400> 488
<210> 489
<211> 496
<212> PRT
<213> 人工的
<220>
<223> PMH8C2-VH-VL x I2C VH-VL
<400> 489
<210> 490
<211> 1488
<212> DNA
<213> 人工的
<220>
<223> PMH8C2-VH-VL x I2C VH-VL
<400> 490
<210> 491
<211> 118
<212> PRT
<213> 人工的
<220>
<223> PMH5D1-VH
<400> 491
<210> 492
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PMH5D1-HCDR1
<400> 492
<210> 493
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PMH5D1-HCDR2
<400> 493
<210> 494
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH5D1-HCDR3
<400> 494
<210> 495
<211> 354
<212> DNA
<213> 人工的
<220>
<223> PMH5D1-VH
<400> 495
<210> 496
<211> 108
<212> PRT
<213> 人工的
<220>
<223> PMH5D1-VL
<400> 496
<210> 497
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PMH5D1-LCDR1
<400> 497
<210> 498
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PMH5D1-LCDR2
<400> 498
<210> 499
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH5D1-LCDR3
<400> 499
<210> 500
<211> 324
<212> DNA
<213> 人工的
<220>
<223> PMH5D1-VL
<400> 500
<210> 501
<211> 241
<212> PPT
<213> 人工的
<220>
<223> PMH5D1-VH-VL
<400> 501
<210> 502
<211> 723
<212> DNA
<213> 人工的
<220>
<223> PMH5D1-VH-VL
<400> 502
<210> 503
<211> 496
<212> PRT
<213> 人工的
<220>
<223> PMH5D1-VH-VL x I2C VH-VL
<400> 503
<210> 504
<211> 1488
<212> DNA
<213> 人工的
<220>
<223> PMH5D1-VH-VL x I2C VH-VL
<400> 504
<210> 505
<211> 118
<212> PRT
<213> 人工的
<220>
<223> PMH8D1-VH
<400> 505
<210> 506
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PMH8D1-HCDR1
<400> 506
<210> 507
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PMH8D1-HCDR2
<400> 507
<210> 508
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8D1-HCDR3
<400> 508
<210> 509
<211> 354
<212> DNA
<213> 人工的
<220>
<223> PMH8D1-VH
<400> 509
<210> 510
<211> 108
<212> PRT
<213> 人工的
<220>
<223> PMH8D1-VL
<400> 510
<210> 511
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PMH8D1-LCDR1
<400> 511
<210> 512
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PMH8D1-LCDR2
<400> 512
<210> 513
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8D1-LCDR3
<400> 513
<210> 514
<211> 324
<212> DNA
<213> 人工的
<220>
<223> PMH8D1-VL
<400> 514
<210> 515
<211> 241
<212> PRT
<213> 人工的
<220>
<223> PMH8D1-VH-VL
<400> 515
<210> 516
<211> 723
<212> DNA
<213> 人工的
<220>
<223> PMH8D1-VH-VL
<400> 516
<210> 517
<211> 496
<212> PRT
<213> 人工的
<220>
<223> PMH8D1-VH-VL x I2C VH-VL
<400> 517
<210> 518
<211> 1488
<212> DNA
<213> 人工的
<220>
<223> PMH8D1-VH-VL x I2C VH-VL
<400> 518
<210> 519
<211> 118
<212> PRT
<213> 人工的
<220>
<223> PMH5E2-VH
<400> 519
<210> 520
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PMH5E2-HCDR1
<400> 520
<210> 521
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PMH5E2-HCDR2
<400> 521
<210> 522
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH5E2-HCDR3
<400> 522
<210> 523
<211> 354
<212> DNA
<213> 人工的
<220>
<223> PMH5E2-VH
<400> 523
<210> 524
<211> 108
<212> PRT
<213> 人工的
<220>
<223> PMH5E2-VL
<400> 524
<210> 525
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PMH5E2-LCDR1
<400> 525
<210> 526
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PMH5E2-LCDR2
<400> 526
<210> 527
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH5E2-LCDR3
<400> 527
<210> 528
<211> 324
<212> DNA
<213> 人工的
<220>
<223> PMH5E2-VL
<400> 528
<210> 529
<211> 241
<212> PRT
<213> 人工的
<220>
<223> PMH5E2-VH-VL
<400> 529
<210> 530
<211> 723
<212> DNA
<213> 人工的
<220>
<223> PMH5E2-VH-VL
<400> 530
<210> 531
<211> 496
<212> PRT
<213> 人工的
<220>
<223> PMH5E2-VH-VL c I2C VH-VL
<400> 531
<210> 532
<211> 1488
<212> DNA
<213> 人工的
<220>
<223> PMH5E2-VH-VL c I2C VH-VL
<400> 532
<210> 533
<211> 118
<212> PRT
<213> 人工的
<220>
<223> PMH8E2-VH
<400> 533
<210> 534
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PMH8E2-HCDR1
<400> 534
<210> 535
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PMH8E2-HCDR2
<400> 535
<210> 536
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8E2-HCDR3
<400> 536
<210> 537
<211> 354
<212> DNA
<213> 人工的
<220>
<223> PMH8E2-VH
<400> 537
<210> 538
<211> 108
<212> PRT
<213> 人工的
<220>
<223> PMH8E2-VL
<400> 538
<210> 539
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PMH8E2-LCDR1
<400> 539
<210> 540
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PMH8E2-LCDR2
<400> 540
<210> 541
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8E2-LCDR3
<400> 541
<210> 542
<211> 324
<212> DNA
<213> 人工的
<220>
<223> PMH8E2-VL
<400> 542
<210> 543
<211> 241
<212> PRT
<213> 人工的
<220>
<223> PMH8E2-VH-VL
<400> 543
<210> 544
<211> 723
<212> DNA
<213> 人工的
<220>
<223> PMH8E2-VH-VL
<400> 544
<210> 545
<211> 496
<212> PRT
<213> 人工的
<220>
<223> PMH8E2-VH-VL x I2C VH-VL
<400> 545
<210> 546
<211> 1488
<212> DNA
<213> 人工的
<220>
<223> PMH8E2-VH-VL x I2C VH-VL
<400> 546
<210> 547
<211> 118
<212> PRT
<213> 人工的
<220>
<223> PMH8E4-VH
<400> 547
<210> 548
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PMH8E4-HCDR1
<400> 548
<210> 549
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PMH8E4-HCDR2
<400> 549
<210> 550
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8E4-HCDR3
<400> 550
<210> 551
<211> 354
<212> DNA
<213> 人工的
<220>
<223> PMH8E4-VH
<400> 551
<210> 552
<211> 108
<212> PRT
<213> 人工的
<220>
<223> PMH8E4-VL
<400> 552
<210> 553
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PMH8E4-LCDR1
<400> 553
<210> 554
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PMH8E4-LCDR2
<400> 554
<210> 555
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8E4-LCDR3
<400> 555
<210> 556
<211> 324
<212> DNA
<213> 人工的
<220>
<223> PMH8E4-VL
<400> 556
<210> 557
<211> 241
<212> PRT
<213> 人工的
<220>
<223> PMH8E4-VH-VL
<400> 557
<210> 558
<211> 723
<212> DNA
<213> 人工的
<220>
<223> PMH8E4-VH-VL
<400> 558
<210> 559
<211> 496
<212> PRT
<213> 人工的
<220>
<223> PMH8E4-VH-VL x I2C VH-VL
<400> 559
<210> 560
<211> 1488
<212> DNA
<213> 人工的
<220>
<223> PMH8E4-VH-VL x I2C VH-VL
<400> 560
<210> 561
<211> 118
<212> PRT
<213> 人工的
<220>
<223> PMH8G6-VH
<400> 561
<210> 562
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PMH8G6-HCDR1
<400> 562
<210> 563
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PMH8G6-HCDR2
<400> 563
<210> 564
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8G6-HCDR3
<400> 564
<210> 565
<211> 354
<212> DNA
<213> 人工的
<220>
<223> PMH8G6-VH
<400> 565
<210> 566
<211> 108
<212> PRT
<213> 人工的
<220>
<223> PMH8G6-VL
<400> 566
<210> 567
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PMH8G6-LCDR1
<400> 567
<210> 568
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PMH8G6-LCDR2
<400> 568
<210> 569
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8G6-LCDR3
<400> 569
<210> 570
<211> 324
<212> DNA
<213> 人工的
<220>
<223> PMH8G6-VL
<400> 570
<210> 571
<211> 241
<212> PRT
<213> 人工的
<220>
<223> PMH8G6-VH-VL
<400> 571
<210> 572
<211> 723
<212> DNA
<213> 人工的
<220>
<223> PMH8G6-VH-VL
<400> 572
<210> 573
<211> 496
<212> PRT
<213> 人工的
<220>
<223> PMH8G6-VH-VL x I2C VH-VL
<400> 573
<210> 574
<211> 1488
<212> DNA
<213> 人工的
<220>
<223> PMH8G6-VH-VL x I2C VH-VL
<400> 574
<210> 575
<211> 118
<212> PRT
<213> 人工的
<220>
<223> PMH5H2-VH
<400> 575
<210> 576
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PMH5H2-HCDR1
<400> 576
<210> 577
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PMH5H2-HCDR2
<400> 577
<210> 578
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH5H2-HCDR3
<400> 578
<210> 579
<211> 354
<212> DNA
<213> 人工的
<220>
<223> PMH5H2-VH
<400> 579
<210> 580
<211> 108
<212> PRT
<213> 人工的
<220>
<223> PMH5H2-VL
<400> 580
<210> 581
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PMH5H2-LCDR1
<400> 581
<210> 582
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PMH5H2-LCDR2
<400> 582
<210> 583
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH5H2-LCDR3
<400> 583
<210> 584
<211> 324
<212> DNA
<213> 人工的
<220>
<223> PMH5H2-VL
<400> 584
<210> 585
<211> 241
<212> PRT
<213> 人工的
<220>
<223> PMH5H2-VH-VL
<400> 585
<210> 586
<211> 723
<212> DNA
<213> PMH5H2-VH-VL
<400> 586
<210> 587
<211> 496
<212> PRT
<213> 人工的
<220>
<223> PMH5H2-VH-VL x I2C VH-VL
<400> 587
<210> 588
<211> 1488
<212> DNA
<213> 人工的
<220>
<223> PMH5H2-VH-VL x I2C VH-VL
<400> 588
<210> 589
<211> 118
<212> PRT
<213> 人工的
<220>
<223> PMH8H2-VH
<400> 589
<210> 590
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PMH8H2-HCDR1
<400> 590
<210> 591
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PMH8H2-HCDR2
<400> 591
<210> 592
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8H2-HCDR3
<400> 592
<210> 593
<211> 354
<212> DNA
<213> 人工的
<220>
<223> PMH8H2-VH
<400> 593
<210> 594
<211> 108
<212> PRT
<213> 人工的
<220>
<223> PMH8H2-VL
<400> 594
<210> 595
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PMH8H2-LCDR1
<400> 595
<210> 596
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PMH8H2-LCDR2
<400> 596
<210> 597
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8H2-LCDR3
<400> 597
<210> 598
<211> 324
<212> DNA
<213> 人工的
<220>
<223> PMH8H2-VL
<400> 598
<210> 599
<211> 241
<212> PRT
<213> 人工的
<220>
<223> PMH8H2-VH-VL
<400> 599
<210> 600
<211> 723
<212> DNA
<213> 人工的
<220>
<223> PMH8H2-VH-VL
<400> 600
<210> 601
<211> 496
<212> PRT
<213> 人工的
<220>
<223> PMH8H2-VH-VL x I2C VH-VL
<400> 601
<210> 602
<211> 1488
<212> DNA
<213> 人工的
<220>
<223> PMH8H2-VH-VL x I2C VH-VL
<400> 602
<210> 603
<211> 118
<212> PRT
<213> 人工的
<220>
<223> PMH8H3-VH
<400> 603
<210> 604
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PMH8H3-HCDR1
<400> 604
<210> 605
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PMH8H3-HCDR2
<400> 605
<210> 606
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8H3-HCDR3
<400> 606
<210> 607
<211> 354
<212> DNA
<213> 人工的
<220>
<223> PMH8H3-VH
<400> 607
<210> 608
<211> 108
<212> PRT
<213> 人工的
<220>
<223> PMH8H3-VL
<400> 608
<210> 609
<211> 12
<212> PRT
<213> 人工的
<220>
<223> PMH8H3-LCDR1
<400> 609
<210> 610
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PMH8H3-LCDR2
<400> 610
<210> 611
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PMH8H3-LCDR3
<400> 611
<210> 612
<211> 324
<212> DNA
<213> 人工的
<220>
<223> PMH8H3-VL
<400> 612
<210> 613
<211> 241
<212> PRT
<213> 人工的
<220>
<223> PMH8H3-VH-VL
<400> 613
<210> 614
<211> 723
<212> DNA
<213> 人工的
<220>
<223> PMH8H3-VH-VL
<400> 614
<210> 615
<211> 496
<212> PRT
<213> 人工的
<220>
<223> PMH8H3-VH-VL x I2C VH-VL
<400> 615
<210> 616
<211> 1488
<212> DNA
<213> 人工的
<220>
<223> PMH8H3-VH-VL x I2C VH-VL
<400> 616
<210> 617
<211> 120
<212> PRT
<213> 人工的
<220>
<223> PM74G3-VH
<400> 617
<210> 618
<211> 5
<212> PRT
<213> 人工的
<220>
<223> PM74G3-HCDR1
<400> 618
<210> 619
<211> 17
<212> PRT
<213> 人工的
<220>
<223> PM74G3-HCDR2
<400> 619
<210> 620
<211> 11
<212> PRT
<213> 人工的
<220>
<223> PM74G3-HCDR3
<400> 620
<210> 621
<211> 360
<212> DNA
<213> 人工的
<220>
<223> PM74G3-VH
<400> 621
<210> 622
<211> 112
<212> PRT
<213> 人工的
<220>
<223> PM74G3-VL
<400> 622
<210> 623
<211> 16
<212> PRT
<213> 人工的
<220>
<223> PM74G3-LCDR1
<400> 623
<210> 624
<211> 7
<212> PRT
<213> 人工的
<220>
<223> PM74G3-LCDR2
<400> 624
<210> 625
<211> 9
<212> PRT
<213> 人工的
<220>
<223> PM74G3-LCDR3
<400> 625
<210> 626
<211> 336
<212> DNA
<213> 人工的
<220>
<223> PM74G3-VL
<400> 626
<210> 627
<211> 247
<212> PRT
<213> 人工的
<220>
<223> PM74G3-VH-VL
<400> 627
<210> 628
<211> 741
<212> DNA
<213> 人工的
<220>
<223> PM74G3-VH-VL
<400> 628
<210> 629
<211> 502
<212> PRT
<213> 人工的
<220>
<223> PM74G3-VH-VL x I2C VH-VL
<400> 629
<210> 630
<211> 1506
<212> DNA
<213> 人工的
<220>
<223> PM74G3-VH-VL x I2C VH-VL
<400> 630
<210> 631
<211> 27
<212> PRT
<213> 馬來猴
<400> 631
<210> 632
<211> 27
<212> PRT
<213> 馬來猴
<400> 632
<210> 633
<211> 27
<212> PRT
<213> 馬來猴
<400> 633
Claims (32)
- 一種雙專一性單鏈抗體分子,其包含有第一結合領域,該第一結合領域係一能夠結合至人類與白鬢狨(Callithrix jacchus)、絨頂檉柳猴(Saguinus oedipus)或松鼠猴(Saimiri sciureus)CD3ε(epsilon)鏈的一表位之抗原交互作用位址(antigen-interaction-site),其中該表位是一被包含在由序列辨識編號2、4、6或8所構成的群組中的胺基酸序列的部分且包含有至少胺基酸序列Gln-Asp-Gly-Asn-Glu(QDGNE);以及一能夠結合至前列腺-專一性膜抗原(PSMA)的第二結合領域,其中該雙專一性單鏈抗體分子包含有一選自於下列序列的群組作為在該第二結合領域的CDR H1、CDR H2、CDR H3、CDR L1、CDR L2以及CDR L3:a)序列辨識編號:226-228的CDR H1-3以及序列辨識編號:231-233的CDR L1-3;b)序列辨識編號:240-242的CDR H1-3以及序列辨識編號:245-247的CDR L1-3;c)序列辨識編號:254-256的CDR H1-3以及序列辨識編號:259-261的CDR L1-3;d)序列辨識編號:268-270的CDR H1-3以及序列辨識編號:273-275的CDR L1-3;e)序列辨識編號:618-620的CDR H1-3以及序列辨識編號:623-625的CDR L1-3;f)序列辨識編號:282-284的CDR H1-3以及序列辨識編號:287-289的CDR L1-3;g)序列辨識編號:296-298的CDR H1-3以及序列辨識編號:301-303的CDR L1-3;h)序列辨識編號:310-312的CDR H1-3以及序列辨識編號:315-317的CDR L1-3;i)序列辨識編號:324-326的CDR H1-3以及序列辨識編號:329-331的CDR L1-3;j)序列辨識編號:338-340的CDR H1-3以及序列辨識編號:343-345的CDR L1-3;k)序列辨識編號:352-354的CDR H1-3以及序列辨識編號:357-359的CDR L1-3;l)序列辨識編號:366-368的CDR H1-3以及序列辨識編號:371-373的CDR L1-3;m)序列辨識編號:380-382的CDR H1-3以及序列辨識編號:385-387的CDR L1-3;n)序列辨識編號:394-396的CDR H1-3以及序列辨識編號:399-401的CDR L1-3;o)序列辨識編號:408-410的CDR H1-3以及序列辨識編號:413-415的CDR L1-3;q)序列辨識編號:436-438的CDR H1-3以及序列辨識編號:441-443的CDR L1-3;r)序列辨識編號:450-452的CDR H1-3以及序列辨識編號:455-457的CDR L1-3;s)序列辨識編號:464-466的CDR H1-3以及序列辨識編號:469-471的CDR L1-3;t)序列辨識編號:478-480的CDR H1-3以及序列辨識編號:483-485的CDR L1-3;u)序列辨識編號:492-494的CDR H1-3以及序列辨識編號:497-499的CDR L1-3;v)序列辨識編號:506-508的CDR H1-3以及序列辨識編號:511-513的CDR L1-3;w)序列辨識編號:520-522的CDR H1-3以及序列辨識編號:525-527的CDR L1-3;x)序列辨識編號:534-536的CDR H1-3以及序列辨識編號:539-541的CDR L1-3;y)序列辨識編號:548-550的CDR H1-3以及序列辨識編號:553-555的CDR L1-3;z)序列辨識編號:562-564的CDR H1-3以及序列辨識編號:567-569的CDR L1-3;aa)序列辨識編號:576-578的CDR H1-3以及序列辨識編號:581-583的CDR L1-3;ab)序列辨識編號:590-592的CDR H1-3以及序列辨識編號:595-597的CDR L1-3;以及ac)序列辨識編號:604-606的CDR H1-3以及序列辨識編號:609-611的CDR L1-3。
- 如申請專利範圍第1項的雙專一性單鏈抗體分子,其中該等結合領域是以VH PSMA-VL PSMA-VH CD3-VL CD3或VL PSMA-VH PSMA-VH CD3-VL CD3的次序而被排列。
- 如申請專利範圍第2項的雙專一性單鏈抗體分子,其中該雙專一性單鏈抗體分子包含有一選自於下列的序列:(a)一如被描寫在序列辨識編號:237、251、265、279、629、293、307、321、335、349、363、377、391、405、419、433、447、461、475、489、503、517、531、545、559、573、587、601或615的任一者中的胺基酸序列;以及(b)一由一如被描寫在序列辨識編號:238、252、266、280、630、294、308、322、336、350、364、378、392、406、420、434、448、462、476、490、504、518、532、546、560、574、588、602或616的任一者中的核酸序列所編碼的胺基酸序列。
- 一種編碼一如在申請專利範圍第1至3項中任一項所定義的雙專一性單鏈抗體分子的核酸序列。
- 一種載體,其包含有一如在申請專利範圍第4項所定義的核酸序列。
- 如申請專利範圍第5項的載體,其中該載體進一步包含有一被可操作地連結至該在申請專利範圍第4項所定義的核酸序列之調節序列。
- 如申請專利範圍第6項的載體,其中該載體是一表現載體。
- 一種以一在申請專利範圍第5至7項中任一項所定義的載體轉形或轉染之宿主細胞。
- 一種用於生產一如申請專利範圍第1至3項中任一項的雙專一性單鏈抗體分子的方法,該方法包含有在容許表現如在申請專利範圍第1至3項中任一項所定義的雙專一性單鏈抗體分子的條件下培養一在申請專利範圍第8項所定義的宿主細胞,以及從培養物中回收所生產的多肽。
- 一種藥學組成物,其包含有一如申請專利範圍第1至3項中任一項或如申請專利範圍第9項的方法所生產的雙專一性單鏈抗體分子。
- 如申請專利範圍第10項的藥學組成物,用於治療或改善癌症。
- 如申請專利範圍第11項的藥學組成物,其中該癌症是一固態腫瘤。
- 如申請專利範圍第12項的藥學組成物,其中該固態腫瘤為一癌(carcinoma)或前列腺癌。
- 如申請專利範圍第10項的藥學組成物,其選擇性地進一步包含有載劑、安定劑和/或賦形劑的適合配方。
- 如申請專利範圍第10項的藥學組成物,其中該藥學組成物適合於組合以一額外的藥物而被投藥。
- 如申請專利範圍第15項的藥學組成物,其中該額外的藥物是一非蛋白質化合物或一蛋白質化合物。
- 如申請專利範圍第16項的藥學組成物,其中該蛋白質化合物或非蛋白質化合物係與如申請專利範圍第10項的藥學組成物被同時地或非同時地投藥。
- 一種如申請專利範圍第1至3項中任一項或如申請專利範圍第9項的方法所生產的雙專一性單鏈抗體分子,其用於治療或改善癌症。
- 如申請專利範圍第18項的雙專一性單鏈抗體分子,其中該癌症是一固態腫瘤。
- 如申請專利範圍第19項的雙專一性單鏈抗體分子,其中該固態腫瘤為一癌(carcinoma)或前列腺癌。
- 如申請專利範圍第18項的雙專一性單鏈抗體分子,其中該雙專一性單鏈抗體分子適合於組合以一額外的藥物而被投藥。
- 如申請專利範圍第21項的雙專一性單鏈抗體分子,其中該額外的藥物是一非蛋白質化合物或一蛋白質化合物。
- 如申請專利範圍第22項的雙專一性單鏈抗體分子,其中該蛋白質化合物或非蛋白質化合物與申請專利範圍第18項的雙專一性單鏈抗體分子被同時地或非同時地投藥。
- 一種如申請專利範圍第1至3項中任一項所定義的或如申請專利範圍第9項所生產的雙專一性單鏈抗體分子用於製備一用以在一個體中治療或改善一疾病的藥學組成物的用途。
- 如申請專利範圍第24項的用途,其中該疾病是一癌症。
- 如申請專利範圍第25項的用途,其中該癌症是一固態腫瘤。
- 如申請專利範圍第26項的用途,其中該固態腫瘤為一癌(carcinoma)或前列腺癌。
- 如申請專利範圍第24至27項中任一項的用途,其中該藥學組成物可組合以一額外的藥物投藥。
- 如申請專利範圍第28項的用途,其中該額外的藥物是一非蛋白質化合物或一蛋白質化合物。
- 如申請專利範圍第29項的用途,其中該蛋白質化合物或非蛋白質化合物可與如申請專利範圍第10或11項的藥學組成物同時地或非同時地投藥。
- 如申請專利範圍第24至27項中任一項的用途,其中該個體是一人類。
- 一種套組,其包含有一如在申請專利範圍第1至3項中任一項所定義的雙專一性單鏈抗體分子、一如在申請專利範圍第4項所定義的核酸分子、一如在申請專利範圍第5至7項中任一項所定義的載體或者一如在申請專利範圍第8項所定義的宿主細胞。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32005210P | 2010-04-01 | 2010-04-01 | |
US61/320,052 | 2010-04-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201134942A TW201134942A (en) | 2011-10-16 |
TWI653333B true TWI653333B (zh) | 2019-03-11 |
Family
ID=44198856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100105628A TWI653333B (zh) | 2010-04-01 | 2011-02-21 | 跨物種專一性之PSMAxCD3雙專一性單鏈抗體 |
Country Status (17)
Country | Link |
---|---|
US (1) | US9587036B2 (zh) |
EP (1) | EP2552964B1 (zh) |
JP (1) | JP6153862B2 (zh) |
KR (1) | KR101799922B1 (zh) |
CN (2) | CN103025759A (zh) |
AR (1) | AR080868A1 (zh) |
AU (1) | AU2011234443B2 (zh) |
BR (1) | BR112012024964B1 (zh) |
CA (1) | CA2793139C (zh) |
IL (1) | IL222197A0 (zh) |
MX (1) | MX348360B (zh) |
NZ (1) | NZ602209A (zh) |
RU (1) | RU2617942C2 (zh) |
SG (1) | SG183937A1 (zh) |
TW (1) | TWI653333B (zh) |
WO (1) | WO2011121110A1 (zh) |
ZA (1) | ZA201206572B (zh) |
Families Citing this family (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2370467B1 (en) * | 2008-10-01 | 2016-09-07 | Amgen Research (Munich) GmbH | Cross-species-specific pscaxcd3, cd19xcd3, c-metxcd3, endosialinxcd3, epcamxc d3, igf-1rxcd3 or fapalpha xcd3 bispecific single chain antibody |
WO2010037838A2 (en) * | 2008-10-01 | 2010-04-08 | Micromet Ag | Cross-species-specific single domain bispecific single chain antibody |
CA2738566C (en) * | 2008-10-01 | 2024-04-30 | Micromet Ag | Bispecific single chain antibodies with specificity for high molecular weight target antigens |
ES2588155T3 (es) * | 2008-10-01 | 2016-10-31 | Amgen Research (Munich) Gmbh | Anticuerpo biespecífico de cadena sencilla PSMAxCD3 específico entre especies |
SG190726A1 (en) | 2010-11-30 | 2013-07-31 | Chugai Pharmaceutical Co Ltd | Cytotoxicity-inducing therapeutic agent |
SG194510A1 (en) | 2011-04-22 | 2013-12-30 | Emergent Product Dev Seattle | Prostate-specific membrane antigen binding proteins and related compositionsand methods |
SG10201509588TA (en) * | 2011-05-21 | 2015-12-30 | Macrogenics Inc | CD3-Binding Molecules Capable Of Binding To Human And Non-Human CD3 |
US10968276B2 (en) | 2013-03-12 | 2021-04-06 | Xencor, Inc. | Optimized anti-CD3 variable regions |
US9605084B2 (en) | 2013-03-15 | 2017-03-28 | Xencor, Inc. | Heterodimeric proteins |
US11053316B2 (en) | 2013-01-14 | 2021-07-06 | Xencor, Inc. | Optimized antibody variable regions |
CN105051069B (zh) | 2013-01-14 | 2019-12-10 | Xencor股份有限公司 | 新型异二聚体蛋白 |
GB201303308D0 (en) * | 2013-02-25 | 2013-04-10 | Oxford Biotherapeutics Ltd | Therapeutic and diagnostic target |
US10858417B2 (en) | 2013-03-15 | 2020-12-08 | Xencor, Inc. | Heterodimeric proteins |
SG10201800982QA (en) | 2013-07-05 | 2018-03-28 | Genmab As | Humanized or chimeric cd3 antibodies |
PL3406633T3 (pl) | 2013-07-25 | 2022-05-23 | Cytomx Therapeutics Inc. | Przeciwciała wieloswoiste, aktywowalne przeciwciała wieloswoiste i metody ich stosowania |
ES2813074T3 (es) | 2013-12-17 | 2021-03-22 | Genentech Inc | Anticuerpos anti-CD3 y métodos de uso |
US9822186B2 (en) | 2014-03-28 | 2017-11-21 | Xencor, Inc. | Bispecific antibodies that bind to CD38 and CD3 |
CA2943943C (en) | 2014-04-07 | 2023-01-10 | Chugai Seiyaku Kabushiki Kaisha | Immunoactivating antigen-binding molecule |
US11505605B2 (en) * | 2014-05-13 | 2022-11-22 | Chugai Seiyaku Kabushiki Kaisha | T cell-redirected antigen-binding molecule for cells having immunosuppression function |
US9212225B1 (en) | 2014-07-01 | 2015-12-15 | Amphivena Therapeutics, Inc. | Bispecific CD33 and CD3 binding proteins |
CN106661119A (zh) | 2014-07-01 | 2017-05-10 | 辉瑞公司 | 双特异性异二聚化双抗体及其用途 |
BR112017001579A2 (pt) * | 2014-07-25 | 2017-11-21 | Cytomx Therapeutics Inc | anticorpos anti-cd3, anticorpos anti-cd3 ativáveis, anticorpos anti-cd3 multiespecíficos, anticorpos anti-cd3 ativáveis multiespecíficos e métodos de uso dos mesmos |
AU2015294834B2 (en) * | 2014-07-31 | 2021-04-29 | Amgen Research (Munich) Gmbh | Optimized cross-species specific bispecific single chain antibody constructs |
EP2982693A1 (en) | 2014-08-07 | 2016-02-10 | Affimed Therapeutics AG | CD3 binding domain |
NZ766877A (en) | 2014-08-08 | 2024-08-30 | Alector Llc | Anti-trem2 antibodies and methods of use thereof |
EA037065B1 (ru) | 2014-11-26 | 2021-02-01 | Ксенкор, Инк. | Гетеродимерные антитела, связывающие cd3 и cd38 |
US10259887B2 (en) | 2014-11-26 | 2019-04-16 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and tumor antigens |
LT3223845T (lt) | 2014-11-26 | 2021-08-25 | Xencor, Inc. | Heterodimeriniai antikūnai, kurie suriša cd3 ir cd20 |
CN107709363A (zh) * | 2015-05-01 | 2018-02-16 | 基因泰克公司 | 掩蔽抗cd3抗体和使用方法 |
MA42059A (fr) * | 2015-05-06 | 2018-03-14 | Janssen Biotech Inc | Agents de liaison bispécifique à l'antigène membranaire spécifique de la prostate (psma) et utilisations de ceux-ci |
EP3296395B2 (en) | 2015-05-13 | 2024-06-19 | Chugai Seiyaku Kabushiki Kaisha | Multiple antigen binding molecular fusion, pharmaceutical composition, method for identifying linear epitope, and method for preparing multiple antigen binding molecular fusion |
US10738118B2 (en) | 2015-05-29 | 2020-08-11 | Amphivena Therapeutics, Inc. | Methods of using bispecific CD33 and CD3 binding proteins |
TWI829617B (zh) | 2015-07-31 | 2024-01-21 | 德商安美基研究(慕尼黑)公司 | Flt3及cd3抗體構築體 |
JOP20160154B1 (ar) * | 2015-07-31 | 2021-08-17 | Regeneron Pharma | أجسام ضادة مضاد لل psma، وجزيئات رابطة لمستضد ثنائي النوعية الذي يربط psma و cd3، واستخداماتها |
TWI796283B (zh) | 2015-07-31 | 2023-03-21 | 德商安美基研究(慕尼黑)公司 | Msln及cd3抗體構築體 |
EP3341009A4 (en) | 2015-08-28 | 2019-05-01 | Amunix Pharmaceuticals, Inc. | CHIMERIC POLYPEPTIDE ASSEMBLY AND METHODS OF PREPARING AND USING THE SAME |
MY197562A (en) | 2015-09-21 | 2023-06-23 | Aptevo Res & Development Llc | Cd3 binding polypeptides |
US11649293B2 (en) | 2015-11-18 | 2023-05-16 | Chugai Seiyaku Kabushiki Kaisha | Method for enhancing humoral immune response |
US11660340B2 (en) | 2015-11-18 | 2023-05-30 | Chugai Seiyaku Kabushiki Kaisha | Combination therapy using T cell redirection antigen binding molecule against cell having immunosuppressing function |
JP7058219B2 (ja) * | 2015-12-07 | 2022-04-21 | ゼンコア インコーポレイテッド | Cd3及びpsmaに結合するヘテロ二量体抗体 |
EP4206228A1 (en) * | 2016-02-03 | 2023-07-05 | Amgen Research (Munich) GmbH | Psma and cd3 bispecific t cell engaging constructs |
EA039859B1 (ru) | 2016-02-03 | 2022-03-21 | Эмджен Рисерч (Мюник) Гмбх | Биспецифические конструкты антител, связывающие egfrviii и cd3 |
KR102466763B1 (ko) * | 2016-04-13 | 2022-11-11 | 오리맵스 리미티드 | 항- psma 항체 및 이의 용도 |
RU2767357C2 (ru) | 2016-06-14 | 2022-03-17 | Ксенкор, Инк. | Биспецифические антитела-ингибиторы контрольных точек |
CN109641049B (zh) | 2016-06-21 | 2023-07-07 | 特尼奥生物股份有限公司 | Cd3结合抗体 |
EP3475304B1 (en) | 2016-06-28 | 2022-03-23 | Xencor, Inc. | Heterodimeric antibodies that bind somatostatin receptor 2 |
ES2980623T3 (es) * | 2016-09-14 | 2024-10-02 | Teneoone Inc | Anticuerpos de unión a CD3 |
US10689461B2 (en) | 2016-09-15 | 2020-06-23 | Novimmune Sa | Antibody dual display dual compositions and methods of use thereof |
KR102576042B1 (ko) * | 2016-10-11 | 2023-09-07 | 아게누스 인코포레이티드 | 항-lag-3 항체 및 이의 사용 방법 |
CN109923128A (zh) | 2016-11-15 | 2019-06-21 | 基因泰克公司 | 用于用抗cd20/抗cd3双特异性抗体进行治疗的给药 |
JP2020506971A (ja) | 2017-02-08 | 2020-03-05 | ドラゴンフライ セラピューティクス, インコーポレイテッド | ナチュラルキラー細胞の活性化のための多重特異性結合タンパク質およびがんを処置するためのその治療的使用 |
WO2018152518A1 (en) | 2017-02-20 | 2018-08-23 | Adimab, Llc | Proteins binding her2, nkg2d and cd16 |
EP3607053A4 (en) * | 2017-03-29 | 2021-04-07 | Taipei Medical University | ANTIGEN-SPECIFIC T-CELLS AND USES THEREOF |
MX2019015563A (es) | 2017-06-20 | 2020-07-28 | Teneoone Inc | Anticuerpos anti-bcma unicamente de cadena pesada. |
SG11201912774RA (en) | 2017-06-20 | 2020-01-30 | Teneobio Inc | Anti-bcma heavy chain-only antibodies |
TWI811229B (zh) | 2017-08-03 | 2023-08-11 | 美商阿列克特有限責任公司 | 抗trem2抗體及其使用方法 |
AU2018347607A1 (en) | 2017-10-14 | 2020-03-26 | Cytomx Therapeutics, Inc. | Antibodies, activatable antibodies, bispecific antibodies, and bispecific activatable antibodies and methods of use thereof |
US10981992B2 (en) | 2017-11-08 | 2021-04-20 | Xencor, Inc. | Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors |
WO2019094637A1 (en) | 2017-11-08 | 2019-05-16 | Xencor, Inc. | Bispecific and monospecific antibodies using novel anti-pd-1 sequences |
WO2019125732A1 (en) | 2017-12-19 | 2019-06-27 | Xencor, Inc. | Engineered il-2 fc fusion proteins |
JOP20200157A1 (ar) | 2017-12-22 | 2022-10-30 | Teneobio Inc | أجسام مضادة ذات سلسلة ثقيلة ترتبط بـ cd22 |
UY38041A (es) | 2017-12-29 | 2019-06-28 | Amgen Inc | Construcción de anticuerpo biespecífico dirigida a muc17 y cd3 |
JP7475275B2 (ja) | 2018-02-08 | 2024-04-26 | ジェネンテック, インコーポレイテッド | 二重特異性抗原結合分子及びその使用方法 |
PE20220278A1 (es) | 2018-02-08 | 2022-02-25 | Dragonfly Therapeutics Inc | Dominios variables de anticuerpos que se dirigen al receptor nkg2d |
US11203646B2 (en) | 2018-03-14 | 2021-12-21 | Novimmune Sa | Anti-CD3 epsilon antibodies and methods of use thereof |
AU2019247415A1 (en) | 2018-04-04 | 2020-10-22 | Xencor, Inc. | Heterodimeric antibodies that bind fibroblast activation protein |
KR20210003814A (ko) | 2018-04-18 | 2021-01-12 | 젠코어 인코포레이티드 | IL-15/IL-15Rα Fc-융합 단백질 및 TIM-3 항원 결합 도메인을 함유하는 TIM-3 표적화 이종이량체 융합 단백질 |
CA3097593A1 (en) | 2018-04-18 | 2019-10-24 | Xencor, Inc. | Pd-1 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and pd-1 antigen binding domains and uses thereof |
US11976131B2 (en) * | 2018-07-31 | 2024-05-07 | Heidelberg Pharma Research Gmbh | Humanized antibodies against PSMA |
MA53822A (fr) | 2018-10-03 | 2021-08-11 | Xencor Inc | Protéines de fusion fc hétérodimères d'il -12 |
US11472890B2 (en) | 2019-03-01 | 2022-10-18 | Xencor, Inc. | Heterodimeric antibodies that bind ENPP3 and CD3 |
CN110156890B (zh) * | 2019-04-09 | 2021-02-02 | 苏州大学 | Semaphorin7A单克隆抗体及其在制备用于治疗炎症疾病药物方面的应用 |
BR112021024956A2 (pt) | 2019-06-14 | 2022-01-25 | Teneobio Inc | Anticorpos multiespecíficos de cadeia pesada que se ligam a cd22 e cd3 |
WO2021004400A1 (zh) * | 2019-07-06 | 2021-01-14 | 苏州克睿基因生物科技有限公司 | 一种表达cd3抗体受体复合物的免疫细胞及其用途 |
CN117417448A (zh) | 2019-12-13 | 2024-01-19 | 基因泰克公司 | 抗ly6g6d抗体及使用方法 |
CN115666639A (zh) | 2020-01-13 | 2023-01-31 | 阿帕特夫研究和发展有限公司 | 用于防止治疗性蛋白吸附到药物递送系统部件的方法和组合物 |
MX2022008654A (es) | 2020-01-13 | 2022-08-18 | Aptevo Res & Development Llc | Formulaciones para productos terapeuticos proteicos. |
WO2021231976A1 (en) | 2020-05-14 | 2021-11-18 | Xencor, Inc. | Heterodimeric antibodies that bind prostate specific membrane antigen (psma) and cd3 |
MX2023001962A (es) | 2020-08-19 | 2023-04-26 | Xencor Inc | Composiciones anti-cd28. |
CA3200317A1 (en) | 2020-11-06 | 2022-05-12 | Amgen Inc. | Multitargeting bispecific antigen-binding molecules of increased selectivity |
WO2022125583A1 (en) * | 2020-12-09 | 2022-06-16 | Janux Therapeutics, Inc. | Compositions and methods related to tumor activated antibodies targeting trop2 and effector cell antigens |
AU2021396172A1 (en) * | 2020-12-09 | 2023-07-06 | Janux Therapeutics, Inc. | Compositions and methods related to tumor activated antibodies targeting psma and effector cell antigens |
EP4305067A1 (en) | 2021-03-09 | 2024-01-17 | Xencor, Inc. | Heterodimeric antibodies that bind cd3 and cldn6 |
US11859012B2 (en) | 2021-03-10 | 2024-01-02 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and GPC3 |
CA3217180A1 (en) | 2021-05-06 | 2022-11-10 | Amgen Research (Munich) Gmbh | Cd20 and cd22 targeting antigen-binding molecules for use in proliferative diseases |
WO2022246244A1 (en) | 2021-05-21 | 2022-11-24 | Aptevo Research And Development Llc | Dosing regimens for protein therapeutics |
AU2023238724A1 (en) | 2022-03-21 | 2024-09-05 | Amgen Inc. | Combination therapy methods with t-cell engaging molecules for treatment of prostate cancer |
TW202346368A (zh) | 2022-05-12 | 2023-12-01 | 德商安美基研究(慕尼黑)公司 | 具有增加的選擇性的多鏈多靶向性雙特異性抗原結合分子 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4946778A (en) | 1987-09-21 | 1990-08-07 | Genex Corporation | Single polypeptide chain binding molecules |
AU612370B2 (en) | 1987-05-21 | 1991-07-11 | Micromet Ag | Targeted multifunctional proteins |
US5703055A (en) | 1989-03-21 | 1997-12-30 | Wisconsin Alumni Research Foundation | Generation of antibodies through lipid mediated DNA delivery |
GB8928874D0 (en) | 1989-12-21 | 1990-02-28 | Celltech Ltd | Humanised antibodies |
EP1400536A1 (en) | 1991-06-14 | 2004-03-24 | Genentech Inc. | Method for making humanized antibodies |
GB9304200D0 (en) | 1993-03-02 | 1993-04-21 | Sandoz Ltd | Improvements in or relating to organic compounds |
EP0702722B1 (en) | 1993-06-07 | 2005-08-03 | Vical Incorporated | Plasmids suitable for gene therapy |
CA2225460A1 (en) | 1995-06-23 | 1997-01-09 | Winston Campbell Patterson | Transcriptional regulation of genes encoding vascular endothelial growth factor receptors |
JP4327350B2 (ja) | 1997-11-17 | 2009-09-09 | マイクロメット アーゲー | エピトープへの結合能力を保持する結合部位ドメインの同定のための新規方法 |
CA2326389C (en) | 1998-04-21 | 2007-01-23 | Micromet Gesellschaft Fur Biomedizinische Forschung Mbh | Novel cd19xcd3 specific polypeptides and uses thereof |
RU2179862C1 (ru) * | 2000-12-26 | 2002-02-27 | Общество с ограниченной ответственностью Научно-производственный центр "МедБиоСпектр" | Лекарственное средство для предотвращения отторжения трансплантата, моноклональное антитело к cd3-антигену т-лимфоцитов человека, гибридома и способ лечения больных, имеющих реакцию острого отторжения трансплантата после пересадки почки |
SI1629011T1 (sl) | 2003-05-31 | 2010-05-31 | Micromet Ag | Humane molekule za vezavo anti hu cd |
ES2358427T3 (es) * | 2003-10-16 | 2011-05-10 | Micromet Ag | Elementos de unión a cd-3 desinmunizados multiespecíficos. |
KR101266716B1 (ko) | 2004-06-03 | 2013-05-31 | 노비뮨 에스 에이 | 항-cd3 항체 및 그의 사용 방법 |
JP2008529556A (ja) | 2005-02-18 | 2008-08-07 | メダレックス, インク. | 前立腺特異的膜抗原(psma)に対するヒトモノクローナル抗体 |
EP1726650A1 (en) | 2005-05-27 | 2006-11-29 | Universitätsklinikum Freiburg | Monoclonal antibodies and single chain antibody fragments against cell-surface prostate specific membrane antigen |
SG174779A1 (en) | 2005-09-12 | 2011-10-28 | Novimmune Sa | Anti-cd3 antibody formulations |
EP3770174A1 (en) * | 2005-10-11 | 2021-01-27 | Amgen Research (Munich) GmbH | Compositions comprising cross-species-specific antibodies and uses thereof |
EP1948688A2 (en) * | 2005-11-14 | 2008-07-30 | Psma Development Company, L.L.C. | Compositions of and methods of using stabilized psma dimers |
EP2155783B2 (en) * | 2007-04-03 | 2022-10-19 | Amgen Research (Munich) GmbH | Cross-species-specific cd3-epsilon binding domain |
US20100183615A1 (en) * | 2007-04-03 | 2010-07-22 | Micromet Ag | Cross-species-specific bispecific binders |
EP4059964A1 (en) * | 2007-04-03 | 2022-09-21 | Amgen Research (Munich) GmbH | Cross-species-specific binding domain |
CA2695382A1 (en) * | 2007-08-01 | 2009-02-05 | The Government Of The United States Of America, As Represented By The Se Cretary, Department Of Health Of Human Services, National Institutes Of | A fold-back diabody diphtheria toxin immunotoxin and methods of use |
JP4970211B2 (ja) | 2007-10-18 | 2012-07-04 | ヘキサゴン・メトロジー株式会社 | 3次元形状測定器 |
EP2370467B1 (en) * | 2008-10-01 | 2016-09-07 | Amgen Research (Munich) GmbH | Cross-species-specific pscaxcd3, cd19xcd3, c-metxcd3, endosialinxcd3, epcamxc d3, igf-1rxcd3 or fapalpha xcd3 bispecific single chain antibody |
WO2010037838A2 (en) * | 2008-10-01 | 2010-04-08 | Micromet Ag | Cross-species-specific single domain bispecific single chain antibody |
ES2588155T3 (es) * | 2008-10-01 | 2016-10-31 | Amgen Research (Munich) Gmbh | Anticuerpo biespecífico de cadena sencilla PSMAxCD3 específico entre especies |
CA2738566C (en) * | 2008-10-01 | 2024-04-30 | Micromet Ag | Bispecific single chain antibodies with specificity for high molecular weight target antigens |
-
2011
- 2011-02-21 TW TW100105628A patent/TWI653333B/zh active
- 2011-03-31 AR ARP110101091A patent/AR080868A1/es not_active Application Discontinuation
- 2011-04-01 MX MX2012011405A patent/MX348360B/es active IP Right Grant
- 2011-04-01 EP EP11711591.5A patent/EP2552964B1/en active Active
- 2011-04-01 US US13/638,223 patent/US9587036B2/en active Active
- 2011-04-01 NZ NZ602209A patent/NZ602209A/en unknown
- 2011-04-01 CN CN201180027019XA patent/CN103025759A/zh active Pending
- 2011-04-01 JP JP2013501861A patent/JP6153862B2/ja active Active
- 2011-04-01 BR BR112012024964-9A patent/BR112012024964B1/pt active IP Right Grant
- 2011-04-01 RU RU2012143519A patent/RU2617942C2/ru active
- 2011-04-01 CA CA2793139A patent/CA2793139C/en active Active
- 2011-04-01 CN CN201710108450.6A patent/CN107090044A/zh active Pending
- 2011-04-01 AU AU2011234443A patent/AU2011234443B2/en active Active
- 2011-04-01 KR KR1020127028639A patent/KR101799922B1/ko active IP Right Grant
- 2011-04-01 SG SG2012066064A patent/SG183937A1/en unknown
- 2011-04-01 WO PCT/EP2011/055104 patent/WO2011121110A1/en active Application Filing
-
2012
- 2012-09-03 ZA ZA201206572A patent/ZA201206572B/en unknown
- 2012-09-27 IL IL222197A patent/IL222197A0/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
EP2552964A1 (en) | 2013-02-06 |
CN107090044A (zh) | 2017-08-25 |
WO2011121110A1 (en) | 2011-10-06 |
KR101799922B1 (ko) | 2017-11-21 |
AR080868A1 (es) | 2012-05-16 |
NZ602209A (en) | 2014-08-29 |
KR20130088013A (ko) | 2013-08-07 |
US9587036B2 (en) | 2017-03-07 |
TW201134942A (en) | 2011-10-16 |
EP2552964B1 (en) | 2019-10-02 |
BR112012024964B1 (pt) | 2021-05-25 |
CA2793139C (en) | 2023-08-08 |
JP2013528569A (ja) | 2013-07-11 |
SG183937A1 (en) | 2012-10-30 |
AU2011234443B2 (en) | 2014-05-22 |
RU2617942C2 (ru) | 2017-04-28 |
JP6153862B2 (ja) | 2017-06-28 |
CN103025759A (zh) | 2013-04-03 |
ZA201206572B (en) | 2019-10-30 |
IL222197A0 (en) | 2012-12-31 |
AU2011234443A1 (en) | 2012-09-27 |
RU2012143519A (ru) | 2014-05-10 |
CA2793139A1 (en) | 2011-10-06 |
MX2012011405A (es) | 2013-01-29 |
BR112012024964A2 (pt) | 2017-07-18 |
MX348360B (es) | 2017-06-07 |
US20130129730A1 (en) | 2013-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI653333B (zh) | 跨物種專一性之PSMAxCD3雙專一性單鏈抗體 | |
US11472886B2 (en) | Cross-species-specific PSMAxCD3 bispecific single chain antibody | |
US11987633B2 (en) | Cross-species-specific single domain bispecific single chain antibody | |
EP2352763B1 (en) | Bispecific single chain antibodies with specificity for high molecular weight target antigens | |
EP2370467B1 (en) | Cross-species-specific pscaxcd3, cd19xcd3, c-metxcd3, endosialinxcd3, epcamxc d3, igf-1rxcd3 or fapalpha xcd3 bispecific single chain antibody | |
TWI629357B (zh) | 跨物種特異性的PSMAxCD3雙特異性單鏈抗體 |